WO2022095152A1 - 一种压电mems换能器及电子设备 - Google Patents

一种压电mems换能器及电子设备 Download PDF

Info

Publication number
WO2022095152A1
WO2022095152A1 PCT/CN2020/131417 CN2020131417W WO2022095152A1 WO 2022095152 A1 WO2022095152 A1 WO 2022095152A1 CN 2020131417 W CN2020131417 W CN 2020131417W WO 2022095152 A1 WO2022095152 A1 WO 2022095152A1
Authority
WO
WIPO (PCT)
Prior art keywords
piezoelectric
mems transducer
rigid
beams
rigid film
Prior art date
Application number
PCT/CN2020/131417
Other languages
English (en)
French (fr)
Inventor
沈宇
童贝
石正雨
段炼
Original Assignee
瑞声声学科技(深圳)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 瑞声声学科技(深圳)有限公司 filed Critical 瑞声声学科技(深圳)有限公司
Publication of WO2022095152A1 publication Critical patent/WO2022095152A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R19/00Electrostatic transducers
    • H04R19/04Microphones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/20Arrangements for obtaining desired frequency or directional characteristics
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R7/00Diaphragms for electromechanical transducers; Cones
    • H04R7/02Diaphragms for electromechanical transducers; Cones characterised by the construction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R7/00Diaphragms for electromechanical transducers; Cones
    • H04R7/16Mounting or tensioning of diaphragms or cones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2201/00Details of transducers, loudspeakers or microphones covered by H04R1/00 but not provided for in any of its subgroups
    • H04R2201/003Mems transducers or their use

Definitions

  • the invention relates to the field of semiconductor devices, in particular to a piezoelectric MEMS transducer and electronic equipment.
  • the piezoelectric unit of piezoelectric MEMS transducers (such as piezoelectric microphones) is a multi-layer film cantilever beam structure formed by thin film deposition and etching. Since one end of the structure is a fixed end, it is very difficult to release the film after deposition. It is easy to cause its edge region (ie, the free end) to warp under residual stress, which will lead to a larger vent opening, which in turn leads to a decrease in air pressure on the rigid membrane, resulting in reduced low frequency sensitivity.
  • the purpose of the present invention is to provide a piezoelectric MEMS transducer, which is used to solve the problems of low low frequency sensitivity and thin film warping of piezoelectric MEMS transducers in the prior art, and by reasonably optimizing the length of the beam and the position of the connecting end, increase the sensitivity of the device.
  • a piezoelectric MEMS transducer comprising:
  • each beam has a first end and a second end, the first end of each beam is coupled and fixed on the substrate, and the second end of each beam faces the through cavity area extension;
  • the rigid membrane is accommodated in the through cavity, and the second end of each of the beams is connected to a position other than the center of the rigid membrane through a separately provided connecting member;
  • a plurality of piezoelectric units are arranged on the beam.
  • the substrate is a center-symmetric structure
  • the rigid film is also a center-symmetric structure
  • each beam is eccentrically arranged with respect to the center of the rigid film.
  • the connecting parts on the second ends of the plurality of beams are distributed at intervals on the rigid film.
  • the plurality of piezoelectric units includes a piezoelectric unit disposed at the first end of the beam.
  • the plurality of piezoelectric units includes a piezoelectric unit disposed at the second end of the beam.
  • the projected length of each beam on the rigid film is greater than or equal to the distance from the edge to the center of the rigid film.
  • the projected length of each beam on the rigid film is less than the distance from the edge to the center of the rigid film.
  • An electronic device comprising a piezoelectric MEMS transducer, the piezoelectric MEMS transducer comprising:
  • each beam has a first end and a second end, the first end of each beam is coupled and fixed on the substrate, and the second end of each beam faces the through cavity area extension;
  • the rigid membrane is accommodated in the through cavity, and the second end of each of the beams is connected to a position other than the center of the rigid membrane through a separately provided connecting member;
  • a plurality of piezoelectric units are arranged on the beam.
  • the substrate is a center-symmetric structure
  • the rigid film is also a center-symmetric structure
  • each beam is eccentrically disposed relative to the center of the rigid film.
  • the connecting parts on the second ends of the plurality of beams are distributed at intervals on the rigid film.
  • each beam of the piezoelectric MEMS transducer is connected to a position other than the center of the rigid film through a separate connecting part, so that a plurality of connecting parts are formed in the region other than the center of the rigid film , the rigidity of the rigid film in the transverse direction is improved, so that the rigid film is less warped under the same residual stress. If the projected length on the surface is greater than the distance from the center to the edge of the rigid film, when the rigid film moves the same distance, the beam of the present invention will obtain greater strain, which is beneficial to increase the sensitivity of the MEMS transducer.
  • FIG. 1 is a schematic cross-sectional structure diagram of a piezoelectric MEMS transducer according to a first embodiment of the present invention.
  • FIG. 2 is a schematic top-view structural diagram of the piezoelectric MEMS transducer according to the first embodiment of the present invention.
  • FIG. 3 is a schematic top-view structural diagram of the piezoelectric MEMS transducer according to the second embodiment of the present invention.
  • FIG. 4 is a schematic top-view structural diagram of a piezoelectric MEMS transducer according to Embodiment 3 of the present invention.
  • FIG. 5 is a simulation result diagram of the end warping of the rigid film under the action of residual force in the first embodiment of the present invention.
  • FIG. 6 is a graph of the strain simulation result of the beam under the action of 1 Pa of the rigid membrane in the first embodiment of the present invention.
  • FIG. 7 is a simulation result diagram of the end warping of the rigid film under the action of residual force in the second embodiment of the present invention.
  • FIG. 8 is a graph showing the simulation result of the end warping of the rigid film under the action of residual force in an existing embodiment.
  • FIG. 9 is a graph showing the strain simulation result of the beam under the action of 1 Pa of the rigid membrane in an existing embodiment.
  • this embodiment discloses a piezoelectric MEMS transducer 100 , including: a substrate 110 , a plurality of beams 120 , a rigid film 140 , and a plurality of piezoelectric units 150 .
  • the substrate 110 has a through cavity 160; each beam 120 has a first end and a second end, the first end of each beam 120 is coupled and fixed to the upper end of the substrate 110, and the second end of each beam 120 faces the through cavity 160 area extends; the rigid film 140 is accommodated in the through cavity 160 and is arranged at the lower part of the beam 120, and the second end of each beam 120 is connected to a position other than the center of the rigid film 140 through an independently arranged connecting member 130; A plurality of piezoelectric units 150 are arranged on the beam.
  • the substrate 110 is a center-symmetric structure
  • the inner through cavity 160 is a center-symmetric circular cavity.
  • the rigid membrane 140 is also a circular membrane body with a centrally symmetric structure, and a ventilation opening 141 is provided at the periphery thereof.
  • each beam 120 is connected to a position other than the center of the rigid film 140 through an independently provided connecting member 130, so that the area outside the center of the rigid film forms a plurality of supporting parts (through the connecting member 130) ), thereby improving the rigidity of the rigid film, which can reduce the warping height of the edge region of the rigid film 140 and prevent the ventilation openings 141 from changing greatly.
  • each beam 120 is eccentrically disposed with respect to the center of the rigid membrane 140 .
  • the eccentric arrangement makes the length of the beam 120 longer at the same connection point position, thereby increasing the force arm of the lever. Under the same sound pressure, the strain of the beam 120 will be larger, so the piezoelectric MEMS transduction The sensitivity of the device will be increased.
  • the connecting members 130 on the second ends of the plurality of beams 120 are distributed on the rigid film 140 at intervals, such as annular spaced distribution.
  • the annular space distribution mode keeps the rigid membrane 140 uniformly stressed as a whole.
  • the annularly arranged connecting members 130 form an annular area, the diameter of the annular area is L1, and the length of the L1 can be adjusted by adjusting the length and/or eccentricity of the beam 120. The distance is adjusted to ensure the sensitivity within a certain range, and at the same time to ensure the optimal output of the rigid film warpage within a certain range.
  • the plurality of piezoelectric units 150 includes a piezoelectric unit 150 disposed at a first end of the beam 120 , and includes a piezoelectric unit 150 disposed at a second end of the beam 120 .
  • the projected length of each beam 120 on the rigid film 140 is greater than or equal to the radius of the rigid film 140 . In this way, both the length of the beam 120 and the rigidity of the rigid membrane 140 can be ensured.
  • FIG. 5 is a simulation result diagram of the end warping of the rigid film of a MEMS transducer provided according to the present embodiment under the action of residual force. It can be seen from the figure that the beam end warp is at most 2.002 microns.
  • Fig. 6 is a graph showing the strain simulation result of the beam under the action of 1Pa of the rigid membrane of a MEMS transducer provided according to the present embodiment. It can be seen from the figure that the maximum strain of the beam is 4.5986 ⁇ 10 -7 microns.
  • FIG. 8 and FIG. 9 are respectively a beam warpage simulation result graph and a beam stress simulation result graph of a conventional piezoelectric MEMS transducer.
  • the piezoelectric MEMS transducer has a plurality of beams, and the plurality of beams are connected with the rigid film through a connecting column arranged in the center of the rigid film.
  • the beam end warp is at a maximum of 2.074 microns and the beam strain is at a maximum of 4.151 x 10-7 microns.
  • the end of the piezoelectric MEMS transducer beam provided according to this embodiment is less warped and has less influence on the ventilation opening 141, so the upper end of the rigid film has a more stable air pressure , the output is more stable, and the beam strain is larger at the maximum, so its sensitivity is relatively higher.
  • another piezoelectric MEMS transducer 200 provided in this embodiment is different from Embodiment 1.
  • the eccentric distance of the beam 220 is smaller, and the connecting member 230 is located in the rigid membrane.
  • the length L1 of the annular diameter formed on 240 has also been adjusted accordingly.
  • the projected length of each beam 220 on the rigid film 240 is smaller than the radius of the rigid film 240 .
  • the projected length of each beam 220 on the rigid membrane 240 may also be equal to the radius of the rigid membrane 240 to maintain the strain capacity of the beam 220 .
  • FIG. 7 a simulation result diagram of a piezoelectric MEMS transducer provided according to this embodiment is shown. It can be seen from the diagram that the maximum warpage of the rigid film 240 is 1.604 ⁇ m.
  • FIG. 4 another piezoelectric MEMS transducer 300 is shown.
  • the difference from Embodiment 1 or Embodiment 2 is that in this embodiment, the number of beams is only four.
  • the number of beams of the device 300 can be configured according to requirements, and is not limited to the number shown in the first and second embodiments of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Micromachines (AREA)

Abstract

本发明提供了一种压电MEMS换能器,包括:衬底,所述衬底具有贯通腔;多个梁,每个所述梁具有第一端以及第二端,每个所述梁的第一端耦合固定于所述衬底上,每个所述梁的第二端向所述贯通腔区域延伸;刚性膜,所述刚性膜被收容于所述贯通腔内,每个所述梁的第二端通过一独立设置的连接部件连接至该刚性膜中心以外的位置上;以及多个压电单元,所述多个压电单元设置于所述梁上。本发明可提高刚性膜的刚度,减小刚性膜的翘曲力度,并保证换能器的灵敏度。

Description

一种压电MEMS换能器及电子设备 技术领域
本发明涉及半导体器件领域,尤其涉及一种压电MEMS换能器及电子设备。
背景技术
压电MEMS换能器(如压电麦克风)的压电单元是通过薄膜沉积和刻蚀而成的多层膜悬臂梁结构,该结构由于一端是固定端,在薄膜沉积后释放过程中,很容易造成其边缘区域(即自由端)在残余应力作用下翘曲,这样会导致通气开口变大,进而导致刚性膜上的气压减少,导致低频灵敏度降低。
技术问题
本发明的目的在于提供一种压电MEMS换能器,用于解决现有技术中压电MEMS换能器低频灵敏度低及薄膜翘曲的问题,并且通过合理优化梁的长度和连接端的位置,使器件的灵敏度增加。
技术解决方案
本发明的技术方案如下:
一种压电MEMS换能器,包括:
衬底,所述衬底具有贯通腔;
多个梁,每个所述梁具有第一端以及第二端,每个所述梁的第一端耦合固定于所述衬底上,每个所述梁的第二端向所述贯通腔区域延伸;
刚性膜,所述刚性膜被收容于所述贯通腔内,每个所述梁的第二端通过一独立设置的连接部件连接至该刚性膜中心以外的位置上;以及
多个压电单元,所述多个压电单元设置于所述梁上。
优选的,所述衬底为中心对称的结构,所述刚性膜也为中心对称的结构,所述每个梁相对于所述刚性膜的中心偏心设置。
优选的,所述多个梁的第二端上的所述连接部件在所述刚性膜上呈间隔分布。
优选的,所述多个压电单元包括设置于所述梁的第一端处的压电单元。
优选的,所述多个压电单元包括设置于所述梁的第二端处的压电单元。
优选的,所述每个梁在所述刚性膜上的投影长度大于等于所述刚性膜的边缘到中心的距离。
优选的,所述每个梁在所述刚性膜上的投影长度小于所述刚性膜的边缘到中心的距离。
一种电子设备,包括压电MEMS换能器,所述压电MEMS换能器包括:
衬底,所述衬底具有贯通腔;
多个梁,每个所述梁具有第一端以及第二端,每个所述梁的第一端耦合固定于所述衬底上,每个所述梁的第二端向所述贯通腔区域延伸;
刚性膜,所述刚性膜被收容于所述贯通腔内,每个所述梁的第二端通过一独立设置的连接部件连接至该刚性膜中心以外的位置上;以及
多个压电单元,所述多个压电单元设置于所述梁上。
优选的,所述衬底为中心对称的结构,所述刚性膜也为中心对称的结构,所述每个梁的相对于所述刚性膜的中心偏心设置。
优选的,所述多个梁的第二端上的所述连接部件在所述刚性膜上呈间隔分布。
有益效果
本发明的有益效果在于:压电MEMS换能器的每个梁通过一个单独的连接部件连接到刚性膜的中心以外的位置上,这样,在刚性膜的中心以外的区域形成了多个连接部件,提高了刚性膜横向上的刚度,使刚性膜在相同残存应力下翘曲的力度更小,相应的,与梁通过连接部件连接到刚性膜的中心位置相比,本发明的梁在刚性膜上的投影长度若大于刚性膜中心到边缘的距离,当刚性膜移动相同的距离时,本发明的梁会得到更大的应变,有利于增加MEMS换能器的灵敏度。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例一的压电MEMS换能器的剖面结构示意图。
图2为本发明实施例一的压电MEMS换能器的俯视结构示意图。
图3为本发明实施例二的压电MEMS换能器的俯视结构示意图。
图4为本发明实施例三的压电MEMS换能器的俯视结构示意图。
图5为本发明实施例一中刚性膜在残余用力作用下的末端翘曲仿真结果图。
图6为本发明实施例一中刚性膜在1Pa作用下,梁的应变仿真结果图。
图7为本发明实施例二中刚性膜在残余用力作用下的末端翘曲仿真结果图。
图8为现有一种实施例中刚性膜在残余用力作用下的末端翘曲仿真结果图。
图9为现有一种实施例中刚性膜在1Pa作用下,梁的应变仿真结果图。
本发明的最佳实施方式
为了便于理解本发明,下面将参照相关附图对本发明进行更全面的描述。附图中给出了本发明的较佳的实施例。但是,本发明可以通过许多其他不同的形式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使对本发明的公开内容的理解更加透彻全面。
需要说明的是,当元件被称为“固定于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。本文所使用的术语“垂直的”、“水平的”、“左”、“右”以及类似的表述只是为了说明的目的。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。本文所使用的术语“及/或、和/或”包括一个或多个相关的所列项目的任意的和所有的组合。
实施例一
参考附图1所示,本实施例公开了一种压电MEMS换能器100,包括:衬底110、多个梁120、刚性膜140、以及多个压电单元150。
其中,衬底110具有贯通腔160;每个梁120具有第一端以及第二端,每个梁120的第一端耦合固定于衬底110上端,每个梁120的第二端向贯通腔160区域延伸;刚性膜140被收容于贯通腔160内并设于梁120的下部,每个梁120的第二端通过一独立设置的连接部件130连接至该刚性膜140中心以外的位置上;多个压电单元150设置于梁上。
在本实施例中,衬底110为中心对称的结构,其内部贯通腔160是中心对称的圆形腔体。刚性膜140也为中心对称的结构圆形膜体,其周边设有通风开口141。
本实施例中,每个梁120的第二端通过一独立设置的连接部件130连接至刚性膜140中心以外的位置上,使得刚性膜中心以外的区域形成多个支撑部(通过连接部件130实现),进而提高了刚性膜的刚性,可降低刚性膜140边缘区域翘曲的高度,避免通风开口141产生较大变化。
作为进一步的改进,如图2所示,每个梁120相对于刚性膜140的中心偏心设置。偏心设置的方式使得在同样的连接点位置,梁120的长度可以更长,进而杠杆的力臂得到增加,在相同声压的作用下,梁120的应变会更大,因此压电MEMS换能器的灵敏度会得到增加。
在本实施例中,不管梁120是偏心设置或非偏心设置,多个梁120的第二端上的连接部件130在刚性膜140上呈间隔分布,如环形的间隔分布。环形的间隔分布方式使得刚性膜140整体上受力保持均匀,环形布置的连接部件130形成了环形区域,该环形区域的直径为L1,该L1的长度可通过调整梁120的长度和/或偏心距离来进行调整,在一定范围内保证灵敏度的同时,保证刚性膜翘曲在一定范围内得到最优化的输出。
在本实施例中,多个压电单元150包括设置于梁120的第一端处的压电单元150、以及包括设置于梁120的第二端处的压电单元150。
作为一种可选的实施方式,每个梁120在刚性膜140上的投影长度大于等于刚性膜140的半径。这样既能保证梁120的长度,又能保证刚性膜140的刚度。
如图5所示为依据本实施例提供的一种MEMS换能器的刚性膜在残余用力作用下的末端翘曲仿真结果图,由图中可看出,梁末端翘曲最大为2.002微米。如图6所示为依据本实施例提供的一种MEMS换能器的刚性膜在1Pa作用下,梁的应变仿真结果图,由图中可看出,梁应变最大处为4.5986×10 -7微米。
作为对比,如图8及图9所示为分别一种现有的压电MEMS换能器的梁翘曲仿真结果图和梁应力仿真结果图。该压电MEMS换能器具有多个梁,多个梁与刚性膜之间通过一设置在刚性膜中心的连接柱连接。如图8所示,在该实施例中,梁末端翘曲最大为2.074微米,梁应变最大处为4.151×10 -7微米。
根据仿真对比数据可知,在相同的条件下,依据本实施例提供的压电MEMS换能器梁末端翘曲更小,对通风开口141的影响更小,因而其刚性膜上端具有更稳定的气压,输出更稳定,梁应变最大处更大,因而其灵敏度相对而言更高。
实施例二
如图3所示为本实施例提供的另一种压电MEMS换能器200,与实施例一不同的是,在该实施例中,梁220的偏心距离更小,连接部件230在刚性膜240上构成的环形直径长度L1也进行了相应的调整。
进一步的,在本实施例中,在偏心距离更小的情况下,每个梁220在刚性膜240上的投影长度小于刚性膜240的半径。当然,每个梁220在刚性膜240上的投影长度也可以等于刚性膜240的半径,以保持梁220的应变能力。
如图7所示为依据本实施例提供的一种压电MEMS换能器的仿真结果图,从图中可知,刚性膜240的最大翘曲为1.604微米。
实施例三
如图4所示为又一种压电MEMS换能器300,与实施例一或实施例二不同的是,在该实施例中,梁的数量仅为四个,因此,压电MEMS换能器300的梁数量可根据需要进行相应的配置,并不限制于本实施例一及实施例二中图示的数量。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述的仅是本发明的实施方式,在此应当指出,对于本领域的普通技术人员来说,在不脱离本发明创造构思的前提下,还可以做出改进,但这些均属于本发明的保护范围。

Claims (10)

  1. 一种压电MEMS换能器,其特征在于,所述压电MEMS换能器包括:
    衬底,所述衬底具有贯通腔;
    多个梁,每个所述梁具有第一端以及第二端,每个所述梁的第一端耦合固定于所述衬底上,每个所述梁的第二端向所述贯通腔区域延伸;
    刚性膜,所述刚性膜被收容于所述贯通腔内,每个所述梁的第二端通过一独立设置的连接部件连接至该刚性膜中心以外的位置上;以及
    多个压电单元,所述多个压电单元设置于所述梁上。
  2. 根据权利要求1所述的压电MEMS换能器,其特征在于,所述衬底为中心对称的结构,所述刚性膜也为中心对称的结构,所述每个梁相对于所述刚性膜的中心偏心设置。
  3. 根据权利要求1或2所述的压电MEMS换能器,其特征在于,所述多个梁的第二端上的所述连接部件在所述刚性膜上呈间隔分布。
  4. 根据权利要求1或2所述的压电MEMS换能器,其特征在于,所述多个压电单元包括设置于所述梁的第一端处的压电单元。
  5. 根据权利要求1或2所述的压电MEMS换能器,其特征在于,所述多个压电单元包括设置于所述梁的第二端处的压电单元。
  6. 根据权利要求2所述的压电MEMS换能器,其特征在于,所述每个梁在所述刚性膜上的投影长度大于等于所述刚性膜的边缘到中心的距离。
  7. 根据权利要求2所述的压电MEMS换能器,其特征在于,所述每个梁在所述刚性膜上的投影长度小于所述刚性膜的边缘到中心的距离。
  8. 一种电子设备,包括压电MEMS换能器,其特征在于,所述压电MEMS换能器包括:
    衬底,所述衬底具有贯通腔;
    多个梁,每个所述梁具有第一端以及第二端,每个所述梁的第一端耦合固定于所述衬底上,每个所述梁的第二端向所述贯通腔区域延伸;
    刚性膜,所述刚性膜被收容于所述贯通腔内,每个所述梁的第二端通过一独立设置的连接部件连接至该刚性膜中心以外的位置上;以及
    多个压电单元,所述多个压电单元设置于所述梁上。
  9. 根据权利要求8所述的压电MEMS换能器,其特征在于,所述衬底为中心对称的结构,所述刚性膜也为中心对称的结构,所述每个梁的相对于所述刚性膜的中心偏心设置。
  10. 根据权利要求8或9所述的压电MEMS换能器,其特征在于,所述多个梁的第二端上的所述连接部件在所述刚性膜上呈间隔分布。
PCT/CN2020/131417 2020-11-09 2020-11-25 一种压电mems换能器及电子设备 WO2022095152A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011240342.2 2020-11-09
CN202011240342.2A CN112383869B (zh) 2020-11-09 2020-11-09 一种压电mems换能器及电子设备

Publications (1)

Publication Number Publication Date
WO2022095152A1 true WO2022095152A1 (zh) 2022-05-12

Family

ID=74579199

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/131417 WO2022095152A1 (zh) 2020-11-09 2020-11-25 一种压电mems换能器及电子设备

Country Status (2)

Country Link
CN (1) CN112383869B (zh)
WO (1) WO2022095152A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007267081A (ja) * 2006-03-29 2007-10-11 Yamaha Corp コンデンサ型マイクロホン及びその製造方法
US20100158280A1 (en) * 2008-12-23 2010-06-24 Stmicroelectronics S.R.L. Integrated acoustic transducer in mems technology, and manufacturing process thereof
TW201127738A (en) * 2010-02-02 2011-08-16 Windtop Technology Corp Silicon capacitive microphone structure
CN106412782A (zh) * 2016-11-22 2017-02-15 苏州敏芯微电子技术股份有限公司 一种微硅麦克风及其制造方法
CN110392331A (zh) * 2018-04-20 2019-10-29 意法半导体股份有限公司 压电声学mems换能器及其制造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201283790Y (zh) * 2008-10-15 2009-08-05 陈千千 一种增力机构
CN102497610B (zh) * 2011-12-23 2013-03-20 深圳市韶音科技有限公司 一种骨传导扬声器的传振片装置
CN210579218U (zh) * 2020-04-09 2020-05-19 共达电声股份有限公司 一种柔性电路板及扬声器
CN111405442A (zh) * 2020-04-21 2020-07-10 安徽奥飞声学科技有限公司 一种mems结构

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007267081A (ja) * 2006-03-29 2007-10-11 Yamaha Corp コンデンサ型マイクロホン及びその製造方法
US20100158280A1 (en) * 2008-12-23 2010-06-24 Stmicroelectronics S.R.L. Integrated acoustic transducer in mems technology, and manufacturing process thereof
TW201127738A (en) * 2010-02-02 2011-08-16 Windtop Technology Corp Silicon capacitive microphone structure
CN106412782A (zh) * 2016-11-22 2017-02-15 苏州敏芯微电子技术股份有限公司 一种微硅麦克风及其制造方法
CN110392331A (zh) * 2018-04-20 2019-10-29 意法半导体股份有限公司 压电声学mems换能器及其制造方法

Also Published As

Publication number Publication date
CN112383869B (zh) 2021-11-12
CN112383869A (zh) 2021-02-19

Similar Documents

Publication Publication Date Title
US10993040B2 (en) Piezoelectric microphone
WO2019033854A1 (zh) 具有双振膜的差分电容式麦克风
US10334378B2 (en) MEMS device and process
CN111294715B (zh) 压电mems麦克风
CN111148000B (zh) 一种mems麦克风及阵列结构
CN109803217B (zh) 压电式麦克风
US10469958B2 (en) MEMS sound transducer, MEMS microphone and method for providing a MEMS sound transducer
CN110475191A (zh) 一种低空气阻尼mems压电式麦克风
WO2022007002A1 (zh) 一种压电式mems麦克风
US20170118561A1 (en) Mems device and process
US20230007406A1 (en) Mems speaker and manufacturing method for same
WO2020000647A1 (zh) 麦克风
CN111048660B (zh) 压电换能器、制备压电换能器的方法及电子设备
WO2023245789A1 (zh) 一种mems压电扬声器
CN115914975A (zh) 一种像素发声单元及其制造方法、数字发声芯片
WO2022095152A1 (zh) 一种压电mems换能器及电子设备
CN211792034U (zh) 一种mems芯片
JP2017525263A (ja) 変換器素子
JP4396975B2 (ja) コンデンサ型音響変換装置及びその製造方法
WO2022062107A1 (zh) 发声装置及电子设备
WO2022110349A1 (zh) 一种压电式麦克风及其制作方法
WO2021237808A1 (zh) 压电式mems麦克风
US20190062146A1 (en) Mems devices and processes
US20230362551A1 (en) Piezoelectric Transducer
CN214177514U (zh) 压电式麦克风

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20960609

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20960609

Country of ref document: EP

Kind code of ref document: A1