WO2022099785A1 - 一种动态裂缝堵漏评价实验装置及其实验方法 - Google Patents

一种动态裂缝堵漏评价实验装置及其实验方法 Download PDF

Info

Publication number
WO2022099785A1
WO2022099785A1 PCT/CN2020/131270 CN2020131270W WO2022099785A1 WO 2022099785 A1 WO2022099785 A1 WO 2022099785A1 CN 2020131270 W CN2020131270 W CN 2020131270W WO 2022099785 A1 WO2022099785 A1 WO 2022099785A1
Authority
WO
WIPO (PCT)
Prior art keywords
plugging
liquid
pressure
dynamic
fracture
Prior art date
Application number
PCT/CN2020/131270
Other languages
English (en)
French (fr)
Inventor
马成云
冯永存
邓金根
Original Assignee
中国石油大学(北京)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国石油大学(北京) filed Critical 中国石油大学(北京)
Priority to US17/777,594 priority Critical patent/US20230141812A1/en
Publication of WO2022099785A1 publication Critical patent/WO2022099785A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/08Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces
    • G01N3/10Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces generated by pneumatic or hydraulic pressure
    • G01N3/12Pressure testing
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B33/00Sealing or packing boreholes or wells
    • E21B33/10Sealing or packing boreholes or wells in the borehole
    • E21B33/13Methods or devices for cementing, for plugging holes, crevices or the like
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/24Earth materials
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B41/00Equipment or details not covered by groups E21B15/00 - E21B40/00
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/25Methods for stimulating production
    • E21B43/26Methods for stimulating production by forming crevices or fractures
    • E21B43/261Separate steps of (1) cementing, plugging or consolidating and (2) fracturing or attacking the formation
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B49/00Testing the nature of borehole walls; Formation testing; Methods or apparatus for obtaining samples of soil or well fluids, specially adapted to earth drilling or wells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/003Generation of the force
    • G01N2203/0042Pneumatic or hydraulic means
    • G01N2203/0048Hydraulic means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0058Kind of property studied
    • G01N2203/006Crack, flaws, fracture or rupture
    • G01N2203/0067Fracture or rupture
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/022Environment of the test
    • G01N2203/0236Other environments
    • G01N2203/024Corrosive

Definitions

  • the invention relates to the technical field of petroleum engineering, in particular to a dynamic fracture plugging evaluation experimental device and an experimental method thereof.
  • the devices and methods for evaluating the loss-stopping agent material in the prior art can only perform qualitative evaluation and analysis on the fractures with a fixed fracture size, while in the actual drilling process, most of the fractures are initially closed, and under the action of the drilling hydraulic pressure difference The fractures are gradually opened, and then the plugging material in the drilling fluid can enter the fractures and bridge and seal the fractures.
  • the existing fracture plugging evaluation device cannot monitor the plugging speed and determine the position of plugging in real time, so it cannot be used to evaluate the performance of plugging materials, the effect of plugging, the gradation relationship between plugging agents and materials, and the plugging layer. Lamination ability, and it is impossible to monitor and evaluate the plugging speed, plugging effect and plugging position in real time.
  • the purpose of the present invention is to provide a dynamic fracture plugging evaluation experimental device and its experimental method to solve the problem that the existing fracture plugging evaluation device cannot simulate the dynamic change of shale fracture morphology for experiments.
  • the invention provides a dynamic fracture plugging evaluation experimental device, including a fracture simulation experiment instrument, a liquid storage tank, a recovery pool, a hydraulic pump, a hand pressure pump, a liquid weighing electronic balance, an inlet pressure gauge, an outlet pressure gauge, and a first back pressure. valve and the second back pressure valve, the upper part of the crack simulation experimenter is provided with a liquid inlet and a liquid outlet, and the bottom of the crack simulation experimenter is provided with a liquid seepage port; the liquid outlet of the liquid storage tank is connected to the The liquid inlet of the hydraulic pump is connected through a pipeline, and the liquid outlet of the hydraulic pump is connected with the liquid inlet of the crack simulation experiment instrument through an input pipeline; an inlet pressure gauge is arranged on the input pipeline.
  • the liquid outlet of the crack simulation experiment instrument is connected to the upper part of the recovery tank through the output pipeline, and the liquid outlet end of the output pipeline is provided with a first back pressure valve; the output pipeline is provided with an outlet pressure gauge; The liquid seepage port is provided with a liquid discharge pipe, and the liquid discharge pipe is provided with a second back pressure valve; the liquid weighing electronic balance is provided with a liquid weighing container, and the liquid weighing container of the liquid weighing electronic balance is provided in the liquid weighing electronic balance.
  • the hand pressure pump is connected with the air inlet on the side wall of the cylinder body; when the hand pressure pump supplies the annular space formed by the rubber sleeve and the cylinder body Pressure, due to the deformability of the rubber sleeve, the pressure input by the hand pump can smoothly transfer the rock mass sample to achieve radial pressure on the rock mass sample.
  • the crack simulation experiment instrument comprises a cylinder, an upper cover, a lower cover, an upper plug, a lower plug, an indenter and a rubber sleeve, and the upper and lower covers are respectively disposed in the The top and bottom ends of the cylinder, the upper plug and the lower plug are inside the cylinder and are in close contact with the upper cover and the lower cover, respectively.
  • the lower plug and the cylinder together form a containing cavity, and the geometric size of the containing cavity is just enough to accommodate the rock mass sample;
  • the two sides of the upper cover are respectively provided with a liquid inlet and a liquid outlet
  • a liquid inlet channel groove is arranged between the liquid inlet port and the container chamber, and the liquid inlet channel groove passes through the upper cover and the upper plug on the side close to the liquid inlet in sequence from the outside to the inside
  • a liquid outlet channel groove is arranged between the liquid outlet and the containing cavity, and the liquid outlet channel groove passes through the upper plug and the upper cover on the side close to the liquid outlet in sequence from the inside to the outside;
  • An intersection groove is provided between the liquid inlet channel groove and the liquid outlet channel groove of the upper plug, and the intersection groove is communicated with the accommodation cavity.
  • the crack simulation experiment instrument is equipped with a dynamic crack simulation mechanism
  • the dynamic crack simulation mechanism includes a rock mass sample, a fixed plate, two cracked plates, multiple groups of springs and a sealant sleeve.
  • a hollow groove is provided, and a dynamic crack simulation mechanism liquid inlet channel is connected above the hollow groove;
  • the fixed plate is fixed on the inner wall and bottom of the hollow groove;
  • two seam plates are symmetrically arranged about the center line of the hollow groove, and two The bottoms of the slotted plates are all pivotally connected to the fixed plate at the bottom of the hollow slot, and the tops of the two slotted plates touch the top surface of the hollow slot. When the two slotted plates are closed, the tops of the two slotted plates touch the top surface of the hollow slot.
  • a sealant sleeve is laid on the outer surface of the seam plate, and the sealant sleeve extends from bottom to top from the bottom of the seam plate to the contact point between the top of the seam plate and the top surface of the hollow groove, so as to Realize all sealing between the fractured plate and the rock mass sample;
  • the centerlines of the liquid inlet channel groove and the liquid outlet channel groove are located on the same straight line, and the connection line between the liquid inlet channel groove and the liquid outlet channel groove It communicates with the intersection groove in a crisscross manner;
  • the seepage port is arranged at the bottom of the lower cover, and a seepage channel is arranged between the seepage hole and the accommodation cavity, and the seepage port is provided with a seepage channel.
  • the channel runs through the middle of the lower plug and the lower cover in sequence from the inside to the outside; several groups of springs are arranged at intervals between the slit plate and the fixing plate of the side wall of the hollow groove, and each group of springs includes a set of springs located in the same Two springs at the height position, the two ends of each of the springs are respectively fixed on the sealant sleeve and the fixing plate; one of the seamed plates is provided with a plurality of pressure measuring points at intervals, and each of the pressure measuring points is A pressure sensor is provided, the pressure sensor is extended to the outside through a wire, and a pressure sensor joint is provided; when the plugging slurry enters the hollow groove of the rock mass sample from the liquid inlet channel of the dynamic fracture simulation mechanism, the plugging slurry enters the two fractures.
  • the chamfered angle at the top of the plate stretches the two seamed plates and rotates to both sides around the fixed plate to dynamically simulate the pore cracking process.
  • the inner wall of the cylinder body and the connection between the cylinder body and the upper plug and the lower plug are arranged on a rubber sleeve, and the rubber sleeve divides the cylinder into two closed spaces, which are the The annular space formed by the rubber sleeve and the cylinder body and the space enclosed by the rubber sleeve and the upper plug and the lower plug; the side wall of the cylinder body is provided with an air inlet, and the air inlet is connected to the The rubber sleeve is communicated with the annular space formed by the cylinder body.
  • the invention also discloses an experimental method for plugging a fracture with a liquid medium to obtain the dynamic change of the fracture, using the above-mentioned dynamic fracture plugging evaluation experimental device, comprising the following steps:
  • Step A Assemble the crack simulation experiment instrument
  • Step A1 Assemble the rock mass sample, the fixed plate, two seam plates, multiple sets of springs and sealant sleeves into a dynamic fracture simulation mechanism;
  • Step A2 Load the lower plug, the dynamic crack simulation mechanism, and the upper plug into the rubber sleeve in sequence to assemble a crack simulation experiment instrument;
  • Step A3 Spinning the upper cap and the lower cap to generate axial stress on the rock mass sample
  • Step B sealing the housing cavity, and setting the thresholds of the first back pressure valve and the second back pressure valve and the flow rate of the hydraulic pump;
  • Step C clear water or plugging slurry to seal the fracture to obtain the dynamic change process of the fracture
  • Step D Evaluation of dynamic fracture plugging effect
  • the evaluation of the plugging effect of the dynamic fractures includes the quantitative evaluation of the plugging position of the plugging slurry and the dynamic pressure bearing capacity under the action of the plugging slurry, and the effect of the liquid rheological parameters on the second plugging layer after replacing the circulating fluid in the subsequent drilling process. Evaluation of the effect of stability and the effect of hydraulic parameters of the plugging slurry on the stability of the second plugging layer.
  • the dynamic change process of the cracks obtained by the clear water leakage plugging slurry plugging the cracks specifically includes the following steps:
  • Step C11 Turn on the hydraulic pump, and the clean water enters the crack simulation experiment instrument from the liquid storage tank, the hydraulic pump, and the input pipeline in sequence.
  • the sharp corner enters the crack, and then reaches the second back pressure valve through the seepage channel and seepage port; another part of the clean water reaches the first back pressure valve through the liquid outlet channel groove, the liquid outlet and the output pipeline;
  • Step C12 The injected clean water gradually forms hydraulic pressure in the liquid inlet channel and the chamfered corner;
  • Step C13 When the hydraulic pressure exceeds the elastic force of the spring, the two seam plates are gradually stretched open. After the pressure value set by the second back pressure valve is 1.5MPa, the opening degree of the crack formed by the two slit plates will not change.
  • the process of obtaining the dynamic change of the fracture by plugging the fracture with the plugging slurry specifically includes the following steps:
  • Step C21 set the liquid storage tank as plugging slurry
  • Step C22 Turn on the hydraulic pump, and the plugging slurry of the liquid storage tank enters the crack simulation experiment instrument from the liquid inlet through the hydraulic pump and the input pipeline.
  • the chamfered corner enters the crack, and then reaches the second back pressure valve through the seepage channel and seepage port; the other part of the plugging slurry passes through the liquid outlet channel groove, the liquid outlet, and the output pipeline reaches the first back pressure valve;
  • Step C23 the plugging slurry gradually gathers in the chamfered corner to form hydraulic pressure
  • Step C24 When the hydraulic pressure in the chamfered corner exceeds the elastic force of the spring, the two seam plates are gradually opened. As the hydraulic pressure inside the crack simulation mechanism increases, the opening of the cracks opened by the two seam plates gradually increases until When the hydraulic pressure exceeds the pressure value set by the second back pressure valve by 1.5MPa, the opening of the fracture formed by the two fractured plates does not change; at the same time, the particles in the plugging slurry form a plugging layer in the fracture channel;
  • Step C25 The leakage plugging slurry is continuously injected into the liquid inlet channel and the chamfered corner to form a hydraulic pressure, and the hydraulic pressure gradually increases. Under the action of the hydraulic pressure, the two seam plates are further stretched, and the leakage plugging layer is damaged or the position of the leakage plugging layer is damaged. Re-form the second plugging layer;
  • Step C26 Record the change of the pressure value of the pressure sensor with time, observe when the pressure value of the pressure sensor changes suddenly, record the position of the pressure measuring point corresponding to the pressure sensor on the fractured plate, so as to judge the leakage of the plugging slurry in the fracture. Blocking position.
  • the quantitative evaluation of the plugging position and dynamic pressure-bearing capacity of the leakage plugging slurry under the scouring action of the leakage plugging slurry, after the leakage plugging slurry plugs the crack to obtain the dynamic change of the crack specifically includes the following steps:
  • Step X1 after forming a stable second leakage blocking layer, adjust the pressure value of the first back pressure valve to be equal to the value of the inlet pressure gauge;
  • Step X2 The excess plugging slurry will enter the waste liquid pool through the first back pressure valve, so that the fluid inlet channel of the fracture simulation mechanism and the internal leakage plugging slurry of the chamfered corner form a dynamic flow, which will continuously scour the plugging layer until the second stoppage. The plugging layer is damaged;
  • Step X3 The second plugging layer is gradually destroyed, the value of the inlet pressure gauge changes, and the crack width decreases;
  • Step X4 Once the pressure at the liquid inlet channel and chamfered corner of the fracture simulation mechanism is lower than the pressure value of the first back pressure valve, the dynamic flow of the plugging slurry is stopped, and the fracture is plugged again, and steps X2 to X3 are repeated;
  • Step X5 Record the change of the pressure value of the pressure sensor with time, observe when the pressure value of the pressure sensor changes suddenly, record the position of the pressure measuring point corresponding to the pressure sensor on the fractured plate, so as to judge the leakage of the plugging slurry in the fracture. Blocking position.
  • the evaluation of the effect of the fluid rheological parameters on the stability of the second plugging layer after replacing the circulating fluid in the subsequent drilling process includes:
  • Step Y After forming a stable second loss-stopping layer, stop the hydraulic pump, and replace the loss-stopping slurry with clear water or water-based drilling fluid or oil-based drilling fluid, and adjust the pressure value of the first back pressure valve to be equal to the inlet pressure before stopping the pump table value.
  • the evaluation of the effect of the hydraulic parameters of the plugging slurry on the stability of the second plugging layer is obtained after the plugging slurry plugs the crack to obtain the dynamic change process of the crack, and specifically includes:
  • Step Z1 After the stable second leakage plugging layer is formed, adjust the pressure value of the first back pressure valve to be equal to the value of the inlet pressure gauge, and the excess leakage plugging slurry enters the waste liquid pool through the first back pressure valve, so that the fracture simulation mechanism Dynamic flow is formed by the plugging slurry inside the liquid inlet channel and the chamfered corner;
  • Step Z2 Increase the flow rate of the hydraulic pump to 3L/min and keep it for 1h;
  • Step Z3 increase the flow rate of the hydraulic pump to 4L/min and continue for 1h;
  • Step Z4 Increase the flow rate of the hydraulic pump at a frequency of increasing the flow rate by 1L/min per hour until the leakage plugging layer is destroyed;
  • Step Z5 Record the change of the pressure value of the pressure sensor over time, observe when the pressure value of the pressure sensor changes suddenly, record the position of the pressure measuring point corresponding to the pressure sensor on the fractured plate, so as to judge the leakage of the plugging slurry in the fracture. Blocking position;
  • Step Z6 Draw the relationship curve between the pressure value of the pressure measuring point on the seam plate and the flow rate.
  • Embodiment 1 is a schematic structural diagram of a dynamic fracture plugging evaluation experimental device provided in Embodiment 1 of the present invention
  • Embodiment 2 is a cross-sectional view of the dynamic crack simulation mechanism provided in Embodiment 1 of the present invention arranged in a crack simulation experiment instrument;
  • Fig. 3 is the top view of the crack simulation experiment instrument provided in Embodiment 1 of the present invention.
  • Fig. 4 is the front view of the crack simulation experiment instrument provided in Embodiment 1 of the present invention.
  • Fig. 5 is A-A sectional view in Fig. 4;
  • FIG. 6 is a side view of the crack simulation experiment instrument provided in Embodiment 1 of the present invention.
  • Fig. 7 is B-B sectional view in Fig. 6;
  • Embodiment 8 is a longitudinal cross-sectional view of a dynamic crack simulation mechanism provided in Embodiment 1 of the present invention.
  • FIG. 9 is a longitudinal cross-sectional view of the interior of the hollow groove of the dynamic crack simulation mechanism provided in Embodiment 1 of the present invention.
  • FIG. 10 is a schematic diagram of the crack simulation experiment instrument provided in Embodiment 1 of the present invention being installed on a fixing device.
  • Embodiment 1 provides a dynamic fracture plugging evaluation experimental device, the structure of which is described in detail below.
  • the experimental device includes a crack simulation tester 1, a fixture for crack simulation tester 2, a liquid storage tank 3, a recovery tank 4, a hydraulic pump 5, a hand pressure pump 6, a weighing electronic balance 7, and an inlet pressure gauge 8. , outlet pressure gauge 9 , first back pressure valve 10 and second back pressure valve 400 .
  • the liquid outlet of the liquid storage tank 3 is communicated with the liquid inlet of the hydraulic pump 5 through a pipeline, and the liquid outlet of the hydraulic pump 5 is communicated with the liquid inlet 31 of the crack simulation experiment instrument 1 through an input pipeline 310;
  • An inlet pressure gauge 8 is provided on the input pipeline 310;
  • the liquid outlet 32 of the crack simulation experimenter 1 is connected to the upper part of the recovery tank 4 through an output pipeline 320, and the liquid outlet end of the output pipeline 320 is provided with a first back pressure valve 10;
  • the output pipe 320 is provided with an outlet pressure gauge 9;
  • the seepage port 36 is provided with a drain pipe, and the drain pipe is provided with a second back pressure valve 400;
  • the liquid weighing electronic balance 7 is provided with a liquid weighing container, and the liquid weighing container of the liquid weighing electronic balance 7 is arranged directly below the outlet of the liquid discharge pipe. pipe and the outgoing liquid from the outlet of the drain pipe;
  • the hand pump 6 communicates with the air inlet 38 opened on the side wall of the cylinder body 21 .
  • the hand pump 6 When the hand pump 6 provides pressure to the annular space formed by the rubber sleeve 27 and the cylinder 21, due to the deformability of the rubber sleeve 27, the pressure input by the hand pump 6 can smoothly transfer the rock mass sample 11, so as to realize the formation of the rock mass sample 11.
  • the volume sample 11 applies radial pressure.
  • the crack simulation experimenter 1 includes a cylinder 21 , an upper cover 22 , a lower cover 23 , an upper plug 24 , a lower plug 25 , an indenter 26 , a rubber sleeve 27 and a sealing ring 28 .
  • the upper cover 22 and the lower cover 23 are respectively arranged on the top and bottom ends of the cylinder body 21, the upper plug 24 and the lower plug 25 are inside the cylinder 21 and are in close contact with the upper cover 22 and the lower cover 23, respectively.
  • the plug 24, the lower plug 25 and the cylinder 21 together form a containing cavity 20, the geometric size of the containing cavity 20 is just enough to accommodate the rock mass sample 11, and the dynamic fracture simulation mechanism is installed in the containing cavity within 20.
  • the dynamic fracture simulation mechanism can dynamically simulate the morphological changes of shale fractures, including a rock mass sample 11 , a fixed plate 12 , two fractured plates 13 , multiple sets of springs 14 and a sealant sleeve 15 .
  • the rock mass sample 11 is a mud shale sample, and a hollow groove 16 is arranged inside, and a dynamic fracture simulation mechanism liquid inlet channel 17 is connected above the hollow groove 16;
  • the fixing plate 12 is fixed on the side wall and the bottom of the hollow groove 16;
  • the two slit plates 13 are symmetrically arranged about the center line of the hollow groove 16 , the bottoms of the two slit plates 13 are pivotally connected to the fixed plate 12 at the bottom of the hollow groove 16 , and the tops of the two slit plates 13 touch the top of the hollow groove 16 .
  • the top ends of the two seam plates 13 are just spliced into a chamfered corner 18;
  • a sealant sleeve 15 is laid on the outer surface of the seam plate 13, and the sealant sleeve 15 extends from the bottom to the top of the seam plate 13 to the contact point between the top of the seam plate 13 and the top surface of the hollow groove 16, so as to realize the connection between the seam plate 13 and the top surface of the hollow groove 16.
  • each group of springs 14 includes two springs 14 located at the same height position, and two ends of each spring 14 are respectively fixed to the seal On the rubber sleeve 15 and the fixing plate 12, the degree of difficulty of pore cracking can be simulated by adjusting the elastic coefficient of the spring 14.
  • the leakage plugging slurry When the leakage plugging slurry enters the hollow groove 16 of the rock mass sample 11 from the liquid inlet channel 17 of the dynamic fracture simulation mechanism, the leakage plugging slurry enters the chamfered corners 18 at the tops of the two joint plates 13 to open the two joint plates 13 to surround the fixed plate 12 is rotated to both sides to dynamically simulate the pore cracking process.
  • several groups of springs 14 are symmetrically arranged with respect to the centerline of the hollow groove 16 .
  • a plurality of pressure measuring points are arranged on one of the seam plates 13 at intervals, and each pressure measuring point is provided with a pressure sensor 19, and the pressure sensor 19 extends to the outside through a wire. And is provided with a pressure sensor connector.
  • the number of pressure measuring points is 4 to 6 pressure measuring points.
  • both sides of the upper cover 22 are provided with a liquid inlet 31 and a liquid outlet 32 respectively, and a liquid inlet channel groove 33 is provided between the liquid inlet 31 and the containing cavity 20 , and the liquid inlet
  • the channel groove 33 sequentially passes through the upper cover 22 and the upper plug 24 on the side close to the liquid inlet 31 from the outside to the inside;
  • a liquid outlet channel groove 34 is provided between the liquid outlet 32 and the containing cavity 20, and the liquid outlet
  • the channel groove 34 sequentially passes through the upper plug 24 and the upper cover 22 on the side close to the liquid outlet 32 from the inside to the outside; an intersection groove is provided between the liquid inlet channel groove 33 and the liquid outlet channel groove 34 of the upper plug 24 35.
  • the intersection groove 35 communicates with the containing cavity 20.
  • the bottom of the lower cover 23 is provided with a seepage port 36, and a seepage channel 37 is arranged between the seepage hole 36 and the containing cavity 20, and the seepage channel 37 runs through the lower plug 25 and The middle of the lower cover 23 .
  • centerlines of the liquid inlet channel groove 33 and the liquid outlet channel groove 34 are located on the same straight line, and the connecting line of the liquid inlet channel groove 33 and the liquid outlet channel groove 34 is connected with the intersection groove 35 in a crisscross manner.
  • a sealing ring 28 is provided between the upper part of the cylinder 21 and the upper cover 22 .
  • the inner wall of the cylinder 21 and the connection between the cylinder 21 and the upper plug 24 and the lower plug 25 are arranged on the rubber sleeve 27 , and the rubber sleeve 27 divides the cylinder 21 into two parts.
  • the closed spaces are respectively the annular space formed by the rubber sleeve 27 and the cylinder body 21 and the space enclosed by the rubber sleeve 27 , the upper plug 24 and the lower plug 25 .
  • the upper plug 24 and the lower plug 25 are both rubber plugs.
  • a pressure head 26 is provided on the upper cover 22 for screw connection.
  • the upper cover 22 is provided with a groove, the inner wall of the groove is provided with an inner thread, and the press head 26 is provided with an external thread.
  • the press head 26 passes through Acting on the upper plug applies a force to the rock mass sample 11 to achieve a change in the axial stress of the rock mass sample 11 .
  • the cylinder body 21 is provided with a perforation with a pressure sensor joint for passing through the pressure sensor 19, and a wire connecting the pressure sensor 19 and the pressure sensor joint is provided with a rubber plug, and the rubber plug is provided in the perforation in a sealing manner.
  • the fixing device 2 of the crack simulation experimenter includes a base 40 , a support rod 41 , a steel collar 43 and a tightening screw 42 , wherein the support rod 41 is fixed on the base 40 , and the external shape of the crack simulation experimenter 1 is Cylinder, the steel collar 43 includes a circular ring part and a rod part, the circular ring part of the steel collar 43 is sleeved on the outside of the crack simulation experiment instrument 1, the tightening screw 42 includes a screw part and a knob part that are fixedly connected, and the screw part is screwed.
  • the outer wall of the screw portion of the tightening screw 42 is provided with an external thread
  • the top end of the support rod 41 is provided with a hinge ring
  • the top side wall of the support rod 41 is provided with an internal thread hole
  • the rod portion of the steel collar 43 is hinged to the support rod 41.
  • the screw part of the tightening screw 42 is arranged in the threaded hole of the top side wall of the support rod 41 and is fixedly connected with the rod part of the steel collar 43. Tightening the screw 42 can realize the adjustment and adjustment of the angle of the crack simulation experimenter 1. fixed.
  • Example 2 provides an experimental method for sealing cracks with liquid medium to obtain dynamic changes of cracks.
  • the dynamic crack plugging evaluation experimental device of Example 1 is used, and clear water or plugging slurry is used to block cracks to promote dynamic changes of cracks to obtain dynamic changes of cracks.
  • the method of the process specifically includes the following steps:
  • Step A Assemble the crack simulation experiment instrument 1;
  • Step A1 Assemble the rock mass sample 11, the fixed plate 12, the two seam plates 13, the multiple sets of springs 14 and the sealant sleeve 15 into a dynamic crack simulation mechanism;
  • Step A2 Load the lower plug 25, the dynamic crack simulation mechanism, and the upper plug 24 into the rubber sleeve 27 in sequence to assemble the crack simulation experiment instrument 1;
  • Step A3 Spinning the upper cover 22 and the lower cover 23 to generate axial stress on the rock mass sample 11;
  • Step B sealing the accommodating chamber 20, and setting the thresholds of the first back pressure valve 10 and the second back pressure valve 400 and the flow rate of the hydraulic pump 5;
  • Step B1 Start the hand pressure pump 6 and inject gas into the air inlet 38 on the side wall of the cylinder 21 until a confining pressure of 10 MPa is formed in the annular space formed by the cylinder 21 and the rubber sleeve 27, and the core sample 11, the upper The sealing of the containing cavity 20 enclosed by the plug 24 and the lower plug 25;
  • Step B2 setting the threshold value of the first back pressure valve 10 to 4.5MPa, setting the threshold value of the second back pressure valve 400 to 1.5MPa, and setting the flow rate of the hydraulic pump 5 to 2L/min;
  • Step C clear water or plugging slurry to seal the fracture to obtain the dynamic change process of the fracture
  • the dynamic change process of the cracks obtained by sealing the cracks with clean water specifically includes the following steps:
  • Step C11 Turn on the hydraulic pump 5, the clean water enters the crack simulation experiment instrument 1 from the liquid inlet 31 from the liquid storage tank 3, through the hydraulic pump 5, and the input pipeline 310 in sequence.
  • the liquid inlet channel 17 and the chamfered corner 18 of the crack simulation mechanism enter the crack, and then reach the second back pressure valve 400 through the liquid seepage channel 37 and the seepage port 36;
  • the output pipe 320 reaches the first back pressure valve 10;
  • Step C12 The injected clean water gradually forms hydraulic pressure in the liquid inlet channel 17 and the chamfered corner 18;
  • Step C13 When the hydraulic pressure exceeds the elastic force of the spring 14, the two seam plates 13 are gradually stretched. As the hydraulic pressure at the liquid inlet channel 17 and the chamfered corner 18 increases, the opening of the cracks opened by the two seam plates 13 increases. Gradually increase until the hydraulic pressure exceeds the pressure value set by the second back pressure valve 400 by 1.5 MPa, the opening of the cracks formed by the two slit plates 13 does not change any more.
  • the dynamic change process of the fracture obtained by plugging the fracture with the plugging slurry specifically includes the following steps:
  • Step C21 set the liquid storage tank 3 as plugging slurry
  • Step C22 Turn on the hydraulic pump 5, the leakage plugging slurry of the liquid storage tank 3 enters the crack simulation experiment instrument 1 from the liquid inlet 31 through the hydraulic pump 5 and the input pipeline 310, and a part of the leakage blocking slurry passes through the liquid inlet channel 33 and the intersection groove 35. 2.
  • the liquid inlet channel 17 and the chamfered corner 18 of the crack simulation mechanism enter the crack, and then reach the second back pressure valve 400 through the liquid seepage channel 37 and the seepage port 36; port 32, the output pipeline 320 reaches the first back pressure valve 10;
  • Step C23 the plugging slurry gradually gathers in the chamfered corner 18 to form hydraulic pressure
  • Step C24 When the hydraulic pressure in the chamfered corner 18 exceeds the elastic force of the spring 14, the two seam plates 13 are gradually stretched. As the hydraulic pressure inside the crack simulation mechanism increases, the opening of the crack opened by the two seam plates 13 Gradually increase, the direct hydraulic pressure exceeds the pressure value set by the second back pressure valve 400 by 1.5MPa, and the opening of the cracks formed by the two fractured plates 13 does not change; at the same time, the particles in the plugging slurry form a plugging layer in the fracture channel 200;
  • Step C25 The leakage plugging slurry is continuously injected into the liquid inlet channel 17 and the chamfered corner 18 to form hydraulic pressure, and the hydraulic pressure gradually increases. Under the action of the hydraulic pressure, the two seam plates 13 are further stretched, and the leakage plugging layer 200 is damaged or the leakage plugging layer is damaged. The position of 200 changes, and the second leakage blocking layer is re-formed;
  • Step C26 Record the change of the pressure value of the pressure sensor 19 over time, observe when the pressure value of the pressure sensor 19 changes suddenly, record the position of the pressure measuring point corresponding to the pressure sensor 19 on the seam plate 13 to judge the leakage Slurry at the plugging position of the crack.
  • the above steps are mainly used to simulate the plugging process under dynamic fractures and evaluate the variation range of the opening of the plugged fractures with the plugging material.
  • the effect of the plugging material on the dynamic fractures can be quantitatively evaluated through the variation of the pressure value of each pressure point with time. blocking ability.
  • Step D Evaluation of the effect of dynamic fracture plugging.
  • the evaluation of the plugging effect of dynamic fractures includes the quantitative evaluation of the plugging position of the plugging slurry and the dynamic pressure bearing capacity under the action of the plugging slurry, and the stability of the second plugging layer by the liquid rheological parameters after replacing the circulating fluid in the subsequent drilling process. Evaluation of the influence effect and evaluation of the effect of the hydraulic parameters of the plugging slurry on the stability of the second plugging layer.
  • the quantitative evaluation of the plugging position and dynamic pressure bearing capacity of the leakage plugging slurry under the scouring action of the leakage plugging slurry includes the following steps:
  • Step X1 after the stable second leakage blocking layer is formed, adjust the pressure value of the first back pressure valve 10 to be equal to the value of the inlet pressure gauge 8;
  • Step X2 The excess leakage plugging slurry will enter the waste liquid pool 4 through the first back pressure valve 10, so that the leakage plugging slurry in the liquid inlet channel 17 and the chamfered corner 18 of the fracture simulation mechanism forms a dynamic flow, which will cause continuous flow of the leakage plugging layer 200. Flush until the second plugging layer is destroyed;
  • Step X3 the second plugging layer is gradually destroyed, the value of the inlet pressure gauge 8 changes, and the crack width decreases;
  • Step X4 Once the pressure at the liquid inlet channel 17 and the chamfered angle 18 of the fracture simulation mechanism is lower than the pressure value of the first back pressure valve 10, the dynamic flow of the plugging slurry is stopped, and the fracture is plugged again, and the steps X2 to 10 are repeated. step X3;
  • Step X5 Record the change of the pressure value of the pressure sensor 19 with time, observe when the pressure value of the pressure sensor 19 changes suddenly, record the position of the pressure measuring point corresponding to the pressure sensor 19 on the seam plate 13 to judge the leakage Slurry at the plugging position of the crack.
  • the evaluation of the effect of liquid rheological parameters on the stability of the second plugging layer after replacing the circulating fluid in the subsequent drilling process, after plugging the fracture with the plugging slurry to obtain the dynamic change process of the fracture specifically includes:
  • Step Y After forming a stable second loss-stopping layer, stop the hydraulic pump 5, replace the loss-stopping slurry with clear water or water-based drilling fluid or oil-based drilling fluid, and adjust the pressure value of the first back pressure valve 10 to be equal to the inlet before stopping the pump Value of pressure gauge 8.
  • This method is used to simulate the viscosity of circulating fluid, and to study the influence of the stability of the second plugging layer in dynamic fractures. Effects of layer stability.
  • the evaluation of the effect of the hydraulic parameters of the plugging slurry on the stability of the second plugging layer, after plugging the fracture with the plugging slurry to obtain the dynamic change process of the fracture specifically includes:
  • Step Z1 After the stable second leakage blocking layer is formed, adjust the pressure value of the first back pressure valve 10 to be equal to the value of the inlet pressure gauge 8, and the excess leakage plugging slurry will enter the waste liquid pool 4 through the first back pressure valve 10 , so that the fluid inlet channel 17 and the chamfered corner 18 of the fracture simulation mechanism form a dynamic flow of the plugging slurry;
  • Step Z2 increase the flow rate of the hydraulic pump 5 to 3L/min, and keep it for 1h;
  • Step Z3 increase the flow rate of the hydraulic pump 5 to 4L/min, and continue for 1h;
  • Step Z4 increase the flow rate of the hydraulic pump 5 at a frequency of increasing the flow rate by 1L/min per hour, until the leakage plugging layer 200 is destroyed;
  • Step Z5 Record the change of the pressure value of the pressure sensor 19 with time, observe when the pressure value of the pressure sensor 19 changes suddenly, record the position of the pressure measuring point corresponding to the pressure sensor 19 on the seam plate 13 to judge the leakage Slurry at the plugging position of the crack;
  • Step Z6 Draw the relationship curve between the pressure value and the flow velocity of the pressure measuring point on the seam plate 13 .
  • This method is mainly used to evaluate the effect of the hydraulic parameters of the plugging slurry on the stability of the second plugging layer, wherein the hydraulic parameters include flow rate, displacement and the like.
  • the invention discloses a dynamic fracture plugging evaluation experimental device and its experimental method, when the plugging slurry enters the hollow groove of the rock mass sample from the liquid inlet channel of the dynamic fracture simulation mechanism After that, the leakage plugging slurry enters the chamfered corners at the top of the two jointed plates, and the two jointed plates are rotated to both sides around the fixed plate to dynamically simulate the pore cracking process.
  • the plugging layer the pressure at the inlet end of the fracture increases, and the fracture plate will be further propped up under the action of the increased pressure to form the second plugging layer, which in turn forms a dynamic fracture plugging experiment.
  • the dynamic fracture plugging evaluation experimental device disclosed in the invention can simulate the dynamic change process of the fracture from closing to opening, and the experimental method can be used to study the self-adaptive and plugging under the combination of different plugging materials and different dosages.
  • the variation range of fracture width can also be used to quantitatively study the influence of drilling fluid rheological parameters and hydraulic parameters on the stability of the plugging layer in dynamic fractures, to simulate the plugging process of dynamic fractures, and to realize real-time monitoring and evaluation of dynamic fractures.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Fluid Mechanics (AREA)
  • Immunology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Pathology (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Remote Sensing (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

一种动态裂缝堵漏评价实验装置及其实验方法,动态裂缝堵漏评价实验装置包括裂缝模拟实验仪(1)、储液罐(3)、回收池(4)、液压泵(5)、手压泵(6)、称液电子天平(7)、入口压力表(8)、出口压力表(9)、第一背压阀(10)和第二背压阀(400),裂缝模拟实验仪(1)装设有动态裂缝模拟机构。动态裂缝堵漏评价实验装置可以模拟裂缝由闭合再到开启的动态变化过程,实现模拟动态裂缝的堵漏过程,实时监测和评价动态裂缝内的堵漏效果和堵漏位置。

Description

一种动态裂缝堵漏评价实验装置及其实验方法 技术领域
本发明涉及石油工程技术领域,具体涉及一种动态裂缝堵漏评价实验装置及其实验方法。
背景技术
在石油工程领域中,井漏问题一直是一个世界级的难题,困扰国内外石油勘探、开发,至今未能完全解决。多数钻井过程都有不同程度的漏失,严重的井漏会导致井内压力下降,影响正常钻井、引起井壁失稳、诱发地层流体涌入井筒内部并造成井喷。现场经验表明,堵漏的成功率还不到30%。
目前,已有大量的研究人员针对不同类型的漏失问题进行研究,并提出了各种材料的堵漏剂以及评价了这些堵漏剂的堵漏效果。但是,在现有技术中的评价堵漏剂材料的装置和方法仅能对裂缝尺寸固定的裂缝进行定性评价分析,而真实钻井过程中大部分裂缝开始是闭合的,在钻井液压差的作用下裂缝才逐渐张开,然后钻井液中堵漏材料才能进入裂缝中,并对裂缝架桥封堵。此外,现有裂缝堵漏评价装置无法实时监测堵漏速度和判断堵漏位置,因此无法用于评价堵漏材料的性能、堵漏效果、堵漏剂材料之间的级配关系及封堵层层压能力,而且不能够实时监测和评价堵漏速度、堵漏效果和堵漏位置。
发明公开
针对上述问题,本发明的目的在于提供一种动态裂缝堵漏评价实验装置及其实验方法,用以解决现有裂缝堵漏评价装置不能实现模拟泥页岩裂缝形态动态变化进行实验的问题。
本发明提供一种动态裂缝堵漏评价实验装置,包括裂缝模拟实验仪、储液罐、回收池、液压泵、手压泵、称液电子天平、入口压力表、出口压力表、第一背压阀和第二背压阀,所述裂缝模拟实验仪的上部设置有进液口和出液口,所述裂缝模拟实验仪的底部设置有渗液口;所述储液罐的出 液口与所述液压泵的进液口通过管道相连通,所述液压泵的出液口与所述裂缝模拟实验仪的进液口通过输进管道相连通;所述输进管道上设置有入口压力表;所述裂缝模拟实验仪的出液口通过输出管道连接至回收池的正上方,所述输出管道的出液端设置有第一背压阀;所述输出管道上设置有出口压力表;所述渗液口上设置有排液管,该排液管上设置有第二背压阀;所述称液电子天平上设置有称液容器,所述称液电子天平的称液容器设置于所述排液管出口的正下方;所述手压泵与所述筒体的侧壁上开设有进气口相连通;当手压泵向所述胶套与所述筒体组成的环形空间内提供压力,由于胶套的可变形性,手压泵输进的压力可顺利的传递岩体样本,实现对岩体样本施加径向压力。
优选地,所述裂缝模拟实验仪包括筒体、上封盖、下封盖、上堵头、下堵头、压头和胶套,所述上封盖和所述下封盖分别设置于所述筒体的顶端和底端,所述上堵头和所述下堵头于所述筒体内部且分别紧贴所述上封盖和所述下封盖,所述上堵头、所述下堵头及所述筒体共同围成一个置容腔体,所述置容腔体内的几何尺寸恰好能容纳岩体样本;所述上封盖的两侧分别设置有进液口和出液口,所述进液口与所述置容腔体之间设置有进液通道槽,所述进液通道槽从外至内依次穿过靠近进液口一侧的上封盖和上堵头;所述出液口与所述置容腔体之间设置有出液通道槽,所述出液通道槽从内至外依次穿过靠近出液口一侧的上堵头和上封盖;所述上堵头的进液通道槽与出液通道槽之间设置有交汇槽,所述交汇槽与所述置容腔体相连通。
优选地,所述裂缝模拟实验仪装设有动态裂缝模拟机构,所述动态裂缝模拟机构包括岩体样本、固定板、两块缝板、多组弹簧和密封胶套,所述岩体样本内部设置有空心槽,空心槽上方连通有动态裂缝模拟机构进液通道;所述固定板固定于所述空心槽的内壁及底部;两块缝板关于所述空心槽的中心线对称设置,两块所述缝板的底部均枢接于所述空心槽底部的固定板上,且两块缝板的顶端触及所述空心槽的顶面,当两块缝板闭合时,两块缝板的顶端正好拼接成倒尖角;在所述缝板外表面铺设有密封胶套,所述密封胶套从缝板底部自下而上一直延伸至缝板顶端与空心槽的顶面的接触处,以实现缝板与岩体样本间的全部密封;所述进液通道槽与所 述出液通道槽的中心线位于同一直线上,且所述进液通道槽与所述出液通道槽的连线与所述交汇槽呈十字交叉式连通;所述渗液口设置于所述下封盖的底部,所述渗液口与所述置容腔体之间设置有渗液通道,所述渗液通道从内至外依次贯穿所述下堵头和所述下封盖的中部;所述缝板与所述空心槽侧壁的固定板之间间隔设置有若干组弹簧,每组弹簧包括位于同一高度位置的两个弹簧,每个所述弹簧的两端分别固定于密封胶套和固定板上;其中一块所述缝板上间隔设置有多个测压点,每个所述测压点上设置有一个压力传感器,所述压力传感器通过有线延伸至外部并设置有压力传感器接头;当堵漏浆从动态裂缝模拟机构进液通道进入岩体样本的空心槽后,堵漏浆进入两块缝板顶端的倒尖角,撑开两块缝板围绕固定板向两侧旋转,以动态模拟孔隙开裂过程。
优选地,所述筒体的内壁以及所述筒体与上堵头、下堵头的连接处设置于胶套,所述胶套将所述筒体分为两个封闭空间,分别为所述胶套与所述筒体组成的环形空间以及所述胶套与上堵头、下堵头围成的空间;所述筒体的侧壁上开设有进气口,所述进气口与所述胶套与所述筒体组成的环形空间相连通。
本发明还公开了一种液态介质封堵裂缝获取裂缝动态变化的实验方法,采用上述的动态裂缝堵漏评价实验装置,包括以下步骤:
步骤A:组装裂缝模拟实验仪;
步骤A1:将岩体样本、固定板、两块缝板、多组弹簧和密封胶套,组装成动态裂缝模拟机构;
步骤A2:将下堵头、动态裂缝模拟机构、上堵头依次装入到胶套内,组装成裂缝模拟实验仪;
步骤A3:旋宁上封盖和下封盖,使岩体样本产生轴向应力;
步骤B:密封置容腔体,并设置第一背压阀和第二背压阀的阀值和液压泵的流量;
步骤C:清水或堵漏浆封堵裂缝获取裂缝动态变化过程;
步骤D:动态裂缝堵漏效果的评价;
所述动态裂缝堵漏效果的评价包括堵漏浆冲刷作用下堵漏浆的封堵位置及动态承压能力的定量评价、后续钻井过程中更换循环流体后液体流变 参数对第二堵漏层稳定性影响效果的评价和堵漏浆水力学参数对第二堵漏层稳定性影响效果的评价。
进一步地,所述清水堵漏浆封堵裂缝获取裂缝动态变化过程具体包括以下步骤:
步骤C11:打开液压泵,清水先后依次从储液罐、经液压泵、输进管道从进液口进入裂缝模拟实验仪,一部分清水经进液通道、交汇槽、裂缝模拟机构进液通道、倒尖角进入裂缝内,再经渗液通道、渗液口到达第二背压阀;另一部分清水经出液通道槽、出液口和输出管道到达第一背压阀;
步骤C12:注入的清水逐渐在进液通道、倒尖角形成液压;
步骤C13:当液压超过弹簧的弹力后,两块缝板逐渐被撑开,随着进液通道、倒尖角处的液压增大,两块缝板撑开的裂缝开度逐渐增加,直到液压超过第二背压阀所设置的压力值1.5MPa后,两块缝板形成的裂缝开度不再发生变化。
进一步地,所述堵漏浆封堵裂缝获取裂缝动态变化过程具体包括以下步骤:
步骤C21:将储液灌中装设为堵漏浆;
步骤C22:打开液压泵,储液灌的堵漏浆经液压泵和输进管道从进液口进入裂缝模拟实验仪,一部分堵漏浆经进液通道、交汇槽、裂缝模拟机构进液通道、倒尖角进入裂缝内,再经渗液通道、渗液口到达第二背压阀;另一部分堵漏浆经出液通道槽、出液口,输出管道到达第一背压阀;
步骤C23:堵漏浆在倒尖角内逐渐聚集形成液压;
步骤C24:当倒尖角内的液压超过弹簧的弹力时,两块缝板逐渐被撑开,随着裂缝模拟机构内部的液压增大,两块缝板撑开的裂缝开度逐渐增加,直达液压超过第二背压阀所设置的压力值1.5MPa,两块缝板形成的裂缝开度不在发生变化;同时,堵漏浆中的颗粒在裂缝通道内形成堵漏层;
步骤C25:堵漏浆持续注入进液通道和倒尖角形成液压且该液压逐渐增加,在液压的作用下,两块缝板进一步撑开,堵漏层发生破坏或堵漏层位置发生破坏,重新形成第二堵漏层;
步骤C26:记录压力传感器的压力值随着时间的变化情况,观察当压 力传感器的压力值突变时,记录该压力传感器对应的测压点在缝板上的位置,以判断堵漏浆在裂缝的封堵位置。
进一步地,所述堵漏浆冲刷作用下堵漏浆的封堵位置及动态承压能力的定量评价,在堵漏浆封堵裂缝获取裂缝动态变化之后,具体包括以下步骤:
步骤X1:在形成稳定的第二堵漏层后,调节第一背压阀的压力值等于入口压力表的值;
步骤X2:多余的堵漏浆会通过第一背压阀进入废液池,使得裂缝模拟机构进液通道、倒尖角内部堵漏浆形成动态流动,对堵漏层产生持续冲刷,直到第二堵漏层发生破坏;
步骤X3:第二堵漏层逐渐破坏,入口压力表的值发生变化,裂缝宽度减小;
步骤X4:一旦使得裂缝模拟机构进液通道、倒尖角处的压力低于第一背压阀的压力值,堵漏浆停止动态流动,对裂缝重新进行堵漏,重复步骤X2至步骤X3;
步骤X5:记录压力传感器的压力值随着时间的变化情况,观察当压力传感器的压力值突变时,记录该压力传感器对应的测压点在缝板上的位置,以判断堵漏浆在裂缝的封堵位置。
进一步地,所述后续钻井过程中更换循环流体后液体流变参数对第二堵漏层稳定性影响效果的评价在堵漏浆封堵裂缝获取裂缝动态变化过程之后,具体包括:
步骤Y:形成稳定的第二堵漏层后,停液压泵,并更换堵漏浆为清水或水基钻井液或油基钻井液,调节第一背压阀的压力值等于停泵前入口压力表的值。
进一步地,所述堵漏浆水力学参数对第二堵漏层稳定性影响效果的评价在堵漏浆封堵裂缝获取裂缝动态变化过程之后,具体包括:
步骤Z1:在形成稳定的第二堵漏层后,调节第一背压阀的压力值等于入口压力表的值,多余的堵漏浆通过第一背压阀进入废液池,使得裂缝模拟机构进液通道、倒尖角内部堵漏浆形成动态流动;
步骤Z2:增加液压泵的流速为3L/min,保持持续1h;
步骤Z3:增加液压泵的流速为4L/min,继续持续1h;
步骤Z4:以每小时增加流速1L/min的频率增加液压泵的流速,直到堵漏层发生破坏;
步骤Z5:记录压力传感器的压力值随着时间的变化情况,观察当压力传感器的压力值突变时,记录该压力传感器对应的测压点在缝板上的位置,以判断堵漏浆在裂缝的封堵位置;
步骤Z6:绘制缝板上的测压点的压力值与流速的关系曲线。
附图说明
图1为本发明实施例1提供的动态裂缝堵漏评价实验装置的结构示意图;
图2为本发明实施例1提供的动态裂缝模拟机构设置于裂缝模拟实验仪内的剖视图;
图3为本发明实施例1提供的裂缝模拟实验仪的俯视图;
图4为本发明实施例1提供的裂缝模拟实验仪的正视图;
图5为图4中的A-A剖视图;
图6为本发明实施例1提供的裂缝模拟实验仪的侧面视图;
图7为图6中的B-B剖视图;
图8为本发明实施例1提供的动态裂缝模拟机构的纵向剖视图;
图9为本发明实施例1提供的动态裂缝模拟机构空心槽内部的纵向剖视图;
图10为本发明实施例1提供的裂缝模拟实验仪安装于固定装置的示意图。
实施发明的最佳方式
以下实施例用于说明本发明,但不用来限制本发明的保护范围。
实施例1
实施例1提供一种动态裂缝堵漏评价实验装置,下面对其结构进行详细描述。
参考图1,该实验装置包括裂缝模拟实验仪1、裂缝模拟实验仪固定装 置2、储液罐3、回收池4、液压泵5、手压泵6、称液电子天平7、入口压力表8、出口压力表9、第一背压阀10和第二背压阀400。
储液罐3的出液口与液压泵5的进液口通过管道相连通,液压泵5的出液口与裂缝模拟实验仪1的进液口31通过输进管道310相连通;
输进管道310上设置有入口压力表8;
裂缝模拟实验仪1的出液口32通过输出管道320连接至回收池4的正上方,输出管道320的出液端设置有第一背压阀10;
输出管道320上设置有出口压力表9;
渗液口36上设置有排液管,该排液管上设置有第二背压阀400;
称液电子天平7上设置有称液容器,称液电子天平7的称液容器设置于排液管出口的正下方,称液电子天平7用于收集并称重从渗液口36进入排液管并从排液管出口的流出的液体;
手压泵6与筒体21的侧壁上开设有进气口38相连通。
当手压泵6向胶套27与筒体21组成的环形空间内提供压力,由于胶套27的可变形性,手压泵6输进的压力可顺利的传递岩体样本11,实现对岩体样本11施加径向压力。
参考图2至图7,该裂缝模拟实验仪1包括筒体21、上封盖22、下封盖23、上堵头24、下堵头25、压头26、胶套27和密封圈28。
上封盖22和下封盖23分别设置于筒体21的顶端和底端,上堵头24和下堵头25于筒体21内部且分别紧贴上封盖22和下封盖23,上堵头24、下堵头25及筒体21共同围成一个置容腔体20,置容腔体20内的几何尺寸恰好能容纳岩体样本11,动态裂缝模拟机构装设于置容腔体20内。
参考图8,动态裂缝模拟机构能实现动态模拟泥页岩裂缝形态变化,包括岩体样本11、固定板12、两块缝板13、多组弹簧14和密封胶套15。
其中,岩体样本11为泥页岩样本,内部设置有空心槽16,空心槽16上方连通有动态裂缝模拟机构进液通道17;
固定板12固定于空心槽16的侧壁及底部;
两块缝板13关于空心槽16的中心线对称设置,两块缝板13的底部均枢接于空心槽16底部的固定板12上,且两块缝板13的顶端触及空心槽16的顶面,当两块缝板13闭合时,两块缝板13的顶端正好拼接成倒尖角18;
在缝板13外表面铺设有密封胶套15,密封胶套15从缝板13底部自下而上一直延伸至缝板13顶端与空心槽16的顶面的接触处,以实现缝板13与岩体样本11间的全部密封;
在缝板13与空心槽16侧壁的固定板12之间间隔设置有若干组弹簧14,每组弹簧14包括位于同一高度位置的两个弹簧14,每个弹簧14的两端分别固定于密封胶套15和固定板12上,通过调节弹簧14的弹性系数可以模拟孔隙开裂的难易程度。
当堵漏浆从动态裂缝模拟机构进液通道17进入岩体样本11的空心槽16后,堵漏浆进入两块缝板13顶端的倒尖角18,撑开两块缝板13围绕固定板12向两侧旋转,以动态模拟孔隙开裂过程。
作为一种具体地实施方式,若干组弹簧14关于空心槽16的中心线对称布置。
参考图9,为了能够实时判断堵塞位置和堵塞速度,其中一块缝板13上间隔设置有多个测压点,每个测压点上设置有一个压力传感器19,压力传感器19通过有线延伸至外部并设置有压力传感器接头。
优选地,测压点的个数为4至6个测压点。
继续参考图2至图7,上封盖22的两侧分别设置有进液口31和出液口32,进液口31与置容腔体20之间设置有进液通道槽33,进液通道槽33从外至内依次穿过靠近进液口31一侧的上封盖22和上堵头24;出液口32与置容腔体20之间设置有出液通道槽34,出液通道槽34从内至外依次穿过靠近出液口32一侧的上堵头24和上封盖22;上堵头24的进液通道槽33与出液通道槽34之间设置有交汇槽35,交汇槽35与置容腔体20相连通。
进一步地,下封盖23的底部设置有渗液口36,渗液口36与置容腔体20之间设置有渗液通道37,渗液通道37从内至外依次贯穿下堵头25和下封盖23的中部。
进一步地,进液通道槽33与出液通道槽34的中心线位于同一直线上,且进液通道槽33与出液通道槽34的连线与交汇槽35呈十字交叉式连通。
为了保证置容腔体20的密封性能,筒体21上部与上封盖22之间设置有密封圈28。
为了进一步提高置容腔体20的密封性能,筒体21的内壁以及筒体21与 上堵头24、下堵头25的连接处设置于胶套27,胶套27将筒体21分为两个封闭空间,分别为胶套27与筒体21组成的环形空间以及胶套27与上堵头24、下堵头25围成的空间。其中,上堵头24和下堵头25均为橡胶材质堵头。
进一步地,上封盖22上螺纹连接设置有压头26。具体地,上封盖22设置有凹槽,该凹槽的内壁设有内螺纹,压头26设置有外螺纹,压头26在上封盖22的凹槽旋紧过程中,压头26通过作用于上堵头将力施加于岩体样本11,实现岩体样本11轴向应力的改变。
进一步地,筒体21上设置有与用于穿设压力传感器19的压力传感器接头的穿孔,连接压力传感器19与压力传感器接头的线穿设有橡胶塞,该橡胶塞密封性设置于该穿孔。
参考图10,裂缝模拟实验仪固定装置2包括底座40、支撑杆41、钢套环43和旋紧螺钮42,其中,支撑杆41固定于底座40上,裂缝模拟实验仪1的外部形状为圆柱体,钢套环43包括圆环部和杆部,钢套环43的圆环部套设于裂缝模拟实验仪1的外部,旋紧螺钮42包括固定连接的螺杆部和旋钮部,旋紧螺钮42的螺杆部的外壁设有外螺纹,支撑杆41的顶端内部设有铰接环,支撑杆41的顶部侧壁设置内螺纹孔,钢套环43的杆部铰接于支撑杆41,旋紧螺钮42的螺杆部设置于支撑杆41顶部侧壁的螺纹孔内且与钢套环43的杆部固定连接,拧紧旋紧螺钮42,可以实现裂缝模拟实验仪1角度的调节和固定。
实施例2
实施例2提供一种液态介质封堵裂缝获取裂缝动态变化的实验方法,采用实施例1的动态裂缝堵漏评价实验装置,采用清水或堵漏浆封堵裂缝促使裂缝动态变化从而获取裂缝动态变化过程的方法,具体包括如下步骤:
步骤A:组装裂缝模拟实验仪1;
步骤A1:将岩体样本11、固定板12、两块缝板13、多组弹簧14和密封胶套15,组装成动态裂缝模拟机构;
步骤A2:将下堵头25、动态裂缝模拟机构、上堵头24依次装入到胶套27内,组装成裂缝模拟实验仪1;
步骤A3:旋宁上封盖22和下封盖23,使岩体样本11产生轴向应力;
步骤B:密封置容腔体20,并设置第一背压阀10和第二背压阀400的阀值和液压泵5的流量;
步骤B1:启动手压泵6,向筒体21侧壁上的进气口38注入气体,直到筒体21和胶套27形成的环形空间内形成10MPa的围压,形成对岩心样本11、上堵头24和下堵头25围成的置容腔体20的密封;
步骤B2:设置第一背压阀10的阀值为4.5MPa,设置第二背压阀400的阀值为1.5MPa,设置液压泵5的流量为2L/min;
步骤C:清水或堵漏浆封堵裂缝获取裂缝动态变化过程;
其中,清水封堵裂缝获取裂缝动态变化过程,具体包括以下步骤:
步骤C11:打开液压泵5,清水先后依次从储液罐3、经液压泵5、输进管道310从进液口31进入裂缝模拟实验仪1,一部分清水经进液通道33、交汇槽35、裂缝模拟机构进液通道17、倒尖角18进入裂缝内,再经渗液通道37、渗液口36到达第二背压阀400;另一部分清水经出液通道槽34、出液口32和输出管道320到达第一背压阀10;
步骤C12:注入的清水逐渐在进液通道17、倒尖角18形成液压;
步骤C13:当液压超过弹簧14的弹力后,两块缝板13逐渐被撑开,随着进液通道17、倒尖角18处的液压增大,两块缝板13撑开的裂缝开度逐渐增加,直到液压超过第二背压阀400所设置的压力值1.5MPa后,两块缝板13形成的裂缝开度不再发生变化。
通过上述步骤,可通过设置第二背压阀400的压力值,实现对两块缝板13撑开角度的控制,从而实现动态裂缝的模拟过程。
另,堵漏浆封堵裂缝获取裂缝动态变化过程,具体包括以下步骤:
步骤C21:将储液灌3中装设为堵漏浆;
步骤C22:打开液压泵5,储液灌3的堵漏浆经液压泵5和输进管道310从进液口31进入裂缝模拟实验仪1,一部分堵漏浆经进液通道33、交汇槽35、裂缝模拟机构进液通道17、倒尖角18进入裂缝内,再经渗液通道37、渗液口36到达第二背压阀400;另一部分堵漏浆经出液通道槽34、出液口32,输出管道320到达第一背压阀10;
步骤C23:堵漏浆在倒尖角18内逐渐聚集形成液压;
步骤C24:当倒尖角18内的液压超过弹簧14的弹力时,两块缝板13 逐渐被撑开,随着裂缝模拟机构内部的液压增大,两块缝板13撑开的裂缝开度逐渐增加,直达液压超过第二背压阀400所设置的压力值1.5MPa,两块缝板13形成的裂缝开度不在发生变化;同时,堵漏浆中的颗粒在裂缝通道内形成堵漏层200;
步骤C25:堵漏浆持续注入进液通道17和倒尖角18形成液压且该液压逐渐增加,在液压的作用下,两块缝板13进一步撑开,堵漏层200发生破坏或堵漏层200位置发生改变,重新形成第二堵漏层;
步骤C26:记录压力传感器19的压力值随着时间的变化情况,观察当压力传感器19的压力值突变时,记录该压力传感器19对应的测压点在缝板13上的位置,以判断堵漏浆在裂缝的封堵位置。
上述步骤主要用于模拟动态裂缝下的堵漏过程及评价堵漏材料封堵裂缝开度的变化范围,通过各测压点压力值随着时间的变化关系可定量的评价堵漏材料对动态裂缝的封堵能力。
步骤D:动态裂缝堵漏效果的评价。
动态裂缝堵漏效果的评价包括堵漏浆冲刷作用下堵漏浆的封堵位置及动态承压能力的定量评价、后续钻井过程中更换循环流体后液体流变参数对第二堵漏层稳定性影响效果的评价和堵漏浆水力学参数对第二堵漏层稳定性影响效果的评价。
其中,堵漏浆冲刷作用下堵漏浆的封堵位置及动态承压能力的定量评价在堵漏浆封堵裂缝获取裂缝动态变化之后,具体包括以下步骤:
步骤X1:在形成稳定的第二堵漏层后,调节第一背压阀10的压力值等于入口压力表8的值;
步骤X2:多余的堵漏浆会通过第一背压阀10进入废液池4,使得裂缝模拟机构进液通道17、倒尖角18内部堵漏浆形成动态流动,对堵漏层200产生持续冲刷,直到第二堵漏层发生破坏;
步骤X3:第二堵漏层逐渐破坏,入口压力表8的值发生变化,裂缝宽度减小;
步骤X4:一旦使得裂缝模拟机构进液通道17、倒尖角18处的压力低于第一背压阀10的压力值,堵漏浆停止动态流动,对裂缝重新进行堵漏,重复步骤X2至步骤X3;
步骤X5:记录压力传感器19的压力值随着时间的变化情况,观察当压力传感器19的压力值突变时,记录该压力传感器19对应的测压点在缝板13上的位置,以判断堵漏浆在裂缝的封堵位置。
通过分析各测压点的压力值随时间的变化关系,用于定量评价在堵漏浆冲刷影响下的堵漏浆对动态裂缝的封堵位置及动态承压能力。
后续钻井过程中更换循环流体后液体流变参数对第二堵漏层稳定性影响效果的评价,在堵漏浆封堵裂缝获取裂缝动态变化过程之后,具体包括:
步骤Y:形成稳定的第二堵漏层后,停液压泵5,更换堵漏浆为清水或水基钻井液或油基钻井液,调节第一背压阀10的压力值等于停泵前入口压力表8的值。
该方法用于模拟循环流体粘度,并对动态裂缝内第二堵漏层稳定性的影响进行研究,主要用于评价后续钻井过程中更换循环流体后液体的粘度等流变参数对第二堵漏层稳定性的影响效果。
堵漏浆水力学参数对第二堵漏层稳定性影响效果的评价,在堵漏浆封堵裂缝获取裂缝动态变化过程之后,具体包括:
步骤Z1:在形成稳定的第二堵漏层后,调节第一背压阀10的压力值等于入口压力表8的值,多余的堵漏浆会通过第一背压阀10进入废液池4,使得裂缝模拟机构进液通道17、倒尖角18内部堵漏浆形成动态流动;
步骤Z2:增加液压泵5的流速为3L/min,保持持续1h;
步骤Z3:增加液压泵5的流速为4L/min,继续持续1h;
步骤Z4:以每小时增加流速1L/min的频率增加液压泵5的流速,直到堵漏层200发生破坏;
步骤Z5:记录压力传感器19的压力值随着时间的变化情况,观察当压力传感器19的压力值突变时,记录该压力传感器19对应的测压点在缝板13上的位置,以判断堵漏浆在裂缝的封堵位置;
步骤Z6:绘制缝板13上的测压点的压力值与流速关系曲线。
通过该方法主要用于评价堵漏浆水力学参数对第二堵漏层稳定性影响效果的评价,其中,水力学参数包括流速、排量等。
虽然,上文中已经用一般性说明及具体实施例对本发明作了详尽的描 述,但在本发明基础上,可以对之作一些修改或改进,这对本领域技术人员而言是显而易见的。因此,在不偏离本发明精神的基础上所做的这些修改或改进,均属于本发明要求保护的范围。
工业应用
本发明由于采取以上技术方案,其具有以下优点:本发明公开的一种动态裂缝堵漏评价实验装置及其实验方法,当堵漏浆从动态裂缝模拟机构进液通道进入岩体样本的空心槽后,堵漏浆进入两块缝板顶端的倒尖角,撑开两块缝板围绕固定板向两侧旋转,以动态模拟孔隙开裂过程,同时堵漏浆进入裂缝内对裂缝进行封堵形成堵漏层,裂缝入口端压力升高,裂缝板会在升高的压力作用下,裂缝进一步被撑开,形成第二堵漏层,进而形成了一种动态裂缝的堵漏实验。本发明公开的动态裂缝堵漏评价实验装置可以模拟裂缝由闭合再到开启的动态变化过程,该实验方法可用于研究不同堵漏材料搭配下及不同加量下所能自适应所能够封堵的裂缝宽度变化范围,也可用于定量研究钻井液流变参数和水力学参数对动态裂缝内的堵漏层稳定性的影响规律,实现模拟动态裂缝的堵漏过程,又实现实时监测和评价动态裂缝内的堵漏效果和堵漏位置。

Claims (10)

  1. 一种动态裂缝堵漏评价实验装置,其特征在于,包括裂缝模拟实验仪(1)、储液罐(3)、回收池(4)、液压泵(5)、手压泵(6)、称液电子天平(7)、入口压力表(8)、出口压力表(9)、第一背压阀(10)和第二背压阀(400),
    所述裂缝模拟实验仪(1)的上部设置有进液口(31)和出液口(32),所述裂缝模拟实验仪(1)的底部设置有渗液口(36);
    所述储液罐(3)的出液口与所述液压泵(5)的进液口通过管道相连通,所述液压泵(5)的出液口与所述裂缝模拟实验仪(1)的进液口(31)通过输进管道(310)相连通;
    所述输进管道(310)上设置有入口压力表(8);
    所述裂缝模拟实验仪(1)的出液口(32)通过输出管道(320)连接至回收池(4)的正上方,所述输出管道(320)的出液端设置有第一背压阀(10);
    所述输出管道(320)上设置有出口压力表(9);
    所述渗液口(36)上设置有排液管,该排液管上设置有第二背压阀(400);
    所述称液电子天平(7)上设置有称液容器,所述称液电子天平(7)的称液容器设置于所述排液管出口的正下方;
    所述手压泵(6)与所述筒体(21)的侧壁上开设有进气口(38)相连通;
    当手压泵(6)向所述胶套(27)与所述筒体(21)组成的环形空间内提供压力,由于胶套(27)的可变形性,手压泵(6)输进的压力可顺利的传递岩体样本(11),实现对岩体样本(11)施加径向压力。
  2. 如权利要求1所述的动态裂缝堵漏评价实验装置,其特征在于,
    所述裂缝模拟实验仪(1)包括筒体(21)、上封盖(22)、下封盖(23)、上堵头(24)、下堵头(25)、压头(26)和胶套(27),
    所述上封盖(22)和所述下封盖(23)分别设置于所述筒体(21)的顶端和底端,所述上堵头(24)和所述下堵头(25)于所述筒体(21)内部且分别紧贴所述上封盖(22)和所述下封盖(23),所述上堵头 (24)、所述下堵头(25)及所述筒体(21)共同围成一个置容腔体(20),所述置容腔体(20)内的几何尺寸恰好能容纳岩体样本(11);
    所述上封盖(22)的两侧分别设置有进液口(31)和出液口(32),
    所述进液口(31)与所述置容腔体(20)之间设置有进液通道槽(33),所述进液通道槽(33)从外至内依次穿过靠近进液口(31)一侧的上封盖(22)和上堵头(24);
    所述出液口(32)与所述置容腔体(20)之间设置有出液通道槽(34),所述出液通道槽(34)从内至外依次穿过靠近出液口(32)一侧的上堵头(24)和上封盖(22);
    所述上堵头(24)的进液通道槽(33)与出液通道槽(34)之间设置有交汇槽(35),所述交汇槽(35)与所述置容腔体(20)相连通。
  3. 如权利要求2所述的动态裂缝堵漏评价实验装置,其特征在于,所述裂缝模拟实验仪(1)装设有动态裂缝模拟机构,
    所述动态裂缝模拟机构包括岩体样本(11)、固定板(12)、两块缝板(13)、多组弹簧(14)和密封胶套(15),
    所述岩体样本(11)内部设置有空心槽(16),空心槽(16)上方连通有动态裂缝模拟机构进液通道(17);
    所述固定板(12)固定于所述空心槽(16)的内壁及底部;
    两块缝板(13)关于所述空心槽(16)的中心线对称设置,两块所述缝板(13)的底部均枢接于所述空心槽(16)底部的固定板(12)上,且两块缝板(13)的顶端触及所述空心槽(16)的顶面,当两块缝板(13)闭合时,两块缝板(13)的顶端正好拼接成倒尖角(18);
    在所述缝板(13)外表面铺设有密封胶套(15),所述密封胶套(15)从缝板(13)底部自下而上一直延伸至缝板(13)顶端与空心槽(16)的顶面的接触处,以实现缝板(13)与岩体样本(11)间的全部密封;
    所述进液通道槽(33)与所述出液通道槽(34)的中心线位于同一直线上,且所述进液通道槽(33)与所述出液通道槽(34)的连线与所述交汇槽(35)呈十字交叉式连通;
    所述渗液口(36)设置于所述下封盖(23)的底部,所述渗液口 (36)与所述置容腔体(20)之间设置有渗液通道(37),所述渗液通道(37)从内至外依次贯穿所述下堵头(25)和所述下封盖(23)的中部;
    所述缝板(13)与所述空心槽(16)侧壁的固定板(12)之间间隔设置有若干组弹簧(14),每组弹簧(14)包括位于同一高度位置的两个弹簧(14),每个所述弹簧(14)的两端分别固定于密封胶套(15)和固定板(12)上;
    其中一块所述缝板(13)上间隔设置有多个测压点,每个所述测压点上设置有一个压力传感器(19),所述压力传感器(19)通过有线延伸至外部并设置有压力传感器接头;
    当堵漏浆从动态裂缝模拟机构进液通道(17)进入岩体样本(11)的空心槽(16)后,堵漏浆进入两块缝板(13)顶端的倒尖角(18),撑开两块缝板(13)围绕固定板(12)向两侧旋转,以动态模拟孔隙开裂过程。
  4. 如权利要求3所述的动态裂缝堵漏评价实验装置,其特征在于,
    所述筒体(21)的内壁以及所述筒体(21)与上堵头(24)、下堵头(25)的连接处设置于胶套(27),所述胶套(27)将所述筒体(21)分为两个封闭空间,分别为所述胶套(27)与所述筒体(21)组成的环形空间以及所述胶套(27)与上堵头(24)、下堵头(25)围成的空间;
    所述筒体(21)的侧壁上开设有进气口(38),所述进气口(38)与所述胶套(27)与所述筒体(21)组成的环形空间相连通。
  5. 一种液态介质封堵裂缝获取裂缝动态变化的实验方法,采用如权利要求4所述的动态裂缝堵漏评价实验装置,其特征在于,包括以下步骤:
    步骤A:组装裂缝模拟实验仪(1);
    步骤A1:将岩体样本(11)、固定板(12)、两块缝板(13)、多组弹簧(14)和密封胶套(15),组装成动态裂缝模拟机构;
    步骤A2:将下堵头(25)、动态裂缝模拟机构、上堵头(24)依次装入到胶套(27)内,组装成裂缝模拟实验仪(1);
    步骤A3:旋宁上封盖(22)和下封盖(23),使岩体样本(11)产生轴向应力;
    步骤B:密封置容腔体(20),并设置第一背压阀(10)和第二背压阀(400)的阀值和液压泵(5)的流量;
    步骤C:清水或堵漏浆封堵裂缝获取裂缝动态变化过程;
    步骤D:动态裂缝堵漏效果的评价;
    所述动态裂缝堵漏效果的评价包括堵漏浆冲刷作用下堵漏浆的封堵位置及动态承压能力的定量评价、后续钻井过程中更换循环流体后液体流变参数对第二堵漏层稳定性影响效果的评价和堵漏浆水力学参数对第二堵漏层稳定性影响效果的评价。
  6. 如权利要求5所述的实验方法,其特征在于,
    所述清水堵漏浆封堵裂缝获取裂缝动态变化过程具体包括以下步骤:
    步骤C11:打开液压泵(5),清水先后依次从储液罐(3)、经液压泵(5)、输进管道(310)从进液口(31)进入裂缝模拟实验仪(1),一部分清水经进液通道(33)、交汇槽(35)、裂缝模拟机构进液通道(17)、倒尖角(18)进入裂缝内,再经渗液通道(37)、渗液口(36)到达第二背压阀(400);另一部分清水经出液通道槽(34)、出液口(32)和输出管道(320)到达第一背压阀(10);
    步骤C12:注入的清水逐渐在进液通道(17)、倒尖角(18)形成液压;
    步骤C13:当液压超过弹簧(14)的弹力后,两块缝板(13)逐渐被撑开,随着进液通道(17)、倒尖角(18)处的液压增大,两块缝板(13)撑开的裂缝开度逐渐增加,直到液压超过第二背压阀(400)所设置的压力值1.5MPa后,两块缝板(13)形成的裂缝开度不再发生变化。
  7. 如权利要求5所述的实验方法,其特征在于,
    所述堵漏浆封堵裂缝获取裂缝动态变化过程具体包括以下步骤:
    步骤C21:将储液灌(3)中装设为堵漏浆;
    步骤C22:打开液压泵(5),储液灌(3)的堵漏浆经液压泵(5)和输进管道(310)从进液口(31)进入裂缝模拟实验仪(1),一部分堵漏浆经进液通道(33)、交汇槽(35)、裂缝模拟机构进液通道(17)、倒尖角(18)进入裂缝内,再经渗液通道(37)、渗液口(36)到达第二背压阀(400);另一部分堵漏浆经出液通道槽(34)、出液口(32),输 出管道(320)到达第一背压阀(10);
    步骤C23:堵漏浆在倒尖角(18)内逐渐聚集形成液压;
    步骤C24:当倒尖角(18)内的液压超过弹簧(14)的弹力时,两块缝板(13)逐渐被撑开,随着裂缝模拟机构内部的液压增大,两块缝板(13)撑开的裂缝开度逐渐增加,直达液压超过第二背压阀(400)所设置的压力值1.5MPa,两块缝板(13)形成的裂缝开度不在发生变化;同时,堵漏浆中的颗粒在裂缝通道内形成堵漏层(200);
    步骤C25:堵漏浆持续注入进液通道(17)和倒尖角(18)形成液压且该液压逐渐增加,在液压的作用下,两块缝板(13)进一步撑开,堵漏层(200)发生破坏或堵漏层(200)位置发生破坏,重新形成第二堵漏层;
    步骤C26:记录压力传感器(19)的压力值随着时间的变化情况,观察当压力传感器(19)的压力值突变时,记录该压力传感器(19)对应的测压点在缝板(13)上的位置,以判断堵漏浆在裂缝的封堵位置。
  8. 如权利要求5所述的实验方法,其特征在于,
    所述堵漏浆冲刷作用下堵漏浆的封堵位置及动态承压能力的定量评价,在堵漏浆封堵裂缝获取裂缝动态变化之后,具体包括以下步骤:
    步骤X1:在形成稳定的第二堵漏层后,调节第一背压阀(10)的压力值等于入口压力表(8)的值;
    步骤X2:多余的堵漏浆会通过第一背压阀(10)进入废液池(4),使得裂缝模拟机构进液通道(17)、倒尖角(18)内部堵漏浆形成动态流动,对堵漏层(200)产生持续冲刷,直到第二堵漏层发生破坏;
    步骤X3:第二堵漏层逐渐破坏,入口压力表(8)的值发生变化,裂缝宽度减小;
    步骤X4:一旦使得裂缝模拟机构进液通道(17)、倒尖角(18)处的压力低于第一背压阀(10)的压力值,堵漏浆停止动态流动,对裂缝重新进行堵漏,重复步骤X2至步骤X3;
    步骤X5:记录压力传感器(19)的压力值随着时间的变化情况,观察当压力传感器(19)的压力值突变时,记录该压力传感器(19)对应的测压点在缝板(13)上的位置,以判断堵漏浆在裂缝的封堵位置。
  9. 如权利要求5所述的实验方法,其特征在于,
    所述后续钻井过程中更换循环流体后液体流变参数对第二堵漏层稳定性影响效果的评价在堵漏浆封堵裂缝获取裂缝动态变化过程之后,具体包括:
    步骤Y:形成稳定的第二堵漏层后,停液压泵(5),并更换堵漏浆为清水或水基钻井液或油基钻井液,调节第一背压阀(10)的压力值等于停泵前入口压力表(8)的值。
  10. 如权利要求5所述的实验方法,其特征在于,
    所述堵漏浆水力学参数对第二堵漏层稳定性影响效果的评价在堵漏浆封堵裂缝获取裂缝动态变化过程之后,具体包括:
    步骤Z1:在形成稳定的第二堵漏层后,调节第一背压阀(10)的压力值等于入口压力表(8)的值,多余的堵漏浆通过第一背压阀(10)进入废液池(4),使得裂缝模拟机构进液通道(17)、倒尖角(18)内部堵漏浆形成动态流动;
    步骤Z2:增加液压泵(5)的流速为3L/min,保持持续1h;
    步骤Z3:增加液压泵(5)的流速为4L/min,继续持续1h;
    步骤Z4:以每小时增加流速1L/min的频率增加液压泵(5)的流速,直到堵漏层(200)发生破坏;
    步骤Z5:记录压力传感器(19)的压力值随着时间的变化情况,观察当压力传感器(19)的压力值突变时,记录该压力传感器(19)对应的测压点在缝板(13)上的位置,以判断堵漏浆在裂缝的封堵位置;
    步骤Z6:绘制缝板(13)上的测压点的压力值与流速的关系曲线。
PCT/CN2020/131270 2020-11-11 2020-11-25 一种动态裂缝堵漏评价实验装置及其实验方法 WO2022099785A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/777,594 US20230141812A1 (en) 2020-11-11 2020-11-25 Dynamic crack leaking stoppage evaluation experiment device and experiment method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011250799.1A CN112360390B (zh) 2020-11-11 2020-11-11 一种动态裂缝堵漏评价实验装置及其实验方法
CN202011250799.1 2020-11-11

Publications (1)

Publication Number Publication Date
WO2022099785A1 true WO2022099785A1 (zh) 2022-05-19

Family

ID=74508697

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/131270 WO2022099785A1 (zh) 2020-11-11 2020-11-25 一种动态裂缝堵漏评价实验装置及其实验方法

Country Status (3)

Country Link
US (1) US20230141812A1 (zh)
CN (1) CN112360390B (zh)
WO (1) WO2022099785A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116297098A (zh) * 2023-03-17 2023-06-23 西南石油大学 深层裂缝性油气层预撑裂缝暂堵储层保护配方优选方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110485999B (zh) * 2019-06-27 2022-07-22 西南石油大学 模拟裂缝模块、裂缝型钻井液堵漏测试装置
CN115898375B (zh) * 2022-12-20 2024-06-18 西南石油大学 一种模拟裂缝流固耦合变形的颗粒运移可视化实验装置及方法
CN116498303B (zh) * 2023-03-13 2023-09-22 中国石油大学(华东) 大斜度井钻遇裂缝性地层溢漏同存实验装置及方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060278389A1 (en) * 2005-06-10 2006-12-14 Joseph Ayoub Fluid loss additive for enhanced fracture clean-up
CN201780191U (zh) * 2010-09-17 2011-03-30 山东陆海钻采科技有限公司 一种曲线型可调式堵漏实验组件装置
CN103411750A (zh) * 2013-07-13 2013-11-27 西南石油大学 高温高压全直径岩心裂缝堵漏仪
CN103510944A (zh) * 2012-06-28 2014-01-15 中国石油化工股份有限公司 一种高温高压封堵/防吐模拟评价装置及其评价方法
CN104122147A (zh) * 2014-08-11 2014-10-29 卢渊 一种裂缝动态缝宽模拟系统及方法
CN104597204A (zh) * 2014-09-17 2015-05-06 北京探矿工程研究所 一种可视缝宽连续可调堵漏评价装置
CN106526076A (zh) * 2016-11-02 2017-03-22 中国石油化工股份有限公司 一种可调缝宽堵漏仪
CN208043560U (zh) * 2018-04-16 2018-11-02 西南石油大学 一种考虑裂缝宽度动态变化的堵漏装置
CN110485999A (zh) * 2019-06-27 2019-11-22 西南石油大学 模拟裂缝模块、裂缝型钻井液堵漏测试装置
CN209908496U (zh) * 2019-02-25 2020-01-07 中国石油天然气股份有限公司 裂缝模拟装置及堵漏评价仪器
CN210829240U (zh) * 2019-11-15 2020-06-23 西南石油大学 一种堵漏的室内模拟评价装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101793142B (zh) * 2010-01-27 2013-05-22 中国石油大学(北京) 真三轴钻井堵漏模拟评价装置
CN204511430U (zh) * 2015-03-30 2015-07-29 中国石油大学(华东) 一种高温高压井壁强化钻井液模拟实验装置
CN105738221A (zh) * 2016-04-14 2016-07-06 西南石油大学 一种模拟射孔完井下水力压裂的实验装置及方法
CN106640061B (zh) * 2016-12-06 2019-08-02 西南石油大学 一种井筒与地层裂缝耦合流动模拟实验装置及方法
CN106908365B (zh) * 2017-01-23 2019-05-24 华北水利水电大学 一种采动断裂岩体裂隙动态闭合渗流模拟试验装置及方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060278389A1 (en) * 2005-06-10 2006-12-14 Joseph Ayoub Fluid loss additive for enhanced fracture clean-up
CN201780191U (zh) * 2010-09-17 2011-03-30 山东陆海钻采科技有限公司 一种曲线型可调式堵漏实验组件装置
CN103510944A (zh) * 2012-06-28 2014-01-15 中国石油化工股份有限公司 一种高温高压封堵/防吐模拟评价装置及其评价方法
CN103411750A (zh) * 2013-07-13 2013-11-27 西南石油大学 高温高压全直径岩心裂缝堵漏仪
CN104122147A (zh) * 2014-08-11 2014-10-29 卢渊 一种裂缝动态缝宽模拟系统及方法
CN104597204A (zh) * 2014-09-17 2015-05-06 北京探矿工程研究所 一种可视缝宽连续可调堵漏评价装置
CN106526076A (zh) * 2016-11-02 2017-03-22 中国石油化工股份有限公司 一种可调缝宽堵漏仪
CN208043560U (zh) * 2018-04-16 2018-11-02 西南石油大学 一种考虑裂缝宽度动态变化的堵漏装置
CN209908496U (zh) * 2019-02-25 2020-01-07 中国石油天然气股份有限公司 裂缝模拟装置及堵漏评价仪器
CN110485999A (zh) * 2019-06-27 2019-11-22 西南石油大学 模拟裂缝模块、裂缝型钻井液堵漏测试装置
CN210829240U (zh) * 2019-11-15 2020-06-23 西南石油大学 一种堵漏的室内模拟评价装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116297098A (zh) * 2023-03-17 2023-06-23 西南石油大学 深层裂缝性油气层预撑裂缝暂堵储层保护配方优选方法
CN116297098B (zh) * 2023-03-17 2023-12-01 西南石油大学 深层裂缝性油气层预撑裂缝暂堵储层保护配方优选方法

Also Published As

Publication number Publication date
CN112360390A (zh) 2021-02-12
CN112360390B (zh) 2021-09-14
US20230141812A1 (en) 2023-05-11

Similar Documents

Publication Publication Date Title
WO2022099785A1 (zh) 一种动态裂缝堵漏评价实验装置及其实验方法
CN112360432B (zh) 一种缝隙模拟机构、裂缝模拟实验仪及堵漏评价实验装置
WO2018184397A1 (zh) 防砂井筒堵塞-解堵一体化评价实验模拟装置及方法
CN101109739B (zh) 高温高压泥饼封堵承压强度实验仪
CN204679347U (zh) 一种钻井液承压堵漏压裂试验装置
CN109541175B (zh) 一种模拟井下钻井液循环形成泥饼的装置和方法
CN205670146U (zh) 一种模拟地层条件的裂缝性气藏工作液损害评价装置
CN109611085B (zh) 水力压裂煤系储层裂缝延伸形态模拟装置及其模拟方法
CN108240185B (zh) 固井冲洗效率的评价装置和方法
CN105842425B (zh) 一种岩心夹持器和动态滤失实验装置
CN113622900B (zh) 地层模拟装置、裂缝堵漏仪
CN2849724Y (zh) 智能高温高压动态堵漏评价实验仪
CN109406291A (zh) 一种用于模拟岩石原位破碎的透x射线试验装置及方法
CN112627783A (zh) 低频变压提高注气采收率的实验装置
CN108240955A (zh) 水泥浆对储层损害的评价系统和方法
CN110185435B (zh) 一种非均质储层试井分析的试验装置
CN106226503B (zh) 一种可调的环压连续非均匀分布的超低渗岩心夹持器
CN208206745U (zh) 一种用于评价压力水作用下裂缝封堵效果的装置
US2885005A (en) Tubing pack off for tandem dual bore integral manifold valve
CN110082220A (zh) 一种真三轴多孔导向压裂实验装置
CN106053244B (zh) 盐穴储油库围岩自平衡式三轴压缩试验装置和试验方法
CN113008686B (zh) 一种硬脆性泥页岩裂缝开启模拟装置
LU500068B1 (en) A Test Device for Leak Resistance and Plugging While Drilling and Its Method
CN206554917U (zh) 一种截面密封节流器
CN113310830B (zh) 一种封隔器胶筒外表面损伤情况测试装置及方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20961339

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20961339

Country of ref document: EP

Kind code of ref document: A1