WO2022097861A1 - Atomic layer deposition apparatus for powders - Google Patents

Atomic layer deposition apparatus for powders Download PDF

Info

Publication number
WO2022097861A1
WO2022097861A1 PCT/KR2021/006187 KR2021006187W WO2022097861A1 WO 2022097861 A1 WO2022097861 A1 WO 2022097861A1 KR 2021006187 W KR2021006187 W KR 2021006187W WO 2022097861 A1 WO2022097861 A1 WO 2022097861A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder
chamber
atomic layer
layer deposition
gas
Prior art date
Application number
PCT/KR2021/006187
Other languages
French (fr)
Korean (ko)
Inventor
김재웅
박형상
Original Assignee
(주)아이작리서치
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)아이작리서치 filed Critical (주)아이작리서치
Publication of WO2022097861A1 publication Critical patent/WO2022097861A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45544Atomic layer deposition [ALD] characterized by the apparatus
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4401Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber
    • C23C16/4408Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber by purging residual gases from the reaction chamber or gas lines
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4417Methods specially adapted for coating powder
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45555Atomic layer deposition [ALD] applied in non-semiconductor technology

Definitions

  • the present invention relates to an atomic layer deposition apparatus for powder, and more particularly, to an atomic layer deposition apparatus for powder, which can greatly increase a powder processing capacity by using a plurality of chambers inclined in a horizontal axis and connected to each other.
  • ALD atomic layer deposition
  • the atomic layer deposition process is a vacuum process that deposits in units of atomic layers. It has excellent step coverage characteristics and is a very advantageous method for coating a small-sized powder surface because the thickness can be adjusted in the order of several nm.
  • a source gas, a primary purge gas, a reaction gas and The secondary purge gas is alternately supplied to deposit an atomic layer on a small amount of powder, and although it is effective for a small-scale process of several kg or less, it is not suitable for mass production for mass production.
  • the present invention is intended to solve various problems including the above problems, and it is possible to greatly increase the powder processing capacity by using a plurality of chambers inclined to the horizontal axis and connected to each other, and to greatly improve the productivity by reducing the coating time. It can be connected in various forms such as a horizontal chamber assembly and a vertical chamber assembly, thereby reducing the limitation of the installation space, and improving the process characteristics by using four chambers that are individually performed by optimizing each of the four processes
  • An object of the present invention is to provide an atomic layer deposition apparatus for powder, which can facilitate the repetition of the coating cycle in a powder circulation method, and can continuously coat a large amount of powder.
  • these problems are exemplary, and the scope of the present invention is not limited thereto.
  • a powder receiving space in which powder can be accommodated is formed, and the powder introduced through the powder inlet is discharged to the powder outlet along the inclined surface.
  • the chamber has an inclined cylindrical shape as a whole, the powder inlet is formed at the uppermost side of one side of the outer circumferential surface of the chamber, and the powder outlet is formed at the lowermost side of the other side of the outer circumferential surface of the chamber, A gas inlet may be formed in a lower circular plane, and a pumping line may be formed in an upper circular plane of the chamber.
  • the chamber has a first powder inlet through which the powder is introduced on one side of the upper side, and a first powder outlet through which the powder is discharged on the other side of the lower side, and is inclined at a first angle therein.
  • a source gas processing chamber having a first powder accommodating space formed to be large, and supplying a source gas to the powder accommodated in the first powder accommodating space; It is connected to the first powder outlet, and a second powder inlet through which the powder is introduced is formed on one upper side, and a second powder outlet through which the powder is discharged is formed on the other side of the lower side, and is inclined at a second angle therein.
  • a first purge process chamber having a second powder accommodating space to be used and supplying a purge gas to the powder accommodated in the second powder accommodating space; It is connected to the second powder outlet, and a third powder inlet through which the powder is introduced is formed on one upper side, and a third powder outlet through which the powder is discharged is formed on the other lower side, and is inclined at a third angle.
  • a reaction gas processing chamber having a third powder accommodating space to be formed and supplying a reactive gas to the powder accommodated in the third powder accommodating space; and a fourth powder inlet connected to the third powder outlet, and a fourth powder inlet through which the powder is introduced is formed on one upper side, and a fourth powder outlet through which the powder is discharged at the other lower side, and inclined at a fourth angle therein. and a second purge process chamber in which a fourth powder receiving space is formed and a purge gas is supplied to the powder accommodated in the fourth powder receiving space.
  • the source gas process chamber, the first purge process chamber, the reaction gas process chamber, and the second purge process chamber, the powder outlet of the chamber and the powder inlet of the neighboring chamber are connected to each other It may be a horizontal chamber assembly that is interlocked and connected in the front-rear direction as a whole in a line.
  • the source gas process chamber, the first purge process chamber, the reaction gas process chamber, and the second purge process chamber, the powder outlet of the chamber and the powder inlet of the neighboring chamber are connected to each other It may be a vertical chamber assembly that is interlocked and connected by being stacked in a vertical direction in a zigzag shape as a whole.
  • the present invention may further include a circulation line connecting the second purge process chamber and the source gas process chamber so that at least one process cycle may be performed.
  • the stirring device the impeller rotated about the tilted stirring rotation shaft so as to transport the powder while mixing; and a rotating device connected to the stirring rotation shaft to rotate the impeller.
  • the impeller may be formed by selecting at least one of a helical type, a ribbon type, a helical ribbon type, an anchor type, a turbine type, a propeller type, and combinations thereof.
  • the powder may be transferred in a downward direction in an inclined direction, and the gas may be moved in an upward manner in an inclined direction.
  • FIG. 1 is a cross-sectional view showing an atomic layer deposition apparatus for powder according to some embodiments of the present invention.
  • FIG. 2 is a cross-sectional view illustrating a horizontal chamber assembly of the atomic layer deposition apparatus for powder of FIG. 1 .
  • FIG. 3 is a cross-sectional view illustrating a vertical chamber assembly of the atomic layer deposition apparatus for powder of FIG. 1 .
  • FIG. 1 is a cross-sectional view illustrating an atomic layer deposition apparatus 100 for powder according to some embodiments of the present invention.
  • the atomic layer deposition apparatus 100 for powder may largely include a chamber 10 and a stirring apparatus 20 .
  • a powder receiving space A in which the powder 1 can be accommodated is formed, and the powder 1 introduced through the powder inlet PI is formed.
  • the powder accommodating space (A) is inclined in the horizontal direction so as to be discharged to the powder outlet (PO) along the inclined surface (CF), and the powder (1) contains at least a source gas (SG) and a purge gas (PG).
  • SG source gas
  • PG purge gas
  • It may be a structure of a cylindrical shape inclined to a kind of sealing that supplies a gas (G) made by selecting any one of the reaction gas (RG).
  • the chamber 10 is not limited to a cylinder, and all cylindrical structures formed in a variety of shapes, such as a polygonal cylindrical shape or an elliptical cylindrical shape, may be applied.
  • the stirring device 20 may be a device installed inside the chamber 10 and capable of stirring the powder 1 .
  • the powder 1 may be slowly transported downward by gravity while being stirred by the stirring device 20 along the inclined surface CF formed to be inclined in the transverse direction.
  • the powder 1 is transferred downward in an inclined direction, and the gas G is moved upward in an inclined direction so that it can be moved upward.
  • the powder inlet PI is formed at one uppermost portion of the outer circumferential surface of the chamber 10
  • the powder outlet PO is formed at the other lowermost portion of the outer circumferential surface of the chamber 10 , and the lower circular shape of the chamber 10 .
  • a gas inlet GI may be formed on a plane surface
  • a pumping line PL may be formed on an upper circular plane of the chamber 10 .
  • the powder 1 is introduced into the powder inlet PI, which is the highest circumferential portion, and is slowly transported along the inclined surface CF while being stirred by the stirring device 20 inside the chamber 10 . It can be processed by the gas (G) rising upward as it is, and eventually can be discharged to the outside through the powder outlet (PO), which is the lowest circumferential surface portion.
  • the processing speed of the powder 1 can be increased, and when the inclination angle is decreased, the gas exposure time of the powder 1 can be increased, thereby increasing the processing rate.
  • the inclination angle of the chamber 10 may be determined by being optimized according to the shape of the powder 1 or the specification of the process or environmental conditions.
  • the stirring device 20 includes an impeller 21 and It may include a rotation device 22 connected to the stirring rotation shaft 21a to rotate the impeller 21 .
  • the impeller 21 may be formed by selecting at least one of a helical type, a ribbon type, a helical ribbon type, an anchor type, a turbine type, a propeller type, and combinations thereof.
  • the impeller 21 may be any type of impeller installed inclined to be transported while mixing the powder 1 in addition to the drawings or mentioned types.
  • FIG. 2 is a cross-sectional view illustrating the horizontal chamber assembly 101 of the atomic layer deposition apparatus 100 for powder of FIG. 1 .
  • the chamber 10 has four chambers each responsible for a source gas process, a first purge gas process, a reaction gas process, and a second purge gas process, respectively.
  • a first powder inlet PI1 into which the powder 1 is introduced is formed on one upper side, and the powder 1 is formed on the other lower side.
  • the first powder discharge port PO1 to be discharged is formed, and a first powder receiving space A1 inclined at a first angle K1 is formed therein, and the first powder receiving space A1 is formed.
  • It may be a chamber for supplying the source gas (SG) to the powder (1).
  • the first purge process chamber 12 is connected to the first powder outlet PO1 and a second powder inlet through which the powder 1 is introduced at an upper side. (PI2) is formed, a second powder discharge port PO2 through which the powder 1 is discharged is formed on the other side of the lower side, and a second powder receiving space A2 is formed to be inclined at a second angle K2 therein.
  • This may be a chamber for supplying the purge gas PG, which is an inert gas such as argon or nitrogen, to the powder 1 accommodated in the second powder accommodation space A2.
  • the reaction gas process chamber 13 is connected to the second powder outlet PO2 and a third powder inlet through which the powder 1 is introduced at an upper side ( PI3) is formed, a third powder discharge port PO3 through which the powder 1 is discharged is formed on the other side of the lower side, and a third powder receiving space A3 is formed to be inclined at a third angle K3 therein. It may be a chamber that is formed and supplies a reaction gas RG to the powder 1 accommodated in the third powder accommodation space A3 .
  • the second purge process chamber 14 is connected to the third powder outlet PO3 and a fourth powder inlet through which the powder 1 is introduced at an upper side. (PI4) is formed, a fourth powder discharge port PO4 through which the powder 1 is discharged is formed on the other side of the lower side, and a fourth powder receiving space A4 is formed to be inclined at a fourth angle K4 therein. is formed, and may be a chamber for supplying a purge gas PG to the powder 1 accommodated in the fourth powder receiving space A4.
  • the source gas process chamber 11 , the first purge process chamber 12 , the reaction gas process chamber 13 , and the second purge process chamber 14 may include
  • the powder outlet and the powder inlet of the adjacent chamber may be connected to each other and engaged to form a horizontal chamber assembly 101 that is connected in a line as a whole in a transverse direction, that is, in a front-rear direction.
  • the thickness is not increased due to the characteristics of the atomic layer deposition, so that a uniform film quality can be obtained even when the residual powder is mixed.
  • the second purge process chamber ( 14) and a circulation line CL connecting the source gas process chamber 11 may be further included.
  • the powder 1 is prepared by using the source gas process chamber 11 , the first purge process chamber 12 , the reaction gas process chamber 13 , and the second purge process chamber 14 .
  • An atomic layer may be formed through one cycle consisting of a source gas process, a first purge gas process, a reactive gas process, and a second purge gas process, and a plurality of atomic layers are circulated through the chambers using the circulation line CL.
  • a multilayer atomic layer can be formed through a cycle.
  • the source gas process is continuously performed without a valve in four chambers, 1 Since the primary purge gas process, the reactive gas process, and the secondary purge gas process can be continuously performed, an atomic layer can be rapidly and continuously deposited on a large amount of powder.
  • FIG. 3 is a cross-sectional view illustrating the vertical chamber assembly 102 of the atomic layer deposition apparatus 100 for powder of FIG. 1 .
  • the source gas process chamber 11 , the first purge process chamber 12 , and the reaction of the atomic layer deposition apparatus 100 for powder according to some embodiments of the present invention
  • the gas process chamber 13 and the second purge process chamber 14 are vertical chambers in which the powder outlet of the chamber and the powder inlet of the neighboring chamber are connected to each other and engaged, and are stacked and connected in a zigzag shape in the vertical direction. assembly 102 .
  • the horizontal chamber assembly 101 can be applied to a building with a wide and low area
  • the vertical chamber assembly 101 can be applied to a building with a narrow and high area ( 102) can be applied.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

The present invention relates to an atomic layer deposition apparatus for powders, wherein a plurality of chambers inclined with respect to the horizontal axis and connected to each other can be used to significantly increase powder processing capacity. The atomic layer deposition apparatus may comprise: chambers having a powder accommodation space that can accommodate powder and is formed inclined so that powder that has flowed in through a powder inlet can flow along an inclined surface and be discharged through a powder outlet, wherein a gas made of at least one selected from among a source gas, a purge gas, and a reaction gas is supplied to the powder; and a stirring device that is installed inside the chamber and stirs the powder.

Description

파우더용 원자층 증착 장치Atomic Layer Deposition Device for Powder
본 발명은 파우더용 원자층 증착 장치에 관한 것으로서, 보다 상세하게는 횡축으로 기울어지고, 서로 연결된 복수개의 챔버들을 이용하여 분말 처리 용량을 크게 증대시킬 수 있게 하는 파우더용 원자층 증착 장치에 관한 것이다.The present invention relates to an atomic layer deposition apparatus for powder, and more particularly, to an atomic layer deposition apparatus for powder, which can greatly increase a powder processing capacity by using a plurality of chambers inclined in a horizontal axis and connected to each other.
분말 촉매를 비롯한 이차 전지의 전극, 연료 전지 MLCC 등 파우더 코팅 시장의 급격한 발전과 더불어 기존 코팅 대비 고품질의 파우더 코팅을 요구하는 분야가 점차 증가하고 있다. 이러한 수요에 따라 기존 습식 공정 대비 고품질의 박막 제조가 가능한 원자층 증착 공정(Atomic layer deposition, ALD)을 이용한 파우더 코팅이 각광받고 있다.With the rapid development of the powder coating market such as powder catalysts, secondary battery electrodes, and fuel cell MLCC, fields that require high quality powder coating compared to conventional coatings are gradually increasing. According to this demand, powder coating using atomic layer deposition (ALD), which can produce a high-quality thin film compared to the existing wet process, is in the spotlight.
원자층 증착 공정은 원자층 단위로 증착하는 진공 공정으로 단차 피복 특성이 매우 우수하며 수 nm 단위의 두께 조절이 가능하여 사이즈가 작은 파우더 표면을 코팅하는데 매우 유리한 방법이다.The atomic layer deposition process is a vacuum process that deposits in units of atomic layers. It has excellent step coverage characteristics and is a very advantageous method for coating a small-sized powder surface because the thickness can be adjusted in the order of several nm.
그러나, 기존의 수직으로 세워진 유동 층상(fluidized bed, FB) 방식의 파우더 코팅용 원자층 증착 장치의 경우, 분말을 교반할 수 있는 하나의 챔버에 소스 가스와, 1차 퍼지 가스와, 반응 가스 및 2차 퍼지 가스를 번갈아가면서 공급하여 소량의 분말에 원자층을 증착시키는 것으로서, 수 kg 이하의 소량 공정에는 효율적이었으나 양산을 위한 대량 생산에는 적합하지 않았다.However, in the case of the conventional vertically erected fluidized bed (FB) type atomic layer deposition apparatus for powder coating, a source gas, a primary purge gas, a reaction gas and The secondary purge gas is alternately supplied to deposit an atomic layer on a small amount of powder, and although it is effective for a small-scale process of several kg or less, it is not suitable for mass production for mass production.
즉, 이러한 종래의 파우더용 원자층 증착 장치는, 경제적인 측면에서 양산화에 따른 대량 생산 및 빠른 공정에 적합하지 않기 때문에 생산성을 극대화할 수 없었던 문제점들이 있었다.That is, since the conventional atomic layer deposition apparatus for powder is not suitable for mass production and rapid process according to mass production from an economic point of view, there are problems in that productivity cannot be maximized.
본 발명은 상기와 같은 문제점을 포함하여 여러 문제점들을 해결하기 위한 것으로서, 횡축으로 기울어지고, 서로 연결된 복수개의 챔버들을 이용하여 분말 처리 용량을 크게 증대시킬 수 있고, 코팅 시간을 줄여서 생산성을 크게 향상시킬 수 있으며, 수평형 챔버 조립체, 수직형 챔버 조립체 등 다양한 형태로 연결이 가능하여 설치 공간의 제약을 줄일 수 있고, 각각 4개의 공정을 최적화하여 개별적으로 수행하는 4개의 챔버들을 이용하여 공정 특성을 향상시킬 수 있으며, 분말 순환 방식으로 코팅 사이클의 반복을 용이하게 할 수 있고, 연속으로 대량의 분말을 코팅할 수 있게 하는 파우더용 원자층 증착 장치를 제공하는 것을 목적으로 한다. 그러나 이러한 과제는 예시적인 것으로, 이에 의해 본 발명의 범위가 한정되는 것은 아니다.The present invention is intended to solve various problems including the above problems, and it is possible to greatly increase the powder processing capacity by using a plurality of chambers inclined to the horizontal axis and connected to each other, and to greatly improve the productivity by reducing the coating time. It can be connected in various forms such as a horizontal chamber assembly and a vertical chamber assembly, thereby reducing the limitation of the installation space, and improving the process characteristics by using four chambers that are individually performed by optimizing each of the four processes An object of the present invention is to provide an atomic layer deposition apparatus for powder, which can facilitate the repetition of the coating cycle in a powder circulation method, and can continuously coat a large amount of powder. However, these problems are exemplary, and the scope of the present invention is not limited thereto.
상기 과제를 해결하기 위한 본 발명의 사상에 따른 파우더용 원자층 증착 장치는, 분말이 수용될 수 있는 분말 수용 공간이 형성되고, 분말 주입구를 통해 유입된 상기 분말이 경사면을 따라 분말 배출구로 배출될 수 있도록 상기 분말 수용 공간이 경사지게 형성되며, 상기 분말에 적어도 소스 가스, 퍼지 가스, 반응 가스 중 어느 하나를 선택하여 이루어지는 가스를 공급하는 챔버; 및 상기 챔버 내부에 설치되고, 상기 분말을 교반시키는 교반 장치;를 포함할 수 있다.In the atomic layer deposition apparatus for powder according to the spirit of the present invention for solving the above problems, a powder receiving space in which powder can be accommodated is formed, and the powder introduced through the powder inlet is discharged to the powder outlet along the inclined surface. a chamber in which the powder accommodating space is formed to be inclined so that the powder is supplied with a gas formed by selecting at least one of a source gas, a purge gas, and a reaction gas; and a stirring device installed inside the chamber and stirring the powder.
또한, 본 발명에 따르면, 상기 챔버는 전체적으로 기울어진 원통 형상이고, 상기 분말 주입구는 상기 챔버의 외주면의 일측 최상부에 형성되며, 상기 분말 배출구는 상기 챔버의 외주면의 타측 최하부에 형성되며, 상기 챔버의 하부 원형 평면에 가스 주입구가 형성되고, 상기 챔버의 상부 원평 평면에 펌핑 라인이 형성될 수 있다.In addition, according to the present invention, the chamber has an inclined cylindrical shape as a whole, the powder inlet is formed at the uppermost side of one side of the outer circumferential surface of the chamber, and the powder outlet is formed at the lowermost side of the other side of the outer circumferential surface of the chamber, A gas inlet may be formed in a lower circular plane, and a pumping line may be formed in an upper circular plane of the chamber.
또한, 본 발명에 따르면, 상기 챔버는, 상방 일측에 상기 분말이 유입되는 제 1 분말 주입구가 형성되고, 하방 타측에 상기 분말이 배출되는 제 1 분말 배출구가 형성되며, 내부에 제 1 각도로 기울어지게 형성되는 제 1 분말 수용 공간이 형성되고, 상기 제 1 분말 수용 공간에 수용된 상기 분말에 소스 가스를 공급하는 소스 가스 공정 챔버; 상기 제 1 분말 배출구와 연결되며, 상방 일측에 상기 분말이 유입되는 제 2 분말 주입구가 형성되고, 하방 타측에 상기 분말이 배출되는 제 2 분말 배출구가 형성되며, 내부에 제 2 각도로 기울어지게 형성되는 제 2 분말 수용 공간이 형성되고, 상기 제 2 분말 수용 공간에 수용된 상기 분말에 퍼지 가스를 공급하는 제 1 퍼지 공정 챔버; 상기 제 2 분말 배출구와 연결되며, 상방 일측에 상기 분말이 유입되는 제 3 분말 주입구가 형성되고, 하방 타측에 상기 분말이 배출되는 제 3 분말 배출구가 형성되며, 내부에 제 3 각도로 기울어지게 형성되는 제 3 분말 수용 공간이 형성되고, 상기 제 3 분말 수용 공간에 수용된 상기 분말에 반응 가스를 공급하는 반응 가스 공정 챔버; 및 상기 제 3 분말 배출구와 연결되며, 상방 일측에 상기 분말이 유입되는 제 4 분말 주입구가 형성되고, 하방 타측에 상기 분말이 배출되는 제 4 분말 배출구가 형성되며, 내부에 제 4 각도로 기울어지게 형성되는 제 4 분말 수용 공간이 형성되고, 상기 제 4 분말 수용 공간에 수용된 상기 분말에 퍼지 가스를 공급하는 제 2 퍼지 공정 챔버;를 포함할 수 있다.Further, according to the present invention, the chamber has a first powder inlet through which the powder is introduced on one side of the upper side, and a first powder outlet through which the powder is discharged on the other side of the lower side, and is inclined at a first angle therein. a source gas processing chamber having a first powder accommodating space formed to be large, and supplying a source gas to the powder accommodated in the first powder accommodating space; It is connected to the first powder outlet, and a second powder inlet through which the powder is introduced is formed on one upper side, and a second powder outlet through which the powder is discharged is formed on the other side of the lower side, and is inclined at a second angle therein. a first purge process chamber having a second powder accommodating space to be used and supplying a purge gas to the powder accommodated in the second powder accommodating space; It is connected to the second powder outlet, and a third powder inlet through which the powder is introduced is formed on one upper side, and a third powder outlet through which the powder is discharged is formed on the other lower side, and is inclined at a third angle. a reaction gas processing chamber having a third powder accommodating space to be formed and supplying a reactive gas to the powder accommodated in the third powder accommodating space; and a fourth powder inlet connected to the third powder outlet, and a fourth powder inlet through which the powder is introduced is formed on one upper side, and a fourth powder outlet through which the powder is discharged at the other lower side, and inclined at a fourth angle therein. and a second purge process chamber in which a fourth powder receiving space is formed and a purge gas is supplied to the powder accommodated in the fourth powder receiving space.
또한, 본 발명에 따르면, 상기 소스 가스 공정 챔버와, 상기 제 1 퍼지 공정 챔버와, 상기 반응 가스 공정 챔버 및 상기 제 2 퍼지 공정 챔버는, 챔버의 분말 배출구와 이웃하는 챔버의 분말 주입구가 서로 연결되어 맞물려서 전체적으로 일렬로 전후 방향으로 연결되는 수평형 챔버 조립체일 수 있다.In addition, according to the present invention, the source gas process chamber, the first purge process chamber, the reaction gas process chamber, and the second purge process chamber, the powder outlet of the chamber and the powder inlet of the neighboring chamber are connected to each other It may be a horizontal chamber assembly that is interlocked and connected in the front-rear direction as a whole in a line.
또한, 본 발명에 따르면, 상기 소스 가스 공정 챔버와, 상기 제 1 퍼지 공정 챔버와, 상기 반응 가스 공정 챔버 및 상기 제 2 퍼지 공정 챔버는, 챔버의 분말 배출구와 이웃하는 챔버의 분말 주입구가 서로 연결되어 맞물리고, 전체적으로 지그재그 형태로 상하 방향으로 적층되어 연결되는 수직형 챔버 조립체일 수 있다.In addition, according to the present invention, the source gas process chamber, the first purge process chamber, the reaction gas process chamber, and the second purge process chamber, the powder outlet of the chamber and the powder inlet of the neighboring chamber are connected to each other It may be a vertical chamber assembly that is interlocked and connected by being stacked in a vertical direction in a zigzag shape as a whole.
또한, 본 발명에 따르면, 적어도 1회 이상의 공정 사이클이 수행될 수 있도록 상기 제 2 퍼지 공정 챔버와 상기 소스 가스 공정 챔버를 연결하는 순환 라인;을 더 포함할 수 있다.The present invention may further include a circulation line connecting the second purge process chamber and the source gas process chamber so that at least one process cycle may be performed.
또한, 본 발명에 따르면, 상기 교반 장치는, 상기 분말을 혼합하면서 이송시킬 수 있도록 기울어진 교반 회전축을 중심으로 회전되는 임펠러; 및 상기 교반 회전축과 연결되어 상기 임펠러를 회전시키는 회전 장치;를 포함할 수 있다.In addition, according to the present invention, the stirring device, the impeller rotated about the tilted stirring rotation shaft so as to transport the powder while mixing; and a rotating device connected to the stirring rotation shaft to rotate the impeller.
또한, 본 발명에 따르면, 상기 임펠러는 적어도 헬리컬형, 리본형, 헬리컬 리본형, 앵커형, 터빈형, 프로펠러형 및 이들의 조합들 중 어느 하나 이상을 선택하여 이루어질 수 있다.In addition, according to the present invention, the impeller may be formed by selecting at least one of a helical type, a ribbon type, a helical ribbon type, an anchor type, a turbine type, a propeller type, and combinations thereof.
또한, 본 발명에 따르면, 상기 분말은 경사진 방향으로 하향하는 하향식으로 이송되고, 상기 가스는 경사진 방향으로 상향하는 상향식으로 이동될 수 있다.Further, according to the present invention, the powder may be transferred in a downward direction in an inclined direction, and the gas may be moved in an upward manner in an inclined direction.
상기한 바와 같이 이루어진 본 발명의 일부 실시예들에 따르면, 횡축으로 기울어지고, 서로 연결된 복수개의 챔버들을 이용하여 분말 처리 용량을 크게 증대시킬 수 있고, 코팅 시간을 줄여서 생산성을 크게 향상시킬 수 있으며, 수평형 챔버 조립체, 수직형 챔버 조립체 등 다양한 형태로 연결이 가능하여 설치 공간의 제약을 줄일 수 있고, 각각 4개의 공정을 최적화하여 개별적으로 수행하는 4개의 챔버들을 이용하여 공정 특성을 향상시킬 수 있으며, 분말 순환 방식으로 코팅 사이클의 반복을 용이하게 할 수 있고, 연속으로 대량의 분말을 코팅할 수 있는 효과를 갖는 것이다. 물론 이러한 효과에 의해 본 발명의 범위가 한정되는 것은 아니다.According to some embodiments of the present invention made as described above, it is possible to greatly increase the powder processing capacity by using a plurality of chambers inclined to the horizontal axis and connected to each other, and to greatly improve productivity by reducing the coating time, It can be connected in various forms such as a horizontal chamber assembly and a vertical chamber assembly, thereby reducing the limitation of the installation space, and by optimizing each of the four processes, it is possible to improve the process characteristics by using four chambers that are individually performed. , it is possible to facilitate the repetition of the coating cycle in a powder circulation method, and to have the effect of continuously coating a large amount of powder. Of course, the scope of the present invention is not limited by these effects.
도 1은 본 발명의 일부 실시예들에 따른 파우더용 원자층 증착 장치를 나타내는 단면도이다.1 is a cross-sectional view showing an atomic layer deposition apparatus for powder according to some embodiments of the present invention.
도 2는 도 1의 파우더용 원자층 증착 장치의 수평형 챔버 조립체를 나타내는 단면도이다.FIG. 2 is a cross-sectional view illustrating a horizontal chamber assembly of the atomic layer deposition apparatus for powder of FIG. 1 .
도 3은 도 1의 파우더용 원자층 증착 장치의 수직형 챔버 조립체를 나타내는 단면도이다.3 is a cross-sectional view illustrating a vertical chamber assembly of the atomic layer deposition apparatus for powder of FIG. 1 .
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 여러 실시예들을 상세히 설명하기로 한다.Hereinafter, several preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.
본 발명의 실시예들은 당해 기술 분야에서 통상의 지식을 가진 자에게 본 발명을 더욱 완전하게 설명하기 위하여 제공되는 것이며, 하기 실시예는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 하기 실시예에 한정되는 것은 아니다. 오히려 이들 실시예들은 본 개시를 더욱 충실하고 완전하게 하고, 당업자에게 본 발명의 사상을 완전하게 전달하기 위하여 제공되는 것이다. 또한, 도면에서 각 층의 두께나 크기는 설명의 편의 및 명확성을 위하여 과장된 것이다.Examples of the present invention are provided to more completely explain the present invention to those of ordinary skill in the art, and the following examples may be modified in various other forms, and the scope of the present invention is as follows It is not limited to an Example. Rather, these embodiments are provided so as to more fully and complete the present disclosure, and to fully convey the spirit of the present invention to those skilled in the art. In addition, in the drawings, the thickness or size of each layer is exaggerated for convenience and clarity of description.
이하, 본 발명의 실시예들은 본 발명의 이상적인 실시예들을 개략적으로 도시하는 도면들을 참조하여 설명한다. 도면들에 있어서, 예를 들면, 제조 기술 및/또는 공차(tolerance)에 따라, 도시된 형상의 변형들이 예상될 수 있다. 따라서, 본 발명 사상의 실시예는 본 명세서에 도시된 영역의 특정 형상에 제한된 것으로 해석되어서는 아니 되며, 예를 들면 제조상 초래되는 형상의 변화를 포함하여야 한다.DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, embodiments of the present invention will be described with reference to the drawings schematically illustrating ideal embodiments of the present invention. In the drawings, variations of the illustrated shape can be envisaged, for example depending on manufacturing technology and/or tolerances. Accordingly, embodiments of the spirit of the present invention should not be construed as limited to the specific shape of the region shown in the present specification, but should include, for example, changes in shape caused by manufacturing.
도 1은 본 발명의 일부 실시예들에 따른 파우더용 원자층 증착 장치(100)를 나타내는 단면도이다.1 is a cross-sectional view illustrating an atomic layer deposition apparatus 100 for powder according to some embodiments of the present invention.
먼저, 도 1에 도시된 바와 같이, 본 발명의 일부 실시예들에 따른 파우더용 원자층 증착 장치(100)는, 크게 챔버(10) 및 교반 장치(20)를 포함할 수 있다.First, as shown in FIG. 1 , the atomic layer deposition apparatus 100 for powder according to some embodiments of the present invention may largely include a chamber 10 and a stirring apparatus 20 .
예컨대, 도 1에 도시된 바와 같이, 상기 챔버(10)는, 분말(1)이 수용될 수 있는 분말 수용 공간(A)이 형성되고, 분말 주입구(PI)를 통해 유입된 상기 분말(1)이 경사면(CF)을 따라 분말 배출구(PO)로 배출될 수 있도록 상기 분말 수용 공간(A)이 횡축 방향으로 경사지게 형성되며, 상기 분말(1)에 적어도 소스 가스(SG), 퍼지 가스(PG), 반응 가스(RG) 중 어느 하나를 선택하여 이루어지는 가스(G)를 공급하는 일종의 밀폐가 가능한 기울어진 원통 형상의 구조체일 수 있다.For example, as shown in FIG. 1 , in the chamber 10 , a powder receiving space A in which the powder 1 can be accommodated is formed, and the powder 1 introduced through the powder inlet PI is formed. The powder accommodating space (A) is inclined in the horizontal direction so as to be discharged to the powder outlet (PO) along the inclined surface (CF), and the powder (1) contains at least a source gas (SG) and a purge gas (PG). , It may be a structure of a cylindrical shape inclined to a kind of sealing that supplies a gas (G) made by selecting any one of the reaction gas (RG).
그러나, 이러한 상기 챔버(10)는 원통에만 국한되지 않고 다각통 형상이나 타원통 형상 등 매우 다양한 형상으로 형성된 통형상의 구조체가 모두 적용될 수 있다.However, the chamber 10 is not limited to a cylinder, and all cylindrical structures formed in a variety of shapes, such as a polygonal cylindrical shape or an elliptical cylindrical shape, may be applied.
또한, 예컨대, 도 1에 도시된 바와 같이, 상기 교반 장치(20)는 상기 챔버(10) 내부에 설치되고, 상기 분말(1)을 교반시킬 수 있는 장치일 수 있다.In addition, for example, as shown in FIG. 1 , the stirring device 20 may be a device installed inside the chamber 10 and capable of stirring the powder 1 .
따라서, 상기 분말(1)은 횡축 방향으로 기울어지게 형성된 상기 경사면(CF)을 따라 상기 교반 장치(20)에 의해 교반되면서 중력에 의해 아래 방향으로 천천히 이송될 수 있다.Accordingly, the powder 1 may be slowly transported downward by gravity while being stirred by the stirring device 20 along the inclined surface CF formed to be inclined in the transverse direction.
더욱 구체적으로 예를 들면, 도 1에 도시된 바와 같이, 상기 분말(1)은 경사진 방향으로 하향하는 하향식으로 이송되고, 상기 가스(G)는 경사진 방향으로 상향하는 상향식으로 이동될 수 있도록 상기 분말 주입구(PI)는 상기 챔버(10)의 외주면의 일측 최상부에 형성되며, 상기 분말 배출구(PO)는 상기 챔버(10)의 외주면의 타측 최하부에 형성되며, 상기 챔버(10)의 하부 원형 평면에 가스 주입구(GI)가 형성되고, 상기 챔버(10)의 상부 원평 평면에 펌핑 라인(PL)이 형성될 수 있다.More specifically, for example, as shown in FIG. 1 , the powder 1 is transferred downward in an inclined direction, and the gas G is moved upward in an inclined direction so that it can be moved upward. The powder inlet PI is formed at one uppermost portion of the outer circumferential surface of the chamber 10 , and the powder outlet PO is formed at the other lowermost portion of the outer circumferential surface of the chamber 10 , and the lower circular shape of the chamber 10 . A gas inlet GI may be formed on a plane surface, and a pumping line PL may be formed on an upper circular plane of the chamber 10 .
따라서, 상기 분말(1)은 가장 높은 원주면 부분인 상기 분말 주입구(PI)로 유입되어 상기 챔버(10)의 내부에서 상기 교반 장치(20)에 의해 교반되면서 상기 경사면(CF)을 따라 천천히 이송되면서 상향하는 상기 가스(G)에 의해 공정 처리될 수 있고, 결국 가장 낮은 원주면 부분인 상기 분말 배출구(PO)를 통해서 외부로 배출될 수 있다.Accordingly, the powder 1 is introduced into the powder inlet PI, which is the highest circumferential portion, and is slowly transported along the inclined surface CF while being stirred by the stirring device 20 inside the chamber 10 . It can be processed by the gas (G) rising upward as it is, and eventually can be discharged to the outside through the powder outlet (PO), which is the lowest circumferential surface portion.
여기서, 예컨대, 횡축으로 기울어진 경사 각도를 높게 하면 상기 분말(1)의 공정 처리 속도를 높일 수 있고, 상기 경사 각도를 낮게 하면 상기 분말(1)의 가스 노출 시간을 늘릴 수 있어서 공정 처리율을 높일 수 있다. Here, for example, if the inclination angle inclined to the horizontal axis is increased, the processing speed of the powder 1 can be increased, and when the inclination angle is decreased, the gas exposure time of the powder 1 can be increased, thereby increasing the processing rate. can
따라서, 이러한 상기 챔버(10)의 경사 각도는 상기 분말(1)의 형태나 공정의 스팩이나 환경 조건 등에 따라 최적화되어 결정될 수 있다.Accordingly, the inclination angle of the chamber 10 may be determined by being optimized according to the shape of the powder 1 or the specification of the process or environmental conditions.
또한, 예컨대, 도 1에 도시된 바와 같이, 상기 교반 장치(20)는, 상기 분말(1)을 혼합하면서 이송시킬 수 있도록 기울어진 교반 회전축(21a)을 중심으로 회전되는 임펠러(21) 및 상기 교반 회전축(21a)과 연결되어 상기 임펠러(21)를 회전시키는 회전 장치(22)를 포함할 수 있다.In addition, for example, as shown in FIG. 1 , the stirring device 20 includes an impeller 21 and It may include a rotation device 22 connected to the stirring rotation shaft 21a to rotate the impeller 21 .
여기서, 상기 임펠러(21)는 적어도 헬리컬형, 리본형, 헬리컬 리본형, 앵커형, 터빈형, 프로펠러형 및 이들의 조합들 중 어느 하나 이상을 선택하여 이루어질 수 있다.Here, the impeller 21 may be formed by selecting at least one of a helical type, a ribbon type, a helical ribbon type, an anchor type, a turbine type, a propeller type, and combinations thereof.
그러나, 이러한 상기 임펠러(21)는, 도면이나 언급된 형태 이외에도 상기 분말(1)을 혼합하면서 이송시킬 수 있도록 기울어지게 설치되는 모든 형태의 날개차들이 모두 적용될 수 있다.However, the impeller 21 may be any type of impeller installed inclined to be transported while mixing the powder 1 in addition to the drawings or mentioned types.
도 2는 도 1의 파우더용 원자층 증착 장치(100)의 수평형 챔버 조립체(101)를 나타내는 단면도이다.FIG. 2 is a cross-sectional view illustrating the horizontal chamber assembly 101 of the atomic layer deposition apparatus 100 for powder of FIG. 1 .
더욱 구체적으로 예를 들면, 도 2에 도시된 바와 같이, 상기 챔버(10)는, 각각의 소스 가스 공정, 제 1 퍼지 가스 공정, 반응 가스 공정 및 제 2 퍼지 가스 공정을 각각 담당하는 4개의 챔버들로 이루어질 수 있는 것으로서, 소스 가스 공정 챔버(11)와, 제 1 퍼지 공정 챔버(12)와, 반응 가스 공정 챔버(13) 및 제 2 퍼지 공정 챔버(14)를 포함할 수 있다.More specifically, for example, as shown in FIG. 2 , the chamber 10 has four chambers each responsible for a source gas process, a first purge gas process, a reaction gas process, and a second purge gas process, respectively. may include a source gas process chamber 11 , a first purge process chamber 12 , a reaction gas process chamber 13 , and a second purge process chamber 14 .
예컨대, 도 2에 도시된 바와 같이, 상기 소스 가스 공정 챔버(11)는, 상방 일측에 상기 분말(1)이 유입되는 제 1 분말 주입구(PI1)가 형성되고, 하방 타측에 상기 분말(1)이 배출되는 제 1 분말 배출구(PO1)가 형성되며, 내부에 제 1 각도(K1)로 기울어지게 형성되는 제 1 분말 수용 공간(A1)이 형성되고, 상기 제 1 분말 수용 공간(A1)에 수용된 상기 분말(1)에 소스 가스(SG)를 공급하는 챔버일 수 있다.For example, as shown in FIG. 2 , in the source gas process chamber 11 , a first powder inlet PI1 into which the powder 1 is introduced is formed on one upper side, and the powder 1 is formed on the other lower side. The first powder discharge port PO1 to be discharged is formed, and a first powder receiving space A1 inclined at a first angle K1 is formed therein, and the first powder receiving space A1 is formed. It may be a chamber for supplying the source gas (SG) to the powder (1).
또한, 예컨대, 도 2에 도시된 바와 같이, 상기 제 1 퍼지 공정 챔버(12)는, 상기 제 1 분말 배출구(PO1)와 연결되며, 상방 일측에 상기 분말(1)이 유입되는 제 2 분말 주입구(PI2)가 형성되고, 하방 타측에 상기 분말(1)이 배출되는 제 2 분말 배출구(PO2)가 형성되며, 내부에 제 2 각도(K2)로 기울어지게 형성되는 제 2 분말 수용 공간(A2)이 형성되고, 상기 제 2 분말 수용 공간(A2)에 수용된 상기 분말(1)에 아르곤이나 질소 등 불활성 가스인 퍼지 가스(PG)를 공급하는 챔버일 수 있다.In addition, for example, as shown in FIG. 2 , the first purge process chamber 12 is connected to the first powder outlet PO1 and a second powder inlet through which the powder 1 is introduced at an upper side. (PI2) is formed, a second powder discharge port PO2 through which the powder 1 is discharged is formed on the other side of the lower side, and a second powder receiving space A2 is formed to be inclined at a second angle K2 therein. This may be a chamber for supplying the purge gas PG, which is an inert gas such as argon or nitrogen, to the powder 1 accommodated in the second powder accommodation space A2.
또한, 예컨대, 도 2에 도시된 바와 같이, 상기 반응 가스 공정 챔버(13)는, 상기 제 2 분말 배출구(PO2)와 연결되며, 상방 일측에 상기 분말(1)이 유입되는 제 3 분말 주입구(PI3)가 형성되고, 하방 타측에 상기 분말(1)이 배출되는 제 3 분말 배출구(PO3)가 형성되며, 내부에 제 3 각도(K3)로 기울어지게 형성되는 제 3 분말 수용 공간(A3)이 형성되고, 상기 제 3 분말 수용 공간(A3)에 수용된 상기 분말(1)에 반응 가스(RG)를 공급하는 챔버일 수 있다.In addition, for example, as shown in FIG. 2 , the reaction gas process chamber 13 is connected to the second powder outlet PO2 and a third powder inlet through which the powder 1 is introduced at an upper side ( PI3) is formed, a third powder discharge port PO3 through which the powder 1 is discharged is formed on the other side of the lower side, and a third powder receiving space A3 is formed to be inclined at a third angle K3 therein. It may be a chamber that is formed and supplies a reaction gas RG to the powder 1 accommodated in the third powder accommodation space A3 .
또한, 예컨대, 도 2에 도시된 바와 같이, 상기 제 2 퍼지 공정 챔버(14)는, 상기 제 3 분말 배출구(PO3)와 연결되며, 상방 일측에 상기 분말(1)이 유입되는 제 4 분말 주입구(PI4)가 형성되고, 하방 타측에 상기 분말(1)이 배출되는 제 4 분말 배출구(PO4)가 형성되며, 내부에 제 4 각도(K4)로 기울어지게 형성되는 제 4 분말 수용 공간(A4)이 형성되고, 상기 제 4 분말 수용 공간(A4)에 수용된 상기 분말(1)에 퍼지 가스(PG)를 공급하는 챔버일 수 있다.In addition, for example, as shown in FIG. 2 , the second purge process chamber 14 is connected to the third powder outlet PO3 and a fourth powder inlet through which the powder 1 is introduced at an upper side. (PI4) is formed, a fourth powder discharge port PO4 through which the powder 1 is discharged is formed on the other side of the lower side, and a fourth powder receiving space A4 is formed to be inclined at a fourth angle K4 therein. is formed, and may be a chamber for supplying a purge gas PG to the powder 1 accommodated in the fourth powder receiving space A4.
더욱 구체적으로 예를 들면, 상기 소스 가스 공정 챔버(11)와, 상기 제 1 퍼지 공정 챔버(12)와, 상기 반응 가스 공정 챔버(13) 및 상기 제 2 퍼지 공정 챔버(14)는, 챔버의 분말 배출구와 이웃하는 챔버의 분말 주입구가 서로 연결되어 맞물려서 전체적으로 일렬로 횡방향 즉, 전후 방향으로 연결되는 수평형 챔버 조립체(101)일 수 있다.More specifically, for example, the source gas process chamber 11 , the first purge process chamber 12 , the reaction gas process chamber 13 , and the second purge process chamber 14 may include The powder outlet and the powder inlet of the adjacent chamber may be connected to each other and engaged to form a horizontal chamber assembly 101 that is connected in a line as a whole in a transverse direction, that is, in a front-rear direction.
따라서, 이러한 4개의 상기 챔버들을 반복적으로 연달아 배치하여 8개, 12개, 16개 등의 챔버들의 개수를 늘림으로써 처리할 수 있는 용량을 크게 증대시킬 수 있다.Accordingly, by repeatedly arranging the four chambers in succession to increase the number of chambers to 8, 12, 16, etc., it is possible to significantly increase the processing capacity.
또한, 도시하지 않았지만, 각각의 챔버에는 각각에 공정에 최적화된 개별 온도 제어 장치가 설치되어 종래의 공정별 환경이 모두 동일했었던 경우와는 달리 개별적으로 최적화하여 수율을 획기적으로 증대시킬 수 있다. In addition, although not shown, individual temperature control devices optimized for each process are installed in each chamber, so that the yield can be dramatically increased by optimizing them individually, unlike the case in which the environment for each process is the same.
특히, 이러한 챔버들을 이용하면 어느 하나의 챔버에 분말이 잔류하더라도 원자층 증착의 특성상 두께 증가가 이루어지지 않기 때문에 잔류 분말의 혼입에도 균일한 막질을 얻을 수 있다.In particular, if these chambers are used, even if the powder remains in any one chamber, the thickness is not increased due to the characteristics of the atomic layer deposition, so that a uniform film quality can be obtained even when the residual powder is mixed.
또한, 예컨대, 도 2에 도시된 바와 같이, 본 발명의 일부 실시예들에 따른 파우더용 원자층 증착 장치(100)는, 적어도 1회 이상의 공정 사이클이 수행될 수 있도록 상기 제 2 퍼지 공정 챔버(14)와 상기 소스 가스 공정 챔버(11)를 연결하는 순환 라인(CL)을 더 포함할 수 있다.In addition, for example, as shown in FIG. 2 , in the atomic layer deposition apparatus 100 for powder according to some embodiments of the present invention, the second purge process chamber ( 14) and a circulation line CL connecting the source gas process chamber 11 may be further included.
따라서, 상기 분말(1)은 상기 소스 가스 공정 챔버(11)와, 상기 제 1 퍼지 공정 챔버(12)와, 상기 반응 가스 공정 챔버(13) 및 상기 제 2 퍼지 공정 챔버(14)를 이용하여 소스 가스 공정, 1차 퍼지 가스 공정, 반응 가스 공정, 2차 퍼지 가스 공정으로 이루어지는 1회의 사이클을 통해서 원자층이 형성될 수 있고, 상기 순환 라인(CL)을 이용하여 상기 챔버들을 순환하면서 복수호의 사이클을 통해 다층 원자층이 형성될 수 있다.Accordingly, the powder 1 is prepared by using the source gas process chamber 11 , the first purge process chamber 12 , the reaction gas process chamber 13 , and the second purge process chamber 14 . An atomic layer may be formed through one cycle consisting of a source gas process, a first purge gas process, a reactive gas process, and a second purge gas process, and a plurality of atomic layers are circulated through the chambers using the circulation line CL. A multilayer atomic layer can be formed through a cycle.
이로 인하여, 하나의 챔버에서 밸브 컨트롤을 이용하여 소스 가스 공정, 1차 퍼지 가스 공정, 반응 가스 공정, 2차 퍼지 가스 공정을 수행하는 것 보다 4개의 챔버에서 밸브가 없이도 연속적으로 소스 가스 공정, 1차 퍼지 가스 공정, 반응 가스 공정, 2차 퍼지 가스 공정을 연속적으로 수행할 수 있어서 대량의 분말에 원자층을 신속하게 연속적으로 증착시킬 수 있다.Due to this, rather than performing the source gas process, the first purge gas process, the reactive gas process, and the second purge gas process using the valve control in one chamber, the source gas process is continuously performed without a valve in four chambers, 1 Since the primary purge gas process, the reactive gas process, and the secondary purge gas process can be continuously performed, an atomic layer can be rapidly and continuously deposited on a large amount of powder.
그러므로, 횡축으로 기울어지고, 서로 연결된 복수개의 챔버들을 이용하여 분말 처리 용량을 크게 증대시킬 수 있고, 코팅 시간을 줄여서 생산성을 크게 향상시킬 수 있으며, 수평형 챔버 조립체, 수직형 챔버 조립체 등 다양한 형태로 연결이 가능하여 설치 공간의 제약을 줄일 수 있고, 각각 4개의 공정을 최적화하여 개별적으로 수행하는 4개의 챔버들을 이용하여 공정 특성을 향상시킬 수 있으며, 분말 순환 방식으로 코팅 사이클의 반복을 용이하게 할 수 있고, 연속으로 대량의 분말을 코팅할 수 있다.Therefore, it is possible to greatly increase the powder processing capacity by using a plurality of chambers inclined in the horizontal axis and connected to each other, and to greatly improve productivity by reducing the coating time, and can be used in various forms such as a horizontal chamber assembly and a vertical chamber assembly. It can be connected to reduce the limitation of the installation space, to optimize each of the four processes to improve the process characteristics by using four chambers that are individually performed, and to facilitate the repetition of the coating cycle in the powder circulation method. and can continuously coat a large amount of powder.
도 3은 도 1의 파우더용 원자층 증착 장치(100)의 수직형 챔버 조립체(102)를 나타내는 단면도이다.3 is a cross-sectional view illustrating the vertical chamber assembly 102 of the atomic layer deposition apparatus 100 for powder of FIG. 1 .
도 3에 도시된 바와 같이, 본 발명의 일부 실시예들에 따른 파우더용 원자층 증착 장치(100)의 상기 소스 가스 공정 챔버(11)와, 상기 제 1 퍼지 공정 챔버(12)와, 상기 반응 가스 공정 챔버(13) 및 상기 제 2 퍼지 공정 챔버(14)는, 챔버의 분말 배출구와 이웃하는 챔버의 분말 주입구가 서로 연결되어 맞물리고, 전체적으로 지그재그 형태로 상하 방향으로 적층되어 연결되는 수직형 챔버 조립체(102)일 수 있다.As shown in FIG. 3 , the source gas process chamber 11 , the first purge process chamber 12 , and the reaction of the atomic layer deposition apparatus 100 for powder according to some embodiments of the present invention The gas process chamber 13 and the second purge process chamber 14 are vertical chambers in which the powder outlet of the chamber and the powder inlet of the neighboring chamber are connected to each other and engaged, and are stacked and connected in a zigzag shape in the vertical direction. assembly 102 .
따라서, 개별적인 챔버의 사이즈를 달리하거나 수평형 챔버 조립체(101)나 수직형 챔버 조립체(102)를 선택하여 공정 시간과 생산성 및 처리 용량을 원하는 만큼 조절할 수 있는 것은 물론이고, 각 공정을 분리하여 최종 목적에 맞게 다양한 장소에 다양한 형태로 설비를 구축할 수 있어서, 예컨대, 면적이 넓고 낮은 건물에는 상기 수평형 챔버 조립체(101)를 적용시킬 수 있고, 면적이 좁고 높은 건물에는 상기 수직형 챔버 조립체(102)를 적용시킬 수 있다.Therefore, by changing the size of individual chambers or selecting the horizontal chamber assembly 101 or the vertical chamber assembly 102, process time, productivity, and processing capacity can be adjusted as much as desired, and each process is separated and final Equipment can be built in various forms in various places according to the purpose, for example, the horizontal chamber assembly 101 can be applied to a building with a wide and low area, and the vertical chamber assembly 101 can be applied to a building with a narrow and high area ( 102) can be applied.
본 발명은 도면에 도시된 실시예를 참고로 설명되었으나 이는 예시적인 것에 불과하며, 당해 기술분야에서 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 다른 실시예가 가능하다는 점을 이해할 것이다. 따라서 본 발명의 진정한 기술적 보호 범위는 첨부된 특허청구범위의 기술적 사상에 의하여 정해져야 할 것이다.Although the present invention has been described with reference to the embodiments shown in the drawings, which are merely exemplary, those skilled in the art will understand that various modifications and equivalent other embodiments are possible therefrom. Therefore, the true technical protection scope of the present invention should be determined by the technical spirit of the appended claims.
상기한 바와 같이 이루어진 본 발명의 일부 실시예들에 따르면, 횡축으로 기울어지고, 서로 연결된 복수개의 챔버들을 이용하여 분말 처리 용량을 크게 증대시킬 수 있고, 코팅 시간을 줄여서 생산성을 크게 향상시킬 수 있으며, 수평형 챔버 조립체, 수직형 챔버 조립체 등 다양한 형태로 연결이 가능하여 설치 공간의 제약을 줄일 수 있고, 각각 4개의 공정을 최적화하여 개별적으로 수행하는 4개의 챔버들을 이용하여 공정 특성을 향상시킬 수 있으며, 분말 순환 방식으로 코팅 사이클의 반복을 용이하게 할 수 있고, 연속으로 대량의 분말을 코팅할 수 있다.According to some embodiments of the present invention made as described above, it is possible to greatly increase the powder processing capacity by using a plurality of chambers inclined to the horizontal axis and connected to each other, and to greatly improve productivity by reducing the coating time, It can be connected in various forms such as a horizontal chamber assembly and a vertical chamber assembly, thereby reducing the limitation of the installation space, and by optimizing each of the four processes, it is possible to improve the process characteristics by using four chambers that are individually performed. , it is possible to facilitate the repetition of the coating cycle in a powder cycle manner, and to coat a large amount of powder continuously.

Claims (9)

  1. 분말이 수용될 수 있는 분말 수용 공간이 형성되고, 분말 주입구를 통해 유입된 상기 분말이 경사면을 따라 분말 배출구로 배출될 수 있도록 상기 분말 수용 공간이 경사지게 형성되며, 상기 분말에 적어도 소스 가스, 퍼지 가스, 반응 가스 중 어느 하나를 선택하여 이루어지는 가스를 공급하는 챔버; 및A powder accommodating space in which the powder can be accommodated is formed, and the powder accommodating space is inclined so that the powder introduced through the powder inlet can be discharged to the powder outlet along an inclined surface, and the powder contains at least a source gas and a purge gas. , a chamber for supplying a gas made by selecting any one of the reaction gases; and
    상기 챔버 내부에 설치되고, 상기 분말을 교반시키는 교반 장치;a stirring device installed in the chamber and stirring the powder;
    를 포함하는, 파우더용 원자층 증착 장치.Including, atomic layer deposition apparatus for powder.
  2. 제 1 항에 있어서,The method of claim 1,
    상기 챔버는 전체적으로 기울어진 원통 형상이고,The chamber has an inclined cylindrical shape as a whole,
    상기 분말 주입구는 상기 챔버의 외주면의 일측 최상부에 형성되며,The powder inlet is formed on one side of the uppermost part of the outer peripheral surface of the chamber,
    상기 분말 배출구는 상기 챔버의 외주면의 타측 최하부에 형성되며,The powder outlet is formed in the lowermost part of the other side of the outer peripheral surface of the chamber,
    상기 챔버의 하부 원형 평면에 가스 주입구가 형성되고, A gas inlet is formed in the lower circular plane of the chamber,
    상기 챔버의 상부 원평 평면에 펌핑 라인이 형성되는, 파우더용 원자층 증착 장치.Atomic layer deposition apparatus for powder, in which a pumping line is formed in the upper circular plane of the chamber.
  3. 제 1 항에 있어서,The method of claim 1,
    상기 챔버는,The chamber is
    상방 일측에 상기 분말이 유입되는 제 1 분말 주입구가 형성되고, 하방 타측에 상기 분말이 배출되는 제 1 분말 배출구가 형성되며, 내부에 제 1 각도로 기울어지게 형성되는 제 1 분말 수용 공간이 형성되고, 상기 제 1 분말 수용 공간에 수용된 상기 분말에 소스 가스를 공급하는 소스 가스 공정 챔버;A first powder inlet through which the powder is introduced is formed on one upper side, a first powder outlet through which the powder is discharged is formed on the other side of the lower side, and a first powder receiving space inclined at a first angle is formed therein. , a source gas processing chamber for supplying a source gas to the powder accommodated in the first powder receiving space;
    상기 제 1 분말 배출구와 연결되며, 상방 일측에 상기 분말이 유입되는 제 2 분말 주입구가 형성되고, 하방 타측에 상기 분말이 배출되는 제 2 분말 배출구가 형성되며, 내부에 제 2 각도로 기울어지게 형성되는 제 2 분말 수용 공간이 형성되고, 상기 제 2 분말 수용 공간에 수용된 상기 분말에 퍼지 가스를 공급하는 제 1 퍼지 공정 챔버;It is connected to the first powder outlet, and a second powder inlet through which the powder is introduced is formed on one upper side, and a second powder outlet through which the powder is discharged is formed on the other side of the lower side, and is inclined at a second angle therein. a first purge process chamber having a second powder accommodating space to be used and supplying a purge gas to the powder accommodated in the second powder accommodating space;
    상기 제 2 분말 배출구와 연결되며, 상방 일측에 상기 분말이 유입되는 제 3 분말 주입구가 형성되고, 하방 타측에 상기 분말이 배출되는 제 3 분말 배출구가 형성되며, 내부에 제 3 각도로 기울어지게 형성되는 제 3 분말 수용 공간이 형성되고, 상기 제 3 분말 수용 공간에 수용된 상기 분말에 반응 가스를 공급하는 반응 가스 공정 챔버; 및It is connected to the second powder outlet, and a third powder inlet through which the powder is introduced is formed on one upper side, and a third powder outlet through which the powder is discharged is formed on the other side of the lower side, and is inclined at a third angle. a reaction gas processing chamber having a third powder accommodating space to be formed and supplying a reactive gas to the powder accommodated in the third powder accommodating space; and
    상기 제 3 분말 배출구와 연결되며, 상방 일측에 상기 분말이 유입되는 제 4 분말 주입구가 형성되고, 하방 타측에 상기 분말이 배출되는 제 4 분말 배출구가 형성되며, 내부에 제 4 각도로 기울어지게 형성되는 제 4 분말 수용 공간이 형성되고, 상기 제 4 분말 수용 공간에 수용된 상기 분말에 퍼지 가스를 공급하는 제 2 퍼지 공정 챔버;It is connected to the third powder outlet, and a fourth powder inlet through which the powder is introduced is formed on one side of the upper side, and a fourth powder outlet through which the powder is discharged is formed on the other side of the lower side, and is inclined at a fourth angle therein. a second purge process chamber having a fourth powder accommodating space and supplying a purge gas to the powder accommodated in the fourth powder accommodating space;
    를 포함하는, 파우더용 원자층 증착 장치.Including, atomic layer deposition apparatus for powder.
  4. 제 3 항에 있어서,4. The method of claim 3,
    상기 소스 가스 공정 챔버와, 상기 제 1 퍼지 공정 챔버와, 상기 반응 가스 공정 챔버 및 상기 제 2 퍼지 공정 챔버는, 챔버의 분말 배출구와 이웃하는 챔버의 분말 주입구가 서로 연결되어 맞물려서 전체적으로 일렬로 전후 방향으로 연결되는 수평형 챔버 조립체인, 파우더용 원자층 증착 장치.The source gas process chamber, the first purge process chamber, the reaction gas process chamber, and the second purge process chamber are connected to each other and meshed with a powder outlet of a chamber and a powder inlet of an adjacent chamber in a forward and backward direction as a whole. Atomic layer deposition apparatus for powder, which is a horizontal chamber assembly connected to
  5. 제 3 항에 있어서,4. The method of claim 3,
    상기 소스 가스 공정 챔버와, 상기 제 1 퍼지 공정 챔버와, 상기 반응 가스 공정 챔버 및 상기 제 2 퍼지 공정 챔버는, 챔버의 분말 배출구와 이웃하는 챔버의 분말 주입구가 서로 연결되어 맞물리고, 전체적으로 지그재그 형태로 상하 방향으로 적층되어 연결되는 수직형 챔버 조립체인, 파우더용 원자층 증착 장치.The source gas process chamber, the first purge process chamber, the reaction gas process chamber, and the second purge process chamber are connected to each other by a powder outlet of the chamber and a powder inlet of an adjacent chamber, and are engaged with each other, and have a zigzag shape as a whole. An atomic layer deposition apparatus for powder, which is a vertical chamber assembly that is stacked and connected in the vertical direction with a furnace.
  6. 제 3 항에 있어서,4. The method of claim 3,
    적어도 1회 이상의 공정 사이클이 수행될 수 있도록 상기 제 2 퍼지 공정 챔버와 상기 소스 가스 공정 챔버를 연결하는 순환 라인;a circulation line connecting the second purge process chamber and the source gas process chamber to perform at least one process cycle;
    을 더 포함하는, 파우더용 원자층 증착 장치.Further comprising, an atomic layer deposition apparatus for powder.
  7. 제 1 항에 있어서,The method of claim 1,
    상기 교반 장치는,The stirring device is
    상기 분말을 혼합하면서 이송시킬 수 있도록 기울어진 교반 회전축을 중심으로 회전되는 임펠러; 및an impeller rotated about an inclined stirring rotation shaft to transport the powder while mixing; and
    상기 교반 회전축과 연결되어 상기 임펠러를 회전시키는 회전 장치;a rotating device connected to the stirring rotating shaft to rotate the impeller;
    를 포함하는, 파우더용 원자층 증착 장치.Including, atomic layer deposition apparatus for powder.
  8. 제 7 항에 있어서,8. The method of claim 7,
    상기 임펠러는 적어도 헬리컬형, 리본형, 헬리컬 리본형, 앵커형, 터빈형, 프로펠러형 및 이들의 조합들 중 어느 하나 이상을 선택하여 이루어지는, 파우더용 원자층 증착 장치.The impeller is at least a helical type, a ribbon type, a helical ribbon type, an anchor type, a turbine type, a propeller type, and made by selecting any one or more of combinations thereof, atomic layer deposition apparatus for powder.
  9. 제 1 항에 있어서,The method of claim 1,
    상기 분말은 경사진 방향으로 하향하는 하향식으로 이송되고,The powder is conveyed in a downward-facing downward direction in an inclined direction,
    상기 가스는 경사진 방향으로 상향하는 상향식으로 이동되는, 파우더용 원자층 증착 장치.The gas is moved upward in an upward direction in an inclined direction, an atomic layer deposition apparatus for powder.
PCT/KR2021/006187 2020-11-09 2021-05-18 Atomic layer deposition apparatus for powders WO2022097861A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020200148449A KR102570533B1 (en) 2020-11-09 2020-11-09 Atomic layer deposition apparatus for powder
KR10-2020-0148449 2020-11-09

Publications (1)

Publication Number Publication Date
WO2022097861A1 true WO2022097861A1 (en) 2022-05-12

Family

ID=81458054

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/006187 WO2022097861A1 (en) 2020-11-09 2021-05-18 Atomic layer deposition apparatus for powders

Country Status (2)

Country Link
KR (1) KR102570533B1 (en)
WO (1) WO2022097861A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100180820A1 (en) * 2007-07-20 2010-07-22 Hirokazu Ishimaru Apparatus for treating powder
KR20130017199A (en) * 2011-08-10 2013-02-20 (주)에스피에스 Apparatus for treating surface of minute particles
EP2948573B1 (en) * 2013-01-23 2017-10-11 Picosun Oy Method and apparatus for ald processing particulate material
KR101868703B1 (en) * 2016-12-14 2018-06-18 서울과학기술대학교 산학협력단 Reactor for coating powder
KR20200044056A (en) * 2017-08-24 2020-04-28 포지 나노, 인크. Manufacturing processes for the synthesis, functionalization, surface treatment and / or encapsulation of powders, and applications thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100180820A1 (en) * 2007-07-20 2010-07-22 Hirokazu Ishimaru Apparatus for treating powder
KR20130017199A (en) * 2011-08-10 2013-02-20 (주)에스피에스 Apparatus for treating surface of minute particles
EP2948573B1 (en) * 2013-01-23 2017-10-11 Picosun Oy Method and apparatus for ald processing particulate material
KR101868703B1 (en) * 2016-12-14 2018-06-18 서울과학기술대학교 산학협력단 Reactor for coating powder
KR20200044056A (en) * 2017-08-24 2020-04-28 포지 나노, 인크. Manufacturing processes for the synthesis, functionalization, surface treatment and / or encapsulation of powders, and applications thereof

Also Published As

Publication number Publication date
KR102570533B1 (en) 2023-08-28
KR20220062812A (en) 2022-05-17

Similar Documents

Publication Publication Date Title
CN111463145B (en) Substrate processing apparatus
CN101779269B (en) Multi-workpiece processing chamber and workpiece processing system including the same
WO2010067974A2 (en) Apparatus for treating multiple substrates
WO2014003298A1 (en) Process chamber and substrate processing method
WO2014003297A1 (en) Substrate heating device and process chamber
CN101268213B (en) Device and method for continuous chemical vapour deposition under atmospheric pressure and use thereof
TW202244982A (en) Systems and methods for improved semiconductor etching and component protection
CN111041458B (en) Continuous PECVD equipment
WO2011062357A2 (en) Shower head assembly and thin film deposition apparatus comprising same
CN1031146C (en) Apparatus and arrangement for coating truncated spheric substrate
WO2011027987A2 (en) Gas-discharging device and substrate-processing apparatus using same
WO2022097861A1 (en) Atomic layer deposition apparatus for powders
CN1950539A (en) Method and device for the continuous coating of flat substrates with optically active layer systems
WO2021162447A2 (en) Substrate processing device
WO2020130539A1 (en) Batch reactor
CN106802088B (en) External cooling device and method for thermal state direct reduction iron furnace
WO2001049894A1 (en) Multi wafer introduction/single wafer conveyor mode processing system and method of processing wafers using the same
WO2015137611A1 (en) Substrate processing apparatus
CN101481796A (en) Gas injector and film deposition apparatus having the same
WO2017061742A1 (en) Substrate processing apparatus having exhaust gas decomposer, and exhaust gas processing method therefor
CN112687596A (en) Wafer boat, process chamber and semiconductor process equipment
WO2021235772A1 (en) Powder atomic layer deposition equipment and gas supply method therefor
WO2015072661A1 (en) Reaction inducing unit, substrate treating apparatus, and thin-film deposition method
CN1193114C (en) Supplying and exhausting system in plasma polymerizing apparatus
CN111517119A (en) Pneumatic conveying system for powdery materials and preparation method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21889329

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21889329

Country of ref document: EP

Kind code of ref document: A1