WO2022097438A1 - 圧縮成形して成形体を製造する方法 - Google Patents

圧縮成形して成形体を製造する方法 Download PDF

Info

Publication number
WO2022097438A1
WO2022097438A1 PCT/JP2021/037967 JP2021037967W WO2022097438A1 WO 2022097438 A1 WO2022097438 A1 WO 2022097438A1 JP 2021037967 W JP2021037967 W JP 2021037967W WO 2022097438 A1 WO2022097438 A1 WO 2022097438A1
Authority
WO
WIPO (PCT)
Prior art keywords
linear expansion
coefficient
molded product
molded
molding
Prior art date
Application number
PCT/JP2021/037967
Other languages
English (en)
French (fr)
Inventor
大志朗 中本
大輔 能登
祐平 小永井
一朗 北野
Original Assignee
帝人株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 帝人株式会社 filed Critical 帝人株式会社
Priority to JP2022560691A priority Critical patent/JP7377993B2/ja
Priority to EP21888991.3A priority patent/EP4212327A4/en
Priority to CN202180074709.4A priority patent/CN116568475A/zh
Priority to US17/780,801 priority patent/US20220410443A1/en
Publication of WO2022097438A1 publication Critical patent/WO2022097438A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • B29C70/42Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles
    • B29C70/46Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using matched moulds, e.g. for deforming sheet moulding compounds [SMC] or prepregs
    • B29C70/462Moulding structures having an axis of symmetry or at least one channel, e.g. tubular structures, frames
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/02Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles
    • B29C43/14Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles in several steps
    • B29C43/146Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles in several steps for making multilayered articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/003Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor characterised by the choice of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/02Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles
    • B29C43/021Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles characterised by the shape of the surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/02Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles
    • B29C43/20Making multilayered or multicoloured articles
    • B29C43/203Making multilayered articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C43/36Moulds for making articles of definite length, i.e. discrete articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/003Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts characterised by the matrix material, e.g. material composition or physical properties
    • B29C70/0035Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts characterised by the matrix material, e.g. material composition or physical properties comprising two or more matrix materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/06Fibrous reinforcements only
    • B29C70/08Fibrous reinforcements only comprising combinations of different forms of fibrous reinforcements incorporated in matrix material, forming one or more layers, and with or without non-reinforced layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/06Fibrous reinforcements only
    • B29C70/10Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres
    • B29C70/12Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of short length, e.g. in the form of a mat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • B29C70/42Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles
    • B29C70/46Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using matched moulds, e.g. for deforming sheet moulding compounds [SMC] or prepregs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/34Layered products comprising a layer of synthetic resin comprising polyamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/26Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
    • B32B3/28Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer characterised by a layer comprising a deformed thin sheet, i.e. the layer having its entire thickness deformed out of the plane, e.g. corrugated, crumpled
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/14Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/02Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles
    • B29C43/14Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles in several steps
    • B29C43/146Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles in several steps for making multilayered articles
    • B29C2043/147Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles in several steps for making multilayered articles by compressing after the laying of further material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D99/00Subject matter not provided for in other groups of this subclass
    • B29D99/001Producing wall or panel-like structures, e.g. for hulls, fuselages, or buildings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2101/00Use of unspecified macromolecular compounds as moulding material
    • B29K2101/12Thermoplastic materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2307/00Use of elements other than metals as reinforcement
    • B29K2307/04Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2309/00Use of inorganic materials not provided for in groups B29K2303/00 - B29K2307/00, as reinforcement
    • B29K2309/08Glass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0037Other properties
    • B29K2995/0089Impact strength or toughness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2009/00Layered products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/101Glass fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/106Carbon fibres, e.g. graphite fibres

Definitions

  • the present invention relates to a method for producing a molded body by laminating a material A containing carbon fiber and a thermoplastic resin M1 and a material B containing a glass fiber and a thermoplastic resin M2 and compression-molding them.
  • Patent Documents 1 and 2 describe a molded body formed by laminating a thermoplastic resin layer reinforced with glass fiber and a thermoplastic resin reinforced with carbon fiber.
  • Patent Documents 3 and 4 describe a wavy shock absorbing member using a thermoplastic resin reinforced with carbon fiber.
  • Patent Document 1 since the material described in Patent Document 1 has a laminated structure in which a glass fiber composite material is sandwiched between carbon fiber composite materials, the carbon fiber composite materials are arranged on both surface layers. In this case, since the breaking elongation of the carbon fiber composite material on both surface layers is small, for example, the layer on the opposite side of the impacted side does not satisfy the rigidity which is the main required performance of the automobile. Easy to break. Although the glass fiber composite material existing in the central layer has a large elongation at break, it does not contribute to the prevention of cracks when it receives an impact because it exists inside the molded body.
  • Patent Document 2 Although the molded body described in Patent Document 2 has a glass fiber composite material and a carbon fiber composite material laminated in two layers, there is a problem of warpage due to the difference in linear expansion coefficient between them. When warpage occurs, it is difficult to assemble an automobile, for example, in combination with other parts.
  • Patent Documents 3 and 4 Since the inventions described in Patent Documents 3 and 4 are made only of carbon fiber composite materials, the problem of warpage is not recognized.
  • an object of the present invention is to provide a method for manufacturing a molded product that solves the problems of high impact resistance and "warp" of the molded product.
  • the present invention provides the following means.
  • the method for manufacturing a molded body according to 1 above wherein the cross section of the molded body has a plurality of wavy shapes and the length in the wavy direction is 1 m or more.
  • the molded body comprises a pair of side walls and a connecting wall connecting the side walls.
  • the mold MB includes a mold surface S1 for forming a connecting wall and a mold surface S2 for forming a side wall, and the angle ⁇ 2 formed by S1 and S2 satisfies ⁇ 1 ⁇ 2.
  • Equation (1) 0.01 ⁇ Xa / Xb ⁇ 1 Equation (2) 0 ⁇ ( ⁇ 2- ⁇ 1) ⁇ (Xa / Xb) ⁇ 1.0 ⁇ 10 3 however,
  • the coefficient of linear expansion Xa of the material A is the coefficient of linear expansion of the material in the direction of waviness when the molded product is formed.
  • the coefficient of linear expansion Xb of the material B is the coefficient of linear expansion of the material in the direction of waviness when the molded product is formed.
  • Equation (1) 0.01 ⁇ Xa / Xb ⁇ 1 Equation (3) 0 ⁇ (Fc-Fa) / h ⁇ (Xa / Xb) ⁇ 1.0 ⁇ 10 3 however,
  • the coefficient of linear expansion Xa of the material A is the coefficient of linear expansion of the material in the direction of waviness when the molded product is formed.
  • the coefficient of linear expansion Xb of the material B is the coefficient of linear expansion of the material in the direction of waviness when the molded product is formed.
  • Equation (1) 0.01 ⁇ Xa / Xb ⁇ 1 Equation (4) 0 ⁇
  • Xa Coefficient of linear expansion of material A
  • Xb Coefficient of linear expansion of material B ta: Temperature of mold MA tb: Temperature of mold MB
  • the coefficient of linear expansion Xa of the material A is the coefficient of linear expansion of the material in the direction of waviness when the molded product is formed.
  • the coefficient of linear expansion Xb of the material B is the coefficient of linear expansion of the material in the direction of waviness when the molded product is formed.
  • the thickness la of the material A is 0.5 mm or more and less than 5.0 mm
  • the thickness lb of the material B is 0.5 mm or more and 3.0 mm or less. 1 ⁇ la / lb ⁇ 0.6 or 0.1 ⁇ lb / la ⁇ 0.6, The method for producing a molded product according to any one of 1 to 10 above.
  • Equation (1) 0.01 ⁇ Xa / Xb ⁇ 1 Equation (5) 0.3 ⁇ VfA / VfB ⁇ 3.0 however,
  • the coefficient of linear expansion Xa of the material A is the coefficient of linear expansion of the material in the direction of waviness when the molded product is formed.
  • the coefficient of linear expansion Xb of the material B is the coefficient of linear expansion of the material in the direction of waviness when the molded product is formed.
  • the coefficient of linear expansion Xa of the material A is the coefficient of linear expansion of the material in the direction of waviness when the molded product is formed.
  • the coefficient of linear expansion Xb of the material B is the coefficient of linear expansion of the material in the direction of waviness when the molded product is formed.
  • the coefficient of linear expansion Xc of the material C is the coefficient of linear expansion of the material in the direction of waviness when the molded product is formed.
  • the coefficient of linear expansion Xa of the material A and the coefficient of linear expansion Xb of the material B are set to 0.8 ⁇ Xa / Xb ⁇ 1, any one of the above 1 to 14 mixed with the linear expansion easing agent.
  • the method for manufacturing a molded product according to the section however, The coefficient of linear expansion Xa of the material A is the coefficient of linear expansion of the material in the direction of waviness when the molded product is formed.
  • the coefficient of linear expansion Xb of the material B is the coefficient of linear expansion of the material in the direction of waviness when the molded product is formed.
  • thermoplastic resin M2 having a smaller coefficient of linear expansion than that of the thermoplastic resin M1
  • 0.8 ⁇ Xa / Xb ⁇ when the linear expansion coefficient Xa of the material A and the linear expansion coefficient Xb of the material B are used.
  • the coefficient of linear expansion Xa of the material A is the coefficient of linear expansion of the material in the direction of waviness when the molded product is formed.
  • the coefficient of linear expansion Xb of the material B is the coefficient of linear expansion of the material in the direction of waviness when the molded product is formed.
  • the angle ⁇ 1 between the body and the connecting wall is 90 degrees ⁇ ⁇ 1 ⁇ 160 degrees.
  • the angle ⁇ 1 of the molded body is stress-deformed to make it smaller, and the flatness Fa'of the molded body after stress deformation and the height h of the side wall
  • the material A containing rigid carbon fibers is used as a surface layer (preferably a design surface) to have rigidity
  • the opposite surface layer is used as a material B containing glass fibers.
  • the schematic diagram which shows an example of the molded article manufactured by the manufacturing method of this invention (A) Schematic diagram showing an open state of a pair of male and female molding dies. (B) Schematic diagram showing a closed state of a pair of male and female molding dies. (A) A schematic diagram showing a state in which a material (A) and a material (B) are laminated and compression-molded by a molding die. (B) Schematic diagram showing a molded body taken out from a molding die. The schematic diagram which shows an example of the molded article manufactured by the manufacturing method of this invention. (A) Schematic diagram showing an open state of a pair of male and female molding dies. (B) Schematic diagram showing a closed state of a pair of male and female molding dies.
  • A A schematic diagram showing a state in which a material (A) and a material (B) are laminated and compression-molded by a molding die.
  • B Schematic diagram showing a molded body taken out from a molding die.
  • A) (b) Schematic diagram showing a molded body having ribs between a connecting wall and a side wall.
  • A) (b) The schematic diagram which shows that the molded body is joined with another part in a state where the angle ⁇ 1 is stress-deformed and the angle ⁇ 3 is made, and the joined body is manufactured.
  • (A) It is a schematic diagram which observed the cross section of the wavy shape by cutting out the observation range of the molded body so that the length Ly in the wavy direction is 40 cm, and exemplifies the method of measuring flatness.
  • (B) Schematic diagram showing the lower wall.
  • (C) Schematic diagram showing the lower surface of the lower wall.
  • the material A, the material B, or the material C may be collectively referred to simply as "material”.
  • the "material” is a concept including a laminate such as a material A, a material B, or a material C, or a combination of a plurality of materials A / B.
  • the material A and the material B have a flat plate shape, and after the flat plate-shaped material A and the material B are laminated and compression molded, the material layer A and the material layer B are formed respectively when the molded product is formed. It is preferable to have.
  • the flat plate-shaped material forms a single layer when it becomes a molded product.
  • Material A contains carbon fiber and thermoplastic resin M1
  • material B contains glass fiber and thermoplastic resin M2.
  • the molding die MA and the molding die MB which are a pair of male and female molding dies, are used, and the material A is brought into contact with the molding die MA and the material B is brought into contact with the molding die MB for compression molding. ..
  • one surface of the produced molded body is material A and the other surface is material B.
  • the laminated structure of the material is not particularly limited, and may be A / B, may be a four-layer structure of A / B / A / B, or may be A / B / A / B / A / B. It may have a 6-layer structure.
  • a and “B” means each layer.
  • the material B on the opposite surface layer has a breaking elongation, especially when the surface of the material A is impacted. Since it is large, it is preferable in that the material B is less likely to be cracked. However, if only the material B is used, the rigidity of the molded body is insufficient, so that the material A containing the carbon fibers needs to be arranged on one surface layer.
  • the molded product produced by the production method of the present invention is preferably an impact-resistant absorber and is a molded product on which the material A receives an impact.
  • the molded body is preferably for automobile parts where both rigidity and impact resistance are required.
  • the thicknesses of the material A and the material B are not particularly limited, but the thickness la of the material A is preferably 0.5 mm or more and less than 5.0 mm, and the thickness lb of the material B is preferably 0.5 mm or more and 3.0 mm or less. .1 ⁇ la / lb ⁇ 0.6 or 0.1 ⁇ lb / la ⁇ 0.6 is preferred. More preferably, 0.1 ⁇ la / lb ⁇ 0.2 or 0.1 ⁇ lb / la ⁇ 0.2. Within this range, even if there is a difference in the coefficient of linear expansion between the materials, the difference is unlikely to appear as a warp.
  • the upper limit of the thickness la of the material A is more preferably 4.0 mm or less, and further preferably 3.0 mm or less.
  • the upper limit of the thickness lb of the material B is more preferably 2.0 mm or less, further preferably 1.5 mm or less, and even more preferably 1.0 mm or less.
  • the thickness of the material of each layer may be uniform inside the molded body after compression molding.
  • the compression molding of the present invention is non-fluid molding, and the material may be charged into a molding die with a charge rate of 100% or more and compression molding may be performed.
  • the charge rate (%) 100 ⁇ the projected area (mm 2 ) after laminating the material A and the material B / the molded cavity area (mm 2 ). If the material A and the material B have a flat plate shape, the projected area can be easily measured.
  • the material C may be contained between the material A and the material B. At this time, it is preferable that the relationship between the linear expansion coefficient Xa of the material A, the linear expansion coefficient Xb of the material B, and the linear expansion coefficient Xc of the material C satisfies Xa ⁇ Xc ⁇ Xb. It may be Xa ⁇ Xb ⁇ Xc or Xc ⁇ Xa ⁇ Xb.
  • the layer structure at this time is not only a three-layer structure of A / C / B, but also a four-layer structure such as A / C / A / B and A / B / C / B, and A / C / B / A /. It may have a five-layer structure such as B or A / B / A / C / B.
  • A, B, and C means each layer.
  • the molding die MA and the molding die MB which are a pair of male and female molding dies, are used, and the material A is brought into contact with the molding die MA and the material B is brought into contact with the molding die MB for compression. Mold. Therefore, even if the material C is contained, one surface of the molded product is the material A, and the surface on the opposite side is the material B. Needless to say, the molded product may have a material D other than the material C.
  • Carbon fiber contains carbon fiber.
  • carbon fibers polyacrylonitrile (PAN) -based carbon fibers, petroleum / coal pitch-based carbon fibers, rayon-based carbon fibers, cellulose-based carbon fibers, lignin-based carbon fibers, phenol-based carbon fibers, and the like are generally known.
  • PAN polyacrylonitrile
  • any of these carbon fibers can be suitably used.
  • the fiber diameter of the carbon fiber single yarn used in the present invention may be appropriately determined according to the type of carbon fiber, and is not particularly limited. ..
  • the average fiber diameter is usually preferably in the range of 3 ⁇ m to 50 ⁇ m, more preferably in the range of 4 ⁇ m to 12 ⁇ m, and even more preferably in the range of 5 ⁇ m to 8 ⁇ m.
  • the carbon fiber is in the form of a fiber bundle, it refers to the diameter of the carbon fiber (single yarn) constituting the fiber bundle, not the diameter of the fiber bundle.
  • the average fiber diameter of the carbon fibers can be measured, for example, by the method described in JISR-7607: 2000.
  • Glass fiber Material B contains glass fiber.
  • the type of glass fiber is not particularly limited, and any glass fiber composed of E glass, A glass or C glass can be used, and these can be mixed and used.
  • the glass fiber in the present invention is not particularly limited, but the average fiber diameter of the glass fiber is preferably 1 ⁇ m to 50 ⁇ m, more preferably 5 ⁇ m to 20 ⁇ m.
  • the carbon fiber or glass fiber used in the present invention may have a sizing agent attached to the surface thereof.
  • the type of the sizing agent can be appropriately selected according to the type of the reinforcing fiber and the matrix resin, and is not particularly limited.
  • the carbon fiber is a discontinuous fiber, and its weight average fiber length is preferably 1 mm or more and 100 mm or less.
  • the glass fiber is a discontinuous fiber, and its weight average fiber length is preferably 1 mm or more and 100 mm or less.
  • the range of the weight average fiber length is preferable from the viewpoint of improving moldability.
  • reinforcing fiber glass fiber and / or carbon fiber are collectively referred to as "reinforced fiber".
  • the reinforcing fiber is either glass fiber or at least one of carbon fibers.
  • the weight average fiber length of the reinforcing fibers is more preferably 5 mm or more and 100 mm or less, further preferably 5 mm or more and 80 mm or less, and even more preferably 10 mm or more and 60 mm or less.
  • the weight average fiber length of the reinforcing fibers is 100 mm or less, the fluidity of the material A and / or the material B is improved, and it is easy to obtain a desired molded body shape during compression molding.
  • the weight average fiber length is 1 mm or more, the mechanical strength of the molded product tends to be improved.
  • reinforcing fibers having different fiber lengths may be used in combination.
  • the reinforcing fibers may have a single peak in the weight average fiber length, or may have a plurality of peaks.
  • the average fiber length of the reinforcing fibers can be obtained, for example, by measuring the fiber lengths of 100 fibers randomly extracted from the molded body to a unit of 1 mm using a caliper or the like and using the following formula (a). .. The average fiber length is measured by the weight average fiber length (Lw).
  • the number average fiber length (Ln) and the weight average fiber length (Lw) are obtained by the following formulas (a) and (b).
  • Ln ⁇ Li / j ... Equation (a)
  • Lw ( ⁇ Li 2 ) / ( ⁇ Li) ... Equation (b)
  • the fiber length is constant, the number average fiber length and the weight average fiber length have the same value.
  • the reinforcing fibers can be extracted from the molded product, for example, by subjecting the molded product to heat treatment at about 500 ° C. for about 1 hour and removing the resin in the furnace.
  • the fiber volume ratio contained in the material A or the material B is not particularly limited, but it is preferable to satisfy the formulas (1) and (5). Equation (1) 0.01 ⁇ Xa / Xb ⁇ 1 Equation (5) 0.3 ⁇ VfA / VfB ⁇ 3.0
  • the upper limit of the formula (5) is more preferably VfA / VfB ⁇ 1.6, further preferably VfA / VfB ⁇ 1.0, and even more preferably VfA / VfB ⁇ 0.8.
  • the lower limit of the formula (5) is more preferably 0.4 ⁇ VfA / VfB, further preferably 0.5 ⁇ VfA / VfB, and even more preferably 0.6 ⁇ VfA / VfB.
  • the fiber volume ratio (VfB) is preferably 10 Vol% or more and 60 Vol% or less, more preferably 20 Vol% or more and 50 Vol% or less, and further preferably 25 Vol% or more and 45 Vol% or less.
  • volume ratio of the reinforcing fibers (VfA, VfB) in the material A or the material B is 10 Vol% or more, the desired mechanical properties can be easily obtained.
  • volume ratio of the reinforcing fibers (VfA, VfB) does not exceed 60 Vol%, the fluidity when used for press molding or the like is good, and a desired molded body shape can be easily obtained.
  • the carbon fiber is a discontinuous fiber having a fiber length of 5 mm or more, and includes a carbon fiber a1 having a fiber bundle of less than 0.3 mm and a carbon fiber bundle a2 having a bundle width of 0.3 mm or more and 3.0 mm or less. Is preferable.
  • the volume ratio of the carbon fiber bundle a2 to the carbon fibers contained in the material A is preferably 5 Vol% or more and less than 95 Vol%, and more preferably 10 Vol% or more and less than 90 Vol%.
  • the carbon fibers are preferably dispersed in the in-plane direction.
  • the in-plane direction is a direction orthogonal to the plate thickness direction of the molded body, and means an indefinite direction of parallel planes orthogonal to the plate thickness direction.
  • the carbon fibers are randomly dispersed in the two-dimensional direction in the in-plane direction.
  • the material A is compression-molded without flowing, the morphology of the carbon fibers is almost maintained before and after molding. Therefore, the carbon fibers contained in the molded body obtained by molding the material A are also 2 in the in-plane direction of the molded body. It is preferable that the dimensions are randomly dispersed.
  • two-dimensionally randomly dispersed means that the carbon fibers are oriented in a disorderly manner in the in-plane direction of the molded body, not in a specific direction as in one direction, and have a specific direction as a whole. It refers to a state in which it is arranged in the seat surface without being shown.
  • the material A (or molded body) obtained by using the discontinuous fibers dispersed randomly in two dimensions is a substantially isotropic material A (or molded body) having no in-plane anisotropy. Is.
  • the degree of two-dimensional random orientation is evaluated by obtaining the ratio of the tensile elastic moduli in two directions orthogonal to each other.
  • the (E ⁇ ) ratio obtained by dividing the large value of the measured tensile elastic modulus by the small one is 5 or less, more preferably 2 or less, still more preferably. If it is 1.5 or less, it can be evaluated that the carbon fibers are randomly dispersed in two dimensions. Since the molded body has a shape, as a method for evaluating the two-dimensional random dispersion in the in-plane direction, it is preferable to heat the molded body to a temperature higher than the softening temperature to return it to a flat plate shape and solidify it. After that, when the test piece is cut out and the tensile elastic modulus is obtained, the random dispersion state in the two-dimensional direction can be confirmed.
  • the glass fibers are preferably dispersed in the in-plane direction.
  • the in-plane direction is a direction orthogonal to the plate thickness direction of the molded body, and means an indefinite direction of parallel planes orthogonal to the plate thickness direction.
  • the glass fibers are randomly dispersed in the two-dimensional direction in the in-plane direction.
  • the material B is compression-molded without flowing, the morphology of the glass fibers is almost maintained before and after molding. Therefore, the glass fibers contained in the molded body obtained by molding the material B are also 2 in the in-plane direction of the molded body. It is preferable that the dimensions are randomly dispersed.
  • two-dimensionally randomly dispersed means that the glass fibers are oriented in a disorderly manner in the in-plane direction of the molded body, not in a specific direction as in one direction, and have a specific direction as a whole. It refers to the state of being arranged in the seat surface without showing.
  • the material B (or molded body) obtained by using the discontinuous fibers dispersed randomly in two dimensions is a substantially isotropic material B (or molded body) having no in-plane anisotropy. Is.
  • the degree of two-dimensional random orientation is evaluated by obtaining the ratio of the tensile elastic moduli in two directions orthogonal to each other.
  • the (E ⁇ ) ratio obtained by dividing the large value of the measured tensile elastic modulus by the small one is 5 or less, more preferably 2 or less, still more preferably. If it is 1.5 or less, it can be evaluated that the glass fibers are randomly dispersed in two dimensions. Since the molded body has a shape, as a method for evaluating the two-dimensional random dispersion in the in-plane direction, it is preferable to heat the molded body to a temperature higher than the softening temperature to return it to a flat plate shape and solidify it. After that, when the test piece is cut out and the tensile elastic modulus is obtained, the random dispersion state in the two-dimensional direction can be confirmed.
  • thermoplastic resin M1 The type of the thermoplastic resin M1 in the present invention is not particularly limited, and a resin having a desired softening point or melting point can be appropriately selected and used.
  • the thermoplastic matrix resin usually has a softening point in the range of 180 ° C. to 350 ° C., but is not limited thereto.
  • thermoplastic resin M1 examples include vinyl chloride resin, vinylidene chloride resin, vinyl acetate resin, polyvinyl alcohol resin, polystyrene resin, acrylonitrile-styrene resin (AS resin), and acrylonitrile-butadiene-styrene.
  • ABS resin Based resin
  • acrylic resin acrylic resin, methacrylic resin, polyethylene resin, polypropylene resin, various thermoplastic polyamide resins, polyacetal resin, polycarbonate resin, polyethylene terephthalate resin, polyethylene naphthalate resin, Polybutylene naphthalate resin, borobutylene terephthalate resin, polyarylate resin, polyphenylene ete resin, polyphenylene sulfide resin, polysulfone resin, polyether sulfone resin, polyether ether ketone resin, polylactic acid resin, etc. Can be mentioned.
  • the thermoplastic resin in the present invention may be a crystalline resin or an amorphous resin.
  • the preferred crystalline resin is specifically a polyamide resin such as nylon 6, a polyethylene terephthalate resin, a polybutylene terephthalate resin, a polyethylene resin, a polypropylene resin, a polyacetal resin, or a polyphenylene sulfide resin. Resin and the like can be mentioned.
  • polyamide-based resins, polybutylene terephthalate-based resins, and polyphenylene sulfide-based resins are preferably used because they are excellent in heat resistance and mechanical strength.
  • Nylon which is one of the polyamide-based resins, includes PA6 (also referred to as polycaproamide, polycaprolactam, poly ⁇ -caprolactam) and PA26 (polyethylene adipamide).
  • PA6 also referred to as polycaproamide, polycaprolactam, poly ⁇ -caprolactam
  • PA26 polyethylene adipamide
  • PA46 polytetramethylene adipamide
  • PA66 polyhexamethylene adipamide
  • PA69 polyhexamethylene azepamide
  • PA610 polyhexamethylene sebacamide
  • PA611 polyhexamethylene undecamide
  • PA612 polyhexamethylene dodecamide
  • PA11 polyundecaneamide
  • PA12 polydodecaneamide
  • PA1212 polydodecamethylene dodecamide
  • PA6T polyhexamethylene terephthalamide
  • PA6I polyhexamethylene isophthalamide
  • PA912 polynonamethylene dodecamide
  • PA1012 polydecamethylene dodecamide
  • PA9T polynonamethylene terephthalamide
  • PA9I polynonamethylene isophthalamide
  • PA10T polydecamethylene terephthalamide
  • PA10I Polydecamethylene isophthalamide
  • PA11T polyundecamethylene terephthalamide
  • PA11I polyundecamethylene isophthalamide
  • PA12T polydodecamethylene terephthalamide
  • PA12I polydodecamethylene isophthalamide
  • polyamide MXD6 polymeme
  • thermoplastic resin M2 As with the thermoplastic resin, the type of the thermoplastic resin M2 in the present invention is not particularly limited, and those having a desired softening point or melting point can be appropriately selected and used.
  • the thermoplastic matrix resin usually has a softening point in the range of 180 ° C. to 350 ° C., but is not limited thereto.
  • the thermoplastic resin M2 may be of the same type as the thermoplastic resin M1, and by using the thermoplastic resin M2 having a smaller linear expansion coefficient than the thermoplastic resin M1, the linear expansion coefficient Xa of the material A and the linear expansion coefficient Xa can be obtained.
  • the thermoplastic resin M2 adjusted to 0.8 ⁇ Xa / Xb ⁇ 1 may be used.
  • Linear expansion alleviating agent When the coefficient of linear expansion Xa of the material A and the coefficient of linear expansion Xb of the material B are set, the linear expansion easing agent is mixed into the material A and / or the material B so that 0.8 ⁇ Xa / Xb ⁇ 1. Is also good.
  • the material A or the material B used in the present invention includes various fibrous or non-fibrous fillers of organic fibers or inorganic fibers, flame retardants, UV resistant agents, stabilizers, and mold releasers as long as the object of the present invention is not impaired. It may contain additives such as agents, pigments, softeners, plasticizers, surfactants and hollow glass beads.
  • the "warp" of a molded body during compression molding is a phenomenon in which the molded body is deformed when the temperature of the molded body drops over time immediately after the completion of compression molding, and is typically a molded body. This is a phenomenon caused by being pulled toward the material B having a large coefficient of linear expansion with the passage of time immediately after the production. For example, it is a phenomenon in which the end portion of the molded body in the call gate direction (wavy direction) is deformed downward on the Z axis, as in the molded body immediately after production on FIG.
  • the coefficient of linear expansion Xa of the material A is the coefficient of linear expansion of the material in the direction of waviness when the molded product is formed.
  • the coefficient of linear expansion Xb of the material B is the coefficient of linear expansion of the material in the direction of waviness when the molded product is formed.
  • the coefficient of linear expansion Xc of the material C is the coefficient of linear expansion of the material in the direction of waviness when the molded product is formed.
  • the coefficient of linear expansion of the material (especially in the case of non-fluid molding) and the coefficient of linear expansion of the material after being formed into a molded body are almost the same, even if the coefficient of linear expansion of the material is measured.
  • the coefficient of linear expansion may be measured by sampling from the molded body. When sampling from the connecting wall of the molded body, it is the wavy direction in FIG. 13 (Y-axis direction in FIG. 13), but when sampling from the vertical wall (side wall), it is not the wavy direction (Y-axis in FIG. 13). It is the route direction (Z-axis direction in FIG. 13).
  • the material is a material for producing a molded body, and the material A and the material B (or other layers such as the material C) are compression-molded to become a molded body. Therefore, the material A and the material B in the present invention preferably have a flat plate shape. On the other hand, the molded body is shaped into a three-dimensional shape.
  • the molded body in the present invention includes a pair of side walls and a connecting wall connected to the side wall.
  • the side walls are, for example, 101 and 401 in FIGS. 1 and 4.
  • the connecting wall is, for example, 102, 402, 403 in FIGS. 1 and 4. As depicted in FIGS. 1 and 4, the connecting wall connects a pair of side walls.
  • the connecting wall is a concept including the connecting wall (402) of the upper wall and the connecting wall (403) of the lower wall.
  • the upper wall (402 in FIG. 4) refers to the connecting wall on the upper side when the molded body is allowed to stand so that the material B existing on the surface layer is on the lower side.
  • the lower wall (403 in FIG. 4) refers to the connecting wall on the lower side when the molded body is allowed to stand so that the material B existing on the surface layer is on the lower side.
  • the cross section of the molded body in the present invention has a wavy shape.
  • the cross section of the wavy shape may have one wavy as illustrated in the cross section of FIG.
  • the cross section of the molded body preferably has a plurality of wavy shapes (for example, FIG. 4).
  • the length in the wavy direction is preferably 1 m or more
  • the cross section of the molded body has a plurality of wavy shapes
  • the length in the wavy direction is more preferably 1 m or more.
  • the wavy direction referred to here is, for example, the Y-axis direction in FIG.
  • a molded body having a wavy cross section means a molded body in which waviness can be observed when the cross section is observed. It is common to observe in the in-plane direction (direction perpendicular to the thickness direction).
  • the flatness Fa of the present invention is defined by the following procedures 1 to 5.
  • (Procedure 1) The molded body is allowed to stand so that the material B existing on the surface layer is on the lower side.
  • (Procedure 2) Observe the cross section of the molded body so that the cross section looks like a wavy shape, and cut out the observation range of the molded body so that the length Ly in the wavy direction is 40 cm.
  • (Procedure 3) Pay attention to the bottom surface of the lower wall formed by the connecting wall.
  • (Procedure 4) Draw two parallel ideal straight lines with the minimum required width so as to include the entire bottom surface of the lower wall.
  • (Procedure 5) The distance between ideal straight lines is defined as flatness Fa. Procedures 1 to 5 will be described with reference to FIG.
  • FIG. 9 shows a molded product that has been allowed to stand so that the material B existing on the surface layer is on the lower side.
  • the surface layer of the molded product on the lower side of the paper surface is covered with the material B.
  • the Y-axis direction in FIG. 9 is the wavy direction, and in FIG. 9 (a), the observation range of the molded body is cut out so that the length Ly is 40 cm, and the cross section of the wavy shape is observed (procedure 2). ..
  • the lower wall of the connecting wall is the area shown in 902 of FIG.
  • the bottom surface of the lower wall is the surface shown by 903 in FIG. 9 (procedure 3).
  • the two parallel ideal straight lines are exemplified by 901 in FIG.
  • the two parallel ideal straight lines (901) are drawn so that the distance between them is minimized (two parallel ideal straight lines are drawn with the minimum required width).
  • Fa may be designed so as to satisfy 0 ⁇ Fa / h ⁇ 1.3 even at one location.
  • the height h of the side wall of the present invention is exemplified by h in FIG. 10, and refers to the distance between the upper wall and the lower wall when observing a wavy cross section. More specifically, when observing the upper wall and the lower wall directly connected to one side wall, two parallel ideal straight lines with the minimum necessary width are formed so as to include the upper wall and the lower wall. The distance between the ideal straight lines when drawn is the height h. The two dotted lines drawn in FIG. 10 are drawn so that the distance between them is minimized.
  • at least one h may satisfy 0 ⁇ Fa / h ⁇ 1.3.
  • Fa / h 0, the lower wall of the molded product has an ideal plane. If Fa / h ⁇ 1.3, it is easy to assemble an automobile, for example, by combining it with other parts. It is preferably 0 ⁇ Fa / h ⁇ 1.0, more preferably 0 ⁇ Fa / h ⁇ 0.7, still more preferably 0 ⁇ Fa / h ⁇ 0.4, and even more preferably 0 ⁇ . Fa / h ⁇ 0.1.
  • angle ⁇ 1 In the molded product, the angle ⁇ 1 formed by the side wall and the connecting wall on the side where the material B exists on the surface layer is preferably 90 degrees ⁇ ⁇ 1 ⁇ 160 degrees.
  • the angle ⁇ 1 formed by the side wall and the connecting wall on the side where the material B exists on the surface layer is shown by, for example, ⁇ 1 in FIGS. 1 and 4. That is, the angle ⁇ 1 can be measured when observing the cross section of the wavy shape.
  • the molded bodies of FIGS. 1 and 4 have a plurality of ⁇ 1s having the same angle.
  • the angle ⁇ 1 is the smallest angle between the side wall and the connecting wall on the side where the material B exists on the surface layer.
  • the range of the more preferable angle ⁇ 1 is 95 degrees ⁇ ⁇ 1 ⁇ 135 degrees, more preferably 95 degrees ⁇ ⁇ 1 ⁇ 125 degrees, and even more preferably 98 degrees ⁇ ⁇ 1 ⁇ 120 degrees.
  • the angle formed by the side wall and the connecting wall on the side where the material B exists on the surface layer changes immediately after the molded body and after a while (sometimes called an angle change).
  • an angle change In order to make the angle ⁇ 1 of the molded body a desired angle, it is necessary to predict in advance how much the angle will change.
  • the number of angles ⁇ 1 increases as the length in the wavy direction becomes longer (specifically, when the length in the wavy direction becomes 1 m or more). As the number increases, the problem of warpage of the entire molded body becomes more pronounced.
  • the preferred production method of the present invention it is possible to produce a molded product having a small Fa / h value even if it has such a remarkable problem.
  • the molded body in the present invention preferably has ribs between the connecting wall and the side wall.
  • the rib is exemplified by, for example, 701 in FIGS. 7 (a) and 7 (b).
  • the angle ⁇ 1 is stress-deformed to make it smaller, and the relationship between the flatness Fa'of the molded body after stress deformation and the height h of the side wall is 0 ⁇ Fa'/ h ⁇ 0.1, and the joint is joined with another part. Then, the bonded body may be manufactured. For example, as shown in FIG. 8A, a slightly warped molded body may be stressed as shown by arrow 801 in FIG. 8A and then joined to another component (802 in FIG. 8).
  • the flatness Fa'me ans the flatness of the molded product in a joined state.
  • the joining may be bolted as shown in FIG. 8B, or may be bonded with an adhesive.
  • the material A is brought into contact with the molding die MA and the material B is brought into contact with the molding die MB for compression molding to produce a molded product.
  • 3 (a) and 6 (a) show how the material A is in contact with the mold MA and the material B is in contact with the mold MB.
  • the molding mold MA and the molding mold MB which are a pair of male and female molding molds, are not the molding molds of both male and female molds, respectively, and the molding mold MA and the molding mold MB are single molds, and the molding mold MA is used.
  • the molded MB are meant to form a pair of male and female. Further, for example, as shown in FIG. 2, it is sufficient that one of the molds has a male portion and the other mold has a female portion. Both moldings may have males and females (uneven or uneven), respectively.
  • the upper and lower molding molds MA and the molding mold MB are not particularly limited, but it is preferable that the molding mold MA is the upper mold and the molding mold MB is the lower mold. It is more preferable that the compression molding is a cold press, the molding mold MA is an upper mold, and the molding mold MB is a lower mold. The reason is described below.
  • compression molding For compression molding, molding methods such as hot press molding and cold press molding can be used, but compression molding using cold press molding is particularly preferable.
  • cold press molding for example, a molded product heated to a first predetermined temperature is placed in a molding mold set to a second predetermined temperature, and then pressurized and cooled.
  • the first predetermined temperature is equal to or higher than the melting point.
  • the second predetermined temperature is below the melting point.
  • the first predetermined temperature is equal to or higher than the glass transition temperature and the second predetermined temperature is lower than the glass transition temperature.
  • the first predetermined temperature is determined based on the higher melting point or glass transition temperature of the resin, and the second is based on the lower melting point or glass transition temperature of the resin. Determine the predetermined temperature.
  • the cold press method includes at least the following steps A2) to A1).
  • Step A1) A step of heating the material to a first predetermined temperature.
  • Step A2) A step of arranging the material heated in the above step A1) in a molding die adjusted to a second predetermined temperature and pressurizing the material. By performing these steps, the molding of the molded product can be completed.
  • the other steps include, for example, a shaping step of preliminarily shaping the shape of the cavity of the molding die by using a shaping die different from the molding die used in the step A2) before the step A2).
  • the step A2) is a step of applying pressure to the material to obtain a molded product having a desired shape.
  • the molding pressure at this time is not particularly limited, but is preferably less than 20 MPa with respect to the projected area of the mold cavity. It is more preferably 10 MPa or less.
  • various steps may be inserted between the above steps at the time of compression molding, and for example, vacuum press molding in which compression molding is performed while creating a vacuum may be used.
  • the temperature ta of the molding die MA and the temperature tb of the molding die MB may be room temperature + 10 ° C. or lower, or may be room temperature or higher and room temperature + 10 ° C. or lower.
  • the temperature of the molded body is close to room temperature at the same time as the molding is completed, and there is no shrinkage of each layer due to the temperature difference between the molded body and room temperature, so that there is a difference in linear expansion coefficient between the material A and the material B.
  • the problem of warpage is unlikely to occur.
  • the mold MB includes a mold surface S1 for forming a connecting wall and a mold surface S2 for forming a side wall, and it is preferable that the angle ⁇ 2 formed by S1 and S2 satisfies ⁇ 1 ⁇ 2.
  • the angle ⁇ 2 measures the obtuse angle portion of the angle formed by S1 and S2. For example, in FIGS. 3 and 6, the obtuse angle portion of the lower molding die (molding die MB) with which the material B comes into contact is measured.
  • the molded cavity preferably has a wavy cross section, and the angle ⁇ 2 can be measured when the molded cavity is observed in a wavy cross section.
  • the molded body cavities of FIGS. 3 and 6 have a plurality of ⁇ 2s having the same angle.
  • the smallest angle formed by the forming surface S1 and the forming surface S2 is defined as the angle ⁇ 2.
  • Molded cavity flatness Fc 4.1 The flatness Fc of the present invention is defined by the following procedures 1'to 5'.
  • (Procedure 1') Observe the mold cavity so that the mold in contact with the material B is the lower mold.
  • (Procedure 2') Observe the cross section of the wavy-shaped molded cavity, and the length Lyc in the wavy direction is 4. Cut out the observation range of the molded cavity so that it becomes 0 cm.
  • (Procedure 3') Pay attention to the molding surface for forming the lower wall.
  • (Procedure 4') Draw two parallel ideal straight lines with the minimum required width so as to include all the molding surface for forming the lower wall.
  • (Procedure 5') The distance between ideal straight lines is defined as flatness Fc. Procedures 1'to 5'will be described with reference to FIG.
  • the mold cavity is observed so that the mold MB in contact with the material B is in the lower mold.
  • the Y-axis direction in FIG. 12 is the wavy direction, and the cross section of the wavy-shaped molded cavity is observed, and the observation range of the molded cavity is cut out so that the length Lyc in the wavy direction is 40 cm.
  • the molding die surface for forming the lower wall is 1201 in FIG.
  • the two parallel ideal straight lines are exemplified by 1202 in FIG. Two parallel ideal straight lines (1202) are drawn so that the distance between them is minimized.
  • the flatness Fc of the molding cavity used for compression molding preferably satisfies Fa ⁇ Fc.
  • Fa ⁇ Fc means that the molded body is closer to a flat surface than the molded cavity.
  • Equation (1) 0.01 ⁇ Xa / Xb ⁇ 1 Equation (3) 0 ⁇
  • the more preferable upper limit of the formula (3) is less than 5, still more preferably less than 4, even more preferably less than 3, and most preferably less than 2.
  • Equation (1) 0.01 ⁇ Xa / Xb ⁇ 1 Equation (4) 0 ⁇
  • the upper limit of the formula (4) is preferably 200 or less, more preferably 100 or less, and even more preferably 50 or less.
  • the preferable lower limit of the formula (4) is 30 or more.
  • Angle ⁇ 1 The cross section of the wavy molded body was observed, all the angles formed by the side wall and the connecting wall on the side where the material B was present on the surface layer were measured, and the one with the smallest angle was defined as the angle ⁇ 1.
  • Example 1 Preparation of Material A
  • carbon fiber "Tenax” registered trademark
  • STS40-24K average fiber diameter 7 ⁇ m, number of single fibers 24,000
  • a composite material of carbon fibers and nylon 6 resin in which carbon fibers were randomly oriented in two dimensions was prepared based on the method described in US Pat. No. 8,946,342.
  • the obtained composite material was heated at 2.0 MPa for 5 minutes in a press device heated to 260 ° C. to obtain a flat plate-like material having an average thickness of 2.5 mm and an average thickness of 475 mm ⁇ 350 mm.
  • Vf carbon fiber volume ratio
  • the fiber length of the carbon fibers was a constant length
  • the weight average fiber length was 20 mm.
  • the coefficient of linear expansion of the material B in the MD direction was 1.1 ⁇ 10-5
  • the coefficient of linear expansion in the TD direction was 1.8 ⁇ 10-5
  • the coefficient of linear expansion Xb in Example 1 was set to 1.8 ⁇ 10-5 .
  • the upper mold is lowered and pressed at a pressing pressure of 20 MPa (time from the start of pressurization to reaching 20 MPa for 1 second) for 1 minute, and the material A and the material B are pressed at the same time to form a cold press molded body (400 mm ⁇ 350 mm).
  • the molded product 1 hour after the completion of the cold press was a wavy molded product having the shape shown in FIG.
  • the height h of the side wall of the molded body was 12 mm
  • the length of the upper wall was 23 mm
  • the length of the lower wall was 25 mm.
  • Both the upper wall and the lower wall are connecting walls, and the length was measured by observing the material B so as to be on the lower side, defining the upper wall and the lower wall.
  • the results are shown in Table 1.
  • the flatness Fa of the molded product was extremely high at 0.1 mm, and the warpage of the molded product was small.
  • the state of warpage (direction of warpage) was convex downward when the material B was allowed to stand on the desk so as to be in contact with the desk. (For example, FIG. 10 is drawn as a convex downward).
  • Example 2 The material arrangement direction of the material B was rotated by 90 degrees with respect to Example 1, and the materials were laminated with the MD direction as the wavy direction. Therefore, a molded product was produced in the same manner as in Example 1 except that the coefficient of linear expansion Xb in Example 2 was set to 1.1 ⁇ 10-5 . The results are shown in Table 1.
  • Examples 3 to 5 A molded product was prepared in the same manner as in Example 1 except that the thickness lb of the material B was 1.4 mm, 1.6 mm, or 2.0 mm. The results are shown in Table 1. The state of warpage (direction of warpage) was convex upward when the material B was placed on the desk so as to be in contact with the desk (not shown).
  • Example 6 A molded product was prepared in the same manner as in Example 5 except that the flatness Fc of the mold cavity was 0 mm, the angle ⁇ 2 was 100 degrees, and the mold temperature was set as shown in Tables 1 and 2. The results are shown in Tables 1 and 2.
  • Example 6 it was difficult to maintain the temperature difference between the molds and mass-produce them, and 2 to 3 molded bodies could be manufactured, but further studies are required to manufacture 100 or more molded bodies. Is. Further, since the molding die of Example 8 had a low mold temperature, the molded body could not be shaped into the target shape to some extent, and a part of the surface of the molded body was chipped. In addition, since the material is rapidly cooled, the transferability of the mold is lowered.
  • Example 9 A molded product was prepared in the same manner as in Example 5 except that the shape of the mold cavity and the mold temperature were designed as shown in Table 2. The results are shown in Table 2.
  • Example 10 A molded product was prepared in the same manner as in Example 1 except that the fiber volume ratio of the glass fiber of the material B was changed as shown in Table 1. The results are shown in Table 2.
  • Example 12 A molded product was prepared in the same manner as in Example 1 except that the thickness of the material A was 3.6 mm and only the material A was used without using the material B, and the reference molded product P1 was prepared. A molded product P2 was produced in the same manner as in Example 1 except that the thickness la of the material A was 2.6 mm and the thickness lb of the material B was 1.0 mm.
  • a drop weight test was performed using two molded bodies. The test conditions were such that the weight of the weight was 16 kg, the height was adjusted so that the impact of 135J, 145J, 155J, and 165J was applied, and the following evaluation was performed. The results are shown in Table 3. Perfect: No cracks (cracks in the in-plane direction) were found on the surface opposite to the surface where the weight hit. Excellent: A crack of less than 10 mm (crack in the in-plane direction) was generated on the surface opposite to the surface on which the weight was hit. Good: A crack of 10 mm or more (crack in the in-plane direction) occurs on the surface on the opposite side of the surface where the weight hits.
  • the cracks were less than half the plate thickness. Poor: Cracks of 10 mm or more (cracks in the in-plane direction) are generated on the surface opposite to the surface on which the cone hits, and more than half of the plate thickness is cracked (cracks in the plate thickness direction).
  • Example 2 A molded product was prepared in the same manner as in Example 1 except that the sheet molding compound (SMC) was used as the material B. The results are shown in Table 4. As the SMC, a vinyl ester resin (thermosetting resin) which is a matrix containing glass fibers was used.
  • SMC sheet molding compound
  • Comparative Example 3 The molded products of Comparative Examples 2 and 3 had less warpage. However, in Comparative Example 3, there was a problem that the iron and the material layer A were peeled off or the iron was cracked after molding.
  • the molded body of the present invention and the molded body obtained by molding the molded body are used for various constituent members, for example, structural members of automobiles, various electric products, frames and housings of machines, and all other parts where shock absorption is desired. Be done. Particularly preferably, it can be used as an automobile part.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Textile Engineering (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)

Abstract

雌雄一対の成形型である成形型MAと成形型MBとを用いて、成形型MAに材料Aを、成形型MBに材料Bをそれぞれ接触させて圧縮成形し、成形体を製造する方法であって、材料Aは炭素繊維と熱可塑性樹脂M1を含み、材料Bはガラス繊維と熱可塑性樹脂M2を含み、成形体は一対の側壁と、当該側壁を連結する連結壁とを備え、成形体の断面は波打ち形状を有し、成形体の平面度Faと側壁の高さhとの関係が0≦Fa/h<1.3である、成形体の製造方法により、高い耐衝撃性と成形体の「反り」の問題を解決する。

Description

圧縮成形して成形体を製造する方法
 本発明は、炭素繊維と熱可塑性樹脂M1を含む材料Aと、ガラス繊維と熱可塑性樹脂M2を含む材料Bとを積層して圧縮成形して成形体を製造する方法に関する。
 近年、成形体は、機械物性に優れており、自動車等の構造部材として注目されている。
 特許文献1、2では、ガラス繊維で強化された熱可塑性樹脂層と、炭素繊維で強化された熱可塑性樹脂を積層させて成形した成形体が記載されている。特許文献3、4には、炭素繊維で強化された熱可塑性樹脂を用いた、波打ち形状の衝撃吸収部材が記載されている。
特開2018-43412号公報 国際公開第2018/052080号パンフレット 米国特許公報第9650003号 米国特許公報第9592853号
 しかしながら特許文献1に記載の材料は、ガラス繊維複合材料を炭素繊維複合材料でサンドイッチさせた積層構造であるため、炭素繊維複合材料が両表層に配置されている。この場合、両表層にある炭素繊維複合材料の破断伸度が小さいため、例えば自動車の主な要求性能である剛性を満たさず、衝撃を受けたときに衝撃を受けた側の反対側の層が破断しやすい。中央層に存在するガラス繊維複合材料は、大きな破断伸度を持つものの、成形体の内部に存在するため、衝撃を受けたときのクラック防止には寄与しない。
 特許文献2に記載の成形体は、ガラス繊維複合材料と炭素繊維複合材料を2層で積層しているものの、互いの線膨張係数差による反りの問題が起こる。反りが生じた場合、他部品と組み合わせて、例えば自動車を組み立てすることが難しい。
 特許文献3、4に記載の発明は、炭素繊維複合材料のみで作成されているため、反りの課題について認識されていない。
 そこで本発明の目的は、高い耐衝撃性と成形体の「反り」の問題を解決させた成形体の製造方法を提供することにある。
 上記課題を解決するために、本発明は以下の手段を提供する。
1.雌雄一対の成形型である成形型MAと成形型MBとを用いて、成形型MAに材料Aを、成形型MBに材料Bをそれぞれ接触させて圧縮成形し、成形体を製造する方法であって、
 材料Aは炭素繊維と熱可塑性樹脂M1を含み、材料Bはガラス繊維と熱可塑性樹脂M2を含み、
 成形体は一対の側壁と、当該側壁を連結する連結壁とを備え、
 成形体の断面は波打ち形状を有し、
 成形体の平面度Faと側壁の高さhとの関係が0≦Fa/h<1.3である、
 成形体の製造方法。
2.成形体の断面は複数の波打ち形状を有し、波打ち方向の長さが1m以上である、前記1に記載の成形体の製造方法。
3.成形体は一対の側壁と、当該側壁を連結する連結壁とを備え、
 材料Bが表層に存在する側における、側壁と連結壁とのなす角θ1が、90度≦θ1<160度である、前記1乃至2のいずれか1項に記載の成形体の製造方法。
4.成形型MBは、連結壁を形成するための成形型面S1と、側壁を形成するための成形型面S2を備え、S1とS2とのなす角θ2が、θ1<θ2を満たす、前記3に記載の成形体の製造方法。
5.材料Aの線膨張係数Xaと、材料Bの線膨張係数Xbとしたとき、Xa、Xb、θ1、及びθ2が、下記式(1)及び(2)を満たす、前記4に記載の成形体の製造方法。
 式(1) 0.01≦ Xa/Xb < 1
 式(2) 0 ≦(θ2-θ1) ÷ (Xa/Xb) < 1.0×10
 ただし、
 材料Aの線膨張係数Xaとは、成形体となった時に、波打ち方向となる方向における材料の線膨張係数である。
 材料Bの線膨張係数Xbとは、成形体となった時に、波打ち方向となる方向における材料の線膨張係数である。
6.圧縮成形に用いる成形型キャビティの平面度Fcは、Fa≦Fcを満たす、前記1乃至5のいずれか1項に記載の成形体の製造方法。
7.材料Aの線膨張係数Xaと、材料Bの線膨張係数Xbとしたとき、下記式(1)及び(3)を満たす、前記6に記載の成形体の製造方法。
 式(1) 0.01≦ Xa/Xb < 1
 式(3) 0 ≦ (Fc-Fa)/h ÷ (Xa/Xb) < 1.0×10
 ただし、
 材料Aの線膨張係数Xaとは、成形体となった時に、波打ち方向となる方向における材料の線膨張係数である。
 材料Bの線膨張係数Xbとは、成形体となった時に、波打ち方向となる方向における材料の線膨張係数である。
8.材料Aの線膨張係数Xaと、材料Bの線膨張係数Xbとしたとき、下記式(1)及び(4)を満たす、前記1乃至7のいずれか1項に記載の成形体の製造方法。
 式(1) 0.01≦ Xa/Xb < 1
 式(4) 0 < |ta-tb|÷ (Xa/Xb) < 5000
 Xa:材料Aの線膨張係数
 Xb:材料Bの線膨張係数
 ta:成形型MAの温度
 tb:成形型MBの温度
 ただし、
 材料Aの線膨張係数Xaとは、成形体となった時に、波打ち方向となる方向における材料の線膨張係数である。
 材料Bの線膨張係数Xbとは、成形体となった時に、波打ち方向となる方向における材料の線膨張係数である。
9.成形型MAが上型であって、成形型MBが下型である、前記1乃至8のいずれか1項に記載の成形体の製造方法。
10.成形体は、耐衝撃吸収体であって、材料Aが衝撃を受ける側となる、前記1乃至9のいずれか1項に記載の成形体の製造方法。
11.材料Aの厚みlaが0.5mm以上5.0mm未満、材料Bの厚みlbが0.5mm以上3.0mm以下であって、
 1<la/lb<0.6、又は0.1<lb/la<0.6である、
 前記1乃至10のいずれか1項に記載の成形体の製造方法。
12.材料Aの線膨張係数Xaと、材料Bの線膨張係数Xbとしたとき、材料Aの繊維体積割合VfAと、材料Bの繊維体積割合VfBとの関係が、下記式(1)及び(5)を満たす、前記1乃至11のいずれか1項に記載の成形体の製造方法。
 式(1) 0.01≦ Xa/Xb < 1
 式(5) 0.3 ≦ VfA/VfB ≦ 3.0
 ただし、
 材料Aの線膨張係数Xaとは、成形体となった時に、波打ち方向となる方向における材料の線膨張係数である。
 材料Bの線膨張係数Xbとは、成形体となった時に、波打ち方向となる方向における材料の線膨張係数である。
13.連結壁と側壁の間に、リブを有する前記1乃至12のいずれか1項に記載の成形体の製造方法。
14.材料Aと材料Bの間に材料Cを有し、
 材料Aの線膨張係数Xa、材料Bの線膨張係数Xb、及び材料Cの線膨張係数Xcの関係が、Xa<Xc<Xbを満たす、前記1乃至13のいずれか1項に記載の成形体の製造方法。
 ただし、
 材料Aの線膨張係数Xaとは、成形体となった時に、波打ち方向となる方向における材料の線膨張係数である。
 材料Bの線膨張係数Xbとは、成形体となった時に、波打ち方向となる方向における材料の線膨張係数である。
 材料Cの線膨張係数Xcとは、成形体となった時に、波打ち方向となる方向における材料の線膨張係数である。
15.材料Aの線膨張係数Xaと、材料Bの線膨張係数Xbとしたとき、0.8≦Xa/Xb≦1となるように、線膨張緩和剤を混入させた前記1乃至14のいずれか1項に記載の成形体の製造方法。
 ただし、
 材料Aの線膨張係数Xaとは、成形体となった時に、波打ち方向となる方向における材料の線膨張係数である。
 材料Bの線膨張係数Xbとは、成形体となった時に、波打ち方向となる方向における材料の線膨張係数である。
16.熱可塑性樹脂M1に比べて、線膨張係数が小さい熱可塑性樹脂M2を用いることで、材料Aの線膨張係数Xaと、材料Bの線膨張係数Xbとしたとき、0.8≦Xa/Xb≦1に調整した、前記1乃至15のいずれか1項に記載の成形体の製造方法。
 ただし、
 材料Aの線膨張係数Xaとは、成形体となった時に、波打ち方向となる方向における材料の線膨張係数である。
 材料Bの線膨張係数Xbとは、成形体となった時に、波打ち方向となる方向における材料の線膨張係数である。
17.成形型MAの温度ta及び成形型MBの温度tbは室温+10℃以下である、前記1乃至16のいずれか1項に記載の成形体の製造方法。
18.前記1乃至17のいずれか1項に記載の製造方法により製造された成形体であり、一対の側壁と、当該側壁を連結する連結壁とを備え、材料Bが表層に存在する側における、側壁と連結壁とのなす角θ1が、90度≦θ1<160度である、成形体の角θ1を応力変形させて小さくし、応力変形後の成形体の平面度Fa’と側壁の高さhとの関係が0≦Fa’/h<0.1とした状態で、成形体を接合し、接合体を製造する方法。
19.材料Aと材料Bを積層させた後、圧縮成形する、前記1乃至17のいずれか1項に記載の成形体の製造方法。
20.材料A、及び材料Bは平板形状である、前記19に記載の成形体の製造方法。
21.材料Aと材料Bは成形体となったとき、それぞれ材料層Aと材料層Bを形成する、前記19又は前記20のいずれか1項に記載の成形体の製造方法。
 本発明の製造方法により製造される成形体では、剛性のある炭素繊維を含む材料Aを表層(好ましくは意匠面)として剛性を持たせ、反対の表層をガラス繊維を含む材料Bとすることで、成形体における材料A側に衝撃を受けたとき、反対側に存在する材料Bの破断伸度が大きいため、材料Bにクラックが入りにくい。また、本発明の製造方法により製造される成形体は、耐衝撃に加えて、反りの問題を解決できる。
本発明の製造方法により製造される成形体の一例を示す模式図。 (a)雌雄一対の成形型の開いた状態を示す模式図。(b)雌雄一対の成形型の閉じた状態を示す模式図。 (a)材料(A)と材料(B)を積層させて、成形型で圧縮成形している状態を示す模式図。(b)成形型から取り出した成形体を示す模式図。 本発明の製造方法により製造される成形体の一例を示す模式図。 (a)雌雄一対の成形型の開いた状態を示す模式図。(b)雌雄一対の成形型の閉じた状態を示す模式図。 (a)材料(A)と材料(B)を積層させて、成形型で圧縮成形している状態を示す模式図。(b)成形型から取り出した成形体を示す模式図。 (a)(b)連結壁と側壁の間に、リブを有する成形体を示す模式図。 (a)(b)角θ1を応力変形させ、角θ3とした状態で成形体を別部品と接合し、接合体を製造するのを示す模式図。 (a)波打ち方向の長さLyが40cmとなるように成形体の観察範囲を切り取り、波打ち形状の断面を観察した模式図であり、平面度の測定方法を例示する。(b)下壁を示す模式図。(c)下壁の下面を示す模式図。 側壁の高さhを示す模式図。 本発明の製造方法により製造される成形体の一例を示す模式図。 成形型キャビティの平面度Fcの測定方法を例示する模式図。 成形体作成直後から、時間経過によって反る現象を例示する模式図。
 [材料]
 本明細書において、材料A、材料B、又は材料Cを総じて単に「材料」ということがある。「材料」とは、材料A、材料B、又は材料Cであったり、複数をあわせた材料A/材料Bなどの積層体を含む概念である。
 材料Aと材料Bは平板形状であることが好ましく、平板形状の材料Aと材料Bを積層させて圧縮成形した後、成形体となったときに材料層A、材料層Bをそれぞれ形成していることが好ましい。平板形状の材料は、成形体となったときには単一層を形成する。
 [材料Aと材料B]
 材料Aは炭素繊維と熱可塑性樹脂M1を含み、材料Bはガラス繊維と熱可塑性樹脂M2を含む。
 本発明における成形体の製造は、雌雄一対の成形型である成形型MAと成形型MBとを用いて、成形型MAに材料Aを、成形型MBに材料Bをそれぞれ接触させて圧縮成形する。言い換えると、作成された成形体の一方の表面は材料Aであり、反対側の表面は材料Bである。材料の積層構成に特に限定は無く、A/Bであっても良いし、A/B/A/Bの4層構成であっても良いし、A/B/A/B/A/Bの6層構成であっても良い。ここで、単に「A」、「B」と記載しているのは、各層を意味する。
 成形体の一方の表面は材料Aであり、反対側の表面は材料Bであることで、特に材料Aの面へ衝撃を受けた場合に、反対側の表層にある材料Bは破断伸度が大きいため、材料Bにクラックが入りにくいという点で好ましい。ただし、材料Bのみであると成形体の剛性が不足するため、炭素繊維を含んだ材料Aを一方の表層に配置させる必要がある。言い換えると、本発明の製造方法により製造される成形体は、耐衝撃吸収体であって、材料Aが衝撃を受ける面となる成形体であることが好ましい。成形体は剛性及び耐衝撃性の両方が求められる自動車部品用であることが好ましい。
 一方、例えば特開2018-43412号公報に記載のように、炭素繊維を含んだ材料Aで、ガラス繊維を含んだ材料Bを挟み込んだA/B/Aの構成や、B/A/Bのような線対称の層構成の場合、線膨張係数の差は打ち消されるため、成形体の反りは抑制しやすいものの、以下の課題がある。
 A/B/Aの場合は、衝撃を受けた際に、衝撃を受ける側とは反対側の表層が炭素繊維複合材料であるため、クラックが発生しやすい。B/A/Bの場合は、剛性に寄与する表層に炭素繊維が含まれていないため、成形体は十分な剛性を持たない。材料Aが中央層に存在すると、成形体の剛性確保にほとんど寄与しない。
 [材料Aと材料Bの厚み]
 材料Aと材料Bの厚みに特に限定は無いが、材料Aの厚みlaが0.5mm以上5.0mm未満、材料Bの厚みlbが0.5mm以上3.0mm以下であることが好ましく、0.1<la/lb<0.6、又は0.1<lb/la<0.6であることが好ましい。より好ましくは、0.1<la/lb<0.2、又は0.1<lb/la<0.2である。この範囲であれば、互いの材料に線膨張係数の差があっても、その差が反りとして表れにくい。
 材料Aの厚みlaの上限は4.0mm以下であればより好ましく、3.0mm以下であれば更に好ましい。
 材料Bの厚みlbの上限は2.0mm以下であればより好ましく、1.5mm以下であれば更に好ましく、1.0mm以下であればより一層好ましい。
 各層の材料の厚みは、圧縮成形後の成形体内部で均一であっても良い。言い換えると、本発明の圧縮成形は非流動成形であって、チャージ率100%以上で材料を成形型にチャージして圧縮成形しても良い。
 ただし、チャージ率(%)=100×材料Aと材料Bを積層させた後の投影面積(mm)/成形型キャビティ面積(mm)である。
 材料Aと材料Bが平板形状であれば、容易に投影面積を測定できる。
 [材料C]
 本発明の成形体を製造する際の材料として、材料Aと材料Bの間に材料Cを有していても良い。このとき、材料Aの線膨張係数Xaと、材料Bの線膨張係数Xb、材料Cの線膨張係数Xcとの関係が、Xa<Xc<Xbを満たすと好ましい。Xa<Xb<Xc、又はXc<Xa<Xbであっても良い。このときの層構成はA/C/Bの三層構成だけでなく、A/C/A/Bや、A/B/C/Bなどの四層構成や、A/C/B/A/Bや、A/B/A/C/Bなどの五層構成であっても良い。ここで、単に「A」、「B」、「C」と記載してるのは、各層を意味する。
 ただし、本発明における成形体の製造は、雌雄一対の成形型である成形型MAと成形型MBとを用いて、成形型MAに材料Aを、成形型MBに材料Bをそれぞれ接触させて圧縮成形する。そのため、材料Cを有していても、成形体の一方の表面は材料Aであり、反対側の表面は材料Bであることに変わりはない。
 言うまでも無く、成形体は材料C以外の材料Dなどを有していても良い。
 [炭素繊維]
 材料Aは炭素繊維を含む。炭素繊維としては、一般的にポリアクリロニトリル(PAN)系炭素繊維、石油・石炭ピッチ系炭素繊維、レーヨン系炭素繊維、セルロース系炭素繊維、リグニン系炭素繊維、フェノール系炭素繊維、などが知られているが、本発明においてはこれらのいずれの炭素繊維であっても好適に用いることができる。なかでも、本発明においては引張強度に優れる点でポリアクリロニトリル(PAN)系炭素繊維を用いることが好ましい。
 [炭素繊維の繊維直径]
 本発明に用いられる炭素繊維の単糸(一般的に、単糸はフィラメントと呼ぶ場合がある)の繊維直径は、炭素繊維の種類に応じて適宜決定すればよく、特に限定されるものではない。平均繊維直径は、通常、3μm~50μmの範囲内であることが好ましく、4μm~12μmの範囲内であることがより好ましく、5μm~8μmの範囲内であることがさらに好ましい。炭素繊維が繊維束状である場合は、繊維束の径ではなく、繊維束を構成する炭素繊維(単糸)の直径を指す。炭素繊維の平均繊維直径は、例えば、JISR-7607:2000に記載された方法によって測定することができる。
 [ガラス繊維]
 材料Bはガラス繊維を含む。ガラス繊維の種類に特に限定は無く、Eガラス、AガラスまたはCガラスからなるガラス繊維のいずれをも使用することができ、また、これらを混合して使用することもできる。本発明におけるガラス繊維に特に限定は無いが、ガラス繊維の平均繊維直径は、1μm~50μmが好ましく、5μm~20μmがより好ましい。
 [サイジング剤]
 本発明に用いられる炭素繊維又はガラス繊維は、表面にサイジング剤が付着しているものであってもよい。サイジング剤が付着している強化繊維を用いる場合、当該サイジング剤の種類は、強化繊維及びマトリクス樹脂の種類に応じて適宜選択することができるものであり、特に限定されるものではない。
 [重量平均繊維長]
 炭素繊維は不連続繊維であって、その重量平均繊維長は1mm以上100mm以下であることが好ましい。同様に、ガラス繊維は不連続繊維であって、その重量平均繊維長は1mm以上100mm以下であることが好ましい。反りの問題を解消するには連続繊維であることが好ましいものの、成形性を向上させる観点では、上記重量平均繊維長の範囲が好ましい。
 以下、ガラス繊維及び又は炭素繊維を総称して、「強化繊維」と記述する。言い換えると、強化繊維はガラス繊維、又は炭素繊維の少なくともいずれか一方である。
 強化繊維の重量平均繊維長は、5mm以上100mm以下であることがより好ましく、5mm以上80mm以下であることが更に好ましく、10mm以上60mm以下であることがより一層好ましい。強化繊維の重量平均繊維長が100mm以下の場合、材料A及び又は材料Bの流動性が向上し、圧縮成形する際に、所望の成形体形状を得やすい。一方、重量平均繊維長が1mm以上の場合、成形体の機械強度が向上しやすい。
 本発明においては繊維長が互いに異なる強化繊維を併用してもよい。換言すると、強化繊維は、重量平均繊維長に単一のピークを有するものであってもよく、あるいは複数のピークを有するものであってもよい。
 強化繊維の平均繊維長は、例えば、成形体から無作為に抽出した100本の繊維の繊維長を、ノギス等を用いて1mm単位まで測定し、下記式(a)に基づいて求めることができる。平均繊維長の測定は、重量平均繊維長(Lw)で測定する。
 個々の強化繊維の繊維長をLi、測定本数をjとすると、数平均繊維長(Ln)と重量平均繊維長(Lw)とは、以下の式(a)、(b)により求められる。
  Ln=ΣLi/j・・・式(a)
  Lw=(ΣLi)/(ΣLi)・・・式(b)
 なお、繊維長が一定長の場合は数平均繊維長と重量平均繊維長は同じ値になる。
 成形体から強化繊維の抽出は、例えば、成形体に対し、500℃×1時間程度の加熱処理を施し、炉内にて樹脂を除去することによって行うことができる。
 [材料Aの繊維体積割合VfAと、材料Bの繊維体積割合VfB]
 本発明において、材料A、又は材料Bに含まれる繊維体積割合に特に限定は無いが、式(1)及び(5)を満たすことが好ましい。
 式(1) 0.01≦ Xa/Xb < 1
 式(5) 0.3 ≦ VfA/VfB ≦ 3.0
 式(5)の上限は、VfA/VfB≦1.6がより好ましく、VfA/VfB≦1.0が更に好ましく、VfA/VfB≦0.8がより一層好ましい。
 式(5)の下限は、0.4≦VfA/VfBがより好ましく、0.5≦VfA/VfBが更に好ましく、0.6≦VfA/VfBがより一層好ましい。
 式(5)を満たすことで反りの問題をより解消できる。
 なお、繊維体積割合は下記式(c)、(d)で定義される。本明細書において材料A、又は材料Bの繊維体積割合をVfA、又はVfBとそれぞれ呼ぶことがある。
 繊維体積割合(VfA)=100×炭素繊維体積/(炭素繊維体積+材料Aの熱可塑性樹脂体積) ・・・ 式(c)
 繊維体積割合(VfB)=100×ガラス繊維体積/(ガラス繊維体積+材料Bの熱可塑性樹脂体積) ・・・ 式(d)
 より具体的には、繊維体積割合(VfA)は10Vol%以上60Vol%以下であることが好ましく、20Vol%以上50Vol%以下であることがより好ましく、25Vol%以上45Vol%以下であればさらに好ましい。
 繊維体積割合(VfB)は、10Vol%以上60Vol%以下であることが好ましく、20Vol%以上50Vol%以下であることがより好ましく、25Vol%以上45Vol%以下であればさらに好ましい。
 材料A、又は材料Bにおける強化繊維体積割合(VfA、VfB)が10Vol%以上の場合、所望の機械特性が得られやすい。一方で、強化繊維体積割合(VfA、VfB)が60Vol%を超えない場合、プレス成形等に使用する際の流動性が良好で、所望の成形体形状を得られやすい。
 [材料Aの繊維形態]
 1.束形態
 炭素繊維は繊維長が5mm以上の不連続繊維であって、繊維束0.3mm未満の炭素繊維a1と、束幅0.3mm以上3.0mm以下の炭素繊維束a2とを含んでいることが好ましい。材料Aに含まれる炭素繊維に対する炭素繊維束a2の体積割合は、5Vol%以上95Vol%未満が好ましく、10Vol%以上90Vol%未満がより好ましい。
 2.分散
 材料Aにおいて、炭素繊維は面内方向に分散していることが好ましい。面内方向とは、成形体の板厚方向に直交する方向であり、板厚方向に直交する平行な面の不定の方向を意味している。
 更に、炭素繊維は面内方向に2次元方向にランダムに分散していることが好ましい。材料Aを流動させずに圧縮成形した場合、成形前後で炭素繊維の形態はほぼ維持されるため、材料Aを成形した成形体に含まれる炭素繊維も同様に、成形体の面内方向に2次元ランダムに分散していることが好ましい。
 ここで、2次元ランダムに分散しているとは、炭素繊維が、成形体の面内方向において一方向のような特定方向ではなく無秩序に配向しており、全体的には特定の方向性を示すことなくシート面内に配置されている状態を言う。この2次元ランダムに分散している不連続繊維を用いて得られる材料A(又は成形体)は、面内に異方性を有しない、実質的に等方性の材料A(又は成形体)である。
 なお、2次元ランダムの配向度は、互いに直交する二方向の引張弾性率の比を求めることで評価する。成形体の任意の方向、及びこれと直交する方向について、それぞれ測定した引張弾性率の値のうち大きいものを小さいもので割った(Eδ)比が5以下、より好ましくは2以下、更に好ましくは1.5以下であれば、炭素繊維が2次元ランダムに分散していると評価できる。成形体は形状を有しているため、面内方向への2次元ランダム分散の評価方法としては、軟化温度以上に加熱して平板形状に戻して固化すると良い。その後、試験片を切り出して引張弾性率を求めると、2次元方向のランダム分散状態を確認できる。
 [材料Bの繊維形態]
 材料Bにおいて、ガラス繊維は面内方向に分散していることが好ましい。面内方向とは、成形体の板厚方向に直交する方向であり、板厚方向に直交する平行な面の不定の方向を意味している。
 更に、ガラス繊維は面内方向に2次元方向にランダムに分散していることが好ましい。材料Bを流動させずに圧縮成形した場合、成形前後でガラス繊維の形態はほぼ維持されるため、材料Bを成形した成形体に含まれるガラス繊維も同様に、成形体の面内方向に2次元ランダムに分散していることが好ましい。
 ここで、2次元ランダムに分散しているとは、ガラス繊維が、成形体の面内方向において一方向のような特定方向ではなく無秩序に配向しており、全体的には特定の方向性を示すことなくシート面内に配置されている状態を言う。この2次元ランダムに分散している不連続繊維を用いて得られる材料B(又は成形体)は、面内に異方性を有しない、実質的に等方性の材料B(又は成形体)である。
 なお、2次元ランダムの配向度は、互いに直交する二方向の引張弾性率の比を求めることで評価する。成形体の任意の方向、及びこれと直交する方向について、それぞれ測定した引張弾性率の値のうち大きいものを小さいもので割った(Eδ)比が5以下、より好ましくは2以下、更に好ましくは1.5以下であれば、ガラス繊維が2次元ランダムに分散していると評価できる。成形体は形状を有しているため、面内方向への2次元ランダム分散の評価方法としては、軟化温度以上に加熱して平板形状に戻して固化すると良い。その後、試験片を切り出して引張弾性率を求めると、2次元方向のランダム分散状態を確認できる。
 [熱可塑性樹脂M1]
 本発明における熱可塑性樹脂M1の種類は特に限定されるものではなく、所望の軟化点又は融点を有するものを適宜選択して用いることができる。上記熱可塑性のマトリクス樹脂としては、通常、軟化点が180℃~350℃の範囲内のものが用いられるが、これに限定されるものではない。
 熱可塑性樹脂M1の種類としては、例えば、塩化ビニル系樹脂、塩化ビニリデン系樹脂、酢酸ビニル系樹脂、ポリビニルアルコール系樹脂、ポリスチレン系樹脂、アクリロニトリル-スチレン系樹脂(AS樹脂)、アクリロニトリル-ブタジエン-スチレン系樹脂(ABS樹脂)、アクリル系樹脂、メタクリル系樹脂、ポリエチレン系樹脂、ポリプロピレン系樹脂、各種の熱可塑性ポリアミド系樹脂、ポリアセタール系樹脂、ポリカーボネート系樹脂、ポリエチレンテレフタレート系樹脂、ポリエチレンナフタレート系樹脂、ポリブチレンナフタレート系樹脂、ボリブチレンテレフタレート系樹脂、ポリアリレート系樹脂、ポリフェニレンエーテ系樹脂、ポリフェニレンスルフィド系樹脂、ポリスルホン系樹脂、ポリエーテルスルホン系樹脂、ポリエーテルエーテルケトン系樹脂、ポリ乳酸系樹脂などが挙げられる。
 本発明における熱可塑性樹脂は、結晶性樹脂であっても、非晶性樹脂であっても良い。結晶性樹脂の場合、好ましい結晶性樹脂は、具体的にはナイロン6などのポリアミド系樹脂、ポリエチレンテレフタレート系樹脂、ポリブチレンテレフタレート系樹脂、ポリエチレン系樹脂、ポリプロピレン系樹脂、ポリアセタール系樹脂、ポリフェニレンスルフィド系樹脂などを挙げる事ができる。中でも、ポリアミド系樹脂、ポリブチレンテレフタレート系樹脂、ポリフェニレンスルフィド系樹脂は、耐熱性や機械的強度に優れるなど好適に用いられる。
 ポリアミド系樹脂の一つであるナイロン(以下「PA」と略記することがある)としては、PA6(ポリカプロアミド、ポリカプロラクタム、ポリε-カプロラクタムとも称される)、PA26(ポリエチレンアジパミド)、PA46(ポリテトラメチレンアジパミド)、PA66(ポリヘキサメチレンアジパミド)、PA69(ポリヘキサメチレンアゼパミド)、PA610(ポリヘキサメチレンセバカミド)、PA611(ポリヘキサメチレンウンデカミド)、PA612(ポリヘキサメチレンドデカミド)、PA11(ポリウンデカンアミド)、PA12(ポリドデカンアミド)、PA1212(ポリドデカメチレンドデカミド)、PA6T(ポリヘキサメチレンテレフタルアミド)、PA6I(ポリヘキサメチレンイソフタルアミド)、PA912(ポリノナメチレンドデカミド)、PA1012(ポリデカメチレンドデカミド)、PA9T(ポリノナメチレンテレフタラミド)、PA9I(ポリノナメチレンイソフタルアミド)、PA10T(ポリデカメチレンテレフタラミド)、PA10I(ポリデカメチレンイソフタルアミド)、PA11T(ポリウンデカメチレンテレフタルアミド)、PA11I(ポリウンデカメチレンイソフタルアミド)、PA12T(ポリドデカメチレンテレフタラミド)、PA12I(ポリドデカメチレンイソフタルアミド)、ポリアミドMXD6(ポリメタキシリレンアジパミド)からなる群より選ばれる少なくとも1種が好ましい。
 [熱可塑性樹脂M2]
 本発明における熱可塑性樹脂M2は、熱可塑性樹脂と同様に、その種類は特に限定されるものではなく、所望の軟化点又は融点を有するものを適宜選択して用いることができる。上記熱可塑性のマトリクス樹脂としては、通常、軟化点が180℃~350℃の範囲内のものが用いられるが、これに限定されるものではない。
 熱可塑性樹脂M2は熱可塑性樹脂M1と同じ種類であっても良いし、熱可塑性樹脂M1に比べて、線膨張係数が小さい熱可塑性樹脂M2を用いることで、材料Aの線膨張係数Xaと、材料Bの線膨張係数Xbとしたとき、0.8≦Xa/Xb≦1に調整した熱可塑性樹脂M2であっても良い。
 [線膨張緩和剤]
 材料Aの線膨張係数Xaと、材料Bの線膨張係数Xbとしたとき、0.8≦Xa/Xb≦1となるように、材料A及び又は材料Bへ、線膨張緩和剤を混入させても良い。
 [その他の剤]
 本発明で用いる材料A又は材料Bには、本発明の目的を損なわない範囲で、有機繊維または無機繊維の各種繊維状または非繊維状のフィラー、難燃剤、耐UV剤、安定剤、離型剤、顔料、軟化剤、可塑剤、界面活性剤、中空ガラスビーズ等の添加剤を含んでいてもよい。
 [線膨張係数の測定方向]
 圧縮成形した際の成形体の「反り」は、圧縮成形の完了直後から、時間が経過して成形体の温度が低下した場合に成形体が変形する現象であり、典型的には、成形体作成直後から、時間経過とともに線膨張係数の大きい材料B側に引っ張られることによる現象である。例えば、図13の上の作成直後の成形体のように、コールゲート方向(波打ち方向)の成形体端部がZ軸下向きに変形する現象である。これは、波打ち方向(一対の側壁における一方の側壁と他方の側壁とが対向する方向であり、例えば、図13の下の成形体の波打ち方向はY軸方向)の線膨張係数が材料Aと材料Bで異なるためである。したがって、線膨張係数は以下の定義である。
 材料Aの線膨張係数Xaとは、成形体となった時に、波打ち方向となる方向における材料の線膨張係数である。
 材料Bの線膨張係数Xbとは、成形体となった時に、波打ち方向となる方向における材料の線膨張係数である。
 材料Cの線膨張係数Xcとは、成形体となった時に、波打ち方向となる方向における材料の線膨張係数である。
 なお、(特に非流動成形をした場合に)材料であったときの線膨張係数と成形体となった後の材料の線膨張係数はほぼ一致するため、材料の線膨張係数を測定しても良いし、成形体からサンプリングして線膨張係数を測定しても良い。成形体の連結壁からサンプリングする場合は図13の波打ち方向(図13のY軸方向)であるが、立壁(側壁)からサンプリングする際は、波打ち方向(図13のY軸)というよりは、行路方向(図13のZ軸方向)となる。
 [材料と成形体の関係]
 本発明において、材料とは成形体を作成するための材料であり、材料A、材料B(又は材料Cなどのその他の層)は、圧縮成形されて成形体となる。したがって、本発明における材料A、材料Bは平板形状が好ましい。一方、成形体は賦形されて3次元形状となる。
 熱可塑性樹脂を用いて圧縮成形(特にコールドプレス)した場合、成形前後で強化繊維の形態はほぼ維持されるため、成形体に含まれる炭素繊維やガラス繊維の形態を分析すれば、材料A、材料Bの炭素繊維やガラス繊維の形態がどのようなものであったか分かる。コールドプレスする際に、材料を流動させずに成形した場合(非流動成形)、繊維形態はほぼ変わらない。
 [成形体]
 1.側壁と連結壁
 本発明における成形体は一対の側壁と、当該側壁と連結する連結壁とを備える。
 側壁とは、例えば図1、図4でいう101、401である。連結壁とは、例えば図1、図4でいう102、402、403である。図1、図4に描かれているように、連結壁は一対の側壁を連結している。
 連結壁は、図4で描かれているように、上壁の連結壁(402)と、下壁の連結壁(403)を含む概念である。上壁(図4の402)とは、表層に存在する材料Bが下側となるように成形体を静置したとき、上側にある連結壁をさす。下壁(図4の403)とは、表層に存在する材料Bが下側となるように成形体を静置したとき、下側にある連結壁をさす。
 2.波打ち形状
 本発明における成形体の断面は波打ち形状を有する。ここで、波打ち形状の断面とは図1の断面図に例示するように、波打ちが一つであっても良い。成形体の断面は複数の波打ち形状を有することが好ましい(例えば図4)。波打ち方向の長さが1m以上であることが好ましく、成形体の断面は複数の波打ち形状を有し、波打ち方向の長さが1m以上であることが更に好ましい。ここでいう波打ち方向とは、例えば図4のY軸方向である。断面が波打ち形状を有する成形体とは、断面観察したときに波打ちが観察できる成形体をいう。面内方向(厚み方向に対して垂直な方向)で観察するのが一般的である。
 3.平面度Faと側壁の高さh
 本発明の成形体の平面度Faと側壁の高さhとの関係は、0≦Fa/h<1.3である。
 3.1
 本発明の平面度Faは、以下の手順1~手順5で定義される。
 (手順1)表層に存在する材料Bが下側となるように成形体を静置する。
 (手順2)断面が波打ち形状に見えるように成形体の断面を観察し、波打ち方向の長さLyが40cmとなるように成形体の観察範囲を切り取る。
 (手順3)連結壁で形成された下壁の底面に注目する。
 (手順4)下壁の底面を全て含むように、必要最小限の幅で2本の平行な理想直線を描く。
 (手順5)理想直線間の距離を平面度Faと定義する。
 手順1~手順5を図9を用いて説明する。
 図9は、表層に存在する材料Bが下側になるように静置した成形体を示す。紙面下側の成形体の表層は材料Bで覆われている。図9のY軸方向が波打ち方向であり、図9(a)では、長さLyが40cmとなるように成形体の観察範囲を切り取り、波打ち形状の断面を観察した図である(手順2)。連結壁の下壁とは、図9の902に示す領域である。また、下壁の底面とは図9の903で示す面である(手順3)。2本の平行な理想直線とは、図9の901で例示される。2本の平行な理想直線(901)は両者の間隔が最小になるように描かれている(必要最小限の幅で2本の平行な理想直線が描かれている)。
 なお、図9の成形体の天地を逆転させ、紙面下側の成形体表面が材料Aで覆われている状態で(材料Aが机上に接触している状態で)観察して測定する方法は、本発明においては採用しない。
 波打ち方向の長さLyの切り取り場所によってFaが変わる場合、1か所でも0≦Fa/h<1.3を満たすようにFaを設計すれば良い。
 3.2
 本発明の側壁の高さhは、図10のhで例示され、波打ち形状の断面を観察したときの上壁と下壁との距離を指す。より具体的には、一つの側壁と直結する上壁と下壁を観察したときに、該上壁と該下壁を全て含むように、必要最小限の幅で2本の平行な理想直線を描いたときの、理想直線間の距離が高さhである。図10に描かれている2本の点線は、両者の間隔が最小になるように描かれている。
 成形体が複数の高さhを持つとき、少なくとも一つのhが、0≦Fa/h<1.3を満たせば良い。
 3.3
 Fa/h=0の場合、成形体の下壁は理想平面になっている。Fa/h<1.3であれば、他部品と組み合わせて、例えば自動車を組み立てすることが容易である。好ましくは0≦Fa/h≦1.0であり、より好ましくは0≦Fa/h≦0.7であり、更に好ましくは0≦Fa/h≦0.4であり、より一層好ましくは0≦Fa/h≦0.1である。
 4.角度θ1
 成形体は、材料Bが表層に存在する側における側壁と連結壁とのなす角θ1が、90度≦θ1<160度であると好ましい。材料Bが表層に存在する側における側壁と連結壁とのなす角θ1は、例えば図1、図4のθ1で示される。すなわち、波打ち形状の断面を観察したときに角θ1は測定できる。
 また、図1、図4の成形体は複数の同じ角度のθ1を備えている。角θ1が複数存在し、それぞれが異なる角度である場合は、材料Bが表層に存在する側における側壁と連結壁とのなす角のうち、最小の角度のものを角θ1とする。
 より好ましい角θ1の範囲は95度≦θ1<135度であり、更に好ましくは95度≦θ1<125度であり、より一層好ましくは98度≦θ1<120度である。
 5.線膨張係数差によるアングルチェンジ
 本発明の材料Aと材料Bはそれぞれ炭素繊維とガラス繊維を含んでいるため、材料Aと材料Bの線膨張係数には差がでる。材料Aの線膨張係数Xaと、材料Bの線膨張係数Xbとし、繊維種類以外の条件を同一にしたときは(VfA=VfB、熱可塑性樹脂M1とM2の種類が同一など)、Xa/Xb<1である。
 材料Aと材料Bの線膨張係数に差があるとき、材料Aと材料Bを積層して波打ち形状に成形体を常温より高い温度で作成した場合、線膨張係数の大きな層は、線膨張係数の小さい層を引っ張る。具体的には、Xa/Xb<1のとき、材料Bは材料Aを引っ張るため、例えば図3、図6では圧縮成形が終了した直後から、時間経過とともに紙面下方向に、成形体の(波打ち方向の)両端部が反っていく。この結果、材料Bが表層に存在する側における側壁と連結壁とのなす角が、成形体直後と、暫く時間が経過した後では角度が変化する(アングルチェンジと呼ぶ場合がある)。成形体の角度θ1を目的の角度にするためには、どの程度角度が変化するのかを予め予測しておく必要がある。
 成形直後と暫く時間が経過した後での角度の変化(アングルチェンジ)は、波打ち方向の長さが長くなるほど(具体的には波打ち方向の長さが1m以上になると)、角θ1の数が増えるほど、成形体全体の反りの課題は顕著になる。本発明の好ましい製造方法を用いれば、このような顕著な課題を持っていても、Fa/hの値が小さい成形体を製造できる。
 6.リブ
 本発明における成形体は、連結壁と側壁の間に、リブを有することが好ましい。リブは、例えば図7(a)、(b)の701で例示される。リブを配置することにより、線膨張係数に差のある材料Aと材料Bを圧縮成形しても、反りにくくなる。
 [接合体]
 角θ1を応力変形させて小さくし、応力変形後の成形体の平面度Fa’と側壁の高さhとの関係が0≦Fa’/h<0.1とした状態で、別部品と接合して接合体を製造しても良い。例えば図8(a)のように、僅かに反った成形体を図8(a)の矢印801のように応力を加えた上で、別部品(図8の802)と接合しても良い。ここで、平面度Fa’とは、接合した状態での成形体の平面度を意味する。接合は図8(b)のようにボルト締結しても良いし、接着剤で接着しても良い。
 [圧縮成形]
 本発明は、雌雄一対の成形型である成形型MAと成形型MBとを用いて、成形型MAに材料Aを、成形型MBに材料Bをそれぞれ接触させて圧縮成形し、成形体を製造する方法である。図3(a)と図6(a)に、材料Aが成形型MAに接触し、材料Bが成形型MBに接触している様子を示す。ここで、雌雄一対の成形型である成形型MAと成形型MBとは、それぞれが雌雄一対の両型の成形型ではなく、成形型MAと成形型MBは片型であって、成形型MAと成形型MBとが雌雄一対をなす意味である。また、例えば図2に示している通り、どちらか一方の片型が雄部分、もう一方の片型が雌部分を有していれば良い。両方の成形型に雄雌(凹凸又は凸凹)がそれぞれあっても良い。
 1.成形型の上下
 成形型MAと成形型MBの上下に特に限定は無いが、成形型MAが上型であり、成形型MBが下型であることが好ましい。圧縮成形がコールドプレスであって、成形型MAが上型であり、成形型MBが下型であることが更に好ましい。理由を次に記す。
 (理由1)
 コールドプレスする場合、材料A、材料Bに比べて上下の成形型の温度は低いため、材料が成形型に接触した瞬間に材料に含まれる熱可塑性樹脂は固化する。材料Aは炭素繊維を含む層であるため熱伝導性が高く、ガラス繊維を含んだ材料Bよりも、同じ条件(樹脂、添加剤、Vfなどが同じ)であれば冷えやすいために流動性が劣る。したがってコールドプレスする場合は、如何に材料Aの温度低下を防止するかが課題となっている。
 材料Aと材料Bを積層させた材料をコールドプレスする際、流動性を担保するには、材料Aを圧縮開始直前まで成形型MAに接触させないように担保すると好ましく、そのためには材料Bを下型の成形型MBに接触させて配置し、材料Aを上型に接触させて圧縮成形すると良い。この場合、材料Aは圧縮成形直前まで成形型に触れないので、温度低下を防止しやすい。
 (理由2)
 材料Aは炭素繊維を含んでいるため、外観が美しく、表面にあると顧客への訴求力が高い。特に、材料Aにシボを有すると、その意匠性は格別である。材料Aにシボを形成するためには、材料Aを成形型MAに接触させた直後に圧縮成形する必要がある。このとき、成形型MAは上型となる。
 2.圧縮成形
 圧縮成形はホットプレス成形やコールドプレス成形などの成形方法を利用できるが、とりわけコールドプレス成形を用いた圧縮成形が好ましい。コールドプレス成形は、例えば、第1の所定温度に加熱した成形体を第2の所定温度に設定された成形型内に投入した後、加圧・冷却を行う。
 具体的には、材料Aと材料B(場合によっては材料Cなど)を構成する熱可塑性樹脂が同じ種類であって、それが結晶性である場合、第1の所定温度は融点以上であり、第2の所定温度は融点未満である。熱可塑性樹脂が同じ種類であって、それが非晶性である場合、第1の所定温度はガラス転移温度以上であり、第2の所定温度はガラス転移温度未満である。
 熱可塑性樹脂が異なる樹脂である場合は、樹脂の融点又はガラス転移温度の高い方を基準に、第1の所定温度を定め、樹脂の融点又はガラス転移温度の低い方を基準に、第2の所定温度を決定する。
 すなわち、コールドプレス法は、少なくとも以下の工程A2)~A1)を含んでいる。
 工程A1)材料を、第1の所定温度に加温する工程。
 工程A2)上記工程A1)で加温された材料を、第2の所定温度に調節された成形型に配置し、加圧する工程。
 これらの工程を行うことで、成形体の成形を完結させることができる。
 上記の各工程は、上記の順番で行う必要があるが、各工程間に他の工程を含んでもよい。他の工程とは、例えば、工程A2)の前に、工程A2)で利用される成形型と別の賦形型を利用して、成形型のキャビティの形状に予め賦形する賦形工程等がある。また、工程A2)は、材料へ圧力を加えて所望形状の成形体を得る工程であるが、このときの成形圧力については特に限定はしないが、成形型キャビティ投影面積に対して20MPa未満が好ましく、10MPa以下であるとより好ましい。
 また、当然のことであるが、圧縮成形時に種々の工程を上記の工程間に入れてもよく、例えば真空にしながら圧縮成形する真空プレス成形を用いてもよい。
 3.成形型の好ましい温度
 成形型MAの温度ta及び成形型MBの温度tbは室温+10℃以下であっても良く、室温以上室温+10℃以下であっても良い。この場合、成形完了と同時に成形体は室温に近い温度になっており、成形体と室温との温度差による各層の収縮がないため、材料Aと材料Bの間に線膨張係数の差があっても、反りの課題は発生しにくい。
 [圧縮成形に用いる成形型]
 1.角θ2
 成形型MBは、連結壁を形成するための成形型面S1と、側壁を形成するための成形型面S2を備え、S1とS2とのなす角θ2が、θ1<θ2を満たすことが好ましい。
 角θ2は、S1とS2のなす角のうち、鈍角部を測定する。例えば図3、図6では、材料Bが接触する成形下型(成形型MB)の鈍角部を測定している。
 成形型キャビティは、断面が波打ち形状を有していることが好ましく、成形体キャビティを波打ち形状に断面観察したときに角θ2は測定できる。
 また、図3、図6の成形体キャビティは複数の同じ角度のθ2を備えている。角θ2が複数存在し、それぞれが異なる角度である場合は、成形面S1と成形面S2とのなす角のうち、最小の角度のものを角θ2とする。
 より好ましいθ2の範囲は0度≦θ2-θ1<10度であり、更に好ましくは0度≦θ2-θ1<5度であり、より一層好ましくはθ2-θ1=0度である。
 2.線膨張係数差によるアングルチェンジ
 本発明の材料Aと材料Bはそれぞれ炭素繊維とガラス繊維を含んでいるため、材料Aと材料Bの線膨張係数には差がでる。材料Aの線膨張係数Xaと、材料Bの線膨張係数Xbとし、繊維種類以外の条件を同一にしたときは(VfA=VfB、熱可塑性樹脂M1とM2の種類が同一など)、Xa/Xb<1である。
 材料Aと材料Bの線膨張係数に差があるとき、材料Aと材料Bを積層して波打ち形状に成形体を作成した場合、線膨張係数の大きな層は、線膨張係数の小さい層を引っ張る。具体的には、Xa/Xb<1のとき、材料Bは材料Aを引っ張るため、例えば図3、図6では成形体を作成直後から、時間経過とともに紙面下方向に、波打ち方向の成形体の端部が反っていく。この結果、材料Bが表層に存在する側における側壁と連結壁とのなす角が、成形体直後と、暫く時間が経過した後では角度が変化する(アングルチェンジと呼ぶ場合がある)。成形体の角度θ1を目的の角度にするためには、どの程度角度が変化するのかを予め予測し、予めアングルチェンジする分をθ2-θ1の角度として曲げておき、プレス成形すると好ましい。
 3.角θ1、θ2と、線膨張係数Xa、Xb
 本発明者らは、材料Aの線膨張係数Xaと、材料Bの線膨張係数Xbとしたとき、アングルチェンジする分の角度θ2-θ1を予測することに成功した。すなわち、Xa、Xb、θ1、及びθ2が、下記式(1)及び(2)を満たすことが好ましい。
 式(1) 0.01≦ Xa/Xb < 1
 式(2) 0 ≦(θ2-θ1) ÷ (Xa/Xb) < 1.0×10
 式(2)のより好ましい上限は65未満であり、更に好ましくは15未満であり、より一層好ましくは10未満である。
 4.成形型キャビティの平面度Fc
 4.1
 本発明の平面度Fcは、以下の手順1’~手順5’で定義される。
 (手順1’)材料Bと接触する成形型が下型になるように成形型キャビティを観察する。
 (手順2’)波打ち形状の成形型キャビティ断面を観察し、波打ち方向の長さLycが4
0cmとなるように成形型キャビティの観察範囲を切り取る。
 (手順3’)下壁を形成するための成形型面に注目する。
 (手順4’)下壁を形成するための成形型面を全て含むように、必要最小限の幅で2本の平行な理想直線を描く。
 (手順5’)理想直線間の距離を平面度Fcと定義する。
 手順1’~手順5’を図12を用いて説明する。
 図12は、材料Bと接触する成形型MBが下型になるように成形型キャビティを観察している。図12のY軸方向が波打ち方向であり、波打ち形状の成形型キャビティ断面を観察し、波打ち方向の長さLycが40cmとなるように成形型キャビティの観察範囲を切り取る。下壁を形成するための成形型面とは、図12の1201である。2本の平行な理想直線とは、図12の1202で例示される。2本の平行な理想直線(1202)は両者の間隔が最小になるように描かれている。
 波打ち方向の長さLycの切り取り場所によって、Fcが変わる場合、1か所でもFa<Fcや、式(3)を満たすようにFcを設計すれば好ましい。
 4.2
 圧縮成形に用いる成形型キャビティの平面度Fcは、Fa<Fcを満たすことが好ましい。Fa<Fcは、成形型キャビティに比べて成形体がより平面に近いことを意味している。
 材料Aと材料Bの線膨張係数に差があるとき、材料Aと材料Bを積層して波打ち形状に成形体を作成した場合、線膨張係数の大きな層は、線膨張係数の小さい層を引っ張る。具体的には、Xa/Xb<1のとき、材料Bは材料Aを引っ張るため、例えば図3、図6では成形体を作成直後から、時間経過とともに紙面下方向に(波打ち方向の成形体の端部が)反っていく。この結果、材料Bが表層に存在する側における側壁と連結壁とのなす角が、成形体直後と、暫く時間が経過した後では角度が変化し、アングルチェンジを引き起こす。成形体の平面度Faを目的の範囲にするためには、どの程度平面度が変化するのかを予め予測し、予め平面度が変化する分を(Fc-Fa)、曲げておいて、プレス成形すると好ましい。より具体的には、下記式(1)及び(3)を満たすことが更に好ましい。
 式(1) 0.01≦ Xa/Xb < 1
 式(3) 0 ≦ |Fc-Fa|/h ÷ (Xa/Xb) < 1.0×10
 式(3)のより好ましい上限は5未満であり、更に好ましくは4未満であり、より一層好ましくは3未満であり、最も好ましくは2未満である。
 5.成形型MAの温度ta、成形型MBの温度tb、と線膨張係数Xa、Xb
 材料Aの線膨張係数Xaと、材料Bの線膨張係数Xbとしたとき、成形型MAの温度taと、成形型MBの温度tbとの関係が、下記式(1)及び(4)を満たすことが好ましい。
 式(1) 0.01≦ Xa/Xb < 1
 式(4) 0 < |ta-tb|÷ (Xa/Xb) < 5000
 式(4)の好ましい上限は200以下であり、更に好ましくは100以下であり、より一層好ましくは50以下である。一方、式(4)の好ましい下限は30以上である。
 以下、本発明について実施例を用いて具体的に説明するが、本発明はこれらに限定されるものではない。
 1.材料
・炭素繊維
 帝人株式会社製の炭素繊維“テナックス”(登録商標)STS40-24K(EP)(平均繊維径7μm、繊度1600tex、密度1.78g/cm
・ガラス繊維
 日本電気硝子社製のガラス繊維EX 2500(平均繊維径15μm、繊維幅9mm)
・熱可塑性樹脂MA
 ポリアミド6(ユニチカ株式会社製A1030、PA6と略する場合がある)。
・熱可塑性樹脂MB
 ポリアミド6(ユニチカ株式会社製A1030、PA6と略する場合がある)。
 2.材料の測定
 本実施例における各値は、以下の方法に従って求めた。
 (1)材料に含まれる繊維体積割合(VfA、VfB)の測定
 材料A(又は材料B)から100mm×100mmのサンプルを切り出し、サンプルを500℃に加熱した電気炉(ヤマト科学株式会社製FP410)の中で窒素雰囲気下で、1時間加熱してマトリクス樹脂等の有機物を焼き飛ばした。
 焼き飛ばし前後のサンプルの重量を秤量することによって強化繊維と熱可塑性樹脂の重量を算出した。次に、各成分の比重を用いて、強化繊維の体積割合を算出した。
 繊維体積割合(VfA)=100×炭素繊維体積/(炭素繊維体積+材料Aの熱可塑性樹脂体積) ・・・ 式(c)
 繊維体積割合(VfB)=100×ガラス繊維体積/(ガラス繊維体積+材料Bの熱可塑性樹脂体積) ・・・ 式(d)
 (2)材料の線膨張係数
 材料A及び材料Bの試験片を前処理として110℃×24時間、真空乾燥したのち、以下の測定条件で、成形体となったときに波打ち方向となる方向の線膨張係数をランダムに10点測定して平均した。
 試験片形状:2.5mm×5mm×5mm
 試験機種:TMA/SS7100(セイコーインスツルメンツ株式会社製)
 昇温速度:5℃/min
 試験荷重:圧縮荷重 49mN
 プローブ直径:2.9mm
 測定雰囲気:窒素雰囲気下(100ml/min)
 試験温度範囲:25~200℃
 3.断面観察
 成形体及び成形型キャビティの断面は、波打ち形状が観察できる方向から観察した。より具体的には波打ち方向(図1、図4のY軸方向)に対して垂直な方向(図1、図4のX軸方向)であって、波打ち形状が観察できる方向から観察した。これは、板厚方向(図1、図4のZ軸方向)に対して垂直な方向でもある。言い換えると、波打ち形状の観察は、波打ち方向、及び板厚方向に対して垂直な方向である。
 (1)成形体の平面度Fa
 以下の手順で平面度Faを測定した。
 (手順1)表層に存在する材料Bが下側となるように成形体を静置した。
 (手順2)断面が波打ち形状に見えるように成形体の断面を観察し、波打ち方向の長さLyが40cmとなるように成形体の観察範囲を切り取った。
 (手順3)連結壁で形成された下壁の底面に注目した。
 (手順4)下壁の底面を全て含むように、必要最小限の幅で2本の平行な理想直線を描いた。
 (手順5)理想直線間の距離を平面度Faとした。
 (2)成形型キャビティの平面度Fc
 以下の手順で平面度Fcを測定した。
 (手順1’)材料Bと接触する成形型MBが下型になるように成形型キャビティを観察した。
 (手順2’)波打ち形状の成形型キャビティ断面を観察し、波打ち方向の長さLycが40cmとなるように成形型キャビティの観察範囲を切り取った。
 (手順3’)下壁を形成するための成形型面に注目した。
 (手順4’)下壁を形成するための成形型面を全て含むように、必要最小限の幅で2本の平行な理想直線を描いた。
 (手順5’)理想直線間の距離を平面度Fcとした。
 (3)角度θ1
 波打ち形状の成形体の断面を観察し、材料Bが表層に存在する側における側壁と連結壁とのなす角を全て測定し、最小の角度のものを角θ1とした。
 (4)角度θ2
 成形型MBを断面観察したときにおける、連結壁を形成するための成形型面S1と、側壁を形成するための成形型面S2とのなす角θ2は、各実施例、比較例に応じて設計した。
 [実施例1]
 1.材料Aの準備
 炭素繊維として、繊維長20mmにカットした東邦テナックス社製の炭素繊維“テナックス”(登録商標)STS40-24K(平均繊維径7μm、単繊維数24,000本)を使用し、樹脂として、ユニチカ社製のナイロン6樹脂A1030を用いて、米国特許第8946342号に記載された方法に基づき二次元ランダムに炭素繊維が配向した炭素繊維およびナイロン6樹脂の複合材料を作成した。得られた複合材料を260℃に加熱したプレス装置にて、2.0MPaにて5分間加熱し、平均厚み2.5mm、475mm×350mmの平板板状の材料を得た。
 平板板状の材料に含まれる炭素繊維の解析を行ったところ、炭素繊維体積割合(Vf)は35%、炭素繊維の繊維長は一定長であり、重量平均繊維長は20mmであった。
 1.2 材料Bの準備
 ガラス繊維として、日本電気硝子社製のガラス繊維EX 2500(平均繊維径15μm、繊維幅9mm)を使用し、樹脂としてユニチカ社製のナイロン6樹脂A1030を用いて、米国特許第8946342号に記載された方法に基づき二次元ランダムにガラス繊維が配向したガラス繊維およびナイロン6樹脂の複合材料を作成した。得られた複合材料を260℃に加熱したプレス装置にて、2.0MPaにて5分間加熱し、平均厚み0.7mm、475mm×350mmの平板板状の材料を得た。材料に含まれるガラス繊維の解析を行ったところ、ガラス繊維体積割合(Vf)は45%、ガラス繊維の繊維長は一定長であり、重量平均繊維長は20mmであった。
 材料BのMD方向(Machine Direction)の線膨張係数は1.1×10-5であり、TD方向(Transvese Direction)の線膨張係数は1.8×10-5であったが、波打ち方向となる方向にTD方向を合わせて配置したため、実施例1での線膨張係数Xbは1.8×10-5とした。
 2.成形型の準備
 図11に示す成形体を作成するための成形型を準備した。Y軸方向の成形体長さは40cmであり、これをLyとした。
 ここで、平面度Fcは11mm、角θ2は103度(S1とS2とのなす角は、全て同じ角度)、成形型MA(上型)の温度taは150℃、成形型MB(下型)の温度tbは150℃に設定した。
 3.コールドプレス
 材料Aと材料Bを120℃の熱風乾燥機で4時間乾燥した後、材料A/材料Bの順で積層して、赤外線加熱機により290℃まで昇温させた。
 その後、材料Bを成形型MBに接触させるように材料を載置した。このとき、475mm×350mmの材料(平板形状)のうち、475mmある方向を、波打ち方向として載置した。
 上型を下降させ、プレス圧力20MPa(加圧開始から、20MPaに達するまでの時間1秒)、で1分間加圧して、材料Aと材料Bを同時にプレスし、コールドプレス成形体(400mm×350mm:波打ち方向(図11のY軸方向)×波打ち方向と直交方向(図11のX軸方向))を製造した。
 コールドプレス完了後、1時間後の成形体は、図11に示す形状の波打ち形状の成形体であった。成形体は、側壁の高さhが12mm、上壁の長さ23mm、下壁の長さ25mmであった。上壁、下壁はともに連結壁であり、材料Bを下側になるように観察して上壁、下壁を定義して長さを測定した。
 結果を表1に示す。成形体の平面度Faは0.1mmと極めて高く、成形体の反りは少なかった。なお、反りの状況(反りの方向)は材料Bを机に接するように机上に静置したとき、下に凸であった。(例えば図10は下に凸のように描かれている)。
 なお、成形体の波打ち方向の長さが長くなるほど、反りの課題が顕著になる。
 [実施例2]
 材料Bの材料の配置方向を実施例1に対して90度回転させ、MD方向を波打ち方向として積層した。従って、実施例2での線膨張係数Xbは1.1×10-5としたこと以外は、実施例1と同様にして成形体を作成した。結果を表1に示す。
 [実施例3~5]
 材料Bの厚みlbを1.4mm、1.6mm、又は2.0mmとしたこと以外は、実施例1と同様にして成形体を作成した。結果を表1に示す。反りの状況(反りの方向)は材料Bを机に接するように机上に静置したとき、上に凸であった(図示せず)。
 [実施例6~8]
 成形型キャビティの平面度Fcを0mm、角θ2を100度とし、成形型温度を表1、及び表2のように設定したこと以外は、実施例5と同様にして成形体を作成した。結果を表1、及び表2に示す。
 なお、実施例6、7は成形型温差を維持して量産することが難しく、2~3個の成形体は製造できたが、100個以上の成形体を製造するには更なる検討が必要である。また、実施例8の成形型は型温が低いため、やや成形体が目的形状に賦形できず、成形体の表面の一部に欠けが見られた。また、材料が急冷するために、成形型の転写性が低下する。
 [実施例9]
 成形型キャビティの形状、及び成形型温を表2のように設計したこと以外は、実施例5と同様に成形体を作成した。結果を表2に示す。
 [実施例10、11]
 材料Bのガラス繊維の繊維体積割合を表1のように変更したこと以外は、実施例1と同様にして成形体を作成した。結果を表2に示す。
 [比較例1]
 成形型キャビティの角度θ2を100度、平面度を0(mm)としたこと以外は、実施例5と同様にして成形体を作成した。結果を表2に示す。
 [実施例12]
 材料Aの厚さを3.6mmとし、材料Bを用いずに材料Aのみを用いたこと以外は、実施例1と同様にして成形体を作成し、参考成形体P1を準備した。
 材料Aの厚みlaを2.6mm、材料Bの厚みlbを1.0mmとしたこと以外は、実施例1と同様にして成形体P2を作成した。
 2つの成形体を用いて落錘試験を行った。試験条件は錘体質量を16kgとし、135J、145J、155J、165Jの衝撃が加わるように高さ調整をして、以下の評価を行った。結果を表3に示す。
 Perfect:錘体が当たった面の反対側の表面にクラック(面内方向の亀裂)が見られなかった。
 Excellent:錘体が当たった面の反対側の表面に10mm未満のクラック(面内方向の亀裂)が発生した。
 Good:錘体が当たった面の反対側の表面に10mm以上のクラック(面内方向の亀裂)が発生。割れ(板厚方向の亀裂)は板厚の半分未満に収まった。
 Poor:錐が当たった面の反対側の表面に10mm以上のクラック(面内方向の亀裂)が発生且つ、割れ(板厚方向の亀裂)は板厚の半分以上が割れている。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 [比較例2]
 材料Bとして、シートモールディングコンパウンド(SMC)を使用したこと以外は、実施例1と同様に成形体を作成した。結果を表4に示す。
 SMCとしては、マトリクスであるビニルエステル樹脂(熱硬化性樹脂)にガラス繊維が含まれているものを用いた。
 [比較例3]
 材料Bとして、鉄を使用したこと以外は、実施例1と同様に成形体を作成した。結果を表4に示す。
Figure JPOXMLDOC01-appb-T000004

 
 比較例2及び3の成形体は反りが少なかった。ただし、比較例3では、成形後に鉄と材料層Aが剥がれたり、鉄が割れたりする問題が発生した。
 本発明の成形体及びこれを成形して得られた成形体は、各種構成部材、例えば自動車の構造部材、また各種電気製品、機械のフレームや筐体等、衝撃吸収が望まれるあらゆる部位に用いられる。特に好ましくは、自動車部品として利用できる。
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。
 本出願は、2020年11月4日出願の日本特許出願(特願2020-184217)に基づくものであり、その内容はここに参照として取り込まれる。
 A:材料A
 B:材料B
 101、401:側壁
 102:連結壁
 402:上壁の連結壁(材料Bを下側に配置して観察する)
 403:下壁の連結壁(材料Bを下側に配置して観察する)
 X:X軸方向
 Y:Y軸方向
 Z:Z軸方向
 θ1:側壁と連結壁とのなす角
 θ2:成形型MBにおける、連結壁を形成するための成形型面S1と、側壁を形成するための成形型面S2、とのなす角
 θ3:角θ1を応力変形させ、成形体を接合した状態での、側壁と連結壁とのなす角
 MA:材料Aを接触させる型
 MB:材料Bを接触させる型
 701:リブ
 801:応力変形させるための力
 802:接合用の別部品
 901:2本の平行な理想直線
 902:連結壁の下壁
 903:下壁の底面
 Ly波打ち方向の長さ(40cm)
 h:側壁の高さ
 Lyc:波打ち方向の長さ(40cm)
 1201:下壁を形成するための成形型面
 1202:2本の平行な理想直線
 T1、T2:成形体

 

Claims (21)

  1.  雌雄一対の成形型である成形型MAと成形型MBとを用いて、成形型MAに材料Aを、成形型MBに材料Bをそれぞれ接触させて圧縮成形し、成形体を製造する方法であって、
     材料Aは炭素繊維と熱可塑性樹脂M1を含み、材料Bはガラス繊維と熱可塑性樹脂M2を含み、
     成形体は一対の側壁と、当該側壁を連結する連結壁とを備え、
     成形体の断面は波打ち形状を有し、
     成形体の平面度Faと側壁の高さhとの関係が0≦Fa/h<1.3である、
     成形体の製造方法。
  2.  成形体の断面は複数の波打ち形状を有し、波打ち方向の長さが1m以上である、請求項1に記載の成形体の製造方法。
  3.  成形体は一対の側壁と、当該側壁を連結する連結壁とを備え、
     材料Bが表層に存在する側における、側壁と連結壁とのなす角θ1が、90度≦θ1<160度である、請求項1乃至2のいずれか1項に記載の成形体の製造方法。
  4.  成形型MBは、連結壁を形成するための成形型面S1と、側壁を形成するための成形型面S2を備え、S1とS2とのなす角θ2が、θ1<θ2を満たす、請求項3に記載の成形体の製造方法。
  5.  材料Aの線膨張係数Xaと、材料Bの線膨張係数Xbとしたとき、Xa、Xb、θ1、及びθ2が、下記式(1)及び(2)を満たす、請求項4に記載の成形体の製造方法。
     式(1) 0.01≦ Xa/Xb < 1
     式(2) 0 ≦(θ2-θ1) ÷ (Xa/Xb) < 1.0×10
     ただし、
     材料Aの線膨張係数Xaとは、成形体となった時に、波打ち方向となる方向における材料の線膨張係数である。
     材料Bの線膨張係数Xbとは、成形体となった時に、波打ち方向となる方向における材料の線膨張係数である。
  6.  圧縮成形に用いる成形型キャビティの平面度Fcは、Fa≦Fcを満たす、請求項1乃至5のいずれか1項に記載の成形体の製造方法。
  7.  材料Aの線膨張係数Xaと、材料Bの線膨張係数Xbとしたとき、下記式(1)及び(3)を満たす、請求項6に記載の成形体の製造方法。
     式(1) 0.01≦ Xa/Xb < 1
     式(3) 0 ≦ (Fc-Fa)/h ÷ (Xa/Xb) < 1.0×10
     ただし、
     材料Aの線膨張係数Xaとは、成形体となった時に、波打ち方向となる方向における材料の線膨張係数である。
     材料Bの線膨張係数Xbとは、成形体となった時に、波打ち方向となる方向における材料の線膨張係数である。
  8.  材料Aの線膨張係数Xaと、材料Bの線膨張係数Xbとしたとき、下記式(1)及び(4)を満たす、請求項1乃至7のいずれか1項に記載の成形体の製造方法。
     式(1) 0.01≦ Xa/Xb < 1
     式(4) 0 < |ta-tb|÷ (Xa/Xb) < 5000
     Xa:材料Aの線膨張係数
     Xb:材料Bの線膨張係数
     ta:成形型MAの温度
     tb:成形型MBの温度
     ただし、
     材料Aの線膨張係数Xaとは、成形体となった時に、波打ち方向となる方向における材料の線膨張係数である。
     材料Bの線膨張係数Xbとは、成形体となった時に、波打ち方向となる方向における材料の線膨張係数である。
  9.  成形型MAが上型であって、成形型MBが下型である、請求項1乃至8のいずれか1項に記載の成形体の製造方法。
  10.  成形体は、耐衝撃吸収体であって、材料Aが衝撃を受ける側となる、請求項1乃至9のいずれか1項に記載の成形体の製造方法。
  11.  材料Aの厚みlaが0.5mm以上5.0mm未満、材料Bの厚みlbが0.5mm以上3.0mm以下であって、
     1<la/lb<0.6、又は0.1<lb/la<0.6である、
     請求項1乃至10のいずれか1項に記載の成形体の製造方法。
  12.  材料Aの線膨張係数Xaと、材料Bの線膨張係数Xbとしたとき、材料Aの繊維体積割合VfAと、材料Bの繊維体積割合VfBとの関係が、下記式(1)及び(5)を満たす、請求項1乃至11のいずれか1項に記載の成形体の製造方法。
     式(1) 0.01≦ Xa/Xb < 1
     式(5) 0.3 ≦ VfA/VfB ≦ 3.0
     ただし、
     材料Aの線膨張係数Xaとは、成形体となった時に、波打ち方向となる方向における材料の線膨張係数である。
     材料Bの線膨張係数Xbとは、成形体となった時に、波打ち方向となる方向における材料の線膨張係数である。
  13.  連結壁と側壁の間に、リブを有する請求項1乃至12のいずれか1項に記載の成形体の製造方法。
  14.  材料Aと材料Bの間に材料Cを有し、
     材料Aの線膨張係数Xa、材料Bの線膨張係数Xb、及び材料Cの線膨張係数Xcの関係が、Xa<Xc<Xbを満たす、請求項1乃至13のいずれか1項に記載の成形体の製造方法。
     ただし、
     材料Aの線膨張係数Xaとは、成形体となった時に、波打ち方向となる方向における材料の線膨張係数である。
     材料Bの線膨張係数Xbとは、成形体となった時に、波打ち方向となる方向における材料の線膨張係数である。
     材料Cの線膨張係数Xcとは、成形体となった時に、波打ち方向となる方向における材料の線膨張係数である。
  15.  材料Aの線膨張係数Xaと、材料Bの線膨張係数Xbとしたとき、0.8≦Xa/Xb≦1となるように、線膨張緩和剤を混入させた請求項1乃至14のいずれか1項に記載の成形体の製造方法。
     ただし、
     材料Aの線膨張係数Xaとは、成形体となった時に、波打ち方向となる方向における材料の線膨張係数である。
     材料Bの線膨張係数Xbとは、成形体となった時に、波打ち方向となる方向における材料の線膨張係数である。
  16.  熱可塑性樹脂M1に比べて、線膨張係数が小さい熱可塑性樹脂M2を用いることで、材料Aの線膨張係数Xaと、材料Bの線膨張係数Xbとしたとき、0.8≦Xa/Xb≦1に調整した、請求項1乃至15のいずれか1項に記載の成形体の製造方法。
     ただし、
     材料Aの線膨張係数Xaとは、成形体となった時に、波打ち方向となる方向における材料の線膨張係数である。
     材料Bの線膨張係数Xbとは、成形体となった時に、波打ち方向となる方向における材料の線膨張係数である。
  17.  成形型MAの温度ta及び成形型MBの温度tbは室温+10℃以下である、請求項1乃至16のいずれか1項に記載の成形体の製造方法。
  18.  請求項1乃至17のいずれか1項に記載の製造方法により製造された成形体であり、一対の側壁と、当該側壁を連結する連結壁とを備え、材料Bが表層に存在する側における、側壁と連結壁とのなす角θ1が、90度≦θ1<160度である、成形体の角θ1を応力変形させて小さくし、応力変形後の成形体の平面度Fa’と側壁の高さhとの関係が0≦Fa’/h<0.1とした状態で、成形体を接合し、接合体を製造する方法。
  19.  材料Aと材料Bを積層させた後、圧縮成形する、請求項1乃至17のいずれか1項に記載の成形体の製造方法。
  20.  材料A、及び材料Bは平板形状である、請求項19に記載の成形体の製造方法。
  21.  材料Aと材料Bは成形体となったとき、それぞれ材料層Aと材料層Bを形成する、請求項19又は請求項20のいずれか1項に記載の成形体の製造方法。

     
PCT/JP2021/037967 2020-11-04 2021-10-13 圧縮成形して成形体を製造する方法 WO2022097438A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2022560691A JP7377993B2 (ja) 2020-11-04 2021-10-13 圧縮成形して成形体を製造する方法
EP21888991.3A EP4212327A4 (en) 2020-11-04 2021-10-13 METHOD FOR IMPLEMENTING PRESS MOULDING AND PRODUCING A MOULDED ARTICLE
CN202180074709.4A CN116568475A (zh) 2020-11-04 2021-10-13 进行压缩成形以制造成形体的方法
US17/780,801 US20220410443A1 (en) 2020-11-04 2021-10-13 Method for Producing Molded Body By Compression-Molding

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-184217 2020-11-04
JP2020184217 2020-11-04

Publications (1)

Publication Number Publication Date
WO2022097438A1 true WO2022097438A1 (ja) 2022-05-12

Family

ID=81457069

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/037967 WO2022097438A1 (ja) 2020-11-04 2021-10-13 圧縮成形して成形体を製造する方法

Country Status (5)

Country Link
US (1) US20220410443A1 (ja)
EP (1) EP4212327A4 (ja)
JP (1) JP7377993B2 (ja)
CN (1) CN116568475A (ja)
WO (1) WO2022097438A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023058535A1 (ja) * 2021-10-04 2023-04-13 帝人株式会社 炭素繊維とガラス繊維を含んだ成形材料及び、これをコールドプレスして成形体を製造する方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008246981A (ja) * 2007-03-30 2008-10-16 Honda Motor Co Ltd 繊維強化複合材料の製造方法
WO2012026031A1 (ja) * 2010-08-27 2012-03-01 トヨタ自動車株式会社 繊維強化樹脂材の製造方法
US8946342B2 (en) 2011-02-01 2015-02-03 Teijin Limited Random mat and fiber-reinforced composite material
US9592853B2 (en) 2014-07-02 2017-03-14 GM Global Technology Operations LLC Corrugation designs
JP2017065181A (ja) * 2015-09-30 2017-04-06 積水化学工業株式会社 繊維強化シートの製造方法及び構造体の製造方法
WO2017056683A1 (ja) * 2015-09-30 2017-04-06 積水化学工業株式会社 繊維強化シート及び構造体
US9650003B2 (en) 2014-07-02 2017-05-16 GM Global Technology Operations LLC Impact resistant component for a vehicle
JP2018043412A (ja) 2016-09-14 2018-03-22 三菱ケミカル株式会社 リブ成形用積層基材
WO2018052080A1 (ja) 2016-09-14 2018-03-22 三菱ケミカル株式会社 積層基材およびその製造方法
JP2020184217A (ja) 2019-05-08 2020-11-12 株式会社リコー 通信システム、端末装置、通信方法、プログラム

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001260130A (ja) * 2000-03-16 2001-09-25 Toray Ind Inc Frp製スレート板およびその製造方法
US9307803B1 (en) * 2013-03-15 2016-04-12 INTER Materials, LLC Ballistic helmets and method of manufacture thereof
JP6782582B2 (ja) * 2015-08-28 2020-11-11 帝人株式会社 繊維強化複合材料成形体およびその製造方法
CN113272108A (zh) * 2018-12-27 2021-08-17 三菱化学株式会社 预成型体的制造方法和复合材料成型品的制造方法及模具

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008246981A (ja) * 2007-03-30 2008-10-16 Honda Motor Co Ltd 繊維強化複合材料の製造方法
WO2012026031A1 (ja) * 2010-08-27 2012-03-01 トヨタ自動車株式会社 繊維強化樹脂材の製造方法
US8946342B2 (en) 2011-02-01 2015-02-03 Teijin Limited Random mat and fiber-reinforced composite material
US9592853B2 (en) 2014-07-02 2017-03-14 GM Global Technology Operations LLC Corrugation designs
US9650003B2 (en) 2014-07-02 2017-05-16 GM Global Technology Operations LLC Impact resistant component for a vehicle
JP2017065181A (ja) * 2015-09-30 2017-04-06 積水化学工業株式会社 繊維強化シートの製造方法及び構造体の製造方法
WO2017056683A1 (ja) * 2015-09-30 2017-04-06 積水化学工業株式会社 繊維強化シート及び構造体
JP2018043412A (ja) 2016-09-14 2018-03-22 三菱ケミカル株式会社 リブ成形用積層基材
WO2018052080A1 (ja) 2016-09-14 2018-03-22 三菱ケミカル株式会社 積層基材およびその製造方法
JP2020184217A (ja) 2019-05-08 2020-11-12 株式会社リコー 通信システム、端末装置、通信方法、プログラム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4212327A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023058535A1 (ja) * 2021-10-04 2023-04-13 帝人株式会社 炭素繊維とガラス繊維を含んだ成形材料及び、これをコールドプレスして成形体を製造する方法
JP7393588B2 (ja) 2021-10-04 2023-12-06 帝人株式会社 炭素繊維とガラス繊維を含んだ成形材料及び、これをコールドプレスして成形体を製造する方法

Also Published As

Publication number Publication date
EP4212327A1 (en) 2023-07-19
EP4212327A4 (en) 2024-04-10
JPWO2022097438A1 (ja) 2022-05-12
JP7377993B2 (ja) 2023-11-10
CN116568475A (zh) 2023-08-08
US20220410443A1 (en) 2022-12-29

Similar Documents

Publication Publication Date Title
JP6782582B2 (ja) 繊維強化複合材料成形体およびその製造方法
JP5749587B2 (ja) 立上部を有する軽量な成形体とその製造方法
JP5551386B2 (ja) 繊維・樹脂複合化シート及びfrp成形体
US20140322484A1 (en) Shock Resistant Member
JP5968600B2 (ja) 繊維強化熱可塑性樹脂成形品とその製造方法、および複合体とその製造方法
JP6883527B2 (ja) 繊維強化樹脂成形体の製造方法
JP5855802B1 (ja) 中空構造体及び車両用部品
EP3330081B1 (en) Composite panels
WO2013094702A1 (ja) 成形体の製造方法及び成形体
WO2022097438A1 (ja) 圧縮成形して成形体を製造する方法
US20200282670A1 (en) Press-Molding Material Including Discontinuous Reinforcing Fibers and Thermoplastic Resin as Matrix, Shaped Product Thereof, and Manufacturing Method for Same
KR102362036B1 (ko) 탄소섬유 강화 수지 복합재료
Umer et al. The low velocity impact response of nano modified composites manufactured using automated dry fibre placement
JP6643126B2 (ja) プレス成形体の製造方法、及びプレス成形体の製造装置
WO2021153366A1 (ja) 炭素繊維とガラス繊維を含むコールドプレス成形体、およびその製造方法
WO2023058535A1 (ja) 炭素繊維とガラス繊維を含んだ成形材料及び、これをコールドプレスして成形体を製造する方法
JP6899004B2 (ja) プレス成形体の製造方法
Han et al. Compression characteristics, energy absorption, and feasibility evaluation of egg-box panels made of long fibre prepreg sheets
JP2017024392A (ja) 引止部を有する成形体、および成形体の製造方法
WO2014015801A1 (zh) 复合塑料布、其应用和应用方法
WO2022190669A1 (ja) 成形体の製造方法
JP7130848B2 (ja) プレス成形体の製造方法
Hirano et al. The development of novel carbon-fiber-reinforced stampable thermoplastic sheets
Chen et al. Preparation and performance of continuous glass fiber reinforced polypropylene composite honeycomb sandwich panels

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21888991

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022560691

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021888991

Country of ref document: EP

Effective date: 20230414

WWE Wipo information: entry into national phase

Ref document number: 202180074709.4

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE