WO2022099688A1 - 多量子阱结构、发光二极管和发光组件 - Google Patents

多量子阱结构、发光二极管和发光组件 Download PDF

Info

Publication number
WO2022099688A1
WO2022099688A1 PCT/CN2020/129036 CN2020129036W WO2022099688A1 WO 2022099688 A1 WO2022099688 A1 WO 2022099688A1 CN 2020129036 W CN2020129036 W CN 2020129036W WO 2022099688 A1 WO2022099688 A1 WO 2022099688A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
light
quantum well
multiple quantum
film layer
Prior art date
Application number
PCT/CN2020/129036
Other languages
English (en)
French (fr)
Inventor
刘慰华
程凯
Original Assignee
苏州晶湛半导体有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州晶湛半导体有限公司 filed Critical 苏州晶湛半导体有限公司
Priority to PCT/CN2020/129036 priority Critical patent/WO2022099688A1/zh
Priority to CN202080106824.0A priority patent/CN116615808A/zh
Publication of WO2022099688A1 publication Critical patent/WO2022099688A1/zh
Priority to US18/302,232 priority patent/US20230261135A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/04Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
    • H01L33/06Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction within the light emitting region, e.g. quantum confinement structure or tunnel barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • H01L33/32Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen
    • H01L33/325Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen characterised by the doping materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/15Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission
    • H01L27/153Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission in a repetitive configuration, e.g. LED bars
    • H01L27/156Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission in a repetitive configuration, e.g. LED bars two-dimensional arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/12Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a stress relaxation structure, e.g. buffer layer

Definitions

  • Embodiments of the present disclosure relate to the technical field of light emitting diodes, and in particular, to a multiple quantum well structure, a light emitting diode, and a light emitting assembly.
  • LED Semiconductor light emitting diode
  • LED utilizes injected electron holes to perform compound radiation emission in multiple quantum wells.
  • the current injection efficiency is high, the greater the probability of electron hole compound radiation, the higher the luminous efficiency of LED. high.
  • In the multiple quantum well structure In can be incorporated into the film layer for light emission to reduce its forbidden band width, so as to emit long-wavelength light, so whether the light-emitting film layer can excite long-wavelength light and its The intensity (flux, etc.) of the excited light may be limited by the incorporation efficiency of In.
  • In can be incorporated into the film by lowering the epitaxy temperature, but lowering the epitaxy temperature will lead to a sharp increase in the probability of defects in the film in the multiple quantum well, and even cause the multiple quantum well structure to fail to emit light effectively.
  • the embodiments of the present disclosure relate to a multiple quantum well structure, a light emitting diode and a light emitting assembly, which can solve the above technical problems.
  • One aspect of the present disclosure provides a multiple quantum well structure including at least one stack of a first film layer, an insertion layer, and a second film layer.
  • the intervening layer is located between the first film layer and the second film layer.
  • the intercalation layer includes a monomer structure and/or a superlattice structure.
  • the first film layer includes In, Ga and N
  • the insertion layer includes Al, Ga and N
  • the second film layer includes Ga and N.
  • the forbidden band width of the insertion layer is larger than that of the first film layer and the second film layer.
  • the first film layer may be a potential well layer (quantum well)
  • the second film layer may be a potential barrier layer (quantum barrier)
  • the insertion layer may be an insertion layer.
  • a first film layer, an insertion layer, and a second film layer are formed (grown) sequentially, ie, an insertion layer is grown on the first film layer, and then a second film layer is grown on the insertion layer.
  • the insertion layer After the insertion layer is inserted into the first film layer and the second film layer, there are differences in the forbidden band width and lattice constant between the insertion layer including Al, Ga and N and the first film layer including In, Ga and N, This difference will cause a strong built-in electric field in the first film layer. Under the condition of forward bias, the actual conduction band energy level of the first film layer is bent and the forbidden band width is narrowed. Compared with the case of the first film layer, the first film layer can excite light with a longer wavelength, and in this process, the first film layer does not need to be grown by low temperature epitaxy, so as to prevent defects such as defects caused by the low temperature epitaxy growth of the first film layer. .
  • the lattice size of the first film layer including In, Ga and N and the second film layer including Ga and N are quite different, As a result, the crystal quality of the multi-quantum well structure is poor, resulting in extremely low Well Proximity Effect (WPE), and even the multi-quantum well structure cannot emit light effectively.
  • WPE Well Proximity Effect
  • the lattice difference between the first film layer and the interposition layer and between the interposition layer and the second film layer is small, for example, the first film layer and the interposition layer
  • the lattice difference between the layers and the lattice difference between the insertion layer and the second film layer is smaller than the lattice difference between the first film layer and the second film layer.
  • the insertion layer includes a GaN material and an AlGaN material.
  • the GaN material and the AlGaN material included in the insertion layer are formed into a superlattice structure.
  • the GaN and AlGaN in the insertion layer can form superlattice structures (SLs), which can provide better carrier injection efficiency compared to the case where the insertion layer only includes AlGaN, thereby improving the overall luminous efficiency of the multi-quantum well structure.
  • SLs superlattice structures
  • the insertion layer further includes an In material, and the insertion layer further includes InAlGaN.
  • the insertion layer includes GaN material and InAlGaN material.
  • the GaN material and the InAlGaN material included in the insertion layer are formed into a superlattice structure.
  • the generation of point defects during epitaxial growth of the insertion layer can be suppressed and the stress between film layers can be reduced, thereby further improving the quality and luminous efficiency of the multiple quantum well structure and suppressing In (for example, in the potential well layer) The separation and precipitation phenomenon of In).
  • the composition content of Al in the insertion layer gradually increases.
  • the multiple quantum well structure in this scheme can realize the function of emitting light with a longer electroluminescence wavelength.
  • the insertion layer includes a monolithic structure composed of AlGaN, wherein the composition ratio of Al in the monolithic structure composed of AlGaN ranges from 0.5% to 30%. %.
  • the insertion layer includes a single structure composed of AlInGaN, wherein the composition ratio of Al in the single structure composed of AlGaN is 0.5% ⁇ 30%.
  • the insertion layer includes a superlattice structure composed of AlGaN material and GaN material, wherein the composition ratio of Al in the superlattice structure is 0.5% to 30%.
  • the insertion layer includes a superlattice structure composed of AlInGaN material and GaN material, wherein the composition ratio of Al in the superlattice structure is 0.5% to 30%.
  • the composition content of Al in the insertion layer gradually decreases.
  • the multiple quantum well structure in this scheme can realize the function of emitting light with a shorter electroluminescence wavelength.
  • the thickness of the insertion layer is 0.2 nm ⁇ 5 nm.
  • the insertion layer is a single-layer structure composed of a monomer structure or a superlattice structure.
  • the insertion layer is a multi-layer structure composed of a monomer structure and/or a superlattice structure. In this way, the luminous efficiency of the multiple quantum well can be improved.
  • the insertion layer is n-type doped or p-type doped.
  • At least one of the stacks is multiple and stacked on each other.
  • a second aspect of the present disclosure provides a light emitting diode including the multiple quantum well structure in any of the embodiments of the first aspect above.
  • the light emitting diode provided by the second aspect of the present disclosure further includes a substrate, an N-type layer and a P-type layer.
  • the N-type layer is located on the substrate, and the P-type layer is located on the side of the N-type layer facing away from the substrate.
  • the multiple quantum well structure is located between the N-type layer and the P-type layer, and in the direction from the N-type layer to the P-type layer, the first film layer, the insertion layer and the second film layer in each stack are sequentially arranged.
  • a third aspect of the present disclosure provides a light emitting assembly including at least one first light emitting diode emitting light of a first color and at least one second light emitting diode emitting light of a second color.
  • the wavelength of the light of the first color is smaller than the wavelength of the light of the second color
  • the second light emitting diode is the light emitting diode in the embodiment of the second aspect.
  • the first color light may be blue light or green light
  • the second color light may be yellow light or red light.
  • FIG. 1 is a schematic cross-sectional view of a multiple quantum well structure according to an embodiment of the present disclosure
  • FIG. 2 is a schematic cross-sectional view of another multiple quantum well structure provided by an embodiment of the present disclosure.
  • FIG. 3 is a schematic cross-sectional view of a light emitting diode according to an embodiment of the present disclosure
  • FIG. 4 is a schematic plan view of a light-emitting component according to an embodiment of the present disclosure
  • FIG. 5 is a cross-sectional view of the light-emitting assembly shown in FIG. 4 along M-N;
  • FIG. 6 is a schematic plan view of another light-emitting component provided by an embodiment of the present disclosure.
  • the embodiments of the present disclosure relate to a multiple quantum well structure, a light emitting diode and a light emitting assembly, which can solve the above technical problems.
  • Embodiments of the present disclosure provide a multiple quantum well structure including at least one stack of a first film layer, an insertion layer, and a second film layer.
  • the intervening layer is located between the first film layer and the second film layer.
  • the intercalation layer includes a monomer structure and/or a superlattice structure.
  • the first film layer includes In, Ga and N
  • the insertion layer includes Al, Ga and N
  • the second film layer includes Ga and N.
  • the intercalation layer comprising Al, Ga and N differs from the first layer comprising In, Ga and N in terms of band gap and lattice constant, and this difference can lead to the formation of a strong built-in electric field in the first layer , under the condition of forward bias, the actual conduction band energy level of the first film layer is bent and the forbidden band width is narrowed, so that compared with the case where no intervening layer is provided, the first film layer can excite more Long-wavelength light, and in this process, does not need to grow the first film layer by low temperature epitaxy, so as to prevent defects such as defects arising from the low temperature epitaxial growth of the first film layer.
  • a space rectangular coordinate system is established based on the plane where the first film layer is located, so as to describe the position of each film layer of the multiple quantum well structure, the light emitting diode and the light emitting assembly directionally.
  • the X axis and the Y axis are parallel to the surface where the first film layer is located, and the Z axis is perpendicular to the surface where the first film layer is located.
  • the multiple quantum well structure includes a stack 100 including a first film layer 111 , an insertion layer 112 and a second film layer 113 that are sequentially stacked.
  • the first film layer 111 includes the elements In, Ga, and N, for example, the first film layer 111 includes the material InGaN;
  • the insertion layer 112 includes the elements Al, Ga, and N, for example, the insertion layer 112 includes the material AlGaN;
  • the second film layer 113 includes the element Ga and N, for example, the second film layer 113 includes material GaN.
  • the intercalation layer 112 includes a monolithic structure and/or a superlattice structure, both of which include the elements Al, Ga, and N.
  • the insertion layer 112 may be composed of a monomer structure and/or a superlattice structure.
  • the first film layer 111 is a well layer
  • the second film layer 113 is a barrier layer
  • the insertion layer 112 is an insertion layer.
  • the insertion layer 112 is grown on the first film layer 111
  • the second film layer 113 is grown on the insertion layer 112 .
  • the first film layer 111 and the second film layer 113 are in contact, but the first film layer 111 including In, Ga, and N is included
  • the crystal lattice size of the second film layer 113 including Ga and N is quite different, resulting in poor crystal quality of the stack 100, resulting in extremely low well polarization effect, and even the stack 100 cannot emit light effectively.
  • the insertion layer 112 is inserted between the first film layer 111 and the second film layer 113 as shown in FIG. The lattice difference is small, thereby improving the crystal quality of the stack 100 .
  • the insertion layer only needs to include the elements Al, Ga, and N.
  • the specific materials formed by the elements Al, Ga, and N in the insertion layer are not limited, and whether the insertion layer is formed is not limited.
  • the inclusion of other elements to form other materials is not limited, and can be selected according to actual process requirements.
  • the Al, Ga, and N of the intercalation layer may be used only to form AlGaN.
  • Al, Ga, and N of the intercalation layer may be used to form AlGaN and GaN.
  • other elements may be doped in the intercalation layer to form other types of materials than AlGaN and GaN with the elements Al, Ga, and N, for example, the other elements may be In, or the like.
  • multiple quantum well structures with several different types of insertion layers will be described by way of several specific examples.
  • the insertion layer includes only Al, Ga, and N, and Al, Ga, and N are formed only as AlGaN, ie, the insertion layer is a single layer of AlGaN material.
  • the insertion layer includes only Al, Ga, and N, and Al, Ga, and N are used to form the GaN material and the AlGaN material, and the GaN material and the AlGaN material are formed into a superlattice structure.
  • GaN and AlGaN in the intercalation layer can form superlattice structures (SLs).
  • the superlattice structure is a periodic structure, and the corresponding conduction band and valence band energy levels are also periodic.
  • the corresponding conduction band or valence band energy level of this structure will overlap with the unified Fermi energy level, which is beneficial to increase the carrier concentration, thereby providing better carrier injection efficiency and improving The overall luminous efficiency of the multiple quantum well structure.
  • the composition content of Al in the AlGaN material gradually increases along the direction from the first film layer to the second film layer, so that the multiple quantum well structure The function of emitting light with a longer electroluminescence wavelength can be realized.
  • the blue-shift of the emission wavelength is less; or, the composition content of Al in the AlGaN material gradually decreases In this way, the multiple quantum well structure can realize the function of emitting light with a shorter electroluminescence wavelength.
  • the luminescence wavelength is more blue-shifted.
  • “component content” is the percentage of the number of atoms in the material.
  • the composition ratio of Al in the AlGaN material is 0.2%-50%, and further is 0.5%-30%.
  • the insertion layer further includes In
  • the insertion layer further includes an InAlGaN material.
  • the insertion layer includes a GaN material and an InAlGaN material, and the GaN material and the InAlGaN material may be formed in a superlattice structure.
  • the generation of point defects during epitaxial growth of the insertion layer (such as the AlGaN material it includes) can be suppressed and the stress between the layers can be reduced, thereby further improving the quality and luminous efficiency of the multiple quantum well structure.
  • suppress the separation and precipitation phenomenon of In for example, In the potential well layer).
  • the insertion layer includes a monolithic structure composed of AlGaN, and the composition ratio of Al in the monolithic structure composed of AlGaN ranges from 0.5% to 30%.
  • the composition proportion of Al is graded in the range of 0.5% to 30%.
  • the insertion layer includes a single structure composed of AlInGaN, and the composition ratio of Al in the single structure composed of AlGaN ranges from 0.5% to 30%.
  • the composition proportion of Al is graded in the range of 0.5% to 30%.
  • the insertion layer includes a superlattice structure composed of AlGaN materials and GaN materials, and the composition ratio of Al in the superlattice structure ranges from 0.5% to 30%. .
  • the composition proportion of Al is graded in the range of 0.5% to 30%.
  • the insertion layer includes a superlattice structure composed of AlInGaN materials and GaN materials, and the composition ratio of Al in the superlattice structure ranges from 0.5% to 30%. .
  • the composition proportion of Al is graded in the range of 0.5% to 30%.
  • the thickness of the first film layer is usually between 1 and 4 nm, and the thickness of the second film layer is usually between 3 and 20 nm.
  • the thickness in the intercalation layer may be in the range of 0.2 nm to between 5nm.
  • the insertion layer is a single-layer structure composed of a monomer structure or a superlattice structure.
  • the insertion layer is a film layer composed of AlGaN or AlInGaN.
  • the insertion layer is a multi-layer structure composed of a monomer structure and/or a superlattice structure.
  • the insertion layer is composed of a plurality of film layers composed of AlGaN, a plurality of film layers composed of AlInGaN, or a film layer composed of AlGaN and a film layer composed of AlInGaN, respectively. In this way, the luminous efficiency of the multiple quantum well can be improved.
  • the film layer composed of AlGaN and the film layer composed of AlInGaN may be provided in plural and stacked alternately with each other. In this way, the luminous efficiency of the multiple quantum well can be further improved.
  • At least one stack is multiple and stacked on each other.
  • a plurality of stacks 100 are stacked on top of each other.
  • a multiple quantum well structure may include at least 10 stacks, with different stacks stacked on top of each other.
  • the multiple quantum well structure may include at least 20 stacks.
  • the insertion layer may be doped with n-type or p-type, so as to improve the luminous efficiency of the multi-quantum well structure.
  • Embodiments of the present disclosure provide a light emitting diode including the multiple quantum well structure in any of the above embodiments.
  • the light emitting diode includes a multiple quantum well structure 10 , a substrate 20 , an N-type layer 40 and a P-type layer 50 .
  • the N-type layer 40 , the multiple quantum well structure 10 and the P-type layer 50 are sequentially stacked on the substrate 20 . From the direction of the N-type layer 40 to the P-type layer 50 , the first film layer, the insertion layer and the second film layer in each stack are sequentially arranged.
  • the N-type layer 40 may be an N-type GaN film layer
  • the P-type layer 50 may be a P-type GaN film layer.
  • the substrate 20 may be a sapphire substrate, a GaN-based substrate, a Si-based substrate, a SiN-based substrate, a glass substrate, or the like.
  • a plurality of grooves may be provided in the N-type layer, and a DBR (Distributed Bragg Reflector mirror) structure and/or a photonic crystal may be provided in the grooves structure.
  • a DBR structure and/or the photonic crystal structure can screen light in a specific wavelength range, thereby improving the monochromatic degree of the light emitted by the light emitting diode.
  • the DBR structure is composed of at least two kinds of semiconductor materials or dielectric materials grown interlaced, and high reflectivity for waves in a certain frequency range (equivalent to light in a certain wavelength range) can be obtained by using the DBR structure.
  • a photonic crystal is a periodic dielectric structure with a photonic band-gap (PBG) characteristic. In this periodic structure, waves in a certain frequency range cannot be propagated.
  • PBG photonic band-gap
  • the light emitting diode may further include a u-type layer.
  • the u-type layer 30 is located between the N-type layer 40 and the substrate 20 .
  • the u-type layer 30 may be a u-type GaN film layer.
  • the light emitting diode may further include a buffer layer located between the substrate and the N-type layer 40 .
  • the material included in the buffer layer may be one or a combination of AlN, GaN, AlGaN, and InGaN.
  • the buffer layer can greatly relieve the stress that occurs when the epitaxial layer is grown on the silicon substrate, and realize dislocation filtering, thereby improving the crystal quality of the epitaxial layer.
  • the buffer layer can also serve as a planarization layer. When the buffer layer is formed on the substrate, the surface of the light-emitting diode including the substrate is planarized, which improves the N-type layer and the film layer in the multi-quantum well structure to be prepared subsequently. , P-type layer, etc., to ensure the production yield of light-emitting diodes.
  • Embodiments of the present disclosure provide a light emitting assembly including at least one first light emitting diode emitting light of a first color and at least one second light emitting diode emitting light of a second color.
  • the wavelength of the light of the first color is smaller than the wavelength of the light of the second color
  • the second light emitting diode is the light emitting diode in the embodiment of the second aspect.
  • the first color light may be blue light or green light
  • the second color light may be yellow light or red light.
  • the light-emitting component may include light-emitting diodes that emit light of multiple colors, and adjacent light-emitting diodes that emit light of different colors are combined into a unit, so that the unit can choose to emit white light, colored light and other color light according to needs.
  • the light-emitting assembly can be used in the display field, and the unit can be used as a display unit (equivalent to a pixel) for displaying an image.
  • the light emitting assembly may be a display panel.
  • the light-emitting assembly includes three types of light-emitting diodes 1, 2, and 3, and the light-emitting diodes 1, 2, and 3 are arranged to emit light of three colors (for example, red, green, etc.) respectively. , blue), the adjacent light-emitting diodes 1, 2, and 3 are used as a display unit (pixel), and the light-emitting diodes 1, 2, and 3 are respectively used as sub-pixels.
  • the planar area of the first light emitting diode is smaller than that of the second light emitting diode.
  • the display unit of the light-emitting assembly includes light-emitting diodes 1 , 2 , and 3 respectively emitting red, green, and blue light.
  • the design area of the light-emitting diode 1 is larger than that of the light-emitting diodes 2 and 3 .
  • the ability of light-emitting diodes to emit long-wavelength light (such as red light) is limited, and there is a blue-shift phenomenon when increasing the current intensity. Designing the plane area of the light-emitting diodes that emit long-wavelength light to be larger can ensure the brightness of long-wavelength light. At the same time, the requirement of current intensity is reduced, and the degree of blue-shift of emitted light is reduced.
  • the number of light emitting diodes included in each display unit of the light emitting assembly (the number of colors of emitted light) and the arrangement of the plurality of light emitting diodes are not limited.
  • the light-emitting diodes 1, 2, and 3 in each display unit are arranged in a row/column; or, as shown in FIG. 6, the light-emitting diodes 1, 2, and 3 in each display unit appear Arranged in triangles.
  • the light emitting assembly may be used in the field of AR or VR display.
  • the light-emitting component is used in AR glasses, and the AR glasses include an optical waveguide lens and an optical component.
  • the light emitted by the light-emitting component passes through the optical component (such as a magnifying glass, etc.) and then enters the optical waveguide lens, and then enters the optical waveguide lens.
  • the light is guided into the human eye by the optical waveguide lens, and the human eye can observe the image of the surrounding environment through the optical waveguide lens. In this way, the display image observed by the human eye is projected on the environmental image to realize augmented reality display.
  • the blue-shift of the light-emitting diode will be reduced or blue-shifted.
  • the degree of the light-emitting component is lower, thereby improving the display effect of the light-emitting component.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)

Abstract

一种多量子阱结构(10)、发光二极管和发光组件,该多量子阱结构(10)包括由第一膜层(111)、插入层(112)和第二膜层(113)构成的至少一个叠层,该至少一个叠层为多个且彼此叠置。插入层(112)位于第一膜层(111)和第二膜层(113)之间。插入层(112)包括单体结构和/或超晶格结构。第一膜层包括In、Ga和N,插入层包括Al、Ga和N,第二膜层包括Ga和N。该多量子阱结构可以激发出更长波长的光,且防止因低温外延生长第一膜层出现的缺陷等不良。

Description

多量子阱结构、发光二极管和发光组件 技术领域
本公开的实施例涉及发光二极管技术领域,具体涉及一种多量子阱结构、发光二极管和发光组件。
发明背景
半导体发光二极管(semiconductor light emitting diode,简称为LED)利用注入的电子空穴在多量子阱进行复合辐射发光,相应地,电流注入效率高,电子空穴复合辐射几率越大,LED的发光效率越高。
但是,受限于当前多量子阱的结构设计,电子空穴在多量子阱中的发光效率有限,且禁带宽度难以减小从而难以实现长波长发光。
发明内容
在多量子阱结构中,可以在用于发光的膜层中并入In以减小其禁带宽度,从而发出长波长的光,因此该发光的膜层能否激发出长波长的光以及其激发出的光的强度(通量等)会受到In的并入效率的限制。In可以通过降低外延温度的方式并入该膜层中,但是降低外延温度的方式会导致多量子阱中的膜层出现缺陷的几率急剧增加,甚至导致多量子阱结构不能有效发光。
有鉴于此,本公开的实施例涉及一种多量子阱结构、发光二极管和发光组件,可以解决上述技术问题。
本公开一方面提供一种多量子阱结构,该多量子阱结构包括由第一膜层、插入层和第二膜层构成的至少一个叠层。插入层位于第一膜层和第二膜层之间。插入层包括单体结构和/或超晶格结构。第一膜层包括In、Ga和N,插入层包括Al、Ga和N,第二膜层包括Ga和N。
例如,在本公开第一方面的一个实施例提供的多量子阱结构中,插入层的禁带宽度大于第一膜层和第二膜层的禁带宽度。
例如,在本公开的实施例中,第一膜层可以为势阱层(量子阱),第二膜层可以为势垒层(量子垒),插入层可以为插入层。例如,在每一个叠层中,第一膜层、插入层和第二膜层依次形成(生长),即,在第一膜层上生长插入层,然后在插入层上生长第二膜层。
在第一膜层和第二膜层中插入插入层后,在禁带宽度以及晶格常数方面,包括Al、Ga和N的插入层与包括In、Ga和N的第一膜层存在差异,该差异 会造成第一膜层中形成强内建电场,在有正向偏压的条件下,第一膜层的实际导带能级下弯且禁带宽度变窄,如此,与未设置插入层的情况相比,第一膜层可以激发出更长波长的光,且在此过程中,不需要经过低温外延生长第一膜层,防止因低温外延生长第一膜层出现的缺陷等不良。
另外,对于上述方案中的多量子阱结构,在未设置插入层的情况下,包括In、Ga和N的第一膜层和包括Ga和N的第二膜层的晶格大小差异较大,从而导致多量子阱结构的晶体质量差而造成阱偏效应(Well Proximity Effect,简称为WPE)极低,甚至多量子阱结构不能有效发光。在第一膜层和第二膜层之间插入插入层之后,第一膜层和插入层之间以及插入层和第二膜层之间的晶格差异小,例如,第一膜层和插入层之间的晶格差异以及插入层和第二膜层之间的晶格差异小于第一膜层和第二膜层之间的晶格差异。
例如,在本公开第一方面提供的多量子阱结构中,插入层包括GaN材料和AlGaN材料。
例如,在本公开第一方面提供的多量子阱结构中,插入层包括的GaN材料和AlGaN材料形成为超晶格结构。
插入层中的GaN和AlGaN可以组成超晶格结构(SLs),与插入层只包括AlGaN的情况相比,能提供更好的载流子注入效率,从而提升多量子阱结构整体的发光效率。
例如,在本公开第一方面提供的多量子阱结构中,插入层还包括In材料,插入层还包括InAlGaN。例如,插入层包括GaN材料和InAlGaN材料。
例如,在本公开第一方面提供的多量子阱结构中,插入层包括的GaN材料和InAlGaN材料形成为超晶格结构。
通过在插入层中并入In材料,可以抑制外延生长插入层时点缺陷的产生以及减少膜层间的应力,从而进一步提升多量子阱结构的质量、发光效率以及抑制In(例如势阱层中的In)的分离析出现象。
例如,在本公开第一方面的一些实施例提供的多量子阱结构中,沿第一膜层至第二膜层的方向,插入层中的Al的组分含量逐渐增加。该方案中的多量子阱结构可以实现出射更长的电致发光波长的光的功能。
例如,在本公开第一方面的一些实施例提供的多量子阱结构中,插入层包括由AlGaN构成的单体结构,其中AlGaN构成的单体结构中Al的组分占比为0.5%~30%。
例如,在本公开第一方面的另一些实施例提供的多量子阱结构中,插入层包括由AlInGaN构成的单体结构,其中AlGaN构成的单体结构中Al的组分占比为0.5%~30%。
例如,在本公开第一方面的另一些实施例提供的多量子阱结构中,插入层包括由AlGaN材料与GaN材料组成的超晶格结构,其中超晶格结构中Al的组分占比为0.5%~30%。
例如,在本公开第一方面的另一些实施例提供的多量子阱结构中,插入层包括由AlInGaN材料与GaN材料组成的超晶格结构,其中超晶格结构中Al的组分占比为0.5%~30%。
例如,在本公开第一方面的另一些实施例提供的多量子阱结构中,沿第一膜层至第二膜层的方向,插入层中的Al的组分含量逐渐减小。该方案中的多量子阱结构可以实现出射较短的电致发光波长的光的功能。
例如,在本公开第一方面的一些实施例提供的多量子阱结构中,插入层厚度为0.2nm~5nm。
例如,在本公开第一方面的一些实施例提供的多量子阱结构中,插入层为插入层为由单体结构或超晶格结构构成的单层结构。
例如,在本公开第一方面的另一些实施例提供的多量子阱结构中,插入层为由单体结构和/或超晶格结构构成的多层结构。如此,可以提高多量子阱的发光效率。
例如,在本公开第一方面的实施例提供的多量子阱结构中,插入层为n型掺杂或p型掺杂。
例如,在本公开第一方面提供的多量子阱结构中,至少一个叠层为多个且彼此叠置。
本公开第二方面提供一种发光二极管,该发光二极管包括上述第一方面的任一实施例中的多量子阱结构。
例如,本公开第二方面提供的发光二极管还包括衬底、N型层和P型层。N型层位于衬底上,P型层位于N型层的背离衬底的一侧。多量子阱结构位于N型层和P型层之间,并且从N型层指向P型层的方向,每个叠层中的第一膜层、插入层和第二膜层依次排布。
本公开第三方面提供一种发光组件,该发光组件包括至少一个发射第一颜色光线的第一发光二极管和至少一个发出第二颜色光线的第二发光二极管。第一颜色光线的波长小于第二颜色光线的波长,第二发光二极管为上述第二方面的实施例中的发光二极管。例如,在本公开第三方面的一些实施例中,第一颜色光线可以为蓝光或者绿光,第二颜色光线可以为黄光或红光。
附图简要说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施 例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明中记载的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本公开一实施例提供的一种多量子阱结构的截面示意图;
图2为本公开一实施例提供的另一种多量子阱结构的截面示意图;
图3为本公开一实施例提供的一种发光二极管的截面示意图;
图4为本公开一实施例提供的一种发光组件的平面结构示意图;
图5为图4所示发光组件沿着M-N的截面图;
图6为本公开一实施例提供的另一种发光组件的平面结构示意图。
实施本发明的方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
在通过低外延温度的方式制造多量子阱中的发光膜层(例如势阱层)的过程中,由于外延温度低,在外延生长势阱层的过程中,C元素等杂质造成的非故意掺杂变高,而且低温造成势阱层横向外延速率变小,促进形成点、线位错,随着继续外延,可能形成V型凹坑,从而导致多量子阱中的膜层出现缺陷。有鉴于此,本公开的实施例涉及一种多量子阱结构、发光二极管和发光组件,可以解决上述技术问题。
本公开的实施例提供一种多量子阱结构,该多量子阱结构包括由第一膜层、插入层和第二膜层构成的至少一个叠层。插入层位于第一膜层和第二膜层之间。插入层包括单体结构和/或超晶格结构。第一膜层包括In、Ga和N,插入层包括Al、Ga和N,第二膜层包括Ga和N。如此,在禁带宽度以及晶格常数方面,包括Al、Ga和N的插入层与包括In、Ga和N的第一膜层存在差异,该差异会导致第一膜层中形成强内建电场,在有正向偏压的条件下,第一膜层的实际导带能级下弯且禁带宽度变窄,如此,与未设置插入层的情况相比,第一膜层可以激发出更长波长的光,且在此过程中,不需要经过低温外延生长第一膜层,防止因低温外延生长第一膜层出现的缺陷等不良。
下面,结合附图对根据本公开至少一个实施例中的多量子阱结构、发光二极管和发光组件进行详细地说明。在该些附图中,以第一膜层所在面为基准建立空间直角坐标系,以对多量子阱结构、发光二极管和发光组件种各个膜层的位置进 行指向性说明。在该空间直角坐标系中,X轴和Y轴平行于第一膜层所在面,Z轴垂直于第一膜层所在面。
在本公开的实施例中,如图1所示,多量子阱结构包括叠层100,该叠层100包括依次层叠的第一膜层111、插入层112和第二膜层113。第一膜层111包括元素In、Ga和N,例如第一膜层111包括材料InGaN;插入层112包括元素Al、Ga和N,例如插入层112包括材料AlGaN;并且第二膜层113包括元素Ga和N,例如第二膜层113包括材料GaN。插入层112包括单体结构和/或超晶格结构,该单体结构和超晶格结构都包括元素Al、Ga和N。例如,插入层112可以由单体结构和/或超晶格结构构成。
例如,在本公开的实施例中,如图1所示,第一膜层111为势阱层,第二膜层113为势垒层,插入层112为插入层。在生产叠层100的过程中,在形成第一膜层111后,在第一膜层111上生长插入层112,然后在插入层112上生长第二膜层113。
此外,对于如图1所示的叠层100,在未设置第二膜112的情况下,第一膜层111和第二膜层113接触,但是包括In、Ga和N的第一膜层111和包括Ga和N的第二膜层113的晶格大小差异较大,从而导致叠层100的晶体质量差而造成阱偏效应极低,甚至叠层100不能有效发光。在如图1所示的第一膜层111和第二膜层113之间插入插入层112之后,第一膜层111和插入层112之间以及插入层112和第二膜层113之间的晶格差异小,从而提高叠层100的晶体质量。
在本公开的实施例中,插入层只要可以包括元素Al、Ga和N即可,在此基础上,对元素Al、Ga和N在插入层中形成的具体材料不作限制,而且对插入层是否包括其它元素以形成其它材料也不作限制,具体可以根据实际工艺的需要进行选择。例如,在一些实施例中,插入层的Al、Ga和N可以只用于形成AlGaN。例如,在另一些实施例中,插入层的Al、Ga和N可以用于形成AlGaN和GaN。例如,在其它一些实施例中,插入层中可以掺杂其它元素以与元素Al、Ga和N形成除AlGaN和GaN之外的其它类型材料,例如,该其它元素可以为In等。下面,通过几个具体的示例,对具有几种不同类型的插入层的多量子阱结构进行说明。
例如,在本公开一些实施例中,插入层只包括Al、Ga和N,且Al、Ga和N只形成为AlGaN,即,插入层为单体的AlGaN材料层。
例如,在本公开另一些实施例中,插入层只包括Al、Ga和N,Al、Ga和N用于形成GaN材料和AlGaN材料,GaN材料和AlGaN材料形成为超晶格结构。如此,插入层中的GaN和AlGaN可以组成超晶格结构(SLs),与插入层只包括AlGaN的情况相比,超晶格结构为周期性结构,对应其导带、价带能级也是 周期性的,在掺杂工艺中,这种结构对应导带或价带能级会与统一费米能级交叠,利于提升载流子浓度,从而能提供更好的载流子注入效率,提升多量子阱结构整体的发光效率。
例如,在本公开的实施例中,在插入层包括AlGaN的情况下,沿第一膜层至第二膜层的方向,AlGaN材料中的Al的组分含量逐渐增加,如此,多量子阱结构可以实现出射更长的电致发光波长的光的功能,在此情况下,随着注入电流的升高,其发光波长蓝移较少;或者,AlGaN材料中的Al的组分含量逐渐减小,如此,多量子阱结构可以实现出射较短的电致发光波长的光的功能,在此情况下,随着注入电流的升高,其发光波长蓝移较多。在该实施例中,“组分含量”为材料中的原子个数的百分比。
例如,在本公开的实施例中,在插入层包括AlGaN的情况下,AlGaN材料中的Al的组分占比为0.2%~50%,进一步为0.5%~30%。
例如,在本公开另一些实施例中,插入层还包括In,插入层还包括InAlGaN材料。例如,插入层包括GaN材料和InAlGaN材料,GaN材料和InAlGaN材料可以形成为超晶格结构。如此,通过在插入层中并入In,可以抑制外延生长插入层(例如其包括的AlGaN材料)时点缺陷的产生以及减少膜层间的应力,从而进一步提升多量子阱结构的质量、发光效率以及抑制In(例如势阱层中的In)的分离析出现象。
例如,在本公开一些实施例提供的多量子阱结构中,插入层包括由AlGaN构成的单体结构,AlGaN构成的单体结构中Al的组分占比为0.5%~30%。例如,Al的组分占比在0.5%~30%的范围内是渐变的。
例如,在本公开另一些实施例提供的多量子阱结构中,插入层包括由AlInGaN构成的单体结构,AlGaN构成的单体结构中Al的组分占比为0.5%~30%。例如,Al的组分占比在0.5%~30%的范围内是渐变的。
例如,在本公开另一些实施例提供的多量子阱结构中,插入层包括由AlGaN材料与GaN材料组成的超晶格结构,超晶格结构中Al的组分占比为0.5%~30%。例如,Al的组分占比在0.5%~30%的范围内是渐变的。
例如,在本公开另一些实施例提供的多量子阱结构中,插入层包括由AlInGaN材料与GaN材料组成的超晶格结构,超晶格结构中Al的组分占比为0.5%~30%。例如,Al的组分占比在0.5%~30%的范围内是渐变的。
在未设置插入层的情况下,第一膜层的厚度通常在1~4nm之间,第二膜层的厚度通常在3~20nm之间。在本公开的实施例中,在插入层中的Al的组分含量为渐变(逐渐增加或减小)和/或设置为超晶格结构的情况下,插入层中的厚度可以在0.2nm~5nm之间。
例如,在本公开的一些实施例提供的多量子阱结构中,插入层为插入层为由单体结构或超晶格结构构成的单层结构。例如,插入层为由AlGaN或AlInGaN构成的膜层。
例如,在本公开的另一些实施例提供的多量子阱结构中,插入层为由单体结构和/或超晶格结构构成的多层结构。例如,插入层为由AlGaN构成的多个膜层,或者由AlInGaN构成的多个膜层,或者分别由AlGaN构成的膜层和AlInGaN构成的膜层构成。如此,可以提高多量子阱的发光效率。例如,在插入层同时包括由AlGaN构成的膜层和由AlInGaN构成的膜层的情况下,AlGaN构成的膜层和AlInGaN构成的膜层可以设置为多个且彼此交替地叠置在一起。如此,可以进一步提高多量子阱的发光效率。
例如,在本公开的实施例提供的多量子阱结构中,至少一个叠层为多个且彼此叠置。示例性的,如图2所示,多个叠层100彼此叠置。例如,多量子阱结构可以包括至少10个叠层,不同叠层彼此叠置。例如,进一步地,多量子阱结构可以包括至少20个叠层。
例如,在本公开的实施例提供的多量子阱结构中,插入层可以进行n型掺杂或p型掺杂,从而提高多量子阱结构的发光效率。
本公的实施例提供一种发光二极管,该发光二极管包括上述任一实施例中的多量子阱结构。
例如,在本公开的实施例提供的发光二极管中,如图3所示,发光二极管包括多量子阱结构10、衬底20、N型层40和P型层50。N型层40、多量子阱结构10和P型层50依次叠置在衬底20上。从N型层40指向P型层50的方向,每个叠层中的第一膜层、插入层和第二膜层依次排布。N型层40可以为N型GaN膜层,P型层50可以为P型GaN膜层。
例如,衬底20可以为蓝宝石衬底、GaN基衬底、Si基衬底、SiN基衬底或玻璃衬底等。
例如,在本公开的实施例提供的发光二极管中,N型层中可以设置多个凹槽,该凹槽中可以设置DBR(Distributed Bragg Reflector mirror,分布式布拉格反射镜)结构和/或光子晶体结构。利用DBR结构和/或光子晶体结构可以筛选特定波长范围的光线,从而提高发光二极管出射的光线的单色程度。DBR结构由交错生长的至少两种半导体材料或电介质材料构成,利用DBR结构能够获得针对某一频率范围的波(相当于某波长范围内的光线)的高反射率。光子晶体是一种周期性电介质结构,具有光子带隙(Photonic Band-Gap,简称PBG)特性,在这种周期性结构中,某一频率范围的波是无法实现传播的。
例如,在本公开的实施例提供的发光二极管中,发光二极管还可以包括u型层。示例性的,如图3所示,u型层30位于N型层40和衬底20之间。例如,u型层30可以为u型GaN膜层。
例如,在本公开的实施例中,发光二极管还可以包括缓冲层,该缓冲层位于衬底和N型层40之间。例如,该缓冲层包括的材料可以为AlN、GaN、AlGaN、InGaN中的一种或组合。缓冲层可以极大地缓解硅衬底上生长外延层时所发生的应力,并实现位错过滤,从而能够提高外延层的晶体质量。例如,该缓冲层还可以充当平坦化层,在衬底上形成缓冲层时,包括衬底的发光二极管的表面得到平坦化处理,提高后续制备的N型层、多量子阱结构中的膜层、P型层等的平坦化,保证发光二极管的制备良率。
本公开的实施例提供一种发光组件,该发光组件包括至少一个发射第一颜色光线的第一发光二极管和至少一个发出第二颜色光线的第二发光二极管。第一颜色光线的波长小于第二颜色光线的波长,第二发光二极管为上述第二方面的实施例中的发光二极管。例如,第一颜色光线可以为蓝光或者绿光等,第二颜色光线可以为黄光或红光等。例如,发光组件可以包括发出多种颜色光线的发光二极管,发出不同颜色且相邻的发光二极管组合为一个单元,如此,该单元可以根据需要选择出射白光、彩光等颜色光线。例如,进一步地,该发光组件将可以用于显示领域,该单元可以作为用于显示图像的显示单元(相当于像素)。
例如,在本公开的一个实施例中,发光组件可以为显示面板。示例性的,如图4和图5所示,该发光组件包括三种类型的发光二极管1、2、3,发光二极管1、2、3设置为分别发出三种颜色的光线(例如红、绿、蓝),相邻的发光二极管1、2、3作为一个显示单元(像素),发光二极管1、2、3分别作为子像素。
例如,在本公开的实施例中,第一发光二极管的平面面积小于第二发光二极管的平面面积。示例性的,发光组件的显示单元包括分别发出红、绿、蓝三种颜色光线的发光二极管1、2、3,发光二极管1的设计面积大于发光二极管2和3的设计面积。发光二极管发出长波长光线(例如红光)的能力有限,且增加电流强度存在发光蓝移现象,将发出长波长光线的发光二极管的平面面积设计为较大,可以在保证长波长光线的出光亮度的同时,降低电流强度的要求,降低发射光蓝移的程度。
需要说明的是,在本公开的实施例中,对发光组件的每个显示单元包括的发光二极管的数量(出射光的颜色的数量)、多个发光二极管的排布方式不作限制。例如,如图5所示,每个显示单元中的发光二极管1、2、3排布为一行/列;或者,如图6所示,每个显示单元中的发光二极管1、2、3呈现为三角形排布。
在本公开的实施例中,发光组件(显示面板)可以用于AR或VR显示领域。示例性的,发光组件用于AR眼镜,AR眼镜包括光波导镜片和光学组件,发光组件出射的光线(相当于显示的图像)经过光学组件(例如包括放大镜等)后射入光波导镜片,然后该光线被光波导镜片导入人眼,同时人眼可以透过光波导镜片观察周围环境的图像,如此,人眼观察到的显示图像投射在环境图像中,实现增强现实显示。在本公开的实施例中,对于发出长波长光线例如红光的发光二极管,在采用本公开上述实施例中的多量子阱结构之后,其在发射光线时出现蓝移的情况会减少或者蓝移的程度较低,从而提高发光组件的显示效果。
以上所述仅为本公开的较佳实施例而已,并不用以限制本公开,凡在本公开的精神和原则之内,所作的任何修改、等同替换等,均应包含在本公开的保护范围之内。

Claims (11)

  1. 一种多量子阱结构,其特征在于,包括由第一膜层、插入层和第二膜层构成的至少一个叠层,所述至少一个叠层为多个且彼此叠置,所述插入层位于所述第一膜层和所述第二膜层之间;
    其中,所述插入层包括单体结构和/或超晶格结构,所述第一膜层包括In、Ga和N,所述插入层包括Al、Ga和N,所述第二膜层包括Ga和N。
  2. 根据权利要求1所述的多量子阱结构,其特征在于,所述插入层为AlGaN材料和/或AlInGaN。
  3. 根据权利要求1所述的多量子阱结构,其特征在于:
    所述插入层包括由AlGaN构成的所述单体结构,其中AlGaN构成的所述单体结构中Al的组分占比为0.5%~30%;或者
    所述插入层包括由AlInGaN构成的所述单体结构,其中AlGaN构成的所述单体结构中Al的组分占比为0.5%~30%;或者
    所述插入层包括由AlGaN材料与GaN材料组成的所述超晶格结构,其中所述超晶格结构中Al的组分占比为0.5%~30%;或者
    所述插入层包括由AlInGaN材料与GaN材料组成的所述超晶格结构,其中所述超晶格结构中Al的组分占比为0.5%~30%。
  4. 根据权利要求3中所述的多量子阱结构,其特征在于,沿所述第一膜层至所述第二膜层的方向,所述插入层中的Al的组分含量逐渐增加或减小。
  5. 根据权利要求1所述的多量子阱结构,其特征在于,所述插入层厚度为0.2nm~5nm。
  6. 根据权利要求1所述的多量子阱结构,其特征在于,
    所述插入层为由所述单体结构或所述超晶格结构构成的单层结构;和/或
    所述插入层为由所述单体结构和/或所述超晶格结构构成的多层结构。
  7. 根据权利要求1所述的多量子阱结构,其特征在于,所述插入层为n型掺杂或p型掺杂。
  8. 根据权利要求1所述的多量子阱结构,其特征在于,所述插入层的禁带宽度大于第一膜层和第二膜层的禁带宽度。
  9. 一种发光二极管,特征在于,包括权利要求1-8中任一项所述的多量子阱结构。
  10. 根据权利要求9所述的发光二极管,还包括:
    衬底;
    N型层,位于所述衬底上;
    P型层,位于所述N型层的背离所述衬底的一侧;
    其中,所述多量子阱结构位于所述N型层和所述P型层之间,并且从所述N型层指向所述P型层的方向,每个所述叠层中的所述第一膜层、所述插入层和所述第二膜层依次排布。
  11. 一种发光组件,其特征在于,包括至少一个发射第一颜色光线的第一发光二极管和至少一个发出第二颜色光线的第二发光二极管,其中,
    所述第一颜色光线的波长小于所述第二颜色光线的波长,所述第二发光二极管为权利要求9或10中所述的发光二极管。
PCT/CN2020/129036 2020-11-16 2020-11-16 多量子阱结构、发光二极管和发光组件 WO2022099688A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2020/129036 WO2022099688A1 (zh) 2020-11-16 2020-11-16 多量子阱结构、发光二极管和发光组件
CN202080106824.0A CN116615808A (zh) 2020-11-16 2020-11-16 多量子阱结构、发光二极管和发光组件
US18/302,232 US20230261135A1 (en) 2020-11-16 2023-04-18 Multi-quantum well structure, light emitting diode and light emitting component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/129036 WO2022099688A1 (zh) 2020-11-16 2020-11-16 多量子阱结构、发光二极管和发光组件

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/302,232 Continuation US20230261135A1 (en) 2020-11-16 2023-04-18 Multi-quantum well structure, light emitting diode and light emitting component

Publications (1)

Publication Number Publication Date
WO2022099688A1 true WO2022099688A1 (zh) 2022-05-19

Family

ID=81602099

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/129036 WO2022099688A1 (zh) 2020-11-16 2020-11-16 多量子阱结构、发光二极管和发光组件

Country Status (3)

Country Link
US (1) US20230261135A1 (zh)
CN (1) CN116615808A (zh)
WO (1) WO2022099688A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1487603A (zh) * 2002-09-30 2004-04-07 中国科学院物理研究所 一种多量子阱结构及采用该结构的发光二极管
CN101359710A (zh) * 2008-09-25 2009-02-04 上海蓝光科技有限公司 一种绿光发光二极管的制造方法
CN101359711A (zh) * 2008-09-25 2009-02-04 上海蓝光科技有限公司 一种绿光发光二极管
CN104505443A (zh) * 2014-12-26 2015-04-08 聚灿光电科技(苏州)有限公司 一种GaN基LED外延结构及其制备方法
US9632422B2 (en) * 2011-05-23 2017-04-25 Carl Zeiss Smt Gmbh Illumination optical unit
CN109830580A (zh) * 2019-01-29 2019-05-31 华灿光电(浙江)有限公司 氮化镓基发光二极管外延片及其制造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1487603A (zh) * 2002-09-30 2004-04-07 中国科学院物理研究所 一种多量子阱结构及采用该结构的发光二极管
CN101359710A (zh) * 2008-09-25 2009-02-04 上海蓝光科技有限公司 一种绿光发光二极管的制造方法
CN101359711A (zh) * 2008-09-25 2009-02-04 上海蓝光科技有限公司 一种绿光发光二极管
US9632422B2 (en) * 2011-05-23 2017-04-25 Carl Zeiss Smt Gmbh Illumination optical unit
CN104505443A (zh) * 2014-12-26 2015-04-08 聚灿光电科技(苏州)有限公司 一种GaN基LED外延结构及其制备方法
CN109830580A (zh) * 2019-01-29 2019-05-31 华灿光电(浙江)有限公司 氮化镓基发光二极管外延片及其制造方法

Also Published As

Publication number Publication date
CN116615808A (zh) 2023-08-18
US20230261135A1 (en) 2023-08-17

Similar Documents

Publication Publication Date Title
US6900465B2 (en) Nitride semiconductor light-emitting device
US6580099B2 (en) Nitride semiconductor light-emitting devices
US7462876B2 (en) Nitride semiconductor light emitting device
US20110291072A1 (en) Semiconductor dies, light-emitting devices, methods of manufacturing and methods of generating multi-wavelength light
WO2019039238A1 (ja) 発光装置およびその製造方法、ならびにプロジェクター
JP2007123731A (ja) 半導体発光素子および半導体発光装置
JP2780691B2 (ja) 窒化物半導体発光素子
JPH09153642A (ja) 窒化物半導体発光素子
CN107331746A (zh) 一种发光二极管的外延片及制备方法
CN109360880B (zh) 一种用于N面出光AlGaInP LED薄膜芯片的外延材料及其制备方法
KR20100049451A (ko) 질화물 반도체 소자
US20230246124A1 (en) Quantum well structure and preparation method therefor, and light-emitting diode
KR101123011B1 (ko) 질화물 반도체 소자
WO2022099688A1 (zh) 多量子阱结构、发光二极管和发光组件
JP2001237456A (ja) 発光素子
CN114361946B (zh) 发光装置及投影仪
CN114389149B (zh) 发光装置及投影仪
CN111326622A (zh) 一种基于空穴调整层的发光二极管
JP2976951B2 (ja) 窒化物半導体発光ダイオードを備えた表示装置
JP3924973B2 (ja) 窒化物半導体発光素子の製造方法および窒化物半導体発光素子
KR100357118B1 (ko) 질화물 발광소자
CN112802869A (zh) 单片集成氮化物发光波长可调节的白光led及制备方法
KR20100054589A (ko) 질화물 반도체 소자 및 그 제조방법
KR102399381B1 (ko) 발광소자
US20240194821A1 (en) Light emitting element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20961243

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202080106824.0

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20961243

Country of ref document: EP

Kind code of ref document: A1