WO2022097544A1 - Cleansing preparation - Google Patents

Cleansing preparation Download PDF

Info

Publication number
WO2022097544A1
WO2022097544A1 PCT/JP2021/039618 JP2021039618W WO2022097544A1 WO 2022097544 A1 WO2022097544 A1 WO 2022097544A1 JP 2021039618 W JP2021039618 W JP 2021039618W WO 2022097544 A1 WO2022097544 A1 WO 2022097544A1
Authority
WO
WIPO (PCT)
Prior art keywords
cellulose
mass
cleaning agent
nanofibers
preferable
Prior art date
Application number
PCT/JP2021/039618
Other languages
French (fr)
Japanese (ja)
Inventor
苑加 宮田
碧 坂巻
Original Assignee
日本製紙株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製紙株式会社 filed Critical 日本製紙株式会社
Priority to JP2022560739A priority Critical patent/JPWO2022097544A1/ja
Publication of WO2022097544A1 publication Critical patent/WO2022097544A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/73Polysaccharides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q1/00Make-up preparations; Body powders; Preparations for removing make-up
    • A61Q1/14Preparations for removing make-up
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • A61Q19/10Washing or bathing preparations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q5/00Preparations for care of the hair
    • A61Q5/02Preparations for cleaning the hair
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/20Organic compounds containing oxygen
    • C11D3/22Carbohydrates or derivatives thereof

Definitions

  • the present invention relates to a cleaning agent containing cellulose nanofibers.
  • Finely divided cellulose fibers are added to cosmetics.
  • a cellulose fiber having an average fiber diameter and a ratio of an average fiber length to an average fiber diameter in a specific range is described. It is described to be used as an additive for cosmetics.
  • Patent Document 2 describes a cleansing cosmetic containing a modified cellulose fiber as a thickener.
  • liquid cleansing cosmetics contain cellulose fibers having a specific substituent to impart appropriate viscosity, and when they are picked up, they do not easily drip from between fingers and spread.
  • the purpose is to provide a cleansing cosmetic having excellent ductility and excellent ejection property when filled in a pump-type container, and no study has been made from the viewpoint of improving detergency.
  • an object of the present invention is to provide a cleaning agent having excellent safety and a high cleaning effect.
  • the present invention provides: (1) A cleaning agent containing cellulose nanofibers. (2) The cleaning agent according to (1), which contains the cellulose nanofibers in an amount of 0.05% by mass or more and 5% by mass or less. (3) The cleaning agent according to (1) or (2), wherein the cellulose nanofibers are carboxymethylated cellulose nanofibers. (4) The carboxymethylated cellulose nanofiber has a degree of carboxymethyl substitution per anhydrous glucose unit of cellulose of 0.01 to 0.50, and a degree of crystallinity of cellulose type I is 40% or more (3). ) The listed cleaning fee. (5) The cleaning agent according to any one of (1) to (4), which further contains carboxymethyl cellulose. (6) The cleaning agent according to any one of (1) to (5), wherein the cleaning agent is a washing pigment, a cleansing cosmetic, soap, shampoo, hand soap or body soap.
  • the observation result using the microscope of the bioskin before the application of pseudo-sebum is shown.
  • the observation results using a microscope of Bioskin after application of pseudo-sebum are shown.
  • the observation result using the microscope of the bioskin after washing with the washing agent 1 of Example 1 is shown.
  • the observation result using the microscope of the bioskin after washing with the washing agent 2 of the comparative example 1 is shown.
  • the cleaning agent of the present invention contains cellulose nanofibers as an essential component.
  • the cellulose nanofiber is a fine fiber in which pulp or the like, which is a raw material for cellulose, is miniaturized to the nanometer level, and the fiber diameter is about 3 to 500 nm.
  • the average fiber diameter and average fiber length of cellulose nanofibers shall be the average of the fiber diameter and fiber length obtained from the results of observing each fiber using an atomic force microscope (AFM) or a transmission electron microscope (TEM). Can be obtained by.
  • Cellulose nanofibers can be obtained by applying mechanical force to the pulp to make it finer, or carboxylated cellulose (also called oxidized cellulose), carboxymethylated cellulose, or cellulose into which a phosphate ester group has been introduced.
  • the average fiber length and average fiber diameter of the fine fibers can be adjusted by a chemical modification treatment or a defibration treatment.
  • the average aspect ratio of the cellulose nanofibers used in the present invention is not particularly limited, but is usually 25 or more.
  • the upper limit is not particularly limited, but is usually 1000 or less.
  • the fibrous shape gives an effect of improving thixotropic property.
  • the average fiber diameter and average fiber length are 200 randomly selected using an atomic force microscope (AFM) when the diameter is 20 nm or less and a field emission scanning electron microscope (FE-SEM) when the diameter is 20 nm or more. It can be measured by analyzing the fibers of the above and calculating the average.
  • the average fiber diameter is 3 nm to 500 nm, preferably 3 nm to 150 nm, more preferably 3 nm to 20 nm, still more preferably 5 nm to 19 nm, and further. It is preferably 5 nm to 15 nm.
  • the aspect ratio is not particularly limited, but is preferably 350 or less, more preferably 300 or less, further preferably 200 or less, further preferably 120 or less, and even more preferably 100 or less. It is more preferably 80 or less, and even more preferably 80 or less.
  • the lower limit of the aspect ratio is not particularly limited, but is preferably 25 or more, and more preferably 30 or more.
  • the aspect ratio of the carboxymethylated cellulose nanofibers can be controlled by the mixing ratio of the solvent and water at the time of carboxymethylation, the amount of chemicals added, and the degree of carboxymethylation. Further, the carboxymethylated cellulose nanofiber having an aspect ratio in the above range can be produced, for example, by a production method described later.
  • Cellulose raw material include plants (eg, wood, bamboo, hemp, jute, kenaf, farmland waste, cloth, pulp (conifer unbleached kraft pulp (NUKP), conifer bleached kraft pulp (NBKP), broadleaf unbleached kraft pulp (NBKP)).
  • plants eg, wood, bamboo, hemp, jute, kenaf, farmland waste, cloth, pulp (conifer unbleached kraft pulp (NUKP), conifer bleached kraft pulp (NBKP), broadleaf unbleached kraft pulp (NBKP)).
  • NUKP conifer unbleached kraft pulp
  • NKP conifer bleached kraft pulp
  • NNKP broadleaf unbleached kraft pulp
  • LUKP broadleaf bleached kraft pulp
  • NUSP conifer unbleached sulphite pulp
  • NBSP conifer bleached sulphite pulp
  • TMP thermomechanical pulp
  • recycled pulp used paper, etc.
  • animals eg, squirrels
  • Those originating from algae, microorganisms (for example, acetic acid bacteria (acetobacter)), microbial products, etc. are known, and any of them can be used in the present invention.
  • Cellulose fibers derived from plants or microorganisms are preferable, and they are derived from plants. Cellulose fibers are more preferred.
  • the chemically modified cellulose that is the raw material of the chemically modified CNF, those that maintain at least a part of the fibrous shape even when dispersed in water or a water-soluble organic solvent are used. Nanofibers cannot be obtained if fibrous shapes are not maintained (ie, those that dissolve in a dispersion medium). The fact that at least a part of the fibrous shape is maintained when dispersed means that the fibrous substance can be observed by observing the dispersion of chemically modified cellulose with an electron microscope. Further, chemically modified cellulose capable of observing the peak of cellulose type I crystal when measured by X-ray diffraction is preferable.
  • the crystallinity of the chemically modified cellulose as a raw material is preferably 40% or more, and more preferably 50% or more for the crystal type I.
  • the thixotropic property becomes high because the proportion of cellulose that does not dissolve in a solvent such as water and maintains the crystal structure when nanofibers are formed is high. It becomes suitable for viscosity adjustment applications such as thixotropy) and thickeners. Further, when it is contained in the cleaning agent, the foam quality is improved, and there is an advantage that fine and highly elastic foam can be obtained.
  • the upper limit of the crystallinity of cellulose type I of chemically modified cellulose is not particularly limited. In reality, about 90% is considered to be the upper limit.
  • the crystallinity of cellulose can be controlled by the degree of crystallinity of the raw material cellulose and the degree of chemical denaturation. In order to maintain the crystallinity of cellulose I type preferably 40% or more in the chemically modified cellulose nanofibers, it is preferable to use cellulose having a high crystallinity of cellulose I type as a raw material.
  • the crystallinity of cellulose type I of the raw material cellulose is preferably 70% or more, and more preferably 80% or more.
  • Xc (I002c-Ia) / I002c ⁇ 100
  • the crystallinity of cellulose in carboxymethylated cellulose which will be described later, can be controlled by the concentration of the mercerizing agent, the temperature at the time of treatment, and the degree of carboxymethylation. Since a high concentration of alkali is used in mercerization and carboxymethylation, type I crystals of cellulose are easily converted to type II, but they are modified by adjusting the amount of alkali (mercerizing agent) used. By adjusting the degree, the desired crystallinity can be maintained.
  • the proportion of type I crystals in the chemically modified CNF is usually the same as that in the chemically modified cellulose before the defibration treatment.
  • the chemically modified cellulose one in which a carboxyalkyl group such as a carboxymethyl group is introduced into cellulose can be used.
  • the carboxyalkyl group in the present invention means -RCOH (acid type) or -RCOM (salt type).
  • R is an alkylene group such as a methylene group and an ethylene group
  • M is a metal ion.
  • the carboxyalkylated cellulose may be obtained by a known method, or a commercially available product may be used.
  • the degree of carboxyalkyl substitution of cellulose per anhydrous glucose unit is preferably 0.50 or less.
  • the degree of carboxymethyl substitution per anhydrous glucose unit of cellulose is preferably 0.50 or less. If the degree of substitution is greater than 0.50, the crystallinity decreases and the proportion of the dissolved component increases, so that the function as a nanofiber is lost.
  • the lower limit of the carboxyalkyl substitution degree and the carboxymethyl substitution degree is preferably 0.01 or more. Considering operability, the degree of substitution is more preferably 0.02 to 0.50, further preferably 0.05 to 0.50, and even more preferably 0.10 to 0.40. ..
  • the anhydrous glucose unit means individual anhydrous glucose (glucose residue) constituting cellulose.
  • the degree of carboxymethyl substitution (also referred to as the degree of etherification) is the ratio of hydroxyl groups in the glucose residues constituting cellulose that are substituted with carboxymethyl ether groups (carboxymethyl per glucose residue). The number of ether groups) is shown.
  • the degree of carboxymethyl substitution may be abbreviated as DS.
  • the modification is a modification due to a substitution reaction.
  • Carboxymethylated cellulose will be described as an example.
  • a carboxymethylating agent is added in an amount of 0.05 to 10.0 times per glucose residue, and the reaction temperature is 30 to 90 ° C., preferably 40 to 80 ° C., and the reaction time is 30 minutes to 10 hours, preferably.
  • the above-mentioned cellulose raw material can be used as the bottoming raw material.
  • the solvent 3 to 20 times by mass of water or lower alcohol, specifically water, methanol, ethanol, N-propyl alcohol, isopropyl alcohol, N-butanol, isobutanol, tertiary butanol, etc. alone or 2 A mixed medium of seeds or more can be used. When lower alcohols are mixed, the mixing ratio is 60 to 95% by mass.
  • the mercerizing agent 0.5 to 20 times mol of alkali metal hydroxide per anhydrous glucose residue of the bottoming material, specifically sodium hydroxide and potassium hydroxide can be used.
  • the degree of carboxymethyl substitution per anhydrous glucose unit of cellulose is preferably 0.01 or more and 0.50 or less.
  • the celluloses electrically repel each other. Therefore, cellulose having a carboxymethyl substituent introduced can be easily nano-deflated. If the carboxymethyl substituent per anhydrous glucose unit is less than 0.01, it is considered that a large amount of energy is required for nanodefibration.
  • the degree of substitution in carboxymethylated cellulose and the degree of substitution in cellulose nanofibers are usually the same.
  • the carboxyalkylated cellulose obtained in the above step is usually a salt type and is an alkali metal salt such as a sodium salt.
  • the alkali metal salt of the carboxyalkylated cellulose may be replaced with another cationic salt such as a phosphonium salt, an imidazolinium salt, an ammonium salt or a sulfonium salt. The substitution can be performed by a known method.
  • carboxymethyl cellulose which is a kind of chemically modified cellulose used for preparing cellulose nanofibers, maintains at least a part of the fibrous shape even when dispersed in water. To say. Therefore, it is distinguished from carboxymethyl cellulose, which is a kind of water-soluble polymer.
  • carboxymethyl cellulose which is a kind of water-soluble polymer.
  • Carboxylation Carboxylated (oxidized) cellulose can be used as the chemically modified cellulose.
  • the carboxyl group in the present invention means -COOH (acid type) or -COOM (salt type).
  • M is a metal ion, and examples thereof include sodium and potassium.
  • Carboxylated cellulose (also referred to as "oxidized cellulose") can be obtained by carboxylating (oxidizing) the above-mentioned cellulose raw material by a known method.
  • the amount of carboxyl groups is preferably 0.6 to 3.0 mmol / g, more preferably 1.0 to 2.0 mmol / g, based on the absolute dry mass of the chemically modified cellulose nanofibers.
  • a cellulose raw material is oxidized in water using an oxidizing agent in the presence of an N-oxyl compound and a compound selected from the group consisting of bromide, iodide, and a mixture thereof. You can mention how to do it.
  • the primary hydroxyl group at the C6 position of the glucopyranose ring on the surface of the cellulose is selectively oxidized, and the cellulose fiber having an aldehyde group and a carboxyl group (-COOH) or a carboxylate group (-COO- ) on the surface.
  • the concentration of cellulose during the reaction is not particularly limited, but is preferably 5% by mass or less.
  • the N-oxyl compound is a compound that can generate a nitroxy radical.
  • any compound can be used as long as it is a compound that promotes the desired oxidation reaction.
  • 2,2,6,6-tetramethylpiperidine-1-oxy radical (TEMPO) and its derivatives (eg 4-hydroxy TEMPO) can be mentioned.
  • the amount of the N-oxyl compound used is not particularly limited as long as it is a catalytic amount capable of oxidizing the cellulose raw material.
  • 0.01 to 10 mmol is preferable, 0.01 to 1 mmol is more preferable, and 0.01 to 0.5 mmol is further preferable with respect to 1 g of an absolute dry cellulose raw material.
  • about 0.1 to 4 mmol / L is preferable for the reaction system.
  • Bromide is a compound containing bromine, and examples thereof include alkali metals bromide that can be dissociated and ionized in water.
  • the iodide is a compound containing iodine, and an example thereof includes an alkali metal iodide.
  • the amount of bromide or iodide used can be selected within the range in which the oxidation reaction can be promoted.
  • the total amount of bromide and iodide is, for example, preferably 0.1 to 100 mmol, more preferably 0.1 to 10 mmol, still more preferably 0.5 to 5 mmol with respect to 1 g of an absolute dry cellulose raw material.
  • the modification is a modification due to an oxidation reaction.
  • oxidizing agent known ones can be used, and for example, halogen, hypohalogenic acid, subhalogenic acid, perhalonic acid or salts thereof, halogen oxide, peroxide and the like can be used.
  • sodium hypochlorite which is inexpensive and has a low environmental impact, is preferable.
  • the appropriate amount of the oxidizing agent to be used is, for example, preferably 0.5 to 500 mmol, more preferably 0.5 to 50 mmol, still more preferably 2.5 to 25 mmol with respect to 1 g of the dry dry cellulose raw material. Further, for example, 1 to 40 mol is preferable with respect to 1 mol of the N-oxyl compound.
  • the reaction temperature is preferably 4 to 40 ° C, and may be room temperature of about 15 to 30 ° C.
  • a carboxyl group is generated in the cellulose, so that the pH of the reaction solution decreases.
  • an alkaline solution such as an aqueous sodium hydroxide solution
  • water is preferable as the reaction medium because it is easy to handle and side reactions are unlikely to occur.
  • the reaction time in the oxidation reaction can be appropriately set according to the degree of progress of oxidation, and is usually about 0.5 to 6 hours, for example, about 0.5 to 4 hours.
  • the oxidation reaction may be carried out in two stages. For example, by oxidizing the oxidized cellulose obtained by filtration after the completion of the first-stage reaction again under the same or different reaction conditions, the cellulose is not inhibited by the salt produced as a by-product in the first-stage reaction. A carboxyl group can be efficiently introduced into the raw material.
  • the amount of the carboxyl group of the oxidized cellulose can be adjusted by controlling the reaction conditions such as the amount of the oxidizing agent added and the reaction time described above.
  • the amount of carboxyl groups in cellulose oxide and the amount of carboxyl groups in the case of cellulose nanofibers are usually the same.
  • the carboxyl group introduced into the cellulose raw material is usually a salt type and is an alkali metal salt such as a sodium salt.
  • the alkali metal salt of cellulose oxide may be replaced with other cationic salts such as phosphonium salt, imidazolinium salt, ammonium salt and sulfonium salt. The substitution can be performed by a known method.
  • Esterified cellulose can also be used as the chemically modified cellulose.
  • Examples thereof include a method of mixing a powder or an aqueous solution of a phosphoric acid-based compound A with a cellulose raw material, a method of adding an aqueous solution of a phosphoric acid-based compound A to a slurry of a cellulose raw material, and the like.
  • Examples of the phosphoric acid-based compound A include phosphoric acid, polyphosphoric acid, phosphite, phosphonic acid, polyphosphonic acid, and esters thereof. These may be in the form of salts.
  • a compound having a phosphoric acid group is preferable because it is low in cost, easy to handle, and the phosphoric acid group can be introduced into the cellulose of the pulp fiber to improve the defibration efficiency.
  • Compounds having a phosphoric acid group include phosphoric acid, sodium dihydrogen phosphate, disodium hydrogen phosphate, trisodium phosphate, sodium pyrophosphate, sodium metaphosphate, potassium dihydrogen phosphate, dipotassium hydrogen phosphate, and phosphorus.
  • Examples thereof include tripotassium acid, potassium pyrophosphate, potassium metaphosphate, ammonium dihydrogen phosphate, diammonium hydrogen phosphate, triammonium phosphate, ammonium pyrophosphate, ammonium metaphosphate and the like. These can be used alone or in combination of two or more to introduce a phosphate group.
  • phosphoric acid, sodium salt of phosphoric acid, potassium salt of phosphoric acid, and phosphoric acid from the viewpoint of high efficiency of introduction of phosphoric acid group, easy defibration in the following defibration step, and easy industrial application.
  • Ammonium salt is preferred.
  • sodium dihydrogen phosphate and disodium hydrogen phosphate are preferable.
  • the phosphoric acid-based compound A as an aqueous solution because the reaction can proceed uniformly and the efficiency of introducing the phosphoric acid group is high.
  • the pH of the aqueous solution of the phosphoric acid-based compound A is preferably 7 or less because the efficiency of introducing the phosphoric acid group is high, but the pH is preferably 3 to 7 from the viewpoint of suppressing the hydrolysis of the pulp fiber.
  • a phosphoric acid-based compound A is added to a suspension of a cellulosic raw material having a solid content concentration of 0.1 to 10% by mass with stirring to introduce a phosphoric acid group into the cellulose.
  • the amount of the phosphoric acid compound A added is preferably 0.2 to 500 parts by mass and more preferably 1 to 400 parts by mass as the amount of the phosphorus element.
  • the ratio of the phosphoric acid-based compound A is at least the above lower limit value, the yield of the fine fibrous cellulose can be further improved. However, if the upper limit is exceeded, the effect of improving the yield will reach a plateau, which is not preferable from the viewpoint of cost.
  • a powder or an aqueous solution of compound B may be mixed.
  • the compound B is not particularly limited, but a nitrogen-containing compound showing basicity is preferable.
  • “Basic” here is defined as the aqueous solution exhibiting a pink to red color in the presence of a phenolphthalein indicator, or the pH of the aqueous solution being greater than 7.
  • the basic nitrogen-containing compound used in the present invention is not particularly limited as long as the effect of the present invention is exhibited, but a compound having an amino group is preferable.
  • urea methylamine, ethylamine, trimethylamine, triethylamine, monoethanolamine, diethanolamine, triethanolamine, pyridine, ethylenediamine, hexamethylenediamine and the like can be mentioned.
  • urea which is low in cost and easy to handle, is preferable.
  • the amount of compound B added is preferably 2 to 1000 parts by mass, more preferably 100 to 700 parts by mass, based on 100 parts by mass of the solid content of the cellulose raw material.
  • the reaction temperature is preferably 0 to 95 ° C, more preferably 30 to 90 ° C.
  • the reaction time is not particularly limited, but is about 1 to 600 minutes, more preferably 30 to 480 minutes.
  • the conditions of the esterification reaction are within these ranges, it is possible to prevent the cellulose from being excessively esterified and easily dissolved, and the yield of the phosphate esterified cellulose becomes good.
  • After dehydrating the obtained phosphoric acid esterified cellulose suspension it is preferable to heat-treat it at 100 to 170 ° C. from the viewpoint of suppressing hydrolysis of cellulose. Further, it is preferable to heat at 130 ° C. or lower, preferably 110 ° C. or lower while water is contained in the heat treatment, remove water, and then heat-treat at 100 to 170 ° C.
  • the degree of phosphate group substitution per glucose unit of the phosphate-esterified cellulose is preferably 0.001 or more and less than 0.40.
  • the degree of phosphate group substitution per glucose unit is less than 0.001, nano-defibration cannot be sufficiently performed.
  • the degree of phosphate substitution per glucose unit is larger than 0.40, it may not be obtained as nanofibers because it swells or dissolves.
  • the phosphoric acid esterified cellulose raw material obtained above is washed by boiling and then washing with cold water.
  • esterification modifications are substitution reaction modifications.
  • the degree of substitution in phosphoric acid esterified cellulose and the degree of substitution in the case of cellulose nanofibers are usually the same.
  • the phosphoric acid group introduced into the cellulose raw material is usually a salt type and is an alkali metal salt such as a sodium salt.
  • the alkali metal salt of the phosphate esterified cellulose may be replaced with another cationic salt such as a phosphonium salt, an imidazolinium salt, an ammonium salt or a sulfonium salt. The substitution can be performed by a known method.
  • a dispersion of chemically modified cellulose obtained by the above method is prepared.
  • Water is preferable as the dispersion medium because of its ease of handling.
  • the concentration of the chemically modified cellulose in the dispersion at the time of defibration is preferably 0.01 to 10% (w / v) in consideration of the efficiency of defibration and dispersion.
  • the device used for defibrating chemically modified cellulose is not particularly limited, but a device such as a high-speed rotary type, a colloid mill type, a high-pressure type, a roll mill type, or an ultrasonic type can be used.
  • a strong shearing force to the dispersion of chemically modified cellulose.
  • a wet high-pressure or ultra-high pressure homogenizer capable of applying a pressure of 50 MPa or more to the dispersion and applying a strong shearing force.
  • the pressure is more preferably 100 MPa or more, still more preferably 140 MPa or more.
  • the dispersion may be pretreated, if necessary, using a known mixing, stirring, emulsifying, and dispersing device such as a high-speed shear mixer. ..
  • a high-pressure homogenizer is a pump that pressurizes (high pressure) the fluid and ejects it from a very delicate gap provided in the flow path, so that it is emulsified and dispersed by the total energy such as collision between particles and shearing force due to pressure difference.
  • a device for crushing, crushing, and ultra-fine particles is a pump that pressurizes (high pressure) the fluid and ejects it from a very delicate gap provided in the flow path, so that it is emulsified and dispersed by the total energy such as collision between particles and shearing force due to pressure difference.
  • the chemically modified cellulose nanofibers may be used in the state of a dispersion, or may be dried (removed of the dispersion medium), pulverized, and classified and used as a powder.
  • the chemically modified cellulose nanofiber used in the present invention may contain other components, if necessary.
  • a water-soluble polymer it is preferable to allow a water-soluble polymer to coexist with a dispersion of chemically modified cellulose nanofibers before drying because the redispersibility is improved.
  • the water-soluble polymer improves the redispersibility is not clear, but the water-soluble polymer covers the low charge density portion of the surface of the chemically modified cellulose nanofibers and suppresses the formation of hydrogen bonds during drying. It is presumed that this is to prevent the aggregation of the nanofibers.
  • water-soluble polymer When chemically modified cellulose nanofibers are used as powder, examples of the water-soluble polymer that can coexist during the production of the powder include cellulose derivatives (carboxymethyl cellulose, methyl cellulose, hydroxypropyl cellulose, ethyl cellulose), xanthan gum, xylolcan, and the like.
  • cellulose derivatives are preferable from the viewpoint of affinity with chemically modified cellulose nanofibers, and carboxymethyl cellulose and salts thereof are particularly preferable. It is considered that water-soluble polymers such as carboxymethyl cellulose and its salts penetrate between chemically modified cellulose nanofibers and widen the distance between the nanofibers to improve redispersibility.
  • carboxymethyl cellulose or a salt thereof is used as the water-soluble polymer
  • Those of 0.65 to 1.1 are more preferable, and those of 0.65 to 1.1 are further preferable.
  • a molecule having a long molecule (high viscosity) is preferable because it has a high effect of widening the distance between nanofibers.
  • the fiber shape can be confirmed in the above-mentioned water. Distinguished from fiber.
  • the blending amount of the water-soluble polymer is preferably 5% by mass to 300% by mass, more preferably 20% by mass to 300% by mass, and 25% by mass with respect to the chemically modified cellulose nanofiber (absolute dry solid content). % To 200% by mass is more preferable, and 25% by mass to 60% by mass is further preferable.
  • a water-soluble polymer is blended in an amount of 5% by mass or more, the effect of improving redispersibility can be obtained.
  • the blending amount of the water-soluble polymer exceeds 300% by mass, problems such as viscosity characteristics such as thixotropy characteristic of chemically modified cellulose nanofibers and deterioration of dispersion stability may occur.
  • the blending amount of the water-soluble polymer is 25% by mass or more, particularly excellent redispersibility can be obtained, which is preferable. Further, considering the thixotropy property, it is preferably 200% by mass or less, and particularly preferably 60% by mass or less.
  • a dry solid containing chemically modified cellulose nanofibers by drying (removing the dispersion medium) a dispersion of chemically modified cellulose nanofibers or, in some cases, a dispersion of chemically modified cellulose nanofibers mixed with a water-soluble polymer. To get. At this time, it is preferable to adjust the pH of the dispersion to 9 to 11 and then dry it because the redispersibility is further improved.
  • the drying method a known method can be used and is not particularly limited. For example, spray drying, squeezing, air drying, hot air drying, and vacuum drying can be mentioned.
  • the drying device is not particularly limited, but is a continuous tunnel drying device, a band drying device, a vertical drying device, a vertical turbo drying device, a multi-stage disk drying device, an aeration drying device, a rotary drying device, an air flow drying device, and a spray.
  • a box-type drying device, a stirring drying device, or the like can be used alone or in combination of two or more.
  • the device for forming and drying a thin film include a drum drying device and a belt drying device for forming a thin film on a drum or a belt with a blade, a die, or the like and drying the thin film.
  • the film thickness of the thin film when the thin film is formed and dried is preferably 50 ⁇ m to 1000 ⁇ m, more preferably 100 ⁇ m to 300 ⁇ m. When it is 50 ⁇ m or more, it is easy to scrape after drying, and when it is 1000 ⁇ m or less, the effect of further improving the redispersibility can be seen.
  • the residual water content after drying is preferably 2% by mass to 15% by mass with respect to the entire dried product.
  • the pulverization method is not particularly limited, and a known method can be used, and examples thereof include a dry pulverization method in which treatment is performed in the form of powder and a wet pulverization method in which treatment is performed in the state of being dispersed or dissolved in a liquid.
  • wet pulverization it may be performed before the above-mentioned drying.
  • the device used in the dry pulverization method is not limited to these, and examples thereof include a cutting type mill, an impact type mill, an air flow type mill, and a medium type mill. These can be processed individually or in combination, and in several stages with the same model. Of these, the airflow type mill is preferable.
  • Cutting mills include mesh mills (Horai Co., Ltd.), Atoms (Yamamoto Hyakuba Co., Ltd.), knife mills (Palman Co., Ltd.), granulators (Hellbolt Co., Ltd.), and rotary cutter mills (Nara Co., Ltd.). (Made by Machinery Manufacturing Co., Ltd.), etc. are exemplified.
  • Impact mills include Palperizer (manufactured by Hosokawa Micron Co., Ltd.), Fine Impact Mill (manufactured by Hosokawa Micron Co., Ltd.), Supermicron Mill (manufactured by Hosokawa Micron Co., Ltd.), Sample Mill (manufactured by Seishin Co., Ltd.), and Bantam Mill (manufactured by Seishin Co., Ltd.).
  • Examples include Seishin Co., Ltd.), Atomizer (Seishin Co., Ltd.), Tornado Mill (Nikkiso Co., Ltd.), Turbo Mill (Turbo Industry Co., Ltd.), Bevel Impactor (Aikawa Iron Works Co., Ltd.), and the like.
  • Airflow type mills include CGS type jet mill (manufactured by Mitsui Mine Co., Ltd.), jet mill (manufactured by Misho Industry Co., Ltd.), Ebara Jet Micronizer (manufactured by Ebara Corporation), and selenium mirror (Masuyuki Sangyo Co., Ltd.). (Manufactured by Nippon Pneumatic Industries Co., Ltd.), supersonic jet mill (manufactured by Nippon Pneumatic Industries Co., Ltd.), etc. are exemplified. Examples of the medium mill include a vibration ball mill and the like.
  • Examples of the apparatus used in the wet pulverization method include a mass colloider (manufactured by Masuyuki Sangyo Co., Ltd.), a high-pressure homogenizer (manufactured by Sanmaru Kikai Kogyo Co., Ltd.), and a medium mill.
  • a mass colloider manufactured by Masuyuki Sangyo Co., Ltd.
  • a high-pressure homogenizer manufactured by Sanmaru Kikai Kogyo Co., Ltd.
  • a medium mill a bead mill (manufactured by IMEX Co., Ltd.) and the like can be exemplified.
  • classification After pulverizing the chemically modified cellulose nanofibers, classification is performed to adjust the particle size to a specific size.
  • the classification method is not particularly limited, but can be performed, for example, by passing through a mesh (sieve) having a predetermined opening.
  • a mesh preferably 20 to 400 mesh, more preferably 40 to 300 mesh, still more preferably 60 to 200 mesh can be used, and these may be used in a multi-stage system.
  • the median diameter of the finally obtained powder is 10.0 ⁇ m to 150.0 ⁇ m, preferably 30.0 ⁇ m to 130.0 ⁇ m, and more preferably 50.0 ⁇ m to 120.0 ⁇ m.
  • the components other than the cellulose nanofibers used in the cleaning agent of the present invention can be used without particular limitation as long as they are components generally used in the cleaning agent.
  • Examples of the main agent of the detergency component that can be used in the cleaning agent of the present invention include potash ken substrate, fatty acid sodium, fatty acid potassium, alpha sulfo fatty acid ester sodium, linear alkylbenzene sulfonate sodium, alkyl sulfate ester sodium, and alkyl.
  • auxiliary agent examples include sodium carbonate, sodium silicate, zeolite, citric acid and its salt, EDTA (ethylenediaminetetraacetic acid) and its salt, hydroxyethanephosphonic acid, L-aspartate diacetic acid (ASDA), L-.
  • ASDA L-aspartate diacetic acid
  • examples thereof include glutamate diacetic acid (GLDA) and sodium sulfate.
  • the cleaning agent of the present invention may contain, for example, glycerin, propanediol, polyethylene glycol, thickener, preservative, moisturizer, oil, fragrance, water, ethanol and the like, if necessary.
  • the content of the cellulose nanofibers is preferably 0.05% by mass or more and 5% by mass or less, and more preferably 0.05% by mass or more and 3% by mass or less in terms of solid content, based on the total cleaning agent. .. If it is 0.05% by mass or less, the function of CNF is not sufficiently exhibited, and if it is 5% by mass or more, the viscosity is high and the workability is deteriorated.
  • the cleaning agent of the present invention can be used as, for example, a washing pigment, a cleansing cosmetic, a soap, a shampoo, a hand soap or a body soap.
  • the shape that the cleaning agent of the present invention can take is not particularly limited, and it does not matter whether it is in the form of powder, solid, cream, gel, or liquid.
  • raw materials and the like can be appropriately selected depending on the intended use and dosage form, and the blending ratio and addition amount can be changed.
  • the cleaning agent of the present invention contains cellulose nanofibers, it has an excellent cleaning effect.
  • the reason why this effect can be obtained with respect to the cleaning agent of the present invention is not clear, but it is because the finer foam makes it easier to absorb and adsorb skin stains, and the elasticity of the foam improves the cleaning efficiency. It is speculated that there is no such thing.
  • the cleaning agent of the present invention is produced by a method in which cellulose nanofibers and components that can be used in the above-mentioned cleaning agent are weighed and mixed at a ratio according to the intended use.
  • the manufacturing equipment and manufacturing conditions known manufacturing equipment and manufacturing conditions can be adopted depending on the properties of the cleaning agent and the intended use.
  • Aspect ratio average fiber length / average fiber diameter
  • Example 1 Manufacturing of carboxymethylated cellulose nanofibers
  • IPA isopropanol
  • LBKP hardwood pulp
  • Mercerized cellulose was prepared by stirring and mixing at 30 ° C. for 60 minutes. After further stirring, 117 parts of monochloroacetate sodium was added, and the mixture was stirred at 30 ° C. for 30 minutes, then heated to 70 ° C.
  • the obtained sodium salt of carboxymethylated cellulose was dispersed in water to obtain a 1% (w / v) aqueous dispersion. This was treated three times with a high-pressure homogenizer at 150 MPa to obtain a dispersion of carboxymethylated cellulose nanofibers.
  • the obtained carboxymethylated cellulose nanofibers had an average fiber diameter of 3.2 nm and an aspect ratio of 40.
  • the obtained carboxymethyl cellulose nanofibers were made into a dispersion having a solid content of 0.7% by mass with water, and carboxymethyl cellulose (manufactured by Nippon Paper Co., Ltd., trade name: F350HC-4, viscosity (1% by mass, 25 ° C.), 60 rpm) about 3000 mPa ⁇ s, carboxymethyl substitution degree about 0.90) is 40% by mass with respect to the carboxymethylated cellulose nanofiber (that is, when the solid content of the carboxymethyl cellulose nanofiber is 100 parts by mass).
  • the solid content of carboxymethyl cellulose was 40 parts by mass), and the mixture was stirred with a TK homomixer (12,000 rpm) for 60 minutes.
  • Cleaning agents were prepared according to the formulations shown in Table 1. Specifically, the CNF powder 1 obtained above was dispersed with propanediol. Next, the aqueous layer containing the propanediol dispersion of CNF powder 1 and the oil layer were each heated to 80 ° C. The aqueous layer and the oil layer were mixed and stirred using a homomixer at 5000 rpm for 1 minute. Potassium stone Ken substrate was added to this, and manual stirring was performed. Finally, K hydroxide was added to form a ken, and the mixture was cooled with stirring until the temperature became 40 ° C. or lower to obtain Cleaning Agent 1.
  • Cleaning agents were prepared according to the formulations shown in Table 2. Specifically, the cleaning agent 2 was obtained in the same manner as in Example 1 except that the CNF powder 1 was not used and the aqueous layer containing propanediol was used.
  • the L * value after application of pseudo-sebum is prepared for measurement after application separately from for cleaning, and the average value measured 5 times at different locations is used to calculate the cleaning rate of cleaning charges 1 and 2. board. Further, the larger the L * value, the brighter the image.
  • the cleaning agent containing the cellulose nanofibers of Example 1 had a higher cleaning rate and an excellent cleaning effect as compared with the cleaning agent containing no cellulose nanofibers of Comparative Example 1.
  • the pseudo-sebum was compared with the case of using the cleaning agent containing no cellulose nanofibers of Comparative Example 1. It was confirmed that the effect of removing stains on the surface was very high.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • Epidemiology (AREA)
  • Emergency Medicine (AREA)
  • Birds (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Dermatology (AREA)
  • Cosmetics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

A cleansing preparation containing cellulose nanofibers is provided.

Description

洗浄料Cleaning fee
 本発明は、セルロースナノファイバーを含む洗浄料に関する。 The present invention relates to a cleaning agent containing cellulose nanofibers.
 微細化したセルロース繊維を化粧料に添加することが行われており、例えば特許文献1には、平均繊維径、および、平均繊維径に対する平均繊維長の比がそれぞれ特定の範囲にあるセルロース繊維を化粧料用添加剤として用いることが記載されている。 Finely divided cellulose fibers are added to cosmetics. For example, in Patent Document 1, a cellulose fiber having an average fiber diameter and a ratio of an average fiber length to an average fiber diameter in a specific range is described. It is described to be used as an additive for cosmetics.
 また、特許文献2には、増粘剤として変性セルロースファイバーを含むクレンジング化粧料が記載されている。 Further, Patent Document 2 describes a cleansing cosmetic containing a modified cellulose fiber as a thickener.
国際公開第2014/088034号International Publication No. 2014/088034 国際公開第2018/186261号International Publication No. 2018/186261
 しかしながら、特許文献2は、液状のクレンジング化粧料に特定の置換基を備えたセルロースファイバーを含ませることにより、適度な粘性を付与して、手に取った時に指の間からたれ落ちにくく、展延性にすぐれ、ポンプ方式の容器に充填した際の吐出性に優れるクレンジング化粧料を提供することを目的とするものであり、洗浄力を向上させる観点での検討はなされていない。 However, in Patent Document 2, liquid cleansing cosmetics contain cellulose fibers having a specific substituent to impart appropriate viscosity, and when they are picked up, they do not easily drip from between fingers and spread. The purpose is to provide a cleansing cosmetic having excellent ductility and excellent ejection property when filled in a pump-type container, and no study has been made from the viewpoint of improving detergency.
 そこで、本発明は、安全性に優れた、洗浄効果の高い洗浄料を提供することを目的とする。 Therefore, an object of the present invention is to provide a cleaning agent having excellent safety and a high cleaning effect.
 本発明者は、かかる目的を達成するため鋭意検討した結果、セルロースナノファイバー(CNF)を配合することが有効であることを見出し、本発明を完成した。 As a result of diligent studies to achieve such an object, the present inventor has found that it is effective to blend cellulose nanofibers (CNF), and has completed the present invention.
 本発明は以下を提供する。
(1) セルロースナノファイバーを含有する洗浄料。
(2) 前記セルロースナノファイバーを、0.05質量%以上5質量%以下含む(1)記載の洗浄料。
(3) 前記セルロースナノファイバーが、カルボキシメチル化セルロースナノファイバーである、(1)又は(2)に記載の洗浄料。
(4) 前記カルボキシメチル化セルロースナノファイバーは、セルロースの無水グルコース単位当たりのカルボキシメチル置換度が0.01~0.50であり、セルロースI型の結晶化度が40%以上である、(3)記載の洗浄料。
(5) さらにカルボキシメチルセルロースを含有する、(1)~(4)のいずれかに記載の洗浄料。
(6) 洗浄料が、洗顔料、クレンジング用化粧料、石鹸、シャンプー、ハンドソープ又はボディーソープである、(1)~(5)のいずれかに記載の洗浄料。
The present invention provides:
(1) A cleaning agent containing cellulose nanofibers.
(2) The cleaning agent according to (1), which contains the cellulose nanofibers in an amount of 0.05% by mass or more and 5% by mass or less.
(3) The cleaning agent according to (1) or (2), wherein the cellulose nanofibers are carboxymethylated cellulose nanofibers.
(4) The carboxymethylated cellulose nanofiber has a degree of carboxymethyl substitution per anhydrous glucose unit of cellulose of 0.01 to 0.50, and a degree of crystallinity of cellulose type I is 40% or more (3). ) The listed cleaning fee.
(5) The cleaning agent according to any one of (1) to (4), which further contains carboxymethyl cellulose.
(6) The cleaning agent according to any one of (1) to (5), wherein the cleaning agent is a washing pigment, a cleansing cosmetic, soap, shampoo, hand soap or body soap.
 本発明によれば、安全性に優れた、洗浄効果の高い洗浄料を提供することができる。 According to the present invention, it is possible to provide a cleaning agent having excellent safety and a high cleaning effect.
疑似皮脂塗布前のバイオスキンのマイクロスコープを用いた観察結果を示す。The observation result using the microscope of the bioskin before the application of pseudo-sebum is shown. 疑似皮脂塗布後のバイオスキンのマイクロスコープを用いた観察結果を示す。The observation results using a microscope of Bioskin after application of pseudo-sebum are shown. 実施例1の洗浄料1を用いて洗浄した後のバイオスキンのマイクロスコープを用いた観察結果を示す。The observation result using the microscope of the bioskin after washing with the washing agent 1 of Example 1 is shown. 比較例1の洗浄料2を用いて洗浄した後のバイオスキンのマイクロスコープを用いた観察結果を示す。The observation result using the microscope of the bioskin after washing with the washing agent 2 of the comparative example 1 is shown.
 以下、本発明を詳細に説明する。本発明において「~」は端値を含む。すなわち「X~Y」はその両端の値XおよびYを含む。 Hereinafter, the present invention will be described in detail. In the present invention, "-" includes a fractional value. That is, "X to Y" includes the values X and Y at both ends thereof.
 本発明の洗浄料は、必須成分として、セルロースナノファイバーを含む。 The cleaning agent of the present invention contains cellulose nanofibers as an essential component.
 (セルロースナノファイバー)
 本発明において、セルロースナノファイバー(CNF)は、セルロース原料であるパルプなどがナノメートルレベルまで微細化されたもので、繊維径が3~500nm程度の微細繊維である。セルロースナノファイバーの平均繊維径および平均繊維長は、原子間力顕微鏡(AFM)または透過型電子顕微鏡(TEM)を用いて、各繊維を観察した結果から得られる繊維径および繊維長を平均することによって得ることができる。セルロースナノファイバーは、パルプに機械的な力を加えて微細化することで得られ、あるいは、カルボキシル化したセルロース(酸化セルロースとも呼ぶ)、カルボキシメチル化したセルロース、リン酸エステル基を導入したセルロース、カチオン化したセルロースなどの化学変性により得られ変性セルロースを解繊することによって得ることができる。本発明においては、化学変性セルロースを解繊することによって得られた化学変性CNFを用いることが好ましい。化学変性の種類としては、カルボキシアルキル化、カルボキシル化、エステル化が好ましく、カルボキシアルキル化の中でもカルボキシメチル化されたものを用いることがさらに好ましい。微細繊維の平均繊維長と平均繊維径は、化学変性処理、解繊処理により調整することができる。
(Cellulose nanofiber)
In the present invention, the cellulose nanofiber (CNF) is a fine fiber in which pulp or the like, which is a raw material for cellulose, is miniaturized to the nanometer level, and the fiber diameter is about 3 to 500 nm. The average fiber diameter and average fiber length of cellulose nanofibers shall be the average of the fiber diameter and fiber length obtained from the results of observing each fiber using an atomic force microscope (AFM) or a transmission electron microscope (TEM). Can be obtained by. Cellulose nanofibers can be obtained by applying mechanical force to the pulp to make it finer, or carboxylated cellulose (also called oxidized cellulose), carboxymethylated cellulose, or cellulose into which a phosphate ester group has been introduced. It can be obtained by chemically modifying cationized cellulose or the like and by defibrating the modified cellulose. In the present invention, it is preferable to use the chemically modified CNF obtained by defibrating the chemically modified cellulose. As the type of chemical modification, carboxyalkylation, carboxylation, and esterification are preferable, and among the carboxyalkylations, those carboxymethylated are more preferable. The average fiber length and average fiber diameter of the fine fibers can be adjusted by a chemical modification treatment or a defibration treatment.
 本発明に用いるセルロースナノファイバーの平均アスペクト比は、特に限定されないが、通常25以上である。上限は特に限定されないが、通常は1000以下である。アスペクト比が25以上であると、その繊維状の形状から、チキソ性の向上といった効果が得られる。平均繊維径及び平均繊維長は、径が20nm以下の場合は原子間力顕微鏡(AFM)、20nm以上の場合は電界放出型走査電子顕微鏡(FE-SEM)を用いて、ランダムに選んだ200本の繊維について解析し、平均を算出することにより、測定することができる。平均アスペクト比は、下記の式により算出することができる:
 アスペクト比=平均繊維長/平均繊維径
The average aspect ratio of the cellulose nanofibers used in the present invention is not particularly limited, but is usually 25 or more. The upper limit is not particularly limited, but is usually 1000 or less. When the aspect ratio is 25 or more, the fibrous shape gives an effect of improving thixotropic property. The average fiber diameter and average fiber length are 200 randomly selected using an atomic force microscope (AFM) when the diameter is 20 nm or less and a field emission scanning electron microscope (FE-SEM) when the diameter is 20 nm or more. It can be measured by analyzing the fibers of the above and calculating the average. The average aspect ratio can be calculated by the following formula:
Aspect ratio = average fiber length / average fiber diameter
 なお、セルロースナノファイバーとして、後述するカルボキシメチル化セルロースナノファイバーを用いる場合は、平均繊維径は、3nm~500nm、好ましくは3nm~150nm、より好ましくは3nm~20nm、さらに好ましくは5nm~19nm、さらに好ましくは5nm~15nmである。また、アスペクト比は、特に限定されないが、350以下であることが好ましく、300以下であることがさらに好ましく、200以下であることがさらに好ましく、120以下であることがさらに好ましく、100以下であることがさらに好ましく、80以下であることがさらに好ましい。アスペクト比の下限は、特に限定されないが、好ましくは25以上であり、さらに好ましくは30以上である。カルボキシメチル化セルロースナノファイバーのアスペクト比は、カルボキシメチル化時の溶媒と水の混合比、薬品添加量、及びカルボキシメチル化の度合によって制御できる。また、上記範囲のアスペクト比を有するカルボキシメチル化セルロースナノファイバーは、例えば、後述する製法により製造することができる。 When the carboxymethylated cellulose nanofiber described later is used as the cellulose nanofiber, the average fiber diameter is 3 nm to 500 nm, preferably 3 nm to 150 nm, more preferably 3 nm to 20 nm, still more preferably 5 nm to 19 nm, and further. It is preferably 5 nm to 15 nm. The aspect ratio is not particularly limited, but is preferably 350 or less, more preferably 300 or less, further preferably 200 or less, further preferably 120 or less, and even more preferably 100 or less. It is more preferably 80 or less, and even more preferably 80 or less. The lower limit of the aspect ratio is not particularly limited, but is preferably 25 or more, and more preferably 30 or more. The aspect ratio of the carboxymethylated cellulose nanofibers can be controlled by the mixing ratio of the solvent and water at the time of carboxymethylation, the amount of chemicals added, and the degree of carboxymethylation. Further, the carboxymethylated cellulose nanofiber having an aspect ratio in the above range can be produced, for example, by a production method described later.
 (セルロース原料)
 セルロース原料としては、植物(例えば、木材、竹、麻、ジュート、ケナフ、農地残廃物、布、パルプ(針葉樹未漂白クラフトパルプ(NUKP)、針葉樹漂白クラフトパルプ(NBKP)、広葉樹未漂白クラフトパルプ(LUKP)、広葉樹漂白クラフトパルプ(LBKP)、針葉樹未漂白サルファイトパルプ(NUSP)、針葉樹漂白サルファイトパルプ(NBSP)サーモメカニカルパルプ(TMP)、再生パルプ、古紙等)、動物(例えばホヤ類)、藻類、微生物(例えば酢酸菌(アセトバクター))、微生物産生物等を起源とするものが知られており、本発明ではそのいずれも使用できる。植物または微生物由来のセルロース繊維が好ましく、植物由来のセルロース繊維がより好ましい。
(Cellulose raw material)
Cellulose raw materials include plants (eg, wood, bamboo, hemp, jute, kenaf, farmland waste, cloth, pulp (conifer unbleached kraft pulp (NUKP), conifer bleached kraft pulp (NBKP), broadleaf unbleached kraft pulp (NBKP)). LUKP), broadleaf bleached kraft pulp (LBKP), conifer unbleached sulphite pulp (NUSP), conifer bleached sulphite pulp (NBSP) thermomechanical pulp (TMP), recycled pulp, used paper, etc.), animals (eg, squirrels), Those originating from algae, microorganisms (for example, acetic acid bacteria (acetobacter)), microbial products, etc. are known, and any of them can be used in the present invention. Cellulose fibers derived from plants or microorganisms are preferable, and they are derived from plants. Cellulose fibers are more preferred.
 化学変性CNFの原料となる化学変性セルロースとしては、水や水溶性有機溶媒に分散した際にも繊維状の形状の少なくとも一部が維持されるものを用いる。繊維状の形状が維持されないもの(すなわち、分散媒に溶解するもの)を用いると、ナノファイバーを得ることができない。分散した際に繊維状の形状の少なくとも一部が維持されるとは、化学変性セルロースの分散体を電子顕微鏡で観察すると、繊維状の物質を観察することができるものである。また、X線回折で測定した際に、セルロースI型結晶のピークを観測することができる化学変性セルロースが好ましい。 As the chemically modified cellulose that is the raw material of the chemically modified CNF, those that maintain at least a part of the fibrous shape even when dispersed in water or a water-soluble organic solvent are used. Nanofibers cannot be obtained if fibrous shapes are not maintained (ie, those that dissolve in a dispersion medium). The fact that at least a part of the fibrous shape is maintained when dispersed means that the fibrous substance can be observed by observing the dispersion of chemically modified cellulose with an electron microscope. Further, chemically modified cellulose capable of observing the peak of cellulose type I crystal when measured by X-ray diffraction is preferable.
 (セルロースI型の結晶化度)
 原料の化学変性セルロースにおけるセルロースの結晶化度は、結晶I型が40%以上であることが好ましく、50%以上であることがより好ましい。セルロースI型の結晶化度が40%以上と高いと、ナノファイバー化した際に、水等の溶媒中で溶解せずに結晶構造を維持するセルロースの割合が高いため、チキソ性が高くなり(チキソトロピー)、増粘剤等の粘度調整用途に適するようになる。また、洗浄料に含有させた際に、泡質が改善され、きめ細かく弾力性の高い泡が得られるという利点が得られる。化学変性セルロースのセルロースI型の結晶化度の上限は特に限定されない。現実的には90%程度が上限となると考えられる。
(Crystallinity of cellulose type I)
The crystallinity of the chemically modified cellulose as a raw material is preferably 40% or more, and more preferably 50% or more for the crystal type I. When the crystallinity of cellulose type I is as high as 40% or more, the thixotropic property becomes high because the proportion of cellulose that does not dissolve in a solvent such as water and maintains the crystal structure when nanofibers are formed is high. It becomes suitable for viscosity adjustment applications such as thixotropy) and thickeners. Further, when it is contained in the cleaning agent, the foam quality is improved, and there is an advantage that fine and highly elastic foam can be obtained. The upper limit of the crystallinity of cellulose type I of chemically modified cellulose is not particularly limited. In reality, about 90% is considered to be the upper limit.
 セルロースの結晶性は、原料であるセルロースの結晶化度、及び化学変性の度合によって制御できる。化学変性セルロースナノファイバーにおいて好ましくは40%以上のセルロースI型の結晶化度を維持するためには、セルロースI型の結晶化度が高いセルロースを原料として用いることが好ましい。原料となるセルロースのセルロースI型の結晶化度は、好ましくは、70%以上であり、さらに好ましくは80%以上である。 The crystallinity of cellulose can be controlled by the degree of crystallinity of the raw material cellulose and the degree of chemical denaturation. In order to maintain the crystallinity of cellulose I type preferably 40% or more in the chemically modified cellulose nanofibers, it is preferable to use cellulose having a high crystallinity of cellulose I type as a raw material. The crystallinity of cellulose type I of the raw material cellulose is preferably 70% or more, and more preferably 80% or more.
 化学変性セルロース及び化学変性CNFのセルロースI型の結晶化度の測定方法は、以下の通りである:
 試料をガラスセルに乗せ、X線回折測定装置(LabX XRD-6000、株式会社島津製作所製)を用いて測定する。結晶化度の算出はSegal等の手法を用いて行い、X線回折図の2θ=10゜~30゜の回折強度をベースラインとして、2θ=22.6゜の002面の回折強度と2θ=18.5゜のアモルファス部分の回折強度から次式により算出する。
The method for measuring the crystallinity of cellulose type I of chemically modified cellulose and chemically modified CNF is as follows:
The sample is placed on a glass cell and measured using an X-ray diffraction measuring device (LabX XRD-6000, manufactured by Shimadzu Corporation). The crystallinity is calculated using a method such as Segal, and the diffraction intensity of the 002 surface of 2θ = 22.6 ° and the diffraction intensity of 2θ = 2θ = 22.6 ° with the diffraction intensity of 2θ = 10 ° to 30 ° in the X-ray diffraction diagram as the baseline. It is calculated by the following formula from the diffraction intensity of the amorphous part of 18.5 °.
Xc=(I002c-Ia)/I002c×100
Xc:セルロースのI型の結晶化度(%)
I002c:2θ=22.6゜、002面の回折強度
Ia:2θ=18.5゜、アモルファス部分の回折強度。
Xc = (I002c-Ia) / I002c × 100
Xc: Cellulose type I crystallinity (%)
I002c: 2θ = 22.6 °, diffraction intensity of 002 surface Ia: 2θ = 18.5 °, diffraction intensity of amorphous part.
 なお、後述するカルボキシメチル化セルロースにおけるセルロースの結晶性は、マーセル化剤の濃度と処理時の温度、並びにカルボキシメチル化の度合によって制御できる。マーセル化及びカルボキシメチル化においては高濃度のアルカリが使用されるために、セルロースのI型結晶がII型に変換されやすいが、アルカリ(マーセル化剤)の使用量を調整するなどして変性の度合いを調整することによって、所望の結晶性を維持させることができる。 The crystallinity of cellulose in carboxymethylated cellulose, which will be described later, can be controlled by the concentration of the mercerizing agent, the temperature at the time of treatment, and the degree of carboxymethylation. Since a high concentration of alkali is used in mercerization and carboxymethylation, type I crystals of cellulose are easily converted to type II, but they are modified by adjusting the amount of alkali (mercerizing agent) used. By adjusting the degree, the desired crystallinity can be maintained.
 化学変性CNFにおけるI型結晶の割合は、解繊処理前の化学変性セルロースにおけるものと、通常、同じである。 The proportion of type I crystals in the chemically modified CNF is usually the same as that in the chemically modified cellulose before the defibration treatment.
 (化学変性)
 (カルボキシアルキル化)
 化学変性セルロースとして、カルボキシメチル基等のカルボキシアルキル基をセルロースに導入したものを用いることができる。本発明におけるカルボキシアルキル基とは、-RCOOH(酸型)または-RCOOM(塩型)をいう。ここでRはメチレン基、エチレン基等のアルキレン基、Mは金属イオンである。カルボキシアルキル化セルロースは公知の方法で得てもよく、また市販品を用いてもよい。セルロースの無水グルコース単位当たりのカルボキシアルキル置換度は0.50以下であることが好ましい。さらにカルボキシアルキル基がカルボキシメチル基である場合、セルロースの無水グルコース単位当たりのカルボキシメチル置換度は0.50以下であることが好ましい。当該置換度が0.50より大きいと結晶性が低下し、溶解成分の割合が増加するため、ナノファイバーとしての機能が失われる。またカルボキシアルキル置換度及びカルボキシメチル置換度の下限値は0.01以上が好ましい。操業性を考慮すると当該置換度は0.02~0.50であることがより好ましく、0.05~0.50であることがさらに好ましく、0.10~0.40であることがさらに好ましい。
(Chemical denaturation)
(Carboxyalkylation)
As the chemically modified cellulose, one in which a carboxyalkyl group such as a carboxymethyl group is introduced into cellulose can be used. The carboxyalkyl group in the present invention means -RCOH (acid type) or -RCOM (salt type). Here, R is an alkylene group such as a methylene group and an ethylene group, and M is a metal ion. The carboxyalkylated cellulose may be obtained by a known method, or a commercially available product may be used. The degree of carboxyalkyl substitution of cellulose per anhydrous glucose unit is preferably 0.50 or less. Further, when the carboxyalkyl group is a carboxymethyl group, the degree of carboxymethyl substitution per anhydrous glucose unit of cellulose is preferably 0.50 or less. If the degree of substitution is greater than 0.50, the crystallinity decreases and the proportion of the dissolved component increases, so that the function as a nanofiber is lost. The lower limit of the carboxyalkyl substitution degree and the carboxymethyl substitution degree is preferably 0.01 or more. Considering operability, the degree of substitution is more preferably 0.02 to 0.50, further preferably 0.05 to 0.50, and even more preferably 0.10 to 0.40. ..
 本発明において無水グルコース単位とは、セルロースを構成する個々の無水グルコース(グルコース残基)を意味する。また、カルボキシメチル置換度(エーテル化度ともいう。)とは、セルロースを構成するグルコース残基中の水酸基のうちカルボキシメチルエーテル基に置換されているものの割合(1つのグルコース残基当たりのカルボキシメチルエーテル基の数)を示す。なお、カルボキシメチル置換度はDSと略すことがある。 In the present invention, the anhydrous glucose unit means individual anhydrous glucose (glucose residue) constituting cellulose. The degree of carboxymethyl substitution (also referred to as the degree of etherification) is the ratio of hydroxyl groups in the glucose residues constituting cellulose that are substituted with carboxymethyl ether groups (carboxymethyl per glucose residue). The number of ether groups) is shown. The degree of carboxymethyl substitution may be abbreviated as DS.
 このようなカルボキシアルキル化セルロースを製造する方法の一例として、以下の工程を含む方法が挙げられる。当該変性は置換反応による変性である。カルボキシメチル化セルロースを例にして説明する。
 i)発底原料と溶媒、マーセル化剤を混合し、反応温度0~70℃、好ましくは10~60℃、かつ反応時間15分~8時間、好ましくは30分~7時間、マーセル化処理する工程、
 ii)次いで、カルボキシメチル化剤をグルコース残基当たり0.05~10.0倍モル添加し、反応温度30~90℃、好ましくは40~80℃、かつ反応時間30分~10時間、好ましくは1時間~4時間、エーテル化反応を行う工程。
As an example of the method for producing such a carboxyalkylated cellulose, a method including the following steps can be mentioned. The modification is a modification due to a substitution reaction. Carboxymethylated cellulose will be described as an example.
i) The bottoming material, the solvent and the mercerizing agent are mixed and subjected to mercerization treatment at a reaction temperature of 0 to 70 ° C., preferably 10 to 60 ° C., and a reaction time of 15 minutes to 8 hours, preferably 30 minutes to 7 hours. Process,
ii) Next, a carboxymethylating agent is added in an amount of 0.05 to 10.0 times per glucose residue, and the reaction temperature is 30 to 90 ° C., preferably 40 to 80 ° C., and the reaction time is 30 minutes to 10 hours, preferably. A step of carrying out an etherification reaction for 1 to 4 hours.
 発底原料としては前述のセルロース原料を使用できる。溶媒としては、3~20質量倍の水または低級アルコール、具体的には水、メタノール、エタノール、N-プロピルアルコール、イソプロピルアルコール、N-ブタノール、イソブタノール、第3級ブタノール等の単独、または2種以上の混合媒体を使用できる。低級アルコールを混合する場合、その混合割合は60~95質量%である。マーセル化剤としては、発底原料の無水グルコース残基当たり0.5~20倍モルの水酸化アルカリ金属、具体的には水酸化ナトリウム、水酸化カリウムを使用できる。 The above-mentioned cellulose raw material can be used as the bottoming raw material. As the solvent, 3 to 20 times by mass of water or lower alcohol, specifically water, methanol, ethanol, N-propyl alcohol, isopropyl alcohol, N-butanol, isobutanol, tertiary butanol, etc. alone or 2 A mixed medium of seeds or more can be used. When lower alcohols are mixed, the mixing ratio is 60 to 95% by mass. As the mercerizing agent, 0.5 to 20 times mol of alkali metal hydroxide per anhydrous glucose residue of the bottoming material, specifically sodium hydroxide and potassium hydroxide can be used.
 前述のとおり、セルロースの無水グルコース単位当たりのカルボキシメチル置換度は0.01以上0.50以下であることが好ましい。セルロースにカルボキシメチル置換基を導入することで、セルロース同士が電気的に反発する。このため、カルボキシメチル置換基を導入したセルロースは容易にナノ解繊することができる。なお、無水グルコース単位当たりのカルボキシメチル置換基が0.01未満であると、ナノ解繊するためには多大なエネルギーが必要になると考えられる。カルボキシメチル化セルロースにおける置換度とセルロースナノファイバーとしたときの置換度は通常、同じである。 As described above, the degree of carboxymethyl substitution per anhydrous glucose unit of cellulose is preferably 0.01 or more and 0.50 or less. By introducing a carboxymethyl substituent into the cellulose, the celluloses electrically repel each other. Therefore, cellulose having a carboxymethyl substituent introduced can be easily nano-deflated. If the carboxymethyl substituent per anhydrous glucose unit is less than 0.01, it is considered that a large amount of energy is required for nanodefibration. The degree of substitution in carboxymethylated cellulose and the degree of substitution in cellulose nanofibers are usually the same.
 本発明では、上記の工程で得られるカルボキシアルキル化セルロースにおいて、セルロース原料に導入したカルボキシアルキル基は、通常、塩型であり、ナトリウム塩等のアルカリ金属塩である。解繊工程の前に、カルボキシアルキル化セルロースのアルカリ金属塩を、ホスホニウム塩、イミダゾリニウム塩、アンモニウム塩、スルホニウム塩等の他のカチオン塩に置換してもよい。置換は、公知の方法で行うことができる。 In the present invention, in the carboxyalkylated cellulose obtained in the above step, the carboxyalkyl group introduced into the cellulose raw material is usually a salt type and is an alkali metal salt such as a sodium salt. Prior to the defibration step, the alkali metal salt of the carboxyalkylated cellulose may be replaced with another cationic salt such as a phosphonium salt, an imidazolinium salt, an ammonium salt or a sulfonium salt. The substitution can be performed by a known method.
 なお、本明細書において、セルロースナノファイバーの調製に用いる化学変性セルロースの一種である「カルボキシメチル化したセルロース」は、水に分散した際にも繊維状の形状の少なくとも一部が維持されるものをいう。したがって、水溶性高分子の一種であるカルボキシメチルセルロースとは区別される。「カルボキシメチル化したセルロース」の水分散液を電子顕微鏡で観察すると、繊維状の物質を観察することができる。一方、水溶性高分子の一種であるカルボキシメチルセルロースの水分散液を観察しても、繊維状の物質は観察されない。また、「カルボキシメチル化したセルロース」はX線回折で測定した際にセルロースI型結晶のピークを観測することができるが、水溶性高分子のカルボキシメチルセルロースではセルロースI型結晶はみられない。 In the present specification, "carboxymethylated cellulose", which is a kind of chemically modified cellulose used for preparing cellulose nanofibers, maintains at least a part of the fibrous shape even when dispersed in water. To say. Therefore, it is distinguished from carboxymethyl cellulose, which is a kind of water-soluble polymer. When the aqueous dispersion of "carboxymethylated cellulose" is observed with an electron microscope, a fibrous substance can be observed. On the other hand, even when the aqueous dispersion of carboxymethyl cellulose, which is a kind of water-soluble polymer, is observed, no fibrous substance is observed. In addition, the peak of cellulose I-type crystals can be observed when "carboxymethylated cellulose" is measured by X-ray diffraction, but cellulose I-type crystals are not observed in the water-soluble polymer carboxymethyl cellulose.
 (カルボキシル化)
 化学変性セルロースとして、カルボキシル化(酸化)したセルロースを用いることができる。本発明におけるカルボキシル基とは、-COOH(酸型)または-COOM(塩型)をいう。ここで、Mは金属イオンであり、ナトリウムやカリウムが挙げられる。カルボキシル化セルロース(「酸化セルロース」とも呼ぶ)は、上記のセルロース原料を公知の方法でカルボキシル化(酸化)することにより得ることができる。特に限定されないが、カルボキシル基の量は化学変性セルロースナノファイバーの絶乾質量に対して、0.6~3.0mmol/gが好ましく、1.0~2.0mmol/gがさらに好ましい。カルボキシル化(酸化)方法の一例として、セルロース原料を、N-オキシル化合物と、臭化物、ヨウ化物、およびこれらの混合物からなる群から選択される化合物との存在下で酸化剤を用いて水中で酸化する方法を挙げることができる。この酸化反応により、セルロース表面のグルコピラノース環のC6位の一級水酸基が選択的に酸化され、表面にアルデヒド基と、カルボキシル基(-COOH)またはカルボキシレート基(-COO)とを有するセルロース繊維を得ることができる。反応時のセルロースの濃度は特に限定されないが、5質量%以下が好ましい。
(Carboxylation)
Carboxylated (oxidized) cellulose can be used as the chemically modified cellulose. The carboxyl group in the present invention means -COOH (acid type) or -COOM (salt type). Here, M is a metal ion, and examples thereof include sodium and potassium. Carboxylated cellulose (also referred to as "oxidized cellulose") can be obtained by carboxylating (oxidizing) the above-mentioned cellulose raw material by a known method. Although not particularly limited, the amount of carboxyl groups is preferably 0.6 to 3.0 mmol / g, more preferably 1.0 to 2.0 mmol / g, based on the absolute dry mass of the chemically modified cellulose nanofibers. As an example of the carboxylation (oxidation) method, a cellulose raw material is oxidized in water using an oxidizing agent in the presence of an N-oxyl compound and a compound selected from the group consisting of bromide, iodide, and a mixture thereof. You can mention how to do it. By this oxidation reaction, the primary hydroxyl group at the C6 position of the glucopyranose ring on the surface of the cellulose is selectively oxidized, and the cellulose fiber having an aldehyde group and a carboxyl group (-COOH) or a carboxylate group (-COO- ) on the surface. Can be obtained. The concentration of cellulose during the reaction is not particularly limited, but is preferably 5% by mass or less.
 N-オキシル化合物とは、ニトロキシラジカルを発生しうる化合物をいう。N-オキシル化合物としては、目的の酸化反応を促進する化合物であればいずれの化合物も使用できる。例えば、2,2,6,6-テトラメチルピペリジン-1-オキシラジカル(TEMPO)およびその誘導体(例えば4-ヒドロキシTEMPO)が挙げられる。N-オキシル化合物の使用量は、セルロース原料を酸化できる触媒量であればよく、特に制限されない。例えば、絶乾1gのセルロース原料に対して、0.01~10mmolが好ましく、0.01~1mmolがより好ましく、0.01~0.5mmolがさらに好ましい。また、反応系に対し0.1~4mmol/L程度がよい。 The N-oxyl compound is a compound that can generate a nitroxy radical. As the N-oxyl compound, any compound can be used as long as it is a compound that promotes the desired oxidation reaction. For example, 2,2,6,6-tetramethylpiperidine-1-oxy radical (TEMPO) and its derivatives (eg 4-hydroxy TEMPO) can be mentioned. The amount of the N-oxyl compound used is not particularly limited as long as it is a catalytic amount capable of oxidizing the cellulose raw material. For example, 0.01 to 10 mmol is preferable, 0.01 to 1 mmol is more preferable, and 0.01 to 0.5 mmol is further preferable with respect to 1 g of an absolute dry cellulose raw material. Further, about 0.1 to 4 mmol / L is preferable for the reaction system.
 臭化物とは臭素を含む化合物であり、その例には、水中で解離してイオン化可能な臭化アルカリ金属が含まれる。また、ヨウ化物とはヨウ素を含む化合物であり、その例には、ヨウ化アルカリ金属が含まれる。臭化物またはヨウ化物の使用量は、酸化反応を促進できる範囲で選択できる。臭化物およびヨウ化物の合計量は、例えば、絶乾1gのセルロース原料に対して、0.1~100mmolが好ましく、0.1~10mmolがより好ましく、0.5~5mmolがさらに好ましい。当該変性は酸化反応による変性である。 Bromide is a compound containing bromine, and examples thereof include alkali metals bromide that can be dissociated and ionized in water. Further, the iodide is a compound containing iodine, and an example thereof includes an alkali metal iodide. The amount of bromide or iodide used can be selected within the range in which the oxidation reaction can be promoted. The total amount of bromide and iodide is, for example, preferably 0.1 to 100 mmol, more preferably 0.1 to 10 mmol, still more preferably 0.5 to 5 mmol with respect to 1 g of an absolute dry cellulose raw material. The modification is a modification due to an oxidation reaction.
 酸化剤としては、公知のものを使用でき、例えば、ハロゲン、次亜ハロゲン酸、亜ハロゲン酸、過ハロゲン酸またはそれらの塩、ハロゲン酸化物、過酸化物などを使用できる。中でも、安価で環境負荷の少ない次亜塩素酸ナトリウムが好ましい。酸化剤の適切な使用量は、例えば、絶乾1gのセルロース原料に対して、0.5~500mmolが好ましく、0.5~50mmolがより好ましく、2.5~25mmolがさらに好ましい。また、例えば、N-オキシル化合物1molに対して1~40molが好ましい。 As the oxidizing agent, known ones can be used, and for example, halogen, hypohalogenic acid, subhalogenic acid, perhalonic acid or salts thereof, halogen oxide, peroxide and the like can be used. Of these, sodium hypochlorite, which is inexpensive and has a low environmental impact, is preferable. The appropriate amount of the oxidizing agent to be used is, for example, preferably 0.5 to 500 mmol, more preferably 0.5 to 50 mmol, still more preferably 2.5 to 25 mmol with respect to 1 g of the dry dry cellulose raw material. Further, for example, 1 to 40 mol is preferable with respect to 1 mol of the N-oxyl compound.
 セルロース原料の酸化工程は、比較的温和な条件であっても反応を効率よく進行させられる。よって、反応温度は4~40℃が好ましく、また15~30℃程度の室温であってもよい。反応の進行に伴ってセルロース中にカルボキシル基が生成するため、反応液のpHが低下する。酸化反応を効率よく進行させるために、水酸化ナトリウム水溶液などのアルカリ性溶液を随時反応系中に添加して、反応液のpHを9~12、好ましくは10~11程度に維持することが好ましい。反応媒体は、取扱い性の容易さや、副反応が生じにくいこと等から、水が好ましい。酸化反応における反応時間は、酸化の進行の程度に従って適宜設定することができ、通常は0.5~6時間、例えば、0.5~4時間程度である。 In the oxidation process of the cellulose raw material, the reaction can proceed efficiently even under relatively mild conditions. Therefore, the reaction temperature is preferably 4 to 40 ° C, and may be room temperature of about 15 to 30 ° C. As the reaction progresses, a carboxyl group is generated in the cellulose, so that the pH of the reaction solution decreases. In order to allow the oxidation reaction to proceed efficiently, it is preferable to add an alkaline solution such as an aqueous sodium hydroxide solution to the reaction system at any time to maintain the pH of the reaction solution at 9 to 12, preferably about 10 to 11. Water is preferable as the reaction medium because it is easy to handle and side reactions are unlikely to occur. The reaction time in the oxidation reaction can be appropriately set according to the degree of progress of oxidation, and is usually about 0.5 to 6 hours, for example, about 0.5 to 4 hours.
 また、酸化反応は、2段階に分けて実施してもよい。例えば、1段目の反応終了後にろ別して得られた酸化セルロースを、再度、同一または異なる反応条件で酸化させることにより、1段目の反応で副生する塩による反応阻害を受けることなく、セルロース原料に効率よくカルボキシル基を導入することができる。 Further, the oxidation reaction may be carried out in two stages. For example, by oxidizing the oxidized cellulose obtained by filtration after the completion of the first-stage reaction again under the same or different reaction conditions, the cellulose is not inhibited by the salt produced as a by-product in the first-stage reaction. A carboxyl group can be efficiently introduced into the raw material.
 酸化セルロースのカルボキシル基の量は、上記した酸化剤の添加量、反応時間等の反応条件をコントロールすることで調整することができる。酸化セルロースにおけるカルボキシル基量とセルロースナノファイバーとしたときのカルボキシル基量は、通常同じである。 The amount of the carboxyl group of the oxidized cellulose can be adjusted by controlling the reaction conditions such as the amount of the oxidizing agent added and the reaction time described above. The amount of carboxyl groups in cellulose oxide and the amount of carboxyl groups in the case of cellulose nanofibers are usually the same.
 本発明では、上記の工程で得られる酸化セルロースにおいて、セルロース原料に導入したカルボキシル基は、通常、塩型であり、ナトリウム塩等のアルカリ金属塩である。解繊工程の前に、酸化セルロースのアルカリ金属塩を、ホスホニウム塩、イミダゾリニウム塩、アンモニウム塩、スルホニウム塩等の他のカチオン塩に置換してもよい。置換は、公知の方法で行うことができる。 In the present invention, in the oxidized cellulose obtained in the above step, the carboxyl group introduced into the cellulose raw material is usually a salt type and is an alkali metal salt such as a sodium salt. Prior to the defibration step, the alkali metal salt of cellulose oxide may be replaced with other cationic salts such as phosphonium salt, imidazolinium salt, ammonium salt and sulfonium salt. The substitution can be performed by a known method.
 (エステル化)
 化学変性セルロースとしてエステル化したセルロースを用いることもできる。セルロース原料にリン酸系化合物Aの粉末や水溶液を混合する方法、セルロース原料のスラリーにリン酸系化合物Aの水溶液を添加する方法等が挙げられる。リン酸系化合物Aはリン酸、ポリリン酸、亜リン酸、ホスホン酸、ポリホスホン酸あるいはこれらのエステルが挙げられる。これらは塩の形態であってもよい。上記の中でも、低コストであり、扱いやすく、またパルプ繊維のセルロースにリン酸基を導入して、解繊効率の向上が図れるなどの理由からリン酸基を有する化合物が好ましい。リン酸基を有する化合物としては、リン酸、リン酸二水素ナトリウム、リン酸水素二ナトリウム、リン酸三ナトリウム、ピロリン酸ナトリウム、メタリン酸ナトリウム、リン酸二水素カリウム、リン酸水素二カリウム、リン酸三カリウム、ピロリン酸カリウム、メタリン酸カリウム、リン酸二水素アンモニウム、リン酸水素二アンモニウム、リン酸三アンモニウム、ピロリン酸アンモニウム、メタリン酸アンモニウム等が挙げられる。これらは1種、あるいは2種以上を併用してリン酸基を導入することができる。これらのうち、リン酸基導入の効率が高く、下記解繊工程で解繊しやすく、かつ工業的に適用しやすい観点から、リン酸、リン酸のナトリウム塩、リン酸のカリウム塩、リン酸のアンモニウム塩が好ましい。特にリン酸二水素ナトリウム、リン酸水素二ナトリウムが好ましい。また、反応を均一に進行できかつリン酸基導入の効率が高くなることから前記リン酸系化合物Aは水溶液として用いることが望ましい。リン酸系化合物Aの水溶液のpHは、リン酸基導入の効率が高くなることから7以下であることが好ましいが、パルプ繊維の加水分解を抑える観点からpH3~7が好ましい。
(Esterification)
Esterified cellulose can also be used as the chemically modified cellulose. Examples thereof include a method of mixing a powder or an aqueous solution of a phosphoric acid-based compound A with a cellulose raw material, a method of adding an aqueous solution of a phosphoric acid-based compound A to a slurry of a cellulose raw material, and the like. Examples of the phosphoric acid-based compound A include phosphoric acid, polyphosphoric acid, phosphite, phosphonic acid, polyphosphonic acid, and esters thereof. These may be in the form of salts. Among the above, a compound having a phosphoric acid group is preferable because it is low in cost, easy to handle, and the phosphoric acid group can be introduced into the cellulose of the pulp fiber to improve the defibration efficiency. Compounds having a phosphoric acid group include phosphoric acid, sodium dihydrogen phosphate, disodium hydrogen phosphate, trisodium phosphate, sodium pyrophosphate, sodium metaphosphate, potassium dihydrogen phosphate, dipotassium hydrogen phosphate, and phosphorus. Examples thereof include tripotassium acid, potassium pyrophosphate, potassium metaphosphate, ammonium dihydrogen phosphate, diammonium hydrogen phosphate, triammonium phosphate, ammonium pyrophosphate, ammonium metaphosphate and the like. These can be used alone or in combination of two or more to introduce a phosphate group. Of these, phosphoric acid, sodium salt of phosphoric acid, potassium salt of phosphoric acid, and phosphoric acid from the viewpoint of high efficiency of introduction of phosphoric acid group, easy defibration in the following defibration step, and easy industrial application. Ammonium salt is preferred. In particular, sodium dihydrogen phosphate and disodium hydrogen phosphate are preferable. Further, it is desirable to use the phosphoric acid-based compound A as an aqueous solution because the reaction can proceed uniformly and the efficiency of introducing the phosphoric acid group is high. The pH of the aqueous solution of the phosphoric acid-based compound A is preferably 7 or less because the efficiency of introducing the phosphoric acid group is high, but the pH is preferably 3 to 7 from the viewpoint of suppressing the hydrolysis of the pulp fiber.
 リン酸エステル化セルロースの製造方法の例として、以下の方法を挙げることができる。固形分濃度0.1~10質量%のセルロース原料の懸濁液に、リン酸系化合物Aを撹拌しながら添加してセルロースにリン酸基を導入する。セルロース原料を100質量部とした際に、リン酸系化合物Aの添加量はリン元素量として、0.2~500質量部であることが好ましく、1~400質量部であることがより好ましい。リン酸系化合物Aの割合が前記下限値以上であれば、微細繊維状セルロースの収率をより向上させることができる。しかし、前記上限値を超えると収率向上の効果は頭打ちとなるので、コスト面から好ましくない。 The following methods can be mentioned as examples of the method for producing phosphoric acid esterified cellulose. A phosphoric acid-based compound A is added to a suspension of a cellulosic raw material having a solid content concentration of 0.1 to 10% by mass with stirring to introduce a phosphoric acid group into the cellulose. When the cellulose raw material is 100 parts by mass, the amount of the phosphoric acid compound A added is preferably 0.2 to 500 parts by mass and more preferably 1 to 400 parts by mass as the amount of the phosphorus element. When the ratio of the phosphoric acid-based compound A is at least the above lower limit value, the yield of the fine fibrous cellulose can be further improved. However, if the upper limit is exceeded, the effect of improving the yield will reach a plateau, which is not preferable from the viewpoint of cost.
 リン酸系化合物Aの他に化合物Bの粉末や水溶液を混合してもよい。化合物Bは特に限定されないが、塩基性を示す窒素含有化合物が好ましい。ここでの「塩基性」は、フェノールフタレイン指示薬の存在下で水溶液が桃~赤色を呈すること、または水溶液のpHが7より大きいことと定義される。本発明で用いる塩基性を示す窒素含有化合物は、本発明の効果を奏する限り特に限定されないが、アミノ基を有する化合物が好ましい。例えば、尿素、メチルアミン、エチルアミン、トリメチルアミン、トリエチルアミン、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン、ピリジン、エチレンジアミン、ヘキサメチレンジアミンなどが挙げられる。中でも低コストで扱いやすい尿素が好ましい。化合物Bの添加量はセルロース原料の固形分100質量部に対して、2~1000質量部が好ましく、100~700質量部がより好ましい。反応温度は0~95℃が好ましく、30~90℃がより好ましい。反応時間は特に限定されないが、1~600分程度であり、30~480分がより好ましい。エステル化反応の条件がこれらの範囲内であると、セルロースが過度にエステル化されて溶解しやすくなることを防ぐことができ、リン酸エステル化セルロースの収率が良好となる。得られたリン酸エステル化セルロース懸濁液を脱水した後、セルロースの加水分解を抑える観点から、100~170℃で加熱処理することが好ましい。さらに、加熱処理の際に水が含まれている間は130℃以下、好ましくは110℃以下で加熱し、水を除いた後、100~170℃で加熱処理することが好ましい。 In addition to the phosphoric acid-based compound A, a powder or an aqueous solution of compound B may be mixed. The compound B is not particularly limited, but a nitrogen-containing compound showing basicity is preferable. "Basic" here is defined as the aqueous solution exhibiting a pink to red color in the presence of a phenolphthalein indicator, or the pH of the aqueous solution being greater than 7. The basic nitrogen-containing compound used in the present invention is not particularly limited as long as the effect of the present invention is exhibited, but a compound having an amino group is preferable. For example, urea, methylamine, ethylamine, trimethylamine, triethylamine, monoethanolamine, diethanolamine, triethanolamine, pyridine, ethylenediamine, hexamethylenediamine and the like can be mentioned. Of these, urea, which is low in cost and easy to handle, is preferable. The amount of compound B added is preferably 2 to 1000 parts by mass, more preferably 100 to 700 parts by mass, based on 100 parts by mass of the solid content of the cellulose raw material. The reaction temperature is preferably 0 to 95 ° C, more preferably 30 to 90 ° C. The reaction time is not particularly limited, but is about 1 to 600 minutes, more preferably 30 to 480 minutes. When the conditions of the esterification reaction are within these ranges, it is possible to prevent the cellulose from being excessively esterified and easily dissolved, and the yield of the phosphate esterified cellulose becomes good. After dehydrating the obtained phosphoric acid esterified cellulose suspension, it is preferable to heat-treat it at 100 to 170 ° C. from the viewpoint of suppressing hydrolysis of cellulose. Further, it is preferable to heat at 130 ° C. or lower, preferably 110 ° C. or lower while water is contained in the heat treatment, remove water, and then heat-treat at 100 to 170 ° C.
 リン酸エステル化されたセルロースのグルコース単位当たりのリン酸基置換度は0.001以上0.40未満であることが好ましい。セルロースにリン酸基置換基を導入することで、セルロース同士が電気的に反発する。このため、リン酸基を導入したセルロースは容易にナノ解繊することができる。グルコース単位当たりのリン酸基置換度が0.001より小さいと、十分にナノ解繊することができない。一方、グルコース単位当たりのリン酸基置換度が0.40より大きいと、膨潤あるいは溶解するため、ナノファイバーとして得られなくなる場合がある。解繊を効率よく行なうために、上記で得たリン酸エステル化されたセルロース原料は煮沸した後、冷水で洗浄することで洗浄されることが好ましい。これらのエステル化による変性は置換反応による変性である。リン酸エステル化セルロースにおける置換度とセルロースナノファイバーとしたときの置換度は、通常同じである。 The degree of phosphate group substitution per glucose unit of the phosphate-esterified cellulose is preferably 0.001 or more and less than 0.40. By introducing a phosphate group substituent into cellulose, the celluloses electrically repel each other. Therefore, cellulose having a phosphate group introduced can be easily nano-deflated. If the degree of phosphate substitution per glucose unit is less than 0.001, nano-defibration cannot be sufficiently performed. On the other hand, if the degree of phosphate substitution per glucose unit is larger than 0.40, it may not be obtained as nanofibers because it swells or dissolves. In order to efficiently perform defibration, it is preferable that the phosphoric acid esterified cellulose raw material obtained above is washed by boiling and then washing with cold water. These esterification modifications are substitution reaction modifications. The degree of substitution in phosphoric acid esterified cellulose and the degree of substitution in the case of cellulose nanofibers are usually the same.
 本発明では、上記の工程で得られるリン酸エステル化セルロースにおいて、セルロース原料に導入したリン酸基は、通常、塩型であり、ナトリウム塩等のアルカリ金属塩である。解繊工程の前に、リン酸エステル化セルロースのアルカリ金属塩を、ホスホニウム塩、イミダゾリニウム塩、アンモニウム塩、スルホニウム塩等の他のカチオン塩に置換してもよい。置換は、公知の方法で行うことができる。 In the present invention, in the phosphoric acid esterified cellulose obtained in the above step, the phosphoric acid group introduced into the cellulose raw material is usually a salt type and is an alkali metal salt such as a sodium salt. Prior to the defibration step, the alkali metal salt of the phosphate esterified cellulose may be replaced with another cationic salt such as a phosphonium salt, an imidazolinium salt, an ammonium salt or a sulfonium salt. The substitution can be performed by a known method.
 (ナノファイバーへの解繊)
 上記の方法により得た化学変性セルロースを解繊することにより、ナノスケールの繊維径を有するセルロースナノファイバーへと変換することができる。
(Dissolution into nanofibers)
By defibrating the chemically modified cellulose obtained by the above method, it can be converted into cellulose nanofibers having a nanoscale fiber diameter.
 解繊の際には、上記の方法で得られた化学変性セルロースの分散体を準備する。分散媒は、取扱いの容易性から、水が好ましい。解繊時の分散体における化学変性セルロースの濃度は、解繊、分散の効率を考慮すると、0.01~10%(w/v)であることが好ましい。 At the time of defibration, prepare a dispersion of chemically modified cellulose obtained by the above method. Water is preferable as the dispersion medium because of its ease of handling. The concentration of the chemically modified cellulose in the dispersion at the time of defibration is preferably 0.01 to 10% (w / v) in consideration of the efficiency of defibration and dispersion.
 化学変性セルロースを解繊する際に用いる装置は特に限定されないが、高速回転式、コロイドミル式、高圧式、ロールミル式、超音波式などの装置を用いることができる。解繊の際には化学変性セルロースの分散体に強力な剪断力を印加することが好ましい。特に、効率よく解繊するには、前記分散体に50MPa以上の圧力を印加し、かつ強力な剪断力を印加できる湿式の高圧または超高圧ホモジナイザーを用いることが好ましい。前記圧力は、より好ましくは100MPa以上であり、さらに好ましくは140MPa以上である。また、高圧ホモジナイザーでの解繊及び分散処理に先立って、必要に応じて、高速せん断ミキサーなどの公知の混合、撹拌、乳化、分散装置を用いて、前記分散体に予備処理をほどこしてもよい。 The device used for defibrating chemically modified cellulose is not particularly limited, but a device such as a high-speed rotary type, a colloid mill type, a high-pressure type, a roll mill type, or an ultrasonic type can be used. At the time of defibration, it is preferable to apply a strong shearing force to the dispersion of chemically modified cellulose. In particular, in order to efficiently defibrate, it is preferable to use a wet high-pressure or ultra-high pressure homogenizer capable of applying a pressure of 50 MPa or more to the dispersion and applying a strong shearing force. The pressure is more preferably 100 MPa or more, still more preferably 140 MPa or more. Further, prior to the defibration and dispersion treatment with a high-pressure homogenizer, the dispersion may be pretreated, if necessary, using a known mixing, stirring, emulsifying, and dispersing device such as a high-speed shear mixer. ..
 高圧ホモジナイザーとは、ポンプにより流体に加圧(高圧)し、流路に設けた非常に繊細な間隙より噴出させることにより、粒子間の衝突、圧力差による剪断力等の総合エネルギーによって乳化、分散、解細、粉砕、及び超微細化を行う装置である。 A high-pressure homogenizer is a pump that pressurizes (high pressure) the fluid and ejects it from a very delicate gap provided in the flow path, so that it is emulsified and dispersed by the total energy such as collision between particles and shearing force due to pressure difference. , A device for crushing, crushing, and ultra-fine particles.
 本発明においては、化学変性セルロースナノファイバーを分散体の状態で用いても良いし、乾燥(分散媒の除去)、粉砕、分級を行い、粉末として用いても良い。 In the present invention, the chemically modified cellulose nanofibers may be used in the state of a dispersion, or may be dried (removed of the dispersion medium), pulverized, and classified and used as a powder.
 本発明に用いる化学変性セルロースナノファイバーを粉末として用いる場合は、必要に応じて、他の成分を含んでいても良い。例えば、粉末を製造する際、乾燥前に、化学変性セルロースナノファイバーの分散体に水溶性高分子を共存させると、再分散性が向上するので、好ましい。水溶性高分子により再分散性が向上する理由は、明らかではないが、水溶性高分子が化学変性セルロースナノファイバー表面の電荷密度の低い部分をカバーし、水素結合の形成を抑制して乾燥時のナノファイバー同士の凝集を防止するためであると推測される。 When the chemically modified cellulose nanofiber used in the present invention is used as a powder, it may contain other components, if necessary. For example, when producing a powder, it is preferable to allow a water-soluble polymer to coexist with a dispersion of chemically modified cellulose nanofibers before drying because the redispersibility is improved. The reason why the water-soluble polymer improves the redispersibility is not clear, but the water-soluble polymer covers the low charge density portion of the surface of the chemically modified cellulose nanofibers and suppresses the formation of hydrogen bonds during drying. It is presumed that this is to prevent the aggregation of the nanofibers.
 (水溶性高分子)
 化学変性セルロースナノファイバーを粉末として用いる場合に、粉末の製造時に共存させることができる水溶性高分子としては、例えば、セルロース誘導体(カルボキシメチルセルロース、メチルセルロース、ヒドロキシプロピルセルロース、エチルセルロース)、キサンタンガム、キシログルカン、デキストリン、デキストラン、カラギーナン、ローカストビーンガム、アルギン酸、アルギン酸塩、プルラン、澱粉、かたくり粉、クズ粉、加工澱粉(カチオン化澱粉、燐酸化澱粉、燐酸架橋澱粉、燐酸モノエステル化燐酸架橋澱粉、ヒドロキシプロピル澱粉、ヒドロキシプロピル化燐酸架橋澱粉、アセチル化アジピン酸架橋澱粉、アセチル化燐酸架橋澱粉、アセチル化酸化澱粉、オクテニルコハク酸澱粉ナトリウム、酢酸澱粉、酸化澱粉)、コーンスターチ、アラビアガム、ローカストビーンガム、ジェランガム、ポリデキストロース、ペクチン、キチン、水溶性キチン、キトサン、カゼイン、アルブミン、大豆蛋白溶解物、ペプトン、ポリビニルアルコール、ポリアクリルアミド、ポリアクリル酸ソーダ、ポリビニルピロリドン、ポリ酢酸ビニル、ポリアミノ酸、ポリ乳酸、ポリリンゴ酸、ポリグリセリン、ラテックス、ロジン系サイズ剤、石油樹脂系サイズ剤、尿素樹脂、メラミン樹脂、エポキシ樹脂、ポリアミド樹脂、ポリアミド・ポリアミン樹脂、ポリエチレンイミン、ポリアミン、植物ガム、ポリエチレンオキサイド、親水性架橋ポリマー、ポリアクリル酸塩、でんぷんポリアクリル酸共重合体、タマリンドガム、グァーガム及びコロイダルシリカ並びにそれら1つ以上の混合物が挙げられる。この中でも、セルロース誘導体は、化学変性セルロースナノファイバーとの親和性の点から好ましく、カルボキシメチルセルロース及びその塩は特に好ましい。カルボキシメチルセルロース及びその塩のような水溶性高分子は、化学変性セルロースナノファイバー同士の間に入りこみ、ナノファイバー間の距離を広げることで、再分散性を向上させると考えられる。
(Water-soluble polymer)
When chemically modified cellulose nanofibers are used as powder, examples of the water-soluble polymer that can coexist during the production of the powder include cellulose derivatives (carboxymethyl cellulose, methyl cellulose, hydroxypropyl cellulose, ethyl cellulose), xanthan gum, xylolcan, and the like. Dextrin, dextran, carrageenan, locust bean gum, alginic acid, alginate, purulan, starch, shavings, debris, processed starch (cationized starch, phosphorylated starch, phosphoric acid cross-linked starch, phosphoric acid monoesterified phosphoric acid cross-linked starch, hydroxypropyl starch) , Hydroxypropylated Phosphate Crosslinked Starch, Acetylated Adipic Acid Crosslinked Starch, Acelated Phosphoric Acid Crossed Starch, Acetylized Oxidized Starch, Sodium Octenyl Succinate, Acetate Starch, Oxidized Starch), Corn Starch, Arabic Gum, Locust Bean Gum, Gellan Gum, Poly Dextrose, starch, chitin, water-soluble chitin, chitosan, casein, albumin, soybean protein solution, peptone, polyvinyl alcohol, polyacrylamide, sodium polyacrylic acid, polyvinylpyrrolidone, vinylacetate, polyamino acid, polylactic acid, polyapple acid, Polyglycerin, latex, rosin-based sizing agent, petroleum resin-based sizing agent, urea resin, melamine resin, epoxy resin, polyamide resin, polyamide / polyamine resin, polyethyleneimine, polyamine, vegetable gum, polyethylene oxide, hydrophilic cross-linked polymer, poly Includes acrylates, starch polyacrylic acid copolymers, tamarind gum, guar gum and colloidal silica and mixtures thereof. Among these, cellulose derivatives are preferable from the viewpoint of affinity with chemically modified cellulose nanofibers, and carboxymethyl cellulose and salts thereof are particularly preferable. It is considered that water-soluble polymers such as carboxymethyl cellulose and its salts penetrate between chemically modified cellulose nanofibers and widen the distance between the nanofibers to improve redispersibility.
 水溶性高分子として、カルボキシメチルセルロース又はその塩を用いる場合には、無水グルコース単位当たりのカルボキシメチル置換度が0.55~1.6のカルボキシメチルセルロースを用いることが好ましく、0.55~1.1のものがより好ましく、0.65~1.1のものがさらに好ましい。また、分子が長い(粘度が高い)ものの方が、ナノファイバー間の距離を広げる効果が高いので好ましい。また、カルボキシメチルセルロースの1質量%水溶液における25℃、60rpmでのB型粘度は、3mPa・s~14000mPa・sが好ましく、7mPa・s~14000mPa・sがより好ましく、1000mPa・s~8000mPa・sがさらに好ましい。なお、ここでいう水溶性高分子としての「カルボキシメチルセルロース又はその塩」とは、水に完全に溶解するものであることから、上述の水中で繊維形状を確認することができるカルボキシメチル化セルロースナノファイバーとは区別される。 When carboxymethyl cellulose or a salt thereof is used as the water-soluble polymer, it is preferable to use carboxymethyl cellulose having a degree of carboxymethyl substitution per anhydrous glucose unit of 0.55 to 1.6, preferably 0.55 to 1.1. Those of 0.65 to 1.1 are more preferable, and those of 0.65 to 1.1 are further preferable. Further, a molecule having a long molecule (high viscosity) is preferable because it has a high effect of widening the distance between nanofibers. The B-type viscosity of carboxymethyl cellulose in a 1% by mass aqueous solution at 25 ° C. and 60 rpm is preferably 3 mPa · s to 14000 mPa · s, more preferably 7 mPa · s to 14000 mPa · s, and 1000 mPa · s to 8000 mPa · s. More preferred. Since the "carboxymethyl cellulose or a salt thereof" as the water-soluble polymer referred to here is completely soluble in water, the fiber shape can be confirmed in the above-mentioned water. Distinguished from fiber.
 水溶性高分子の配合量は、化学変性セルロースナノファイバー(絶乾固形分)に対して、5質量%~300質量%であることが好ましく、20質量%~300%質量がさらに好ましく、25質量%~200質量%がさらに好ましく、25質量%~60質量%がさらに好ましい。水溶性高分子を5質量%以上配合すると再分散性の向上効果が得られるようになる。一方、水溶性高分子の配合量が300質量%を超えると化学変性セルロースナノファイバーの特徴であるチキソトロピー性などの粘度特性や、分散安定性の低下などの問題が生じることがある。水溶性高分子の配合量が、25質量%以上であると、特に優れた再分散性を得ることができるので好ましい。また、チキソトロピー性を考慮すると200質量%以下であることが好ましく、60質量%以下が特に好ましい。 The blending amount of the water-soluble polymer is preferably 5% by mass to 300% by mass, more preferably 20% by mass to 300% by mass, and 25% by mass with respect to the chemically modified cellulose nanofiber (absolute dry solid content). % To 200% by mass is more preferable, and 25% by mass to 60% by mass is further preferable. When a water-soluble polymer is blended in an amount of 5% by mass or more, the effect of improving redispersibility can be obtained. On the other hand, if the blending amount of the water-soluble polymer exceeds 300% by mass, problems such as viscosity characteristics such as thixotropy characteristic of chemically modified cellulose nanofibers and deterioration of dispersion stability may occur. When the blending amount of the water-soluble polymer is 25% by mass or more, particularly excellent redispersibility can be obtained, which is preferable. Further, considering the thixotropy property, it is preferably 200% by mass or less, and particularly preferably 60% by mass or less.
 (乾燥)
 化学変性セルロースナノファイバーの分散体、または、場合により水溶性高分子を混合した化学変性セルロースナノファイバーの分散体を乾燥(分散媒の除去)させることで、化学変性セルロースナノファイバーを含む乾燥固形物を得る。この際、分散体のpHを9~11に調整した後に、乾燥させると、再分散性がさらに良好となるので好ましい。
(Dry)
A dry solid containing chemically modified cellulose nanofibers by drying (removing the dispersion medium) a dispersion of chemically modified cellulose nanofibers or, in some cases, a dispersion of chemically modified cellulose nanofibers mixed with a water-soluble polymer. To get. At this time, it is preferable to adjust the pH of the dispersion to 9 to 11 and then dry it because the redispersibility is further improved.
 乾燥方法としては、公知のものを用いることができ、特に限定されない。例えば、スプレイドライ、圧搾、風乾、熱風乾燥、及び真空乾燥を挙げることができる。乾燥装置は、特に限定されないが、連続式のトンネル乾燥装置、バンド乾燥装置、縦型乾燥装置、垂直ターボ乾燥装置、多重段円板乾燥装置、通気乾燥装置、回転乾燥装置、気流乾燥装置、スプレードライヤ乾燥装置、噴霧乾燥装置、円筒乾燥装置、ドラム乾燥装置、ベルト乾燥装置、スクリューコンベア乾燥装置、加熱管付回転乾燥装置、振動輸送乾燥装置、回分式の箱型乾燥装置、通気乾燥装置、真空箱型乾燥装置、及び撹拌乾燥装置等を単独で又は2つ以上組み合わせて用いることができる。 As the drying method, a known method can be used and is not particularly limited. For example, spray drying, squeezing, air drying, hot air drying, and vacuum drying can be mentioned. The drying device is not particularly limited, but is a continuous tunnel drying device, a band drying device, a vertical drying device, a vertical turbo drying device, a multi-stage disk drying device, an aeration drying device, a rotary drying device, an air flow drying device, and a spray. Dryer dryer, spray dryer, cylindrical dryer, drum dryer, belt dryer, screw conveyor dryer, rotary dryer with heating tube, vibration transport dryer, batch type box dryer, aeration dryer, vacuum A box-type drying device, a stirring drying device, or the like can be used alone or in combination of two or more.
 これらの中でも、薄膜を形成させて乾燥を行う装置を用いることが、均一に被乾燥物に熱エネルギーを直接供給でき、乾燥処理をより効率的に、短時間で行うことができるためエネルギー効率の点から好ましい。また、薄膜を形成させて乾燥を行う装置は、薄膜を掻き取る等の簡便な手段で直ちに乾燥物を回収できる点からも好ましい。さらに、薄膜を形成させてから乾燥させた場合には、再分散性がさらに向上することも見出された。薄膜を形成させて乾燥を行う装置としては、例えば、ドラムやベルトにブレードやダイ等により薄膜を形成させて乾燥させるドラム乾燥装置やベルト乾燥装置が挙げられる。薄膜を形成させて乾燥させる際の薄膜の膜厚としては、50μm~1000μmが好ましく、100μm~300μmがさらに好ましい。50μm以上であると、乾燥後の掻き取りが容易であり、また、1000μm以下であると再分散性のさらなる向上効果がみられる。 Among these, by using a device that forms a thin film and performs drying, heat energy can be uniformly directly supplied to the object to be dried, and the drying process can be performed more efficiently and in a short time, so that energy efficiency is achieved. It is preferable from the point of view. Further, an apparatus for forming a thin film and drying it is preferable because the dried product can be immediately recovered by a simple means such as scraping the thin film. Furthermore, it was also found that the redispersibility was further improved when the thin film was formed and then dried. Examples of the device for forming and drying a thin film include a drum drying device and a belt drying device for forming a thin film on a drum or a belt with a blade, a die, or the like and drying the thin film. The film thickness of the thin film when the thin film is formed and dried is preferably 50 μm to 1000 μm, more preferably 100 μm to 300 μm. When it is 50 μm or more, it is easy to scrape after drying, and when it is 1000 μm or less, the effect of further improving the redispersibility can be seen.
 乾燥後の残留水分量は、乾燥物全体に対して2質量%~15質量%が好ましい。 The residual water content after drying is preferably 2% by mass to 15% by mass with respect to the entire dried product.
 (粉砕)
 粉砕方法は特に限定されず、公知の方法を用いることができ、粉体の状態で処理する乾式粉砕法と、液体に分散あるいは溶解させた状態で処理する湿式粉砕法を例示することができる。湿式粉砕を行う場合には、上記の乾燥の前に行ってもよい。
(Crushing)
The pulverization method is not particularly limited, and a known method can be used, and examples thereof include a dry pulverization method in which treatment is performed in the form of powder and a wet pulverization method in which treatment is performed in the state of being dispersed or dissolved in a liquid. When wet pulverization is performed, it may be performed before the above-mentioned drying.
 乾式粉砕法で用いる装置としては、これらに限定されないが、カッティング式ミル、衝撃式ミル、気流式ミル、媒体ミルを例示することができる。これらは単独あるいは併用して、さらには同機種で数段処理することができる。これらの中で、気流式ミルは好ましい。カッティング式ミルとしては、メッシュミル((株)ホーライ製)、アトムズ((株)山本百馬製作所製)、ナイフミル(パルマン社製)、グラニュレータ(ヘルボルト製)、ロータリーカッターミル((株)奈良機械製作所製)、等が例示される。衝撃式ミルとしては、パルペライザ(ホソカワミクロン(株)製)、ファインイパクトミル(ホソカワミクロン(株)製)、スーパーミクロンミル(ホソカワミクロン(株)製)、サンプルミル((株)セイシン製)、バンタムミル((株)セイシン製)、アトマイザー((株)セイシン製)、トルネードミル(日機装(株))、ターボミル(ターボ工業(株))、ベベルインパクター(相川鉄工(株))等が例示される。気流式ミルとしては、CGS型ジェットミル(三井鉱山(株)製)、ジェットミル(三庄インダストリー(株)製)、エバラジェットマイクロナイザ((株)荏原製作所製)、セレンミラー(増幸産業(株)製)、超音速ジェットミル(日本ニューマチック工業(株)製)等が例示される。媒体ミルとしては、振動ボールミル等が例示される。湿式粉砕法で用いる装置としては、マスコロイダー(増幸産業(株)製)、高圧ホモジナイザー(三丸機械工業(株)製)、媒体ミルが例示される。媒体ミルとしては、ビーズミル(アイメックス(株)製)等を例示することができる。 The device used in the dry pulverization method is not limited to these, and examples thereof include a cutting type mill, an impact type mill, an air flow type mill, and a medium type mill. These can be processed individually or in combination, and in several stages with the same model. Of these, the airflow type mill is preferable. Cutting mills include mesh mills (Horai Co., Ltd.), Atoms (Yamamoto Hyakuba Co., Ltd.), knife mills (Palman Co., Ltd.), granulators (Hellbolt Co., Ltd.), and rotary cutter mills (Nara Co., Ltd.). (Made by Machinery Manufacturing Co., Ltd.), etc. are exemplified. Impact mills include Palperizer (manufactured by Hosokawa Micron Co., Ltd.), Fine Impact Mill (manufactured by Hosokawa Micron Co., Ltd.), Supermicron Mill (manufactured by Hosokawa Micron Co., Ltd.), Sample Mill (manufactured by Seishin Co., Ltd.), and Bantam Mill (manufactured by Seishin Co., Ltd.). Examples include Seishin Co., Ltd.), Atomizer (Seishin Co., Ltd.), Tornado Mill (Nikkiso Co., Ltd.), Turbo Mill (Turbo Industry Co., Ltd.), Bevel Impactor (Aikawa Iron Works Co., Ltd.), and the like. Airflow type mills include CGS type jet mill (manufactured by Mitsui Mine Co., Ltd.), jet mill (manufactured by Misho Industry Co., Ltd.), Ebara Jet Micronizer (manufactured by Ebara Corporation), and selenium mirror (Masuyuki Sangyo Co., Ltd.). (Manufactured by Nippon Pneumatic Industries Co., Ltd.), supersonic jet mill (manufactured by Nippon Pneumatic Industries Co., Ltd.), etc. are exemplified. Examples of the medium mill include a vibration ball mill and the like. Examples of the apparatus used in the wet pulverization method include a mass colloider (manufactured by Masuyuki Sangyo Co., Ltd.), a high-pressure homogenizer (manufactured by Sanmaru Kikai Kogyo Co., Ltd.), and a medium mill. As the medium mill, a bead mill (manufactured by IMEX Co., Ltd.) and the like can be exemplified.
 (分級)
 化学変性セルロースナノファイバーの粉砕後に、分級を行い、特定の粒度となるように調整する。分級の方法は特に限定されないが、例えば、所定の目開きを有するメッシュ(篩)を通過させることにより行うことができる。メッシュとしては、好ましくは20~400メッシュ、さらに好ましくは40~300メッシュ、さらに好ましくは60~200メッシュを用いることができ、これらを多段式で使用してもよい。最終的に得られる粉末のメディアン径を、10.0μm~150.0μm、好ましくは、30.0μm~130.0μm、さらに好ましくは50.0μm~120.0μmとする。
(Classification)
After pulverizing the chemically modified cellulose nanofibers, classification is performed to adjust the particle size to a specific size. The classification method is not particularly limited, but can be performed, for example, by passing through a mesh (sieve) having a predetermined opening. As the mesh, preferably 20 to 400 mesh, more preferably 40 to 300 mesh, still more preferably 60 to 200 mesh can be used, and these may be used in a multi-stage system. The median diameter of the finally obtained powder is 10.0 μm to 150.0 μm, preferably 30.0 μm to 130.0 μm, and more preferably 50.0 μm to 120.0 μm.
 (洗浄料)
 本発明の洗浄料に用いられる、セルロースナノファイバー以外の成分としては、一般的に洗浄料に用いられている成分である限り、特に制限なく用いることができる。本発明の洗浄料に用いることができる洗浄性成分の主剤としては、例えば、カリ石ケン素地、脂肪酸ナトリウム、脂肪酸カリウム、アルファスルホ脂肪酸エステルナトリウム、直鎖アルキルベンゼンスルホン酸ナトリウム、アルキル硫酸エステルナトリウム、アルキルエーテル硫酸エステルナトリウム、アルファオレフィンスルホン酸ナトリウム、アルキルスルホン酸ナトリウム、ショ糖脂肪酸エステル、グリセリン脂肪酸エステル、ソルビタン脂肪酸エステル、ポリオキシエチレンソルビタン脂肪酸エステル、脂肪酸アルカノールアミド、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテル、アルキルアミノ脂肪酸ナトリウム、アルキルベタイン、アルキルアミンオキシド、アルキルトリメチルアンモニウム塩、ジアルキルジメチルアンモニウム塩、ポリグリセリル-4ラウリルエーテル等の界面活性物質を含むものが挙げられる。また助剤としては、例えば、炭酸ナトリウム、硅酸ナトリウム、ゼオライト、クエン酸及びその塩、EDTA(エチレンジアミン四酢酸)やその塩、ヒドロキシエタンホスホン酸、L-アスパラギン酸二酢酸(ASDA)、L-グルタミン酸二酢酸(GLDA)、硫酸ナトリウム等が挙げられる。また、本発明の洗浄料には、必要に応じて、例えば、グリセリン、プロパンジオール、ポリエチレングリコール、増粘剤、防腐剤、保湿剤、油分、香料、水やエタノール等を配合することができる。
(Cleaning fee)
The components other than the cellulose nanofibers used in the cleaning agent of the present invention can be used without particular limitation as long as they are components generally used in the cleaning agent. Examples of the main agent of the detergency component that can be used in the cleaning agent of the present invention include potash ken substrate, fatty acid sodium, fatty acid potassium, alpha sulfo fatty acid ester sodium, linear alkylbenzene sulfonate sodium, alkyl sulfate ester sodium, and alkyl. Sodium ether sulfate, sodium alphaolefin sulfonate, sodium alkylsulfonate, sucrose fatty acid ester, glycerin fatty acid ester, sorbitan fatty acid ester, polyoxyethylene sorbitan fatty acid ester, fatty acid alkanolamide, polyoxyethylene alkyl ether, polyoxyethylene alkyl Examples thereof include those containing surface active substances such as phenyl ether, sodium alkylamino fatty acid, alkyl betaine, alkylamine oxide, alkyltrimethylammonium salt, dialkyldimethylammonium salt, and polyglyceryl-4 lauryl ether. Examples of the auxiliary agent include sodium carbonate, sodium silicate, zeolite, citric acid and its salt, EDTA (ethylenediaminetetraacetic acid) and its salt, hydroxyethanephosphonic acid, L-aspartate diacetic acid (ASDA), L-. Examples thereof include glutamate diacetic acid (GLDA) and sodium sulfate. Further, the cleaning agent of the present invention may contain, for example, glycerin, propanediol, polyethylene glycol, thickener, preservative, moisturizer, oil, fragrance, water, ethanol and the like, if necessary.
 本発明において、セルロースナノファイバーの含有量は、洗浄料の全体に対して、固形分換算で0.05質量%以上5質量%以下が好ましく、0.05質量%以上3質量%以下がより好ましい。0.05質量%以下では、CNFの機能が十分に発現されず、5質量%以上では、粘性が高く作業性が悪くなる。 In the present invention, the content of the cellulose nanofibers is preferably 0.05% by mass or more and 5% by mass or less, and more preferably 0.05% by mass or more and 3% by mass or less in terms of solid content, based on the total cleaning agent. .. If it is 0.05% by mass or less, the function of CNF is not sufficiently exhibited, and if it is 5% by mass or more, the viscosity is high and the workability is deteriorated.
 本発明の洗浄料は、例えば、洗顔料、クレンジング用化粧料、石鹸、シャンプー、ハンドソープ又はボディーソープとして用いることができる。本発明の洗浄料の取りうる形状は特に限定されず、粉末状、固形、クリーム状、ジェル状、あるいは液状といった性状を問わない。本発明の洗浄料には、用途や剤形によって、原材料等を適宜選択し、配合割合・添加量を変更することができる。 The cleaning agent of the present invention can be used as, for example, a washing pigment, a cleansing cosmetic, a soap, a shampoo, a hand soap or a body soap. The shape that the cleaning agent of the present invention can take is not particularly limited, and it does not matter whether it is in the form of powder, solid, cream, gel, or liquid. For the cleaning agent of the present invention, raw materials and the like can be appropriately selected depending on the intended use and dosage form, and the blending ratio and addition amount can be changed.
 本発明の洗浄料は、セルロースナノファイバーを含むため、洗浄効果に優れる。本発明の洗浄料についてこの効果が得られる理由は明らかではないが、泡がきめ細かくなることで、皮膚汚れを吸収・吸着しやすくなり、さらに泡の弾力が増すことで洗浄効率が良くなったためではないかと推測される。 Since the cleaning agent of the present invention contains cellulose nanofibers, it has an excellent cleaning effect. The reason why this effect can be obtained with respect to the cleaning agent of the present invention is not clear, but it is because the finer foam makes it easier to absorb and adsorb skin stains, and the elasticity of the foam improves the cleaning efficiency. It is speculated that there is no such thing.
 (洗浄料の製造方法)
 本発明の洗浄料は、セルロースナノファイバーと、上述の洗浄料に用いることができる成分とを、用途に応じた割合で計量し混合する方法によって製造される。製造装置や製造条件は、洗浄料の性状、用途に応じて公知の製造装置や製造条件を採用することができる。
(Manufacturing method of cleaning agent)
The cleaning agent of the present invention is produced by a method in which cellulose nanofibers and components that can be used in the above-mentioned cleaning agent are weighed and mixed at a ratio according to the intended use. As the manufacturing equipment and manufacturing conditions, known manufacturing equipment and manufacturing conditions can be adopted depending on the properties of the cleaning agent and the intended use.
 以下、実施例を挙げて本発明をさらに詳細に説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited thereto.
 (カルボキシメチル置換度の測定方法)
 1)カルボキシメチル化セルロース繊維(絶乾)約2.0gを精秤して、300mL容共栓付き三角フラスコに入れた。
 2)硝酸メタノール1000mLに特級濃硝酸100mLを加えた液100mLを加え、3時間振とうして、カルボキシメチルセルロース塩(CM化セルロース)を水素型CM化セルロースにした。
 3)水素型CM化セルロース(絶乾)を1.5~2.0g精秤し、300mL容共栓付き三角フラスコに入れた。
 4)80%メタノール15mLで水素型CM化セルロースを湿潤し、0.1NのNaOHを100mL加え、室温で3時間振とうした。
 5)指示薬として、フェノールフタレインを用いて、0.1NのH2SO4で過剰のNaOHを逆滴定した。
 6)カルボキシメチル置換度(DS)を、次式によって算出した:
A=[(100×F’-(0.1NのH2SO4)(mL)×F)×0.1]/(水素型CM化セルロースの絶乾質量(g))
DS=0.162×A/(1-0.058×A)
A:水素型CM化セルロースの1gの中和に要する1NのNaOH量(mL)
F’:0.1NのH2SO4のファクター
F:0.1NのNaOHのファクター
(Measurement method of carboxymethyl substitution)
1) About 2.0 g of carboxymethylated cellulose fiber (absolutely dried) was precisely weighed and placed in a 300 mL Erlenmeyer flask with a stopper.
2) 100 mL of a solution prepared by adding 100 mL of special grade concentrated nitric acid to 1000 mL of methanol nitrate was added, and the mixture was shaken for 3 hours to change the carboxymethyl cellulose salt (CM-modified cellulose) into hydrogen-type CM-modified cellulose.
3) 1.5 to 2.0 g of hydrogen-type CM-formed cellulose (absolutely dried) was precisely weighed and placed in a 300 mL Erlenmeyer flask with a stopper.
4) The hydrogen-type CM-formed cellulose was moistened with 15 mL of 80% methanol, 100 mL of 0.1 N NaOH was added, and the mixture was shaken at room temperature for 3 hours.
5) Excess NaOH was back titrated with 0.1 N H 2 SO 4 using phenolphthalein as an indicator.
6) The degree of carboxymethyl substitution (DS) was calculated by the following equation:
A = [(100 x F'-(0.1 N H 2 SO 4 ) (mL) x F) x 0.1] / (absolute dry mass (g) of hydrogen-type CM-formed cellulose)
DS = 0.162 x A / (1-0.058 x A)
A: 1N NaOH amount (mL) required to neutralize 1 g of hydrogen-type CM-formed cellulose
F': 0.1N H 2 SO 4 factor F: 0.1N NaOH factor
 (平均繊維径、アスペクト比の測定方法)
 CNFの平均繊維径および平均繊維長は、原子間力顕微鏡(AFM)を用いてランダムに選んだ200本の繊維について解析した。アスペクト比は下記の式により算出した。
 アスペクト比=平均繊維長/平均繊維径
(Measuring method of average fiber diameter and aspect ratio)
The average fiber diameter and average fiber length of CNF were analyzed for 200 randomly selected fibers using an atomic force microscope (AFM). The aspect ratio was calculated by the following formula.
Aspect ratio = average fiber length / average fiber diameter
 (実施例1)
 (カルボキシメチル化セルロースナノファイバーの製造)
 回転数を100rpmに調節した5L容の二軸ニーダーに、イソプロパノール(IPA)1089部と、水酸化ナトリウム31部を水121部に溶解したものとを加え、広葉樹パルプ(日本製紙(株)製、LBKP)を100℃で60分間乾燥した際の乾燥質量で200部仕込んだ。30℃で60分間撹拌、混合しマーセル化セルロースを調製した。更に撹拌しつつモノクロロ酢酸ナトリウム117部を添加し、30℃で30分間撹拌した後、30分かけて70℃に昇温し、70℃で60分間カルボキシメチル化反応をさせた。マーセル化反応時及びカルボキシメチル化反応時の反応媒中の水の割合は、10質量%である。反応終了後、中和し、65%含水メタノールで洗浄し、脱液、乾燥、粉砕して、カルボキシメチル置換度0.27、セルロースI型の結晶化度64%のカルボキシメチル化セルロースのナトリウム塩を得た。なお、カルボキシメチル置換度及びセルロースI型の結晶化度の測定方法は、先述の通りである。
(Example 1)
(Manufacturing of carboxymethylated cellulose nanofibers)
To a 5 L biaxial kneader whose rotation speed was adjusted to 100 rpm, 1089 parts of isopropanol (IPA) and 31 parts of sodium hydroxide dissolved in 121 parts of water were added, and hardwood pulp (manufactured by Nippon Paper Industries, Ltd.). LBKP) was charged in 200 parts by the dry mass when dried at 100 ° C. for 60 minutes. Mercerized cellulose was prepared by stirring and mixing at 30 ° C. for 60 minutes. After further stirring, 117 parts of monochloroacetate sodium was added, and the mixture was stirred at 30 ° C. for 30 minutes, then heated to 70 ° C. over 30 minutes, and carboxymethylated at 70 ° C. for 60 minutes. The proportion of water in the reaction medium during the mercerization reaction and the carboxymethylation reaction is 10% by mass. After completion of the reaction, the reaction was neutralized, washed with 65% hydrous methanol, deflated, dried and pulverized, and the sodium salt of carboxymethylated cellulose having a carboxymethyl substitution degree of 0.27 and a cellulose type I crystallinity of 64%. Got The method for measuring the degree of carboxymethyl substitution and the degree of crystallization of cellulose type I is as described above.
 得られたカルボキシメチル化セルロースのナトリウム塩を水に分散し、1%(w/v)水分散体とした。これを、150MPaの高圧ホモジナイザーで3回処理し、カルボキシメチル化セルロースナノファイバーの分散体を得た。得られたカルボキシメチル化セルロースナノファイバーは、平均繊維径が3.2nm、アスペクト比が40であった。 The obtained sodium salt of carboxymethylated cellulose was dispersed in water to obtain a 1% (w / v) aqueous dispersion. This was treated three times with a high-pressure homogenizer at 150 MPa to obtain a dispersion of carboxymethylated cellulose nanofibers. The obtained carboxymethylated cellulose nanofibers had an average fiber diameter of 3.2 nm and an aspect ratio of 40.
 (CNF粉体1の製造)
 得られたカルボキシメチル化セルロースナノファイバーを水で固形分0.7質量%の分散体とし、カルボキシメチルセルロース(日本製紙(株)製、商品名:F350HC-4、粘度(1質量%、25℃、60rpm)約3000mPa・s、カルボキシメチル置換度約0.90)を、カルボキシメチル化セルロースナノファイバーに対して40質量%(すなわち、カルボキシメチル化セルロースナノファイバーの固形分を100質量部としたときにカルボキシメチルセルロースの固形分が40質量部となるように)添加し、TKホモミキサー(12,000rpm)で60分間撹拌した。
(Manufacturing of CNF powder 1)
The obtained carboxymethyl cellulose nanofibers were made into a dispersion having a solid content of 0.7% by mass with water, and carboxymethyl cellulose (manufactured by Nippon Paper Co., Ltd., trade name: F350HC-4, viscosity (1% by mass, 25 ° C.), 60 rpm) about 3000 mPa · s, carboxymethyl substitution degree about 0.90) is 40% by mass with respect to the carboxymethylated cellulose nanofiber (that is, when the solid content of the carboxymethyl cellulose nanofiber is 100 parts by mass). The solid content of carboxymethyl cellulose was 40 parts by mass), and the mixture was stirred with a TK homomixer (12,000 rpm) for 60 minutes.
 この分散体に、水酸化ナトリウム水溶液0.5質量%を加え、pHを9に調整した後、ドラム乾燥機D0405(カツラギ工業社製)のドラム表面に塗布し、140℃で1分間乾燥した。得られた乾燥物を掻き取り、次いで、衝撃式ミルを用いて1時間あたり10kgの速さで乾燥物を粉砕し、水分量5質量%の乾燥粉砕物を得た。得られた粉砕物を、30メッシュを用いて分級し、カルボキシメチル化セルロースナノファイバー及びカルボキシメチルセルロースを含む粉体(CNF粉体1)を得た。 After adding 0.5% by mass of an aqueous sodium hydroxide solution to this dispersion and adjusting the pH to 9, it was applied to the drum surface of a drum dryer D0405 (manufactured by Katsuragi Kogyo Co., Ltd.) and dried at 140 ° C. for 1 minute. The obtained dried product was scraped off, and then the dried product was pulverized at a rate of 10 kg per hour using an impact mill to obtain a dried product having a water content of 5% by mass. The obtained pulverized product was classified using 30 mesh to obtain a powder containing carboxymethylated cellulose nanofibers and carboxymethyl cellulose (CNF powder 1).
 (洗浄料の製造)
 表1の処方で洗浄料を調製した。具体的には、上記で得られたCNF粉体1をプロパンジオールで分散した。次に、CNF粉体1のプロパンジオール分散体を含む水層と、油層をそれぞれ80℃まで加温した。水層と油層を混合し、ホモミキサーを使用して5000rpm、1分間の条件で撹拌した。これに、カリ石ケン素地を追加し、手撹拌を行った。最後に、水酸化Kを加えてケン化し、40℃以下となるまで撹拌しながら冷却することにより、洗浄料1を得た。
(Manufacturing of cleaning fee)
Cleaning agents were prepared according to the formulations shown in Table 1. Specifically, the CNF powder 1 obtained above was dispersed with propanediol. Next, the aqueous layer containing the propanediol dispersion of CNF powder 1 and the oil layer were each heated to 80 ° C. The aqueous layer and the oil layer were mixed and stirred using a homomixer at 5000 rpm for 1 minute. Potassium stone Ken substrate was added to this, and manual stirring was performed. Finally, K hydroxide was added to form a ken, and the mixture was cooled with stirring until the temperature became 40 ° C. or lower to obtain Cleaning Agent 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 (比較例1)
 表2の処方で洗浄料を調製した。具体的には、CNF粉体1を用いず、プロパンジオールを含む水層を用いたこと以外は実施例1と同様にして、洗浄料2を得た。
(Comparative Example 1)
Cleaning agents were prepared according to the formulations shown in Table 2. Specifically, the cleaning agent 2 was obtained in the same manner as in Example 1 except that the CNF powder 1 was not used and the aqueous layer containing propanediol was used.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 実施例および比較例で得られた洗浄料について、次に示す方法で洗浄率の評価を行った。結果を表3に示す。 The cleaning rates obtained in the examples and comparative examples were evaluated by the following method. The results are shown in Table 3.
 (洗浄率)
 (株)ビューラックス製バイオスキンに疑似皮脂(組成:トリ(カプリル酸/カプリン酸/ミリスチン酸/ステアリン酸)グリセリル=99.0%、黒酸化鉄=1.0%)を指で均一に塗布し、温風にて均した。洗浄料は、精製水にて10%に希釈し、手撹拌の後、ボルテックスミキサーにて泡立てた。疑似皮脂の上に泡立てた洗浄料をのせ、指先でこすった後、流水で洗い流した。
 色差計を用いて、疑似皮脂塗布前、疑似皮脂塗布後、流水洗浄後におけるL*値(明るさ)を測定し、以下の式により洗浄率を求めた。
洗浄率(%)=(B-C)÷(B-A)×100
ここで、A~Cは、以下の値を示す。
A:疑似皮脂塗布前のL*値
B:疑似皮脂塗布後のL*値
C:流水洗浄後のL*値
 なお、疑似皮脂塗布前、および流水洗浄後におけるL*値は、場所を変えて3回測定した平均値を用いた。疑似皮脂塗布後のL*値については、洗浄用とはわけて塗布後測定用として用意し、場所を変えて5回測定した平均値を洗浄料1、2の洗浄率を算出するために用いた。また、L*値が大きいほど明るいことを示す。
(Washing rate)
Apply pseudo-sebum (composition: tri (caprylic acid / caprylic acid / myristic acid / stearic acid) glyceryl = 99.0%, black iron oxide = 1.0%) evenly to Bioskin manufactured by Bulux Co., Ltd. with your fingers. Then, it was leveled with warm air. The cleaning agent was diluted to 10% with purified water, stirred by hand, and then whipped with a vortex mixer. A lathered cleaning agent was placed on the pseudo-sebum, rubbed with a fingertip, and then rinsed with running water.
Using a color difference meter, the L * value (brightness) before, after applying the pseudo-sebum, and after washing with running water was measured, and the cleaning rate was determined by the following formula.
Cleaning rate (%) = (BC) ÷ (BA) x 100
Here, A to C indicate the following values.
A: L * value before application of pseudo-sebum B: L * value after application of pseudo-sebum C: L * value after washing with running water Note that the L * values before applying pseudo-sebum and after washing with running water can be changed in different places. The average value measured three times was used. The L * value after application of pseudo-sebum is prepared for measurement after application separately from for cleaning, and the average value measured 5 times at different locations is used to calculate the cleaning rate of cleaning charges 1 and 2. board. Further, the larger the L * value, the brighter the image.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 (マイクロスコープを用いた観察)
 洗浄率の評価の際に、あわせてバイオスキンの表面観察を行った。観察は、(株)キーエンス製マイクロスコープを用い、倍率100倍の条件で行った。疑似皮脂塗布前の結果を図1に、疑似皮脂塗布後の結果を図2に、実施例1の洗浄料1を用いた流水洗浄後の結果を図3に、比較例1の洗浄料2を用いた流水洗浄後の結果を図4にそれぞれ示す。各観察は、観察場所を変えて4回行った。
(Observation using a microscope)
At the time of evaluation of the cleaning rate, the surface of the bioskin was also observed. The observation was carried out using a microscope manufactured by KEYENCE CORPORATION under the condition of a magnification of 100 times. The result before application of pseudo-sebum is shown in FIG. 1, the result after application of pseudo-sebum is shown in FIG. 2, the result after washing with running water using the cleaning agent 1 of Example 1 is shown in FIG. 3, and the cleaning agent 2 of Comparative Example 1 is shown. The results after washing with running water used are shown in FIG. 4, respectively. Each observation was performed 4 times at different observation locations.
 表3に示す通り、実施例1のセルロースナノファイバーを含む洗浄料は、比較例1のセルロースナノファイバーを含まない洗浄料と比較して洗浄率が高く、洗浄効果に優れるものであった。また、マイクロスコープを用いた観察結果からも、実施例1のセルロースナノファイバーを含む洗浄料を用いると、比較例1のセルロースナノファイバーを含まない洗浄料を用いた場合と比較して、疑似皮脂に対する汚れ落ち効果が非常に高いことが確認できた。
 
 
As shown in Table 3, the cleaning agent containing the cellulose nanofibers of Example 1 had a higher cleaning rate and an excellent cleaning effect as compared with the cleaning agent containing no cellulose nanofibers of Comparative Example 1. In addition, from the observation results using a microscope, when the cleaning agent containing cellulose nanofibers of Example 1 was used, the pseudo-sebum was compared with the case of using the cleaning agent containing no cellulose nanofibers of Comparative Example 1. It was confirmed that the effect of removing stains on the surface was very high.

Claims (6)

  1.  セルロースナノファイバーを含有する洗浄料。 Cleaning agent containing cellulose nanofibers.
  2.  前記セルロースナノファイバーを、0.05質量%以上5質量%以下含む請求項1記載の洗浄料。 The cleaning agent according to claim 1, which contains the cellulose nanofibers in an amount of 0.05% by mass or more and 5% by mass or less.
  3.  前記セルロースナノファイバーが、カルボキシメチル化セルロースナノファイバーである、請求項1又は2に記載の洗浄料。 The cleaning agent according to claim 1 or 2, wherein the cellulose nanofibers are carboxymethylated cellulose nanofibers.
  4.  前記カルボキシメチル化セルロースナノファイバーは、セルロースの無水グルコース単位当たりのカルボキシメチル置換度が0.01~0.50であり、セルロースI型の結晶化度が40%以上である、請求項3記載の洗浄料。 The third aspect of claim 3, wherein the carboxymethylated cellulose nanofibers have a degree of carboxymethyl substitution per anhydrous glucose unit of cellulose of 0.01 to 0.50 and a degree of crystallinity of cellulose type I of 40% or more. Cleaning fee.
  5.  さらにカルボキシメチルセルロースを含有する、請求項1~4のいずれか一項に記載の洗浄料。 The cleaning agent according to any one of claims 1 to 4, further containing carboxymethyl cellulose.
  6.  洗浄料が、洗顔料、クレンジング用化粧料、石鹸、シャンプー、ハンドソープ又はボディーソープである、請求項1~5のいずれか一項に記載の洗浄料。 The cleaning agent according to any one of claims 1 to 5, wherein the cleaning agent is a washing pigment, a cleansing cosmetic, soap, shampoo, hand soap or body soap.
PCT/JP2021/039618 2020-11-05 2021-10-27 Cleansing preparation WO2022097544A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022560739A JPWO2022097544A1 (en) 2020-11-05 2021-10-27

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-184848 2020-11-05
JP2020184848 2020-11-05

Publications (1)

Publication Number Publication Date
WO2022097544A1 true WO2022097544A1 (en) 2022-05-12

Family

ID=81457815

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/039618 WO2022097544A1 (en) 2020-11-05 2021-10-27 Cleansing preparation

Country Status (2)

Country Link
JP (1) JPWO2022097544A1 (en)
WO (1) WO2022097544A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024014166A1 (en) * 2022-07-13 2024-01-18 株式会社佐野商会 Solid powder cosmetic
CN118207048A (en) * 2024-05-20 2024-06-18 潍坊凯利来生物科技有限公司 Heavy oil cleaning agent for kitchen and preparation method thereof

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009062332A (en) * 2007-09-07 2009-03-26 Asahi Kasei Chemicals Corp Cosmetic composition containing fine fibrous cellulose and/or its composite material
JP2010018704A (en) * 2008-07-10 2010-01-28 Asahi Kasei Chemicals Corp Gel dry composition and method for producing it
JP2016060888A (en) * 2014-09-22 2016-04-25 第一工業製薬株式会社 Liquid detergent composition for spray, and detergent packed in spray container using the same
JP2017066283A (en) * 2015-09-30 2017-04-06 日本製紙株式会社 Additive for air bubble containing composition
JP2017186187A (en) * 2016-04-01 2017-10-12 日揮触媒化成株式会社 Porous silica particle and cosmetic for cleaning
WO2018030392A1 (en) * 2016-08-08 2018-02-15 日本製紙株式会社 Method for evaluating cellulose nanofiber dispersion, cellulose nanofiber aqueous dispersion, and cellulose nanofiber-containing food, cosmetic, and rubber composition
JP2018135425A (en) * 2017-02-21 2018-08-30 第一工業製薬株式会社 Detergent composition
JP2018145153A (en) * 2017-03-07 2018-09-20 花王株式会社 Etherified cellulose fiber and composition containing surfactant
JP2019206521A (en) * 2018-05-29 2019-12-05 日本製紙株式会社 Additive containing carboxymethylated cellulose nanofiber
JP2020121941A (en) * 2019-01-30 2020-08-13 日光ケミカルズ株式会社 Oil-in-water emulsifier and cosmetics
CN111568802A (en) * 2020-06-18 2020-08-25 广州家化化学有限公司 Nano-cellulose anti-dandruff shampoo and preparation method thereof
JP2020186227A (en) * 2019-05-07 2020-11-19 日光ケミカルズ株式会社 Oil-in-water type emulsion composition

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009062332A (en) * 2007-09-07 2009-03-26 Asahi Kasei Chemicals Corp Cosmetic composition containing fine fibrous cellulose and/or its composite material
JP2010018704A (en) * 2008-07-10 2010-01-28 Asahi Kasei Chemicals Corp Gel dry composition and method for producing it
JP2016060888A (en) * 2014-09-22 2016-04-25 第一工業製薬株式会社 Liquid detergent composition for spray, and detergent packed in spray container using the same
JP2017066283A (en) * 2015-09-30 2017-04-06 日本製紙株式会社 Additive for air bubble containing composition
JP2017186187A (en) * 2016-04-01 2017-10-12 日揮触媒化成株式会社 Porous silica particle and cosmetic for cleaning
WO2018030392A1 (en) * 2016-08-08 2018-02-15 日本製紙株式会社 Method for evaluating cellulose nanofiber dispersion, cellulose nanofiber aqueous dispersion, and cellulose nanofiber-containing food, cosmetic, and rubber composition
JP2018135425A (en) * 2017-02-21 2018-08-30 第一工業製薬株式会社 Detergent composition
JP2018145153A (en) * 2017-03-07 2018-09-20 花王株式会社 Etherified cellulose fiber and composition containing surfactant
JP2019206521A (en) * 2018-05-29 2019-12-05 日本製紙株式会社 Additive containing carboxymethylated cellulose nanofiber
JP2020121941A (en) * 2019-01-30 2020-08-13 日光ケミカルズ株式会社 Oil-in-water emulsifier and cosmetics
JP2020186227A (en) * 2019-05-07 2020-11-19 日光ケミカルズ株式会社 Oil-in-water type emulsion composition
CN111568802A (en) * 2020-06-18 2020-08-25 广州家化化学有限公司 Nano-cellulose anti-dandruff shampoo and preparation method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024014166A1 (en) * 2022-07-13 2024-01-18 株式会社佐野商会 Solid powder cosmetic
JP7555079B2 (en) 2022-07-13 2024-09-24 株式会社佐野商会 Solid powder cosmetics
CN118207048A (en) * 2024-05-20 2024-06-18 潍坊凯利来生物科技有限公司 Heavy oil cleaning agent for kitchen and preparation method thereof

Also Published As

Publication number Publication date
JPWO2022097544A1 (en) 2022-05-12

Similar Documents

Publication Publication Date Title
WO2022097544A1 (en) Cleansing preparation
JP6769748B2 (en) Effervescent aerosol composition
US12049522B2 (en) Powder containing carboxymethylated cellulose nanofibers
JP5269513B2 (en) Spray composition and spray spraying apparatus using the same
JP6417490B1 (en) Carboxymethylated cellulose nanofiber
JP2018109030A (en) Cosmetic additive and cosmetic containing same
WO2015107995A1 (en) Dry solid of anion-modified cellulose nanofiber and method for producing same
WO2019111928A1 (en) Method for manufacturing carboxymethylated cellulose nanofiber
JP6785037B2 (en) Additives for bubble-containing compositions
WO2019111941A1 (en) Carboxymethylated cellulose nanofibers
CN111465620A (en) Carboxymethylated cellulose nanofibers
JP7100550B2 (en) Composition for spray
JP2021195350A (en) Composite particle and cosmetic composition
JP2010106055A (en) Functional cellulose composition and production method thereof
JP6570006B2 (en) Method for producing cellulose nanofiber dispersion and method for dispersing dried chemically modified cellulose fiber
JP7426810B2 (en) Adhesive composition, its manufacturing method and use
JP2020182903A (en) Emulsifier including carboxymethylated cellulose nanofiber and water-soluble polymer
JP7411852B1 (en) Anion-modified cellulose nanofiber-containing powder
CN116615465A (en) Additive for producing composition containing air bubbles
JP7477333B2 (en) Method for producing emulsion using emulsifier containing dry solid of mixture of carboxymethylated cellulose nanofiber and water-soluble polymer
WO2024202688A1 (en) Anion-modified cellulose nanofiber-containing powder
JP2024144090A (en) Anion-modified cellulose nanofiber-containing powder
WO2024202689A1 (en) Powder containing anionic modified cellulose nanofibers
JP2022087414A (en) Method for producing dry solid of cellulose nanofiber
JP2023149384A (en) liquid seasoning

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21889097

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022560739

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21889097

Country of ref document: EP

Kind code of ref document: A1