WO2022097946A1 - 의사거리 측정치의 다중경로 오차를 추정하는 방법 및 이를 활용한 위치측정 방법 - Google Patents
의사거리 측정치의 다중경로 오차를 추정하는 방법 및 이를 활용한 위치측정 방법 Download PDFInfo
- Publication number
- WO2022097946A1 WO2022097946A1 PCT/KR2021/014206 KR2021014206W WO2022097946A1 WO 2022097946 A1 WO2022097946 A1 WO 2022097946A1 KR 2021014206 W KR2021014206 W KR 2021014206W WO 2022097946 A1 WO2022097946 A1 WO 2022097946A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- multipath error
- measurement
- estimating
- carrier phase
- time
- Prior art date
Links
- 238000005259 measurement Methods 0.000 title claims abstract description 184
- 238000000034 method Methods 0.000 title claims abstract description 77
- 230000008859 change Effects 0.000 claims abstract description 42
- 238000012544 monitoring process Methods 0.000 claims abstract description 38
- 238000012937 correction Methods 0.000 claims description 19
- 238000000691 measurement method Methods 0.000 claims description 8
- 238000004590 computer program Methods 0.000 claims description 7
- 230000000116 mitigating effect Effects 0.000 claims description 4
- 230000004807 localization Effects 0.000 claims 1
- 230000008569 process Effects 0.000 description 11
- 238000004422 calculation algorithm Methods 0.000 description 5
- 238000012545 processing Methods 0.000 description 5
- 238000004364 calculation method Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 230000008901 benefit Effects 0.000 description 3
- 230000000007 visual effect Effects 0.000 description 3
- 230000006870 function Effects 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 1
- 239000012050 conventional carrier Substances 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000005433 ionosphere Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000005436 troposphere Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S19/00—Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
- G01S19/01—Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
- G01S19/13—Receivers
- G01S19/22—Multipath-related issues
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S19/00—Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
- G01S19/01—Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
- G01S19/03—Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers
- G01S19/07—Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers providing data for correcting measured positioning data, e.g. DGPS [differential GPS] or ionosphere corrections
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S19/00—Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
- G01S19/01—Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
- G01S19/03—Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers
- G01S19/04—Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers providing carrier phase data
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S19/00—Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
- G01S19/01—Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
- G01S19/13—Receivers
- G01S19/23—Testing, monitoring, correcting or calibrating of receiver elements
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S19/00—Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
- G01S19/01—Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
- G01S19/13—Receivers
- G01S19/24—Acquisition or tracking or demodulation of signals transmitted by the system
- G01S19/29—Acquisition or tracking or demodulation of signals transmitted by the system carrier including Doppler, related
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S19/00—Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
- G01S19/38—Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
- G01S19/39—Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
- G01S19/40—Correcting position, velocity or attitude
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S19/00—Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
- G01S19/38—Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
- G01S19/39—Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
- G01S19/40—Correcting position, velocity or attitude
- G01S19/41—Differential correction, e.g. DGPS [differential GPS]
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S19/00—Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
- G01S19/38—Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
- G01S19/39—Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
- G01S19/42—Determining position
- G01S19/43—Determining position using carrier phase measurements, e.g. kinematic positioning; using long or short baseline interferometry
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S19/00—Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
- G01S19/38—Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
- G01S19/39—Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
- G01S19/42—Determining position
- G01S19/45—Determining position by combining measurements of signals from the satellite radio beacon positioning system with a supplementary measurement
- G01S19/47—Determining position by combining measurements of signals from the satellite radio beacon positioning system with a supplementary measurement the supplementary measurement being an inertial measurement, e.g. tightly coupled inertial
Definitions
- the present invention relates to a method for estimating a multipath error of a pseudorange measurement value and a location measurement method using the same, and more particularly, to a multipath error included in a pseudorange measurement value at a specific point in time by using a carrier phase time difference measurement value. It relates to a method for accurately measuring the position of an object by estimating and compensating for it.
- GNSS Global Navigation Satellite System
- the satellite navigation system is mainly used in navigation devices such as airplanes, ships, and automobiles, and recently, it is also used in location-based services provided by smartphones.
- the existing positioning algorithm based on satellite navigation information has an accuracy of about 2 to 10 m error when only a direct signal without distortion is received in an open land environment. If correction information such as the error factor of the calculated signal can be received from the reference station, the error can be reduced to about 1m or less.
- (B) of FIG. 1 in an urban forest environment, a multipath error occurs due to blockage or distortion of a signal by a building, thereby significantly reducing the accuracy of location measurement. .
- a satellite navigation information receiver such as a GNSS or Global Positioning System (GPS) receiver may be classified into a low-cost receiver and a high-priced receiver according to price and functions.
- low-cost satellite navigation system information receivers use pseudo-range measurements to determine a navigation solution (current location), and are used for vehicle navigation and smart phones due to their relatively low price.
- the expensive satellite navigation system information receiver uses carrier wave phase measurements to determine the location of an object and is used when more precise location measurement is required, such as surveying and geodetic equipment.
- the pseudorange measurement has the advantage of obtaining absolute value information compared to the carrier phase measurement, but the measurement noise is on the high level of several meters.
- the carrier phase measurement has the advantage of being robust to signal distortion in the urban forest environment and having a small noise level of mm level, but has a disadvantage in that it is difficult to know the absolute size because it contains an unspecified term that is difficult to estimate the value.
- There are various methods of determining the unspecified number but in general, considerable time and complex calculation are required. In particular, a more complex calculation process is required to determine the unspecified number of a moving object such as a vehicle.
- the satellite navigation information receiver which performs navigation independently without correction information from the reference station, mainly uses the pseudo-range measurement to determine the location.
- the error increases significantly.
- a method for estimating a multipath error of a pseudorange measurement value includes: acquiring satellite navigation system information including a pseudorange measurement value and a carrier phase measurement value; obtaining a carrier phase time difference measurement by differentiating the carrier phase measurement value for an arbitrary time; setting a monitoring variable for multipath error estimation using the carrier phase time difference measurement; detecting a change amount of the multipath error with respect to an arbitrary time using the monitoring variable, and determining a time interval usable for estimating the multipath error; and estimating the multipath error at a specific point in time using the amount of change in the multipath error compared to an arbitrary reference time.
- the monitoring variable may be set based on a combination of measurement values including a carrier phase time difference measurement, a statistical value of the measurement values, or characteristic values obtainable through probability distribution.
- the monitoring variable includes at least one of DR information received from the DR sensor, time information received from the vision sensor, radio positioning information received from the radio positioning sensor, correction information received from the reference station, and multi-frequency measurement values. It may be set further based on additional information including one.
- the time interval usable for estimating the multipath error is a section in which the level of the multipath error is estimated to be less than or equal to a predetermined value based on the monitoring variable.
- the length of the time interval may be preset or adjusted in real time.
- the multipath error at the specific point in time may be estimated using a multipath mitigation filter.
- the method further comprises the step of detecting a change in the unspecified number in the carrier phase measurement, wherein when a change in the unspecified number in the carrier phase measurement is detected, in determining the relative position of the object Carrier phase measurements and their time difference measurements can be excluded.
- the method further comprises the step of detecting a change in the unspecified number in the carrier phase measurement, wherein when a change in the unspecified number in the carrier phase measurement is detected, after estimating the magnitude of the change in the unspecified number A step of compensating the measurement for the corresponding size may be further performed.
- a computer program stored in a computer-readable recording medium for implementing a method for estimating a multipath error of a pseudorange measurement according to embodiments may be provided.
- a positioning method includes the steps of: receiving satellite navigation system information including a pseudorange measurement value and a carrier phase measurement value; determining the relative position of the object using the carrier phase time difference measurement; estimating a multipath error of the pseudorange measurement; determining an initial position of the object by compensating for or excluding the estimated multipath error; and determining the absolute position of the object by accumulating the relative position according to time at the initial position of the object.
- a positioning method includes the steps of: receiving satellite navigation system information including a pseudorange measurement value and a carrier phase measurement value; estimating a multipath error of the pseudorange measurement using the carrier phase time difference measurement; and compensating for or excluding the estimated multipath error to determine the absolute position of the object at a specific point in time.
- the method comprises one of DR information received from the DR sensor, time information received from the vision sensor, radio positioning information received from the radio positioning sensor, correction information received from the reference station, and multi-frequency measurement values.
- the method may further include receiving additional information including at least one.
- the additional information is utilized in at least one of determining the relative position of the object, estimating the multipath error, determining the initial position of the object, and determining the absolute position of the object can be
- the present invention it is possible to estimate the multipath error included in the pseudorange measurement value by using information on the change amount of the multipath error of the target obtained through the carrier phase time difference measurement value. By compensating for the estimated multipath error, it is possible to precisely determine the location of an object even in an urban environment with severe signal distortion.
- 1 is a view showing a comparison of position measurement errors in an open land environment and an urban forest environment.
- FIG. 2 is a flowchart illustrating steps of a method for estimating a multipath error of a pseudorange measurement according to an exemplary embodiment.
- FIG. 3 is a graph for explaining a case in which a change in an unspecified number is detected in a navigation system based on a carrier phase time difference measurement according to an embodiment.
- FIG. 4 is a graph for explaining a method of estimating the degree of extremeness of a multipath error in a navigation system based on a carrier phase time difference measurement according to an embodiment.
- 5 is a graph for explaining a method of determining a time interval usable for estimation of a multipath error through a set monitoring variable.
- FIG. 6 is a graph showing a result of tracking the location of an object using a pseudorange measurement according to the prior art.
- FIG. 7 is a graph illustrating a result of tracking the location of an object using a pseudorange measurement value for which a multipath error is compensated according to an exemplary embodiment.
- FIG. 8 is a flowchart illustrating steps of a location measurement method according to an embodiment.
- FIG. 9 is a diagram for explaining a concept of determining a relative position of an object in a navigation system according to an exemplary embodiment.
- FIG. 10 is a block diagram illustrating a processing process of a navigation system according to an exemplary embodiment.
- FIG. 11 is a flowchart illustrating steps of a location measurement method according to another embodiment.
- the method may be individually performed by a single processor or may be performed step by step by a plurality of processors provided in a computer device or an external server, and instructions for executing each step may be stored in a storage medium in the form of a computer program. there is. Each step does not necessarily mean that it is performed in chronological order.
- step S201 satellite navigation system information including a pseudorange measurement value and a carrier phase measurement value is acquired.
- a single or a plurality of GNSS receivers or GPS receivers receive satellite navigation system information from satellites, and the satellite navigation system information includes carrier phase measurements and pseudorange measurements.
- additional information such as a Doppler measurement value and a noise ratio included in the satellite navigation system information may be utilized for estimating the multipath error.
- an unspecified integer value that is an arbitrary integer must be calculated, but in the embodiment of the present invention, the position of the object is determined using the time difference value of the carrier phase measurement value There is no need to determine the numerical value. Accordingly, a low-cost receiver for receiving only the satellite navigation system information can be used without the need for a separate system for determining the unspecified number.
- step S202 the carrier phase measurement value is differentiated for an arbitrary (reference) time to obtain a carrier phase time difference measurement value (TDCP).
- TDCP carrier phase time difference measurement value
- the carrier phase time difference measurement is the same concept as the time change rate of the carrier phase measurement value.
- the pseudorange measure for the i-th satellite is the carrier phase measurement for the i-th satellite
- d is the distance between the satellite and the user
- d is the position of the i-th satellite
- d is the absolute position of the user (target)
- i-th satellite orbit error is the line of sight of the i-th satellite
- B is the receiver clock error
- T is the troposphere
- I is the ionosphere
- b is the satellite clock
- N is an unspecified number
- M is the pseudorange multipath error
- m is the carrier phase multipath error
- is the pseudorange receiver noise is the carrier phase receiver noise.
- the multipath error M of pseudorange measurements can increase up to several hundred meters, whereas the carrier phase multipath error m is much smaller, up to 4-5 cm. Also, carrier phase receiver noise is the pseudorange receiver noise represents a much smaller level than
- TDCP carrier phase time difference measurement
- Equation 3 the term including the unspecified integer is canceled through the time difference.
- the TDCP value obtained in this way is used to set a monitoring variable or to determine the relative position of a target through a process to be described later.
- the step of detecting a change in the unspecified number in the carrier phase measurement may be further performed.
- the continuity of the unspecified number with time must be ensured, since the unspecified term is canceled by the time difference on the premise that it has a constant value regardless of time change. Therefore, if a measurement value discontinuity phenomenon (cycle slip) in which an unspecified number changes occurs, an error in the form of bias exists, which causes a continuous decrease in positional accuracy.
- the measurement value is excluded from the subsequent relative positioning process and the relative position is determined only with the measurement values for the remaining satellites, or After compensation by estimating the size, the corresponding measurement can be used. Accordingly, the reliability of the position estimation algorithm can be improved.
- a phenomenon in which the carrier phase measurement value becomes discontinuous due to the change of the unspecified number occurs (k+1). After estimating and compensating for the magnitude of the change of the unspecified number, the corresponding measured value can be used. In this case, it can be expected to improve the navigation performance according to the increase in visibility satellites.
- various additional information received from the additional sensor may be utilized to estimate the magnitude of the change of the unspecified integer.
- DR information obtained from DR sensors such as accelerometers, accelerometers, odometers, altimeters, and geomagnetism
- visual information obtained from vision sensors such as cameras, lidars, and radars
- radio positioning information obtained from radio positioning sensors (LTE) , WIFI) and correction information (SBAS, Network-RTK, PPP) received from the reference station may be used.
- not only single frequency but also multiple frequency (double, triple frequency) measurements may be used, and in this case, differences in measured values occur according to characteristics between frequencies (for example, differences in ionospheric error magnitude, etc.), Using this principle, anomalies can be detected by combining several frequency measurements.
- step S203 a monitoring variable for multipath error estimation is set using the carrier phase time difference measurement (TDCP) obtained in step S202.
- TDCP carrier phase time difference measurement
- the monitoring variable is an indicator indicating the level of multipath error. For example, if the difference between the carrier phase time difference measurement and the pseudorange time difference measurement is set as the monitoring variable, the greater the multipath error included in the pseudorange measurement value, the greater the difference between the two measurements. Also, it will be possible to find out the extreme degree of multipath error through the change of the monitoring variable.
- measurement values are combined (carrier phase time difference measurement, CNO, Doppler), statistical values of the measurement values (mean, standard deviation of the moving window) or probability distribution (Skew Normal Distribution, Pareto Distribution, histogram distribution, etc.) Characteristic values that can be checked through the above can be set as monitoring variables.
- the monitoring variable may be composed of one or more variables, and may also be used as a measurement value for estimating multipath error.
- the monitoring variable may be expressed as a standard deviation value of a moving window or a frequency of a histogram from a measurement value combination that is a difference value between a carrier phase time difference measurement value and a pseudo-range time difference measurement value.
- the monitoring variable MV can be expressed by Equation 4 as follows.
- monitoring variables may be set by using the above-mentioned additional information.
- DR information obtained from DR sensors such as accelerometers, angular accelerometers, odometers, altimeters, and geomagnetism
- visual information obtained from vision sensors such as GPS, angular accelerometers, odometers, altimeters, and geomagnetism
- radio positioning information obtained from radio positioning sensors (LTE, WIFI)
- SBAS received correction information
- PPP Packed correction information
- double/triple frequency measurements it is possible to reduce the error factors of monitoring variables, so it is possible to improve the accuracy of multipath error estimation.
- step S204 a change amount of the multipath error with respect to an arbitrary time is detected using the monitoring variable set in step S203, and a time interval usable for estimating the multipath error is determined.
- a time interval (hereinafter, referred to as an estimation interval) usable for estimating the multipath error means a section in which the level of the multipath error is less than or equal to a predetermined value. In other words, by tracking the change in the measured value based on the monitoring variable, it is possible to distinguish the section where the multipath error occurs seriously and the section where the multipath error does not occur.
- the existing multipath error can be estimated.
- the measured values may be combined or a statistical value of the measured values may be set as a monitoring variable, and the extreme degree of multipath error may be estimated through the monitoring variable.
- the monitoring variable also exceeds the threshold for the part where the measured value indicating the extreme degree of the multipath error is large, and it can be seen that the extreme degree can be distinguished.
- FIG. 5 is a graph for explaining a method of determining a time interval usable for estimating a multipath error through a set monitoring variable according to an embodiment.
- the graph of FIG. 5 shows a case where there is no multipath error at any reference time.
- the monitoring variable is set as the histogram frequency of the measurement value combination that is the difference between the carrier phase time difference measurement value and the pseudorange time difference measurement value
- the section where the multipath error is not extreme that is, the section with the highest frequency
- It can be immediately identified through the monitoring variable, and through this, sections with extreme multipath errors can be excluded from the multipath error estimation process.
- the length of the estimation section may be preset or adjusted in real time.
- the multipath error may be continuously estimated whenever the estimation interval is increased (in this case, performance may deteriorate due to the accumulation of error elements), or the multipath error is estimated and compensated once the sum of the estimation intervals reaches 50 seconds.
- the multipath error can be estimated when the sum of the estimation intervals reaches 25 seconds, and thereafter, the multipath error can be estimated and compensated once every 50 seconds thereafter.
- the divided estimation interval can be used in multiple stages. All measurements are used without any stage classification, all available estimation intervals are used without stage classification, only when the available estimation interval is longer than a certain length, or the interval It is also possible to use the estimation section that can be used in a stepwise fashion by dividing it into several steps based on the length of .
- the multipath error estimate based on the estimation section of the previous step can remove the error element of the subsequent monitoring variable.
- step S205 the multipath error at a specific point in time is estimated using the amount of change of the multipath error compared to an arbitrary reference time in the estimation section (ie, a time section usable for estimating the multipath error).
- the multipath at a specific time point is used. error can be estimated.
- a multipath mitigation filter such as a Hatch filter or a Kalman filter may be used in the multipath error estimation process.
- Pseudo-range and carrier phase measurements including multipath error at the specific point in time Pseudo-range and carrier phase measurements in the section where the multipath error is not too severe measured using can be obtained, and the multipath error at a specific point in time is compensated for a pseudorange measurement value using the measurement value. can get
- the measurement Wow can be expressed by Equations 5 and 6 as follows.
- the multipath error included in the pseudorange measurement can be reduced. Since the method according to the embodiment utilizes the carrier phase time difference measurement, it is possible to estimate the multipath error with constant performance even if the user is in an urban environment with severe signal distortion, and the multipath error maintains a constant level for the measured values at all times. can
- FIG. 6 is a graph showing the result of tracking the location of an object using a pseudorange measurement according to the prior art
- FIG. 7 is a graph showing the location of the object using a pseudorange measurement value for which a multipath error is compensated according to an embodiment of the present invention. It is a graph showing the tracking result.
- step S704 does not have to be performed after step S703 is performed below, and step S704 may be performed prior to step S703 or the two steps may be performed in parallel.
- the satellite navigation system information is received through a GNSS receiver or a GPS receiver.
- the satellite navigation system information includes a carrier phase measurement value and a pseudorange measurement value.
- step S702 additional information is received from the additional sensor.
- the algorithm according to the embodiment can estimate the multipath error and determine the precise position only with the satellite navigation system information, but it is possible to improve the accuracy of the error estimation and the position determination by using the additional information.
- Additional information includes, for example, DR information obtained from DR sensors such as accelerometer, angular speedometer, odometer, altimeter, geomagnetism, etc., visual information obtained from vision sensors such as cameras, lidar, and radar, and radio positioning information obtained from radio positioning sensors. (LTE, WIFI), correction information received from the reference station (SBAS, Network-RTK, PPP), etc. may be included.
- step S703 the relative position of the object is determined using the carrier phase time difference measurement value.
- a carrier phase time difference measurement value (TDCP) can be obtained using Equations 1 to 3 above, and a navigation equation can be obtained as follows using this.
- Equation 8 is an equation using the difference between satellites.
- the superscript R stands for the reference satellite, and the formula is is made up of From Equation 7 or Equation 8, an equation for determining the relative position can be obtained as follows.
- FIG. 8 is a diagram for explaining a process of calculating a relative position of an object in a navigation system according to an embodiment. As shown in FIG. 8 , a difference between the target location at time t 1 and the target location at time t 2 , that is, a value corresponding to a movement distance may be calculated.
- the positioning accuracy may be improved by using correction information (SBAS, Network-RTK, PPP, etc.) of the reference station.
- the error of the relative position based on the measured value of the carrier phase time difference is affected by the amount of change in the satellite navigation error factor, and among them, the amount of change in the ionospheric and tropospheric errors acts as the main error factor. It can be removed for more precise position measurement.
- the ionospheric error can be estimated and removed without correction information from the reference station, so the relative location accuracy can be improved, and multi-satellite groups (US GPS, China BeiDou, Europe GALILEO, Russia GLONASS, etc.) If the number of visible satellites is increased using
- the reliability of the positioning result can be improved by detecting a cycle slip of the measurement value before determining the relative position and compensating for the magnitude of the unspecified change.
- step S704 the multipath error of the pseudorange measurement value is estimated using the carrier phase time difference measurement value and the additional information.
- the multipath error may be estimated through a process similar to that of steps S201 to S205 described with reference to FIG. 2 .
- a monitoring variable is set to detect the amount of change in multipath error over time, and a section in which the multipath error is not extreme is selected and the pseudo distance at a specific point in time. Multipath errors present in measurements can be estimated.
- the initial position of the object may be accurately determined by compensating for or excluding the multipath error estimated in step S704.
- a pseudo-range measurement value representing the absolute distance from the satellite to the target is used.
- the error can increase to several hundred m. Therefore, even if the relative position change of the target is precisely measured using the carrier phase time difference measurement value (TDCP), it is difficult to accurately obtain the absolute position when the initial position information is inaccurate.
- TDCP carrier phase time difference measurement value
- step S706 the absolute position of the object is determined by accumulating the relative position according to time to the initial position of the object determined in step S705.
- the relative position ( ) to the initial position ( ) can be accumulated to determine the absolute position.
- the equation for obtaining the absolute position of the object can be expressed as the following equation.
- DR sensors accelerometer, accelerometer, odometer, altimeter, geomagnetic sensor, etc.
- vision sensor camera, lidar, radar, etc.
- radio positioning sensor LTE, WIFI, etc.
- the positioning method may further include determining a confidence level for the relative or absolute position of the object based on the TDCP.
- Confidence level means the probability that the results of repeated trials will be the same within the error range, and the safety of users can be guaranteed by warning the user of a dangerous situation for the time when the calculation result has a confidence level greater than or equal to the threshold.
- the RRAIM (Relative RAIM) method based on the carrier phase time difference measurement may be applied as the Receiver Autonomous Integrity Monitoring (RAIM) algorithm of the satellite navigation receiver, which is mainly used to induce vertical take-off and landing of aircraft users.
- the RRAIM method has the advantage that it can have sufficient performance even in an environment where visibility satellites are insufficient. Therefore, reliable operation is possible even in an urban environment where visibility satellites are insufficient due to occlusion by buildings and various obstacles, so it is possible to improve the accuracy of positioning as well as the reliability level.
- the absolute confidence level may be determined by simply accumulating the confidence level of the relative position measurement value from the initial confidence level. Even in this case, the level of trust can be improved by combining it with additional information.
- the optimal level of confidence is obtained by combining the estimated position information based on the accelerometer or angular accelerometer with the satellite navigation system information using a Kalman filter (a filter mainly used to construct an integrated navigation system by combining GPS information and INS). can be calculated
- 10 is a block diagram illustrating a processing procedure of a navigation system based on a carrier phase time difference measurement according to an embodiment, and shows the structure of a TDCP/INS complex navigation system. 10 schematically shows a case in which INS information is combined with a carrier phase time difference measurement value and additional information. Unspecified number detection and compensation in the carrier phase time difference measurement is performed through INS-based additional information, and the Kalman filter can be used when the passed measurement is combined with the INS. Through this, it is possible to finally determine the precise relative position and confidence level.
- carrier phase measurement-based satellite navigation system In the case of the conventional carrier phase measurement-based satellite navigation system, it takes a lot of time and money to determine an unspecified number, so it is difficult to use it for vehicle navigation or smart phone location-based service for economic reasons.
- carrier time difference By using the measured value, there is no need to determine an unspecified number, and accordingly, a navigation solution can be obtained by using a low-cost satellite navigation system information receiver.
- a navigation solution jump discontinuous trajectory phenomenon may occur according to the change in the visible satellite.
- a navigation jump phenomenon can be prevented.
- the method may be implemented by a satellite navigation system including a processing unit having at least one processor and an antenna for receiving satellite navigation information, and instructions for executing each step may be stored in a storage medium in the form of a computer program. there is.
- each step does not necessarily mean that it is performed in a chronological order.
- the position measurement method according to this embodiment is basically similar to the position measurement method according to the first embodiment described with reference to FIG. 7, but it is not a method of determining an absolute position by accumulating a relative position in an initial position, but an estimated It is a method of tracking the entire trajectory by calculating the absolute position at a specific time by compensating for the multipath error.
- receiving satellite navigation system information including a pseudorange measurement value and a carrier phase measurement value (S901) and receiving additional information from an additional sensor (S902) are performed. Since this is similar to steps S701 to S702 in the first embodiment described with reference to FIG. 7 , a redundant description will be omitted.
- step 903 the multipath error of the pseudorange measurement is estimated using the carrier phase time difference measurement and the additional information.
- the method for estimating the multipath error goes through a process similar to that of step S704 in the first embodiment described with reference to FIG. 7 . That is, a monitoring variable for detecting the amount of change in the multipath error is set, and a section in which the multipath error is not extreme is selected to estimate the multipath error existing in the pseudorange measurement value at a specific time point.
- step S904 the absolute position of the object at a specific point in time is determined by compensating for or excluding the estimated multipath error.
- a multipath mitigation filter eg, a Hatch filter or a Kalman filter
- step S905 the entire trajectory of the object is determined based on the absolute position information at each viewpoint.
- the performance of each stage can be improved by using additional information such as DR information, time information, radio positioning information, and reference station correction information.
- additional information such as DR information, time information, radio positioning information, and reference station correction information.
- the additional information may be utilized when determining a relative and/or absolute position of an object, estimating a multipath error, and detecting a change in a carrier phase measurement.
- the multipath error estimation method and the location measurement method may be implemented as an application or implemented in the form of program instructions that may be executed through various computer components and recorded in a computer-readable recording medium.
- the computer-readable recording medium may include program instructions, data files, data structures, etc. alone or in combination. Examples of the computer-readable recording medium include hard disks, magnetic media such as floppy disks and magnetic tapes, optical recording media such as CD-ROMs and DVDs, and magneto-optical media such as floppy disks. media), and hardware devices specially configured to store and execute program instructions, such as ROM, RAM, flash memory, and the like.
- Examples of program instructions include not only machine language codes such as those generated by a compiler, but also high-level language codes that can be executed by a computer using an interpreter or the like.
- the hardware device may be configured to operate as one or more software modules for carrying out the processing according to the present invention, and vice versa.
- the location of the object can be precisely determined even in an urban environment where signal distortion is severe.
- the positioning method of the embodiment using this can basically have a relative navigation accuracy of cm level without reference station correction information data. If the reference station correction information is used, higher accuracy can be obtained.
- the present invention utilizes the time difference value of the measured value, unlike the conventional absolute navigation system, it is possible to prevent the navigation solution jump (discontinuous trajectory) according to the change of the visible satellite, and the RRAIM method is introduced to the city center where the visible satellite is insufficient. The integrity of the positioning algorithm can be monitored even in the environment.
- the present invention can determine the location by using the GPS receiver alone, since it is easy to build an integrated navigation system together with several additional sensors, the improvement of location accuracy and integrity monitoring performance can be expected.
Landscapes
- Engineering & Computer Science (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Position Fixing By Use Of Radio Waves (AREA)
- Navigation (AREA)
Abstract
본 발명의 일 실시예에 따른 의사거리 측정치의 다중경로 오차를 추정하는 방법은, 의사거리 측정치 및 반송파 위상 측정치가 포함된 위성항법시스템 정보를 획득하는 단계; 상기 반송파 위상 측정치를 임의 시간에 대해 차분하여 반송파 위상 시간차분 측정치를 획득하는 단계; 상기 반송파 위상 시간차분 측정치를 이용하여 다중경로 오차 추정을 위한 모니터링 변수를 설정하는 단계; 상기 모니터링 변수를 이용하여 임의 시간에 대한 다중경로 오차의 변화량을 검출하고, 다중경로 오차의 추정에 활용 가능한 시간 구간을 결정하는 단계; 및 임의의 기준 시간 대비 다중경로 오차의 변화량을 이용하여 특정 시점에서의 다중경로 오차를 추정하는 단계를 포함한다. 실시예에 따르면 의사거리 측정치에 포함된 다중경로 오차를 추정하고 보상하거나 제외함으로써 신호 왜곡이 극심한 도심 환경에서도 대상의 위치를 정밀하게 결정할 수 있다.
Description
본 발명은 의사거리 측정치의 다중경로 오차를 추정하는 방법과 이를 활용한 위치측정 방법에 관한 것으로서, 더욱 상세하게는 반송파 위상 시간차분 측정치를 활용하여 특정 시점에서 의사거리 측정치에 포함된 다중경로 오차를 추정하고, 이를 보상함으로써 대상의 위치를 정밀하게 측정할 수 있는 방법에 관한 것이다.
GNSS(Global Navigation Satellite System)는 위성으로부터 신호를 수신하여 수신기와 위성간의 거리를 계산함으로써 사용자의 현재 위치를 결정하는 위성항법시스템이다. 위성항법시스템은 주로 항공기, 선박, 자동차 등의 내비게이션 장치에 사용되고 있으며, 최근에는 스마트폰으로 제공되는 위치기반 서비스에도 활용되고 있다.
도 1의 (A)에 도시된 것처럼, 기존의 위성항법 정보에 기초한 위치 결정 알고리즘은 개활지 환경에서 왜곡 없는 직접 신호만을 수신할 경우에는 약 2~10m 오차의 정확도를 가진다. 만약 기준국으로부터 계산된 신호의 오차요소 등 보정정보를 받을 수 있다면 오차를 약 1m 이하까지도 줄일 수 있다. 반면, 도 1의 (B)에 도시된 것처럼, 도심숲 환경에서는 건물에 의한 신호의 차단이나 왜곡으로 인해 다중경로 오차(multipath error)가 발생하게 되고, 이로 인해 위치 측정의 정확도가 현저히 하락할 수 있다.
GNSS 혹은 GPS(Global Positioning System) 수신기와 같은 위성항법 정보 수신기는 가격과 기능에 따라 저가형 수신기와 고가형 수신기로 구분할 수 있다. 일반적으로 저가형 위성항법시스템 정보 수신기는 의사거리(pseudo-range) 측정치를 이용해 항법해(현재 위치)를 결정하며 비교적 저렴한 가격으로 인해 차량 내비게이션, 스마트폰 등에 사용된다. 고가형 위성항법시스템 정보 수신기는 반송파(carrier wave) 위상 측정치를 활용하여 대상의 위치를 결정하며 측량과 측지 장비 등 보다 정밀한 위치 측정이 필요한 경우에 사용된다.
의사거리 측정치는 반송파 위상 측정치와 비교하여 절대값 정보를 얻을 수 있다는 장점이 있으나, 측정치 잡음은 수 m 수준으로 큰 편이다. 반면, 반송파 위상 측정치는 도심숲 환경의 신호 왜곡에 강건하며 mm 수준의 작은 잡음 수준을 가진다는 장점이 있으나, 값을 추정하기 어려운 미지정수 항을 포함하고 있어 절대적인 크기를 알기 어렵다는 단점이 있다. 미지정수를 결정하는 방식은 다양하지만 일반적으로 상당한 시간과 복잡한 계산이 요구되며, 특히 차량과 같이 움직이는 대상의 미지정수를 결정하기 위해서는 더욱 복잡한 연산 과정이 요구된다.
따라서 기준국의 보정정보 없이 단독으로 항법을 수행하는 위성항법 정보 수신기는 주로 의사거리 측정치를 활용하여 위치를 결정하는데, 의사거리 측정치의 경우 신호 왜곡에 의해 극심한 영향을 받기 때문에 도심숲 환경에서는 측정치의 오차가 현저히 증가하게 된다.
본 발명의 목적은 반송파 위상 측정치의 시간 차분 값을 활용하여 신호 왜곡으로 인한 의사거리 측정치의 다중경로 오차를 추정하는 방법을 제공하는 것이다. 또한, 추정된 다중경로 오차를 보상함으로써 대상의 위치를 정밀하게 측정하는 방법을 제공하는 것을 목적으로 한다.
본 발명의 일 실시예에 따른 의사거리 측정치의 다중경로 오차를 추정하는 방법은, 의사거리 측정치 및 반송파 위상 측정치를 포함하는 위성항법시스템 정보를 획득하는 단계; 상기 반송파 위상 측정치를 임의 시간에 대해 차분하여 반송파 위상 시간차분 측정치를 획득하는 단계; 상기 반송파 위상 시간차분 측정치를 이용하여 다중경로 오차 추정을 위한 모니터링 변수를 설정하는 단계; 상기 모니터링 변수를 이용하여 임의 시간에 대한 다중경로 오차의 변화량을 검출하고, 다중경로 오차의 추정에 활용 가능한 시간 구간을 결정하는 단계; 및 임의의 기준 시간 대비 다중경로 오차의 변화량을 이용하여 특정 시점에서의 다중경로 오차를 추정하는 단계를 포함한다.
일 실시예에 따르면, 상기 모니터링 변수는, 반송파 위상 시간차분 측정치를 포함하는 측정치들의 조합, 상기 측정치들의 통계값 또는 확률분포를 통해 얻을 수 있는 특성값들에 기초하여 설정될 수 있다.
일 실시예에 따르면, 상기 모니터링 변수는, DR센서로부터 수신한 DR정보, 비전센서로부터 수신한 시각정보, 전파측위센서로부터 수신한 전파측위정보, 기준국으로부터 수신한 보정정보 및 다중주파수 측정치 중 적어도 하나를 포함하는 부가정보에 더 기초하여 설정될 수 있다.
일 실시예에 따르면, 상기 다중경로 오차의 추정에 활용 가능한 시간 구간은, 상기 모니터링 변수를 기준으로 상기 다중경로 오차의 수준이 소정의 값 이하로 추정되는 구간이다.
일 실시예에 따르면, 상기 시간 구간의 길이는 미리 설정되거나 실시간으로 조정될 수 있다.
일 실시예에 따르면, 상기 특정 시점에서의 다중경로 오차는 다중경로 완화 필터(Multipath Mitigation Filter)를 이용하여 추정될 수 있다.
일 실시예에 따르면, 상기 방법은, 반송파 위상 측정치 내 미지정수의 변화를 검출하는 단계를 더 포함하되, 반송파 위상 측정치 내 미지정수의 변화가 검출된 경우, 상기 대상의 상대위치를 결정함에 있어서 상기 반송파 위상 측정치 및 이의 시간차분 측정치는 제외할 수 있다.
일 실시예에 따르면, 상기 방법은, 반송파 위상 측정치 내 미지정수의 변화를 검출하는 단계를 더 포함하되, 반송파 위상 측정치 내 미지정수의 변화가 검출된 경우, 상기 미지정수 변화의 크기를 추정한 후 해당 크기에 대해 측정치를 보상하는 단계를 더 수행할 수 있다.
실시예들에 따른 의사거리 측정치의 다중경로 오차를 추정하는 방법을 구현하기 위한 컴퓨터로 판독 가능한 기록매체에 저장된 컴퓨터 프로그램이 제공될 수 있다.
본 발명의 제1 실시예에 따른 위치측정 방법은, 의사거리 측정치 및 반송파 위상 측정치를 포함하는 위성항법시스템 정보를 수신하는 단계; 반송파 위상 시간차분 측정치를 이용하여 대상의 상대위치를 결정하는 단계; 의사거리 측정치의 다중경로 오차를 추정하는 단계; 상기 추정된 다중경로 오차를 보상하거나 제외하여 상기 대상의 초기위치를 결정하는 단계; 및 상기 대상의 초기위치에 상기 대상의 시간에 따른 상대위치를 누적하여 상기 대상의 절대위치를 결정하는 단계를 포함한다.
본 발명의 제2 실시예에 따른 위치측정 방법은, 의사거리 측정치 및 반송파 위상 측정치를 포함하는 위성항법시스템 정보를 수신하는 단계; 반송파 위상 시간차분 측정치를 이용하여 의사거리 측정치의 다중경로 오차를 추정하는 단계; 및 상기 추정된 다중경로 오차를 보상하거나 제외하여 상기 대상의 특정 시점에서의 절대위치를 결정하는 단계를 포함한다.
제1 또는 제2 실시예에서, 상기 방법은 DR센서로부터 수신한 DR정보, 비전센서로부터 수신한 시각정보, 전파측위센서로부터 수신한 전파측위정보, 기준국으로부터 수신한 보정정보 및 다중주파수 측정치 중 적어도 하나를 포함하는 부가정보를 수신하는 단계를 더 포함할 수 있다. 상기 부가정보는 상기 대상의 상대위치를 결정하는 단계, 상기 다중경로 오차를 추정하는 단계, 상기 대상의 초기위치를 결정하는 단계, 및 상기 대상의 절대위치를 결정하는 단계 중 적어도 하나의 단계에서 활용될 수 있다.
본 발명의 일 실시예에 따르면, 반송파 위상 시간차분 측정치를 통해 획득한 대상의 다중경로 오차의 변화량 정보를 활용하여, 의사거리 측정치에 포함된 다중경로 오차를 추정할 수 있다. 추정된 다중경로 오차를 보상함으로써 신호 왜곡이 극심한 도심 환경에서도 대상의 위치를 정밀하게 결정할 수 있다.
도 1은 개활지 환경과 도심숲 환경에서의 위치 측정 오차를 비교하여 나타낸 도면이다.
도 2는 일 실시예에 따른 의사거리 측정치의 다중경로 오차를 추정하는 방법의 단계를 나타낸 순서도이다.
도 3은 일 실시예에 따른 반송파 위상 시간차분 측정치 기반 항법 시스템에서 미지정수의 변화가 검출된 경우를 설명하기 위한 그래프이다.
도 4는 일 실시예에 따른 반송파 위상 시간차분 측정치 기반 항법 시스템에서 다중경로 오차의 극심 정도를 추정하는 방법을 설명하기 위한 그래프이다.
도 5는 설정된 모니터링 변수를 통해 다중경로 오차의 추정에 활용 가능한 시간 구간을 결정하는 방법을 설명하기 위한 그래프이다.
도 6은 종래기술에 따라 의사거리 측정치를 이용해 대상의 위치를 추적한 결과를 나타낸 그래프이다.
도 7은 일 실시예에 따라 다중경로 오차가 보상된 의사거리 측정치를 이용해 대상의 위치를 추적한 결과를 나타낸 그래프이다.
도 8은 일 실시예에 따른 위치측정 방법의 단계를 나타낸 순서도이다.
도 9는 일 실시예에 따른 항법 시스템에서 대상의 상대위치를 결정하는 개념을 설명하기 위한 도면이다.
도 10은 일 실시예에 따른 항법 시스템의 처리 과정을 나타낸 블록선도이다.
도 11은 또 다른 실시예에 따른 위치측정 방법의 단계를 나타낸 순서도이다.
본 명세서에서 사용되는 용어는 기능을 고려하면서 가능한 현재 널리 사용되는 일반적인 용어를 선택하였으나, 이는 당 분야에 종사하는 기술자의 의도 또는 관례 또는 새로운 기술의 출현 등에 따라 달라질 수 있다. 또한, 특정한 경우는 출원인이 임의로 선정한 용어도 있으며, 이 경우 해당되는 명세서의 설명 부분에서 그 의미를 기재할 것이다. 따라서 본 명세서에서 사용되는 용어는, 단순한 용어의 명칭이 아닌 그 용어가 가지는 실질적인 의미와 본 명세서의 전반에 걸친 내용을 토대로 해석되어야 함을 밝혀두고자 한다.
본 발명의 실시예들 중 일부는 도면에 제시된 순서도를 참조하여 설명된다. 간단히 설명하기 위하여 상기 방법은 일련의 블록들로 도시되고 설명되었으나, 본 발명은 상기 블록들의 순서에 한정되지 않고, 몇몇 블록들은 다른 블록들과 본 명세서에서 도시되고 기술된 것과 상이한 순서로 또는 동시에 일어날 수도 있으며, 동일한 또는 유사한 결과를 달성하는 다양한 다른 분기, 흐름 경로, 및 블록의 순서들이 구현될 수 있다. 또한, 본 명세서에서 기술되는 방법의 구현을 위하여 도시된 모든 블록들이 요구되지 않을 수도 있다. 나아가, 본 발명의 일 실시예에 따른 방법은 일련의 과정들을 수행하기 위한 컴퓨터 프로그램의 형태로 구현될 수도 있으며, 상기 컴퓨터 프로그램은 컴퓨터로 판독 가능한 기록 매체에 기록될 수도 있다.
이하 첨부 도면들 및 첨부 도면들에 기재된 내용들을 참조하여 실시예를 상세하게 설명하지만, 청구하고자 하는 범위는 실시예들에 의해 제한되거나 한정되는 것은 아니다.
의사거리 측정치의 다중경로 오차를 추정하는 방법
도 2는 일 실시예에 따른 의사거리 측정치의 다중경로 오차를 추정하는 방법의 단계를 나타낸다. 상기 방법은 단일 프로세서에 의해 개별적으로 수행되거나 컴퓨터 장치 혹은 외부서버에 구비된 다수의 프로세서에 의해 단계적으로 수행될 수 있으며, 각 단계를 실행하기 위한 명령들은 컴퓨터 프로그램의 형태로 저장 매체에 저장될 수 있다. 각 단계는 반드시 시간적 순서에 따라 수행되는 것을 의미하지는 않는다.
단계(S201)에서는 의사거리 측정치 및 반송파 위상 측정치를 포함하는 위성항법시스템 정보를 획득한다. 단일 또는 복수의 GNSS 수신기 또는 GPS 수신기는 위성으로부터 위성항법시스템 정보를 수신하는데, 위성항법시스템 정보에는 반송파 위상 측정치와 의사거리 측정치가 포함된다. 또한, 위성항법시스템 정보에 포함된 도플러 측정치, 잡음비 등의 추가적인 정보가 다중경로 오차의 추정에 활용될 수 있다.
일반적으로 반송파 위상 측정치를 활용해 대상의 위치를 결정하기 위해서는 임의의 정수인 미지정수 값을 계산해야 하지만, 본 발명에의 실시예에서는 반송파 위상 측정치의 시간 차분 값을 이용하여 대상의 위치를 결정하므로 미지정수 값을 결정할 필요가 없다. 따라서 미지정수를 결정하기 위한 별도의 시스템을 구비할 필요 없이 위성항법시스템 정보만을 수신하기 위한 저가의 수신기가 이용될 수 있다.
단계(S202)에서는 상기 반송파 위상 측정치를 임의의(기준) 시간에 대해 차분하여 반송파 위상 시간차분 측정치(TDCP; Time Differenced Carrier Phase measurement)를 획득한다. 여기서 반송파 위상 시간차분 측정치는 반송파 위상 측정치의 시간변화율과 동일한 개념이다.
이하의 수학식은 의사거리 측정치와 반송파 위상 측정치를 수식으로 나타낸 것이다.
상기 수학식에서, 는 i번째 위성에 대한 의사거리 측정치, 는 i번째 위성에 대한 반송파 위상 측정치, d 는 위성과 사용자 사이의 거리, 는 i번째 위성의 위치, 는 사용자(대상)의 절대 위치, 는 i번째 위성 궤도 오차, 는 i번째 위성의 시선벡터(line of sight), B 는 수신기 시계오차, T 는 대류층, I 는 전리층, b 는 위성시계, N 은 미지정수, 는 반송파 파장길이, M은 의사거리 다중경로 오차, m 은 반송파 위상 다중경로 오차, 는 의사거리 수신기 잡음, 는 반송파 위상 수신기 잡음을 나타낸다.
일반적으로 의사거리 측정치의 다중경로 오차 M 은 최대 수백 미터까지 증가할 수 있는데 비해, 반송파 위상 멀티패스 오차 m 은 최대 4~5 cm 정도로 훨씬 작은 수준을 나타낸다. 또한, 반송파 위상 수신기 잡음 는 의사거리 수신기 잡음 에 비해 훨씬 작은 수준을 나타낸다.
상기 수학식 3에서 시간차분을 통해 미지정수를 포함한 항이 소거된다. 이렇게 획득한 TDCP 값은 후술하는 과정을 통해 모니터링 변수를 설정하거나 대상의 상대위치를 결정하는데 이용된다.
일 실시예에 따르면, 반송파 위상 측정치 내 미지정수의 변화를 검출하는 단계가 더 수행될 수 있다. 반송파 위상 시간차분 측정치를 사용하기 위해서는 시간에 따른 미지정수의 연속성이 보장되어야 하는데, 이는 미지정수 항이 시간 변화에 무관하게 일정한 값을 갖는다는 것을 전제로 시간차분에 의해 소거되기 때문이다. 따라서 미지정수가 변화하는 측정치 불연속 현상(cycle slip)이 발생하게 되면 바이어스 형태의 오차가 존재하게 되며, 지속적인 위치 정확도의 저하를 초래한다.
미지정수의 변화가 검출될 경우(즉, 측정치 불연속 현상(cycle slip)이 발생할 경우) 해당 측정치를 이후 상대위치 결정 과정에서 제외하고 나머지 위성들에 대한 측정치만으로 상대위치를 결정하거나, 미지정수 변화의 크기를 추정하여 보상 후 해당 측정치를 사용할 수 있다. 이에 따라 위치 추정 알고리즘의 신뢰도를 향상시킬 수 있다.
도 3의 그래프를 참조하면, 미지정수의 변화로 인해 반송파 위상 측정치가 불연속하게 되는 현상이 발생하는데(k+1), 미지정수 변화의 크기를 추정하여 이를 보상한 후 해당 측정치를 사용할 수 있다. 이 경우 가시위성 증가에 따른 항법 성능 향상을 기대할 수 있다.
일 실시예에 따르면, 미지정수 변화의 크기를 추정하기 위해 부가센서로부터 수신한 다양한 부가정보들이 활용될 수 있다. 예컨대, 가속도계, 각속도계, 주행거리계, 고도계, 지자기계 등의 DR센서로부터 획득한 DR정보, 카메라, Lidar, Radar 등의 비전센서로부터 획득한 시각정보, 전파측위센서로부터 획득한 전파측위정보(LTE, WIFI), 기준국으로부터 수신한 보정정보(SBAS, Network-RTK, PPP) 등이 이용될 수 있다.
또 다른 실시예에 따르면, 단일주파수뿐만 아니라 다중주파수(이중, 삼중주파수) 측정치를 활용할 수도 있으며, 이 경우 주파수 간의 특성에 따라 측정치의 차이가 발생(예를 들어, 전리층 오차 크기 차이 등)하는데, 이러한 원리를 이용하여 여러 주파수 측정치를 조합함으로써 이상 측정치를 검출해낼 수 있다.
단계(S203)에서는, 상기 단계(S202)에서 획득한 반송파 위상 시간차분 측정치(TDCP)를 이용하여 다중경로 오차 추정을 위한 모니터링 변수를 설정한다.
모니터링 변수는 다중경로 오차의 수준을 나타내는 지표로서, 예컨대 반송파 위상 시간차분 측정치와 의사거리 시간차분 측정치의 차이 값을 모니터링 변수로 설정할 경우, 의사거리 측정치에 포함된 다중경로 오차가 클수록 두 측정치의 차이도 커지므로 모니터링 변수의 변화를 통해 다중경로 오차의 극심 정도를 알아낼 수 있을 것이다.
이와 같이, 측정치들을 조합하거나(반송파 위상 시간차분 측정치, CNO, Doppler), 상기 측정치들의 통계값(Moving Window의 평균, 표준편차) 또는 확률분포(Skew Normal Distribution, Pareto Distribution, 히스토그램의 분포 등)를 통해 확인할 수 있는 특성값들이 모니터링 변수로 설정될 수 있다. 상기 모니터링 변수는 하나 또는 다수의 변수로 구성될 수 있고, 다중경로 오차의 추정을 위한 측정치로도 활용될 수 있다.
일 실시예에 따르면, 모니터링 변수는 반송파 위상 시간차분 측정치와 의사거리 시간차분 측정치의 차이값인 측정치 조합으로부터 Moving Window의 표준편차값 또는 히스토그램의 빈도수로 나타낼 수 있다. Moving Window의 표준편차값을 활용하는 경우 모니터링 변수 MV는 다음과 같이 수학식 4로 나타낼 수 있다.
한편, 상기 언급된 부가정보를 활용하여 모니터링 변수를 설정할 수도 있다. 예컨대, 가속도계, 각속도계, 주행거리계, 고도계, 지자기계 등의 DR센서로부터 획득한 DR정보, 비전센서로부터 획득한 시각정보, 전파측위센서로부터 획득한 전파측위정보(LTE, WIFI), 기준국으로부터 수신한 보정정보(SBAS, Network-RTK, PPP 등)와 같은 부가정보를 활용하거나, 이중/삼중 주파수 측정치를 활용하면 모니터링 변수의 오차 요인을 감소시킬 수 있으므로, 다중경로 오차 추정의 정확도를 향상시킬 수 있다.
단계(S204)에서는 단계(S203)에서 설정한 모니터링 변수를 이용하여 임의 시간에 대한 다중경로 오차의 변화량을 검출하고, 다중경로 오차의 추정에 활용 가능한 시간 구간을 결정한다.
여기서 다중경로 오차의 추정에 활용 가능한 시간 구간(이하, 추정 구간이라 한다)은 다중경로 오차의 수준이 소정의 값 이하로 나타나는 구간을 의미한다. 즉, 모니터링 변수를 기준으로 측정치의 변화를 추적하면 다중경로 오차가 심각하게 발생하는 구간과 그렇지 아니한 구간을 구분할 수 있는데, 오차가 미리 정해진 수준보다 낮은 구간을 선택함으로써 특정 시점에서의 의사거리 측정치에 존재하는 다중경로 오차를 추정할 수 있다.
도 4는 일 실시예에 따른 측정치 조합의 값과 모니터링 변수의 값을 나타내고 있다. 도 4에 도시된 바와 같이 측정치들을 조합하거나 상기 측정치들의 통계값을 모니터링 변수로 설정할 수 있으며, 상기 모니터링 변수를 통해 다중경로 오차의 극심 정도를 추정할 수 있다. 이 경우 다중경로 오차의 극심 정도를 나타내는 측정치가 큰 부분에 대해 모니터링 변수 또한 임계값(Threshold)을 초과하며 극심 정도의 구분이 가능함을 알 수 있다.
도 5는 일 실시예에 따라 설정된 모니터링 변수를 통해 다중경로 오차의 추정에 활용 가능한 시간 구간을 결정하는 방법을 설명하기 위한 그래프이다. 도 5의 그래프는 임의의 기준 시간에서의 다중경로 오차가 없는 경우를 나타낸다. 도 5를 참조하면, 모니터링 변수를 반송파 위상 시간차분 측정치와 의사거리 시간차분 측정치의 차이값인 측정치 조합의 히스토그램 빈도수로 설정할 경우 다중경로 오차가 극심하지 않은 구간(즉, 빈도수가 가장 높은 구간)을 모니터링 변수를 통해 바로 파악할 수 있으며, 이를 통해 다중경로 오차가 극심한 구간을 다중경로 오차 추정 과정에서 제외할 수 있도록 한다.
상기 추정 구간의 길이는 미리 설정되거나 실시간으로 조정될 수 있다. 예컨대, 추정 구간이 늘어날 때마다 지속적으로 다중경로 오차를 추정하거나(이 경우 오차 요소의 누적으로 성능이 하락할 수 있음), 추정 구간의 합이 50초가 될 때마다 한 번씩 다중경로 오차를 추정하고 보상하거나, 추정 구간의 합이 25초가 되면 다중경로 오차를 추정하고 그 이후로는 50초가 될 때마다 한 번씩 다중경로 오차를 추정하고 보상할 수 있다.
구분된 추정 구간은 여러 단계에 걸쳐 활용될 수 있는데, 단계의 구분 없이 모든 측정치를 활용하거나, 단계 구분 없이 활용 가능한 추정 구간을 모두 사용하거나, 활용 가능한 추정 구간이 일정 길이 이상일 때에만 사용하거나, 구간의 길이를 기준으로 여러 단계로 구분하여 활용 가능한 추정 구간을 계단식으로 사용할 수도 있다.
이와 같이 추정 구간을 여러 단계에 걸쳐 사용할 경우, 이전 단계의 추정 구간에 의한 다중경로 오차 추정치가 이후 모니터링 변수의 오차 요소를 제거할 수 있다.
단계(S205)에서는 추정 구간(즉, 다중경로 오차의 추정에 활용 가능한 시간 구간)에서의 임의의 기준 시간 대비 다중경로 오차의 변화량을 이용하여 특정 시점에서의 다중경로 오차를 추정한다.
전술한 바와 같이, 다중경로 오차가 극심하지 않은 구간(즉, 오차가 미리 정해진 수준보다 낮은 구간)을 선택하고 이 구간에 존재하는 기준 시간 대비 다중경로 오차의 변화량을 사용하면 특정 시점에서의 다중경로 오차를 추정할 수 있다.
일 실시예에 따르면, 다중경로 오차의 추정 과정에서 해치 필터(Hatch Filter) 또는 칼만 필터(Kalman Filter)와 같은 다중경로 완화 필터(Multipath Mitigation Filter)가 이용될 수 있다. 상기 특정 시점에서의 다중경로 오차가 포함된 의사거리, 반송파 위상 측정치 와 다중경로 오차가 극심하지 않은 구간에서의 의사거리, 반송파 위상 측정치 를 이용하여 측정치 를 획득할 수 있으며, 상기 측정치를 활용하여 특정 시점에서의 다중경로 오차가 보상된 의사거리 측정치 를 얻을 수 있다. 이 경우 측정치 와 는 다음과 같이 수학식 5와 수학식 6으로 나타낼 수 있다.
이와 같이 다중경로 오차를 추정 및 보상함으로써 의사거리 측정치에 포함된 다중경로 오차를 감소시킬 수 있다. 실시예에 따른 방법은 반송파 위상 시간 차분 측정치를 활용하므로 사용자가 신호 왜곡이 극심한 도심 환경에 있더라도 일정한 성능의 다중경로 오차 추정이 가능하며, 다중경로 오차는 모든 시간에서의 측정치에 대해 일정한 수준을 유지할 수 있다.
도 6는 종래기술에 따라 의사거리 측정치를 이용해 대상의 위치를 추적한 결과를 나타낸 그래프이고, 도 7은 본 발명의 일 실시예에 따라 다중경로 오차가 보상된 의사거리 측정치를 이용해 대상의 위치를 추적한 결과를 나타낸 그래프이다.
도 6에 도시된 것처럼, 다중경로 오차의 보상 없이 의사거리 측정치를 이용할 경우(Raw PR Meas.) 오차와 잡음 수준이 심각하다는 것을 알 수 있다. 이에 비해, 다중경로 오차를 추정하여 보상할 경우(Multipath Esti.), 도 7에 도시된 것처럼 실제 대상의 위치 정보와 거의 일치하는 결과를 얻을 수 있다.
이하에서는 전술한 의사거리 측정치의 다중경로 오차를 추정하는 방법을 활용하여 대상의 절대위치를 결정하는 방법을 설명하기로 한다.
다중경로 오차 추정을 통한 위치측정 방법
(제1 실시예)
도 8은 제1 실시예에 따른 위치측정 방법의 단계를 나타낸다. 상기 방법은 적어도 하나의 프로세서에 의해 수행되거나, 적어도 하나의 프로세서를 구비한 처리장치와 위성항법정보 수신 안테나를 포함하는 위성항법 시스템에 의해 구현될 수 있다. 각 단계를 실행하기 위한 명령들은 컴퓨터 프로그램의 형태로 저장 매체에 저장될 수 있으며, 각 단계는 반드시 시간적 순서에 따라 수행되는 것을 의미하지는 않는다. 예컨대, 아래에서 단계(S703)가 수행된 이후에 단계(S704)가 수행되어야 하는 것은 아니며, 단계(S704)가 단계(S703)에 선행하여 수행되거나 두 단계가 병렬적으로 수행될 수도 있다.
단계(S701)에서는, GNSS 수신기 또는 GPS 수신기를 통해 위성항법시스템 정보를 수신한다. 상기 위성항법시스템 정보에는 반송파 위상 측정치와 의사거리 측정치가 포함된다.
단계(S702)에서는 부가센서로부터 부가정보를 수신한다. 기본적으로 실시예에 따른 알고리즘은 위성항법시스템 정보만으로도 다중경로 오차를 추정하고 정밀 위치를 결정할 수 있지만, 부가적인 정보를 활용하여 오차 추정 및 위치 결정의 정확도를 향상시킬 수 있다. 부가정보에는 예컨대 가속도계, 각속도계, 주행거리계, 고도계, 지자기계 등의 DR센서로부터 획득한 DR정보, 카메라, Lidar, Radar 등의 비전센서로부터 획득한 시각정보, 전파측위센서로부터 획득한 전파측위정보(LTE, WIFI), 기준국으로부터 수신한 보정정보(SBAS, Network-RTK, PPP) 등이 포함될 수 있다.
단계(S703)에서는 반송파 위상 시간차분 측정치를 이용하여 대상의 상대위치를 결정한다. 전술한 수학식 1 내지 3을 이용해 반송파 위상 시간차분 측정치(TDCP)를 구할 수 있고, 이를 이용하여 다음과 같이 항법 방정식을 얻을 수 있다.
수학식 7에서
로 나타낼 수 있다. 수학식 8는 위성간 차분을 이용한 방정식이다. 위첨자 R은 기준위성을 의미하며, 해당 수식은 꼴로 이루어져 있다. 수학식 7 또는 수학식 8로부터 다음과 같이 상대위치를 결정하기 위한 방정식을 구할 수 있다.
도 8은 실시예에 따른 항법 시스템에서 대상의 상대위치를 계산하는 과정을 설명하기 위한 도면이다. 도 8에 도시된 바와 같이 시간 t1에서의 대상 위치와 t2에서의 대상 위치 간의 차이, 즉 이동거리에 해당하는 값을 계산할 수 있다.
이에 따르면, 추가적인 보정정보 시스템의 도움 없이 단일주파수, 단일위성군 정보를 이용한 저가형 위성항법 수신기만으로도 cm 수준의 오차를 갖는 정밀한 상대위치 계산이 가능하다. 또한, 기준국으로부터 보정정보를 수신하거나 다중주파수정보 또는 다중위성정보를 수신하여 위치 결정의 정확도를 향상시킬 수 있다.
일 실시예에 따르면, 기준국의 보정정보(SBAS, Network-RTK, PPP 등)를 사용하여 위치정확도를 향상시킬 수 있다. 반송파 위상 시간차분 측정치 기반 상대위치의 오차는 위성항법 오차요소의 변화량에 영향을 받고 그 중 전리층, 대류층 오차 변화량이 가장 주된 오차 요인으로 작용하는데, 기준국의 보정정보를 사용할 경우 이에 따른 오차를 제거할 수 있어 보다 정밀한 위치 측정이 가능하다.
나아가, 다중주파수 측정치를 활용한다면 기준국의 보정정보 없이도 전리층 오차를 추정하여 제거할 수 있으므로 상대위치의 정확도가 향상될 수 있으며, 다중위성군(미국 GPS, 중국 BeiDou, 유럽 GALILEO, 러시아 GLONASS 등)을 활용하여 가시위성의 개수를 늘리면 DOP(Dilution of Precision; 가시위성 배치의 고른 정도로 설명될 수 있음)이 감소하여 위치정확도가 향상될 수 있다(이 경우 측정치간 주파수 차이가 고려되어야 함).
이러한 부가정보의 활용은 단지 선택사항으로서, 본 발명의 실시예들은 기본적으로 보정정보 시스템의 도움 없이 단일주파수, 단일위성군 정보를 이용한 저가형 위성항법 수신기만으로도 cm 수준의 오차를 갖는 정밀한 상대위치 계산이 가능하다.
이와 같이 반송파 위상 측정치를 임의의 시간에 대하여 차분한 값을 이용함으로써 미지정수를 결정하지 않고도 대상의 상대적인 위치 변화를 알 수 있다. 상대위치를 결정하기 전에 측정치 불연속 현상(cycle slip)을 검출하고 미지정수 변화의 크기를 보상함으로써 측위 결과의 신뢰도를 향상시킬 수 있음은 전술한 바와 같다.
단계(S704)에서는 반송파 위상 시간차분 측정치와 부가정보를 이용하여 의사거리 측정치의 다중경로 오차를 추정한다. 단계(S704)에서는, 도 2를 참조하여 설명한 각 단계들(S201~S205)과 유사한 과정을 통해 다중경로 오차를 추정할 수 있다. 다시 말해, 측정치의 조합, 통계값, 확률분포 등을 이용해 시간에 따른 다중경로 오차의 변화량을 검출하기 위한 모니터링 변수를 설정하고, 다중경로 오차가 극심하지 않은 구간을 선택하여 특정 시점에서의 의사거리 측정치에 존재하는 다중경로 오차를 추정해낼 수 있다.
단계(S705)에서는 단계(S704)에서 추정된 다중경로 오차를 보상하거나 제외하여 대상의 초기위치를 정확하게 결정할 수 있다. 초기위치의 결정에는 상대적인 위치 변화량이 아닌 절대적인 위치정보가 필요하기 때문에 위성에서 대상까지의 절대적인 거리를 나타내는 의사거리 측정치를 이용하게 되는데, 일반적으로 도심 환경에서는 구조물에 의한 신호 왜곡으로 인해 의사거리 측정치의 오차가 수백 m까지도 증가할 수 있다. 따라서, 반송파 위상 시간차분 측정치(TDCP)를 이용하여 대상의 상대위치 변화를 정밀하게 측정하더라도 초기위치 정보가 부정확할 경우 절대위치를 정확하게 구하기 어렵다. 본 발명의 실시예에 따르면, TDCP를 활용하여 특정 시점에서의 다중경로 오차를 추정할 수 있고, 이를 보상하여 의사거리 측정치를 재구성하면 도심 환경에서도 정밀한 초기위치 결정이 가능하다.
단계(S706)에서는 단계(S705)에서 결정된 대상의 초기위치에 시간에 따른 상대위치를 누적하여 대상의 절대위치를 결정한다.
실시예에 따르면, 반송파 위상 시간차분 측정치를 이용하여 계산한 상대위치()를 초기위치()로부터 누적하여 절대위치를 결정할 수 있다. 대상의 절대위치를 구하는 방정식은 다음의 수학식과 같이 나타낼 수 있다.
추가적으로, DR센서(가속도계, 각속도계, 주행거리계, 고도계, 지자기센서 등), 비전센서(카메라, Lidar, Radar 등), 전파측위센서(LTE, WIFI 등)와 같은 다양한 부가센서로부터 수신한 부가정보와 결합하여 절대위치 측정의 정확도를 향상시킬 수 있다.
실시예에 따른 위치측정 방법은, TDCP에 기초하여 대상의 상대위치 또는 절대위치에 대한 신뢰수준을 결정하기 위한 단계를 더 포함할 수 있다. 신뢰수준이란 반복적인 시행에 따른 결과가 오차 범위 내 동일한 결과가 나올 확률을 의미하며, 계산 결과가 임계치 이상의 신뢰수준을 갖는 시간에 대해 사용자에게 위험상황을 경고함으로써 사용자에 대한 안전을 보장할 수 있다. 예컨대, 위성항법 수신기의 단독 무결성 감시(RAIM; Receiver Autonomous Integrity Monitoring) 알고리즘으로 반송파 위상 시간차분 측정치 기반의 RRAIM(Relative RAIM) 방식이 적용될 수 있는데, 이는 주로 항공기 사용자의 수직이착륙 유도에 이용되는 방식이다. RRAIM 방식은 가시위성이 부족한 환경에서도 충분한 성능을 가질 수 있다는 장점이 있다. 따라서 건물에 의한 가림과 다양한 방해요인으로 인해 가시위성이 부족한 도심 환경에서도 신뢰성 있는 동작이 가능하므로 위치 측정의 정밀도뿐만 아니라 신뢰수준까지도 향상시킬 수 있다.
일 실시예에 따르면, 위치결정 과정과 유사한 방식으로, 초기 신뢰수준으로부터 상대위치 측정치의 신뢰수준을 단순히 누적하여 절대 신뢰수준을 결정할 수 있다. 이 경우에도 부가정보와 결합하여 신뢰수준을 향상시킬 수 있다. 일 실시예에 따르면, 칼만 필터(GPS 정보와 INS를 결합하여 통합항법시스템을 구성하는데 주로 활용되는 필터)를 이용해 가속도계 또는 각속도계 기반 추정 위치정보를 위성항법시스템 정보와 결합하여 최적의 신뢰수준을 계산할 수 있다.
도 10은 실시예에 따른 반송파 위상 시간차분 측정치 기반 항법 시스템의 처리 과정을 나타낸 블록선도로서, TDCP/INS 복합항법 시스템의 구조를 나타내고 있다. 도 10은 반송파 위상시간 차분 측정치와 부가정보로 INS 정보를 결합하는 경우를 도식적으로 나타낸다. INS 기반의 부가정보를 통해 반송파 위상 시간차분 측정치 내 미지정수 검출 및 보상을 수행하며, 이를 통과한 측정치를 INS와 결합하는 경우에는 칼만 필터를 활용할 수 있다. 이를 통해 최종적으로 정밀 상대위치 및 신뢰수준을 결정할 수 있다.
종래의 반송파 위상 측정치 기반 위성항법 시스템의 경우 미지정수를 결정하는데 많은 시간과 비용이 소요되어 경제적인 이유로 차량 내비게이션이나 스마트폰 위치기반 서비스에 활용되기 어려웠으나, 본 발명의 실시예에 따르면 반송파 시간차분 측정치를 사용함으로써 미지정수를 결정할 필요가 없으며 이에 따라 저가형 위성항법시스템 정보 수신기를 활용하여 항법해를 구할 수 있다.
또한, 위성항법시스템 측정치를 직접 이용하여 절대위치를 결정하는 기존의 방식에서는 가시위성 변화에 따른 항법해 점프(불연속 궤적) 현상이 발생할 수 있는데, 실시예에 따르면 반송파 위성 측정치를 직접 이용하는 대신 시간차분 측정치를 활용함으로써 이러한 항법해 점프 현상을 방지할 수 있다.
(제2 실시예)
도 11은 제2 실시예에 따른 위치측정 방법의 단계를 나타낸다. 상기 방법은 적어도 하나의 프로세서를 구비한 처리장치와 위성항법정보 수신 안테나를 포함하는 위성항법 시스템에 의해 구현될 수 있으며, 각 단계를 실행하기 위한 명령들은 컴퓨터 프로그램의 형태로 저장 매체에 저장될 수 있다. 또한, 각 단계는 반드시 시간적 순서에 따라 수행되는 것을 의미하지는 않는다.
본 실시예에 따른 위치측정 방법은, 기본적으로 도 7을 참조하여 설명한 제1 실시예에 따른 위치측정 방법과 유사하지만, 초기위치에 상대위치를 누적하여 절대위치를 결정하는 방식이 아닌, 추정된 다중경로 오차를 보상하여 특정 시간에서의 절대위치를 계산함으로써 전체 궤적을 추적하는 방식이다.
도 11을 참조하면, 먼저 의사거리 측정치 및 반송파 위상 측정치를 포함하는 위성항법시스템 정보를 수신하는 단계(S901) 및 부가센서로부터 부가정보를 수신하는 단계(S902)가 수행된다. 이는 도 7을 참조하여 설명한 제1 실시예에서 단계들(S701~S702)과 유사하므로, 중복되는 설명은 생략하기로 한다.
단계(903)에서, 반송파 위상 시간차분 측정치와 부가정보를 이용하여 의사거리 측정치의 다중경로 오차를 추정한다. 다중경로 오차를 추정하는 방법은 도 7을 참조하여 설명한 제1 실시예에서 단계(S704)와 유사한 과정을 거친다. 즉, 다중경로 오차의 변화량을 검출하기 위한 모니터링 변수를 설정하고, 다중경로 오차가 극심하지 않은 구간을 선택하여 특정 시점에서의 의사거리 측정치에 존재하는 다중경로 오차를 추정한다.
단계(S904)에서, 추정된 다중경로 오차를 보상하거나 제외하여 대상의 특정 시점에서의 절대위치를 결정한다. 다중경로 완화 필터(예컨대, 해치 필터(Hatch Filter) 또는 칼만 필터(Kalman Filter) 등)를 활용하여 의사거리 측정치에 포함된 다중경로 오차를 보상할 수 있고, 오차가 제거된 의사거리 측정치에 기초하여 특정 시점에서의 대상의 절대위치를 결정할 수 있다.
단계(S905)에서, 각 시점에서의 절대위치 정보에 기초하여 대상의 전체 궤적을 결정한다. 제1 실시예에서는 초기위치(t=0)에서의 에폭(epoch)만을 사용하고 나머지 경로는 TDCP를 활용한 상대위치를 누적하여 결정하였으나, 제2 실시예에서는 모든 시간대에서의 에폭(epoch)을 사용함으로써 의사거리 측정치만으로 대상의 절대위치 및 이동경로를 결정할 수 있다.
제2 실시예에서도 제1 실시예와 마찬가지로 DR정보, 시각정보, 전파측위정보, 기준국 보정정보 등의 부가적인 정보를 활용하여 각 단계의 성능을 향상시킬 수 있다. 예컨대, 부가정보들은 대상의 상대위치 및/또는 절대위치를 결정할 때, 다중경로 오차를 추정할 때, 반송파 위상 측정치의 변화를 검출할 때 활용될 수 있다.
실시예들에 따른 다중경로 오차 추정 방법 및 위치측정 방법들은 애플리케이션으로 구현되거나 다양한 컴퓨터 구성요소를 통하여 수행될 수 있는 프로그램 명령어의 형태로 구현되어 컴퓨터 판독 가능한 기록 매체에 기록될 수 있다. 상기 컴퓨터 판독 가능한 기록 매체는 프로그램 명령어, 데이터 파일, 데이터 구조 등을 단독으로 또는 조합하여 포함할 수 있다. 컴퓨터 판독 가능한 기록 매체의 예에는, 하드 디스크, 플로피 디스크 및 자기 테이프와 같은 자기 매체, CD-ROM, DVD와 같은 광기록 매체, 플롭티컬 디스크(floptical disk)와 같은 자기-광 매체(magneto-optical media), 및 ROM, RAM, 플래시 메모리 등과 같은 프로그램 명령어를 저장하고 수행하도록 특별히 구성된 하드웨어 장치가 포함된다.
프로그램 명령어의 예에는, 컴파일러에 의해 만들어지는 것과 같은 기계어 코드뿐만 아니라 인터프리터 등을 사용해서 컴퓨터에 의해서 실행될 수 있는 고급 언어 코드도 포함된다. 상기 하드웨어 장치는 본 발명에 따른 처리를 수행하기 위해 하나 이상의 소프트웨어 모듈로서 작동하도록 구성될 수 있으며, 그 역도 마찬가지이다.
이상에서 설명한 실시예들에 따르면, 의사거리 측정치에 포함된 다중경로 오차를 추정하고 보상함으로써 신호 왜곡이 극심한 도심 환경에서도 대상의 위치를 정밀하게 결정할 수 있다. 본 발명의 실시예를 통해 얻을 수 있는 구체적인 효과들은 다음과 같다.
- 반송파 위상 시간차분 측정치를 활용하여 정밀 상대 위치를 추정하고 이를 누적하여 절대위치를 추정하는 방식을 통해 도심숲 환경에서 기존의 GPS 수신기가 가지는 신호왜곡 오차를 방지하고 연속적인 정밀 절대위치를 가질 수 있다. 따라서 저가의 GPS 수신기 기반 도심 환경에 강건한 정밀 항법 시스템이 제공된다.
- 일반 GPS 수신기가 활용하는 반송파 위상 측정치는 기준국 보정정보 데이터 없이도 최대 4~5cm 정도의 크기를 가진다. 따라서 이를 활용한 실시예의 측위 방법은 기본적으로 기준국 보정정보 데이터 없이도 cm 수준의 상대항법 정확도를 가질 수 있다. 만약 기준국 보정정보를 활용한다면 보다 높은 정확도를 가질 수 있다.
- 일반적으로 반송파 위상 측정치를 직접 사용하는 경우, 미지정수를 결정하는데 많은 시간과 비용이 필요하다. 본 발명은 반송파 시간차분 측정치를 사용하기 때문에 미지정수를 결정할 필요가 없으며 이에 따라 저가형 GPS 수신기를 활용할 수 있으며 항법해 결정에 소요되는 시간을 단축하고 및 비용을 절감할 수 있다.
- 본 발명은 측정치의 시간차분 값을 활용하기 때문에, 종래의 절대항법 시스템과 달리 가시위성 변화에 따른 항법해 점프(불연속 궤적) 현상을 방지할 수 있으며, RRAIM 방법을 도입하여 가시위성이 부족한 도심 환경에서도 위치결정 알고리즘의 무결성을 감시할 수 있다.
- 본 발명은 GPS 수신기를 단독으로 이용하여 위치를 결정할 수 있으나, 여러 부가센서와 함께 통합 항법 시스템을 구축하는데 용이하기 때문에 위치정확도 및 무결성 감시 성능의 향상을 기대할 수 있다.
이상에서는 실시예들을 참조하여 설명하였지만, 해당 기술 분야의 숙련된 당업자는 하기의 특허 청구의 범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.
Claims (13)
- 프로세서에 의해 수행되는 의사거리 측정치의 다중경로 오차를 추정하는 방법으로서,의사거리 측정치 및 반송파 위상 측정치를 포함하는 위성항법시스템 정보를 획득하는 단계;상기 반송파 위상 측정치를 임의 시간에 대해 차분하여 반송파 위상 시간차분 측정치를 획득하는 단계;상기 반송파 위상 시간차분 측정치를 이용하여 다중경로 오차 추정을 위한 모니터링 변수를 설정하는 단계;상기 모니터링 변수를 이용하여 임의 시간에 대한 다중경로 오차의 변화량을 검출하고, 다중경로 오차의 추정에 활용 가능한 시간 구간을 결정하는 단계; 및임의의 기준 시간 대비 다중경로 오차의 변화량을 이용하여 특정 시점에서의 다중경로 오차를 추정하는 단계를 포함하는, 의사거리 측정치의 다중경로 오차를 추정하는 방법.
- 제1항에 있어서,상기 모니터링 변수는, 반송파 위상 시간차분 측정치를 포함하는 측정치들의 조합, 상기 측정치들의 통계값 또는 확률분포를 통해 얻을 수 있는 특성값들에 기초하여 설정되는 것을 특징으로 하는, 의사거리 측정치의 다중경로 오차를 추정하는 방법.
- 제2항에 있어서,상기 모니터링 변수는, DR센서로부터 수신한 DR정보, 비전센서로부터 수신한 시각정보, 전파측위센서로부터 수신한 전파측위정보, 기준국으로부터 수신한 보정정보 및 다중주파수 측정치 중 적어도 하나를 포함하는 부가정보에 더 기초하여 설정되는 것을 특징으로 하는, 의사거리 측정치의 다중경로 오차를 추정하는 방법.
- 제1항에 있어서,상기 다중경로 오차의 추정에 활용 가능한 시간 구간은, 상기 모니터링 변수를 기준으로 상기 다중경로 오차의 수준이 소정의 값 이하로 추정되는 구간인 것을 특징으로 하는, 의사거리 측정치의 다중경로 오차를 추정하는 방법.
- 제4항에 있어서,상기 시간 구간의 길이는 미리 설정되거나 실시간으로 조정될 수 있는 것을 특징으로 하는, 의사거리 측정치의 다중경로 오차를 추정하는 방법.
- 제1항에 있어서,상기 특정 시점에서의 다중경로 오차는 다중경로 완화 필터(Multipath Mitigation Filter)를 이용하여 추정되는 것을 특징으로 하는, 의사거리 측정치의 다중경로 오차를 추정하는 방법.
- 제1항에 있어서,상기 방법은, 반송파 위상 측정치 내 미지정수의 변화를 검출하는 단계를 더 포함하되,반송파 위상 측정치 내 미지정수의 변화가 검출된 경우, 상기 다중경로 오차를 추정함에 있어서 상기 반송파 위상 측정치 및 이의 시간차분 측정치는 제외하는 것을 특징으로 하는, 의사거리 측정치의 다중경로 오차를 추정하는 방법.
- 제1항에 있어서,상기 방법은, 반송파 위상 측정치 내 미지정수의 변화를 검출하는 단계를 더 포함하되,반송파 위상 측정치 내 미지정수의 변화가 검출된 경우, 상기 미지정수 변화의 크기를 추정한 후 해당 크기에 대해 측정치를 보상하는 단계를 더 수행하는 것을 특징으로 하는, 의사거리 측정치의 다중경로 오차를 추정하는 방법.
- 제1항 내지 제8항 중 어느 한 항에 따른 의사거리 측정치의 다중경로 오차를 추정하는 방법을 구현하기 위한 컴퓨터로 판독 가능한 기록매체에 저장된 컴퓨터 프로그램.
- 프로세서에 의해 수행되는 위치측정 방법으로서,의사거리 측정치 및 반송파 위상 측정치를 포함하는 위성항법시스템 정보를 수신하는 단계;반송파 위상 시간차분 측정치를 이용하여 대상의 상대위치를 결정하는 단계;제1항 내지 제8항 중 어느 한 항에 따른 방법을 이용하여 의사거리 측정치의 다중경로 오차를 추정하는 단계;상기 추정된 다중경로 오차를 보상하거나 제외하여 상기 대상의 초기위치를 결정하는 단계; 및상기 대상의 초기위치에 상기 대상의 시간에 따른 상대위치를 누적하여 상기 대상의 절대위치를 결정하는 단계를 포함하는 것을 특징으로 하는, 위치측정 방법.
- 제10항에 있어서,상기 방법은, DR센서로부터 수신한 DR정보, 비전센서로부터 수신한 시각정보, 전파측위센서로부터 수신한 전파측위정보, 기준국으로부터 수신한 보정정보 및 다중주파수 측정치 중 적어도 하나를 포함하는 부가정보를 수신하는 단계를 더 포함하고,상기 부가정보는, 상기 대상의 상대위치를 결정하는 단계, 상기 다중경로 오차를 추정하는 단계, 상기 대상의 초기위치를 결정하는 단계, 및 상기 대상의 절대위치를 결정하는 단계 중 적어도 하나의 단계에서 활용될 수 있는 것을 특징으로 하는, 위치측정 방법.
- 프로세서에 의해 수행되는 위치측정 방법으로서,의사거리 측정치 및 반송파 위상 측정치를 포함하는 위성항법시스템 정보를 수신하는 단계;제1항 내지 제8항 중 어느 한 항에 따른 방법을 이용하여 의사거리 측정치의 다중경로 오차를 추정하는 단계; 및상기 추정된 다중경로 오차를 보상하거나 제외하여 대상의 특정 시점에서의 절대위치를 결정하는 단계를 포함하는 것을 특징으로 하는, 위치측정 방법.
- 제12항에 있어서,상기 방법은, DR센서로부터 수신한 DR정보, 비전센서로부터 수신한 시각정보, 전파측위센서로부터 수신한 전파측위정보, 기준국으로부터 수신한 보정정보 및 다중주파수 측정치 중 적어도 하나를 포함하는 부가정보를 수신하는 단계를 더 포함하고,상기 부가정보는, 상기 대상의 상대위치를 결정하는 단계, 상기 다중경로 오차를 추정하는 단계, 및 상기 대상의 절대위치를 결정하는 단계 중 적어도 하나의 단계에서 활용될 수 있는 것을 특징으로 하는, 위치측정 방법.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US18/035,074 US20240012158A1 (en) | 2020-11-04 | 2021-10-14 | Method for Estimating Multipath Error of Pseudo-Range Measurement Value, and Positioning Method Using Same |
EP21889411.1A EP4242693A4 (en) | 2020-11-04 | 2021-10-14 | METHOD FOR ESTIMATING THE MULTIPATH ERROR OF A PSEUDO-DISTANCE MEASUREMENT AND POSITIONING METHOD USING IT |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020200146091A KR102428135B1 (ko) | 2020-11-04 | 2020-11-04 | 의사거리 측정치의 다중경로 오차를 추정하는 방법 및 이를 활용한 위치측정 방법 |
KR10-2020-0146091 | 2020-11-04 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022097946A1 true WO2022097946A1 (ko) | 2022-05-12 |
Family
ID=81457141
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2021/014206 WO2022097946A1 (ko) | 2020-11-04 | 2021-10-14 | 의사거리 측정치의 다중경로 오차를 추정하는 방법 및 이를 활용한 위치측정 방법 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20240012158A1 (ko) |
EP (1) | EP4242693A4 (ko) |
KR (1) | KR102428135B1 (ko) |
WO (1) | WO2022097946A1 (ko) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115856973A (zh) * | 2023-02-21 | 2023-03-28 | 广州导远电子科技有限公司 | Gnss解算方法、装置、定位系统、电子设备及存储介质 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20220373696A1 (en) * | 2021-05-06 | 2022-11-24 | Qualcomm Incorporated | Ultra wide-lane (uwl) real-time kinematic (rtk) positioning |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100341801B1 (ko) * | 1998-08-20 | 2002-11-29 | 삼성전자 주식회사 | 다중안테나를이용한도시형차량항법시스템 |
KR20140002137A (ko) * | 2012-06-28 | 2014-01-08 | (주)와이파이브 | 반송파 위상 gps를 이용한 정밀 궤적 측정 방법 |
KR20190050157A (ko) * | 2017-11-02 | 2019-05-10 | (주)와이파이브 | 반송파 위상 gps를 이용한 정밀 위치 추정 시스템 및 방법 |
KR20200084651A (ko) * | 2019-01-03 | 2020-07-13 | 서울대학교산학협력단 | 의사거리 측정치 및 이중차분 반송파 측정치를 이용한 전리층 보정정보 생성 시스템 및 방법 |
KR20200103491A (ko) * | 2019-02-25 | 2020-09-02 | 한국전자통신연구원 | 위성항법 다중경로오차 감쇄 방법 및 장치 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101980727B1 (ko) | 2017-10-30 | 2019-05-21 | 고남길 | 인공지능 챗봇을 이용한 대화형 설문조사 제공 시스템 및 방법 |
-
2020
- 2020-11-04 KR KR1020200146091A patent/KR102428135B1/ko active IP Right Grant
-
2021
- 2021-10-14 US US18/035,074 patent/US20240012158A1/en active Pending
- 2021-10-14 WO PCT/KR2021/014206 patent/WO2022097946A1/ko active Application Filing
- 2021-10-14 EP EP21889411.1A patent/EP4242693A4/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100341801B1 (ko) * | 1998-08-20 | 2002-11-29 | 삼성전자 주식회사 | 다중안테나를이용한도시형차량항법시스템 |
KR20140002137A (ko) * | 2012-06-28 | 2014-01-08 | (주)와이파이브 | 반송파 위상 gps를 이용한 정밀 궤적 측정 방법 |
KR20190050157A (ko) * | 2017-11-02 | 2019-05-10 | (주)와이파이브 | 반송파 위상 gps를 이용한 정밀 위치 추정 시스템 및 방법 |
KR20200084651A (ko) * | 2019-01-03 | 2020-07-13 | 서울대학교산학협력단 | 의사거리 측정치 및 이중차분 반송파 측정치를 이용한 전리층 보정정보 생성 시스템 및 방법 |
KR20200103491A (ko) * | 2019-02-25 | 2020-09-02 | 한국전자통신연구원 | 위성항법 다중경로오차 감쇄 방법 및 장치 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115856973A (zh) * | 2023-02-21 | 2023-03-28 | 广州导远电子科技有限公司 | Gnss解算方法、装置、定位系统、电子设备及存储介质 |
Also Published As
Publication number | Publication date |
---|---|
US20240012158A1 (en) | 2024-01-11 |
EP4242693A1 (en) | 2023-09-13 |
KR102428135B1 (ko) | 2022-08-02 |
KR20220060272A (ko) | 2022-05-11 |
EP4242693A4 (en) | 2024-10-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021112331A1 (ko) | 반송파 위상 시간 차분 측정치 기반 항법 시스템 및 위치측정 방법 | |
EP2146217B1 (en) | Integrity of differential GPS corrections in navigation devices using military type GPS receivers | |
US8670882B2 (en) | Systems and methods for monitoring navigation state errors | |
WO2022097946A1 (ko) | 의사거리 측정치의 다중경로 오차를 추정하는 방법 및 이를 활용한 위치측정 방법 | |
US7821454B2 (en) | Systems and methods for detecting GPS measurement errors | |
CN110494767B (zh) | 用于全球导航卫星系统的定位系统、方法以及非暂时性计算机可读存储介质 | |
US8370064B1 (en) | Integrated global navigation satellite system and inertial navigation system for navigation and tracking | |
CN103376454A (zh) | 使用精确卫星信息定位的先进全球导航卫星系统(gnss) | |
GB2475147A (en) | Altitude measurement and user context detection for navigation systems | |
CN101424733B (zh) | 全球定位系统信号短暂缺失条件下的非完备定位方法 | |
US20080180315A1 (en) | Methods and systems for position estimation using satellite signals over multiple receive signal instances | |
US20120218142A1 (en) | Reporting of Last Acquired Position During Gap of Satellite Reception for GNSS Systems | |
US9638806B2 (en) | System and method for detecting ambiguities in satellite signals for GPS tracking of vessels | |
Angrisano et al. | Pedestrian localization with PDR supplemented by GNSS | |
US9423507B2 (en) | Methods and apparatuses for multipath estimation and correction in GNSS navigation systems | |
WO2019143006A1 (ko) | 다중 gnss를 활용한 위치영역 hatch 필터 기반 위치 추정 방법 및 장치 | |
US6720913B1 (en) | Lock slip detection using inertial information | |
US11991605B2 (en) | Methods for using a pressure sensor of a mobile device to improve the accuracy of determined contexts | |
CN113281796B (zh) | 位置确定方法、速度确定方法、装置、设备和存储介质 | |
KR101705882B1 (ko) | 기준국 환경에서 수신기의 위치 정보를 이용한 사이클 슬립 검출 장치 및 방법 | |
CN110850459A (zh) | 行人定位导航系统室内室外环境无缝衔接的精确定位方法 | |
Mok et al. | GPS vehicle location tracking in dense high-rise environments with the minimum range error algorithm | |
RU2789700C1 (ru) | Оценка ошибок и целостности посредством прогнозирования перемещения | |
WO2024214215A1 (ja) | 測位装置、測位方法、及びプログラム | |
Liu et al. | Android Smartphone Real-Time Instant PPP with Advanced QC Module to Mitigate GNSS Signal Blockage and Reflection |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21889411 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 18035074 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2021889411 Country of ref document: EP Effective date: 20230605 |