WO2022097322A1 - Rotary electrical machine - Google Patents

Rotary electrical machine Download PDF

Info

Publication number
WO2022097322A1
WO2022097322A1 PCT/JP2021/022340 JP2021022340W WO2022097322A1 WO 2022097322 A1 WO2022097322 A1 WO 2022097322A1 JP 2021022340 W JP2021022340 W JP 2021022340W WO 2022097322 A1 WO2022097322 A1 WO 2022097322A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnet
circumferential
contour portion
radial
magnets
Prior art date
Application number
PCT/JP2021/022340
Other languages
French (fr)
Japanese (ja)
Inventor
淳也 田中
正倫 綿引
智哉 上田
Original Assignee
日本電産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電産株式会社 filed Critical 日本電産株式会社
Priority to CN202180075014.8A priority Critical patent/CN116458035A/en
Publication of WO2022097322A1 publication Critical patent/WO2022097322A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets

Definitions

  • the present invention relates to a rotary electric machine.
  • Patent Document 1 describes a rotary electric machine in which three permanent magnets are arranged in a ⁇ shape.
  • the permanent magnets located on the outer side in the radial direction are close to the outer peripheral surface of the rotor core, so that there is a concern that the strength of the rotor core may decrease due to centrifugal force. Therefore, if the permanent magnet rotor core is arranged at a position far from the outer peripheral surface, there arises a problem that the output is reduced. Further, in the rotary electric machine as described above, further reduction of torque ripple has been required.
  • the present invention has been made in consideration of the above points, and one of the objects of the present invention is to provide a rotary electric machine having a structure capable of achieving high output and reducing torque ripple.
  • One embodiment of the rotary electric machine of the present invention comprises a rotor rotatable about a central axis and a stator located radially outside the rotor, wherein the rotor has a rotor core having a plurality of accommodating holes.
  • Each of the plurality of housing holes has a plurality of magnets housed therein
  • the stator has an annular core back surrounding the rotor core, and extends radially inward from the core back and is spaced in the circumferential direction. It has a stator core with a plurality of teeth arranged side by side, and the teeth are provided at a base extending radially inward from the core back and at the radially inner end of the base on both sides in the circumferential direction from the base.
  • the plurality of magnets are arranged with a distance from each other in the circumferential direction, and a pair of magnets extending in a direction away from each other in the radial direction from the inside in the radial direction to the outside in the radial direction when viewed in the axial direction. Is arranged at a circumferential position between the pair of first magnets and the pair of first magnets on the radial outer side of the radial inner end portion of the pair of first magnets, and is orthogonal to the radial direction when viewed in the axial direction.
  • the radial length of the second magnet is shorter than the length of the first magnet in the direction orthogonal to the extending direction of the first magnet when viewed in the axial direction.
  • both ends of the second magnet in the circumferential direction are in a certain state in which the circumferential center of the second magnet is arranged at the same circumferential position as the circumferential center of the tooth.
  • the teeth are arranged two adjacent to the one tooth. It is located between the center of the slot in the circumferential direction.
  • FIG. 1 is a cross-sectional view showing a rotary electric machine of the present embodiment.
  • FIG. 2 is a cross-sectional view showing a part of the rotary electric machine of the present embodiment, and is a cross-sectional view taken along the line II-II in FIG.
  • FIG. 3 is a cross-sectional view showing a magnetic pole portion of the rotor and a part of the stator core of the present embodiment.
  • FIG. 4 is an enlarged cross-sectional view of the first flux barrier portion and the second flux barrier portion of the present embodiment.
  • FIG. 5 is a diagram showing the relationship between the electric angular order and the amplitude of the electromagnetic excitation force.
  • FIG. 6 is a diagram showing the relationship between the electric angular order and the amplitude of the electromagnetic excitation force.
  • the Z-axis direction appropriately shown in each figure is a vertical direction in which the positive side is the "upper side” and the negative side is the “lower side”.
  • the central axis J appropriately shown in each figure is a virtual line that is parallel to the Z-axis direction and extends in the vertical direction.
  • the axial direction of the central axis J that is, the direction parallel to the vertical direction
  • the radial direction centered on the central axis J is simply referred to as "radial direction”.
  • the circumferential direction centered on is simply called the "circumferential direction”.
  • the arrow ⁇ appropriately shown in each figure indicates the circumferential direction.
  • the arrow ⁇ faces clockwise with respect to the central axis J when viewed from above.
  • the side of the circumferential direction toward which the arrow ⁇ faces with respect to a certain object that is, the side traveling clockwise when viewed from above, is referred to as "one side in the circumferential direction", and the side in the circumferential direction with respect to a certain object.
  • the side opposite to the side to which the arrow ⁇ faces that is, the side that advances counterclockwise when viewed from above, is called the "other side in the circumferential direction”.
  • the vertical direction, the upper side, and the lower side are simply names for explaining the arrangement relations of each part, and the actual arrangement relations, etc. are the arrangement relations, etc. other than the arrangement relations, etc. indicated by these names. There may be.
  • the rotary electric machine 1 is an inner rotor type rotary electric machine.
  • the rotary electric machine 1 is a three-phase AC type rotary electric machine.
  • the rotary electric machine 1 is, for example, a three-phase motor driven by supplying a three-phase alternating current power source.
  • the rotary electric machine 1 includes a housing 2, a rotor 10, a stator 60, a bearing holder 4, and bearings 5a and 5b.
  • the housing 2 houses the rotor 10, the stator 60, the bearing holder 4, and the bearings 5a and 5b inside.
  • the bottom of the housing 2 holds the bearing 5b.
  • the bearing holder 4 holds the bearing 5a.
  • the bearings 5a and 5b are, for example, ball bearings.
  • the stator 60 is located on the radial outer side of the rotor 10.
  • the stator 60 includes a stator core 61, an insulator 64, and a plurality of coils 65.
  • the stator core 61 has a core back 62 and a plurality of teeth 63.
  • the core back 62 is located on the outer side in the radial direction of the rotor core 20, which will be described later.
  • the coil 65 is not shown.
  • the insulator 64 is not shown.
  • the core back 62 is an annular shape surrounding the rotor core 20.
  • the core back 62 is, for example, an annular shape centered on the central axis J.
  • the plurality of teeth 63 extend radially inward from the core back 62.
  • the plurality of teeth 63 are arranged side by side at intervals in the circumferential direction.
  • the plurality of teeth 63 are arranged at equal intervals, for example, along the circumferential direction.
  • 48 teeth 63 are provided. That is, the number of slots 67 in the rotary electric machine 1 is, for example, 48.
  • the plurality of teeth 63 have a base portion 63a and an umbrella portion 63b, respectively.
  • the base 63a extends radially inward from the core back 62.
  • the circumferential dimension of the base 63a is, for example, the same over the entire radial direction.
  • the circumferential dimension of the base 63a may become smaller, for example, toward the inside in the radial direction.
  • the umbrella portion 63b is provided at the radial inner end of the base portion 63a.
  • the umbrella portion 63b protrudes from the base portion 63a on both sides in the circumferential direction.
  • the circumferential dimension of the umbrella portion 63b is larger than the circumferential dimension at the radially inner end of the base 63a.
  • the radial inner surface of the umbrella portion 63b is a curved surface along the circumferential direction.
  • the radial inner surface of the umbrella portion 63b extends in an arc shape centered on the central axis J when viewed in the axial direction.
  • the radial inner surface of the umbrella portion 63b faces the outer peripheral surface of the rotor core 20, which will be described later, via a gap in the radial direction.
  • the umbrella portions 63b are arranged side by side with a gap in the circumferential direction.
  • the plurality of coils 65 are attached to the stator core 61. As shown in FIG. 1, the plurality of coils 65 are attached to the teeth 63 via, for example, an insulator 64. In this embodiment, the coil 65 is distributed and wound. That is, each coil 65 is wound around the plurality of teeth 63. In this embodiment, the coil 65 is wound in all sections. That is, the circumferential pitch between the slots of the stator 60 into which the coil 65 is inserted is equal to the circumferential pitch of the magnetic poles generated when the three-phase AC power is supplied to the stator 60.
  • the number of poles of the rotary electric machine 1 is, for example, 8. That is, the rotary electric machine 1 is, for example, a rotary electric machine having 8 poles and 48 slots. As described above, in the rotary electric machine 1 of the present embodiment, when the number of poles is N, the number of slots is N ⁇ 6.
  • the rotor 10 can rotate about the central axis J.
  • the rotor 10 has a shaft 11, a rotor core 20, and a plurality of magnets 40.
  • the shaft 11 is a columnar shape extending in the axial direction about the central axis J.
  • the shaft 11 is rotatably supported around the central axis J by bearings 5a and 5b.
  • the rotor core 20 is a magnetic material.
  • the rotor core 20 is fixed to the outer peripheral surface of the shaft 11.
  • the rotor core 20 has a through hole 21 that penetrates the rotor core 20 in the axial direction. As shown in FIG. 2, the through hole 21 has a circular shape centered on the central axis J when viewed in the axial direction.
  • a shaft 11 is passed through the through hole 21.
  • the shaft 11 is fixed in the through hole 21 by, for example, press fitting or the like.
  • the rotor core 20 is configured, for example, by laminating a plurality of electrical steel sheets in the axial direction.
  • the rotor core 20 has a plurality of accommodating holes 30.
  • the plurality of accommodating holes 30 penetrate the rotor core 20 in the axial direction, for example.
  • a plurality of magnets 40 are accommodated inside the plurality of accommodating holes 30.
  • the method of fixing the magnet 40 in the accommodating hole 30 is not particularly limited.
  • the plurality of accommodating holes 30 include a pair of first accommodating holes 31a and 31b and a second accommodating hole 32.
  • the types of the plurality of magnets 40 are not particularly limited.
  • the magnet 40 may be, for example, a neodymium magnet or a ferrite magnet.
  • the plurality of magnets 40 include a pair of first magnets 41a and 41b and a second magnet 42. The pair of first magnets 41a and 41b and the second magnet 42 form a pole.
  • a pair of first accommodating holes 31a, 31b, a pair of first magnets 41a, 41b, a second accommodating hole 32, and a second magnet 42 are provided at intervals in the circumferential direction.
  • a pair of first accommodating holes 31a, 31b, a pair of first magnets 41a, 41b, a second accommodating hole 32, and a second magnet 42 are provided, for example, eight by eight.
  • the rotor 10 has a plurality of magnetic pole portions 70 including a pair of first accommodating holes 31a, 31b, a pair of first magnets 41a, 41b, a second accommodating hole 32, and a second magnet 42.
  • eight magnetic pole portions 70 are provided.
  • the plurality of magnetic pole portions 70 are arranged at equal intervals, for example, along the circumferential direction.
  • the plurality of magnetic pole portions 70 include a plurality of magnetic pole portions 70N having an N pole on the outer peripheral surface of the rotor core 20, and a plurality of magnetic pole portions 70S having an S pole on the outer peripheral surface of the rotor core 20.
  • four magnetic pole portions 70N and four magnetic pole portions 70S are provided.
  • the four magnetic pole portions 70N and the four magnetic pole portions 70S are alternately arranged along the circumferential direction.
  • the configuration of each magnetic pole portion 70 is the same except that the magnetic poles on the outer peripheral surface of the rotor core 20 are different and the positions in the circumferential direction are different.
  • the pair of first accommodating holes 31a and 31b are arranged so as to be spaced apart from each other in the circumferential direction.
  • the first accommodating hole 31a is located, for example, on one side (+ ⁇ side) in the circumferential direction of the first accommodating hole 31b.
  • the first accommodating holes 31a and 31b extend substantially linearly in a direction obliquely inclined with respect to the radial direction, for example, when viewed in the axial direction.
  • the pair of first accommodating holes 31a and 31b extend in a direction away from each other in the circumferential direction from the inner side in the radial direction to the outer side in the radial direction when viewed in the axial direction.
  • the first accommodating hole 31a is located on one side in the circumferential direction, for example, from the inside in the radial direction to the outside in the radial direction.
  • the first accommodating hole 31b is located on the other side ( ⁇ side) in the circumferential direction from the inner side in the radial direction to the outer side in the radial direction, for example.
  • the radial outer ends of the first accommodating holes 31a and 31b are located at the radial outer peripheral edges of the rotor core 20.
  • the first accommodating hole 31a and the first accommodating hole 31b are arranged, for example, with the magnetic pole center line IL1 shown in FIG. 3 constituting the d-axis sandwiched in the circumferential direction when viewed in the axial direction.
  • the magnetic pole center line IL1 is a virtual line extending in the radial direction through the circumferential center of the magnetic pole portion 70 and the central axis J.
  • the first accommodating hole 31a and the first accommodating hole 31b are arranged line-symmetrically with respect to the magnetic pole center line IL1 when viewed in the axial direction, for example.
  • the description of the first accommodating hole 31b may be omitted.
  • the first accommodating hole 31a has a first straight line portion 31c, an inner end portion 31d, and an outer end portion 31e.
  • the first straight line portion 31c extends linearly in the direction in which the first accommodating hole 31a extends when viewed in the axial direction.
  • the first straight line portion 31c is, for example, rectangular when viewed in the axial direction.
  • the inner end portion 31d is connected to the radial inner end portion of the first straight line portion 31c.
  • the inner end portion 31d is a radial inner end portion of the first accommodating hole 31a.
  • the outer end portion 31e is connected to the radial outer end portion of the first straight line portion 31c.
  • the outer end portion 31e is a radial outer end portion of the first accommodating hole 31a.
  • the outer end portion 31e extends radially outward from the radially outer end portion of the first straight line portion 31c along the magnetic pole center line IL1 (details will be described later).
  • the first accommodating hole 31b has a first straight line portion 31f, an inner end portion 31g, and an outer end portion 31h.
  • the second accommodating hole 32 is located between the radial outer ends of the pair of first accommodating holes 31a and 31b in the circumferential direction. That is, in the present embodiment, the second accommodating hole 32 is located between the outer end portion 31e and the outer end portion 31h in the circumferential direction.
  • the second accommodating hole 32 extends substantially linearly in a direction orthogonal to the radial direction, for example, when viewed in the axial direction.
  • the second accommodating hole 32 extends in a direction orthogonal to the magnetic pole center line IL1 when viewed in the axial direction, for example.
  • the pair of first accommodating holes 31a and 31b and the second accommodating holes 32 are arranged along a ⁇ shape, for example, when viewed in the axial direction.
  • a certain object extends in a direction orthogonal to a certain direction
  • a certain object extends in a direction strictly orthogonal to a certain direction. It also includes the case where it extends in a direction substantially orthogonal to a certain direction.
  • the “direction substantially orthogonal to a certain direction” includes, for example, a direction tilted within a range of several degrees [°] with respect to a direction strictly orthogonal to a certain direction due to a tolerance at the time of manufacturing or the like.
  • the magnetic pole center line IL1 passes through the center in the circumferential direction of the second accommodating hole 32. That is, the circumferential position of the circumferential center of the second accommodating hole 32 coincides with, for example, the circumferential position of the circumferential center of the magnetic pole portion 70.
  • the shape seen in the axial direction of the second accommodating hole 32 is, for example, a line-symmetrical shape centered on the magnetic pole center line IL1.
  • the second accommodating hole 32 is located at the radial outer peripheral edge portion of the rotor core 20.
  • the second accommodating hole 32 has a second straight line portion 32a, one end portion 32b, and the other end portion 32c.
  • the second straight line portion 32a extends linearly in the direction in which the second accommodating hole 32 extends when viewed in the axial direction.
  • the second straight line portion 32a has, for example, a rectangular shape when viewed in the axial direction.
  • the one end portion 32b is connected to the end portion on one side (+ ⁇ side) in the circumferential direction of the second straight line portion 32a.
  • the one end portion 32b is an end portion on one side in the circumferential direction of the second accommodating hole 32.
  • the one end portion 32b is arranged at intervals on the other side ( ⁇ side) in the circumferential direction of the outer end portion 31e in the first accommodating hole 31a.
  • the other end portion 32c is connected to the end portion on the other side ( ⁇ side) in the circumferential direction of the second straight line portion 32a.
  • the other end portion 32c is the end portion on the other side in the circumferential direction of the second accommodating hole 32.
  • the other end portion 32c is arranged at a distance on one side in the circumferential direction of the outer end portion 31h in the first accommodating hole 31b.
  • the pair of first magnets 41a and 41b are housed inside the pair of first housing holes 31a and 31b, respectively.
  • the first magnet 41a is housed inside the first housing hole 31a.
  • the first magnet 41b is housed inside the first housing hole 31b.
  • the pair of first magnets 41a and 41b are, for example, rectangular when viewed in the axial direction.
  • the length of the pair of first magnets 41a and 41b in the extending direction is the same.
  • the lengths of the first magnets 41a and 41b in the direction orthogonal to the direction in which the pair of first magnets 41a and 41b extend are the same.
  • the first magnets 41a and 41b are, for example, rectangular parallelepiped. Although not shown, the first magnets 41a and 41b are provided, for example, over the entire axial direction in the first accommodating holes 31a and 31b. The pair of first magnets 41a and 41b are arranged so as to be spaced apart from each other in the circumferential direction. The first magnet 41a is located, for example, on one side (+ ⁇ side) in the circumferential direction of the first magnet 41b.
  • the first magnet 41a extends along the first accommodating hole 31a when viewed in the axial direction.
  • the first magnet 41b extends along the first accommodating hole 31b when viewed in the axial direction.
  • the first magnets 41a and 41b extend substantially linearly in a direction obliquely inclined with respect to the radial direction, for example, when viewed in the axial direction.
  • the pair of first magnets 41a and 41b extend in a direction away from each other in the circumferential direction from the inner side in the radial direction to the outer side in the radial direction when viewed in the axial direction. That is, the circumferential distance between the first magnet 41a and the first magnet 41b increases from the inside in the radial direction to the outside in the radial direction.
  • the first magnet 41a is located on one side (+ ⁇ side) in the circumferential direction from the inside in the radial direction to the outside in the radial direction, for example.
  • the first magnet 41b is located on the other side ( ⁇ side) in the circumferential direction from the inner side in the radial direction to the outer side in the radial direction, for example.
  • the first magnet 41a and the first magnet 41b are arranged so as to sandwich the magnetic pole center line IL1 in the circumferential direction, for example, when viewed in the axial direction.
  • the first magnet 41a and the first magnet 41b are arranged line-symmetrically with respect to the magnetic pole center line IL1 when viewed in the axial direction, for example.
  • the description of the first magnet 41b may be omitted for the same configuration as the first magnet 41a except that it is line-symmetrical with respect to the magnetic pole center line IL1.
  • the first magnet 41a is fitted in the first accommodation hole 31a. More specifically, the first magnet 41a is fitted in the first straight line portion 31c. Of the side surfaces of the first magnet 41a, both side surfaces in a direction orthogonal to the direction in which the first straight line portion 31c extends are in contact with, for example, the inner side surface of the first straight line portion 31c. In the direction in which the first straight line portion 31c extends in the axial direction, the length of the first magnet 41a is, for example, the same as the length of the first straight line portion 31c.
  • both ends of the first magnet 41a in the stretching direction are arranged apart from both ends of the first accommodating hole 31a in the stretching direction.
  • the inner end portion 31d and the outer end portion 31e are arranged adjacent to each other on both sides of the first magnet 41a in the direction in which the first magnet 41a extends.
  • the inner end portion 31d constitutes the first flux barrier portion 51a.
  • the outer end portion 31e constitutes the first flux barrier portion 51b. That is, the rotor core 20 has a pair of first flux barrier portions 51a and 51b arranged so as to sandwich the first magnet 41a in the direction in which the first magnet 41a extends when viewed in the axial direction.
  • the rotor core 20 has a pair of first flux barrier portions 51c and 51d arranged so as to sandwich the first magnet 41b in the direction in which the first magnet 41b extends when viewed in the axial direction.
  • the first flux barrier portion 51b located on the outer side in the radial direction extends outward in the radial direction in parallel with the magnetic pole center line IL1 from the radial end portion of the first magnet 41a.
  • the first flux barrier portion 51d located on the outer side in the radial direction extends outward in the radial direction in parallel with the magnetic pole center line IL1 from the radial end portion of the first magnet 41b.
  • the rotor core 20 is arranged in pairs of the first magnets 41a and 41b in the direction in which the first magnets 41a and 41b extend when viewed in the axial direction. , 51c, 51d.
  • the first flux barrier portions 51a, 51b, 51c, 51d and the second flux barrier portions 52a, 52b, which will be described later, are portions that can suppress the flow of magnetic flux. That is, it is difficult for the magnetic flux to pass through each flux barrier portion.
  • Each flux barrier portion is not particularly limited as long as it can suppress the flow of magnetic flux, and may include a void portion or a non-magnetic portion such as a resin portion.
  • the second magnet 42 is housed inside the second storage hole 32.
  • the second magnet 42 is arranged at a circumferential position between the pair of first magnets 41a and 41b on the radial outer side of the radial inner end portion of the pair of first magnets 41a and 41b.
  • the second magnet 42 extends along the second accommodating hole 32 when viewed in the axial direction.
  • the second magnet 42 extends in a direction orthogonal to the radial direction when viewed in the axial direction.
  • the pair of first magnets 41a and 41b and the second magnet 42 are arranged along a ⁇ shape, for example, when viewed in the axial direction.
  • the second magnet is arranged at the circumferential position between the pair of first magnets
  • the circumferential position of the second magnet is the circumference between the pair of first magnets. It suffices to be included in the directional position, and the radial position of the second magnet with respect to the first magnet is not particularly limited.
  • the shape seen in the axial direction of the second magnet 42 is, for example, a shape that is line-symmetrical with respect to the magnetic pole center line IL1.
  • the second magnet 42 has, for example, a rectangular shape when viewed in the axial direction. Seen in the axial direction, the radial length of the second magnet 42 is shorter than the length of the first magnets 41a, 41b in the direction orthogonal to the direction in which the first magnets 41a, 41b extend. By making the length of the second magnet 42 in the radial direction shorter than the length of the first magnets 41a and 41b in the direction orthogonal to the direction in which the first magnets 41a and 41b extend, the weight of the second magnet 42 is reduced.
  • the second magnet 42 By making the second magnet 42 thinner, the second magnet 42 can be arranged on the outer side in the radial direction of the rotor core 20. By arranging the second magnet 42 on the outer side in the radial direction of the rotor core 20, it is possible to increase the output of the rotary electric machine 1. Since the magnetism of the second magnet 42 is strengthened by the first magnets 41a and 41b, it is possible to increase the strength of the rotor core 20 and increase the output of the rotary electric machine 1 without impairing the demagnetization strength. Further, a high demagnetization strength can be obtained with a small amount of magnets.
  • the second magnet 42 has, for example, a rectangular parallelepiped shape. Although not shown, the second magnet 42 is provided, for example, over the entire axial direction in the second accommodating hole 32. The radial inner portion of the second magnet 42 is located, for example, between the circumferential outer ends of the pair of first magnets 41a and 41b. The radial outer portion of the second magnet 42 is located, for example, radially outer than the pair of first magnets 41a and 41b.
  • the second magnet 42 is fitted in the second accommodating hole 32. More specifically, the second magnet 42 is fitted in the second straight line portion 32a. Of the side surfaces of the second magnet 42, both side surfaces in the radial direction orthogonal to the direction in which the second straight line portion 32a extends are in contact with, for example, the inner side surface of the second straight line portion 32a. In the direction in which the second straight line portion 32a extends in the axial direction, the length of the second magnet 42 is, for example, the same as the length of the second straight line portion 32a.
  • both ends of the second magnet 42 in the stretching direction are arranged apart from both ends of the second accommodating hole 32 in the stretching direction.
  • one end portion 32b and the other end portion 32c are arranged adjacent to each other on both sides of the second magnet 42 in the direction in which the second magnet 42 extends.
  • one end portion 32b constitutes a second flux barrier portion 52a.
  • the other end portion 32c constitutes a second flux barrier portion 52b. That is, the rotor core 20 has a pair of second flux barrier portions 52a and 52b arranged so as to sandwich the second magnet 42 in the direction in which the second magnet 42 extends when viewed in the axial direction.
  • the second flux barrier portions 52a and 52b are arcuate inward in the radial direction as they extend from the circumferential end of the second magnet 42 toward the side away from the second magnet 42 in the circumferential direction.
  • the distance between the second flux barrier portions 52a and 52b and the outer peripheral surface of the rotor core 20 becomes short, and the load on the rotor core 20 is applied by the centrifugal force during rotation. It can grow.
  • the load on the rotor core 20 can be reduced by extending the second flux barrier portions 52a and 52b inward in the radial direction.
  • the stress concentration at the intersection between the portion extending in the circumferential direction and the portion extending in the radial direction can be relaxed and the load on the rotor core 20 can be further reduced.
  • the pair of second flux barrier portions 52a and 52b and the second magnet 42 are the first flux barrier portion 51b located on the outer side in the radial direction of the pair of first flux barrier portions 51a and 51b sandwiching the first magnet 41a. It is located between the pair of first flux barrier portions 51c and 51d sandwiching the magnet 41b and the first flux barrier portion 51d located on the outer side in the radial direction in the circumferential direction.
  • the magnetic poles of the first magnet 41a are arranged along a direction orthogonal to the direction in which the first magnet 41a extends when viewed in the axial direction.
  • the magnetic poles of the first magnet 41b are arranged along a direction orthogonal to the direction in which the first magnet 41b extends when viewed in the axial direction.
  • the magnetic poles of the second magnet 42 are arranged along the radial direction.
  • the magnetic poles of the first magnet 41a are the same as each other.
  • the magnetic poles of the first magnet 41a are the same as each other.
  • the magnetic pole located on the radial outer side of the magnetic poles of the first magnet 41a, the magnetic pole located on the radial outer side of the magnetic poles of the first magnet 41b, and the magnetic pole of the second magnet 42 is, for example, an N pole.
  • the magnetic pole to be used is, for example, an S pole.
  • the magnetic poles of each magnet 40 are arranged in reverse with respect to the magnetic pole portion 70N. That is, in the magnetic pole portion 70S, the magnetic pole located on the radial outer side of the magnetic poles of the first magnet 41a, the magnetic pole located on the radial outer side of the magnetic poles of the first magnet 41b, and the radial outer side of the magnetic poles of the second magnet 42.
  • the magnetic pole located at is, for example, the S pole.
  • the magnetic pole located in the radial direction of the magnetic poles of the first magnet 41a, the magnetic pole located in the radial direction of the magnetic poles of the first magnet 41b, and the magnetic pole located in the radial direction of the magnetic poles of the second magnet 42 is, for example, an N pole.
  • a certain state in which the circumferential center of the second magnet 42 is arranged at the same circumferential position as the circumferential center of a certain tooth 63, the circumferential center is The teeth 63 arranged at the same circumferential direction as the circumferential center of the second magnet 42 are referred to as teeth 66A.
  • 2 to 3 show an example of the certain state. That is, in a certain state shown in FIGS. 2 to 3, the tooth 66A corresponds to "a certain tooth”. In a certain state shown in FIGS. 2 to 3, the magnetic pole center line IL1 passes through the circumferential center of the teeth 66A when viewed in the axial direction.
  • the "certain state” is a state in which "the center position of one of the teeth 66A in the circumferential direction coincides with the magnetic pole center line IL1 which is the d-axis".
  • the teeth 63 adjacent to one side (+ ⁇ side) in the circumferential direction of the teeth 66A are referred to as teeth 66B.
  • the teeth 63 adjacent to the other side ( ⁇ side) in the circumferential direction of the teeth 66A are called the teeth 66C.
  • the teeth 63 adjacent to each other on one side in the circumferential direction of the teeth 66B are called the teeth 66D.
  • the teeth 63 adjacent to the other side in the circumferential direction of the teeth 66C are called the teeth 66E.
  • the teeth 63 adjacent to one side in the circumferential direction of the teeth 66D are called the teeth 66F.
  • the stator core 61 has a slot 67.
  • the slot 67 has a slot 67A located on one side (+ ⁇ side) in the circumferential direction of the teeth 66A, a slot 67B located on the other side ( ⁇ side) in the circumferential direction of the teeth 66A, and the teeth 66B.
  • Slot 67C located on one side in the circumferential direction
  • slot 67D located on the other side in the circumferential direction of the teeth 66C
  • slot 67E located on one side in the circumferential direction of the teeth 66D, and located on the other side in the circumferential direction of the teeth 66E.
  • the position in the circumferential direction of the second magnet 42 is in the range of electricity 60 °, which corresponds to the periodic angle of the electric sixth harmonic torque, and electricity 90 °, which corresponds to the electric sixth half cycle.
  • one end of the second magnet 42 in the circumferential direction is located at the same circumferential position as the circumferential center of one tooth 66A having the circumferential center of the second magnet 42.
  • the teeth 66B arranged one adjacent to one side in the circumferential direction of one teeth 66A and on the same side as the teeth 66B arranged one adjacent to each other.
  • the position of the one-sided end portion of the second magnet 42 in the circumferential direction includes the position of the circumferential center of the teeth 66B and the position of the circumferential center of the slot 67C.
  • the position of the end portion in the circumferential direction of the second magnet 42 is 7.5 ° or more and 11.25 ° from the magnetic pole center line (d axis) IL1 as shown in FIG. It is preferably in the range ⁇ 1 below °.
  • the position of the end portion in the circumferential direction of the second magnet 42 is 11.25 ° from the magnetic pole center line IL1
  • the distance between the second magnet 42 and the outer peripheral surface of the rotor core 20 becomes short, and the centrifugal force during rotation causes the distance between the second magnet 42 and the outer peripheral surface of the rotor core 20 to become shorter.
  • the load on the rotor core 20 may increase.
  • one end of the second magnet 42 in the circumferential direction is the center of the circumferential direction of the teeth 66B and the umbrella portion 63b on one side of the teeth 66B in the circumferential direction far from the magnetic pole center line (d axis) IL1. It is more preferably between the edges in the circumferential direction.
  • the position of the end portion on one side in the circumferential direction of the second magnet 42 is in the range ⁇ 2 of 7.5 ° or more and 9 ° or less from the magnetic pole center line (d axis) IL1. Is preferable.
  • the other end of the second magnet 42 in the circumferential direction is the circumferential center of the teeth 66C and the circumferential direction of the umbrella portion 63b on the other side of the teeth 66C in the circumferential direction far from the magnetic pole center line (d axis) IL1. It is more preferable to be between the ends of the magnets. In the case of the rotary electric machine 1 having 8 poles and 48 slots, the position of the end portion of the second magnet 42 on the other side in the circumferential direction shall be in the range of 7.5 ° or more and 9 ° or less from the magnetic pole center line (d axis) IL1. Is preferable. Therefore, it is more preferable that the length of the second magnet 42 in the circumferential direction is 15 ° or more and 18 ° or less with respect to the magnetic pole center line (d axis) IL1.
  • the magnetic flux from the second magnet 42 cancels out the magnetic flux from the teeth 63 of the stator 60 while reducing the load on the rotor core 20. It is possible to suppress the generation of harmonic flux during loading and reduce the amplitude of the electromagnetic excitation force of the sixth-order electric angle component that causes noise and vibration. Specifically, as shown in the relationship between the electric angle order and the amplitude of the electromagnetic excitation force in FIG. 5, the amplitude of the electromagnetic excitation force of the electric angle 0th order component contributing to the torque of the rotary electric machine 1 is large. ..
  • the magnetic flux flowing between the rotor 10 and the stator 60 does not depend on, for example, the magnetic flux of the first magnets 41a and 41b, but the component of the magnetic flux flowing between the rotor 10 and the stator 60 due to the supply of electric power to the stator 60. May include.
  • This magnetic flux produces so-called reluctance torque.
  • the effect of setting the length of the second magnet 42 in the circumferential direction to be within the above range is that the radial length of the second magnet 42 is orthogonal to the direction in which the first magnets 41a and 41b extend.
  • the length is shorter than the length of the first magnets 41a and 41b in the direction and making it thinner, it is realized by suppressing the magnetic flux of the second magnet 42 from becoming too large and causing torque ripple. There is.
  • the positional relationship between the first flux barrier portion 51b and the second flux barrier portion 52a will be described.
  • the positional relationship between the first flux barrier portion 51d and the second flux barrier portion 52b is the same as the positional relationship between the first flux barrier portion 51b and the second flux barrier portion 52a, and thus description thereof will be omitted.
  • the first flux barrier portion 51b when viewed in the axial direction, includes a first contour portion 81, a second contour portion 82, a third contour portion 83, a fourth contour portion 84, and a fifth. It has a contour portion 85 and.
  • the first contour portion 81 is located on the magnetic pole center line IL1 side in the circumferential direction in the first flux barrier portion 51b and extends linearly in the magnetic pole center line IL1 direction.
  • the second contour portion 82 is located closer to the q-axis IL2 than the magnetic pole center line IL1 in the circumferential direction, and extends linearly in the q-axis IL2 direction.
  • the third contour portion 83 is located between the first contour portion 81 and the second contour portion 82 in the circumferential direction and radially outside the first contour portion 81 and the second contour portion 82, and extends in the circumferential direction.
  • the fourth contour portion 84 has an arc shape connecting the first contour portion 81 and the third contour portion.
  • the fifth contour portion 85 has an arc shape connecting the second contour portion 82 and the third contour portion 83.
  • the second flux barrier portion 52a when viewed in the axial direction has a sixth contour portion 86, a seventh contour portion 87, and an eighth contour portion 88.
  • the sixth contour portion 86 is located on the q-axis IL2 side in the second flux barrier portion 52a and extends linearly in the radial direction.
  • the seventh contour portion 87 is located radially outside the sixth contour portion 86 and on the d-axis side, and extends in the circumferential direction.
  • the eighth contour portion 88 has an arc shape connecting the sixth contour portion 86 and the seventh contour portion 87.
  • the distance L1 between the intersection 89 of the first contour portion 81 and the fourth contour portion 84 and the intersection 90 of the sixth contour portion 86 and the eighth contour portion 88 is the second contour portion 82 and the fifth contour portion 82.
  • the distance L2 between the intersection 91 with the portion 85 and the q-axis IL2 is the same.
  • the distance L1 between the first flux barrier portion 51b and the second flux barrier portion 52a is the same as the distance L2 between the first flux barrier portion 51b and the q-axis IL2.
  • FIG. 6 shows the relationship between the electrical angular order and the amplitude of the electromagnetic excitation force. It is shown for each relative relationship between the distance L1 between the first flux barrier portion 51b and the second flux barrier portion 52a and the distance L2 between the first flux barrier portion 51b and the q-axis IL2.
  • the first flux barrier portion 51b constituting the above-mentioned distance L1 distance L2 extends radially outward from the radial end portion of the first magnet 41a in parallel with the magnetic pole center line IL1.
  • the first flux barrier portion constituting the distance L1 ⁇ distance L2 shown in FIG. 6 extends in a direction approaching the magnetic pole center line IL1 from the radial end portion of the first magnet 41a toward the outside in the radial direction. ..
  • the radial length of the second magnet 42 is made shorter and thinner than the length of the first magnets 41a and 41b in the direction orthogonal to the direction in which the first magnets 41a and 41b extend, and the second magnet 42 is made thinner.
  • One end of the circumferential direction of the second magnet 42 is one tooth 66A in a certain state where the circumferential center of the second magnet 42 is arranged at the same circumferential position as the circumferential center of the one tooth 66A.
  • the electric field angle of the sixth-order component can be increased by suppressing the amplitude of the electromagnetic excitation force of the fifth-order component and the seventh-order component of the electric field angle at the time of loading.
  • Low vibration and low noise can be realized by reducing the amplitude of the electromagnetic excitation force and suppressing the
  • the length of the second magnet 42 in the circumferential direction is 15 ° or more and 18 ° or less with respect to the magnetic pole center line (d axis) IL1 while suppressing a decrease in the strength of the rotor core 20.
  • the distance L1 between the first flux barrier portion 51b and the second flux barrier portion 52a is the same as the distance L2 between the first flux barrier portion 51b and the q-axis IL2, so that the electrical angle is 6th.
  • Low vibration and low noise can be realized by suppressing torque ripple caused by the component and the 12th-order electric angle component.
  • the rotary electric machine 1 is a three-phase alternating current type rotary electric machine, and the number of slots is N ⁇ 6 when the number of poles is N.
  • the magnetic flux flowing between the rotor 10 and the stator 60 includes an N ⁇ 3rd order magnetic flux component and an N ⁇ 6th order magnetic flux component.
  • N 10
  • the magnetic flux flowing between the rotor 10 and the stator 60 is a 10 ⁇ 3rd order, that is, a 30th order magnetic flux component. It contains a 10 ⁇ 6th order, that is, a 60th order magnetic flux component.
  • the torque ripple caused by the N ⁇ 6th order magnetic flux component can be reduced by setting the length of the second magnet 42 in the circumferential direction to 15 ° or more and 18 ° or less with respect to the magnetic pole center line IL1. Moreover, it is possible to reduce noise by suppressing the increase in torque ripple caused by the N ⁇ 3rd order magnetic flux component. Therefore, by setting the length of the second magnet 42 in the circumferential direction to 15 ° or more and 18 ° or less with respect to the magnetic pole center line IL1, in the rotary electric machine 1 having N poles and N ⁇ 6 slots. It is easy to preferably obtain the effect of reducing noise by reducing the torque ripple.
  • the coil 65 is distributed-wound and all-knot-wound.
  • the magnetic flux flowing between the rotor 10 and the stator 60 includes an N ⁇ 3rd order magnetic flux component and an N ⁇ 6th order magnetic flux component.
  • the torque ripple caused by the N ⁇ 6th order magnetic flux component can be reduced by setting the length of the second magnet 42 in the circumferential direction to 15 ° or more and 18 ° or less with respect to the magnetic pole center line IL1.
  • it is possible to reduce noise by suppressing the increase in torque ripple caused by the N ⁇ 3rd order magnetic flux component.
  • the length of the second magnet 42 in the circumferential direction is set to 15 ° or more and 18 ° or less with respect to the magnetic pole center line IL1, in the rotary electric machine 1 having N poles and N ⁇ 6 slots. It is easy to preferably obtain the effect of reducing noise by reducing the torque ripple.
  • the rotary electric machine to which the present invention is applied is not limited to a motor, but may be a generator. In this case, the rotary electric machine may be a three-phase alternating current generator.
  • the use of the rotary electric machine is not particularly limited.
  • the rotary electric machine may be mounted on a vehicle or may be mounted on a device other than the vehicle, for example.
  • the number of poles and the number of slots of the rotary electric machine are not particularly limited.
  • the coil may be configured by any winding method. As described above, the configurations described in the present specification can be appropriately combined within a range that does not contradict each other.
  • the radial length of the second magnet 42 is shorter than the length of the first magnets 41a and 41b in the direction orthogonal to the direction in which the first magnets 41a and 41b extend, and the second magnet 42
  • the circumferential center of the second magnet 42 is arranged in the same circumferential position as the circumferential center of the one tooth 66A.
  • the explanation is based on the assumption that the position is between the center of the circumferential direction and the center of the circumferential direction, but the present invention is not limited to this configuration.
  • the radial length of the second magnet 42 is shorter than the length of the first magnets 41a, 41b in the direction orthogonal to the direction in which the first magnets 41a, 41b extend, and the first contour portion 81 and the fourth contour portion 81 and the fourth contour.
  • the distance L1 between the intersection 89 with the portion 84 and the intersection 90 between the sixth contour portion 86 and the eighth contour portion 88 is the intersection 91 between the second contour portion 82 and the fifth contour portion 85.
  • the configuration may be based on the premise that the distance L2 from the q-axis IL2 is the same.
  • the present invention may be the following rotary electric machine.
  • a rotor that can rotate around the central axis and The stator located on the radial outer side of the rotor and Equipped with The rotor is A rotor core with multiple accommodation holes and A plurality of magnets housed inside the plurality of housing holes, and Have,
  • the stator is It has an annular core back surrounding the rotor core and a stator core having a plurality of teeth extending radially inward from the core back and arranged side by side at intervals in the circumferential direction.
  • the teeth have a base extending radially inward from the core back, and umbrella portions provided at the radially inner end of the base and protruding on both sides in the circumferential direction from the base.
  • the plurality of magnets A pair of first magnets that are arranged at intervals in the circumferential direction and extend in the direction away from each other in the circumferential direction from the inside in the radial direction to the outside in the radial direction when viewed in the axial direction.
  • a second that is arranged at a circumferential position between the pair of first magnets on the radial outer side of the radial inner end of the pair of first magnets and extends in a direction orthogonal to the radial direction when viewed in the axial direction.
  • the rotor core has a pair of first flux barrier portions arranged so as to sandwich each of the first magnets in a direction in which the first magnets extend in the axial direction.
  • a pair of second flux barrier portions arranged so as to sandwich the second magnet in the direction in which the second magnet extends when viewed in the axial direction.
  • the first flux barrier portion located on the radial outer side of the pair of the first flux barrier portions extends radially outward from the radial end portion of the first magnet in parallel with the d-axis.
  • the first flux barrier portion located on the outer side in the radial direction when viewed in the axial direction is The first contour portion located on the d-axis side in the circumferential direction and extending linearly in the d-axis direction, A second contour portion that is located closer to the q-axis side than the d-axis in the circumferential direction and extends linearly in the q-axis direction. A third contour portion located between the first contour portion and the second contour portion in the circumferential direction and radially outside the first contour portion and the second contour portion and extending in the circumferential direction.
  • the second flux barrier portion adjacent to the first flux barrier portion located on the outer side in the radial direction in the circumferential direction is The sixth contour portion located on the q-axis side and extending linearly in the radial direction,
  • the distance between the intersection of the first contour portion and the fourth contour portion and the intersection of the sixth contour portion and the eighth contour portion is the distance between the second contour portion and the fifth contour portion.
  • a rotary electric machine having the same distance between the intersection and the q-axis.

Abstract

A rotary electrical machine according to an aspect of the present invention comprises: a rotor having a plurality of magnets; and a stator having a plurality of teeth arranged apart from each other side by side so as to extend radially inward from a core back. The magnets include a pair of first magnets, and a second magnet which is disposed at a circumferential position between the first magnets and which extends in a direction perpendicular to the radial direction when viewed in an axial direction. When viewed in the axial direction, the length of the second magnet in the radial direction is shorter than that of each of the first magnets in a direction perpendicular to the direction in which the first magnets extend. In a state where the circumferential-direction center of the second magnet is disposed at the same circumferential-direction position as that of the circumferential-direction center of a given one tooth, both ends of the second magnet in the circumferential direction are each positioned between the circumferential-direction center of a tooth disposed next to the given tooth and the circumferential-direction center of a slot disposed second next to the given one tooth on the same side as that of the tooth disposed next to the given one tooth.

Description

回転電機Rotating electric machine
 本発明は、回転電機に関する。 The present invention relates to a rotary electric machine.
 ロータコアとロータコアに設けられた穴に配置された永久磁石とを備える回転電機が知られている。例えば、特許文献1には、3つの永久磁石が∇形状に配置された回転電機が記載されている。 A rotary electric machine equipped with a rotor core and a permanent magnet arranged in a hole provided in the rotor core is known. For example, Patent Document 1 describes a rotary electric machine in which three permanent magnets are arranged in a ∇ shape.
国際公開第2018/159181号公報International Publication No. 2018/159181
 上記のような回転電機においては、3つの永久磁石のうち、径方向外側に位置する永久磁石はロータコアの外周面に近いため、遠心力によるロータコアの強度低下が懸念される。そこで、永久磁石ロータコアの外周面から遠い位置に配置すると、出力が低下するという問題が生じる。また、上記のような回転電機においては、トルクリップルのさらなる低減が求められていた。 In the above-mentioned rotary electric machine, among the three permanent magnets, the permanent magnets located on the outer side in the radial direction are close to the outer peripheral surface of the rotor core, so that there is a concern that the strength of the rotor core may decrease due to centrifugal force. Therefore, if the permanent magnet rotor core is arranged at a position far from the outer peripheral surface, there arises a problem that the output is reduced. Further, in the rotary electric machine as described above, further reduction of torque ripple has been required.
 本発明は、以上のような点を考慮してなされたもので、高出力化を実現するとともに、トルクリップルを低減できる構造を有する回転電機を提供することを目的の一つとする。 The present invention has been made in consideration of the above points, and one of the objects of the present invention is to provide a rotary electric machine having a structure capable of achieving high output and reducing torque ripple.
 本発明の回転電機の一つの態様は、中心軸を中心として回転可能なロータと、前記ロータの径方向外側に位置するステータと、を備え、前記ロータは、複数の収容穴を有するロータコアと、前記複数の収容穴の内部にそれぞれ収容された複数のマグネットと、を有し、前記ステータは、前記ロータコアを囲む環状のコアバック、および前記コアバックから径方向内側に延び周方向に間隔を空けて並んで配置された複数のティースを有するステータコアを有し、前記ティースは、前記コアバックから径方向内側に延びる基部、および基部の径方向内側の端部に設けられ基部よりも周方向の両側に突出するアンブレラ部を有し、前記複数のマグネットは、周方向に互いに間隔を空けて配置され、軸方向に見て径方向内側から径方向外側に向かうに従って互いに周方向に離れる方向に延びる一対の第1マグネットと、前記一対の第1マグネットの径方向内端部よりも径方向外側において前記一対の第1マグネット同士の間の周方向位置に配置され、軸方向に見て径方向と直交する方向に延びる第2マグネットと、を含み、軸方向に見て、前記第2マグネットの径方向の長さは、前記第1マグネットが延びる方向と直交する方向の前記第1マグネットの長さより短く、軸方向に見て、前記第2マグネットの周方向の両端部は、前記第2マグネットの周方向中心が或る1つの前記ティースの周方向中心と同じ周方向位置に配置された或る状態において、或る1つの前記ティースの1つ隣に配置されたティースの周方向中心と、前記1つ隣に配置されたティースと同じ側で、或る1つの前記ティースの2つ隣に配置されたスロットの周方向中心との間の位置にある。 One embodiment of the rotary electric machine of the present invention comprises a rotor rotatable about a central axis and a stator located radially outside the rotor, wherein the rotor has a rotor core having a plurality of accommodating holes. Each of the plurality of housing holes has a plurality of magnets housed therein, and the stator has an annular core back surrounding the rotor core, and extends radially inward from the core back and is spaced in the circumferential direction. It has a stator core with a plurality of teeth arranged side by side, and the teeth are provided at a base extending radially inward from the core back and at the radially inner end of the base on both sides in the circumferential direction from the base. The plurality of magnets are arranged with a distance from each other in the circumferential direction, and a pair of magnets extending in a direction away from each other in the radial direction from the inside in the radial direction to the outside in the radial direction when viewed in the axial direction. Is arranged at a circumferential position between the pair of first magnets and the pair of first magnets on the radial outer side of the radial inner end portion of the pair of first magnets, and is orthogonal to the radial direction when viewed in the axial direction. The radial length of the second magnet, including the second magnet extending in the extending direction, is shorter than the length of the first magnet in the direction orthogonal to the extending direction of the first magnet when viewed in the axial direction. When viewed in the axial direction, both ends of the second magnet in the circumferential direction are in a certain state in which the circumferential center of the second magnet is arranged at the same circumferential position as the circumferential center of the tooth. In, on the same side as the circumferential center of the tooth arranged one next to the one tooth and the tooth arranged one next to the tooth, the teeth are arranged two adjacent to the one tooth. It is located between the center of the slot in the circumferential direction.
 本発明の一つの態様によれば、回転電機において、高出力化を実現するとともに、トルクリップルを低減できる。 According to one aspect of the present invention, in a rotary electric machine, high output can be realized and torque ripple can be reduced.
図1は、本実施形態の回転電機を示す断面図である。FIG. 1 is a cross-sectional view showing a rotary electric machine of the present embodiment. 図2は、本実施形態の回転電機の一部を示す断面図であって、図1におけるII-II断面図である。FIG. 2 is a cross-sectional view showing a part of the rotary electric machine of the present embodiment, and is a cross-sectional view taken along the line II-II in FIG. 図3は、本実施形態のロータの磁極部およびステータコアの一部を示す断面図である。FIG. 3 is a cross-sectional view showing a magnetic pole portion of the rotor and a part of the stator core of the present embodiment. 図4は、本実施形態の第1フラックスバリア部および第2フラックスバリア部を拡大した断面図である。FIG. 4 is an enlarged cross-sectional view of the first flux barrier portion and the second flux barrier portion of the present embodiment. 図5は、電気角次数と電磁加振力の振幅との関係を示す図である。FIG. 5 is a diagram showing the relationship between the electric angular order and the amplitude of the electromagnetic excitation force. 図6は、電気角次数と電磁加振力の振幅との関係を示す図である。FIG. 6 is a diagram showing the relationship between the electric angular order and the amplitude of the electromagnetic excitation force.
 以下、図面を参照しながら、本発明の実施形態に係る回転電機について説明する。なお、本発明の範囲は、以下の実施の形態に限定されず、本発明の技術的思想の範囲内で任意に変更可能である。また、以下の図面においては、各構成をわかりやすくするために、実際の構造と各構造における縮尺や数等を異ならせる場合がある。 Hereinafter, the rotary electric machine according to the embodiment of the present invention will be described with reference to the drawings. The scope of the present invention is not limited to the following embodiments, and can be arbitrarily changed within the scope of the technical idea of the present invention. Further, in the following drawings, in order to make each configuration easy to understand, the scale and number of each structure may be different from the actual structure.
 各図に適宜示すZ軸方向は、正の側を「上側」とし、負の側を「下側」とする上下方向である。各図に適宜示す中心軸Jは、Z軸方向と平行であり、上下方向に延びる仮想線である。以下の説明においては、中心軸Jの軸方向、すなわち上下方向と平行な方向を単に「軸方向」と呼び、中心軸Jを中心とする径方向を単に「径方向」と呼び、中心軸Jを中心とする周方向を単に「周方向」と呼ぶ。各図に適宜示す矢印θは、周方向を示している。矢印θは、上側から見て中心軸Jを中心として時計回りの向きを向いている。以下の説明では、或る対象を基準として周方向のうち矢印θが向かう側、すなわち上側から見て時計回りに進む側を「周方向一方側」と呼び、或る対象を基準として周方向のうち矢印θが向かう側と逆側、すなわち上側から見て反時計回りに進む側を「周方向他方側」と呼ぶ。 The Z-axis direction appropriately shown in each figure is a vertical direction in which the positive side is the "upper side" and the negative side is the "lower side". The central axis J appropriately shown in each figure is a virtual line that is parallel to the Z-axis direction and extends in the vertical direction. In the following description, the axial direction of the central axis J, that is, the direction parallel to the vertical direction is simply referred to as "axial direction", and the radial direction centered on the central axis J is simply referred to as "radial direction". The circumferential direction centered on is simply called the "circumferential direction". The arrow θ appropriately shown in each figure indicates the circumferential direction. The arrow θ faces clockwise with respect to the central axis J when viewed from above. In the following description, the side of the circumferential direction toward which the arrow θ faces with respect to a certain object, that is, the side traveling clockwise when viewed from above, is referred to as "one side in the circumferential direction", and the side in the circumferential direction with respect to a certain object. Of these, the side opposite to the side to which the arrow θ faces, that is, the side that advances counterclockwise when viewed from above, is called the "other side in the circumferential direction".
 なお、上下方向、上側、および下側とは、単に各部の配置関係等を説明するための名称であり、実際の配置関係等は、これらの名称で示される配置関係等以外の配置関係等であってもよい。 In addition, the vertical direction, the upper side, and the lower side are simply names for explaining the arrangement relations of each part, and the actual arrangement relations, etc. are the arrangement relations, etc. other than the arrangement relations, etc. indicated by these names. There may be.
[回転電機]
 図1に示すように、回転電機1は、インナーロータ型の回転電機である。 本実施形態において回転電機1は、三相交流式の回転電機である。回転電機1は、例えば、三相交流の電源が供給されることで駆動される三相モータである。回転電機1は、ハウジング2と、ロータ10と、ステータ60と、ベアリングホルダ4と、ベアリング5a,5bと、を備える。
[Rotating electric machine]
As shown in FIG. 1, the rotary electric machine 1 is an inner rotor type rotary electric machine. In the present embodiment, the rotary electric machine 1 is a three-phase AC type rotary electric machine. The rotary electric machine 1 is, for example, a three-phase motor driven by supplying a three-phase alternating current power source. The rotary electric machine 1 includes a housing 2, a rotor 10, a stator 60, a bearing holder 4, and bearings 5a and 5b.
 ハウジング2は、ロータ10、ステータ60、ベアリングホルダ4、およびベアリング5a,5bを内部に収容している。ハウジング2の底部は、ベアリング5bを保持している。ベアリングホルダ4は、ベアリング5aを保持している。ベアリング5a,5bは、例えば、ボールベアリングである。 The housing 2 houses the rotor 10, the stator 60, the bearing holder 4, and the bearings 5a and 5b inside. The bottom of the housing 2 holds the bearing 5b. The bearing holder 4 holds the bearing 5a. The bearings 5a and 5b are, for example, ball bearings.
 ステータ60は、ロータ10の径方向外側に位置する。ステータ60は、ステータコア61と、インシュレータ64と、複数のコイル65と、を有する。ステータコア61は、コアバック62と、複数のティース63と、を有する。コアバック62は、後述するロータコア20の径方向外側に位置する。なお、以下の図2~図4においては、コイル65の図示を省略している。図2~図4においては、インシュレータ64の図示を省略している。 The stator 60 is located on the radial outer side of the rotor 10. The stator 60 includes a stator core 61, an insulator 64, and a plurality of coils 65. The stator core 61 has a core back 62 and a plurality of teeth 63. The core back 62 is located on the outer side in the radial direction of the rotor core 20, which will be described later. In the following FIGS. 2 to 4, the coil 65 is not shown. In FIGS. 2 to 4, the insulator 64 is not shown.
 図2に示すように、コアバック62は、ロータコア20を囲む環状である。コアバック62は、例えば、中心軸Jを中心とする円環状である。 As shown in FIG. 2, the core back 62 is an annular shape surrounding the rotor core 20. The core back 62 is, for example, an annular shape centered on the central axis J.
 複数のティース63は、コアバック62から径方向内側に延びている。複数のティース63は、周方向に間隔を空けて並んで配置されている。複数のティース63は、例えば、周方向に沿って一周に亘って等間隔に配置されている。ティース63は、例えば、48個設けられている。つまり、回転電機1のスロット67の数は、例えば、48である。図3に示すように、複数のティース63は、基部63aと、アンブレラ部63bと、をそれぞれ有する。 The plurality of teeth 63 extend radially inward from the core back 62. The plurality of teeth 63 are arranged side by side at intervals in the circumferential direction. The plurality of teeth 63 are arranged at equal intervals, for example, along the circumferential direction. For example, 48 teeth 63 are provided. That is, the number of slots 67 in the rotary electric machine 1 is, for example, 48. As shown in FIG. 3, the plurality of teeth 63 have a base portion 63a and an umbrella portion 63b, respectively.
 基部63aは、コアバック62から径方向内側に延びている。基部63aの周方向の寸法は、例えば、径方向の全体に亘って同じである。なお、基部63aの周方向の寸法は、例えば、径方向内側に向かうに従って小さくなっていてもよい。 The base 63a extends radially inward from the core back 62. The circumferential dimension of the base 63a is, for example, the same over the entire radial direction. The circumferential dimension of the base 63a may become smaller, for example, toward the inside in the radial direction.
 アンブレラ部63bは、基部63aの径方向内側の端部に設けられている。アンブレラ部63bは、基部63aよりも周方向の両側に突出している。アンブレラ部63bの周方向の寸法は、基部63aの径方向内側の端部における周方向の寸法よりも大きい。アンブレラ部63bの径方向内側の面は、周方向に沿った曲面である。アンブレラ部63bの径方向内側の面は、軸方向に見て、中心軸Jを中心とする円弧状に延びている。アンブレラ部63bの径方向内側の面は、後述するロータコア20の外周面と径方向に隙間を介して対向している。周方向に隣り合うティース63同士において、アンブレラ部63b同士は、周方向に隙間を介して並んで配置されている。 The umbrella portion 63b is provided at the radial inner end of the base portion 63a. The umbrella portion 63b protrudes from the base portion 63a on both sides in the circumferential direction. The circumferential dimension of the umbrella portion 63b is larger than the circumferential dimension at the radially inner end of the base 63a. The radial inner surface of the umbrella portion 63b is a curved surface along the circumferential direction. The radial inner surface of the umbrella portion 63b extends in an arc shape centered on the central axis J when viewed in the axial direction. The radial inner surface of the umbrella portion 63b faces the outer peripheral surface of the rotor core 20, which will be described later, via a gap in the radial direction. Among the teeth 63 adjacent to each other in the circumferential direction, the umbrella portions 63b are arranged side by side with a gap in the circumferential direction.
 複数のコイル65は、ステータコア61に取り付けられている。図1に示すように、複数のコイル65は、例えば、インシュレータ64を介してティース63に取り付けられている。本実施形態においてコイル65は、分布巻きされている。つまり、各コイル65は、複数のティース63に跨って巻き回されている。本実施形態においてコイル65は、全節巻きされている。つまり、コイル65が差し込まれるステータ60のスロット同士の周方向ピッチが、ステータ60に三相交流電源が供給された際に生じる磁極の周方向ピッチと等しい。回転電機1の極数は、例えば、8である。つまり、回転電機1は、例えば、8極48スロットの回転電機である。このように、本実施形態の回転電機1においては、極数をNとしたとき、スロット数がN×6となる。 The plurality of coils 65 are attached to the stator core 61. As shown in FIG. 1, the plurality of coils 65 are attached to the teeth 63 via, for example, an insulator 64. In this embodiment, the coil 65 is distributed and wound. That is, each coil 65 is wound around the plurality of teeth 63. In this embodiment, the coil 65 is wound in all sections. That is, the circumferential pitch between the slots of the stator 60 into which the coil 65 is inserted is equal to the circumferential pitch of the magnetic poles generated when the three-phase AC power is supplied to the stator 60. The number of poles of the rotary electric machine 1 is, for example, 8. That is, the rotary electric machine 1 is, for example, a rotary electric machine having 8 poles and 48 slots. As described above, in the rotary electric machine 1 of the present embodiment, when the number of poles is N, the number of slots is N × 6.
 ロータ10は、中心軸Jを中心として回転可能である。図2に示すように、ロータ10は、シャフト11と、ロータコア20と、複数のマグネット40と、を有する。シャフト11は、中心軸Jを中心として軸方向に延びる円柱状である。図1に示すように、シャフト11は、ベアリング5a,5bによって中心軸J回りに回転可能に支持されている。 The rotor 10 can rotate about the central axis J. As shown in FIG. 2, the rotor 10 has a shaft 11, a rotor core 20, and a plurality of magnets 40. The shaft 11 is a columnar shape extending in the axial direction about the central axis J. As shown in FIG. 1, the shaft 11 is rotatably supported around the central axis J by bearings 5a and 5b.
 ロータコア20は、磁性体である。ロータコア20は、シャフト11の外周面に固定されている。ロータコア20は、ロータコア20を軸方向に貫通する貫通孔21を有する。図2に示すように、貫通孔21は、軸方向に見て、中心軸Jを中心とする円形状である。 貫通孔21には、シャフト11が通されている。シャフト11は、例えば圧入等により、貫通孔21内に固定されている。図示は省略するが、ロータコア20は、例えば、複数の電磁鋼板が軸方向に積層されて構成されている。 The rotor core 20 is a magnetic material. The rotor core 20 is fixed to the outer peripheral surface of the shaft 11. The rotor core 20 has a through hole 21 that penetrates the rotor core 20 in the axial direction. As shown in FIG. 2, the through hole 21 has a circular shape centered on the central axis J when viewed in the axial direction. A shaft 11 is passed through the through hole 21. The shaft 11 is fixed in the through hole 21 by, for example, press fitting or the like. Although not shown, the rotor core 20 is configured, for example, by laminating a plurality of electrical steel sheets in the axial direction.
 ロータコア20は、複数の収容穴30を有する。複数の収容穴30は、例えば、ロータコア20を軸方向に貫通している。複数の収容穴30の内部には、複数のマグネット40がそれぞれ収容されている。収容穴30内におけるマグネット40の固定方法は、特に限定されない。複数の収容穴30は、一対の第1収容穴31a,31bと、第2収容穴32と、を含む。 The rotor core 20 has a plurality of accommodating holes 30. The plurality of accommodating holes 30 penetrate the rotor core 20 in the axial direction, for example. A plurality of magnets 40 are accommodated inside the plurality of accommodating holes 30. The method of fixing the magnet 40 in the accommodating hole 30 is not particularly limited. The plurality of accommodating holes 30 include a pair of first accommodating holes 31a and 31b and a second accommodating hole 32.
 複数のマグネット40の種類は、特に限定されない。マグネット40は、例えば、ネオジム磁石であってもよいし、フェライト磁石であってもよい。複数のマグネット40は、一対の第1マグネット41a,41bと、第2マグネット42と、を含む。一対の第1マグネット41a,41bと、第2マグネット42とは極を構成する。 The types of the plurality of magnets 40 are not particularly limited. The magnet 40 may be, for example, a neodymium magnet or a ferrite magnet. The plurality of magnets 40 include a pair of first magnets 41a and 41b and a second magnet 42. The pair of first magnets 41a and 41b and the second magnet 42 form a pole.
 本実施形態において一対の第1収容穴31a,31bと一対の第1マグネット41a,41bと第2収容穴32と第2マグネット42とは、周方向に間隔を空けて複数ずつ設けられている。一対の第1収容穴31a,31bと一対の第1マグネット41a,41bと第2収容穴32と第2マグネット42とは、例えば、8つずつ設けられている。 In the present embodiment, a pair of first accommodating holes 31a, 31b, a pair of first magnets 41a, 41b, a second accommodating hole 32, and a second magnet 42 are provided at intervals in the circumferential direction. A pair of first accommodating holes 31a, 31b, a pair of first magnets 41a, 41b, a second accommodating hole 32, and a second magnet 42 are provided, for example, eight by eight.
 ロータ10は、一対の第1収容穴31a,31bと一対の第1マグネット41a,41bと第2収容穴32と第2マグネット42とを1つずつ含む磁極部70を複数有する。磁極部70は、例えば、8つ設けられている。複数の磁極部70は、例えば、周方向に沿って一周に亘って等間隔に配置されている。複数の磁極部70は、ロータコア20の外周面における磁極がN極の磁極部70Nと、ロータコア20の外周面における磁極がS極の磁極部70Sと、を複数ずつ含む。磁極部70Nと磁極部70Sとは、例えば、4つずつ設けられている。4つの磁極部70Nと4つの磁極部70Sとは、周方向に沿って交互に配置されている。各磁極部70の構成は、ロータコア20の外周面の磁極が異なる点および周方向位置が異なる点を除いて、同様の構成である。 The rotor 10 has a plurality of magnetic pole portions 70 including a pair of first accommodating holes 31a, 31b, a pair of first magnets 41a, 41b, a second accommodating hole 32, and a second magnet 42. For example, eight magnetic pole portions 70 are provided. The plurality of magnetic pole portions 70 are arranged at equal intervals, for example, along the circumferential direction. The plurality of magnetic pole portions 70 include a plurality of magnetic pole portions 70N having an N pole on the outer peripheral surface of the rotor core 20, and a plurality of magnetic pole portions 70S having an S pole on the outer peripheral surface of the rotor core 20. For example, four magnetic pole portions 70N and four magnetic pole portions 70S are provided. The four magnetic pole portions 70N and the four magnetic pole portions 70S are alternately arranged along the circumferential direction. The configuration of each magnetic pole portion 70 is the same except that the magnetic poles on the outer peripheral surface of the rotor core 20 are different and the positions in the circumferential direction are different.
 図3に示すように、磁極部70において、一対の第1収容穴31a,31bは、周方向に互いに間隔を空けて配置されている。第1収容穴31aは、例えば、第1収容穴31bの周方向一方側(+θ側)に位置する。第1収容穴31a,31bは、例えば、軸方向に見て、径方向に対して斜めに傾いた方向に略直線状に延びている。一対の第1収容穴31a,31bは、軸方向に見て径方向内側から径方向外側に向かうに従って互いに周方向に離れる方向に延びている。つまり、第1収容穴31aと第1収容穴31bとの間の周方向の距離は、径方向内側から径方向外側に向かうに従って大きくなっている。第1収容穴31aは、例えば、径方向内側から径方向外側に向かうに従って、周方向一方側に位置する。第1収容穴31bは、例えば、径方向内側から径方向外側に向かうに従って、周方向他方側(-θ側)に位置する。第1収容穴31a,31bの径方向外側の端部は、ロータコア20の径方向外周縁部に位置する。 As shown in FIG. 3, in the magnetic pole portion 70, the pair of first accommodating holes 31a and 31b are arranged so as to be spaced apart from each other in the circumferential direction. The first accommodating hole 31a is located, for example, on one side (+ θ side) in the circumferential direction of the first accommodating hole 31b. The first accommodating holes 31a and 31b extend substantially linearly in a direction obliquely inclined with respect to the radial direction, for example, when viewed in the axial direction. The pair of first accommodating holes 31a and 31b extend in a direction away from each other in the circumferential direction from the inner side in the radial direction to the outer side in the radial direction when viewed in the axial direction. That is, the circumferential distance between the first accommodating hole 31a and the first accommodating hole 31b increases from the radial inner side to the radial outer side. The first accommodating hole 31a is located on one side in the circumferential direction, for example, from the inside in the radial direction to the outside in the radial direction. The first accommodating hole 31b is located on the other side (−θ side) in the circumferential direction from the inner side in the radial direction to the outer side in the radial direction, for example. The radial outer ends of the first accommodating holes 31a and 31b are located at the radial outer peripheral edges of the rotor core 20.
 第1収容穴31aと第1収容穴31bとは、例えば、軸方向に見て、d軸を構成する図3に示す磁極中心線IL1を周方向に挟んで配置されている。磁極中心線IL1は、磁極部70の周方向中心と中心軸Jとを通り、径方向に延びる仮想線である。第1収容穴31aと第1収容穴31bとは、例えば、軸方向に見て、磁極中心線IL1に対して線対称に配置されている。以下、磁極中心線IL1に対して線対称である点を除いて第1収容穴31aと同様の構成については、第1収容穴31bについての説明を省略する場合がある。 The first accommodating hole 31a and the first accommodating hole 31b are arranged, for example, with the magnetic pole center line IL1 shown in FIG. 3 constituting the d-axis sandwiched in the circumferential direction when viewed in the axial direction. The magnetic pole center line IL1 is a virtual line extending in the radial direction through the circumferential center of the magnetic pole portion 70 and the central axis J. The first accommodating hole 31a and the first accommodating hole 31b are arranged line-symmetrically with respect to the magnetic pole center line IL1 when viewed in the axial direction, for example. Hereinafter, with respect to the same configuration as the first accommodating hole 31a except that the magnetic pole center line IL1 is line-symmetrical, the description of the first accommodating hole 31b may be omitted.
 第1収容穴31aは、第1直線部31cと、内端部31dと、外端部31eと、を有する。第1直線部31cは、軸方向に見て、第1収容穴31aが延びる方向に直線状に延びている。第1直線部31cは、例えば、軸方向に見て長方形状である。内端部31dは、第1直線部31cの径方向内側の端部に繋がっている。内端部31dは、第1収容穴31aの径方向内側の端部である。外端部31eは、第1直線部31cの径方向外側の端部に繋がっている。外端部31eは、第1収容穴31aの径方向外側の端部である。外端部31eは、第1直線部31cの径方向外側の端部から径方向外側に磁極中心線IL1に沿って延びている(詳細は後述)。第1収容穴31bは、第1直線部31fと、内端部31gと、外端部31hと、を有する。 The first accommodating hole 31a has a first straight line portion 31c, an inner end portion 31d, and an outer end portion 31e. The first straight line portion 31c extends linearly in the direction in which the first accommodating hole 31a extends when viewed in the axial direction. The first straight line portion 31c is, for example, rectangular when viewed in the axial direction. The inner end portion 31d is connected to the radial inner end portion of the first straight line portion 31c. The inner end portion 31d is a radial inner end portion of the first accommodating hole 31a. The outer end portion 31e is connected to the radial outer end portion of the first straight line portion 31c. The outer end portion 31e is a radial outer end portion of the first accommodating hole 31a. The outer end portion 31e extends radially outward from the radially outer end portion of the first straight line portion 31c along the magnetic pole center line IL1 (details will be described later). The first accommodating hole 31b has a first straight line portion 31f, an inner end portion 31g, and an outer end portion 31h.
 第2収容穴32は、一対の第1収容穴31a,31bの径方向外側の端部同士の周方向の間に位置する。つまり、本実施形態において第2収容穴32は、外端部31eと外端部31hとの周方向の間に位置する。第2収容穴32は、例えば、軸方向に見て、径方向と直交する方向に略直線状に延びている。第2収容穴32は、例えば、軸方向に見て、磁極中心線IL1と直交する方向に延びている。一対の第1収容穴31a,31bと第2収容穴32とは、例えば、軸方向に見て、∇形状に沿って配置されている。 The second accommodating hole 32 is located between the radial outer ends of the pair of first accommodating holes 31a and 31b in the circumferential direction. That is, in the present embodiment, the second accommodating hole 32 is located between the outer end portion 31e and the outer end portion 31h in the circumferential direction. The second accommodating hole 32 extends substantially linearly in a direction orthogonal to the radial direction, for example, when viewed in the axial direction. The second accommodating hole 32 extends in a direction orthogonal to the magnetic pole center line IL1 when viewed in the axial direction, for example. The pair of first accommodating holes 31a and 31b and the second accommodating holes 32 are arranged along a ∇ shape, for example, when viewed in the axial direction.
 なお、本明細書において「或る対象が或る方向と直交する方向に延びる」とは、或る対象が、或る方向と厳密に直交する方向に延びる場合に加えて、或る対象が、或る方向と略直交する方向に延びる場合も含む。「或る方向と略直交する方向」とは、例えば、製造時の公差等によって、或る方向と厳密に直交する方向に対して数度[°]程度の範囲内で傾いた方向を含む。 In addition, in the present specification, "a certain object extends in a direction orthogonal to a certain direction" means that a certain object extends in a direction strictly orthogonal to a certain direction. It also includes the case where it extends in a direction substantially orthogonal to a certain direction. The “direction substantially orthogonal to a certain direction” includes, for example, a direction tilted within a range of several degrees [°] with respect to a direction strictly orthogonal to a certain direction due to a tolerance at the time of manufacturing or the like.
 軸方向に見て、第2収容穴32の周方向の中心には、例えば、磁極中心線IL1が通っている。つまり、第2収容穴32の周方向中心の周方向位置は、例えば、磁極部70の周方向中心の周方向位置と一致している。第2収容穴32の軸方向に見た形状は、例えば、磁極中心線IL1を中心とする線対称な形状である。第2収容穴32は、ロータコア20の径方向外周縁部に位置する。 When viewed in the axial direction, for example, the magnetic pole center line IL1 passes through the center in the circumferential direction of the second accommodating hole 32. That is, the circumferential position of the circumferential center of the second accommodating hole 32 coincides with, for example, the circumferential position of the circumferential center of the magnetic pole portion 70. The shape seen in the axial direction of the second accommodating hole 32 is, for example, a line-symmetrical shape centered on the magnetic pole center line IL1. The second accommodating hole 32 is located at the radial outer peripheral edge portion of the rotor core 20.
 第2収容穴32は、第2直線部32aと、一端部32bと、他端部32cと、を有する。第2直線部32aは、軸方向に見て、第2収容穴32が延びる方向に直線状に延びている。第2直線部32aは、例えば、軸方向に見て長方形状である。一端部32bは、第2直線部32aの周方向一方側(+θ側)の端部に繋がっている。一端部32bは、第2収容穴32の周方向一方側の端部である。一端部32bは、第1収容穴31aにおける外端部31eの周方向他方側(-θ側)に間隔を空けて配置されている。他端部32cは、第2直線部32aの周方向他方側(-θ側)の端部に繋がっている。他端部32cは、第2収容穴32の周方向他方側の端部である。他端部32cは、第1収容穴31bにおける外端部31hの周方向一方側に間隔を空けて配置されている。 The second accommodating hole 32 has a second straight line portion 32a, one end portion 32b, and the other end portion 32c. The second straight line portion 32a extends linearly in the direction in which the second accommodating hole 32 extends when viewed in the axial direction. The second straight line portion 32a has, for example, a rectangular shape when viewed in the axial direction. The one end portion 32b is connected to the end portion on one side (+ θ side) in the circumferential direction of the second straight line portion 32a. The one end portion 32b is an end portion on one side in the circumferential direction of the second accommodating hole 32. The one end portion 32b is arranged at intervals on the other side (−θ side) in the circumferential direction of the outer end portion 31e in the first accommodating hole 31a. The other end portion 32c is connected to the end portion on the other side (−θ side) in the circumferential direction of the second straight line portion 32a. The other end portion 32c is the end portion on the other side in the circumferential direction of the second accommodating hole 32. The other end portion 32c is arranged at a distance on one side in the circumferential direction of the outer end portion 31h in the first accommodating hole 31b.
 一対の第1マグネット41a,41bは、一対の第1収容穴31a,31bの内部にそれぞれ収容されている。第1マグネット41aは、第1収容穴31aの内部に収容されている。第1マグネット41bは、第1収容穴31bの内部に収容されている。一対の第1マグネット41a,41bは、例えば、軸方向に見て長方形状である。一対の第1マグネット41a,41bが延びる方向の長さは同じである。一対の第1マグネット41a,41bが延びる方向と直交する方向の第1マグネット41a,41bの長さは同じである。 The pair of first magnets 41a and 41b are housed inside the pair of first housing holes 31a and 31b, respectively. The first magnet 41a is housed inside the first housing hole 31a. The first magnet 41b is housed inside the first housing hole 31b. The pair of first magnets 41a and 41b are, for example, rectangular when viewed in the axial direction. The length of the pair of first magnets 41a and 41b in the extending direction is the same. The lengths of the first magnets 41a and 41b in the direction orthogonal to the direction in which the pair of first magnets 41a and 41b extend are the same.
 図示は省略するが、第1マグネット41a,41bは、例えば、直方体状である。図示は省略するが、第1マグネット41a,41bは、例えば、第1収容穴31a,31b内の軸方向の全体に亘って設けられている。一対の第1マグネット41a,41bは、周方向に互いに間隔を空けて配置されている。第1マグネット41aは、例えば、第1マグネット41bの周方向一方側(+θ側)に位置する。 Although not shown, the first magnets 41a and 41b are, for example, rectangular parallelepiped. Although not shown, the first magnets 41a and 41b are provided, for example, over the entire axial direction in the first accommodating holes 31a and 31b. The pair of first magnets 41a and 41b are arranged so as to be spaced apart from each other in the circumferential direction. The first magnet 41a is located, for example, on one side (+ θ side) in the circumferential direction of the first magnet 41b.
 第1マグネット41aは、軸方向に見て第1収容穴31aに沿って延びている。第1マグネット41bは、軸方向に見て第1収容穴31bに沿って延びている。第1マグネット41a,41bは、例えば、軸方向に見て、径方向に対して斜めに傾いた方向に略直線状に延びている。一対の第1マグネット41a,41bは、軸方向に見て径方向内側から径方向外側に向かうに従って互いに周方向に離れる方向に延びている。つまり、第1マグネット41aと第1マグネット41bとの間の周方向の距離は、径方向内側から径方向外側に向かうに従って大きくなっている。 The first magnet 41a extends along the first accommodating hole 31a when viewed in the axial direction. The first magnet 41b extends along the first accommodating hole 31b when viewed in the axial direction. The first magnets 41a and 41b extend substantially linearly in a direction obliquely inclined with respect to the radial direction, for example, when viewed in the axial direction. The pair of first magnets 41a and 41b extend in a direction away from each other in the circumferential direction from the inner side in the radial direction to the outer side in the radial direction when viewed in the axial direction. That is, the circumferential distance between the first magnet 41a and the first magnet 41b increases from the inside in the radial direction to the outside in the radial direction.
 第1マグネット41aは、例えば、径方向内側から径方向外側に向かうに従って、周方向一方側(+θ側)に位置する。第1マグネット41bは、例えば、径方向内側から径方向外側に向かうに従って、周方向他方側(-θ側)に位置する。第1マグネット41aと第1マグネット41bとは、例えば、軸方向に見て、磁極中心線IL1を周方向に挟んで配置されている。第1マグネット41aと第1マグネット41bとは、例えば、軸方向に見て、磁極中心線IL1に対して線対称に配置されている。以下、磁極中心線IL1に対して線対称である点を除いて第1マグネット41aと同様の構成については、第1マグネット41bについての説明を省略する場合がある。 The first magnet 41a is located on one side (+ θ side) in the circumferential direction from the inside in the radial direction to the outside in the radial direction, for example. The first magnet 41b is located on the other side (−θ side) in the circumferential direction from the inner side in the radial direction to the outer side in the radial direction, for example. The first magnet 41a and the first magnet 41b are arranged so as to sandwich the magnetic pole center line IL1 in the circumferential direction, for example, when viewed in the axial direction. The first magnet 41a and the first magnet 41b are arranged line-symmetrically with respect to the magnetic pole center line IL1 when viewed in the axial direction, for example. Hereinafter, the description of the first magnet 41b may be omitted for the same configuration as the first magnet 41a except that it is line-symmetrical with respect to the magnetic pole center line IL1.
 第1マグネット41aは、第1収容穴31a内に嵌め合わされている。より詳細には、第1マグネット41aは、第1直線部31c内に嵌め合わされている。第1マグネット41aの側面のうち、第1直線部31cが延びる方向と直交する方向における両側面は、例えば、第1直線部31cの内側面とそれぞれ接触している。軸方向に見て第1直線部31cが延びる方向において、第1マグネット41aの長さは、例えば、第1直線部31cの長さと同じである。 The first magnet 41a is fitted in the first accommodation hole 31a. More specifically, the first magnet 41a is fitted in the first straight line portion 31c. Of the side surfaces of the first magnet 41a, both side surfaces in a direction orthogonal to the direction in which the first straight line portion 31c extends are in contact with, for example, the inner side surface of the first straight line portion 31c. In the direction in which the first straight line portion 31c extends in the axial direction, the length of the first magnet 41a is, for example, the same as the length of the first straight line portion 31c.
 軸方向に見て、第1マグネット41aの延伸方向の両端部は、第1収容穴31aの延伸方向の両端部からそれぞれ離れて配置されている。軸方向に見て、第1マグネット41aが延びる方向において第1マグネット41aの両側には、内端部31dと外端部31eとがそれぞれ隣接して配置されている。ここで、本実施形態において内端部31dは、第1フラックスバリア部51aを構成している。外端部31eは、第1フラックスバリア部51bを構成している。つまり、ロータコア20は、軸方向に見て、第1マグネット41aが延びる方向において第1マグネット41aを挟んで配置された一対の第1フラックスバリア部51a,51bを有する。ロータコア20は、軸方向に見て、第1マグネット41bが延びる方向において第1マグネット41bを挟んで配置された一対の第1フラックスバリア部51c,51dを有する。 When viewed in the axial direction, both ends of the first magnet 41a in the stretching direction are arranged apart from both ends of the first accommodating hole 31a in the stretching direction. When viewed in the axial direction, the inner end portion 31d and the outer end portion 31e are arranged adjacent to each other on both sides of the first magnet 41a in the direction in which the first magnet 41a extends. Here, in the present embodiment, the inner end portion 31d constitutes the first flux barrier portion 51a. The outer end portion 31e constitutes the first flux barrier portion 51b. That is, the rotor core 20 has a pair of first flux barrier portions 51a and 51b arranged so as to sandwich the first magnet 41a in the direction in which the first magnet 41a extends when viewed in the axial direction. The rotor core 20 has a pair of first flux barrier portions 51c and 51d arranged so as to sandwich the first magnet 41b in the direction in which the first magnet 41b extends when viewed in the axial direction.
 径方向外側に位置する第1フラックスバリア部51bは、第1マグネット41aの径方向端部から磁極中心線IL1と平行に径方向外側に延びている。径方向外側に位置する第1フラックスバリア部51dは、第1マグネット41bの径方向端部から磁極中心線IL1と平行に径方向外側に延びている。 The first flux barrier portion 51b located on the outer side in the radial direction extends outward in the radial direction in parallel with the magnetic pole center line IL1 from the radial end portion of the first magnet 41a. The first flux barrier portion 51d located on the outer side in the radial direction extends outward in the radial direction in parallel with the magnetic pole center line IL1 from the radial end portion of the first magnet 41b.
 このように、ロータコア20は、軸方向に見て、各第1マグネット41a,41bが延びる方向において各第1マグネット41a,41bのそれぞれを挟んで一対ずつ配置された第1フラックスバリア部51a,51b,51c,51dを有する。第1フラックスバリア部51a,51b,51c,51d、後述する第2フラックスバリア部52a,52bは、磁束の流れを抑制できる部分である。すなわち、各フラックスバリア部には、磁束が通りにくい。各フラックスバリア部は、磁束の流れを抑制できるならば、特に限定されず、空隙部を含んでもよいし、樹脂部等の非磁性部を含んでもよい。 As described above, the rotor core 20 is arranged in pairs of the first magnets 41a and 41b in the direction in which the first magnets 41a and 41b extend when viewed in the axial direction. , 51c, 51d. The first flux barrier portions 51a, 51b, 51c, 51d and the second flux barrier portions 52a, 52b, which will be described later, are portions that can suppress the flow of magnetic flux. That is, it is difficult for the magnetic flux to pass through each flux barrier portion. Each flux barrier portion is not particularly limited as long as it can suppress the flow of magnetic flux, and may include a void portion or a non-magnetic portion such as a resin portion.
 第2マグネット42は、第2収容穴32の内部に収容されている。第2マグネット42は、一対の第1マグネット41a,41bの径方向内端部よりも径方向外側において一対の第1マグネット41a,41b同士の間の周方向位置に配置されている。第2マグネット42は、軸方向に見て第2収容穴32に沿って延びている。第2マグネット42は、軸方向に見て径方向と直交する方向に延びている。一対の第1マグネット41a,41bと第2マグネット42とは、例えば、軸方向に見て、∇形状に沿って配置されている。 The second magnet 42 is housed inside the second storage hole 32. The second magnet 42 is arranged at a circumferential position between the pair of first magnets 41a and 41b on the radial outer side of the radial inner end portion of the pair of first magnets 41a and 41b. The second magnet 42 extends along the second accommodating hole 32 when viewed in the axial direction. The second magnet 42 extends in a direction orthogonal to the radial direction when viewed in the axial direction. The pair of first magnets 41a and 41b and the second magnet 42 are arranged along a ∇ shape, for example, when viewed in the axial direction.
 なお、本明細書において「第2マグネットが一対の第1マグネット同士の間の周方向位置に配置されている」とは、第2マグネットの周方向位置が一対の第1マグネット同士の間の周方向位置に含まれていればよく、第1マグネットに対する第2マグネットの径方向位置は特に限定されない。 In the present specification, "the second magnet is arranged at the circumferential position between the pair of first magnets" means that the circumferential position of the second magnet is the circumference between the pair of first magnets. It suffices to be included in the directional position, and the radial position of the second magnet with respect to the first magnet is not particularly limited.
 第2マグネット42の軸方向に見た形状は、例えば、磁極中心線IL1に対して線対称な形状である。第2マグネット42は、例えば、軸方向に見て長方形状である。軸方向に見て、第2マグネット42の径方向の長さは、第1マグネット41a,41bが延びる方向と直交する方向の第1マグネット41a,41bの長さより短い。第2マグネット42の径方向の長さを第1マグネット41a,41bが延びる方向と直交する方向の第1マグネット41a,41bの長さより短くして薄くすることにより、第2マグネット42の重量を各第1マグネット41a,41bの重量よりも小さくできる。第2マグネット42の重量を小さくすることにより、ロータ10の回転時の第2マグネット42の遠心力を小さくできる。従って、ロータコア20の負荷を小さくできる。 The shape seen in the axial direction of the second magnet 42 is, for example, a shape that is line-symmetrical with respect to the magnetic pole center line IL1. The second magnet 42 has, for example, a rectangular shape when viewed in the axial direction. Seen in the axial direction, the radial length of the second magnet 42 is shorter than the length of the first magnets 41a, 41b in the direction orthogonal to the direction in which the first magnets 41a, 41b extend. By making the length of the second magnet 42 in the radial direction shorter than the length of the first magnets 41a and 41b in the direction orthogonal to the direction in which the first magnets 41a and 41b extend, the weight of the second magnet 42 is reduced. It can be smaller than the weight of the first magnets 41a and 41b. By reducing the weight of the second magnet 42, the centrifugal force of the second magnet 42 during rotation of the rotor 10 can be reduced. Therefore, the load on the rotor core 20 can be reduced.
 第2マグネット42を薄くすることにより、第2マグネット42をロータコア20の径方向の外側に配置できる。第2マグネット42をロータコア20の径方向の外側に配置することにより、回転電機1の高出力化を図ることができる。第2マグネット42の磁化は第1マグネット41a,41bによって強められるので、減磁耐力を損なわずにロータコア20の高強度化と、回転電機1の高出力化を図ることができる。さらに、少ない磁石量で高い減磁耐力を得ることができる。 By making the second magnet 42 thinner, the second magnet 42 can be arranged on the outer side in the radial direction of the rotor core 20. By arranging the second magnet 42 on the outer side in the radial direction of the rotor core 20, it is possible to increase the output of the rotary electric machine 1. Since the magnetism of the second magnet 42 is strengthened by the first magnets 41a and 41b, it is possible to increase the strength of the rotor core 20 and increase the output of the rotary electric machine 1 without impairing the demagnetization strength. Further, a high demagnetization strength can be obtained with a small amount of magnets.
 図示は省略するが、第2マグネット42は、例えば、直方体状である。図示は省略するが、第2マグネット42は、例えば、第2収容穴32内の軸方向の全体に亘って設けられている。第2マグネット42の径方向内側部分は、例えば、一対の第1マグネット41a,41bの径方向外端部同士の周方向の間に位置する。第2マグネット42の径方向外側部分は、例えば、一対の第1マグネット41a,41bよりも径方向外側に位置する。 Although not shown, the second magnet 42 has, for example, a rectangular parallelepiped shape. Although not shown, the second magnet 42 is provided, for example, over the entire axial direction in the second accommodating hole 32. The radial inner portion of the second magnet 42 is located, for example, between the circumferential outer ends of the pair of first magnets 41a and 41b. The radial outer portion of the second magnet 42 is located, for example, radially outer than the pair of first magnets 41a and 41b.
 第2マグネット42は、第2収容穴32内に嵌め合わされている。より詳細には、第2マグネット42は、第2直線部32a内に嵌め合わされている。第2マグネット42の側面のうち、第2直線部32aが延びる方向と直交する径方向における両側面は、例えば、第2直線部32aの内側面とそれぞれ接触している。軸方向に見て第2直線部32aが延びる方向において、第2マグネット42の長さは、例えば、第2直線部32aの長さと同じである。 The second magnet 42 is fitted in the second accommodating hole 32. More specifically, the second magnet 42 is fitted in the second straight line portion 32a. Of the side surfaces of the second magnet 42, both side surfaces in the radial direction orthogonal to the direction in which the second straight line portion 32a extends are in contact with, for example, the inner side surface of the second straight line portion 32a. In the direction in which the second straight line portion 32a extends in the axial direction, the length of the second magnet 42 is, for example, the same as the length of the second straight line portion 32a.
 軸方向に見て、第2マグネット42の延伸方向の両端部は、第2収容穴32の延伸方向の両端部からそれぞれ離れて配置されている。軸方向に見て、第2マグネット42が延びる方向において第2マグネット42の両側には、一端部32bと他端部32cとがそれぞれ隣接して配置されている。ここで、本実施形態において一端部32bは、第2フラックスバリア部52aを構成している。他端部32cは、第2フラックスバリア部52bを構成している。つまり、ロータコア20は、軸方向に見て、第2マグネット42が延びる方向において第2マグネット42挟んで配置された一対の第2フラックスバリア部52a,52bを有する。 When viewed in the axial direction, both ends of the second magnet 42 in the stretching direction are arranged apart from both ends of the second accommodating hole 32 in the stretching direction. When viewed in the axial direction, one end portion 32b and the other end portion 32c are arranged adjacent to each other on both sides of the second magnet 42 in the direction in which the second magnet 42 extends. Here, in the present embodiment, one end portion 32b constitutes a second flux barrier portion 52a. The other end portion 32c constitutes a second flux barrier portion 52b. That is, the rotor core 20 has a pair of second flux barrier portions 52a and 52b arranged so as to sandwich the second magnet 42 in the direction in which the second magnet 42 extends when viewed in the axial direction.
 第2フラックスバリア部52a,52bは、それぞれ第2マグネット42の周方向端部から周方向で第2マグネット42から離れる側に延びるに従って径方向内側に向かう円弧状である。第2フラックスバリア部52a,52bが径方向外側に向って延びる場合、第2フラックスバリア部52a,52bとロータコア20の外周面との距離が短くなり、回転時の遠心力によりロータコア20の負荷が大きくなる可能性がある。第2フラックスバリア部52a,52bが径方向内側に向って延びることにより、ロータコア20の負荷を小さくできる。第2フラックスバリア部52a,52bを円弧状とすることにより、周方向の延びる箇所と径方向に延びる箇所との交差部における応力集中を緩和してロータコア20の負荷を一層小さくできる。 The second flux barrier portions 52a and 52b are arcuate inward in the radial direction as they extend from the circumferential end of the second magnet 42 toward the side away from the second magnet 42 in the circumferential direction. When the second flux barrier portions 52a and 52b extend radially outward, the distance between the second flux barrier portions 52a and 52b and the outer peripheral surface of the rotor core 20 becomes short, and the load on the rotor core 20 is applied by the centrifugal force during rotation. It can grow. The load on the rotor core 20 can be reduced by extending the second flux barrier portions 52a and 52b inward in the radial direction. By forming the second flux barrier portions 52a and 52b in an arc shape, the stress concentration at the intersection between the portion extending in the circumferential direction and the portion extending in the radial direction can be relaxed and the load on the rotor core 20 can be further reduced.
 一対の第2フラックスバリア部52a,52bおよび第2マグネット42は、第1マグネット41aを挟む一対の第1フラックスバリア部51a,51bのうち径方向外側に位置する第1フラックスバリア部51bと、第1マグネット41bを挟む一対の第1フラックスバリア部51c,51dのうち径方向外側に位置する第1フラックスバリア部51dとの周方向の間に位置する。 The pair of second flux barrier portions 52a and 52b and the second magnet 42 are the first flux barrier portion 51b located on the outer side in the radial direction of the pair of first flux barrier portions 51a and 51b sandwiching the first magnet 41a. It is located between the pair of first flux barrier portions 51c and 51d sandwiching the magnet 41b and the first flux barrier portion 51d located on the outer side in the radial direction in the circumferential direction.
 第1マグネット41aの磁極は、軸方向に見て第1マグネット41aが延びる方向と直交する方向に沿って配置されている。第1マグネット41bの磁極は、軸方向に見て第1マグネット41bが延びる方向と直交する方向に沿って配置されている。第2マグネット42の磁極は、径方向に沿って配置されている。 The magnetic poles of the first magnet 41a are arranged along a direction orthogonal to the direction in which the first magnet 41a extends when viewed in the axial direction. The magnetic poles of the first magnet 41b are arranged along a direction orthogonal to the direction in which the first magnet 41b extends when viewed in the axial direction. The magnetic poles of the second magnet 42 are arranged along the radial direction.
 第1マグネット41aの磁極のうち径方向外側に位置する磁極と第1マグネット41bの磁極のうち径方向外側に位置する磁極と第2マグネット42の磁極のうち径方向外側に位置する磁極とは、互いに同じである。第1マグネット41aの磁極のうち径方向内側に位置する磁極と第1マグネット41bの磁極のうち径方向内側に位置する磁極と第2マグネット42の磁極のうち径方向内側に位置する磁極とは、互いに同じである。 Of the magnetic poles of the first magnet 41a, the magnetic poles located on the outer side in the radial direction, the magnetic poles of the magnetic poles of the first magnet 41b located on the outer side in the radial direction, and the magnetic poles of the magnetic poles of the second magnet 42 located on the outer side in the radial direction are They are the same as each other. Of the magnetic poles of the first magnet 41a, the magnetic poles located on the inner side in the radial direction, the magnetic poles of the magnetic poles of the first magnet 41b located on the inner side in the radial direction, and the magnetic poles of the magnetic poles of the second magnet 42 located on the inner side in the radial direction are They are the same as each other.
 図3に示すように、磁極部70Nにおいて、第1マグネット41aの磁極のうち径方向外側に位置する磁極と第1マグネット41bの磁極のうち径方向外側に位置する磁極と第2マグネット42の磁極のうち径方向外側に位置する磁極とは、例えば、N極である。磁極部70Nにおいて、第1マグネット41aの磁極のうち径方向内側に位置する磁極と第1マグネット41bの磁極のうち径方向内側に位置する磁極と第2マグネット42の磁極のうち径方向内側に位置する磁極とは、例えば、S極である。 As shown in FIG. 3, in the magnetic pole portion 70N, the magnetic pole located on the radial outer side of the magnetic poles of the first magnet 41a, the magnetic pole located on the radial outer side of the magnetic poles of the first magnet 41b, and the magnetic pole of the second magnet 42. Of these, the magnetic pole located on the outer side in the radial direction is, for example, an N pole. In the magnetic pole portion 70N, the magnetic pole located in the radial direction of the magnetic poles of the first magnet 41a, the magnetic pole located in the radial direction of the magnetic poles of the first magnet 41b, and the magnetic pole located in the radial direction of the magnetic poles of the second magnet 42. The magnetic pole to be used is, for example, an S pole.
 図示は省略するが、磁極部70Sにおいては、磁極部70Nに対して、各マグネット40の磁極が反転して配置されている。つまり、磁極部70Sにおいて、第1マグネット41aの磁極のうち径方向外側に位置する磁極と第1マグネット41bの磁極のうち径方向外側に位置する磁極と第2マグネット42の磁極のうち径方向外側に位置する磁極とは、例えば、S極である。磁極部70Sにおいて、第1マグネット41aの磁極のうち径方向内側に位置する磁極と第1マグネット41bの磁極のうち径方向内側に位置する磁極と第2マグネット42の磁極のうち径方向内側に位置する磁極とは、例えば、N極である。 Although not shown, in the magnetic pole portion 70S, the magnetic poles of each magnet 40 are arranged in reverse with respect to the magnetic pole portion 70N. That is, in the magnetic pole portion 70S, the magnetic pole located on the radial outer side of the magnetic poles of the first magnet 41a, the magnetic pole located on the radial outer side of the magnetic poles of the first magnet 41b, and the radial outer side of the magnetic poles of the second magnet 42. The magnetic pole located at is, for example, the S pole. In the magnetic pole portion 70S, the magnetic pole located in the radial direction of the magnetic poles of the first magnet 41a, the magnetic pole located in the radial direction of the magnetic poles of the first magnet 41b, and the magnetic pole located in the radial direction of the magnetic poles of the second magnet 42. The magnetic pole to be used is, for example, an N pole.
 第2マグネット42の周方向中心が或る1つのティース63の周方向中心と同じ周方向位置に配置された或る状態(以下では、単に「或る状態」と称する)において、周方向中心が第2マグネット42の周方向中心と同じ周方向に位置に配置されたティース63を、ティース66Aと呼ぶ。図2~図3は、当該或る状態の一例を示している。つまり、図2~図3に示す或る状態において、ティース66Aが「或る1つのティース」に相当する。図2~図3に示す或る状態において、軸方向に見て、ティース66Aの周方向中心には、磁極中心線IL1が通る。また、本明細書において「或る状態」は、「ティースの一つ66Aの周方向の中心位置がd軸である磁極中心線IL1と一致している」状態である。 In a certain state (hereinafter, simply referred to as "a certain state") in which the circumferential center of the second magnet 42 is arranged at the same circumferential position as the circumferential center of a certain tooth 63, the circumferential center is The teeth 63 arranged at the same circumferential direction as the circumferential center of the second magnet 42 are referred to as teeth 66A. 2 to 3 show an example of the certain state. That is, in a certain state shown in FIGS. 2 to 3, the tooth 66A corresponds to "a certain tooth". In a certain state shown in FIGS. 2 to 3, the magnetic pole center line IL1 passes through the circumferential center of the teeth 66A when viewed in the axial direction. Further, in the present specification, the "certain state" is a state in which "the center position of one of the teeth 66A in the circumferential direction coincides with the magnetic pole center line IL1 which is the d-axis".
 図2~図3に示す或る状態において、ティース66Aの周方向一方側(+θ側)に隣り合うティース63をティース66Bと呼ぶ。ティース66Aの周方向他方側(-θ側)に隣り合うティース63をティース66Cと呼ぶ。ティース66Bの周方向一方側に隣り合うティース63をティース66Dと呼ぶ。ティース66Cの周方向他方側に隣り合うティース63をティース66Eと呼ぶ。ティース66Dの周方向一方側に隣り合うティース63をティース66Fと呼ぶ。 In a certain state shown in FIGS. 2 to 3, the teeth 63 adjacent to one side (+ θ side) in the circumferential direction of the teeth 66A are referred to as teeth 66B. The teeth 63 adjacent to the other side (−θ side) in the circumferential direction of the teeth 66A are called the teeth 66C. The teeth 63 adjacent to each other on one side in the circumferential direction of the teeth 66B are called the teeth 66D. The teeth 63 adjacent to the other side in the circumferential direction of the teeth 66C are called the teeth 66E. The teeth 63 adjacent to one side in the circumferential direction of the teeth 66D are called the teeth 66F.
 ステータコア61は、スロット67を有している。図3に示すように、スロット67は、ティース66Aの周方向一方側(+θ側)に位置するスロット67Aと、ティース66Aの周方向他方側(-θ側)に位置するスロット67Bと、ティース66Bの周方向一方側に位置するスロット67Cと、ティース66Cの周方向他方側に位置するスロット67Dと、ティース66Dの周方向一方側に位置するスロット67Eと、ティース66Eの周方向他方側に位置するスロット67Fとを含む。 The stator core 61 has a slot 67. As shown in FIG. 3, the slot 67 has a slot 67A located on one side (+ θ side) in the circumferential direction of the teeth 66A, a slot 67B located on the other side (−θ side) in the circumferential direction of the teeth 66A, and the teeth 66B. Slot 67C located on one side in the circumferential direction, slot 67D located on the other side in the circumferential direction of the teeth 66C, slot 67E located on one side in the circumferential direction of the teeth 66D, and located on the other side in the circumferential direction of the teeth 66E. Includes slot 67F.
 軸方向に見て、第2マグネット42の周方向の位置は、電気6次高調波トルクの周期角度にあたる電気60°から、電気60°から電気6次半周期にあたる電気90°の範囲である。具体的には、軸方向に見て、第2マグネット42の周方向の一方側の端部は、第2マグネット42の周方向中心が或る1つのティース66Aの周方向中心と同じ周方向位置に配置された或る状態において、或る1つのティース66Aの周方向一方側に1つ隣に配置されたティース66Bの周方向中心と、1つ隣に配置されたティース66Bと同じ側で、或る1つのティース66Aの周方向一方側に2つ隣に配置されたスロット67Cの周方向中心との間の位置にある。第2マグネット42の周方向の一方側の端部の位置とは、ティース66Bの周方向中心の位置と、スロット67Cの周方向中心の位置とを含む。 When viewed in the axial direction, the position in the circumferential direction of the second magnet 42 is in the range of electricity 60 °, which corresponds to the periodic angle of the electric sixth harmonic torque, and electricity 90 °, which corresponds to the electric sixth half cycle. Specifically, when viewed in the axial direction, one end of the second magnet 42 in the circumferential direction is located at the same circumferential position as the circumferential center of one tooth 66A having the circumferential center of the second magnet 42. In a certain state arranged in, at the circumferential center of the teeth 66B arranged one adjacent to one side in the circumferential direction of one teeth 66A and on the same side as the teeth 66B arranged one adjacent to each other. It is located between the circumferential centers of slots 67C arranged two adjacent to each other on one side of one tooth 66A in the circumferential direction. The position of the one-sided end portion of the second magnet 42 in the circumferential direction includes the position of the circumferential center of the teeth 66B and the position of the circumferential center of the slot 67C.
 8極48スロットの回転電機1の場合、第2マグネット42の周方向の端部の位置は、図4に示すように、磁極中心線(d軸)IL1から7.5°以上、11.25°以下の範囲θ1であることが好ましい。ただし、第2マグネット42の周方向の端部の位置が磁極中心線IL1から11.25°の場合、第2マグネット42とロータコア20の外周面との距離が短くなり、回転時の遠心力によりロータコア20の負荷が大きくなる可能性がある。そのため、第2マグネット42の周方向の一方側の端部は、ティース66Bの周方向中心と、ティース66Bにおける周方向の一方側で磁極中心線(d軸)IL1から遠い側のアンブレラ部63bの周方向の端部との間にあることがより好ましい。8極48スロットの回転電機1の場合、第2マグネット42の周方向一方側の端部の位置は、磁極中心線(d軸)IL1から7.5°以上、9°以下の範囲θ2であることが好ましい。 In the case of the rotary electric machine 1 having 8 poles and 48 slots, the position of the end portion in the circumferential direction of the second magnet 42 is 7.5 ° or more and 11.25 ° from the magnetic pole center line (d axis) IL1 as shown in FIG. It is preferably in the range θ1 below °. However, when the position of the end portion in the circumferential direction of the second magnet 42 is 11.25 ° from the magnetic pole center line IL1, the distance between the second magnet 42 and the outer peripheral surface of the rotor core 20 becomes short, and the centrifugal force during rotation causes the distance between the second magnet 42 and the outer peripheral surface of the rotor core 20 to become shorter. The load on the rotor core 20 may increase. Therefore, one end of the second magnet 42 in the circumferential direction is the center of the circumferential direction of the teeth 66B and the umbrella portion 63b on one side of the teeth 66B in the circumferential direction far from the magnetic pole center line (d axis) IL1. It is more preferably between the edges in the circumferential direction. In the case of the rotary electric machine 1 having 8 poles and 48 slots, the position of the end portion on one side in the circumferential direction of the second magnet 42 is in the range θ2 of 7.5 ° or more and 9 ° or less from the magnetic pole center line (d axis) IL1. Is preferable.
 第2マグネット42の周方向の他方側の端部は、ティース66Cの周方向中心と、ティース66Cにおける周方向の他方側で磁極中心線(d軸)IL1から遠い側のアンブレラ部63bの周方向の端部との間にあることがより好ましい。8極48スロットの回転電機1の場合、第2マグネット42の周方向他方側の端部の位置は、磁極中心線(d軸)IL1から7.5°以上、9°以下の範囲であることが好ましい。従って、第2マグネット42の周方向の長さは、磁極中心線(d軸)IL1を中心として15°以上、18°以下であることがより好ましい。 The other end of the second magnet 42 in the circumferential direction is the circumferential center of the teeth 66C and the circumferential direction of the umbrella portion 63b on the other side of the teeth 66C in the circumferential direction far from the magnetic pole center line (d axis) IL1. It is more preferable to be between the ends of the magnets. In the case of the rotary electric machine 1 having 8 poles and 48 slots, the position of the end portion of the second magnet 42 on the other side in the circumferential direction shall be in the range of 7.5 ° or more and 9 ° or less from the magnetic pole center line (d axis) IL1. Is preferable. Therefore, it is more preferable that the length of the second magnet 42 in the circumferential direction is 15 ° or more and 18 ° or less with respect to the magnetic pole center line (d axis) IL1.
 第2マグネット42を周方向の端部が上記範囲となる長さとすることにより、ロータコア20の負荷を小さくしつつ、第2マグネット42からの磁束がステータ60のティース63からの磁束と打ち消し合い、負荷時の高調波磁束の発生を抑制し騒音や振動の原因となる電気角6次成分の電磁加振力の振幅を低減することができる。具体的には、図5の電気角次数と電磁加振力の振幅との関係に示されるように、回転電機1のトルクに寄与する電気角0次成分の電磁加振力の振幅は、大きい。これに対して、負荷時の電界角5次成分と7次成分の電磁加振力の振幅を抑制できる。負荷時の電界角5次成分と7次成分の電磁加振力の振幅を抑制することにより、電気角6次成分の電磁加振力の振幅を低減することができる。従って、電気角6次の磁束成分に起因するトルクリップルを抑制することで低振動、低騒音化を実現できる。 By setting the length of the second magnet 42 so that the end portion in the circumferential direction is within the above range, the magnetic flux from the second magnet 42 cancels out the magnetic flux from the teeth 63 of the stator 60 while reducing the load on the rotor core 20. It is possible to suppress the generation of harmonic flux during loading and reduce the amplitude of the electromagnetic excitation force of the sixth-order electric angle component that causes noise and vibration. Specifically, as shown in the relationship between the electric angle order and the amplitude of the electromagnetic excitation force in FIG. 5, the amplitude of the electromagnetic excitation force of the electric angle 0th order component contributing to the torque of the rotary electric machine 1 is large. .. On the other hand, it is possible to suppress the amplitude of the electromagnetic excitation force of the fifth-order component and the seventh-order component of the electric field angle under load. By suppressing the amplitude of the electromagnetic excitation force of the electric field angle 5th component and the 7th component under load, the amplitude of the electromagnetic excitation force of the electric angle 6th component can be reduced. Therefore, low vibration and low noise can be realized by suppressing the torque ripple caused by the magnetic flux component of the sixth order of the electric angle.
 ロータ10とステータ60との間を流れる磁束は、例えば第1マグネット41a,41bの磁束によらず、ステータ60に電力が供給されることによってロータ10とステータ60との間に流れる磁束の成分を含む場合がある。この磁束によって、いわゆるリラクタンストルクが生じる。第2マグネット42を周方向の端部が上記範囲となる長さとすることにより、リラクタンストルクが生じる磁束を遮られにくくでき、リラクタンストルクが低下することを抑制できる。したがって、回転電機1のトルクが低下することを抑制できる。 The magnetic flux flowing between the rotor 10 and the stator 60 does not depend on, for example, the magnetic flux of the first magnets 41a and 41b, but the component of the magnetic flux flowing between the rotor 10 and the stator 60 due to the supply of electric power to the stator 60. May include. This magnetic flux produces so-called reluctance torque. By setting the end of the second magnet 42 in the circumferential direction to have a length within the above range, it is possible to make it difficult to block the magnetic flux in which the reluctance torque is generated, and it is possible to suppress the decrease in the reluctance torque. Therefore, it is possible to prevent the torque of the rotary electric machine 1 from decreasing.
 上記の第2マグネット42を周方向の端部が上記範囲となる長さとすることによる効果は、上述した第2マグネット42の径方向の長さを第1マグネット41a,41bが延びる方向と直交する方向の第1マグネット41a,41bの長さより短くして薄くすることを前提とすることで、第2マグネット42の磁束が大きくなりすぎてトルクリップルの原因となることを抑制することで実現している。 The effect of setting the length of the second magnet 42 in the circumferential direction to be within the above range is that the radial length of the second magnet 42 is orthogonal to the direction in which the first magnets 41a and 41b extend. By assuming that the length is shorter than the length of the first magnets 41a and 41b in the direction and making it thinner, it is realized by suppressing the magnetic flux of the second magnet 42 from becoming too large and causing torque ripple. There is.
 続いて、第1フラックスバリア部51bと第2フラックスバリア部52aとの位置関係等について説明する。第1フラックスバリア部51dと第2フラックスバリア部52bとの位置関係等については、第1フラックスバリア部51bと第2フラックスバリア部52aとの位置関係等と同様のため説明を省略する。 Subsequently, the positional relationship between the first flux barrier portion 51b and the second flux barrier portion 52a will be described. The positional relationship between the first flux barrier portion 51d and the second flux barrier portion 52b is the same as the positional relationship between the first flux barrier portion 51b and the second flux barrier portion 52a, and thus description thereof will be omitted.
 図4に示すように、軸方向に見て第1フラックスバリア部51bは、第1輪郭部81と、第2輪郭部82と、第3輪郭部83と、第4輪郭部84と、第5輪郭部85と、を有する。第1輪郭部81は、第1フラックスバリア部51bにおいて周方向で磁極中心線IL1側に位置し磁極中心線IL1方向に直線状に延びている。第2輪郭部82は、周方向で磁極中心線IL1よりもq軸IL2に近い側に位置しq軸IL2方向に直線状に延びている。第3輪郭部83は、周方向で第1輪郭部81と第2輪郭部82との間、且つ、第1輪郭部81と第2輪郭部82よりも径方向外側に位置し周方向に延びている。第4輪郭部84は、第1輪郭部81と第3輪郭部とをつなぐ円弧状である。第5輪郭部85は、第2輪郭部82と第3輪郭部83とをつなぐ円弧状である。 As shown in FIG. 4, when viewed in the axial direction, the first flux barrier portion 51b includes a first contour portion 81, a second contour portion 82, a third contour portion 83, a fourth contour portion 84, and a fifth. It has a contour portion 85 and. The first contour portion 81 is located on the magnetic pole center line IL1 side in the circumferential direction in the first flux barrier portion 51b and extends linearly in the magnetic pole center line IL1 direction. The second contour portion 82 is located closer to the q-axis IL2 than the magnetic pole center line IL1 in the circumferential direction, and extends linearly in the q-axis IL2 direction. The third contour portion 83 is located between the first contour portion 81 and the second contour portion 82 in the circumferential direction and radially outside the first contour portion 81 and the second contour portion 82, and extends in the circumferential direction. ing. The fourth contour portion 84 has an arc shape connecting the first contour portion 81 and the third contour portion. The fifth contour portion 85 has an arc shape connecting the second contour portion 82 and the third contour portion 83.
 軸方向に見て第2フラックスバリア部52aは、第6輪郭部86と第7輪郭部87と、第8輪郭部88と、を有する。第6輪郭部86は、第2フラックスバリア部52aにおいてq軸IL2側に位置し径方向に直線状に延びている。第7輪郭部87は、第6輪郭部86より径方向外側、且つ、前記d軸側に位置し周方向に延びている。第8輪郭部88は、第6輪郭部86と第7輪郭部87とをつなぐ円弧状である。第1輪郭部81と第4輪郭部84との交差部89と、第6輪郭部86と第8輪郭部88との交差部90と、の距離L1は、第2輪郭部82と第5輪郭部85との交差部91と、q軸IL2と、の距離L2と同一である。第1フラックスバリア部51bと第2フラックスバリア部52aとの距離L1は、第1フラックスバリア部51bとq軸IL2との距離L2と同一である。 The second flux barrier portion 52a when viewed in the axial direction has a sixth contour portion 86, a seventh contour portion 87, and an eighth contour portion 88. The sixth contour portion 86 is located on the q-axis IL2 side in the second flux barrier portion 52a and extends linearly in the radial direction. The seventh contour portion 87 is located radially outside the sixth contour portion 86 and on the d-axis side, and extends in the circumferential direction. The eighth contour portion 88 has an arc shape connecting the sixth contour portion 86 and the seventh contour portion 87. The distance L1 between the intersection 89 of the first contour portion 81 and the fourth contour portion 84 and the intersection 90 of the sixth contour portion 86 and the eighth contour portion 88 is the second contour portion 82 and the fifth contour portion 82. The distance L2 between the intersection 91 with the portion 85 and the q-axis IL2 is the same. The distance L1 between the first flux barrier portion 51b and the second flux barrier portion 52a is the same as the distance L2 between the first flux barrier portion 51b and the q-axis IL2.
 距離L1と距離L2とを同一とすることにより、電流による磁束と磁石による磁束とのバランスを取り磁束の流れを好適とすることにより、トルクの向上およびトルクリップルの低減を図ることができる。 By making the distance L1 and the distance L2 the same, it is possible to improve the torque and reduce the torque ripple by balancing the magnetic flux due to the current and the magnetic flux due to the magnet and making the flow of the magnetic flux suitable.
 図6には、電気角次数と電磁加振力の振幅との関係が、
 第1フラックスバリア部51bと第2フラックスバリア部52aとの距離L1と、第1フラックスバリア部51bとq軸IL2との距離L2との相対関係毎に示されている。上述の距離L1=距離L2を構成する第1フラックスバリア部51bは、第1マグネット41aの径方向端部から磁極中心線IL1と平行に径方向外側に延びている。図6に示す距離L1>距離L2を構成する第1フラックスバリア部は、一例として、第1マグネット41aの径方向端部から径方向の外側に向かうに従って磁極中心線IL1から離れる方向に延びている。図6に示す距離L1<距離L2を構成する第1フラックスバリア部は、一例として、第1マグネット41aの径方向端部から径方向の外側に向かうに従って磁極中心線IL1に近づく方向に延びている。
FIG. 6 shows the relationship between the electrical angular order and the amplitude of the electromagnetic excitation force.
It is shown for each relative relationship between the distance L1 between the first flux barrier portion 51b and the second flux barrier portion 52a and the distance L2 between the first flux barrier portion 51b and the q-axis IL2. The first flux barrier portion 51b constituting the above-mentioned distance L1 = distance L2 extends radially outward from the radial end portion of the first magnet 41a in parallel with the magnetic pole center line IL1. As an example, the first flux barrier portion constituting the distance L1> the distance L2 shown in FIG. 6 extends in a direction away from the magnetic pole center line IL1 from the radial end portion of the first magnet 41a toward the outside in the radial direction. .. As an example, the first flux barrier portion constituting the distance L1 <distance L2 shown in FIG. 6 extends in a direction approaching the magnetic pole center line IL1 from the radial end portion of the first magnet 41a toward the outside in the radial direction. ..
 図6に示すように、回転電機1のトルクに寄与する電気角0次成分の電磁加振力の振幅は、距離L1=距離L2の場合が、距離L1と距離L2に差がある場合と大きな差が見られない。これに対して、騒音や振動の原因となる電気角6次成分および電気角12次成分の電磁加振力の振幅は、距離L1と距離L2に差がある場合と比較して距離L1=距離L2の場合は大幅に低減できる。従って、距離L1=距離L2とすることにより、電気角6次成分および電気角12次成分に起因するトルクリップルを抑制することで低振動、低騒音化を実現できる。 As shown in FIG. 6, the amplitude of the electromagnetic excitation force of the electric angle 0th-order component contributing to the torque of the rotary electric machine 1 is larger when the distance L1 = the distance L2 than when there is a difference between the distance L1 and the distance L2. There is no difference. On the other hand, the amplitude of the electromagnetic excitation force of the 6th-order electric angle component and the 12th-order electric angle component, which cause noise and vibration, is the distance L1 = distance as compared with the case where there is a difference between the distance L1 and the distance L2. In the case of L2, it can be significantly reduced. Therefore, by setting the distance L1 = the distance L2, it is possible to realize low vibration and low noise by suppressing the torque ripple caused by the 6th-order electric angle component and the 12th-order electric angle component.
 上記構成によれば、第2マグネット42の径方向の長さを第1マグネット41a,41bが延びる方向と直交する方向の第1マグネット41a,41bの長さより短くして薄くし、第2マグネット42の周方向の一方側の端部は、第2マグネット42の周方向中心が或る1つのティース66Aの周方向中心と同じ周方向位置に配置された或る状態において、或る1つのティース66Aの周方向一方側に1つ隣に配置されたティース66Bの周方向中心と、1つ隣に配置されたティース66Bと同じ側で、或る1つのティース66Aの周方向一方側に2つ隣に配置されたスロット67Cの周方向中心との間の位置にあるため、荷時の電界角5次成分と7次成分の電磁加振力の振幅を抑制することにより、電気角6次成分の電磁加振力の振幅を低減してルクリップルを抑制することで低振動、低騒音化を実現できる。 According to the above configuration, the radial length of the second magnet 42 is made shorter and thinner than the length of the first magnets 41a and 41b in the direction orthogonal to the direction in which the first magnets 41a and 41b extend, and the second magnet 42 is made thinner. One end of the circumferential direction of the second magnet 42 is one tooth 66A in a certain state where the circumferential center of the second magnet 42 is arranged at the same circumferential position as the circumferential center of the one tooth 66A. On the same side as the center of the circumferential direction of the teeth 66B arranged one side on one side in the circumferential direction and the teeth 66B arranged one next to each other, two adjacent teeth 66A on one side in the circumferential direction. Since it is located between the center of the slot 67C arranged in the circumferential direction, the electric field angle of the sixth-order component can be increased by suppressing the amplitude of the electromagnetic excitation force of the fifth-order component and the seventh-order component of the electric field angle at the time of loading. Low vibration and low noise can be realized by reducing the amplitude of the electromagnetic excitation force and suppressing the Lucripple.
 上記構成によれば、第2マグネット42の周方向の長さは、磁極中心線(d軸)IL1を中心として15°以上、18°以下であることで、ロータコア20の強度低下を抑制しつつ、電気角6次成分の電磁加振力の振幅を低減してルクリップルを抑制することで低振動、低騒音化を実現できるとともに、リラクタンストルクの低下を抑制して回転電機1のトルクが低下することを抑制できる。 According to the above configuration, the length of the second magnet 42 in the circumferential direction is 15 ° or more and 18 ° or less with respect to the magnetic pole center line (d axis) IL1 while suppressing a decrease in the strength of the rotor core 20. By reducing the amplitude of the electromagnetic excitation force of the sixth-order electric angle component and suppressing the Lucripple, low vibration and low noise can be realized, and the decrease in reluctance torque is suppressed to reduce the torque of the rotary electric machine 1. It can be suppressed.
 上記構成によれば、第1フラックスバリア部51bと第2フラックスバリア部52aとの距離L1が、第1フラックスバリア部51bとq軸IL2との距離L2と同一であることにより、電気角6次成分および電気角12次成分に起因するトルクリップルを抑制することで低振動、低騒音化を実現できる。 According to the above configuration, the distance L1 between the first flux barrier portion 51b and the second flux barrier portion 52a is the same as the distance L2 between the first flux barrier portion 51b and the q-axis IL2, so that the electrical angle is 6th. Low vibration and low noise can be realized by suppressing torque ripple caused by the component and the 12th-order electric angle component.
 本実施形態によれば、回転電機1は、三相交流式の回転電機であって、極数をNとしたとき、スロット数がN×6となる。このような回転電機1においては、ロータ10とステータ60との間を流れる磁束がN×3次の磁束成分、N×6次の磁束成分を含む。例えば、N=10の場合、すなわち回転電機1が10極60スロットの回転電機である場合、ロータ10とステータ60との間を流れる磁束は、10×3次、すなわち30次の磁束成分と、10×6次、すなわち60次の磁束成分を含む。このような場合、第2マグネット42の周方向の長さを、磁極中心線IL1を中心として15°以上、18°以下とすることでN×6次の磁束成分に起因するトルクリップルを低減でき、かつ、N×3次の磁束成分に起因するトルクリップルが増大することを抑制することで低騒音化を実現できる。そのため、第2マグネット42の周方向の長さを、磁極中心線IL1を中心として15°以上、18°以下とすることで、極数がNでスロット数がN×6の回転電機1において、トルクリップルを低減することで低騒音化を実現できる効果を好適に得やすい。 According to the present embodiment, the rotary electric machine 1 is a three-phase alternating current type rotary electric machine, and the number of slots is N × 6 when the number of poles is N. In such a rotary electric machine 1, the magnetic flux flowing between the rotor 10 and the stator 60 includes an N × 3rd order magnetic flux component and an N × 6th order magnetic flux component. For example, when N = 10, that is, when the rotary electric machine 1 is a rotary electric machine having 10 poles and 60 slots, the magnetic flux flowing between the rotor 10 and the stator 60 is a 10 × 3rd order, that is, a 30th order magnetic flux component. It contains a 10 × 6th order, that is, a 60th order magnetic flux component. In such a case, the torque ripple caused by the N × 6th order magnetic flux component can be reduced by setting the length of the second magnet 42 in the circumferential direction to 15 ° or more and 18 ° or less with respect to the magnetic pole center line IL1. Moreover, it is possible to reduce noise by suppressing the increase in torque ripple caused by the N × 3rd order magnetic flux component. Therefore, by setting the length of the second magnet 42 in the circumferential direction to 15 ° or more and 18 ° or less with respect to the magnetic pole center line IL1, in the rotary electric machine 1 having N poles and N × 6 slots. It is easy to preferably obtain the effect of reducing noise by reducing the torque ripple.
 また、本実施形態によれば、コイル65は、分布巻き、かつ、全節巻きされている。このようにコイル65が巻かれた回転電機1においては、ロータ10とステータ60との間を流れる磁束がN×3次の磁束成分、N×6次の磁束成分を含む。このような場合、第2マグネット42の周方向の長さを、磁極中心線IL1を中心として15°以上、18°以下とすることでN×6次の磁束成分に起因するトルクリップルを低減でき、かつ、N×3次の磁束成分に起因するトルクリップルが増大することを抑制することで低騒音化を実現できる。そのため、第2マグネット42の周方向の長さを、磁極中心線IL1を中心として15°以上、18°以下とすることで、極数がNでスロット数がN×6の回転電機1において、トルクリップルを低減することで低騒音化を実現できる効果を好適に得やすい。 Further, according to the present embodiment, the coil 65 is distributed-wound and all-knot-wound. In the rotary electric machine 1 in which the coil 65 is wound in this way, the magnetic flux flowing between the rotor 10 and the stator 60 includes an N × 3rd order magnetic flux component and an N × 6th order magnetic flux component. In such a case, the torque ripple caused by the N × 6th order magnetic flux component can be reduced by setting the length of the second magnet 42 in the circumferential direction to 15 ° or more and 18 ° or less with respect to the magnetic pole center line IL1. Moreover, it is possible to reduce noise by suppressing the increase in torque ripple caused by the N × 3rd order magnetic flux component. Therefore, by setting the length of the second magnet 42 in the circumferential direction to 15 ° or more and 18 ° or less with respect to the magnetic pole center line IL1, in the rotary electric machine 1 having N poles and N × 6 slots. It is easy to preferably obtain the effect of reducing noise by reducing the torque ripple.
 以上、添付図面を参照しながら本発明に係る好適な実施形態について説明したが、本発明は係る例に限定されないことは言うまでもない。上述した例において示した各構成部材の諸形状や組み合わせ等は一例であって、本発明の主旨から逸脱しない範囲において設計要求等に基づき種々変更可能である。 Although the preferred embodiment of the present invention has been described above with reference to the accompanying drawings, it goes without saying that the present invention is not limited to such an example. The various shapes and combinations of the constituent members shown in the above-mentioned example are examples, and can be variously changed based on design requirements and the like within a range not deviating from the gist of the present invention.
 本発明が適用される回転電機は、モータに限られず、発電機であってもよい。この場合、回転電機は、三相交流式の発電機であってもよい。回転電機の用途は、特に限定されない。回転電機は、例えば、車両に搭載されてもよいし、車両以外の機器に搭載されてもよい。回転電機の極数およびスロット数は、特に限定されない。回転電機においてコイルはどのような巻き方で構成されていてもよい。以上、本明細書において説明した構成は、相互に矛盾しない範囲内において、適宜組み合わせることができる。 The rotary electric machine to which the present invention is applied is not limited to a motor, but may be a generator. In this case, the rotary electric machine may be a three-phase alternating current generator. The use of the rotary electric machine is not particularly limited. The rotary electric machine may be mounted on a vehicle or may be mounted on a device other than the vehicle, for example. The number of poles and the number of slots of the rotary electric machine are not particularly limited. In the rotary electric machine, the coil may be configured by any winding method. As described above, the configurations described in the present specification can be appropriately combined within a range that does not contradict each other.
 なお、上記実施形態では、第2マグネット42の径方向の長さが、第1マグネット41a,41bが延びる方向と直交する方向の第1マグネット41a,41bの長さより短く、且つ、第2マグネット42の周方向の端部がそれぞれ第2マグネット42の周方向中心が或る1つのティース66Aの周方向中心と同じ周方向位置に配置された或る状態において、或る1つのティース66Aの周方向一方側に1つ隣に配置されたティースの周方向中心と、1つ隣に配置されたティースと同じ側で、或る1つのティース66Aの周方向一方側に2つ隣に配置されたスロットの周方向中心との間の位置にあることを前提として説明したが、この構成に限定されない。例えば、第2マグネット42の径方向の長さが、第1マグネット41a,41bが延びる方向と直交する方向の第1マグネット41a,41bの長さより短く、且つ、第1輪郭部81と第4輪郭部84との交差部89と、第6輪郭部86と第8輪郭部88との交差部90と、の距離L1は、第2輪郭部82と第5輪郭部85との交差部91と、q軸IL2と、の距離L2と同一であることを前提とする構成であってもよい。 In the above embodiment, the radial length of the second magnet 42 is shorter than the length of the first magnets 41a and 41b in the direction orthogonal to the direction in which the first magnets 41a and 41b extend, and the second magnet 42 In a certain state in which the circumferential ends of the second magnet 42 are arranged at the same circumferential position as the circumferential center of the one tooth 66A, the circumferential center of the second magnet 42 is arranged in the same circumferential position as the circumferential center of the one tooth 66A. Two slots arranged next to each other on one side of a certain tooth 66A on the same side as the center of the circumferential direction of the teeth arranged one next to each other and the teeth arranged one adjacent to each other. The explanation is based on the assumption that the position is between the center of the circumferential direction and the center of the circumferential direction, but the present invention is not limited to this configuration. For example, the radial length of the second magnet 42 is shorter than the length of the first magnets 41a, 41b in the direction orthogonal to the direction in which the first magnets 41a, 41b extend, and the first contour portion 81 and the fourth contour portion 81 and the fourth contour. The distance L1 between the intersection 89 with the portion 84 and the intersection 90 between the sixth contour portion 86 and the eighth contour portion 88 is the intersection 91 between the second contour portion 82 and the fifth contour portion 85. The configuration may be based on the premise that the distance L2 from the q-axis IL2 is the same.
 すなわち、本発明は下記の回転電機であってもよい。 中心軸を中心として回転可能なロータと、
 前記ロータの径方向外側に位置するステータと、
 を備え、
 前記ロータは、
  複数の収容穴を有するロータコアと、
  前記複数の収容穴の内部にそれぞれ収容された複数のマグネットと、
 を有し、
 前記ステータは、
  前記ロータコアを囲む環状のコアバック、および前記コアバックから径方向内側に延び周方向に間隔を空けて並んで配置された複数のティースを有するステータコアを有し、
  前記ティースは、前記コアバックから径方向内側に延びる基部、および基部の径方向内側の端部に設けられ基部よりも周方向の両側に突出するアンブレラ部を有し、
 前記複数のマグネットは、
  周方向に互いに間隔を空けて配置され、軸方向に見て径方向内側から径方向外側に向かうに従って互いに周方向に離れる方向に延びる一対の第1マグネットと、
  前記一対の第1マグネットの径方向内端部よりも径方向外側において前記一対の第1マグネット同士の間の周方向位置に配置され、軸方向に見て径方向と直交する方向に延びる第2マグネットと、
 を含み、
 軸方向に見て、前記第2マグネットの径方向の長さは、前記第1マグネットが延びる方向と直交する方向の前記第1マグネットの長さより短く、
 前記ロータコアは、軸方向に見て、各前記第1マグネットが延びる方向において各前記第1マグネットのそれぞれを挟んで一対ずつ配置された第1フラックスバリア部と、
  軸方向に見て、前記第2マグネットが延びる方向において前記第2マグネットを挟んで配置された一対の第2フラックスバリア部と、
 を有し、
 一対の前記第1フラックスバリア部のうち径方向外側に位置する第1フラックスバリア部は、前記第1マグネットの径方向端部からd軸と平行に径方向外側に延び、
 軸方向に見て、径方向外側に位置する前記第1フラックスバリア部は、
 周方向でd軸側に位置し前記d軸方向に直線状に延びる第1輪郭部と、
 周方向で前記d軸よりもq軸側に近い側に位置し前記q軸方向に直線状に延びる第2輪郭部と、
 周方向で前記第1輪郭部と前記第2輪郭部との間、且つ、前記第1輪郭部と前記第2輪郭部よりも径方向外側に位置し周方向に延びる第3輪郭部と、
 前記第1輪郭部と前記第3輪郭部とをつなぐ円弧状の第4輪郭部と、
 前記第2輪郭部と前記第3輪郭部とをつなぐ円弧状の第5輪郭部と、
 を有し、
 径方向外側に位置する前記第1フラックスバリア部と周方向で隣り合う前記第2フラックスバリア部は、
 前記q軸側に位置し径方向に直線状に延びる第6輪郭部と、
 前記第6輪郭部より径方向外側、且つ、前記d軸側に位置し周方向に延びる第7輪郭部と、
 前記第6輪郭部と前記第7輪郭部とをつなぐ円弧状の第8輪郭部と、
 を有し、
 前記第1輪郭部と前記第4輪郭部との交差部と、前記第6輪郭部と前記第8輪郭部との交差部との距離は、前記第2輪郭部と前記第5輪郭部との交差部と、前記q軸との距離と同一である、回転電機。
That is, the present invention may be the following rotary electric machine. A rotor that can rotate around the central axis and
The stator located on the radial outer side of the rotor and
Equipped with
The rotor is
A rotor core with multiple accommodation holes and
A plurality of magnets housed inside the plurality of housing holes, and
Have,
The stator is
It has an annular core back surrounding the rotor core and a stator core having a plurality of teeth extending radially inward from the core back and arranged side by side at intervals in the circumferential direction.
The teeth have a base extending radially inward from the core back, and umbrella portions provided at the radially inner end of the base and protruding on both sides in the circumferential direction from the base.
The plurality of magnets
A pair of first magnets that are arranged at intervals in the circumferential direction and extend in the direction away from each other in the circumferential direction from the inside in the radial direction to the outside in the radial direction when viewed in the axial direction.
A second that is arranged at a circumferential position between the pair of first magnets on the radial outer side of the radial inner end of the pair of first magnets and extends in a direction orthogonal to the radial direction when viewed in the axial direction. With a magnet
Including
When viewed in the axial direction, the radial length of the second magnet is shorter than the length of the first magnet in the direction orthogonal to the direction in which the first magnet extends.
The rotor core has a pair of first flux barrier portions arranged so as to sandwich each of the first magnets in a direction in which the first magnets extend in the axial direction.
A pair of second flux barrier portions arranged so as to sandwich the second magnet in the direction in which the second magnet extends when viewed in the axial direction.
Have,
The first flux barrier portion located on the radial outer side of the pair of the first flux barrier portions extends radially outward from the radial end portion of the first magnet in parallel with the d-axis.
The first flux barrier portion located on the outer side in the radial direction when viewed in the axial direction is
The first contour portion located on the d-axis side in the circumferential direction and extending linearly in the d-axis direction,
A second contour portion that is located closer to the q-axis side than the d-axis in the circumferential direction and extends linearly in the q-axis direction.
A third contour portion located between the first contour portion and the second contour portion in the circumferential direction and radially outside the first contour portion and the second contour portion and extending in the circumferential direction.
An arcuate fourth contour portion connecting the first contour portion and the third contour portion,
An arcuate fifth contour portion connecting the second contour portion and the third contour portion,
Have,
The second flux barrier portion adjacent to the first flux barrier portion located on the outer side in the radial direction in the circumferential direction is
The sixth contour portion located on the q-axis side and extending linearly in the radial direction,
A seventh contour portion that is radially outside the sixth contour portion and is located on the d-axis side and extends in the circumferential direction.
An arcuate eighth contour portion connecting the sixth contour portion and the seventh contour portion,
Have,
The distance between the intersection of the first contour portion and the fourth contour portion and the intersection of the sixth contour portion and the eighth contour portion is the distance between the second contour portion and the fifth contour portion. A rotary electric machine having the same distance between the intersection and the q-axis.
 1…回転電機、 10…ロータ、 20…ロータコア、 30…収容穴、 40…マグネット、 41a,41b…第1マグネット、 42…第2マグネット、 51a,51b,51c,51d…第1フラックスバリア部、 52a,52b…第2フラックスバリア部、 60…ステータ、 61…ステータコア、 62…コアバック、 63,66A,66B,66C,66D,66E…ティース、 65…コイル、 67…スロット、 70、70N、70S…磁極部、 81…第1輪郭部、 82…第2輪郭部、 83…第3輪郭部、 84…第4輪郭部、85…第5輪郭部、 86…第6輪郭部、 87…第7輪郭部、 88…第8輪郭部、 89、90、91…交差部、 IL1…磁極中心線(d軸)、 IL2…q軸、 J…中心軸 1 ... rotary electric machine, 10 ... rotor, 20 ... rotor core, 30 ... accommodation hole, 40 ... magnet, 41a, 41b ... first magnet, 42 ... second magnet, 51a, 51b, 51c, 51d ... first flux barrier part, 52a, 52b ... 2nd flux barrier, 60 ... stator, 61 ... stator core, 62 ... core back, 63, 66A, 66B, 66C, 66D, 66E ... teeth, 65 ... coil, 67 ... slot, 70, 70N, 70S ... Magnetic pole, 81 ... 1st contour, 82 ... 2nd contour, 83 ... 3rd contour, 84 ... 4th contour, 85 ... 5th contour, 86 ... 6th contour, 87 ... 7th Contour part, 88 ... 8th contour part, 89, 90, 91 ... intersection, IL1 ... magnetic pole center line (d axis), IL2 ... q axis, J ... center axis

Claims (4)

  1.  中心軸を中心として回転可能なロータと、
     前記ロータの径方向外側に位置するステータと、
     を備え、
     前記ロータは、
      複数の収容穴を有するロータコアと、
      前記複数の収容穴の内部にそれぞれ収容された複数のマグネットと、
     を有し、
     前記ステータは、
      前記ロータコアを囲む環状のコアバック、および前記コアバックから径方向内側に延び周方向に間隔を空けて並んで配置された複数のティースを有するステータコアを有し、
      前記ティースは、前記コアバックから径方向内側に延びる基部、および基部の径方向内側の端部に設けられ基部よりも周方向の両側に突出するアンブレラ部を有し、
     前記複数のマグネットは、
      周方向に互いに間隔を空けて配置され、軸方向に見て径方向内側から径方向外側に向かうに従って互いに周方向に離れる方向に延びる一対の第1マグネットと、
      前記一対の第1マグネットの径方向内端部よりも径方向外側において前記一対の第1マグネット同士の間の周方向位置に配置され、軸方向に見て径方向と直交する方向に延びる第2マグネットと、
     を含み、
     軸方向に見て、前記第2マグネットの径方向の長さは、前記第1マグネットが延びる方向と直交する方向の前記第1マグネットの長さより短く、
     軸方向に見て、前記第2マグネットの周方向の両端部は、前記第2マグネットの周方向中心が或る1つの前記ティースの周方向中心と同じ周方向位置に配置された或る状態において、或る1つの前記ティースの1つ隣に配置されたティースの周方向中心と、前記1つ隣に配置されたティースと同じ側で、或る1つの前記ティースの2つ隣に配置されたスロットの周方向中心との間の位置にある、回転電機。
    A rotor that can rotate around the central axis and
    The stator located on the radial outer side of the rotor and
    Equipped with
    The rotor is
    A rotor core with multiple accommodation holes and
    A plurality of magnets housed inside the plurality of housing holes, and
    Have,
    The stator is
    It has an annular core back surrounding the rotor core and a stator core having a plurality of teeth extending radially inward from the core back and arranged side by side at intervals in the circumferential direction.
    The teeth have a base extending radially inward from the core back, and umbrella portions provided at the radially inner end of the base and protruding on both sides in the circumferential direction from the base.
    The plurality of magnets
    A pair of first magnets that are arranged at intervals in the circumferential direction and extend in the direction away from each other in the circumferential direction from the inside in the radial direction to the outside in the radial direction when viewed in the axial direction.
    A second that is arranged at a circumferential position between the pair of first magnets on the radial outer side of the radial inner end of the pair of first magnets and extends in a direction orthogonal to the radial direction when viewed in the axial direction. With a magnet
    Including
    When viewed in the axial direction, the radial length of the second magnet is shorter than the length of the first magnet in the direction orthogonal to the direction in which the first magnet extends.
    When viewed in the axial direction, both ends in the circumferential direction of the second magnet are arranged in a certain state in which the circumferential center of the second magnet is arranged at the same circumferential position as the circumferential center of a certain tooth. , On the same side as the circumferential center of the tooth placed next to one of the teeth and on the same side as the tooth placed next to the tooth, two of the teeth placed next to the tooth. A rotating electric machine located between the center of the slot in the circumferential direction.
  2.  軸方向に見て、前記第2マグネットの周方向の両端部は、前記第2マグネットの周方向中心が或る1つの前記ティースの周方向中心と同じ周方向位置に配置された或る状態において、前記1つ隣に配置されたティースにおける前記アンブレラ部の周方向で前記第2マグネットの周方向中心から遠い側の端部の周方向の位置よりも前記第2マグネットの周方向中心に近い位置にある、
     請求項1に記載の回転電機。
    When viewed in the axial direction, both ends in the circumferential direction of the second magnet are arranged in a certain state in which the circumferential center of the second magnet is arranged at the same circumferential position as the circumferential center of a certain tooth. , A position closer to the circumferential center of the second magnet than the circumferential position of the end portion far from the circumferential center of the second magnet in the circumferential direction of the umbrella portion in the teeth arranged next to the one. It is in,
    The rotary electric machine according to claim 1.
  3.  前記ロータコアは、軸方向に見て、各前記第1マグネットが延びる方向において各前記第1マグネットのそれぞれを挟んで一対ずつ配置された第1フラックスバリア部と、
      軸方向に見て、前記第2マグネットが延びる方向において前記第2マグネットを挟んで配置された一対の第2フラックスバリア部と、
     を有し、
     前記第2フラックスバリア部は、前記第2マグネットの周方向端部から周方向に延びるに従って径方向内側に向かう円弧状である、
     請求項1または2に記載の回転電機。
    The rotor core has a pair of first flux barrier portions arranged so as to sandwich each of the first magnets in a direction in which the first magnets extend in the axial direction.
    A pair of second flux barrier portions arranged so as to sandwich the second magnet in the direction in which the second magnet extends when viewed in the axial direction.
    Have,
    The second flux barrier portion has an arc shape that extends inward in the radial direction as it extends in the circumferential direction from the circumferential end portion of the second magnet.
    The rotary electric machine according to claim 1 or 2.
  4. 一対の前記第1フラックスバリア部のうち径方向外側に位置する第1フラックスバリア部は、前記第1マグネットの径方向端部からd軸と平行に径方向外側に延び、
     軸方向に見て、径方向外側に位置する前記第1フラックスバリア部は、
     周方向でd軸側に位置し前記d軸方向に直線状に延びる第1輪郭部と、
     周方向で前記d軸よりもq軸に近い側に位置し前記q軸方向に直線状に延びる第2輪郭部と、
     周方向で前記第1輪郭部と前記第2輪郭部との間、且つ、前記第1輪郭部と前記第2輪郭部よりも径方向外側に位置し周方向に延びる第3輪郭部と、
     前記第1輪郭部と前記第3輪郭部とをつなぐ円弧状の第4輪郭部と、
     前記第2輪郭部と前記第3輪郭部とをつなぐ円弧状の第5輪郭部と、
     を有し、
     径方向外側に位置する前記第1フラックスバリア部と周方向で隣り合う前記第2フラックスバリア部は、
     前記q軸側に位置し径方向に直線状に延びる第6輪郭部と、
     前記第6輪郭部より径方向外側、且つ、前記d軸側に位置し周方向に延びる第7輪郭部と、
     前記第6輪郭部と前記第7輪郭部とをつなぐ円弧状の第8輪郭部と、
     を有し、
     前記第1輪郭部と前記第4輪郭部との交差部と、前記第6輪郭部と前記第8輪郭部との交差部との距離は、前記第2輪郭部と前記第5輪郭部との交差部と、前記q軸との距離と同一である、
     請求項3に記載の回転電機。
    The first flux barrier portion located on the radial outer side of the pair of the first flux barrier portions extends radially outward from the radial end portion of the first magnet in parallel with the d-axis.
    The first flux barrier portion located on the outer side in the radial direction when viewed in the axial direction is
    The first contour portion located on the d-axis side in the circumferential direction and extending linearly in the d-axis direction,
    A second contour portion located closer to the q-axis than the d-axis in the circumferential direction and extending linearly in the q-axis direction.
    A third contour portion located between the first contour portion and the second contour portion in the circumferential direction and radially outside the first contour portion and the second contour portion and extending in the circumferential direction.
    An arcuate fourth contour portion connecting the first contour portion and the third contour portion,
    An arcuate fifth contour portion connecting the second contour portion and the third contour portion,
    Have,
    The second flux barrier portion adjacent to the first flux barrier portion located on the outer side in the radial direction in the circumferential direction is
    The sixth contour portion located on the q-axis side and extending linearly in the radial direction,
    A seventh contour portion that is radially outside the sixth contour portion and is located on the d-axis side and extends in the circumferential direction.
    An arcuate eighth contour portion connecting the sixth contour portion and the seventh contour portion,
    Have,
    The distance between the intersection of the first contour portion and the fourth contour portion and the intersection of the sixth contour portion and the eighth contour portion is the distance between the second contour portion and the fifth contour portion. The distance between the intersection and the q-axis is the same,
    The rotary electric machine according to claim 3.
PCT/JP2021/022340 2020-11-09 2021-06-11 Rotary electrical machine WO2022097322A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202180075014.8A CN116458035A (en) 2020-11-09 2021-06-11 Rotary electric machine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-186354 2020-11-09
JP2020186354 2020-11-09

Publications (1)

Publication Number Publication Date
WO2022097322A1 true WO2022097322A1 (en) 2022-05-12

Family

ID=81457703

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/022340 WO2022097322A1 (en) 2020-11-09 2021-06-11 Rotary electrical machine

Country Status (2)

Country Link
CN (1) CN116458035A (en)
WO (1) WO2022097322A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008306849A (en) * 2007-06-07 2008-12-18 Toyota Motor Corp Rotating electrical machine
JP2011097754A (en) * 2009-10-30 2011-05-12 Mitsubishi Electric Corp Permanent magnet embedded motor and blower
JP2012161227A (en) * 2011-02-03 2012-08-23 Toyota Motor Corp Rotor for rotary electric machine
JP2018026965A (en) * 2016-08-10 2018-02-15 富士電機株式会社 Rotor and permanent magnet type rotary electric machine
WO2018159181A1 (en) * 2017-02-28 2018-09-07 日立オートモティブシステムズ株式会社 Rotating electric machine rotor and rotating electric machine equipped with same
JP6685634B1 (en) * 2018-10-30 2020-04-22 三菱電機株式会社 Rotating electric machine

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008306849A (en) * 2007-06-07 2008-12-18 Toyota Motor Corp Rotating electrical machine
JP2011097754A (en) * 2009-10-30 2011-05-12 Mitsubishi Electric Corp Permanent magnet embedded motor and blower
JP2012161227A (en) * 2011-02-03 2012-08-23 Toyota Motor Corp Rotor for rotary electric machine
JP2018026965A (en) * 2016-08-10 2018-02-15 富士電機株式会社 Rotor and permanent magnet type rotary electric machine
WO2018159181A1 (en) * 2017-02-28 2018-09-07 日立オートモティブシステムズ株式会社 Rotating electric machine rotor and rotating electric machine equipped with same
JP6685634B1 (en) * 2018-10-30 2020-04-22 三菱電機株式会社 Rotating electric machine

Also Published As

Publication number Publication date
CN116458035A (en) 2023-07-18

Similar Documents

Publication Publication Date Title
US7595575B2 (en) Motor/generator to reduce cogging torque
KR101231024B1 (en) Consequent pole permanent magnet motor
US9041269B2 (en) Motor
US8102091B2 (en) Interior permanent magnet motor including rotor with unequal poles
JPWO2019064801A1 (en) Permanent magnet type rotating electric machine
JP6569396B2 (en) Rotating electric machine
JP3672919B1 (en) Permanent magnet type rotary motor
US6781260B2 (en) Permanent magnet type rotary machine
US20160049853A1 (en) Dual stator, flux switching permanent magnet machine
JP4062269B2 (en) Synchronous rotating electrical machine
JP2021197814A (en) Rotary electric machine
JP6592525B2 (en) Magnet rotor, rotating electric machine including magnet rotor, and electric vehicle including rotating electric machine
WO2022097322A1 (en) Rotary electrical machine
JP2007089304A (en) Permanent-magnet type rotating electric machine
JP2013099104A (en) Rotor and motor
JP5413919B2 (en) Power generator
WO2022123863A1 (en) Rotating electric machine
WO2022172479A1 (en) Rotating electrical machine
WO2022044359A1 (en) Rotary electric machine
WO2022172478A1 (en) Rotating electrical machine
CN216414015U (en) Rotating electrical machine
TWI814163B (en) rotating electrical machine
WO2022054302A1 (en) Rotating electric machine
WO2023171488A1 (en) Rotor and rotating electric machine
US20240063671A1 (en) Rotor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21888875

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180075014.8

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21888875

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP