WO2022095272A1 - 一种高性能难变形金属精密无缝管材制备方法 - Google Patents
一种高性能难变形金属精密无缝管材制备方法 Download PDFInfo
- Publication number
- WO2022095272A1 WO2022095272A1 PCT/CN2021/070206 CN2021070206W WO2022095272A1 WO 2022095272 A1 WO2022095272 A1 WO 2022095272A1 CN 2021070206 W CN2021070206 W CN 2021070206W WO 2022095272 A1 WO2022095272 A1 WO 2022095272A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- metal
- seamless pipe
- diameter
- treatment
- grinding
- Prior art date
Links
- 229910052751 metal Inorganic materials 0.000 title claims abstract description 332
- 239000002184 metal Substances 0.000 title claims abstract description 332
- 238000000034 method Methods 0.000 title claims abstract description 38
- 238000010438 heat treatment Methods 0.000 claims abstract description 124
- 238000000227 grinding Methods 0.000 claims abstract description 111
- 238000005096 rolling process Methods 0.000 claims abstract description 66
- 238000005097 cold rolling Methods 0.000 claims abstract description 49
- 238000001514 detection method Methods 0.000 claims abstract description 27
- 239000000463 material Substances 0.000 claims abstract description 22
- 238000005238 degreasing Methods 0.000 claims abstract description 15
- 239000000047 product Substances 0.000 claims abstract description 15
- 238000004519 manufacturing process Methods 0.000 claims abstract description 14
- 239000000428 dust Substances 0.000 claims abstract description 12
- 238000004513 sizing Methods 0.000 claims abstract description 11
- 238000005498 polishing Methods 0.000 claims abstract description 4
- 230000006698 induction Effects 0.000 claims description 49
- 238000004140 cleaning Methods 0.000 claims description 46
- 239000007787 solid Substances 0.000 claims description 27
- 238000012360 testing method Methods 0.000 claims description 16
- 229910000831 Steel Inorganic materials 0.000 claims description 15
- 239000010959 steel Substances 0.000 claims description 15
- 239000010410 layer Substances 0.000 claims description 14
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 claims description 12
- 239000001257 hydrogen Substances 0.000 claims description 9
- 229910052739 hydrogen Inorganic materials 0.000 claims description 9
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 7
- 238000005452 bending Methods 0.000 claims description 7
- 238000005282 brightening Methods 0.000 claims description 7
- 238000005516 engineering process Methods 0.000 claims description 7
- 230000006835 compression Effects 0.000 claims description 6
- 238000007906 compression Methods 0.000 claims description 6
- 230000007547 defect Effects 0.000 claims description 6
- 238000002791 soaking Methods 0.000 claims description 6
- 238000002844 melting Methods 0.000 claims description 5
- 230000008018 melting Effects 0.000 claims description 5
- 239000013589 supplement Substances 0.000 claims description 5
- 238000013519 translation Methods 0.000 claims description 5
- 230000005674 electromagnetic induction Effects 0.000 claims description 4
- 238000011056 performance test Methods 0.000 claims description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 3
- 230000005540 biological transmission Effects 0.000 claims description 3
- 238000002485 combustion reaction Methods 0.000 claims description 3
- 230000007797 corrosion Effects 0.000 claims description 3
- 238000005260 corrosion Methods 0.000 claims description 3
- 238000009826 distribution Methods 0.000 claims description 3
- 239000004744 fabric Substances 0.000 claims description 3
- 239000011229 interlayer Substances 0.000 claims description 3
- 239000001301 oxygen Substances 0.000 claims description 3
- 229910052760 oxygen Inorganic materials 0.000 claims description 3
- 238000010926 purge Methods 0.000 claims description 3
- 238000010791 quenching Methods 0.000 claims description 3
- 230000000171 quenching effect Effects 0.000 claims description 3
- 238000005070 sampling Methods 0.000 claims description 3
- 230000002195 synergetic effect Effects 0.000 claims description 3
- 238000005496 tempering Methods 0.000 claims description 3
- 150000002431 hydrogen Chemical class 0.000 claims description 2
- 239000000126 substance Substances 0.000 claims description 2
- 238000007689 inspection Methods 0.000 claims 2
- 238000012856 packing Methods 0.000 claims 2
- 238000002360 preparation method Methods 0.000 abstract description 21
- 239000007769 metal material Substances 0.000 abstract description 6
- 238000004806 packaging method and process Methods 0.000 abstract description 5
- 239000012467 final product Substances 0.000 abstract 1
- 238000010408 sweeping Methods 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 14
- 238000012545 processing Methods 0.000 description 5
- 238000005242 forging Methods 0.000 description 4
- 238000011161 development Methods 0.000 description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 238000000137 annealing Methods 0.000 description 2
- 238000010622 cold drawing Methods 0.000 description 2
- 238000010924 continuous production Methods 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 238000001125 extrusion Methods 0.000 description 2
- 238000000265 homogenisation Methods 0.000 description 2
- 238000005461 lubrication Methods 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 238000005554 pickling Methods 0.000 description 2
- 238000004381 surface treatment Methods 0.000 description 2
- 229910000861 Mg alloy Inorganic materials 0.000 description 1
- 229910001182 Mo alloy Inorganic materials 0.000 description 1
- 229910001069 Ti alloy Inorganic materials 0.000 description 1
- 229910001080 W alloy Inorganic materials 0.000 description 1
- 229910001093 Zr alloy Inorganic materials 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 238000011946 reduction process Methods 0.000 description 1
- 239000003870 refractory metal Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21C—MANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
- B21C37/00—Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape
- B21C37/06—Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape of tubes or metal hoses; Combined procedures for making tubes, e.g. for making multi-wall tubes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/25—Process efficiency
Definitions
- the invention relates to metal processing technology, in particular to a method for preparing a high-performance hard-to-deform metal precision seamless pipe.
- metal seamless pipes are widely used in the development of the national economy. With the continuous progress and development of modern science and technology, especially for the application field of seamless steel pipes, higher and higher requirements are placed on the material, size and performance of metal pipes.
- Nickel-based alloys, high-strength steels, titanium alloys, zirconium alloys, molybdenum alloys, tungsten alloys, magnesium alloys and other metal materials are typical representatives of difficult deformation characteristics. It is widely used in many fields such as the nuclear industry and is an important basic material in the field of modern high-end equipment manufacturing.
- the commonly used production processes mainly include: 1Centrifugal casting of hollow billets ⁇ heating ⁇ forging ⁇ cooling ⁇ straightening ⁇ cutting head and tail ⁇ surface turning ⁇ Heating ⁇ homogenization treatment ⁇ surface lubrication treatment ⁇ extrusion ⁇ inner and outer surface treatment ⁇ cold rolling ⁇ annealing ⁇ cold rolling and cold drawing ⁇ heat treatment ⁇ straightening ⁇ pickling ⁇ cleaning; 2 solid billet ⁇ heating ⁇ forging ⁇ cooling ⁇ straightening Straightening ⁇ cutting head and tail ⁇ surface turning ⁇ heating ⁇ homogenization treatment ⁇ surface lubrication treatment ⁇ extrusion ⁇ inner and outer surface treatment ⁇ cold rolling ⁇ annealing ⁇ cold rolling and cold drawing ⁇ heat treatment ⁇ straightening ⁇ pickling ⁇ cleaning; In the early stage of the preparation process, in order to obtain a finer grain size to obtain high plasticity of the metal, it is necessary to carry out multiple forgings, but during the forging process, the hammer head runs slowly and has low efficiency, so it is necessary
- the present invention aims to provide a method for preparing a high-performance hard-to-deform metal precision seamless pipe.
- a method for preparing a high-performance hard-to-deform metal precision seamless pipe comprising the following steps:
- Step 1 Heat treatment: heat treatment of the sized solid metal blank to reduce the metal resistance
- Step 2 Perforation treatment: perform perforation treatment on the heated metal solid blank to transform it into a hollow capillary tube 102;
- Step 3 Grinding outside the capillary: Grinding the outer surface of the hollow capillary;
- Step 4 Grinding in the capillary: Grinding the inner wall of the hollow capillary;
- Step 5 Oil cleaning: cleaning the inner and outer walls of the hollow capillary after grinding;
- Step 6 Straightening treatment: straightening the cleaned hollow capillary tube to eliminate the bending and flattening defects of the hollow capillary tube caused by uneven distribution of metal strain force due to perforation and grinding treatment;
- Step 7 Four-high warm rolling: the straightened hollow capillary tube is subjected to isothermal rolling with large deformation amount by four-high warm rolling to obtain a metal seamless pipe with reduced diameter;
- Step 8 Degrease treatment: Degrease the metal seamless pipe after the diameter reduction;
- Step 9 Bright treatment: brighten the metal seamless pipe after degreasing treatment
- Step 10 Surface grinding treatment: carry out surface grinding treatment on the metal seamless pipe after the bright treatment;
- Step 11 Dust cleaning: clean the dust on the surface-refined metal seamless pipe to obtain high-performance hard-to-deform metal seamless pipe;
- Step 12 Flaw detection: perform ultrasonic flaw detection on the high-performance hard-to-deform metal seamless pipes, and reject the high-performance hard-to-deform metal seamless pipes that fail the test;
- Step 13 Metal structure and performance testing: take samples of high-performance hard-to-deform metal seamless pipes that have passed the flaw detection test and test their metal structure properties; repeat the steps for high-performance hard-to-deform metal seamless pipes that fail the metal structure test. 7 to 13, until qualified high-performance hard-to-deform metal seamless pipes are obtained;
- Step 14 Sizing and packaging: packaging and processing the high-performance hard-to-deform metal seamless pipes that have passed the metal microstructure and performance testing.
- Step Z4 Precision cold rolling: use multi-roll cold rolling technology to perform cold rolling treatment with small deformation on the heat-treated metal seamless pipe to obtain a reduced-diameter metal seamless pipe with high dimensional accuracy and finer grain size. ; and when the metal seamless pipe obtained after completing step Z4 does not meet the specifications and performance requirements of the high-performance hard-to-deform metal seamless pipe, repeat steps Z3 and Z4 in sequence for more than 1 time until the specifications and performance are obtained. of metal seamless pipes.
- Step Z1 Warm drawing and diameter reduction: electromagnetic induction heating and warm drawing shrinkage are used for the diameter-reduced metal seamless pipe 103 to achieve diameter and wall reduction treatment with diameter reduction as the main factor and wall reduction as a supplement, so as to obtain warm drawing Reduced diameter metal seamless pipe;
- Step Z2 Warm drawing to reduce the wall diameter and expand the diameter: when the metal seamless pipe after warm drawing and reducing the diameter does not meet the production requirements, it is drawn and expanded under the condition of electromagnetic induction heating to reduce the temperature.
- the wall-dominant and diameter-reducing supplementary wall-reducing and diameter-enlarging process is used to obtain a metal seamless pipe after temperature expansion and diameter reduction;
- steps Z1 and Z2 When choosing to add any one or both of steps Z1 and Z2, if the obtained metal seamless pipe after warm drawing and diameter reduction or warm expansion and diameter reduction does not meet the requirements of reducing diameter and wall treatment, then step Z1 , Any one or two steps in Z2 are repeated more than once until a metal seamless pipe that meets the requirements of reducing diameter and wall is obtained, and then steps Z3 and Z4 are performed;
- Step Z4 Precision cold rolling: use multi-roll cold rolling technology to perform cold rolling treatment with small deformation on the heat-treated metal seamless pipe to obtain a reduced-diameter metal seamless pipe with high dimensional accuracy and finer grain size. ;
- step Z4 When the metal seamless pipe obtained after completing step Z4 does not meet the specifications and performance requirements of the high-performance hard-to-deform metal seamless pipe, repeat steps Z3 and Z4 in sequence for more than one time until a metal whose specifications and properties meet the requirements are obtained seamless tubing.
- the heating treatment in the step 1 is to transport the solid metal blank of a certain size into the heating furnace 1 by means of the furnace bottom roller table 11, and the furnace flame nozzles 12 are arranged in the heating furnace 1 in the form of two upper and lower layers and four groups.
- the heating temperature is set according to the metal properties of the solid metal blank, and the error between the actual temperature and the set temperature during the heating process is ⁇ 10 °C;
- the solid metal has a large resistance and is difficult to deform, and needs to be heated.
- the solid metal blanks can be transported into the furnace body by grouping by means of the bottom rollers.
- the flame nozzles are arranged in two layers and four groups.
- the piercing treatment in the step 2 is to pierce the heated metal solid blank by using a large rolling angle piercing to transform it into a hollow capillary tube; the large rolling angle piercing is to pierce the upper cylindrical roller and the lower drum
- the two rolls of the shaped roll rotate in opposite directions, bite into the solid metal blank, and under the action of the pulling force of the rolls, contact with the rotating plug to form a cavity in the middle of the metal solid blank to obtain a hollow capillary; among which the metal solid blank
- the total deformation and compression amount is 10% to 25%, the compression amount before the plug is: 3% to 12%, and the cone angle of the roll is: 12° to 25°.
- the outer surface of the capillary tube in the step 3 is to use a grinding wheel to grind the outer surface of the hollow capillary tube to eliminate the helical joints on the surface of the tube blank caused by the iron oxide scale and perforation treatment on the outer surface.
- the head is divided into large-grained coarse grinding wheel grinding head, medium-grained abrasive cloth grinding head and fine-grained grinding wheel grinding head.
- the fine-grain grinding wheel is used for polishing the surface of the hollow capillary tube.
- the grinding thickness of the grinding head 3 of the grinding wheel is 0.1mm ⁇ 10mm. After grinding, the roundness error of the product is 0 ⁇ 0.05mm, the hole diameter deviation is ⁇ 0.01mm, and the surface smoothness Reaching the Ra0.2 standard; the grinding process outside the capillary is reciprocating.
- the inner grinding of the steel pipe in the step 4 is to use the steel wire grinding head to carry out grinding treatment on the inner wall of the hollow capillary tube, so as to eliminate the problems of warping skin and interlayer caused by the iron oxide scale and perforation treatment on the inner surface.
- the grinding thickness is 0.1mm to 5mm, and the diameter of the steel wire of the steel wire grinding head 4 is less than or equal to 0.1mm;
- the oil stain cleaning in the step 5 is to immerse the hollow capillary in the alkaline cleaning solution to clean the inner and outer walls, so as to wash off the grinding head grit, metal burrs and oil stains on its surface; the number of times the hollow capillary is turned in the alkaline cleaning solution It is 3 to 5 times, the soaking time is 5 to 10 minutes, and the pH value of the alkaline cleaning solution is 8 to 10.
- straightening treatment is performed on the cleaned hollow capillary; specifically, the composite straightening treatment is performed by using an oblique straightening, or a synergistic method of pressure straightening and oblique straightening;
- the composite straightening treatment is performed by using an oblique straightening, or a synergistic method of pressure straightening and oblique straightening;
- pressure straightening eliminates the bending deflection of the hollow capillary, the oblique straightening eliminates the flattening deformation of the hollow capillary, and at the same time eliminates the residual stress of the pipe;
- the oblique straightening is the use of oblique straightening.
- the rotary pressure head of the straightening device is in inclined and rotating contact with the hollow capillary tube.
- the pressure type straightening is to use the movable pressure head of the pressure type straightening device to contact the hollow capillary tube vertically. 0 ⁇ 0.1mm, straightness ⁇ 0.3mm/m.
- the straightened hollow capillary is treated with four-roll warm rolling; specifically, the third induction heating device is used to heat the straightened hollow capillary tube, according to the standard of the metal seamless pipe.
- the optimum hot working temperature determines the optimum temperature for warm rolling, the optimum temperature for warm rolling is preferably 50% to 70% of the optimum hot working temperature for metal seamless pipes, the induction heating time is less than or equal to 30S, and then the four-high rolling mill is used for rolling,
- the four-high rolling mill uses four vertically arranged rolls and a set of mandrels with tapered surfaces to form a roll forming unit. Among the four rolls, the uppermost and the lowermost rolls are work rolls, and the rolls located in the middle two are work rolls.
- the roll of the layer is a support roll with a continuous conical section pass.
- the hollow capillary tube is placed in the two support rolls and forms a closed deformation pass with the mandrel.
- the hollow capillary undergoes plastic deformation in the deformation pass, and the amount of deformation is not More than 50%, at the same time, the metal grains of the hollow capillary tube are fragmented, and the grain size reaches grade 4-9; during the whole rolling process, the horizontal translation of the upper and lower two rolling work rolls rotates in reverse at the same time, while the two The backup rolls are driven by passive transmission and are always attached to the surface of the work rolls.
- the four rolls cooperatively push the hollow capillary 102 to extend longitudinally.
- the mandrel rotates and feeds the pipe, and the core
- the rotation angle of the rod is 0° ⁇ 75°
- the feeding amount of the pipe is 0-10mm
- the maximum deformation of the hollow capillary can be achieved by 50%, and the grain size of the metal pipe can reach grades 5-7.
- the third induction heating device The induction heating temperature range of 74 is 0°C to 1600°C.
- the specific induction heating temperature is set according to the melting point temperature of the hollow capillary tube.
- the degreasing treatment is to perform degreasing treatment on the diameter-reduced metal seamless pipe; specifically, the reduced-diameter metal seamless pipe is immersed in an alkaline cleaning solution for cleaning treatment, so as to wash away the oil stains on its surface, Among them, the number of turns of the pipe is 3 to 5 times, the soaking time is 5 to 10 minutes, and the pH value of the alkaline cleaning solution is 8 to 10.
- the warm drawing and diameter reduction of the step Z1 is specifically: using the first induction heating device to heat the metal seamless pipe after the diameter reduction, and the heating temperature is controlled at 50°C of the optimal hot working temperature of the metal seamless pipe. % ⁇ 70%, the induction heating time is ⁇ 30S, and plastic deformation occurs in the drawing die to realize the diameter reduction and wall reduction treatment with diameter reduction as the main factor and wall reduction as the supplement, and the metal after warm drawing and diameter reduction is obtained.
- the taper angle of the necking core head of the drawing die is 5° to 25°, and the length of the core head sizing belt is 3 to 50% of the diameter of the metal seamless pipe;
- the single-pass diameter expansion capability can achieve no metal
- the diameter of the seamless pipe is 0-25%, and the amount of wall reduction in a single pass is -10%-+15% of the wall thickness of the metal seamless pipe;
- the induction heating temperature range of the first induction heating device is 0°C to 1600°C, Dynamically adjust settings according to the melting point temperature of metal seamless pipes.
- the warm-drawing, wall-reducing and diameter-expanding in the step Z2 is specifically: using the second induction heating device to heat the metal seamless pipe after warm-drawing and reducing the diameter, and the heating temperature is controlled at 50% of the optimal hot working temperature of the metal seamless pipe. ⁇ 70%, the induction heating time is ⁇ 30S, and plastic deformation occurs in the expansion die head to realize the wall reduction and diameter expansion treatment with wall reduction as the main and diameter reduction as the auxiliary, and the metal after temperature expansion and diameter reduction is obtained.
- the core head mold cone angle of the expanding die head is 5° ⁇ 25°, and the length of the core head sizing belt is 10mm ⁇ 300mm; the single-pass expansion capacity can achieve 0 ⁇ 20% of the diameter of the metal seamless pipe.
- the amount of wall reduction in a single pass is 0-15% of the wall thickness of the metal seamless pipe;
- the induction heating temperature range of the second induction heating device is 0 °C ⁇ 1600 °C, which is dynamically adjusted according to the melting point temperature of the metal seamless pipe set up.
- the heat treatment of the step Z3 includes quenching and tempering processes, the heat treatment is to transport the metal seamless pipe after the diameter reduction into the heating furnace by means of the furnace bottom roller table 11, and the furnace flame nozzle uses the upper and lower layers.
- Four groups are arranged in the heating furnace to ensure uniform heating of the pipes.
- the heating temperature and holding time are set according to the metal properties of the metal seamless pipes.
- the grain size of the metal seamless pipes reaches 4 to 7 grades. Residual stress ⁇ 50MPa; During heat treatment, the error between the actual temperature and the set temperature is ⁇ 10°C.
- the precision cold rolling in step Z4 is to use a multi-roll cold rolling mill for cold rolling.
- the rolls have the same shape and size, and the metal seamless pipes after warm drawing, warm expansion and heat treatment are placed in multiple rolls, and they form a closed loop with a set of rolling mandrels.
- Deformed pass the metal seamless pipe undergoes plastic deformation in the deformed pass, and at the same time the metal grains of the metal seamless pipe are fragmented; during the whole rolling process, the horizontal translation of the roll rotates in reverse at the same time, pushing the metal
- the seam pipe extends longitudinally, and at the rolling limit position of multiple rolls, the rolling mandrel rotates, and the metal seamless pipe is fed in.
- the rotation range of the rolling mandrel is 0° to 60°.
- the feeding amount is 0-3mm; after multi-roll precision cold rolling, the maximum deformation of the metal seamless pipe reaches 20%, the grain size of the metal pipe reaches 7-9 grades, the wall thickness tolerance is ⁇ 5%, and the outer diameter is round.
- High-performance precision metal seamless pipes with degree error 0 ⁇ 0.05mm, wall thickness unevenness ⁇ 5%, straightness ⁇ 0.15mm/m; the rolls in the multi-roll cold rolling mill are three, four, five one or six.
- the metal seamless pipe after the degreasing treatment is subjected to bright treatment; specifically, the metal seamless pipe after the degreasing treatment is entered into the bright cleaning furnace by means of the furnace bottom conveyor belt,
- the furnace nozzles are arranged in the bright cleaning treatment furnace in the form of two upper and lower layers and four groups to ensure that the metal seamless pipe is heated evenly;
- the bright cleaning treatment furnace is connected with a hydrogen generating device, and the hydrogen generating device generates hydrogen, And the combustion reaction with oxygen provides heat energy for the bright cleaning furnace.
- the surface grinding treatment is to carry out surface grinding treatment on the brightly treated metal seamless pipe; specifically, the outer surface of the brightly treated metal seamless pipe is subjected to grinding treatment with a fine-grained grinding wheel grinding head, so as to obtain a smooth surface. Eliminate the surface quality problems of the metal pipe caused by the oxide film on the surface and the pass process.
- the thickness of the surface grinding treatment is 0.1mm-1mm, the roundness error of the metal seamless pipe after grinding is 0.01-0.02mm, and the hole diameter deviation is ⁇ 0.01mm , the surface finish reaches Ra0.2 standard;
- dust cleaning is to clean the dust of the surface-refined metal seamless pipe; specifically, the inner and outer walls of the surface-refined seamless metal pipe are treated with a negative pressure purging device, and the surface grinding head is sucked away. Gravel, metal burrs.
- the flaw detection in step 12 is to use an eddy current flaw detection device to perform ultrasonic testing on the surface of the obtained high-performance, hard-to-deform metal seamless pipe, so as to obtain the result of the large deformation of the metal seamless pipe. Crack defects, remove unqualified high-performance and difficult-to-deform metal seamless pipes;
- the metal structure and performance detection in the step 13 is to use physical detection and chemical detection methods to sample the high-performance and difficult-to-deform metal seamless pipes that have passed the flaw detection test, analyze their mechanical properties, grain size, corrosion resistance, and evaluate the metal pipes. For the high-performance hard-to-deform metal seamless pipe that fails the metal structure and performance test, repeat steps 7 to 12 until a qualified high-performance hard-to-deform metal seamless pipe is obtained.
- the present invention has the following beneficial effects:
- Fig. 1 is the flow chart of the present invention
- Fig. 2 is the principle schematic diagram of the heat treatment in step 1 of the present invention.
- Fig. 3 is the principle schematic diagram of adopting large rolling angle perforation in step 2 of the present invention.
- Fig. 4 is the principle schematic diagram of the outer grinding of capillary tube in step 3 of the present invention.
- Fig. 5 is the principle schematic diagram of grinding in the capillary tube of step 4 of the present invention.
- Fig. 6 is the structural representation of the straightening process of step 6 of the present invention.
- Fig. 7 is the principle schematic diagram of the four-roll cold rolling in step 7 of the present invention.
- Fig. 8 is a schematic diagram of the principle of warm drawing and diameter reduction in step Z1 of the present invention.
- Fig. 9 is the schematic diagram of the principle of step Z2 of the present invention for warm drawing, wall reduction and diameter expansion;
- Fig. 10 is the principle schematic diagram of step Z3 heat treatment of the present invention.
- FIG. 11 is a schematic diagram of the principle of multi-roll cold rolling of precision cold rolling in step Z4 of the present invention.
- FIG. 12 is a schematic diagram of the six-high cold rolling principle of step Z4 precision cold rolling of the present invention.
- Fig. 13 is the principle schematic diagram of step 9 bright processing of the present invention.
- step 10 is a schematic diagram of the principle of surface grinding treatment in step 10 of the present invention.
- step 11 of the present invention is a schematic diagram of the principle of dust cleaning in step 11 of the present invention.
- FIG. 16 is a schematic diagram of the principle of flaw detection in step 12 of the present invention.
- 1-furnace body 11-furnace bottom roller table, 12-furnace flame nozzle, 101-metal solid blank, 21-upper cylindrical roller, 22-lower cylindrical roller, 23-head, 102-hollow capillary, 3-grinding wheel grinding head, 4-steel wire grinding head, 61-active indenter, 62-rotating indenter, 71-mandrel, 72-work roll, 73-backup roll, 74-third induction heating device, 103-variable Diametered metal seamless pipe, 81-first induction heating device, 82-drawing die, 83-second induction heating device, 84-diameter expansion die, 85-roller, 86-rolling mandrel, 91- Furnace bottom conveyor belt, 92-furnace nozzle, 93-hydrogen generating device, 111-negative pressure purging device, 121-eddy current flaw detection device.
- a method for preparing a high-performance hard-to-deform metal precision seamless pipe includes the following steps:
- Step 1 Heat treatment: heat treatment of the sized solid metal blank 101 to reduce the metal resistance; specifically, the sized solid metal blank 101 is transported into the furnace body 1 by means of the furnace bottom roller table 11, and the furnace flame nozzle 12 is arranged in the furnace body 1 in the form of two upper and lower layers and four groups.
- the heating temperature is set according to the metal properties of the metal solid blank 101.
- the error between the actual temperature and the set temperature during the heating process is ⁇ 10°C.
- Step 2 Perforation treatment: The heat-treated metal solid blank 101 is perforated by piercing with a large rolling angle to convert it into a hollow capillary tube 102; The two rollers of the cylindrical roller 22 rotate in opposite directions, bite into the solid metal blank 101, and under the action of the pulling force of the rollers, contact with the rotating plug 23 to form a cavity in the middle of the solid metal blank 101, thereby obtaining a hollow capillary tube 301; wherein the total deformation and compression of the metal solid blank 101 is 10% to 25%, the compression amount before the plug is 3% to 12%, and the taper angle of the roll is 12° to 25°.
- Step 3 Grinding the outer surface of the capillary tube: carry out grinding treatment on the outer surface of the hollow capillary tube 102; specifically, the outer surface of the hollow capillary tube 102 is subjected to grinding treatment by using the grinding wheel grinding head 3 to eliminate the damage caused by the iron oxide scale and perforation treatment on the outer surface of the capillary tube.
- Spiral section on the surface of the tube blank the outer grinding wheel grinding head is divided into large particle coarse grinding wheel grinding head, medium grain abrasive cloth grinding head and fine grain grinding wheel grinding head. It is used for grinding the metal burrs left by the rough grinding head, and the fine-grain grinding wheel is used for polishing the surface of the hollow capillary. ⁇ 0.05mm, the aperture deviation is ⁇ 0.01mm, and the surface finish reaches the Ra0.2 standard.
- Step 4 Grinding in the capillary tube: carry out grinding treatment on the inner wall of the hollow capillary tube 102; specifically, the inner wall of the hollow capillary tube 102 is repaired and ground by using the steel wire grinding head 4 to eliminate the warping skin caused by the iron oxide scale and the perforation treatment on the inner surface of the capillary tube. , interlayer problem, the grinding thickness of the hard grinding wheel grinding head is 0.1mm ⁇ 5mm, and the steel wire diameter of the steel wire grinding head 4 is ⁇ 0.1mm.
- Step 5 Oil pollution cleaning: cleaning the inner and outer walls of the hollow capillary 102 after grinding; immersing the hollow capillary 102 in an alkaline cleaning solution to clean the inner and outer walls to wash off the grinding head grit, metal burrs and oil stains on the surface of the hollow capillary 102 ;
- the number of turns of the hollow capillary 102 in the alkaline cleaning solution is 3 to 5 times, the soaking time is 5 to 10 minutes, and the pH value of the alkaline cleaning solution is 8 to 10.
- Step 6 Straightening treatment: perform straightening treatment on the cleaned hollow capillary 102 to eliminate the bending and flattening defects of the hollow capillary 102 caused by uneven distribution of metal strain force due to perforation and grinding; Combined straightening treatment is carried out in the form of vertical straightening, or the synergistic method of pressure straightening and oblique straightening; for hollow capillaries 102 with a diameter less than 350 mm and a ratio of diameter to wall thickness greater than 25, oblique straightening is used to eliminate the deflection of the hollow capillary.
- Straightening eliminates the flattening deformation of the hollow capillary tube, and at the same time eliminates the residual stress of the pipe; the oblique straightening is to use the rotary indenter 62 of the oblique straightening device and the hollow capillary 102 to be in inclined and rotating contact, and the pressure straightening is to use
- the movable indenter 61 of the pressure straightening device is in vertical contact with the hollow capillary tube 102, and the roundness error of the outer diameter of the hollow capillary tube 102 after straightening treatment is 0-0.2 mm, and the straightness is less than or equal to 0.3 mm/m.
- Step 7 Four-high warm rolling: use four-high warm rolling on the straightened hollow capillary 102 to perform isothermal rolling and cold rolling with a large deformation amount to obtain a metal seamless pipe 103 with a reduced diameter; specifically, using the third induction
- the heating device 74 increases the temperature of the hollow capillary 102 after the straightening treatment, and the optimal temperature for warm rolling is 50% to 70% of the optimal hot working temperature of the metal seamless pipe 103, and then uses a four-high rolling mill for rolling.
- the rolling mill uses four vertically arranged rolls and a group of mandrels 71 with tapered surfaces to form a roll forming unit. Among the four rolls, the uppermost and lowermost rolls are the work rolls 72, and the rolls located in the middle two layers are the work rolls 72.
- the roll is a support roll 73 with a continuous tapered cross-section pass.
- the hollow capillary 102 is placed in the two support rolls 73, forming a closed deformation pass with the mandrel 71.
- the hollow capillary 102 undergoes plastic deformation in the deformation pass.
- the amount of deformation does not exceed 50%, and at the same time, the metal grains of the hollow capillary tube 102 are fragmented, and the grain size reaches grades 4-9; during the entire rolling process, the horizontal translation of the upper and lower rolling work rolls 72 is reversed at the same time.
- Step 8 Degreasing treatment: soak the reduced diameter metal seamless pipe 103 in an alkaline cleaning solution for cleaning treatment to wash away the oil stains on its surface, wherein the number of times the pipe is turned over is 3 to 5 times, and the soaking time is 5 to 10 minutes , the pH value of the alkaline cleaning solution is 8 to 10.
- Step 9 Brightening treatment: perform brightening treatment on the metal seamless pipe 103 after the degreasing treatment; specifically, the metal seamless pipe 103 after degreasing
- the nozzles 92 are arranged in the bright removal treatment furnace 9 in the form of two upper and lower layers and four groups, so as to ensure that the metal seamless pipe is heated evenly; the bright removal treatment furnace 9 is connected with the hydrogen generation device 93, and the hydrogen generation device 93 produces hydrogen gas, and undergoes a combustion reaction with oxygen to provide thermal energy for the bright cleaning furnace 9 .
- Step 10 Surface grinding treatment: perform surface grinding treatment on the polished metal seamless pipe 103; specifically, use a fine-grained grinding wheel grinding head 3 to perform grinding treatment on the outer surface of the polished metal seamless pipe 103 , in order to eliminate the surface quality problems of the metal pipe caused by the oxide film on the surface and the pass process, the thickness of the surface grinding treatment is 0.1mm-1mm, the roundness error of the metal seamless pipe after grinding is 0.01-0.02mm, and the hole diameter deviation ⁇ 0.01mm, the surface finish reaches Ra0.2 standard.
- Step 11 Dust cleaning: perform dust cleaning on the metal seamless pipe 103 after surface grinding to obtain a high-performance and hard-to-deform metal seamless pipe 103;
- the inner and outer walls of the seam pipe 103 are processed to absorb the surface grinding head grit and metal burrs.
- Step 12 Flaw detection: use the eddy current flaw detection device 121 to carry out ultrasonic flaw detection on the surface of the high-performance and hard-to-deform metal seamless pipe 103 to obtain crack defects generated by the metal seamless pipe under the condition of large deformation. Qualified high-performance hard-to-deform metal seamless pipe 103.
- Step 13 Metal structure and performance detection: sampling and testing the metal structure and performance of the high-performance, hard-to-deform metal seamless pipe 103 that has passed the flaw detection test; Sampling the metal seamless pipe 103, analyze its mechanical properties, grain size, corrosion resistance, evaluate the performance of the metal pipe, and check the high-performance and hard-to-deform metal seamless pipe 103 that fails the metal structure performance test, and repeat the steps. 7 to 12, until a qualified high-performance hard-deformable metal seamless pipe 103 is obtained.
- Step 14 Sizing and packaging processing: packaging and processing the high-performance and hard-to-deform metal seamless pipes 103 that have passed the metal structure and performance testing.
- the preparation method of this embodiment is suitable for the diameter of ⁇ 15mm ⁇ 800mm, the wall thickness of 3mm ⁇ 30mm, the grain size of 5 ⁇ 7 grades, the obtained wall thickness tolerance is less than or equal to 7%, the outer diameter roundness error is 0 ⁇ 0.1mm, and the wall thickness is uneven.
- the ratio of the diameter D to the wall thickness h of the diameter-reduced metal seamless pipe 103 obtained after completing step 7 in the preparation method of Example 1 is 10 ⁇ D/h ⁇ 15
- steps 8-14 are performed to constitute the high-performance hard-deformable metal precision seamless pipe preparation method of this embodiment, which specifically includes the following steps:
- steps 1-7 The content of steps 1-7 is the same as that of embodiment 1.
- Heat treatment heat treatment of the reduced diameter metal seamless pipe 103; the heat treatment includes quenching and tempering processes.
- the furnace flame nozzles 12 are arranged in the heating furnace 1 in the form of two upper and lower layers and four groups, and the heating temperature and holding time are set according to the metal properties of the metal seamless pipe 103.
- the particle size reaches 4 to 7 grades, and the residual stress is less than or equal to 50MPa; during the heat treatment process, the error between the actual temperature and the set temperature is ⁇ 10 °C;
- Step Z4 Precision cold rolling: the heat-treated metal seamless pipe 103 is cold-rolled with a small deformation amount by using a multi-roll cold rolling mill to obtain a reduced-diameter metal seamless pipe with high dimensional accuracy and finer grain size. 103; and when the metal seamless pipe obtained after completing step Z4 does not meet the specifications and performance requirements of the high-performance hard-to-deform metal seamless pipe 103, repeat steps Z3 and Z4 in sequence for more than 1 time, until the specifications and properties are obtained. Metal seamless pipes 103 that meet the requirements.
- the precision cold rolling in step Z4 is to use a six-high cold rolling mill for cold rolling, and the four-high cold rolling mill includes six rolls 85 with a pass pattern uniformly distributed in the circumferential direction and a group of rolling rolls with a conical surface.
- the mandrel 86 has the same external dimensions of the pass, and the metal seamless pipe 103 after warm drawing, temperature expansion, diameter reduction and heat treatment is placed in the six rolls 85, and forms a closed deformation with a set of rolling mandrels 86 Pass shape, the metal seamless pipe 103 undergoes plastic deformation in the deformed pass, and at the same time the metal grains of the metal seamless pipe 103 are fragmented; during the entire rolling process, the horizontal translation of the roll 85 simultaneously reverses rotation, pushing The metal seamless pipe 103 extends in the longitudinal direction, and at the rolling limit position of the six rolls 85, the rolling mandrel 86 rotates, and the metal seamless pipe 103 is fed, and the rotation range of the rolling mandrel is 0° ⁇ 60°, the
- the precision cold rolling in this embodiment can also be three Roll, four-high or five-high cold rolling mill.
- steps 8-14 are the same as those in Embodiment 1.
- the preparation method of this embodiment is suitable for preparing a diameter of ⁇ 3mm to ⁇ 800mm, a wall thickness of 1mm to 20mm, a metal pipe grain size of 7 to 9 grades, a wall thickness tolerance of ⁇ 5%, an outer diameter roundness error of 0 to 0.05mm, High-performance hard-to-deform metal precision seamless pipe with wall thickness unevenness ⁇ 5% and straightness ⁇ 0.15mm/m.
- the ratio of the diameter D to the wall thickness h of the diameter-reduced metal seamless pipe 103 obtained after completing step 7 in the preparation method of Example 2 is D/h ⁇ 10 and needs to be When focusing on the plastic deformation of reducing the diameter and reducing the wall a little, before implementing the step Z3, add the step Z1 to constitute the high-performance hard-deformable metal precision seamless pipe preparation method of this embodiment, which specifically includes the following steps:
- steps 1-7 The content of steps 1-7 is the same as that of embodiment 2.
- Warm drawing and diameter reduction use the first induction heating device 81 to heat the diameter-reduced metal seamless pipe 103 , and the heating temperature is controlled at 50% to 70% of the optimal hot working temperature of the metal seamless pipe 103
- the induction heating time is less than or equal to 30S, and plastic deformation occurs in the drawing die 82 to realize the diameter reduction and wall reduction treatment with diameter reduction as the main factor and wall reduction as the supplement, and obtain the metal seamless pipe after warm drawing and diameter reduction.
- the taper angle of the necked core head of the drawing die 82 is 5° to 25°, and the length of the core head sizing belt is 3% to 50% of the diameter of the metal seamless pipe;
- the diameter of the seamless pipe is 0 to 25%, and the wall thickness reduction per pass is -10% to +15% of the wall thickness of the metal seamless pipe 103;
- the induction heating temperature range of the first induction heating device 81 is 0°C ⁇ 1600°C;
- step Z1 is repeated more than once until a metal seamless pipe 103 that meets the requirements for diameter reduction and wall reduction is obtained, and then the Steps Z3 and Z4;
- steps Z3-Z4 and steps 8-14 are the same as those in the second embodiment.
- the preparation method of this embodiment is suitable for preparing the diameter of ⁇ 3mm ⁇ 600mm, the wall thickness of 1mm ⁇ 20mm, the grain size of metal pipes reaching 7 ⁇ 9 grades, the wall thickness tolerance ⁇ 5%, the outer diameter roundness error being 0 ⁇ 0.05mm, High-performance hard-to-deform metal precision seamless pipe with wall thickness unevenness ⁇ 5% and straightness ⁇ 0.15mm/m.
- the ratio of the diameter D to the wall thickness h of the diameter-reduced metal seamless pipe 103 obtained after step 7 in the preparation method of Example 2 is D/h ⁇ 10 and needs to be When focusing on the plastic deformation of reducing the wall and reducing the diameter a little, and before implementing the step Z3, step Z2 is added to constitute the high-performance hard-deformable metal precision seamless pipe preparation method of this embodiment, which specifically includes the following steps:
- steps 1-7 The content of steps 1-7 is the same as that of embodiment 2.
- Step Z2 Warm-drawn and reduced-diameter diameter expansion: when the wall-reduction amount of the metal seamless pipe 103 after warm-drawn and reduced-diameter does not meet the production requirements, the second induction heating device 83 is used for the warm-drawn and reduced-diameter metal seamless pipe 103 .
- 103 is heated and heated, the heating temperature is controlled at about 50% to 70% of the optimal hot working temperature of the metal seamless pipe 103, the induction heating time is ⁇ 30S, and plastic deformation occurs in the expanding die 84 to achieve wall reduction.
- the wall-reducing and diameter-reducing treatment as the main and the auxiliary diameter-reduction process is used to obtain the metal seamless pipe 103 after temperature expansion and diameter reduction.
- the length of the belt is 10mm to 300mm; the diameter expansion capacity of a single pass can achieve 0 to 20% of the diameter of the metal seamless pipe 103, and the single pass wall reduction is 0 to 15% of the wall thickness of the metal seamless pipe 103;
- the induction heating temperature range of the second induction heating device 83 is 0°C to 1600°C.
- step Z2 When the obtained metal seamless pipe after thermal expansion and diameter reduction does not meet the requirements of diameter reduction and wall reduction, repeat step Z2 more than once until a metal seamless pipe 103 that meets the requirements for diameter reduction and wall reduction is obtained, and then Proceed to steps Z3 and Z4;
- steps Z3-Z4 and steps 8-14 are the same as those in the second embodiment.
- the preparation method of this embodiment is suitable for preparing a diameter of ⁇ 15mm to ⁇ 800mm, a wall thickness of 1mm to 20mm, a metal pipe grain size of 7 to 9 grades, a wall thickness tolerance of ⁇ 5%, an outer diameter roundness error of 0 to 0.05mm, High-performance hard-to-deform metal precision seamless pipe with wall thickness unevenness ⁇ 5% and straightness ⁇ 0.15mm/m.
- steps Z1 and Z2 are added to constitute the high-performance hard-deformable metal precision seamless pipe preparation method of this embodiment, which specifically includes the following steps:
- steps 1-7 The content of steps 1-7 is the same as that of embodiment 2.
- Warm drawing and diameter reduction use the first induction heating device 81 to heat the diameter-reduced metal seamless pipe 103 , and the heating temperature is controlled at 50% to 70% of the optimal hot working temperature of the metal seamless pipe 103
- the induction heating time is less than or equal to 30S, and plastic deformation occurs in the drawing die 82 to realize the diameter reduction and wall reduction treatment with diameter reduction as the main factor and wall reduction as the supplement, and obtain the metal seamless pipe after warm drawing and diameter reduction.
- the taper angle of the necked core head of the drawing die 82 is 5° to 25°, and the length of the core head sizing belt is 3 to 50% of the diameter of the metal seamless pipe; 0 to 25% of the diameter of the seamless pipe, and the wall thickness reduction per pass is -10% to +15% of the wall thickness of the metal seamless pipe 103;
- the induction heating temperature range of the first induction heating device 81 is 0°C to 1600°C °C;
- Step Z2 Warm-drawing and reducing the wall diameter and expanding the diameter: when the metal seamless pipe 103 after warm-drawing and reducing the diameter has a wall-reducing amount that does not meet the production requirements, the second induction heating device 83 is used for the metal seamless pipe after warm-drawing and reducing the diameter. 103 is heated and heated, and the heating temperature is controlled at about 50% to 70% of the melting point temperature of the metal seamless pipe 103, and the induction heating time is less than or equal to 30S, and plastic deformation occurs in the expanding die head 84 to achieve wall reduction.
- the wall-reducing and diameter-reducing process supplemented by diameter reduction can obtain a metal seamless pipe 103 after temperature expansion and diameter reduction, wherein the core head mold cone angle of the diameter expansion die 84 is 5° to 25°, and the length of the core head sizing belt is 10mm to 300mm; the single-pass diameter expansion capability can achieve 0-20% of the diameter of the metal seamless pipe 103, and the single-pass wall reduction is 0-15% of the wall thickness of the metal seamless pipe 103; the second induction heating The induction heating temperature range of the device 83 is 0°C to 1600°C.
- steps Z1 and Z2 are repeated in sequence until a material that meets the requirements of diameter reduction and wall reduction is obtained.
- Metal seamless pipe 103 and then proceed to steps Z3 and Z4; when the metal seamless pipe obtained after completing step Z4 does not meet the specifications and performance requirements of high-performance hard-to-deform metal seamless pipe 103, repeat steps Z3 and Z4 in sequence More than once, until the metal seamless pipe 103 whose specifications and properties meet the requirements is obtained.
- steps Z3-Z4 and steps 8-14 are the same as those in the second embodiment.
- the preparation method of this embodiment is suitable for preparing the diameter of ⁇ 3mm ⁇ 600mm, the wall thickness of 0.5mm ⁇ 10mm, the grain size of metal pipes reaching 7 ⁇ 9 grades, the wall thickness tolerance is ⁇ 5%, and the outer diameter roundness error is 0 ⁇ 0.05mm , Wall thickness unevenness ⁇ 5%, straightness ⁇ 0.15mm/m high-performance hard-to-deform metal precision seamless pipe.
- the optimal temperature for warm rolling can be selected according to the data in Table 1. Large rolling angle piercing, four-high warm rolling, warm drawing diameter reduction, warm drawing wall reduction and diameter expansion, precision cold rolling steps combined with difficult-to-deform metal precision seamless pipe material, specification requirements (diameter, wall thickness, grain size, error) to determine the specific production parameters within the above corresponding numerical range.
- Table 1 lists only several more commonly used metal materials, and the preparation method of the multi-high performance refractory metal precision seamless pipe of the present invention is not limited to the selection of the materials listed in the table.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Heat Treatment Of Articles (AREA)
- Metal Extraction Processes (AREA)
Abstract
一种高性能难变形金属精密无缝管材制备方法,包括以下步骤:加热处理、穿孔处理、毛管外修磨、毛管内修磨、矫直处理、四辊温轧、温拔减径、温拔减壁扩径、精密冷轧、去油脂处理、光亮处理、表面修磨处理、灰尘清扫、探伤检测、金属组织性能检测、定尺、包装处理。利用温拔减径、温拔减壁扩径、精密冷轧步骤多次循环,实现产品尺寸精度、表面质量、材料性能、晶粒度等关键指标的协同控制,可以获得精度较高、性能更优、极限规格更突出的产品,满足不同难变形金属材料材质、不同成品规格的产品需要,灵活应对不同材料特性金属管材产品的制备;而且提高生产效率,有效降低生产成本。
Description
本发明涉及金属加工技术,具体涉及一种高性能难变形金属精密无缝管材制备方法。
金属无缝管材作为一种结构材料和运输工具,在国民经济发展中广泛应用。随着现代科学技术的不断进步和发展,特别是针对无缝钢管的应用领域需求,对金属管材的材质、尺寸规格以及性能提出越来越高的要求。镍基合金、高强钢、钛合金、锆合金、钼合金、钨合金、镁合金等金属材料是难变形特性典型代表,因具备出色的使用性能及寿命周期,在航空航天、海洋工程、武器装备以及核工业等诸多领域得到广泛应用,是现代高端装备制造领域的重要基础材料。以上述金属材料制备高性能难变形金属精密无缝管材,可满足工况苛刻的环境条件,具备显著的高寿命、高性能等特征,需求量逐年增加,随着高端装备的升级换代,更加对上述产品的可靠性、稳定性以及精密性提出了更高的要求。传统制备技术存在生产成本高、效率低、产品性能以及精度低等问题,目前常采用的生产工艺主要包括:①离心浇注空心坯→加热→锻造→冷却→矫直→切除头尾→表面车削→加热→均质化处理→表面润滑处理→挤压→内外表面处理→冷轧→退火→冷轧及冷拔→热处理→矫直→酸洗→清洗;②实心坯料→加热→锻造→冷却→矫直→切除头尾→表面车削→加热→均质化处理→表面润滑处理→挤压→内外表面处理→冷轧→退火→冷轧及冷拔→热处理→矫直→酸洗→清洗;上述两种制备过程初期为了获得较细的晶粒度来获得金属的高塑性,需要开展多次锻造,但锻造过程锤头运行速度较慢,效率低下,因此需要多次入炉进行加热处理以及镦拔处理,而采用冷轧机冷轧成形,因是冷态成形,导致难变形金属变形过程中单道次变形量小、变形道次众多,并且存在减壁量不足等问题,存在工艺灵活性不足的缺点,高效率生产、连续化生产难以实现。
对于上述难变形金属材料的无缝管材,目前能够批量生产且产品质量稳定、工艺稳定性可靠和有连续化生产能力的厂家很少,无法满足当前国民经济发展对多种规格无缝钢管的需求,急需一种全新的精密无缝管材制备方法,满足当前市场的生产需求,实现直径Φ3mm~Φ800mm、壁厚为0.5mm~30mm难变形金属管材的制备需求。
发明内容
针对现有技术中的问题,本发明旨在提供一种高性能难变形金属精密无缝管材制备方法。
为实现上述目的,本发明采用了以下技术方案:
一种高性能难变形金属精密无缝管材制备方法,包括以下步骤:
步骤1.加热处理:将定尺寸后的金属实心原坯加热处理,以降低金属抗力;
步骤2.穿孔处理:对加热处理后的金属实心原坯进行穿孔处理,将其转变为空心毛管102;
步骤3.毛管外修磨:对空心毛管的外表面进行修磨处理;
步骤4.毛管内修磨:对空心毛管的内壁进行修磨处理;
步骤5.油污清洗:对修磨后的空心毛管的内外壁进行清洗处理;
步骤6.矫直处理:对清洗后的空心毛管进行矫直处理,以消除空心毛管因穿孔、修磨处理带来的因金属应变力分布不均导致的弯曲、塌扁缺陷;
步骤7.四辊温轧:对矫直处理后的空心毛管采用四辊温轧进行大变形量等温轧制处理,获得变径后的金属无缝管材;
步骤8.去油脂处理:对变径后的金属无缝管材进行去油脂处理;
步骤9.光亮处理:对去油脂处理后的金属无缝管材进行光亮处理;
步骤10.表面修磨处理:对光亮处理后的金属无缝管材进行表面修磨处理;
步骤11.灰尘清扫:对表面修磨后的金属无缝管材进行灰尘清扫,获得高性能难变形金属无缝管材;
步骤12.探伤检测:对高性能难变形的金属无缝管材进行超声波探伤检测,剔除检测不合格的高性能难变形金属无缝管材;
步骤13.金属组织性能检测:对探伤检测合格的高性能难变形金属无缝管材进行取样并检测其金属组织性能;对金属组织性能检测不合格的高性能难变形金属无缝管材,再重复步骤7至13,直至获得合格的高性能难变形金属无缝管材;
步骤14.定尺、包装处理:对金属组织性能检测合格的高性能难变形金属无缝管材打包处理。
进一步地,当经所述步骤1-7后获得的变径后金属无缝管材的直径D和壁厚h的比值为10≤D/h≤15时,在完成步骤7之后,增加步骤Z3、Z4,然后再进行步骤8-14;
步骤Z3.热处理:对变径后的金属无缝管材进行热处理;
步骤Z4.精密冷轧:对热处理后的金属无缝管材运用多辊冷轧技术进行小变形量冷轧处理,获得管材尺寸精度较高、晶粒度较细的变径后的金属无缝管材;且当完成步骤Z4后获得的金属无缝管材不满足高性能难变形金属无缝管材的规格和性能需求时,将步骤Z3和Z4按顺序重复1次以上,直至获得规格和性能均符合需求的金属无缝管材。
再进一步地,当经所述步骤1-7后获得的变径后金属无缝管材的直径D和壁厚h的比值 D/h<10时,在完成所述步骤7之后,首先增加步骤Z1、Z2中的任意一个或两个步骤进行减径减壁处理;再增加步骤Z3-Z4,最后进行步骤8-14;
步骤Z1.温拔减径:对变径后的金属无缝管材103采用电磁感应加热升温与温拔缩孔,实现以减径为主、减壁为辅的减径减壁处理,获得温拔变径后的金属无缝管材;
步骤Z2.温拔减壁扩径:当温拔变径后的金属无缝管材存在减壁量不满足生产需求时,在电磁感应加热升温的条件下对其进行拉拔扩径,实现以减壁为主、减径为辅的减壁扩径处理,获得温扩变径后的金属无缝管材;
当选择增加步骤Z1、Z2中的任意一个或两个步骤时,若获得的温拔变径或温扩变径后的金属无缝管材不满足减径减壁处理的需求时,则将步骤Z1、Z2中的任意一个或两个步骤重复1次以上,直至获得符合减径减壁需求的金属无缝管材,然后进行步骤Z3和Z4;
步骤Z3.热处理:对变径后的金属无缝管材进行热处理;
步骤Z4.精密冷轧:对热处理后的金属无缝管材运用多辊冷轧技术进行小变形量冷轧处理,获得管材尺寸精度较高、晶粒度较细的变径后的金属无缝管材;
当完成步骤Z4后获得的金属无缝管材不满足高性能难变形金属无缝管材的规格和性能需求时,将步骤Z3和Z4按顺序重复1次以上,直至获得规格和性能均符合需求的金属无缝管材。
更进一步地,所述步骤1的加热处理是将定尺寸的金属实心原坯依靠炉底辊道11输送进入加热炉1内,炉子火焰喷嘴12运用上下两层四组的形式布置于加热炉1内,根据金属实心原坯的金属特性设定加热温度,加热过程中实际温度与设定温度的误差为±10℃;针对定尺后金属实心圆坯,需要让其转变为空心毛管,因冷态金属抗力较大,难以变形,需要进行加热处理,金属实心原坯可以分组依靠炉底辊道输送进入炉体,为了保证管材的受热均匀,火焰喷嘴采用上下两层四组的布置形式。
所述步骤2的穿孔处理是运用大辗轧角穿孔将加热处理后的金属实心原坯进行穿孔处理,将其转变为空心毛管;所述大辗轧角穿孔是将上筒形辊和下筒形辊两个轧辊异向旋转,咬入金属实心原坯,在轧辊的拉拽力作用下,与旋转的顶头接触,在金属实心原坯中间形成孔腔,获得空心毛管;其中金属实心原坯总变形压缩量为10%~25%,顶头前压缩量为:3%~12%,轧辊锥角为:12°~25°。
更进一步地,所述步骤3的毛管外修磨是运用砂轮磨头对空心毛管外表面进行修磨处理,以消除其外表面氧化铁皮与穿孔处理引起的管坯表面螺旋节,所述砂轮磨头分为大颗粒粗磨砂轮磨头、中颗粒砂布磨头与细颗粒砂轮磨头,大颗粒砂轮用于消除空心毛管表面螺旋节, 中颗粒砂布用于打磨因粗磨头遗留的金属毛刺,细颗粒砂轮用于空心毛管表面的抛光处理,所述砂轮磨头3的修磨厚度为0.1mm~10mm,修磨后产品达到圆度误差为0~0.05mm,孔径偏差±0.01mm,表面光洁度达到Ra0.2标准;毛管外修磨过程是往复实施。
所述步骤4的钢管内修磨是运用钢丝磨头对空心毛管内壁进行修磨处理,以消除其内表面氧化铁皮与穿孔处理引起的翘皮、夹层问题,所述硬质砂轮磨头的修磨厚度为0.1mm~5mm,所述钢丝磨头4的钢丝直径≤0.1mm;
所述步骤5的油污清洗是将空心毛管浸泡在碱性清洗液中进行内外壁清洗,以冲刷其表面的磨头砂砾、金属毛刺以及油污;所述空心毛管在碱性清洗液中的翻转次数为3~5次,浸泡时间5~10分钟,碱性清洗液的PH值为8~10。
更进一步地,所述步骤6矫直处理,对清洗后的空心毛管进行矫直处理;具体是运用斜置式矫直、或压力式矫直与斜置式矫直协同方式进行复合矫直处理;对于直径小于350mm、且直径与壁厚比值大于25的空心毛管,运用斜置式矫直消除空心毛管的挠曲、压扁变形;对于直径为350mm以上、且直径与壁厚比值小于25的空心毛管,运用压力式矫直与斜置式矫直协同工作,压力矫直消除空心毛管的弯曲挠度,斜置式矫直消除空心毛管的压扁变形,同时消除管材的残余应力;所述斜置式矫是运用斜置式矫直装置的旋转压头与空心毛管倾斜旋转接触,所述压力式矫直是运用压力式矫直装置的活动压头与空心毛管垂直接触,经矫直处理后的空心毛管的圆度误差为0~0.1mm,直线度≤0.3mm/m。
所述步骤7的四辊温轧,对矫直处理后的空心毛管运用四辊温轧处理;具体是运用第三感应加热装置为矫直处理后的空心毛管加热升温,按照金属无缝管材的最优热加工温度确定温轧最优温度,温轧最优温度优选为金属无缝管材最优热加工温度的50%~70%,感应升温时间≤30S,再运用四辊轧机进行轧制,所述四辊轧机是运用垂直布置的四个轧辊与一组带有锥面的芯棒构成轧制成形单元,所述四个轧辊中位于最上层和最下层的轧辊为工作辊,位于中间两层的轧辊为带有连续锥形截面孔型的支撑辊,空心毛管放置在两个支撑辊中,与芯棒构成封闭的变形孔型,空心毛管在变形孔型中发生塑性变形,变形量不超过50%,同时空心毛管的金属晶粒发生碎化,晶粒度达到4-9级;在整个轧制过程中,上下两个轧制工作辊水平平动同时发生反向转动,而两个支撑辊为被动传动,始终贴合在工作辊表面,四辊协同地推动空心毛管102沿纵向延伸,而在四辊冷轧机轧制的极限位置,芯棒发生旋转并使管材送进,芯棒的旋转角度为0°~75°,道次管材送进量为0-10mm;经四辊温轧处理,空心毛管的最大变形量可以实现50%,金属管材晶粒度达到5~7级,获得壁厚公差≤7%,外径圆度误差为0~0.1mm,壁厚不均度≤5%,直线度≤0.2mm/m的金属无缝管材103;所述第三感应加热装置 74的感应加热温度区间为0℃~1600℃,在四辊温轧过程中,根据空心毛管的熔点温度设置具体的感应加热温度。
所述步骤8去油脂处理,对变径后的金属无缝管材进行去油脂处理;具体是将变径后的金属无缝管浸泡在碱性清洗液中进行清洗处理,以冲刷其表面油污,其中管材翻转次数为3~5次,浸泡时间5~10分钟,碱性清洗液的PH值为8~10。
更进一步地,所述步骤Z1的温拔减径具体为:运用第一感应加热装置为变径后的金属无缝管材加热升温,加热温度控制在为金属无缝管材最优热加工温度的50%~70%,感应升温时间≤30S,并将其在拉拔模具中发生塑性变形,实现以减径为主、减壁为辅的减径减壁处理,获得温拔变径后的金属无缝管材;其中,拉拔模具的缩颈芯头模具锥角5°~25°,芯头定径带长度为金属无缝管材直径的3~50%;单道次扩径能力可实现金属无缝管材直径的0~25%,单道次减壁量为金属无缝管材壁厚的-10%~+15%;所述第一感应加热装置的感应加热温度区间为0℃~1600℃,根据金属无缝管材的熔点温度进行动态调整设置。
所述步骤Z2的温拔减壁扩径具体为:运用第二感应加热装置为温拔变径后的金属无缝管材加热升温,加热温度控制在金属无缝管材最优热加工温度的50%~70%,感应升温时间≤30S,并将其在扩径模头中发生塑性变形,实现以减壁为主、减径为辅的减壁扩径处理,获得温扩变径后的金属无缝管材,其中,扩径模头的芯头模具锥角5°~25°,芯头定径带长度为10mm~300mm;单道次扩径能力可实现金属无缝管材直径的0~20%,单道次减壁量为金属无缝管材壁厚的0~15%;所述第二感应加热装置的感应加热温度区间为0℃~1600℃,根据金属无缝管材的熔点温度进行动态调整设置。
更进一步地,所述步骤Z3的热处理包括淬火与回火过程,所述的热处理是将变径后的金属无缝管材依靠炉底辊道11输送进入加热炉内,炉子火焰喷嘴运用上下两层四组的形式布置于加热炉内,以保证管材的受热均匀,根据金属无缝管材的金属性能设定加热温度及保温时间,经热处理后金属无缝管材的晶粒度达到4~7级,残余应力≤50MPa;热处理过程中,实际温度与设定的温度误差为±10℃。
所述步骤Z4精密冷轧具体是运用多辊冷轧机冷轧,所述多辊冷轧机包括多个带有孔型的轧辊和一组带有锥面的轧制芯棒,且同一多辊冷轧机中轧辊所带孔型的外形尺寸一致,将温拔、温扩变径及热处理后的金属无缝管材放置在多个轧辊中,并且与一组轧制芯棒构成封闭的变形孔型,金属无缝管材在变形孔型中发生塑性变形,同时金属无缝管材的金属晶粒发生碎化;在整个轧制过程中,轧辊水平平动同时发生反向转动,推动金属无缝管材沿纵向延伸,而在多个轧辊的轧制极限位置,轧制芯棒发生旋转,并使金属无缝管材送进,轧制芯棒的旋 转范围为0°~60°,道次管材送进量为0~3mm;经过多辊精密冷轧,使金属无缝管材的最大变形量达到20%,金属管材晶粒度达到7~9级,获得壁厚公差≤5%,外径圆度误差0~0.05mm,壁厚不均度≤5%,直线度≤0.15mm/m的高性能精密金属无缝管材;所述多辊冷轧机中的轧辊为三个、四个、五个或六个。
更进一步地,所述步骤9光亮处理,对去油脂处理后的金属无缝管材进行光亮处理;具体是将去油脂处理后的金属无缝管材依靠炉底输送带进入光亮清退处理炉内,炉嘴运用上下两层四组的形式布置于光亮清退处理炉内,以保证金属无缝管材的受热均匀;所述光亮清退处理炉与氢气发生装置连接,所述氢气发生装置产生氢气,并与氧气发生燃烧反应为光亮清退处理炉提供热能。
所述步骤10表面修磨处理,对光亮处理后的金属无缝管材进行表面修磨处理;具体是运用细颗粒的砂轮磨头对光亮处理后的金属无缝管材外表面进行修磨处理,以消除其表面氧化膜与道次工序引起的金属管材表面质量问题,表面修磨处理的厚度为0.1mm-1mm,修磨后金属无缝管材圆度误差为0.01~0.02mm,孔径偏差±0.01mm,表面光洁度达到Ra0.2标准;
所述步骤11灰尘清扫,对表面修磨后的金属无缝管材进行灰尘清扫;具体是运用负压吹扫装置对表面修磨后的金属无缝管材的内外壁进行处理,吸走表面磨头砂砾、金属毛刺。
更进一步地,所述步骤12的探伤检测是运用涡流探伤检测装置对获得的高性能难变形的金属无缝管材的表面进行超声检测处理,以获得金属无缝管材在经过大变形条件下产生的裂纹缺陷,剔除检测不合格的高性能难变形的金属无缝管材;
所述步骤13的金属组织性能检测是运用物理检测、化学检测手段对探伤检测合格的高性能难变形的金属无缝管材进行取样,分析其力学性能、晶粒度、耐腐蚀性,评价金属管材的性能,对金属组织性能检测不合格的高性能难变形的金属无缝管材,再重复步骤7至12,直至获得合格的高性能难变形的金属无缝管材。
与现有技术相比,本发明具有以下有益效果:
(1)可以极大地提高难变形金属无缝管材连续制备能力,极大地提高生产效率,有效降低生产成本;
(2)可以满足不同难变形金属材料材质、不同成品规格的产品需要,灵活应对不同材料特性金属管材产品的制备;
(3)可以实现产品尺寸精度、表面质量、材料性能、晶粒度等关键指标的协同控制,获得高性能、高精度的无缝管材产品。
图1是本发明的流程图;
图2是本发明步骤1加热处理的原理示意图;
图3是本发明步骤2采用大辗轧角穿孔的原理示意图;
图4是本发明步骤3毛管外修磨的原理示意图;
图5是本发明步步骤4毛管内修磨的原理示意图;
图6是本发明步骤6矫直处理的结构示意图;
图7是本发明步骤7四辊冷轧的原理示意图;
图8是本发明步骤Z1温拔减径的原理示意图;
图9是本发明步骤Z2温拔减壁扩径的原理示意图;
图10是本发明步骤Z3热处理的原理示意图;
图11是本发明步骤Z4精密冷轧的多辊冷轧原理示意图;
图12是本发明步骤Z4精密冷轧的六辊冷轧原理示意图;
图13是本发明步骤9光亮处理的原理示意图;
图14是本发明步骤10表面修磨处理的原理示意图;
图15是本发明步骤11灰尘清扫的原理示意图;
图16是本发明步骤12探伤检测的原理示意图。
其中,1-炉体、11-炉底辊道、12-炉子火焰喷嘴、101-金属实心原坯、21-上筒形辊、22-下筒形辊、23-顶头、102-空心毛管、3-砂轮磨头、4-钢丝磨头、61-活动压头、62-旋转压头、71-芯棒、72-工作辊、73-支撑辊、74-第三感应加热装置、103-变径后的金属无缝管材、81-第一感应加热装置、82-拉拔模具、83-第二感应加热装置、84-扩径模头、85-轧辊、86-轧制芯棒、91-炉底输送带、92-炉嘴、93-氢气发生装置、111-负压吹扫装置、121-涡流探伤检测装置。
下面结合附图并通过具体实施例来进一步说明本发明的技术方案。本领域技术人员应该明了,所述具体实施方式仅仅是帮助理解本发明,不应视为对本发明的具体限制。
实施例1
如图1-7、13-16所示,一种高性能难变形金属精密无缝管材制备方法,包括以下步骤:
步骤1.加热处理:将定尺寸后的金属实心原坯101加热处理,以降低金属抗力;具体是将定尺寸的金属实心原坯101依靠炉底辊道11输送进入炉体1,炉子火焰喷嘴12采用上下两层四组的形式布置于炉体1内,根据金属实心原坯101的金属特性设定加热温度,加热过 程中实际温度与设定温度的误差为±10℃。
步骤2.穿孔处理:运用大辗轧角穿孔将加热处理后的金属实心原坯101进行穿孔处理,将其转变为空心毛管102;所述大辗轧角穿孔是将上筒形辊21和下筒形辊22两个轧辊异向旋转,咬入金属实心原坯101,在轧辊的拉拽力作用下,与旋转的顶头23接触,在金属实心原坯101中间形成孔腔,从而获得空心毛管301;其中金属实心原坯101总变形压缩量为10%~25%,顶头前压缩量为3%~12%,轧辊锥角为12°~25°。
步骤3.毛管外修磨:对空心毛管102的外表面进行修磨处理;具体是运用砂轮磨头3对空心毛管102外表面进行修磨处理,以消除其外表面氧化铁皮与穿孔处理引起的管坯表面螺旋节,所述外砂轮磨头3分为大颗粒粗磨砂轮磨头、中颗粒砂布磨头与细颗粒砂轮磨头,大颗粒砂轮用于消除空心毛管表面螺旋节,中颗粒砂布用于打磨因粗磨头遗留的金属毛刺,细颗粒砂轮用于空心毛管表面的抛光处理,所述砂轮磨头3的修磨厚度为0.1mm~10mm,修磨后产品的圆度误差为0~0.05mm,孔径偏差±0.01mm,表面光洁度达到Ra0.2标准。
步骤4.毛管内修磨:对空心毛管102的内壁进行修磨处理;具体是运用钢丝磨头4对空心毛管102内壁进行修磨处理,以消除其内表面氧化铁皮与穿孔处理引起的翘皮、夹层问题,所述硬质砂轮磨头的修磨厚度为0.1mm~5mm,所述钢丝磨头4的钢丝直径≤0.1mm。
步骤5.油污清洗:对修磨后的空心毛管102的内外壁进行清洗处理;将空心毛管102浸泡在碱性清洗液中进行内外壁清洗,以冲刷其表面的磨头砂砾、金属毛刺及油污;所述空心毛管102在碱性清洗液中的翻转次数为3~5次,浸泡时间5~10分钟,碱性清洗液的PH值为8~10。
步骤6.矫直处理:对清洗后的空心毛管102进行矫直处理,以消除空心毛管102因穿孔、修磨处理带来的因金属应变力分布不均导致的弯曲、塌扁缺陷;运用斜置式矫直、或压力式矫直与斜置式矫直协同方式进行复合矫直处理;对于直径小于350mm、且直径与壁厚比值大于25的空心毛管102,运用斜置式矫直消除空心毛管的挠曲、压扁变形;对于直径为350mm以上、且直径与壁厚比值小于25的空心毛管102,运用压力式矫直与斜置式矫直协同工作,压力矫直消除空心毛管的弯曲挠度,斜置式矫直消除空心毛管的压扁变形,同时消除管材的残余应力;所述斜置式矫是运用斜置式矫直装置的旋转压头62与空心毛管102倾斜旋转接触,所述压力式矫直是运用压力式矫直装置的活动压头61与空心毛管102垂直接触,经矫直处理后的空心毛管102的外径圆度误差为0~0.2mm,直线度≤0.3mm/m。
步骤7.四辊温轧:对矫直处理后的空心毛管102运用四辊温轧进行大变形量等温轧制冷轧处理,获得变径后的金属无缝管材103;具体是利用第三感应加热装置74提高矫直处理后 空心毛管102的温度,温轧最优温度为金属无缝管材103最优热加工温度的50%~70%,再运用四辊轧机进行轧制,所述四辊轧机是运用垂直布置的四个轧辊与一组带有锥面的芯棒71构成轧制成形单元,所述四个轧辊中位于最上层和最下层的轧辊为工作辊72,位于中间两层的轧辊为带有连续锥形截面孔型的支撑辊73,空心毛管102放置在两个支撑辊73中,与芯棒71构成封闭的变形孔型,空心毛管102在变形孔型中发生塑性变形,变形量不超过50%,同时空心毛管102的金属晶粒发生碎化,晶粒度达到4-9级;在整个轧制过程中,上下两个轧制工作辊72水平平动同时发生反向转动,而两个支撑辊73为被动传动,始终贴合在工作辊72表面,四辊协同地推动空心毛管102沿纵向延伸,而在四辊冷轧机轧制的极限位置,芯棒71发生旋转并使管材送进,芯棒71的旋转角度为0°~75°,道次管材送进量为0-10mm;经四辊温轧处理,空心毛管102的最大变形量可以实现50%,金属管材晶粒度达到5~7级,获得壁厚公差≤7%,外径圆度误差为0~0.1mm,壁厚不均度≤5%,直线度≤0.2mm/m的金属无缝管材103;所述第三感应加热装置74的感应加热温度区间为0℃~1600℃,在四辊温轧过程中,根据空心毛管102的金属特性设置具体的感应加热温度;
步骤8.去油脂处理:将变径后的金属无缝管103浸泡在碱性清洗液中进行清洗处理,以冲刷其表面油污,其中管材翻转次数为3~5次,浸泡时间5~10分钟,碱性清洗液的PH值为8~10。
步骤9.光亮处理:对去油脂处理后的金属无缝管材103进行光亮处理;具体是将去油脂处理后的金属无缝管材103依靠炉底输送带91进入光亮清退处理炉9内,炉嘴92采用上下两层四组的形式布置于光亮清退处理炉9内,以保证金属无缝管材的受热均匀;所述光亮清退处理炉9与氢气发生装置93连接,所述氢气发生装置93产生氢气,并与氧气发生燃烧反应为光亮清退处理炉9提供热能。
步骤10.表面修磨处理:对光亮处理后的金属无缝管材103进行表面修磨处理;具体是运用细颗粒的砂轮磨头3对光亮处理后的金属无缝管材103外表面进行修磨处理,以消除其表面氧化膜与道次工序引起的金属管材表面质量问题,表面修磨处理的厚度为0.1mm-1mm,修磨后金属无缝管材103圆度误差为0.01~0.02mm,孔径偏差±0.01mm,表面光洁度达到Ra0.2标准。
步骤11.灰尘清扫:对表面修磨后的金属无缝管材103进行灰尘清扫,获得高性能难变形的金属无缝管材103;具体是运用负压吹扫装置111对表面修磨后的金属无缝管材103的内外壁进行处理,吸走表面磨头砂砾、金属毛刺。
步骤12.探伤检测:运用涡流探伤检测装置121对高性能难变形的金属无缝管材103的 表面进行超声波探伤检测,以获得金属无缝管材在经过大变形条件下产生的裂纹缺陷,剔除检测不合格的高性能难变形的金属无缝管材103。
步骤13.金属组织性能检测:对探伤检测合格的高性能难变形的金属无缝管材103进行取样并检测其金属组织性能;具体是运用物理检测、化学检测手段对探伤检测合格的高性能难变形的金属无缝管材103进行取样,分析其力学性能、晶粒度、耐腐蚀性,评价金属管材的性能,对金属组织性能检测不合格的高性能难变形的金属无缝管材103,再重复步骤7至12,直至获得合格的高性能难变形的金属无缝管材103。
步骤14.定尺、包装处理:对金属组织性能检测合格的高性能难变形的金属无缝管材103打包处理。
本实施例的制备方法适用于直径Φ15mm~Φ800mm、壁厚为3mm~30mm、晶粒度5~7级,获得壁厚公差≤7%,外径圆度误差0~0.1mm,壁厚不均度≤5%,直线度≤0.2mm/m的高性能难变形金属精密无缝管材。
实施例2
如图1-7、10-16所示,在实施例1制备方法中完成步骤7后获得的变径后金属无缝管材103的直径D和壁厚h的比值为10≤D/h≤15时,增加步骤Z3、Z4,然后再进行步骤8-14,构成本实施例的高性能难变形金属精密无缝管材制备方法,具体包括以下步骤:
步骤1-7的内容与实施例1相同。
步骤Z3.热处理:对变径后的金属无缝管材103进行热处理;热处理包括淬火与回火过程,所述的热处理是将变径后的金属无缝管材103依靠炉底辊道11输送进入加热炉1内,炉子火焰喷嘴12运用上下两层四组的形式布置于加热炉1内,根据金属无缝管材103的金属性能设定加热温度及保温时间,经热处理后金属无缝管材103的晶粒度达到4~7级,残余应力≤50MPa;热处理过程中,实际温度与设定的温度误差为±10℃;
步骤Z4.精密冷轧:对热处理后的金属无缝管材103运用多辊冷轧机进行小变形量冷轧处理,获得管材尺寸精度较高、晶粒度较细的变径后金属无缝管材103;且当完成步骤Z4后获得的金属无缝管材不满足高性能难变形金属无缝管材103的规格和性能需求时,将步骤Z3和Z4按顺序重复1次以上,直至获得规格和性能均符合需求的金属无缝管材103。
所述步骤Z4精密冷轧具体是运用六辊冷轧机冷轧,所述四辊冷轧机包括周向均匀分布的六个带有孔型的轧辊85和一组带有锥面的轧制芯棒86,且孔型的外形尺寸相同,将温拔、温扩变径及热处理后的金属无缝管材103放置在六个轧辊85中,并且与一组轧制芯棒86构成封闭的变形孔型,金属无缝管材103在变形孔型中发生塑性变形,同时金属无缝管材103 的金属晶粒发生碎化;在整个轧制过程中,轧辊85水平平动同时发生反向转动,推动金属无缝管材103沿纵向延伸,而在六个轧辊85的轧制极限位置,轧制芯棒86发生旋转,并使金属无缝管材103送进,轧制芯棒的旋转范围为0°~60°,道次管材送进量为0~3mm;经过六辊精密冷轧,使金属无缝管材103的最大变形量达到20%,金属管材晶粒度达到7~9级,获得壁厚公差≤5%,外径圆度误差为0~0.05mm,壁厚不均度≤5%,直线度≤0.15mm/m的高精密无缝管材103;本实施例的精密冷轧也可以为三辊、四辊或五辊冷轧机。
步骤8-14的内容与实施例1相同。
本实施例的制备方法适用于制备直径Φ3mm~Φ800mm、壁厚为1mm~20mm、金属管材晶粒度达到7~9级、壁厚公差≤5%、外径圆度误差为0~0.05mm、壁厚不均度≤5%,直线度≤0.15mm/m的高性能难变形金属精密无缝管材。
实施例3
如图1-8、10-16所示,在实施例2制备方法中完成步骤7后获得的变径后金属无缝管材103的直径D和壁厚h的比值D/h<10且需进行侧重减径,少许减壁的塑性变形时,实施步骤Z3之前,增加步骤Z1,构成本实施例的高性能难变形金属精密无缝管材制备方法,具体包括以下步骤:
步骤1-7的内容与实施例2相同。
所述步骤Z1.温拔减径:运用第一感应加热装置81为变径后的金属无缝管材103加热升温,加热温度控制在金属无缝管材103最优热加工温度的50%~70%左右,感应升温时间≤30S,并将其在拉拔模具82中发生塑性变形,实现以减径为主、减壁为辅的减径减壁处理,获得温拔变径后的金属无缝管材103;其中,拉拔模具82的缩颈芯头模具锥角5°~25°,芯头定径带长度为金属无缝管材直径的3%~50%;单道次扩径能力可实现金属无缝管材直径的0~25%,单道次减壁量为金属无缝管材103壁厚的-10%~+15%;所述第一感应加热装置81的感应加热温度区间为0℃~1600℃;
当获得的温拔变径后的金属无缝管材不满足减径减壁处理的需求时,则将步骤Z1重复1次以上,直至获得符合减径减壁需求的金属无缝管材103,然后进行步骤Z3和Z4;
步骤Z3-Z4、步骤8-14的内容与实施例2相同。
本实施例的制备方法适用于制备直径Φ3mm~Φ600mm、壁厚为1mm~20mm、金属管材晶粒度达到7~9级、壁厚公差≤5%、外径圆度误差为0~0.05mm、壁厚不均度≤5%,直线度≤0.15mm/m的高性能难变形金属精密无缝管材。
实施例4
如图1-7、9-16所示,在实施例2制备方法中完成步骤7后获得的变径后金属无缝管材103的直径D和壁厚h的比值D/h<10且需进行侧重减壁,少许减径的塑性变形时,且实施步骤Z3之前,增加步骤Z2,构成本实施例的高性能难变形金属精密无缝管材制备方法,具体包括以下步骤:
步骤1-7的内容与实施例2相同。
步骤Z2.温拔减壁扩径:当温拔变径后的金属无缝管材103存在减壁量不满足生产需求时,运用第二感应加热装置83为温拔变径后的金属无缝管材103加热升温,加热温度控制在金属无缝管材103最优热加工温度的50%~70%左右,感应升温时间≤30S,并将其在扩径模头84中发生塑性变形,实现以减壁为主、减径为辅的减壁扩径处理,获得温扩变径后的金属无缝管材103,其中,扩径模头84的芯头模具锥角5°~25°,芯头定径带长度为10mm~300mm;单道次扩径能力可实现金属无缝管材103直径的0~20%,单道次减壁量为金属无缝管材103壁厚的0~15%;所述第二感应加热装置83的感应加热温度区间为0℃~1600℃。
当获得的温扩变径后的金属无缝管材不满足减径减壁处理的需求时,则将步骤Z2中重复1次以上,直至获得符合减径减壁需求的金属无缝管材103,然后进行步骤Z3和Z4;
步骤Z3-Z4、步骤8-14的内容与实施例2相同。
本实施例的制备方法适用于制备直径Φ15mm~Φ800mm、壁厚为1mm~20mm、金属管材晶粒度达到7~9级、壁厚公差≤5%、外径圆度误差为0~0.05mm、壁厚不均度≤5%,直线度≤0.15mm/m的高性能难变形金属精密无缝管材。
实施例5
如图1-16所示,在实施例2制备方法中完成步骤7后获得的变径后金属无缝管材103的直径D和壁厚h的比值D/h<10且需进行减壁减径的塑性变形时,且实施步骤Z3之前,增加步骤Z1、Z2,构成本实施例的高性能难变形金属精密无缝管材制备方法,具体包括以下步骤:
步骤1-7的内容与实施例2相同。
所述步骤Z1.温拔减径:运用第一感应加热装置81为变径后的金属无缝管材103加热升温,加热温度控制在金属无缝管材103最优热加工温度的50%~70%左右,感应升温时间≤30S,并将其在拉拔模具82中发生塑性变形,实现以减径为主、减壁为辅的减径减壁处理,获得温拔变径后的金属无缝管材103;其中,拉拔模具82的缩颈芯头模具锥角5°~25°,芯头定径带长度为金属无缝管材直径的3~50%;单道次扩径能力可实现金属无缝管材直径的0~25%,单道次减壁量为金属无缝管材103壁厚的-10%~+15%;所述第一感应加热装置81的感应加热 温度区间为0℃~1600℃;
步骤Z2.温拔减壁扩径:当温拔变径后的金属无缝管材103存在减壁量不满足生产需求时,运用第二感应加热装置83为温拔变径后的金属无缝管材103加热升温,加热温度控制在金属无缝管材103熔点温度的50%~70%左右,感应升温时间≤30S,并将其在扩径模头84中发生塑性变形,实现以减壁为主、减径为辅的减壁扩径处理,获得温扩变径后的金属无缝管材103,其中,扩径模头84的芯头模具锥角5°~25°,芯头定径带长度为10mm~300mm;单道次扩径能力可实现金属无缝管材103直径的0~20%,单道次减壁量为金属无缝管材103壁厚的0~15%;所述第二感应加热装置83的感应加热温度区间为0℃~1600℃。
当选择获得的温拔、温扩变径后的金属无缝管材不满足减径减壁处理的需求时,则将步骤Z1、Z2按顺序重复1次以上,直至获得符合减径减壁需求的金属无缝管材103,然后进行步骤Z3和Z4;当完成步骤Z4后获得的金属无缝管材不满足高性能难变形金属无缝管材103的规格和性能需求时,将步骤Z3和Z4按顺序重复1次以上,直至获得规格和性能均符合需求的金属无缝管材103。
步骤Z3-Z4、步骤8-14的内容与实施例2相同。
本实施例的制备方法适用于制备直径Φ3mm~Φ600mm、壁厚为0.5mm~10mm、金属管材晶粒度达到7~9级,获得壁厚公差≤5%,外径圆度误差0~0.05mm,壁厚不均度≤5%,直线度≤0.15mm/m的高性能难变形金属精密无缝管材。
上述实施例1-5中,根据难变形金属精密无缝管材的材质可以按照表1中的数据选择温轧最优温度。大辗轧角穿孔、四辊温轧、温拔减径、温拔减壁扩径、精密冷轧步骤中结合难变形金属精密无缝管材材质、规格要求(直径、壁厚、晶粒度、误差)在上述对应数值范围内确定具体生产参数。
表1:难变形金属四辊温轧最优温度
表1中仅列举了几种较常用的金属材料,本发明的多高性能难变形金属精密无缝管材制备方法并不仅限于选用表中所列材料。
Claims (10)
- 一种高性能难变形金属精密无缝管材制备方法,其特征在于:包括以下步骤:步骤1.加热处理:将定尺寸后的金属实心原坯(101)加热处理,以降低金属抗力;步骤2.穿孔处理:对加热处理后的金属实心原坯(101)进行穿孔处理,将其转变为空心毛管102;步骤3.毛管外修磨:对空心毛管(102)的外表面进行修磨处理;步骤4.毛管内修磨:对空心毛管(102)的内壁进行修磨处理;步骤5.油污清洗:对修磨后的空心毛管(102)的内外壁进行清洗处理;步骤6.矫直处理:对清洗后的空心毛管(102)进行矫直处理,以消除空心毛管(102)因穿孔、修磨处理带来的因金属应变力分布不均导致的弯曲、塌扁缺陷;步骤7.四辊温轧:对矫直处理后的空心毛管(102)运用四辊温轧进行大变形量等温轧制处理,获得变径后的金属无缝管材(103);步骤8.去油脂处理:对变径后的金属无缝管材(103)进行去油脂处理;步骤9.光亮处理:对去油脂处理后的金属无缝管材(103)进行光亮处理;步骤10.表面修磨处理:对光亮处理后的金属无缝管材(103)进行表面修磨处理;步骤11.灰尘清扫:对表面修磨后的金属无缝管材(103)进行灰尘清扫,获得高性能难变形金属无缝管材(103);步骤12.探伤检测:对高性能难变形金属无缝管材(103)进行超声波探伤检测,剔除检测不合格的高性能难变形金属无缝管材(103);步骤13.金属组织性能检测:对探伤检测合格的高性能难变形金属无缝管材(103)进行取样并检测其金属组织性能;对金属组织性能检测不合格的高性能难变形金属无缝管材(103),再重复步骤7至13,直至获得合格的高性能难变形金属无缝管材(103);步骤14.定尺、包装处理:对金属组织性能检测合格的高性能难变形金属无缝管材(103)打包处理。
- 根据权利要求1所述的一种高性能难变形金属精密无缝管材制备方法,其特征在于:当经所述步骤1-7后获得的变径后金属无缝管材103的直径D和壁厚h的比值为10≤D/h≤15时,在完成步骤7之后,增加步骤Z3、Z4,然后再进行步骤8-14;步骤Z3.热处理:对变径后的金属无缝管材(103)进行热处理;步骤Z4.精密冷轧:对热处理后的金属无缝管材(103)运用多辊冷轧技术进行小变形量 冷轧处理,获得管材尺寸精度较高、晶粒度较细的变径后的金属无缝管材(103);且当完成步骤Z4后获得的金属无缝管材不满足高性能难变形金属无缝管材(103)的规格和性能需求时,将步骤Z3和Z4按顺序重复1次以上,直至获得规格和性能均符合需求的金属无缝管材(103)。
- 根据权利要求1所述的一种高性能难变形金属精密无缝管材制备方法,其特征在于:当经所述步骤1-7后获得的变径后金属无缝管材(103)的直径D和壁厚h的比值D/h<10时,在完成所述步骤7之后,首先增加步骤Z1、Z2中的任意一个或两个步骤进行减径减壁处理;再增加步骤Z3-Z4,最后进行步骤8-14;所述步骤Z1.温拔减径:对变径后的金属无缝管材(103)采用电磁感应加热升温与温拔缩孔协同方式,实现以减径为主、减壁为辅的减径减壁处理,获得温拔变径后的金属无缝管材(103);步骤Z2.温拔减壁扩径:当温拔变径后的金属无缝管材(103)存在减壁量不满足生产需求时,采用电磁感应加热升温与温拔扩孔协同方式,实现以减壁为主、减径为辅的减壁扩径处理,获得温扩变径后的金属无缝管材(103);当选择增加步骤Z1、Z2中的任意一个或两个步骤时,若获得的温拔变径或温扩变径后的金属无缝管材不满足减径减壁处理的需求时,则将步骤Z1、Z2中的任意一个或两个步骤重复1次以上,直至获得符合减径减壁需求的金属无缝管材(103),然后进行步骤Z3和Z4;步骤Z3.热处理:对变径后的金属无缝管材(103)进行热处理;步骤Z4.精密冷轧:对热处理后的金属无缝管材(103)运用多辊冷轧技术进行小变形量冷轧处理,获得管材尺寸精度较高、晶粒度较细的变径后的金属无缝管材(103);当完成步骤Z4后获得的金属无缝管材不满足高性能难变形金属无缝管材(103)的规格和性能(需求时,将步骤Z3和Z4按顺序重复1次以上,直至获得规格和性能均符合需求的金属无缝管材(103)。
- 根据权利要求1所述的一种高性能难变形金属精密无缝管材制备方法,其特征在于:所述步骤1的加热处理是将定尺寸的金属实心原坯(101)依靠炉底辊道(11)输送进入加热炉(1)内,炉子火焰喷嘴(12)运用上下两层四组的形式布置于加热炉(1)内,根据金属实心原坯(101)的金属特性设定加热温度,加热过程中实际温度与设定温度的误差为±10℃;所述步骤2的穿孔处理是运用大辗轧角穿孔将加热处理后的金属实心原坯(101)进行穿孔处理,将其转变为空心毛管(102);所述大辗轧角穿孔是将上筒形辊(21)和下筒形辊(22) 两个轧辊异向旋转,咬入金属实心原坯(101),在轧辊的拉拽力作用下,与旋转的顶头(23)接触,在金属实心原坯(101)中间形成孔腔,获得空心毛管(102);其中金属实心原坯(101)总变形压缩量为10%~25%,顶头前压缩量为3%~12%,轧辊锥角为12°~25°。
- 根据权利要求1所述的一种高性能难变形金属精密无缝管材制备方法,其特征在于:所述步骤3的毛管外修磨是运用砂轮磨头(3)对空心毛管(102)外表面进行修磨处理,以消除其外表面氧化铁皮与穿孔处理引起的管坯表面螺旋节,所述砂轮磨头(3)分为大颗粒粗磨砂轮磨头、中颗粒砂布磨头与细颗粒砂轮磨头,大颗粒砂轮用于消除空心毛管表面螺旋节,中颗粒砂布用于打磨因粗磨头遗留的金属毛刺,细颗粒砂轮用于空心毛管表面的抛光处理,所述砂轮磨头(3)的修磨厚度为0.1mm~10mm,修磨后产品圆度误差为0~0.05mm,孔径偏差±0.01mm,表面光洁度达到Ra0.2标准;所述步骤4的钢管内修磨是运用钢丝磨头(4)对空心毛管(102)内壁进行修磨处理,以消除其内表面氧化铁皮与穿孔处理引起的翘皮、夹层问题,所述硬质砂轮磨头的修磨厚度为0.1mm~5mm,所述钢丝磨头(4)的钢丝直径≤0.1mm;所述步骤5的油污清洗是将空心毛管(102)浸泡在碱性清洗液中进行内外壁清洗,以冲刷其表面的磨头砂砾、金属毛刺及油污;所述空心毛管(102)在碱性清洗液中的翻转次数为3~5次,浸泡时间5~10分钟,碱性清洗液的PH值为8~10。
- 根据权利要求1所述的一种高性能难变形金属精密无缝管材制备方法,其特征在于:所述步骤6矫直处理具体为:运用斜置式矫直、或压力式矫直与斜置式矫直协同方式进行复合矫直处理;对于直径小于350mm、且直径与壁厚比值大于25的空心毛管(102),运用斜置式矫直消除空心毛管的挠曲、压扁变形;对于直径为350mm以上、且直径与壁厚比值小于25的空心毛管(102),运用压力式矫直与斜置式矫直协同工作,压力矫直消除空心毛管的弯曲挠度,斜置式矫直消除空心毛管的压扁变形,同时消除管材的残余应力;所述斜置式矫是运用斜置式矫直装置的旋转压头(62)与空心毛管(102)倾斜旋转接触,所述压力式矫直是运用压力式矫直装置的活动压头(61)与空心毛管(102)垂直接触,经矫直处理后的空心毛管(102)的外径圆度误差为0~0.1mm,直线度≤0.3mm/m;所述步骤7的四辊温轧,对矫直处理后的空心毛管(102)运用四辊温轧处理;具体是运用第三感应加热装置(74)为矫直处理后的空心毛管(102)加热升温,按照金属无缝管材(103)的最优热加工温度确定温轧最优温度,感应升温时间≤30S,再运用四辊轧机进行轧制,所述四辊轧机是运用垂直布置的四个轧辊与一组带有锥面的芯棒(71)构成轧制成形单元,所述四个轧辊中位于最上层和最下层的轧辊为工作辊(72),位于中间两层的轧辊为带有连续锥形 截面孔型的支撑辊(73),空心毛管(102)放置在两个支撑辊(73)中,与芯棒(71)构成封闭的变形孔型,空心毛管(102)在变形孔型中发生塑性变形,变形量不超过50%,同时空心毛管(102)的金属晶粒发生碎化,晶粒度达到4-9级;在整个轧制过程中,上下两个轧制工作辊(72)水平平动同时发生反向转动,而两个支撑辊(73)为被动传动,始终贴合在工作辊(72)表面,四辊协同地推动空心毛管(102)沿纵向延伸,而在四辊冷轧机轧制的极限位置,芯棒(71)发生旋转并使管材送进,芯棒(71)的旋转角度为0°~75°,道次管材送进量为0-10mm;经四辊温轧处理,空心毛管(102)的最大变形量可以实现50%,金属管材晶粒度达到5~7级,获得壁厚公差≤7%,外径圆度误差为0~0.1mm,≤3%,壁厚不均度≤5%,直线度≤0.2mm/m的金属无缝管材(103);所述第三感应加热装置(74)的感应加热温度区间为0℃~1600℃,在四辊温轧过程中,根据空心毛管(102)的熔点温度设置具体的感应加热温度;所述步骤8去油脂处理,对变径后的金属无缝管材103进行去油脂处理;具体是将变径后的金属无缝管(103)浸泡在碱性清洗液中进行清洗处理,以冲刷其表面油污,其中管材翻转次数为3~5次,浸泡时间5~10分钟,碱性清洗液的PH值为8~10。
- 根据权利要求3所述的一种高性能难变形金属精密无缝管材制备方法,其特征在于:所述步骤Z1的温拔减径具体为:运用第一感应加热装置(81)为变径后的金属无缝管材(103)加热升温,加热温度控制在金属无缝管材(103)最优热加工温度的50%~70%,感应升温时间≤30S,并将其在拉拔模具(82)中发生塑性变形,实现以减径为主、减壁为辅的减径减壁处理,获得温拔变径后的金属无缝管材(103);其中,拉拔模具(82)的缩颈芯头模具锥角5°~25°,芯头定径带长度为金属无缝管材直径的3~50%;单道次扩径能力可实现金属无缝管材直径的0~25%,单道次减壁量为金属无缝管材103壁厚的-10%~+15%;所述第一感应加热装置81的感应加热温度区间为0℃~1600℃;所述步骤Z2的温拔减壁扩径具体为:运用第二感应加热装置(83)为温拔变径后的金属无缝管材(103)加热升温,加热温度控制在金属无缝管材(103)最优热加工温度的50%~70%,感应升温时间≤30S,并将其在扩径模头(84)中发生塑性变形,实现以减壁为主、减径为辅的减壁扩径处理,获得温扩变径后的金属无缝管材103,其中,扩径模头(84)的芯头模具锥角5°~25°,芯头定径带长度为10mm~300mm;单道次扩径能力可实现金属无缝管材(103)直径的0~20%,单道次减壁量为金属无缝管材(103)壁厚的0~15%;所述第二感应加热装置(83)的感应加热温度区间为0℃~1600℃。
- 根据权利要求2所述的一种高性能难变形金属精密无缝管材制备方法,其特征在于: 所述步骤Z3的热处理包括淬火与回火过程,所述的热处理是将变径后的金属无缝管材(103)依靠炉底辊道(11)输送进入加热炉(1)内,炉子火焰喷嘴(12)运用上下两层四组的形式布置于加热炉(1)内,根据金属无缝管材(103)的金属性能设定加热温度及保温时间,经热处理后金属无缝管材(103)的晶粒度达到4~7级,残余应力≤50MPa;热处理过程中,实际温度与设定的温度误差为±10℃;所述步骤Z4精密冷轧具体是运用多辊冷轧机冷轧,所述多辊冷轧机包括多个带有孔型的轧辊(85)和一组带有锥面的轧制芯棒(86),将温拔、温扩变径及热处理后的金属无缝管材(103)放置在多辊冷轧机的轧辊(85)中,并且与一组轧制芯棒(86)构成封闭的变形孔型,金属无缝管材(103)在变形孔型中发生塑性变形,同时金属无缝管材(103)的金属晶粒发生碎化;在整个轧制过程中,轧辊(85)水平平动同时发生反向转动,推动金属无缝管材(103)沿纵向延伸,而在多个轧辊(85)的轧制极限位置,轧制芯棒(86)发生旋转,并使金属无缝管材(103)送进,轧制芯棒的旋转范围为0°~60°,道次管材送进量为0~3mm;经过多辊精密冷轧,使金属无缝管材(103)的最大变形量达到20%,金属管材晶粒度达到7~9级,获得壁厚公差≤5%,外径圆度误差0~0.05mm,壁厚不均度≤5%,直线度≤0.15mm/m的高性能精密金属无缝管材(103);所述多辊冷轧机中的轧辊(85)为三个、四个、五个或六个。
- 根据权利要求1所述的一种高性能难变形金属精密无缝管材制备方法,其特征在于:所述步骤(9)光亮处理,对去油脂处理后的金属无缝管材(103)进行光亮处理;具体是将去油脂处理后的金属无缝管材(103)依靠炉底输送带(91)进入光亮清退处理炉(9)内,炉嘴(92)运用上下两层四组的形式布置于光亮清退处理炉(9)内,以保证金属无缝管材的受热均匀;所述光亮清退处理炉(9)与氢气发生装置(93)连接,所述氢气发生装置(93)产生氢气,并与氧气发生燃烧反应为光亮清退处理炉(9)提供热能;所述步骤10表面修磨处理,对光亮处理后的金属无缝管材(103)进行表面修磨处理;具体是运用细颗粒的砂轮磨头(3)对光亮处理后的金属无缝管材(103)外表面进行修磨处理,以消除其表面氧化膜与道次工序引起的金属管材表面质量问题,表面修磨处理的厚度为0.1mm-1mm,修磨后金属无缝管材(103)圆度误差为0.01~0.02mm,孔径偏差±0.01mm,表面光洁度达到Ra0.2标准;所述步骤11灰尘清扫,对表面修磨后的金属无缝管材(103)进行灰尘清扫;具体是运用负压吹扫装置(111)对表面修磨后的金属无缝管材(103)的内外壁进行处理,吸走表面磨头砂砾、金属毛刺。
- 根据权利要求1所述的一种高性能难变形金属精密无缝管材制备方法,其特征在于: 所述步骤12的探伤检测是运用涡流探伤检测装置(121)对获得的高性能难变形的金属无缝管材(103)的表面进行超声检测处理,以获得金属无缝管材在经过大变形条件下产生的裂纹缺陷,剔除检测不合格的高性能难变形的金属无缝管材(103);所述步骤13的金属组织性能检测是运用物理检测、化学检测手段对探伤检测合格的高性能难变形的金属无缝管材(103)进行取样,分析其力学性能、晶粒度、耐腐蚀性,评价金属管材的性能,对金属组织性能检测不合格的高性能难变形的金属无缝管材(103),再重复步骤7至12,直至获得合格的高性能难变形的金属无缝管材(103)。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/509,040 US20220040742A1 (en) | 2020-11-04 | 2021-10-24 | Method for preparing high-performance difficult-to-deform metal precision seamless pipe |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011217905.6A CN112404163B (zh) | 2020-11-04 | 2020-11-04 | 一种高性能难变形金属精密无缝管材制备方法 |
CN202011217905.6 | 2020-11-04 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/509,040 Continuation US20220040742A1 (en) | 2020-11-04 | 2021-10-24 | Method for preparing high-performance difficult-to-deform metal precision seamless pipe |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022095272A1 true WO2022095272A1 (zh) | 2022-05-12 |
Family
ID=74828153
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2021/070206 WO2022095272A1 (zh) | 2020-11-04 | 2021-01-05 | 一种高性能难变形金属精密无缝管材制备方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN112404163B (zh) |
WO (1) | WO2022095272A1 (zh) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115138709A (zh) * | 2022-08-03 | 2022-10-04 | 浙江久立特材科技股份有限公司 | 一种高强高韧异形铠甲成型模具及工艺 |
CN116393938A (zh) * | 2023-05-15 | 2023-07-07 | 杭州腾励传动科技股份有限公司 | 一种外星轮智能化生产连线组合生产工艺 |
CN117564124A (zh) * | 2023-10-23 | 2024-02-20 | 太仓升达机械有限公司 | 电动自行车一体式马达座中管用加工装置及其加工方法 |
CN118122809A (zh) * | 2024-05-08 | 2024-06-04 | 西安赛特思迈钛业有限公司 | 一种航空紧固件用大单重ta1g钛盘圆丝材的制备方法 |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113617875B (zh) * | 2021-08-10 | 2022-07-29 | 宝银特种钢管有限公司 | 一种高精度椭圆变径管的制造方法 |
CN114602996B (zh) * | 2022-03-25 | 2023-01-24 | 宝银特种钢管有限公司 | 一种高端装备系统用极薄无缝管的制造方法 |
CN115652146B (zh) * | 2022-11-10 | 2023-08-18 | 天津冶金集团天材科技发展有限公司 | 航天发动机换热器气体输送用高温合金毛细管及生产工艺 |
CN118699075A (zh) * | 2024-08-27 | 2024-09-27 | 张家港嘉园钢铁制品有限公司 | 一种无缝钢管制造方法 |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1919530A (zh) * | 2006-09-11 | 2007-02-28 | 何龙 | 一种大口径合金无缝钢管的生产工艺 |
CN101708511A (zh) * | 2007-12-13 | 2010-05-19 | 攀钢集团四川长城特殊钢有限责任公司 | 纯钛无缝管的制造方法 |
CN102873512A (zh) * | 2012-09-29 | 2013-01-16 | 攀钢集团成都钢钒有限公司 | 核电站用大口径中厚壁无缝钢管的制造方法 |
EP2925904A1 (en) * | 2012-12-03 | 2015-10-07 | Future Titanium Technology Pty Ltd | Method of forming seamless pipe of titanium and/or titanium alloys |
CN106345814A (zh) * | 2016-08-30 | 2017-01-25 | 太原科技大学 | 一种斜连轧镁合金无缝管生产方法 |
CN107931331A (zh) * | 2017-11-27 | 2018-04-20 | 河北金奥管业有限公司 | 一种高精度二辊冷轧无缝钢管的生产方法 |
CN110280592A (zh) * | 2019-07-19 | 2019-09-27 | 大冶特殊钢股份有限公司 | 一种超高强度合金的无缝管轧制方法 |
CN110560505A (zh) * | 2019-09-16 | 2019-12-13 | 盛德鑫泰新材料股份有限公司 | 一种nd钢无缝钢管生产工艺 |
CN110899335A (zh) * | 2019-12-09 | 2020-03-24 | 西北工业大学 | 一种小口径海洋用钛合金无缝管的短流程制造方法 |
CN111112373A (zh) * | 2020-02-26 | 2020-05-08 | 巨特钢业有限公司 | 一种高强度耐腐蚀不锈钢无缝钢管生产工艺及其加工设备 |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101214512B (zh) * | 2008-01-05 | 2010-10-27 | 佛山市顺德区精艺万希铜业有限公司 | 高精度磁控阳极筒用铜管加工工艺 |
JP2012030270A (ja) * | 2010-08-02 | 2012-02-16 | Jfe Steel Corp | 差厚金属管の製造方法 |
CN102049414A (zh) * | 2010-11-17 | 2011-05-11 | 常荣波 | 高强度钛及钛合金型材温轧工艺及专用高速轧制机 |
CN102247989A (zh) * | 2011-06-15 | 2011-11-23 | 太原磬泓机电设备有限公司 | 一种四辊行星热轧管机的生产工艺 |
CN104831120B (zh) * | 2015-04-17 | 2016-01-20 | 河北恒祥投资有限公司 | 钛合金无缝管的制造方法 |
CN105855307B (zh) * | 2016-05-19 | 2018-01-09 | 常熟市异型钢管有限公司 | 异型钛管的拔制方法 |
CN106216400A (zh) * | 2016-08-03 | 2016-12-14 | 太原磬泓机电设备有限公司 | 外径大于60mm的无缝钢管轧制工艺及设备安装系统 |
WO2018083029A1 (de) * | 2016-11-02 | 2018-05-11 | Salzgitter Flachstahl Gmbh | Nahtlos hergestelltes und halbwarmumgeformtes rohr aus einem mittelmanganhaltigen stahl und verfahren zu seiner herstellung |
CN108043885B (zh) * | 2017-11-24 | 2020-03-27 | 中国航发北京航空材料研究院 | 控制钛合金无缝管材织构的温轧加工方法及钛合金管材 |
CN111589871A (zh) * | 2020-05-19 | 2020-08-28 | 中冶赛迪工程技术股份有限公司 | 一种小口径厚壁无缝钢管的生产线及其生产工艺 |
-
2020
- 2020-11-04 CN CN202011217905.6A patent/CN112404163B/zh active Active
-
2021
- 2021-01-05 WO PCT/CN2021/070206 patent/WO2022095272A1/zh active Application Filing
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1919530A (zh) * | 2006-09-11 | 2007-02-28 | 何龙 | 一种大口径合金无缝钢管的生产工艺 |
CN101708511A (zh) * | 2007-12-13 | 2010-05-19 | 攀钢集团四川长城特殊钢有限责任公司 | 纯钛无缝管的制造方法 |
CN102873512A (zh) * | 2012-09-29 | 2013-01-16 | 攀钢集团成都钢钒有限公司 | 核电站用大口径中厚壁无缝钢管的制造方法 |
EP2925904A1 (en) * | 2012-12-03 | 2015-10-07 | Future Titanium Technology Pty Ltd | Method of forming seamless pipe of titanium and/or titanium alloys |
CN106345814A (zh) * | 2016-08-30 | 2017-01-25 | 太原科技大学 | 一种斜连轧镁合金无缝管生产方法 |
CN107931331A (zh) * | 2017-11-27 | 2018-04-20 | 河北金奥管业有限公司 | 一种高精度二辊冷轧无缝钢管的生产方法 |
CN110280592A (zh) * | 2019-07-19 | 2019-09-27 | 大冶特殊钢股份有限公司 | 一种超高强度合金的无缝管轧制方法 |
CN110560505A (zh) * | 2019-09-16 | 2019-12-13 | 盛德鑫泰新材料股份有限公司 | 一种nd钢无缝钢管生产工艺 |
CN110899335A (zh) * | 2019-12-09 | 2020-03-24 | 西北工业大学 | 一种小口径海洋用钛合金无缝管的短流程制造方法 |
CN111112373A (zh) * | 2020-02-26 | 2020-05-08 | 巨特钢业有限公司 | 一种高强度耐腐蚀不锈钢无缝钢管生产工艺及其加工设备 |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115138709A (zh) * | 2022-08-03 | 2022-10-04 | 浙江久立特材科技股份有限公司 | 一种高强高韧异形铠甲成型模具及工艺 |
CN116393938A (zh) * | 2023-05-15 | 2023-07-07 | 杭州腾励传动科技股份有限公司 | 一种外星轮智能化生产连线组合生产工艺 |
CN116393938B (zh) * | 2023-05-15 | 2023-09-19 | 杭州腾励传动科技股份有限公司 | 一种外星轮智能化生产连线组合生产工艺 |
CN117564124A (zh) * | 2023-10-23 | 2024-02-20 | 太仓升达机械有限公司 | 电动自行车一体式马达座中管用加工装置及其加工方法 |
CN118122809A (zh) * | 2024-05-08 | 2024-06-04 | 西安赛特思迈钛业有限公司 | 一种航空紧固件用大单重ta1g钛盘圆丝材的制备方法 |
Also Published As
Publication number | Publication date |
---|---|
CN112404163A (zh) | 2021-02-26 |
CN112404163B (zh) | 2023-02-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2022095272A1 (zh) | 一种高性能难变形金属精密无缝管材制备方法 | |
US20220040742A1 (en) | Method for preparing high-performance difficult-to-deform metal precision seamless pipe | |
WO2022095271A1 (zh) | 一种多层金属复合管材制备方法 | |
US20220040745A1 (en) | Method for preparing multilayer metal composite pipe | |
CN102873512B (zh) | 核电站用大口径中厚壁无缝钢管的制造方法 | |
CN105619085B (zh) | 直径914mm大容积钢质无缝气瓶生产工艺 | |
CN107931331B (zh) | 一种高精度二辊冷轧无缝钢管的生产方法 | |
CN102632094B (zh) | 一种提高钛及钛合金管材表面质量的方法 | |
JP2003311317A (ja) | 継目無管の製造方法 | |
JP2006523538A (ja) | 冷間加工された高強度シームレス耐食管の製造方法 | |
CN110052792A (zh) | 一种液压缸用缸筒的制造方法 | |
TW200821057A (en) | Method of manufacturing ultrathin wall metallic tube by cold working method | |
CN212598017U (zh) | 大口径高性能不锈钢无缝管的生产线 | |
CN100406144C (zh) | 金属管的冷轧方法 | |
CN113061783A (zh) | 一种高温合金无缝异型管及其生产方法 | |
CN110170543A (zh) | 一种钛合金无缝管短流程加工方法 | |
CN112024638A (zh) | 大口径高性能不锈钢无缝管的生产线以及生产工艺 | |
CN109513766B (zh) | 一种高同心度马氏体不锈钢无缝管材的制造方法 | |
JP4192970B2 (ja) | 金属管の冷間圧延方法 | |
CN100393433C (zh) | 金属管的冷轧方法 | |
CN109500131B (zh) | 一种长管拖车气瓶用无缝钢管的制造方法 | |
CN112371886B (zh) | 一种气瓶用大规格钛合金棒坯锻造方法 | |
CN114370536A (zh) | 一种冷硬耐压无扩口连接不锈钢无缝钢管及其制造方法 | |
CN112974563A (zh) | 一种625合金管材成型的方法和装置 | |
CN113441675A (zh) | 一种径向冷锻加工高精度液压缸缸筒及其制造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21887978 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21887978 Country of ref document: EP Kind code of ref document: A1 |