WO2022095072A1 - 柱塞泵及植保无人机 - Google Patents

柱塞泵及植保无人机 Download PDF

Info

Publication number
WO2022095072A1
WO2022095072A1 PCT/CN2020/127643 CN2020127643W WO2022095072A1 WO 2022095072 A1 WO2022095072 A1 WO 2022095072A1 CN 2020127643 W CN2020127643 W CN 2020127643W WO 2022095072 A1 WO2022095072 A1 WO 2022095072A1
Authority
WO
WIPO (PCT)
Prior art keywords
plunger
cavity
pump according
pump body
motor
Prior art date
Application number
PCT/CN2020/127643
Other languages
English (en)
French (fr)
Inventor
舒展
周乐
王博
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to CN202080078056.2A priority Critical patent/CN114746648A/zh
Priority to PCT/CN2020/127643 priority patent/WO2022095072A1/zh
Priority to CN202023200803.1U priority patent/CN214247598U/zh
Priority to CN202023201065.2U priority patent/CN214577575U/zh
Publication of WO2022095072A1 publication Critical patent/WO2022095072A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D1/00Dropping, ejecting, releasing, or receiving articles, liquids, or the like, in flight
    • B64D1/16Dropping or releasing powdered, liquid, or gaseous matter, e.g. for fire-fighting
    • B64D1/18Dropping or releasing powdered, liquid, or gaseous matter, e.g. for fire-fighting by spraying, e.g. insecticides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B1/00Multi-cylinder machines or pumps characterised by number or arrangement of cylinders
    • F04B1/12Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinder axes coaxial with, or parallel or inclined to, main shaft axis
    • F04B1/14Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinder axes coaxial with, or parallel or inclined to, main shaft axis having stationary cylinders
    • F04B1/16Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinder axes coaxial with, or parallel or inclined to, main shaft axis having stationary cylinders having two or more sets of cylinders or pistons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B17/00Pumps characterised by combination with, or adaptation to, specific driving engines or motors
    • F04B17/03Pumps characterised by combination with, or adaptation to, specific driving engines or motors driven by electric motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B53/00Component parts, details or accessories not provided for in, or of interest apart from, groups F04B1/00 - F04B23/00 or F04B39/00 - F04B47/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B53/00Component parts, details or accessories not provided for in, or of interest apart from, groups F04B1/00 - F04B23/00 or F04B39/00 - F04B47/00
    • F04B53/14Pistons, piston-rods or piston-rod connections

Definitions

  • the present application relates to the technical field of unmanned aerial vehicles, and in particular, to a plunger pump and a plant protection unmanned aerial vehicle.
  • the application provides a plunger pump and a plant protection drone.
  • an embodiment of the present application provides a plunger pump, including a pump body, and the pump body includes:
  • a water inlet which is communicated with a plurality of the diversion chambers, and is used for diverting the liquid flowing into the water inlet into the plurality of the diversion chambers
  • the water inlet is communicated with a plurality of the shunt cavities, and the liquid flowing in from the water inlet is shunt into the plurality of the shunt cavities;
  • a plurality of plunger cavities, the plurality of plunger cavities and the plurality of the shunt cavities communicate with each other in pairs, for receiving the liquid flowing out of the shunt cavities, and further increasing the liquid entering the plunger cavity pressure;
  • a plurality of water outlet cavities, the plurality of the water outlet cavities and the plurality of the plunger cavities communicate with each other, and are used for receiving the liquid pressurized by the plunger cavities; an axial extension of the plunger cavity;
  • a water outlet communicates with a plurality of the water outlet cavities, and is used for merging and discharging the liquids in the plurality of the water outlet cavities.
  • embodiments of the present application provide a plant protection drone, which includes a body and at least one plunger pump of the first aspect embodiment mounted on the body.
  • a plunger pump including:
  • a power assembly includes a metal motor base, a metal casing, a motor, and an ESC; the metal motor base and the metal casing are fixedly connected and enclosed into a shielding space, and the motor and the ESC are both
  • the motor is installed in the metal motor base, and the ESC is electrically connected with the motor to control the motor to generate power;
  • the ESC includes a ground terminal, so the The metal motor base or the metal casing is electrically connected to the ground terminal, so as to guide the electromagnetic interference signal generated by the motor into the ground terminal;
  • a transmission assembly located on the side of the metal motor base away from the motor; the transmission assembly is connected to the motor, and is used for the motor to drive the transmission assembly to rotate when the motor generates power;
  • a pump body assembly the pump body assembly includes a pump body and a plunger arranged in the pump body; the plunger is connected with the transmission assembly, and when the transmission assembly rotates, the plunger is in the Reciprocating linear motion occurs in the pump body to increase the pressure of the liquid in the pump body.
  • an embodiment of the present application provides a plant protection drone, including a body and at least one plunger pump of the second aspect embodiment mounted on the body.
  • each shunt cavity, plunger cavity and water outlet cavity are connected to form a flow channel structure of the pump body.
  • the plurality of the water outlet chambers are respectively arranged along the axial direction of the plurality of the plunger chambers, so that the water outlet chambers and the plunger chambers extend in the same direction, and the pump body achieves the effect of compact structure.
  • FIG. 1 is a schematic perspective view of a plunger pump in an embodiment of the present application.
  • FIG. 2 is a schematic cross-sectional view of a plunger pump in an embodiment of the present application.
  • FIG 3 is an exploded schematic diagram of the plunger pump in an embodiment of the present application removing the pump body.
  • FIG. 4 is a schematic partial cross-sectional view of FIG. 3 .
  • FIG. 5 is a schematic diagram of the connection between the plunger pump and the flow meter in an embodiment of the present application.
  • 6 to 8 are partial exploded schematic diagrams of the plunger pump in different viewing angles in an embodiment of the present application.
  • FIG. 9 is an exploded schematic diagram of a pump body assembly of a plunger pump in an embodiment of the present application.
  • FIG. 10 is an exploded schematic diagram of a pump body of a plunger pump in an embodiment of the present application.
  • 11a and 11b are cross-sectional views of a pump body of a plunger pump in an embodiment of the present application along different sections.
  • FIG. 12 is a schematic perspective view of a plant protection drone in an embodiment of the present application.
  • the application provides a plunger pump and a plant protection drone.
  • the plunger pump and the plant protection drone of the present application will be described in detail below with reference to the accompanying drawings.
  • the features of the embodiments and implementations described below may be combined with each other without conflict.
  • the embodiment of the present application provides a plunger pump 100, which can be used for devices and equipment that need to spray liquid, such as agricultural plant protection drones, pesticide spraying vehicles, manpower spraying devices, car washers, and dosing devices.
  • a plunger pump 100 can be used for devices and equipment that need to spray liquid, such as agricultural plant protection drones, pesticide spraying vehicles, manpower spraying devices, car washers, and dosing devices.
  • plant protection drones Taking plant protection drones as an example, with the gradual promotion of plant protection drones, the demand for large-flow spraying is also increasing.
  • the volume and weight of conventional large-flow diaphragm pumps or peristaltic pumps used in plant protection drones are relatively large.
  • plant protection drones due to reasons such as changes in flight speed, plant protection drones have the need for variable spraying, while the pressure of conventional diaphragm pumps or peristaltic pumps is limited and cannot meet the spraying requirements.
  • the plunger pump 100 provided by the embodiment of the present application can reach a relatively high pressure, and can meet the spraying requirements of large flow and variable flow.
  • the structure of the plunger pump 100 is light and compact, takes up little space, and can reduce the overall weight of the drone.
  • the plunger pump 100 includes a power assembly 10 , a transmission assembly 20 and a pump body assembly 30 , and the transmission assembly 20 is connected between the pump body assembly 30 and the power assembly 10 .
  • the pump body assembly 30 includes a pump body 31 and a plunger 32 disposed at least partially within the pump body 31 .
  • the transmission assembly 20 is connected with the power assembly 10 and the plunger 32 .
  • the power assembly 10 drives the transmission assembly 20 to rotate.
  • the pump body 31 is provided with a water inlet 311 and a water outlet 312.
  • the power assembly 10 drives the transmission assembly 20 to rotate.
  • the plunger 32 reciprocates linearly in the pump body 31 to increase or decrease.
  • the pressure of the liquid in the pump body 31 makes the plunger pump 100 suck the liquid into the water inlet 311 and squeeze the liquid out of the water outlet 312 .
  • the power assembly 10 includes a motor housing 11 , a motor 12 , an ESC 13 and a motor base 14 , the top of the motor housing 11 is provided with an opening, the motor base 14 is connected to the opening of the motor housing 11 , and the motor 12 is installed on the Motor base 14.
  • the ESC 13 is electrically connected to the motor 12 for controlling the motor 12 to generate power.
  • the motor 12 includes a rotating shaft 121 , which passes through the motor base 14 and is connected to the transmission assembly 20 . When the motor 11 generates power, the rotating shaft 121 of the motor 11 drives the transmission assembly 20 to rotate.
  • the motor 12 is used to provide power to drive the rotating shaft 121 to rotate, so that the rotating shaft 121 drives the transmission assembly 20 to rotate.
  • An accommodating cavity 111 is formed between the motor base 14 and the bottom wall of the motor housing 11 , and the ESC 13 can be accommodated and disposed in the accommodating cavity 111 .
  • the ESC 13 is located between the motor 12 and the motor base 14 and protrudes from the motor 12 .
  • the motor housing 11 includes a main body part and an auxiliary body part, the main body part is used for accommodating the motor 12 , and the auxiliary body part is used for accommodating the part of the ESC 13 protruding from the motor 12 . Integrating the ESC 13 inside the motor 12 facilitates the arrangement of devices such as temperature sensors and Hall sensors on the one hand, and makes the structure of the power assembly 10 more compact on the other hand.
  • the rotating shaft 121 of the motor 12 is connected to the transmission assembly 20 through the motor base 14 .
  • the transmission assembly 20 includes a swash plate 211 and a thrust bearing 212 , the thrust bearing 212 is mounted on the upper surface of the swash plate 211 , and the plunger 32 is disposed on the upper surface of the thrust bearing 212 .
  • the rotating shaft 121 of the motor 12 passes through the motor base 14 and is connected to the swash plate 211 , and the swash plate 211 may be provided with a connecting hole for connecting the rotating shaft 121 of the motor 12 .
  • the shaft 121 of the motor 12 drives the swash plate 211 and the thrust bearing 212 to rotate, and the thrust bearing 212 drives the plunger 32 to reciprocate linearly in the pump body 31 .
  • the plunger pump 100 can work together with the flowmeter 90.
  • an electromagnetic signal will be generated when the motor 12 and the ESC 13 are energized, and the resulting electromagnetic interference will affect the flowmeter.
  • the detection accuracy of 90 has an impact.
  • the motor shell 11 can be a metal shell
  • the motor base 14 can be a metal motor base. The metal motor base and the metal shell are fixedly connected and enclosed into a shielding space, and the motor 12 and the electric adjustment board 13 are both arranged in the shielding space.
  • the ESC 13 includes a ground terminal, and a metal motor base or a metal casing is electrically connected to the ground terminal, so as to introduce the electromagnetic interference signal (ie, interference electrons) generated by the motor 12 into the ground terminal, thereby reducing the number of columns.
  • the effect of electromagnetic interference signals generated by the plug pump 100 on the flow meter 90 may be taken on the metal casing to further reduce the influence of electromagnetic interference signals generated by the plunger pump 100 on the flowmeter 90 .
  • the motor 12 and the ESC 13 are placed in the shielding space enclosed by the metal motor base and the metal casing, and the metal motor base or the metal casing is electrically connected to the ground terminal of the ESC 13, thereby connecting the
  • the electromagnetic interference signal generated by the motor 12 is introduced into the ground terminal, so as to reduce the influence of the electromagnetic interference signal generated by the plunger pump 100 on the flow meter 90 .
  • a metal bearing 15 is provided between the metal motor base and the rotating shaft 121 , so that the electromagnetic interference signals generated on the rotating shaft 121 can be introduced into the ground terminal of the ESC 13 in sequence. Therefore, the influence of the electromagnetic interference signal generated by the plunger pump 100 on the flow meter 90 is reduced.
  • the electric machine 12 also includes a rotor 122 .
  • the metal motor base is electrically connected to the metal casing, and the metal motor base is electrically connected to the ground terminal of the ESC 13 .
  • the metal motor base is electrically connected to the ground terminal of the ESC board 13, and then the metal casing is electrically connected to the metal motor base, so that the electromagnetic interference signal generated on the rotating shaft 121 of the motor 12 is introduced into the ESC through the metal casing and the metal motor base in turn.
  • the influence of the electromagnetic interference signal generated by the plunger pump 100 on the flow meter 90 is reduced.
  • the metal motor base and the metal casing are electrically connected, and the metal motor base or the metal casing is electrically connected to the ESC board 13, so as to connect the metal motor base Interfering electrons generated by and the metal casing are introduced into the ESC 13 .
  • the metal motor base and the metal casing are electrically connected through a first metal screw, and the metal motor base and the ground end of the ESC 13 are electrically connected through a second metal screw 131 .
  • the electromagnetic interference signal generated by the plunger pump 100 can be introduced to the grounding end of the ESC 13 through the metal casing, the first metal screw, the metal motor base and the second metal screw 131 in sequence.
  • the pump body assembly 30 further includes an electrical connection assembly, and the electrical connection assembly includes a plunger pump plug 331 and a connecting wire 332 , the plunger pump plug 331
  • the part protruding from the motor 12 is inserted into the ESC 13 and accommodated in the auxiliary body part of the motor housing 11 .
  • the connecting wire 332 is connected to the plunger pump plug 331 for further conducting the electromagnetic interference signal on the ground end of the ESC 13 to the outside.
  • the connecting wire 332 includes a connecting wire plug 333, and the connecting wire plug 333 can be electrically connected to the flight control system of the plant protection drone, and the flight control system can include a main control board , the main control board can be provided with a ground terminal, so that the electromagnetic interference signal generated by the plunger pump 100 can be conducted to the ground terminal of the main control board of the flight control system through the plunger pump plug 331 and the connecting wire 332, thereby reducing the number of plungers The effect of electromagnetic interference signals generated by the pump 100 on the flow meter 90 .
  • the plant protection drone may further include a battery, the battery is connected to the main control board, and the electromagnetic interference signal generated by the plunger pump 100 can be further conducted to the negative electrode of the battery to be grounded.
  • the pump body assembly 30 further includes a plunger base 34 and a plunger spring 35 , and the pump body 31 is mounted on the plunger base 34 .
  • the plunger 32 passes through the plunger base 34 , the plunger includes a plunger rod 321 and a flange 322 , and the flange 322 protrudes from the edge of the plunger rod 321 .
  • the first end (shown as the top end in the figure) of the plunger spring 35 abuts on the plunger base 34, and the second end (shown as the bottom end in the figure) of the plunger spring 35 is sleeved Outside the plunger 32 and connected with the flange 322 of the plunger 32 .
  • the plunger spring 35 can provide an elastic force to the plunger 32 in the direction of the thrust bearing 212 .
  • the plunger base 34 is connected to the bottom of the pump body 31, the pump body assembly 30 further includes a plunger cavity 310, the plunger cavity 310 is located in the pump body 31, and the plunger 32 is removed from the plunger base 34 extends through the plunger base 34 and into the plunger cavity 310 .
  • the plunger base 34 is provided with a guide hole 341 extending therethrough along the movement direction of the plunger 32 (the vertical direction shown in the figure), and the guide hole 341 corresponds to the position of the plunger cavity 310 .
  • the plunger 32 passes through the guide hole 341 and is at least partially accommodated in the plunger cavity 310 .
  • the plunger base 34 can provide a guiding function for the plunger 32 .
  • the shaft 121 of the motor 12 drives the swash plate 211 and the thrust bearing 212 to rotate, and the thrust bearing 212 drives the plunger 32 to reciprocate linearly in the plunger cavity 310 along the guide hole 341 .
  • the bottom of the plunger base 34 is provided with a guide sleeve 342 , and the guide sleeve 342 corresponds to the position of the plunger cavity 310 .
  • the plunger 32 is pushed through the guide sleeve 342 and the guide hole 341 to reciprocate linearly in the pump body 31 .
  • the guide sleeve 342 and the guide hole 341 can guide the plunger 32 .
  • the guide sleeve 342 can be directly integrated on the plunger base 34 and formed integrally with the plunger base 34 .
  • the inner wall of the guide sleeve 342 is provided with a groove portion, and the groove portion is provided with a guide ring 343.
  • the material of the guide ring 343 can be It is a soft metal such as wear-resistant plastic or copper alloy, so as to reduce the wear between the guide sleeve 342 and the plunger 32 .
  • the outer diameter of the top end of the guide sleeve 342 is larger than the outer diameter of the bottom end of the guide sleeve 342 . It can be understood that the outer diameter of the root of the guide sleeve 342 on the side close to the plunger base 34 is larger, which is used to constrain the position of the plunger spring 35 . The outer diameter of the end of the guide sleeve 342 away from the plunger base 34 is small, which is used to avoid the plunger spring 35 when the plunger spring 35 follows the plunger 32 to reciprocate linearly, thereby reducing the wear between the two.
  • the water inlet 311 of the pump body 31 can be connected to an external box, and the box can contain liquids such as liquid medicine, and the liquid can be introduced into the pump body 31 through the water inlet 311 .
  • the water outlet 312 of the pump body 31 can be connected to the spray head for spraying the medicinal liquid.
  • the thrust bearing 212 when the thrust bearing 212 rotates from the lowest point to the highest point, the thrust bearing 212 can push the plunger 32 to move upward in the plunger cavity 310 along the guide hole 341 , so as to increase the pressure in the plunger cavity 310 .
  • the pressure of the liquid so that the liquid in the pump body 31 is squeezed out of the water outlet 312, and the plunger spring 35 is in a compressed state during this process.
  • the plunger spring 35 When the thrust bearing 212 rotates from the highest point to the lowest point, the plunger spring 35 is elastically reset, and provides the plunger 32 with an elastic force in the direction of the thrust bearing 212, so that the plunger pump 100 will Liquid is sucked into the water inlet 311 . In this way, the reciprocating cycle can realize the spraying operation.
  • the plunger 32 is a hollow plunger with a hollow structure, and the hollow part can be filled with a material with a lower density, thereby reducing the overall weight of the plunger pump 100 .
  • the plunger 32 includes a plunger rod 321 and a flange 322 detachably connected to the bottom of the plunger rod 321 , and the flange 322 protrudes outward from the plunger rod 321 along the radial direction of the plunger rod 321 .
  • the second end of the plunger spring 35 is sleeved on the plunger rod 321 and connected with the flange 322.
  • the plunger spring 35 can be squeezed through the flange 322 to make the plunger The spring 35 is in a compressed state.
  • the plunger rod 321 can be made of wear-resistant and anti-corrosion materials such as wear-resistant stainless steel or ceramics by turning.
  • the plunger rod 321 can have a hollow structure, and the flange 322 can be machined from high-strength steel into a circlip structure, which is easy to be clamped to the rod. on the plunger 321. By making the plunger 32 a detachable structure, the cutting amount of the plunger 32 can be reduced, thereby reducing the manufacturing cost.
  • an oil storage housing 22 is provided between the plunger base 34 and the metal motor base.
  • the plunger base 34 , the metal motor base and the oil storage housing 22 form a sealed cavity 221 for accommodating the transmission assembly 20 .
  • the sealing cavity 221 contains lubricating liquid, so as to reduce the friction between the plunger 32 and the transmission assembly 20 and prolong the service life of the plunger 32 and the transmission assembly 20 .
  • the metal motor base, the oil storage housing 22 and the plunger base 34 constitute the sealed cavity 221 .
  • the lubricating liquid may include lubricating oil or grease, which can reduce the wear between the plunger 32 and the swash plate 211 and the plunger base 34 .
  • the side wall of the guide sleeve 342 close to the plunger base 34 is provided with an oil guide groove 3421, so that the lubricating liquid flows from the oil guide groove into between the guide sleeve 342 and the plunger 32, and wets the plunger 32 and the guide sleeve 342. , further reducing the wear between the plunger 32 and the swash plate 211 and the plunger base 34 .
  • the plunger base 34 and the oil storage housing 22 can be detachably connected by fasteners such as screws 344 .
  • the pump body 31 and the plunger base 34 can be detachably connected by fasteners such as screws 344 to prevent the transmission components from being easily disassembled, and the fasteners can use a special screw head type to match the special nature of the connecting part 3441 , such as an oval shape, prevents the drive assembly from being easily disassembled.
  • the oil storage housing 22 can be fixedly connected to the motor base 14 , so that the filling direction of the lubricating liquid is from the top of the oil storage housing 22 . In this way, when lubricating liquid needs to be added, the plunger base 34 can be removed from the oil storage housing 22 and the lubricating liquid can be added directly without turning the plunger pump 100 upside down to prevent the thrust bearing 212 from falling off the swash plate 211 situation occurs.
  • the oil storage housing 22 is integrally formed with the motor base 14 .
  • the electromagnetic interference of the plunger pump 100 is not only generated by the electric motor 12 and the ESC 13 being energized, but may also be conducted by the pump body 31 or the plunger 32 to the water circuit, and then transmitted to the electrodes of the flow meter 90 through the water circuit, so that the flow meter 90 The signal fluctuates and affects the accuracy.
  • the pump body 31 further includes a pump body casing, the pump body casing is a metal casing, the oil storage casing 22 is a metal casing, the column The plug base 34 is a metal base.
  • the casing of the pump body is electrically connected to the metal motor base through the plunger base 34 and the oil storage housing 22 in turn, so as to transmit the electromagnetic interference signal generated in the liquid in the pump body 31 to the metal motor base, and then pass through the metal motor base.
  • the metal motor base is introduced into the grounding end of the ESC 13 , thereby reducing the influence of the electromagnetic interference signal generated by the plunger pump 100 on the flow meter 90 .
  • a first sealing ring 61 is provided between the plunger cavity 310 and the plunger base 34, A second sealing ring 346 is provided on the rotating shaft 121 of the motor 12 .
  • the first sealing ring 61 is embedded in the guide hole 341 of the plunger base 34 .
  • the top end of the guide hole 341 of the plunger base 34 is in a stepped structure, the structure of the first sealing ring 61 is adapted to the stepped structure, and the first sealing ring 61 is embedded in the stepped structure.
  • the stepped structure can limit the position of the first sealing ring 61 .
  • a guide block 345 may be provided in the guide hole 341 for pressing the first sealing ring 61 and guide the plunger 32 together with the guide sleeve 342 .
  • a second sealing ring 62 may also be provided on the other side of the guide block 345 to improve the sealing effect.
  • the second sealing ring 62 may be provided with a second overflow groove 611 to improve the overflow effect.
  • the guide block 345 includes a first pressing portion 3451 and a second pressing portion 3452 connected to the first pressing portion 3451 , the first pressing portion 3451 abuts against the second sealing ring 62 , The second pressing portion 3452 is in contact with the second sealing ring 62 , so as to achieve a fixing function of the first sealing ring 61 and the second sealing ring 62 .
  • the first sealing ring 61 and the plunger 32 may be worn out after long-term use, resulting in the failure of the sealing and the leakage of liquid.
  • the liquid in the plunger pump 100 flows from the position of the first sealing ring 61 into the sealing cavity 221 located below, It causes the emulsification and deterioration of the lubricating oil and affects the lubricating liquid.
  • the pump body 31 includes a bottom surface, and the opening of the plunger cavity 310 is located on the bottom surface of the pump body 31 and corresponds to the position of the guide hole 341 and the guide sleeve 342 of the plunger base 34 .
  • the bottom surface is provided with an overflow groove 36 for discharging the liquid overflowing from the plunger cavity 310 out of the plunger cavity 310 .
  • the overflow grooves 36 extend from the middle of the bottom surface of the pump body 31 to each of the plunger cavities 310 , so as to discharge the liquid overflowing from the plunger cavity 310 out of the plunger cavity 310 .
  • the overflowed liquid can be collected and discharged in the middle of the pump body 31 .
  • the overflow groove 36 extends to the edge of the bottom surface of the pump body 31 to discharge the liquid overflowing from the plunger cavity 310 out of the pump body 31 .
  • the first sealing ring 61 is provided with an overflow hole at the slot position of the plunger cavity 310 facing the overflow groove 36 , so that the liquid overflowing from the plunger cavity 310 can be discharged from the first sealing ring.
  • the overflow hole of 61 discharges the plunger cavity 310 . Setting the overflow groove 36 on the pump body 31 and setting the overflow hole on the first sealing ring 61 can prevent the liquid from flowing to the bottom and corrode the ESC 13 on the one hand, and also facilitate the discharge of the liquid from the pump body 31 on the other hand. for recycling.
  • the bottom surface of the pump body 31 further includes a liquid storage tank 37 , and the liquid storage tank 37 communicates with the overflow tank 36 .
  • the liquid storage tank 37 communicates with the overflow tank 36 .
  • the bottom surface of the pump body 31 further includes a weight-reducing hole for reducing the weight of the pump body 31 , and at the same time, it can also store the liquid leaking from the plunger cavity 310 .
  • the bottom surface of the water outlet cavity and the bottom surface of the pump body 31 are separated by a certain distance.
  • the weight reduction hole corresponds to the position of the bottom surface of the water outlet cavity.
  • the design of the flow channel of the conventional plunger pump 100 is relatively complicated, and the main problem is that the arrangement of the plunger cavity 310 is relatively scattered and the structure is not compact enough, resulting in the large weight and volume of the plunger pump 100 .
  • the water inlet and outlet channels of the conventional plunger pump 100 are complicated, which leads to difficulty in forming and increases the manufacturing cost.
  • the pump body 31 of the plunger pump 100 may include:
  • the water inlet 311 communicates with a plurality of the diversion cavities 313 , and is used for diverting the liquid flowing into the water inlet 311 into the plurality of the diversion cavities 313 .
  • a plurality of plunger cavities 310, the plurality of plunger cavities 310 and the plurality of the shunt cavities 313 communicate with each other in pairs, for receiving the liquid flowing out of the shunt cavities 313, and more entering the plunger The pressure of the liquid within chamber 310.
  • the plurality of the water outlet cavities 314 are respectively arranged along the axial direction of the plurality of the plunger cavities 310 .
  • the plurality of the water outlet cavities 314 are respectively arranged along the axial extension of the plurality of the plunger cavities 310, which refers to the plurality of the water outlet cavities 314 and the plurality of the plunger cavities 310 basically in the same direction.
  • the shapes of the water outlet cavity 314 and the plunger cavity 310 are not specifically limited, and they may be straight tube type, serpentine shape, bending type, and the like.
  • the plurality of the water outlet cavities 314 and the plurality of the plunger cavities 310 are straight tubes and are arranged parallel to each other. In another embodiment, the plurality of the water outlet cavities 314 and the plurality of the plunger cavities 310 are cylindrical tubular structures.
  • a water outlet 312, the water outlet 312 communicates with the plurality of the water outlet cavities 314, and is used to combine the liquids in the plurality of the water outlet cavities 314 and discharge them.
  • each of the shunt chambers 313 , the plunger chamber 310 and the water outlet chamber 314 communicate with each other to form the flow channel structure of the pump body 31 .
  • a plurality of the water outlet cavities 314 are respectively arranged along the axial direction of the plurality of the plunger cavities 310, so that the water outlet cavities 314 and the plunger cavity 310 extend in the same direction (all shown in the figure are along the vertical direction). ), so that the pump body 31 achieves the effect of compact structure.
  • the water inlet 311 may be provided with a water inlet connector 315
  • the water outlet 312 may be provided with a water outlet connector 316 .
  • a water outlet check valve 317 can be arranged in the water outlet chamber 314, which restricts the flow direction of the liquid to flow from the side of the water outlet chamber 314 close to the plunger chamber 310 to the other side away from the plunger chamber 310, but cannot flow back from the opposite direction.
  • the pressure in the plunger pump 100 increases, it opens, so that the liquid in the water outlet chamber 314 is discharged through the water outlet joint 316 .
  • a water inlet check valve 319 may be arranged in the diverter chamber 313, which restricts the flow direction of the liquid to flow from the side of the diverter chamber away from the plunger chamber 310 to the other side close to the plunger chamber 310, but cannot flow back from the opposite direction. In one embodiment, it is opened when the pressure in the plunger pump 100 is reduced, so that the liquid in the external water tank is sucked in through the water inlet joint 315 and introduced into the shunt chamber 313 . It should be noted that the number of plungers 32 corresponds to the number of plunger cavities 310, and each plunger cavity 310 is provided with a plunger 32 for changing the pressure in the plunger cavity 310.
  • the number of the plunger chambers 310 is three, which constitutes the triplex plunger pump 100 .
  • the numbers of the diverting chambers 313 , the plunger chambers 310 and the water outlet chambers 314 can also be set according to actual needs to form other numbers of multi-cylinder piston pumps 100 .
  • a plurality of the shunt cavities 313 are respectively disposed along the axial extension of the plurality of the plunger cavities 310 .
  • the plurality of shunt cavities 313 are respectively arranged to extend along the axial direction of the plurality of plunger cavities 310, so that the extension directions of the shunt cavities 313, the water outlet cavity 314 and the plunger cavity 310 are the same (all shown in the figure are all in the same direction). along the vertical direction), which is beneficial to achieve the effect of compact structure.
  • the pump body 31 further includes a confluence chamber 3141, which is provided in the peripheral space of the outlet of the water outlet chamber. That is, the confluence cavity is arranged on a peripheral plane where the outlet of the water outlet cavity is located, and a confluence channel is formed on the peripheral plane. Compared with the prior art, the process is simpler through the confluence mode of punching holes on the cavity wall of the water outlet cavity.
  • the confluence cavity 3141 communicates with the water outlet 312 and the plurality of water outlet cavities 314, and is used for converging the liquids in the plurality of water outlet cavities 314 and then discharging them from the water outlet 312, so as to improve the water outlet efficiency.
  • the confluence cavity 3141 is provided with a water collection port 3142 , and the liquid entering the confluence cavity 3141 is discharged from the water outlet 312 through the water collection port 3142 .
  • the water collecting port 3142 communicates with the water outlet 312 , and can guide the liquid in the confluence chamber 3141 to the water outlet 312 .
  • the water collecting port 3142 is located between the shunt cavity 313 and the adjacent water outlet cavity 314, and the gap space between the shunt cavity 313 and the water outlet cavity 314 arranged in the same direction is reasonably utilized, It does not need to take up additional space and achieves a compact structure.
  • the shunt cavity 313 and the plunger cavity 310 are arranged throughly, so that the shunt cavity 313 and the plunger cavity 310 are arranged in the same direction, which can better achieve the effect of compact structure.
  • the liquid from the shunt cavity can be Straight into the plunger cavity 310 , reducing the pressure relief phenomenon caused by the bending of the flow channel, and helping to increase the pressure of the liquid.
  • the shunt cavity 313 and the plunger cavity 310 are arranged concentrically through.
  • the plunger cavity 310 and the water outlet cavity 314 are arranged at intervals around a circumference, which can better achieve the effect of compact structure.
  • the spaced arrangement refers to the arrangement with a certain distance between adjacent cavities.
  • a plunger cavity 310 is arranged between every two of the water outlet cavities 314, so that the water outlet check valves are far apart, and the check valves will not affect each other due to the water hammer effect. higher efficiency.
  • the plunger cavity 310 and the water outlet cavity 314 are arranged at equal intervals around a circumference, so that the weight distribution of the pump body 31 and the flow direction distribution of the liquid shunt and the confluence can be uniform.
  • the pump body 31 further includes a water inlet pipe 3131, and the water inlet pipe 3131 communicates with the water inlet port 311 and the plurality of shunt cavities 313 respectively, and is used for connecting the water inlet port 311
  • the incoming liquid is divided into a plurality of the diversion cavities 313 to improve the efficiency of water intake.
  • the shunt cavity 313 and the water outlet cavity 314 are respectively arranged at intervals around the circumference of the water inlet pipe 3131, which can better achieve the effect of compact structure.
  • the diameter of the water inlet pipe is larger than the diameter of the shunt cavity, so as to provide enough liquid for each shunt cavity and the corresponding plunger cavity 310 as soon as possible.
  • the water channels of the plurality of water outlet chambers 314 are collected into the confluence chamber 3141 .
  • the water channels of the plurality of shunt cavities 313 are collected to the water inlet pipe 3131 .
  • the confluence chamber 3141 may be provided in a direction surrounding the circumference of the pump body 31 .
  • the water inlet pipe 3131 is located in the middle of the space enclosed by the plurality of the shunt cavities 313 .
  • the middle part of the space enclosed by the plurality of shunt cavities 313 is the middle part of the pump body 31
  • the confluence cavity 3141 can be located on the periphery of the water inlet pipe 3131 in the form of an annular cavity.
  • the length of the water outlet cavity 314 along the axial direction of the pump body 31 can be set to be less than the sum of the lengths of the shunt cavity 313 and the plunger cavity 310 along the axial direction of the pump body 31, so as to achieve compact structure and miniaturization Effect.
  • the water inlet 311 is provided on the side of the water outlet cavity 314 away from the water outlet 312 , so that the space of the pump body 31 can be rationally utilized to achieve the effect of compact structure and miniaturization.
  • the pump body assembly 30 may also include a pump cover 38 sealingly connected to the top of the pump body 31 .
  • the outer edge of the top surface of the pump body 31 may protrude upward to form a first rib 381
  • the middle portion of the top surface of the pump body 31 may protrude upward to form a second rib 382 .
  • the shunt space enclosed between the second baffle 382 and the pump cover 38 is communicated with the water inlet pipe 3131 and the shunt cavity respectively, so that the liquid entering the water inlet pipe 3131 is shunt to a plurality of the shunt cavities through the shunt space Inside.
  • the shunt cavity can slow down the fluid pulsation and can be used as an auxiliary water tank, which is beneficial to improve the precision and uniformity of spraying control.
  • grooves 383 may be formed on the top surfaces of the first baffle 381 and the second baffle 382 respectively, and sealing strips may be arranged in the grooves 383 to improve the sealing between the pump cover 38 and the pump body 31 .
  • the second baffle includes a convex portion and a concave portion, wherein the concave portion corresponds to the position of the water outlet cavity, and the convex portion corresponds to the position of the flow distribution cavity.
  • the shape of the concave part matches the shape of the cavity wall of the water outlet cavity, and the convex part exposes the opening of the shunt cavity, so that the liquid of the water inlet pipe can enter each of the shunt cavities through the partially exposed opening.
  • the plunger cavity 310 and the adjacent water outlet cavity 314 are communicated with each other two by two, so that each diverting cavity 313, the plunger The cavity 310 and the water outlet cavity 314 communicate with each other to form a flow channel structure of the pump body 31 .
  • the pump body 31 further includes a plurality of cavity-turning flow channels 39 corresponding to the number of the plunger cavity 310, and the plunger cavity 310 is connected to the adjacent water outlet cavity 314. Between the water outlet cavities 314 of the present invention, there is a rotating cavity flow channel 39 for connecting the plunger cavity 310 and the water outlet cavity 314 .
  • the rotating cavity flow channel 39 since it is difficult to process the rotating cavity flow channel 39 for connecting the plunger cavity 310 and the water outlet cavity 314 from the inside of the pump body 31, the rotating cavity flow channel 39 extends to and penetrates the plunger
  • the outer side wall of one of the cavity 310 or the water outlet cavity 314 is provided with a plug 391 through the outer side wall of one of the plunger cavity 310 or the water outlet cavity 314, which is convenient for processing to obtain the Turn the cavity flow channel 39 .
  • the plunger pump provided by the embodiment of the present application has beneficial effects such as light and compact high pressure and large flow, can replace the traditional low pressure and small flow diaphragm pump or peristaltic pump, and can be applied to fields such as spraying systems or plant protection drones. Increase spray flow and pressure, enhance droplet penetration, and achieve variable spraying.
  • the above-mentioned compact and weight-saving design of the flow channel structure of the plunger pump can reduce the volume and weight.
  • the corrosion resistance, sealing reliability and wear resistance of the plunger pump can be improved.
  • the compression ratio of the plunger cavity is small, which improves the self-priming and exhausting capacity; and the flow rate is basically proportional to the rotation speed, and the flow loss after wear is small.
  • Embodiments of the present application also provide a spray system, including a plunger pump 100 and at least one spray head 92 connected to the plunger pump 100 .
  • the plunger pump 100 can be connected to an external box, and the box can hold liquids such as liquid medicine.
  • the plunger pump 100 can suck the liquid in the tank and pump it out, and then spray it through the spray head 92 . It should be noted that, the descriptions about the plunger pump 100 in the above embodiments and implementation manners are also applicable to the spraying system of the present application.
  • an embodiment of the present application further provides a plant protection drone 200 , which includes a fuselage 91 and at least one plunger pump 100 mounted on the fuselage 91 .
  • the body 91 can be installed with a box for holding liquids such as liquid medicine, and at least one spray head 92 can be connected to a plunger pump 100 .
  • the plunger pump 100 can be connected to an external tank, and the plunger pump 100 can suck the liquid in the tank and pump it out, and then spray it through the spray head 92 . It should be noted that, the descriptions about the plunger pump 100 in the above embodiments and implementation manners are also applicable to the plant protection drone 200 of the present application.
  • the plant protection drone 200 further includes a plurality of arms 93 and a mounting bracket 94 mounted on the fuselage 91, and one arm 93 can be installed with at least one spray head 92.
  • the plunger pump 100 is mounted on the mounting bracket 94 so as to be mounted on the body 91 .
  • the plant protection drone 200 also includes a flow meter 90 and a solenoid valve.
  • the flow meter 90 is connected to the plunger pump 100 for detecting the flow signal.
  • the flowmeter 90 can be an electromagnetic flowmeter 90 with higher precision. In this embodiment, one flowmeter 90 may be connected to two plunger pumps 100 .
  • the solenoid valve is connected to the spray head 92 for controlling the opening and closing of the spray head 92 .
  • the vibration of the plunger pump 100 will cause the liquid in the pump body 31 to vibrate, and the liquid near the electrodes of the flowmeter 90 will also vibrate accordingly, causing the detection signal of the flowmeter 90 to fluctuate.
  • a damping pad 95 is provided between the mounting bracket 94 and the plunger pump 100, and the damping pad 95 can be a rubber pad.
  • a rotor assembly 96 may also be provided on the arm 93 .
  • a support frame 97 may also be provided at the bottom of the fuselage 91 .
  • the plant protection drone 200 is a multi-rotor drone, and the number of the arms 93 and the rotor assemblies 96 is six. In other examples, the plant protection drone 200 may also be other numbers of multi-rotor drones.
  • pan-tilt handle provided by the embodiments of the present application and the pan-tilt head provided with the pan-tilt handle provided by the embodiments of the present application have been described in detail above.
  • the principles and implementations of the present application are described with specific examples in this paper.
  • the descriptions of the above embodiments are only used to help understanding The method of the present application and its core idea; at the same time, for those skilled in the art, according to the idea of the present application, there will be changes in the specific implementation and application scope.
  • the content of this specification should not be It is construed as a limitation of this application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pest Control & Pesticides (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Details Of Reciprocating Pumps (AREA)
  • Reciprocating Pumps (AREA)

Abstract

一种柱塞泵及植保无人机。柱塞泵(100)包括泵体(31)和多个分流腔(313),泵体(31)包括:进水口(311),进水口(311)和多个分流腔(313)连通,用于将进水口(311)流入的液体分流至多个分流腔(313)内;多个柱塞腔(310),多个柱塞腔(310)与多个分流腔(313)两两之间相互连通,用于接收分流腔(313)流出的液体,并增加进入柱塞腔(310)内的液体的压力;多个出水腔(314),多个出水腔(314)与多个柱塞腔(310)两两之间相互连通,用于接收经过柱塞腔(310)加压的液体;多个出水腔(314)分别沿着多个柱塞腔(310)的轴向延伸设置;出水口(312),出水口(312)与多个出水腔(314)连通,用于合流多个出水腔(314)内的液体并排出。

Description

柱塞泵及植保无人机 技术领域
本申请涉及无人机技术领域,尤其涉及一种柱塞泵及植保无人机。
背景技术
随着植保无人机的逐渐推广,对大流量喷洒需求也越来越多。常规的用于植保无人机的大流量隔膜泵或者蠕动泵的体积和重量都比较大。此外,由于飞行速度改变等原因,植保无人机有变量喷洒的需求,而常规的隔膜泵或者蠕动泵容易造成液体泄露,不能满足喷洒要求。
发明内容
本申请提供一种柱塞泵及植保无人机。
具体地,本申请是通过如下技术方案实现的:
第一方面,本申请实施例提供一种柱塞泵,包括泵体,所述泵体包括:
进水口,所述进水口和多个所述分流腔连通,用于将所述进水口流入的液体分流至多个所述分流腔内
多个分流腔;所述进水口和多个所述分流腔连通,由所述进水口流入的液体分流至多个所述分流腔内;
多个柱塞腔,多个所述柱塞腔与多个所述分流腔两两之间相互连通,用于接收所述分流腔流出的液体,并更增加进入所述柱塞腔内的液体的压力;
多个出水腔,多个所述出水腔与多个所述柱塞腔两两之间相互连通,用于接收经过所述柱塞腔加压的液体;多个所述出水腔分别沿着多个所述柱塞腔的轴向延伸设置;
出水口,所述出水口与多个所述出水腔连通,用于合流多个所述出水腔内的液体并排出。
第二方面,本申请实施例提供一种植保无人机,包括机身以及安装于所述机身的至少一个第一方面实施例的柱塞泵。
第三方面,本申请实施例提供一种柱塞泵,包括:
动力组件,所述动力组件包括金属电机座、金属外壳、电机以及电调板;所述金属电机座和所述金属外壳固定连接并围合成一屏蔽空间,所述电机和所述电调板均设于所述屏蔽空间内;所述电机安装于所述金属电机座,所述电调板与所述电机电连接,用于控制所述电机产生动力;所述电调板包括接地端,所述金属电机座或所述金 属外壳与所述接地端电连接,以将所述电机产生的电磁干扰信号导入所述接地端;
传动组件,位于所述金属电机座的远离所述电机的一侧;所述传动组件与所述电机连接,用于当所述电机产生动力时,所述电机带动所述传动组件转动;
泵体组件,所述泵体组件包括泵体和设置于所述泵体内的柱塞;所述柱塞与所述传动组件连接,当所述传动组件发生转动时,所述柱塞在所述泵体内发生往复直线运动,以增加所述泵体内的液体的压力。
第四方面,本申请实施例提供一种植保无人机,包括机身以及安装于所述机身的至少一个第二方面实施例的柱塞泵。
本申请的柱塞泵,各分流腔、柱塞腔及出水腔连通形成泵体的流道结构。将多个所述出水腔分别沿着多个所述柱塞腔的轴向延伸设置,可以使出水腔与柱塞腔的延伸方向相同,使泵体实现结构紧凑的效果。
附图说明
图1是本申请一实施例中的柱塞泵的立体示意图。
图2是本申请一实施例中的柱塞泵的剖面示意图。
图3是本申请一实施例中的柱塞泵去除泵体的爆炸示意图。
图4是图3的局部剖面示意图。
图5是本申请一实施例中的柱塞泵与流量计的连接示意图。
图6至图8是本申请一实施例中的柱塞泵在不同视角下的局部爆炸示意图。
图9是本申请一实施例中的柱塞泵的泵体组件的爆炸示意图。
图10是本申请一实施例中的柱塞泵的泵体的爆炸示意图。
图11a和图11b是本申请一实施例中的柱塞泵的泵体沿不同剖面的剖视图。
图12是本申请一实施例中的植保无人机的立体示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。
本申请提供一种柱塞泵及植保无人机。下面结合附图,对本申请的柱塞泵及植保无人机进行详细说明。在不冲突的情况下,下述的实施例及实施方式中的特征可以相互组合。
本申请实施例提供一种柱塞泵100,可用于农业植保无人机、农药喷洒车、人力喷洒装置、洗车机、加药器等需要喷洒液体的装置及设备。以植保无人机为例,随 着植保无人机的逐渐推广,对大流量喷洒需求也越来越多。常规的用于植保无人机的大流量隔膜泵或者蠕动泵的体积和重量都比较大。此外,由于飞行速度改变等原因,植保无人机有变量喷洒的需求,而常规的隔膜泵或者蠕动泵的压力有限,不能满足喷洒要求。本申请实施例提供的柱塞泵100能够达到较高的压力,可满足大流量及变流量的喷洒需求。此外,柱塞泵100的结构轻便紧凑,占用的空间小,能够减少无人机的整体重量。
参见图1至图4所示,柱塞泵100包括动力组件10、传动组件20以及泵体组件30,传动组件20连接于泵体组件30和动力组件10之间。所述泵体组件30包括泵体31和至少部分设置在泵体31内的柱塞32。传动组件20与动力组件10及柱塞32连接,当动力组件10产生动力时,动力组件10带动传动组件20转动。泵体31设有进水口311和出水口312,动力组件10驱动传动组件20转动,传动组件20发生转动时,所述柱塞32在所述泵体31内发生往复直线运动以增加或减小泵体31内的液体的压力,以使得所述柱塞泵100将液体吸入到所述进水口311以及将液体挤出所述出水口312。
其中,动力组件10包括电机壳11、电机12、电调板13以及电机座14,电机壳11的顶部设有开口,电机座14连接于电机壳11的开口位置,电机12安装于电机座14。电调板13与电机12电连接,用于控制电机12产生动力。电机12包括转轴121,所述转轴121穿过电机座14并与所述传动组件20连接,当所述电机11产生动力时,所述电机11的转轴121带动所述传动组件20转动。电机12用于提供动力驱动转轴121转动,以使得转轴121带动传动组件20转动。
电机座14与电机壳11的底壁之间形成有容置腔111,电调板13可以收容设置在该容置腔111内。可选地,电调板13位于电机12和电机座14之间,并突出于电机12设置。电机壳11包括主体部和副体部,所述主体部用于收容电机12,所述副体部用于收容电调板13突出电机12的部分。将电调板13集成在电机12内部,一方面便于布置温度传感器和霍尔传感器等器件,另一方面也可以使得动力组件10的结构更加紧凑。
电机12的转轴121穿过电机座14与传动组件20连接。可选地,传动组件20包括斜盘211和推力轴承212,推力轴承212装载于斜盘211的上表面,柱塞32设置于推力轴承212的上表面。电机12的转轴121穿设于电机座14与斜盘211连接,斜盘211可以设置用于连接电机12的转轴121的连接孔。电机12的转轴121驱动斜盘211及推力轴承212转动,推力轴承212带动柱塞32在泵体31内发生往复直线运动。
参见图5所示,柱塞泵100可以配合流量计90一同工作,柱塞泵100工作时,当电机12和电调板13通电以后会产生电磁信号,由此产生的电磁干扰会对流量计90的检测精度产生影响。为了防止上述电磁干扰,电机壳11可以为金属外壳,电机座 14可以采用金属电机座。金属电机座和金属外壳固定连接并围合成一屏蔽空间,电机12和电调板13均设于所述屏蔽空间内。所述电调板13包括接地端,金属电机座或金属外壳与所述接地端电连接,以将所述电机12产生的电磁干扰信号(也即干扰电子)导入所述接地端,从而减少柱塞泵100产生的电磁干扰信号对流量计90的影响。可选地,可以在金属外壳上做电磁屏蔽措施,进一步减少柱塞泵100产生的电磁干扰信号对流量计90的影响。
通过上述设置,将电机12和电调板13设在金属电机座和金属外壳围合形成的屏蔽空间内,将金属电机座或金属外壳与电调板13的接地端电连接,从而将所述电机12产生的电磁干扰信号导入所述接地端,减少柱塞泵100产生的电磁干扰信号对流量计90的影响。
在一些可选的实施例中,所述金属电机座和所述转轴121之间设有金属轴承15,以将所述转轴121上产生的电磁干扰信号依次导入所述电调板13的接地端上,从而减少柱塞泵100产生的电磁干扰信号对流量计90的影响。可选地,电机12还包括转子122。在一些可选的实施例中,所述金属电机座和所述金属外壳电连接,且所述金属电机座与所述电调板13的接地端电连接。将金属电机座与电调板13的接地端电连接,再将金属外壳与金属电机座电连接,从而将电机12的转轴121上产生的电磁干扰信号依次经过金属外壳和金属电机座导入电调板13的接地端上,减少柱塞泵100产生的电磁干扰信号对流量计90的影响。
在一些可选的实施例中,所述金属电机座和所述金属外壳电连接,且所述金属电机座或所述金属外壳与所述电调板13电连接,以将所述金属电机座和所述金属外壳所产生的干扰电子导入电调板13中。
可选地,所述金属电机座和所述金属外壳通过第一金属螺丝电连接,所述金属电机座与所述电调板13的接地端通过第二金属螺丝131电连接。柱塞泵100产生的电磁干扰信号可以依次经过金属外壳、第一金属螺丝、金属电机座以及第二金属螺丝131导入电调板13的接地端上。
参见图6所示,在一些可选的实施例中,所述泵体组件30还包括电连接组件,所述电连接组件包括柱塞泵插头331和连接线332,所述柱塞泵插头331插入所述电调板13突出所述电机12的部分,并收容于所述电机壳11体的副体部。所述连接线332与所述柱塞泵插头331连接,用于将所述电调板13的接地端上的电磁干扰信号进一步传导至外部。以柱塞泵100应用于植保无人机为例,所述连接线332包括连接线插头333,连接线插头333可以与植保无人机的飞控系统电连接,飞控系统可以包括主控板,主控板可以设有接地端,如此设置可以将柱塞泵100产生的电磁干扰信号通过柱塞泵插头331和连接线332传导至飞控系统的主控板的接地端,从而减少柱塞泵100产生的电磁干扰信号对流量计90的影响。可选地,植保无人机还可以包括电池, 电池与主控板连接,可以进一步将柱塞泵100产生的电磁干扰信号传导到电池的负极接地。
参见图3和图4所示,在一些可选的实施例中,所述泵体组件30还包括柱塞底座34和柱塞弹簧35,所述泵体31安装于所述柱塞底座34。所述柱塞32穿设于所述柱塞底座34内,所述柱塞包括柱塞柱321和凸缘322,所述凸缘322凸出于所述柱塞柱321的边缘。所述柱塞弹簧35的第一端(图中所示为顶端)抵接于所述柱塞底座34上,所述柱塞弹簧35的第二端(图中所示为底端)套接于所述柱塞32外部并与所述柱塞32的凸缘322连接。柱塞弹簧35能够对柱塞32提供沿指向推力轴承212方向的弹性作用力。可选地,柱塞底座34连接于所述泵体31的底部,泵体组件30还包括柱塞腔310,柱塞腔310位于泵体31内,所述柱塞32自所述柱塞底座34穿过所述柱塞底座34并伸入所述柱塞腔310内。柱塞底座34沿柱塞32的运动方向(图中所示为竖直方向)设有贯穿的导向孔341,导向孔341与柱塞腔310的位置对应。柱塞32穿设于所述导向孔341并至少部分收容设置于柱塞腔310内,柱塞底座34可以为柱塞32提供导向作用。如此,电机12的转轴121驱动斜盘211及推力轴承212转动,推力轴承212带动柱塞32沿导向孔341在柱塞腔310内发生往复直线运动。
可选地,所述柱塞底座34的底部设有导向套342,所述导向套342与所述柱塞腔310的位置对应。当所述传动组件20发生转动时,推动所述柱塞32穿过所述导向套342及导向孔341,以在所述泵体31内发生往复直线运动。导向套342及导向孔341可以对柱塞32起到导向作用。导向套342可以直接集成在柱塞底座34上,与柱塞底座34一体成型。为了便于磨损后更换柱塞32以及减小对柱塞32的磨损,所述导向套342的内壁设有凹槽部,所述凹槽部内设有导向环343,该导向环343的材质可以是耐磨塑料或者铜合金等软金属,以减小导向套342与柱塞32之间的磨损。
所述导向套342顶端的外径大于所述导向套342底端的外径。可以理解的,导向套342靠近柱塞底座34一侧的根部的外径较大,用于约束柱塞弹簧35的位置。导向套342远离柱塞底座34一侧的端部的外径较小,用于在柱塞弹簧35跟随柱塞32进行往复直线运动时避让柱塞弹簧35,减小两者之间的磨损。
泵体31的进水口311可以与外部箱体连接,箱体内可盛放药液等液体,液体可通过进水口311导入泵体31内。泵体31的出水口312可以与喷头连接,用于将药液进行喷洒。在本实施例中,推力轴承212从至低点转动到至高点的过程中,推力轴承212能够推动柱塞32沿导向孔341在柱塞腔310内向上移动,以增加柱塞腔310内的液体的压力,从而将泵体31内的液体挤出所述出水口312,此过程中柱塞弹簧35处于压紧状态。推力轴承212从至高点转动到至低点的过程中,柱塞弹簧35进行弹性复位,并对柱塞32提供沿指向推力轴承212的方向的弹性作用力,以使得所述柱塞泵100将液体吸入到所述进水口311。如此往复循环,从而实现喷洒作业。
在一些可选的实施例中,所述柱塞32为呈中空结构的空心柱塞,中空的部分可以用密度较小的材料进行填充,从而减轻柱塞泵100的整体重量。进一步地,所述柱塞32包括柱塞柱321和可拆卸连接于柱塞柱321底部的凸缘322,所述凸缘322沿 柱塞柱321的径向向外凸出于柱塞柱321的边缘,柱塞弹簧35的第二端套接于柱塞柱321并与凸缘322连接,在柱塞32向上运动的过程中,能够通过凸缘322挤压柱塞弹簧35以使得柱塞弹簧35处于压紧状态。柱塞柱321可采用耐磨不锈钢或陶瓷等耐磨防腐蚀材质车削加工得到,柱塞柱321可以呈中空结构,凸缘322可采用高强度钢加工呈成卡簧结构,便于卡接到柱塞柱321上。将柱塞32设为可拆卸式的结构,可以减小柱塞32的切削量,从而降低了制造成本。
在一些可选的实施例中,所述柱塞底座34和所述金属电机座之间设有储油壳体22。所述柱塞底座34、所述金属电机座和所述储油壳体22形成密封腔体221,用于收容所述传动组件20。且所述密封腔体221内存有润滑液体,以减小所述柱塞32和所述传动组件20之间的摩擦,延长柱塞32及传动组件20的使用寿命。金属电机座、储油壳体22以及柱塞底座34构成所述密封腔体221。润滑液体可以包括润滑油或润滑脂,能够减小柱塞32与斜盘211以及与柱塞底座34之间的磨损。可选地,所述导向套342靠近柱塞底座34一侧的侧壁设有导油槽3421,便于润滑液体自导油槽流入导向套342与柱塞32之间,浸润柱塞32和导向套342,进一步减小柱塞32与斜盘211以及与柱塞底座34之间的磨损。
由于推力轴承212设于斜盘211的上表面,斜盘211倒置时,推力轴承212会掉落出来。为避免上述情况发生,柱塞底座34与储油壳体22之间可以通过螺丝344等紧固件可拆卸连接。泵体31与柱塞底座34之间可以通过螺丝344等紧固件可拆卸连接,防止传动组件被轻易拆开的目的,并且紧固件可以采用特殊的螺丝头型配合特殊性质的连接部3441,例如椭圆形,防止传动组件被轻易拆开。所述储油壳体22可以固定连接在电机座14上,以使得润滑液体的加注方向是从储油壳体22的顶部进行加注。这样当需要加入润滑液体时,可以将柱塞底座34从储油壳体22上拆除,直接进行润滑液体的加入,而不用将柱塞泵100倒置,避免推力轴承212从斜盘211上掉落的情况发生。可选地,储油壳体22与电机座14一体成型设置。
柱塞泵100的电磁干扰除了由于电机12和电调板13通电产生外,还可能由泵体31或者柱塞32传导到水路上,再通过水路传导到流量计90电极上,使得流量计90的信号产生波动,影响精度。为了防止上述电磁干扰,在一些可选的实施例中,所述泵体31还包括泵体外壳,所述泵体外壳为金属外壳,所述储油壳体22为金属壳体,所述柱塞底座34为金属底座。所述泵体外壳依次通过柱塞底座34、储油壳体22与金属电机座电连接,以将所述泵体31内的液体里产生的电磁干扰信号传输至所述金属电机座,再经过金属电机座导入电调板13的接地端上,从而减少柱塞泵100产生的电磁干扰信号对流量计90的影响。
为了防止润滑液体泄露流入柱塞腔310内或是泵体31内的液体泄露流入密封腔体221内,所述柱塞腔310和所述柱塞底座34之间设有第一密封圈61,电机12的转轴121上设有第二密封圈346。在本实施例中,第一密封圈61嵌设于柱塞底座34 的导向孔341内。可选地,柱塞底座34的导向孔341的顶端呈台阶型结构,第一密封圈61的结构与该台阶型结构相适配,第一密封圈61嵌设在该台阶型结构内,该台阶型结构可以对第一密封圈61起到限位作用。可选地,导向孔341内可以设置导向块345,用于压紧第一密封圈61,以及通导向套342一同对柱塞32起到导向作用。导向块345的另一侧也可以设置一个第二密封圈62,提高密封效果。第二密封圈62可以设置第二溢流槽611,提高溢流效果。所述导向块345包括第一压紧部3451和与所述第一压紧部3451连接的第二压紧部3452,所述第一压紧部3451抵接于所述第二密封圈62,所述第二压紧部3452抵接于所述第二密封圈62,实现对第一密封圈61及第二密封圈62起到固定的作用。
参见图7和图8所示,在一些可选的实施例中,第一密封圈61与柱塞32长期使用后可能出现磨损的情况,从而导致密封失效而渗液。在一些可选的实施例中,为了防止渗出的液体憋压而回流或者互窜,或是柱塞泵100内的液体自第一密封圈61的位置流入位于下方的密封腔体221内,导致润滑油乳化变质,对润滑液体造成影响。所述泵体31包括底面,所述柱塞腔310的开口位于所述泵体31的底面上,并与柱塞底座34的导向孔341及导向套342的位置对应。所述底面设有溢流槽36,用于将自所述柱塞腔310溢出的液体排出所述柱塞腔310。
所述溢流槽36由所述泵体31的底面的中部分别延伸至各个所述柱塞腔310,以将所述柱塞腔310溢出的液体排出所述柱塞腔310。可以在泵体31的中部将溢出的液体集流后排出。可选地,所述溢流槽36延伸至所述泵体31的底面的边缘,以将所述柱塞腔310溢出的液体排出所述泵体31外。
所述第一密封圈61对着所述溢流槽36在所述柱塞腔310的槽口位置设有溢流孔,以将所述柱塞腔310溢出的液体由所述第一密封圈61的溢流孔排出所述柱塞腔310。在泵体31上设置溢流槽36以及在第一密封圈61上设置溢流孔,一方面可以防止液体流至下方而腐蚀电调板13,另一方面也便于对排出泵体31的液体进行回收。
为了达到更好的溢流效果,所述泵体31的底面上还包括储液槽37,所述储液槽37与所述溢流槽36连通。当从柱塞腔310内溢出的液体较多时,一部分液体从溢流槽36及第一密封圈61的溢流孔排出泵体31外。另一部分液体可以先流入储液槽37内进行暂时的储存,当溢流槽36内的液体排净后,储液槽37内的液体再回流到溢流槽36然后排出泵体31外。在图中所示的例子中,示出了溢流槽36与储液槽37连通,并延伸至所述泵体31的底面的边缘。其中,所述储液槽与所述入水口的位置相对应。
所述泵体31的底面还包括减重孔,用于减少泵体31的重量,同时,还能储存由所述柱塞腔310渗漏出来的液体。所述出水腔的底面和所述泵体31的底面相隔一定的距离,为减少该部分的用料,所述减重孔对应所述出水腔的底面的位置。
目前,常规的柱塞泵100的流道设计比较复杂,其主要问题在于柱塞腔310的布置较为零散,结构不够紧凑,导致柱塞泵100的重量和体积较大。另外,常规的柱塞泵100的进出水流道较为复杂,导致成型困难,增加了制造成本。参见图9和图10所示,本申请实施例的柱塞泵100的泵体31可以包括:
进水口311,所述进水口311和多个所述分流腔313连通,用于将所述进水口311流入的液体分流至多个所述分流腔313内。
多个分流腔313;所述进水口311和多个所述分流腔313连通,由所述进水口311流入的液体分流至多个所述分流腔313内。
多个柱塞腔310,多个所述柱塞腔310与多个所述分流腔313两两之间相互连通,用于接收所述分流腔313流出的液体,并更增加进入所述柱塞腔310内的液体的压力。
多个出水腔314,多个所述出水腔314与多个所述柱塞腔310两两之间相互连通,用于接收经过所述柱塞腔310加压的液体。多个所述出水腔314分别沿着多个所述柱塞腔310的轴向延伸设置。在本发明实施例中,多个所述出水腔314分别沿着多个所述柱塞腔310的轴向延伸设置指的是,多个所述出水腔314和多个所述柱塞腔310基本沿着同一个方向延伸。在本发明实施例中,出水腔314和柱塞腔310的形状不作具体限制,其可以为直管型、蛇形、弯折型等。
在一实施例中,多个所述出水腔314和多个所述柱塞腔310为直管型且相互平行设置。在另一实施例中,多个所述出水腔314和多个所述柱塞腔310为圆柱管状结构。
出水口312,所述出水口312与多个所述出水腔314连通,用于合流多个所述出水腔314内的液体并排出。
通过上述设置,各分流腔313、柱塞腔310及出水腔314连通形成泵体31的流道结构。将多个所述出水腔314分别沿着多个所述柱塞腔310的轴向延伸设置,可以使出水腔314与柱塞腔310的延伸方向相同(图中所示均为沿竖直方向),使泵体31实现结构紧凑的效果。
在一些可选的实施例中,进水口311可以设置进水接头315,出水口312可以设置出水接头316。出水腔314内可以设置出水单向阀317,其限制液体流动方向仅能从出水腔314靠近柱塞腔310的一侧流向远离柱塞腔310的另一侧,而不能从相反方向回流。在一实施例中,在柱塞泵100内的压力增加时打开,从而将出水腔314内的液体通过出水接头316排出。分流腔313内可以设置进水单向阀319,其限制液体流动方向仅能从分流腔远离柱塞腔310的一侧流向靠近柱塞腔310的另一侧,而不能从相反方向回流。在一实施例中,在柱塞泵100内的压力减小时打开,从而将外部水箱的液体通过进水接头315吸入并导入到分流腔313内。需要说明的是,柱塞32的数量 与柱塞腔310的数量相对应,每个柱塞腔310内设置一个柱塞32,用于改变柱塞腔310内的压力。当柱塞32伸入柱塞腔310时,柱塞腔310内体积缩小,只有出水单向阀317能够打开,将液体泵出。当柱塞32抽出时,柱塞腔310内体积增大,只有进水单向阀319能够打开,将液体吸入。在本实施例中,柱塞腔310的数量均为三个,构成三缸柱塞泵100。当然,在其他例子中,分流腔313、柱塞腔310及出水腔314的数量也可以根据实际需要设置,形成其他数量的多缸柱塞泵100。
在一些可选的实施例中,多个所述分流腔313分别沿着多个所述柱塞腔310的轴向延伸设置。将多个所述分流腔313分别沿着多个所述柱塞腔310的轴向延伸设置,可以使分流腔313、出水腔314及柱塞腔310的延伸方向相同(图中所示均为沿竖直方向),有利于实现结构紧凑的效果。
在一些可选的实施例中,所述泵体31还包括汇流腔3141,设于所述出水腔的出口的外围空间。也就是,所述汇流腔设于所述出水腔的出口所处的外围平面上,并在该外围平面形成汇流通道。与现有技术所采用的,通过在出水腔的腔壁上打孔的汇流方式,实现工艺更简单。汇流腔3141与出水口312以及多个出水腔314连通,用于将多个出水腔314内的液体汇流后从出水口312排出,提高出水的效率。
所述汇流腔3141上设有集水口3142,进入所述汇流腔3141内的液体通过所述集水口3142由所述出水口312排出。所述集水口3142与出水口312连通,可以将汇流腔3141内的液体导流至出水口312。可选地,为了节省体积,所述集水口3142位于所述分流腔313与相邻的所述出水腔314之间,合理利用同向设置的分流腔313与出水腔314之间的间隙空间,不需要占用额外的空间,实现结构紧凑的效果。
在一些可选的实施例中,所述分流腔313和所述柱塞腔310贯通设置,以使得分流腔313和柱塞腔310沿同一方向排布,能够更好的实现结构紧凑的效果。与现有技术所采用的,分流腔和柱塞腔310分隔设置相比,无需再分流腔和柱塞腔310之间的腔壁进行打孔,简化工艺,另外,来自的分流腔的液体可以直通入柱塞腔310中,减少流道的弯折所带来的压力减轻现象,有助于提高液体的压力。在一实施例中,所述分流腔313和所述柱塞腔310同心贯穿设置。
可选地,所述柱塞腔310和所述出水腔314围绕一圆周间隔设置,可以更好的实现结构紧凑的效果。需要说明的是,所述间隔设置指的是相邻的腔体之间相隔一段距离设置。在一实施例中,每两个所述出水腔314之间间隔一个柱塞腔310设置,从而使得出水单向阀相隔较远,单向阀之间不会因为水锤效应相互影响,泵的效率更高。进一步地,所述柱塞腔310和所述出水腔314围绕一圆周等间距的间隔设置,可以使泵体31重量分布均匀及液体分流及汇流的流向分布均匀。
在一些可选的实施例中,所述泵体31还包括进水管3131,所述进水管3131 分别与所述进水口311和多个所述分流腔313连通,用于将所述进水口311进入的液体分流至多个所述分流腔313内,以提高进水的效率。可选地,所述分流腔313和所述出水腔314分别围绕所述进水管3131的周向间隔设置,可以更好的实现结构紧凑的效果。所述进水管的直径大于所述分流腔的直径,以尽快为各个分流腔和对应的柱塞腔310提供足够的液体。
可以理解的,多个出水腔314的水路汇集至所述汇流腔3141。多个分流腔313的水路汇集至所述进水管3131。汇流腔3141可以沿环绕泵体31的周向的方向设置。所述进水管3131位于多个所述分流腔313围合形成的空间的中部。在本实施例中,多个所述分流腔313围合形成的空间的中部也即泵体31的中部,汇流腔3141可以呈环形腔体位于进水管3131的外围。
在一些可选的实施例中,可以将出水腔314沿泵体31轴向的长度设置为小于分流腔313与柱塞腔310沿泵体31轴向的长度之和,实现结构紧凑及小型化的效果。可选地,所述进水口311设于所述出水腔314远离所述出水口312的一侧,可以合理利用泵体31的空间,实现结构紧凑及小型化的效果。
泵体组件30还可以包括泵盖38,密封连接于泵体31的顶部。泵体31的顶面外缘可以向上凸出形成第一挡边381,泵体31的顶面中部可以向上凸出形成第二挡边382。泵盖38与泵体31连接后,第一挡边381与泵盖38之间围合形成所述汇流腔3141。第二挡边382与泵盖38之间围合形成的分流空间分别与所述进水管3131和分流腔连通,以使所述进水管3131进入的液体通过该分流空间分流至多个所述分流腔内。所述分流腔体可以减缓流体脉动,可以作为副水箱使用,有利于提高喷洒控制精度和均匀度。可选地,第一挡板381和第二挡边382的顶面可以分别开设凹槽383,凹槽383内可以设置密封条,提高泵盖38与泵体31之间的密封性。所述第二挡边包括凸部和凹部,其中,凹部和所述出水腔的位置相对应,所述凸部与所述分流腔的位置相对应。凹部的形状和出水腔的腔壁形状相匹配,所述凸部使得所述分流腔的开口部分暴露,以使得进水管的液体能够通过部分暴露的开口进入各个所述分流腔。
参见图11a和图11b所示,在一些可选的实施例中,所述柱塞腔310与相邻的所述出水腔314两两一组地相互连通,从而将各分流腔313、柱塞腔310及出水腔314连通形成泵体31的流道结构。为了实现柱塞腔310与相邻的出水腔314相互连通,所述泵体31还包括与所述柱塞腔310数量对应的多个转腔流道39,所述柱塞腔310与相邻的所述出水腔314之间设有一个所述转腔流道39,用于连通所述柱塞腔310和所述出水腔314。可选地,由于从泵体31内部较难加工得到用于将柱塞腔310和出水腔314相互连通的转腔流道39,因此所述转腔流道39延伸至并贯穿所述柱塞腔310或出水腔314中的一者的外侧壁,所述转腔流道39贯穿所述柱塞腔310或出水腔314中的一者的外侧壁设有堵头391,便于加工得到所述转腔流道39。
本申请实施例提供的柱塞泵,具有轻便而紧凑的高压大流量等有益效果,能够替代传统的低压小流量隔膜泵或者蠕动泵,可应用于喷洒系统或是植保无人机等领域,能够提高喷洒流量和压力,增强雾滴穿透性,并实现变量喷洒。柱塞泵的上述紧凑及减重设计的流道结构,可以降低体积和重量。通过上述密封件及溢流方案,能够提高柱塞泵的耐腐蚀性能、密封可靠性和耐磨性。另外,在本发明实施例中,通过采用柱塞泵结构,柱塞腔的压缩比很小,提高自吸和排气能力;而且流量基本正比于转速,磨损后流量损失小。
本申请实施例还提供一种喷洒系统,包括柱塞泵100和与柱塞泵100连接的至少一个喷头92,柱塞泵100可以与外部箱体连接,箱体内可盛放药液等液体。柱塞泵100能够吸入箱体内的液体并泵出,再通过喷头92进行喷洒。需要说明的是,上述实施例和实施方式中关于柱塞泵100的描述,同样适用于本申请的喷洒系统。
参见图12所示,本申请实施例还提供一种植保无人机200,包括机身91以及安装于所述机身91的至少一个柱塞泵100。机身91上可安装用于盛放药液等液体的箱体,一个柱塞泵100可以连接的至少一个喷头92。柱塞泵100可以与外部箱体连接,柱塞泵100能够吸入箱体内的液体并泵出,再通过喷头92进行喷洒。需要说明的是,上述实施例和实施方式中关于柱塞泵100的描述,同样适用于本申请的植保无人机200。
参见图5和图12所示,在一些可选的实施例中,植保无人机200还包括多个机臂93和安装于机身91的安装支架94,一个机臂93可以安装至少一个喷头92。所述柱塞泵100安装于所述安装支架94,从而安装在机身91上。为了提高喷洒的精度和可控性,植保无人机200还包括流量计90和电磁阀。流量计90与柱塞泵100连接,用于检测流量信号。流量计90可以采用精度较高的电磁流量计90。在本实施例中,一个流量计90可以连接两个柱塞泵100。电磁阀与喷头92连接,用于控制喷头92的启闭。植保无人机200飞行时,柱塞泵100的震动会导致泵体31中的液体产生振动,在流量计90电极附近的液体也会相应振动,导致流量计90的检测信号产生波动,为了减缓柱塞泵100的震动,所述安装支架94与所述柱塞泵100之间设有减震垫95,减震垫95可以采用橡胶垫。机臂93上还可以设置旋翼组件96。机身91的底部还可以设置支撑架97。在本实施例中,植保无人机200为多旋翼无人机,机臂93和旋翼组件96的数量均为六个。在其他例子中,植保无人机200也可以是其他数量的多旋翼无人机。
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方 法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
以上对本申请实施例所提供的云台手柄和具有其的云台进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想;同时,对于本领域的一般技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。

Claims (43)

  1. 一种柱塞泵,其特征在于,包括泵体,所述泵体包括:
    进水口,所述进水口和多个所述分流腔连通,用于将所述进水口流入的液体分流至多个所述分流腔内
    多个分流腔;所述进水口和多个所述分流腔连通,由所述进水口流入的液体分流至多个所述分流腔内;
    多个柱塞腔,多个所述柱塞腔与多个所述分流腔两两之间相互连通,用于接收所述分流腔流出的液体,并更增加进入所述柱塞腔内的液体的压力;
    多个出水腔,多个所述出水腔与多个所述柱塞腔两两之间相互连通,用于接收经过所述柱塞腔加压的液体;多个所述出水腔分别沿着多个所述柱塞腔的轴向延伸设置;
    出水口,所述出水口与多个所述出水腔连通,用于合流多个所述出水腔内的液体并排出。
  2. 根据权利要求1所述的柱塞泵,其特征在于,还包括汇流腔,设于所述出水口的外围空间。
  3. 根据权利要求2所述的柱塞泵,其特征在于,所述汇流腔上设有集水口,进入所述汇流腔内的液体通过所述集水口由所述出水口排出。
  4. 根据权利要求3所述的柱塞泵,其特征在于,多个所述分流腔分别沿着多个所述柱塞腔的轴向延伸设置,所述集水口位于所述分流腔与相邻的所述出水腔之间。
  5. 根据权利要求1所述的柱塞泵,其特征在于,所述分流腔和所述柱塞腔贯通设置。
  6. 根据权利要求1所述的柱塞泵,其特征在于,所述柱塞腔和所述出水腔围绕一圆周间隔设置。
  7. 根据权利要求1所述的柱塞泵,其特征在于,还包括进水管,所述进水管分别与所述进水口和多个所述分流腔连通,用于将所述进水口进入的液体分流至多个所述分流腔内。
  8. 根据权利要求7所述的柱塞泵,其特征在于,多个所述分流腔分别沿着多个所述柱塞腔的轴向延伸设置,所述进水管位于多个所述分流腔围合形成的空间的中部。
  9. 根据权利要求7所述的柱塞泵,其特征在于,所述分流腔和所述出水腔分别围绕所述进水管的周向间隔设置。
  10. 根据权利要求1所述的柱塞泵,其特征在于,所述进水口设于所述出水腔远离所述出水口的一侧。
  11. 根据权利要求1所述的柱塞泵,其特征在于,所述柱塞腔与相邻的所述出水腔两两一组地相互连通。
  12. 根据权利要求11所述的柱塞泵,其特征在于,还包括与所述柱塞腔数量对应的多个转腔流道,所述柱塞腔与相邻的所述出水腔之间设有一个所述转腔流道,用于连通所述柱塞腔和所述出水腔。
  13. 根据权利要求12所述的柱塞泵,其特征在于,所述转腔流道延伸至并贯穿所述柱塞腔或所述出水腔中的一者的外侧壁,所述转腔流道贯穿所述柱塞腔或所述出水腔中的外侧壁设有堵头。
  14. 根据权利要求1所述的柱塞泵,其特征在于,所述柱塞腔内设有柱塞,所述柱塞与所述柱塞腔的内壁之间设有第一密封圈。
  15. 根据权利要求14所述的柱塞泵,其特征在于,所述柱塞腔的开口位于所述泵体的底面,所述泵体的底面设有溢流槽,用于将自所述柱塞腔溢出的液体排出所述柱塞腔。
  16. 根据权利要求15所述的柱塞泵,其特征在于,所述溢流槽由所述泵体的底面的中部分别延伸至各个所述柱塞腔,以将所述柱塞腔溢出的液体排出所述柱塞腔。
  17. 根据权利要求15所述的柱塞泵,其特征在于,所述溢流槽延伸至所述泵体的底面的边缘,以将所述柱塞腔溢出的液体排出所述泵体外。
  18. 根据权利要求15所述的柱塞泵,其特征在于,所述密封圈对着所述溢流槽在所述柱塞腔的槽口位置设有溢流孔,以将所述柱塞腔溢出的液体由所述密封圈的溢流孔排出所述柱塞腔。
  19. 根据权利要求15所述的柱塞泵,其特征在于,所述泵体的底面上还包括储液槽,所述储液槽与所述溢流槽连通。
  20. 一种植保无人机,其特征在于,包括机身以及如权利要求1-19中任一项所述的至少一个柱塞泵,所述至少一个柱塞泵安装于所述机身。
  21. 一种柱塞泵,其特征在于,包括:
    动力组件,所述动力组件包括金属电机座、金属外壳、电机以及电调板;所述金属电机座和所述金属外壳固定连接并围合成一屏蔽空间,所述电机和所述电调板均设于所述屏蔽空间内;所述电机安装于所述金属电机座,所述电调板与所述电机电连接,用于控制所述电机产生动力;所述电调板包括接地端,所述金属电机座或所述金属外壳与所述接地端电连接,以将所述电机产生的电磁干扰信号导入所述接地端;
    传动组件,位于所述金属电机座的远离所述电机的一侧;所述传动组件与所述电机连接,用于当所述电机产生动力时,所述电机带动所述传动组件转动;
    泵体组件,所述泵体组件包括泵体和设置于所述泵体内的柱塞;所述柱塞与所述传动组件连接,当所述传动组件发生转动时,所述柱塞在所述泵体内发生往复直线运动,以增加所述泵体内的液体的压力。
  22. 根据权利要求21所述的柱塞泵,其特征在于,所述电机的转轴穿过所述金属电机座并与所述传动组件连接,当所述电机产生动力时,所述电机的转轴带动所述传动组件转动。
  23. 根据权利要求22所述的柱塞泵,其特征在于,所述金属电机座和所述转轴之间设有金属轴承,以将所述转轴上产生的电磁干扰信号依次导入所述电调板的接地端上。
  24. 根据权利要求21所述的柱塞泵,其特征在于,所述金属电机座和所述金属外壳电连接,且所述金属电机座与所述电调板的接地端电连接。
  25. 根据权利要求21所述的柱塞泵,其特征在于,所述金属电机座和所述金属外壳通过第一金属螺丝电连接,所述金属电机座与所述电调板的接地端通过第二金属螺丝电连接。
  26. 根据权利要求21所述的柱塞泵,其特征在于,所述电调板位于所述电机和所述金属电机座之间,并突出于所述电机设置。
  27. 根据权利要求26所述的柱塞泵,其特征在于,所述电机壳体包括主体部和副体部,所述主体部用于收容所述电机,所述副体部用于收容所述电调板突出所述电机的部分。
  28. 根据权利要求27所述的柱塞泵,其特征在于,所述泵体装置还包括电连接组件,所述电连接组件包括柱塞泵插头和连接线,所述柱塞泵插头插入所述电调板突出所述电机的部分,并收容于所述电机壳体的副体部;所述连接线与所述柱塞泵插头连接,用于将所述电调板的接地端上的电磁干扰信号进一步传导至外部。
  29. 根据权利要求21所述的柱塞泵,其特征在于,所述传动组件包括斜盘、推力轴承,所述推力轴承装载于所述斜盘,所述电机与所述斜盘连接。
  30. 根据权利要求21所述的柱塞泵,其特征在于,所述泵体组件包括柱塞底座和柱塞弹簧,所述泵体安装于所述柱塞底座;所述柱塞包括柱塞柱和凸缘,所述凸缘凸出于所述柱塞柱的边缘;
    所述柱塞弹簧的第一端抵接于所述柱塞底座上,所述柱塞弹簧的第二端套接于所述柱塞外部并与所述柱塞的凸缘连接。
  31. 根据权利要求30所述的柱塞泵,其特征在于,所述柱塞底座和所述金属电机座之间设有储油壳体,所述柱塞底座、所述金属电机座和所述储油壳体形成密封腔体,用于收容所述传动组件;且所述密封腔体内存有润滑液体,以减小所述柱塞和所述传动组件之间的摩擦。
  32. 根据权利要求31所述的柱塞泵,其特征在于,所述泵体包括泵体外壳,所述泵体外壳为金属外壳,所述储油壳体为金属壳体,所述柱塞底座为金属底座,所述泵体外壳依次通过所述柱塞底座、储油壳体与所述金属电机座电连接,以将所述泵体内的液体里产生的电磁干扰信号传输至所述金属电机座。
  33. 根据权利要求30所述的柱塞泵,其特征在于,所述泵体组件还包括柱塞腔,所述柱塞腔位于所述泵体内;所述柱塞底座连接于所述泵体的底部,所述柱塞自所述柱塞底座穿过所述柱塞底座并伸入所述柱塞腔内。
  34. 根据权利要求33所述的柱塞泵,其特征在于,所述柱塞底座的底部设有导向套,所述导向套与所述柱塞腔的位置对应,当所述传动组件发生转动时,推动所述柱塞穿过所述导向套,以在所述泵体内发生往复直线运动。
  35. 根据权利要求34所述的柱塞泵,其特征在于,所述导向套的内壁设有凹槽部, 所述凹槽部内设有导向环。
  36. 根据权利要求34所述的柱塞泵,其特征在于,所述导向套顶端的外径大于所述导向套底端的外径。
  37. 根据权利要求33所述的柱塞泵,其特征在于,所述柱塞泵包括柱塞底座,所述泵体安装于所述柱塞底座上,所述柱塞腔和所述柱塞底座之间设有第一密封圈。
  38. 根据权利要求37所述的柱塞泵,其特征在于,所述泵体包括底面,所述柱塞腔的开口位于所述泵体的底面上;所述底面设有溢流槽,用于将自所述柱塞腔溢出的液体排出所述柱塞腔。
  39. 根据权利要求38所述的柱塞泵,其特征在于,所述溢流槽由所述泵体的底面的中部分别延伸至各个所述柱塞腔,以将所述柱塞腔溢出的液体排出所述柱塞腔。
  40. 根据权利要求38所述的柱塞泵,其特征在于,所述溢流槽延伸至所述泵体的底面的边缘,以将所述柱塞腔溢出的液体排出所述泵体外。
  41. 根据权利要求38所述的柱塞泵,其特征在于,所述第一密封圈对着所述溢流槽在所述柱塞腔的槽口位置设有溢流孔,以将所述柱塞腔溢出的液体由所述第一密封圈的溢流孔排出所述柱塞腔。
  42. 根据权利要求38所述的柱塞泵,其特征在于,所述泵体的底面上还包括储液槽,所述储液槽与所述溢流槽连通。
  43. 一种植保无人机,其特征在于,包括机身以及如权利要求21-42中任一项所述的至少一个柱塞泵,所述至少一个柱塞泵安装于所述机身。
PCT/CN2020/127643 2020-11-09 2020-11-09 柱塞泵及植保无人机 WO2022095072A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202080078056.2A CN114746648A (zh) 2020-11-09 2020-11-09 柱塞泵及植保无人机
PCT/CN2020/127643 WO2022095072A1 (zh) 2020-11-09 2020-11-09 柱塞泵及植保无人机
CN202023200803.1U CN214247598U (zh) 2020-11-09 2020-12-25 柱塞泵及植保无人机
CN202023201065.2U CN214577575U (zh) 2020-11-09 2020-12-25 柱塞泵及植保无人机

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/127643 WO2022095072A1 (zh) 2020-11-09 2020-11-09 柱塞泵及植保无人机

Publications (1)

Publication Number Publication Date
WO2022095072A1 true WO2022095072A1 (zh) 2022-05-12

Family

ID=77742605

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/127643 WO2022095072A1 (zh) 2020-11-09 2020-11-09 柱塞泵及植保无人机

Country Status (2)

Country Link
CN (3) CN114746648A (zh)
WO (1) WO2022095072A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3995973A (en) * 1975-09-04 1976-12-07 Deere & Company Variable displacement hydraulic system
CN105756878A (zh) * 2016-04-22 2016-07-13 上海永灼机电有限公司 新型多柱塞组高压水泵及应用水泵的高压系统及运行方法
CN105952634A (zh) * 2016-06-28 2016-09-21 温岭市联星机械有限公司 清洗机之高压斜盘泵
CN207732575U (zh) * 2017-12-29 2018-08-14 深圳市优必选科技有限公司 一种电机保护系统
CN207892782U (zh) * 2017-12-09 2018-09-21 浙江文信机电制造有限公司 一种斜盘泵
CN210761318U (zh) * 2019-07-31 2020-06-16 拓攻(南京)机器人有限公司 一种植保无人机用水泵及含其的植保无人机

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2385095Y (zh) * 1999-07-23 2000-06-28 巩义市少林机械制造厂 柱塞式高压油泵
CN200978997Y (zh) * 2006-11-09 2007-11-21 应兢业 停水保护器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3995973A (en) * 1975-09-04 1976-12-07 Deere & Company Variable displacement hydraulic system
CN105756878A (zh) * 2016-04-22 2016-07-13 上海永灼机电有限公司 新型多柱塞组高压水泵及应用水泵的高压系统及运行方法
CN105952634A (zh) * 2016-06-28 2016-09-21 温岭市联星机械有限公司 清洗机之高压斜盘泵
CN207892782U (zh) * 2017-12-09 2018-09-21 浙江文信机电制造有限公司 一种斜盘泵
CN207732575U (zh) * 2017-12-29 2018-08-14 深圳市优必选科技有限公司 一种电机保护系统
CN210761318U (zh) * 2019-07-31 2020-06-16 拓攻(南京)机器人有限公司 一种植保无人机用水泵及含其的植保无人机

Also Published As

Publication number Publication date
CN114746648A (zh) 2022-07-12
CN214247598U (zh) 2021-09-21
CN214577575U (zh) 2021-11-02

Similar Documents

Publication Publication Date Title
US4583921A (en) Plunger pump
US20170292506A1 (en) Paint sprayer pump cartridge
US3612727A (en) Metering pump
WO2022095071A1 (zh) 柱塞泵、植保无人机及喷洒设备
CN110701017A (zh) 精密伺服柱塞计量泵
WO2022095072A1 (zh) 柱塞泵及植保无人机
US4276005A (en) Oil flow metering structure for oil sealed mechanical vacuum vane pump
WO2022095073A1 (zh) 柱塞泵及过压保护方法、喷洒控制方法及植保无人机
CN112412756B (zh) 一种具有嵌入式随动伞形阀的压电泵
CN214247594U (zh) 柱塞泵、植保无人机及喷洒设备
CN111734611A (zh) 流量可控型液泵及其工作方法
CN209083523U (zh) 一种新型圆板式浮动阀压电泵
CN214036067U (zh) 柱塞泵及植保无人机
CN111946579A (zh) 一种可调节流量范围的电磁泵
CN201865875U (zh) 一种无油单缸柱塞泵
CN108119365B (zh) 压缩机
KR101956218B1 (ko) 무맥동 정량 펌프
CN107089632B (zh) 洗衣房液体分配器
CN219391468U (zh) 液体取样装置
CN117028215B (zh) 一种甲缩醛清洗套用过程的气动隔膜泵及隔膜泵利用方法
CN219061954U (zh) 一种具有压力监测组件的隔膜泵
CN210977778U (zh) 精密伺服柱塞计量泵
CN213953826U (zh) 一种计量泵密封装置
CN217761272U (zh) 一种漏水报警隔膜泵
CN219432034U (zh) 柱塞式单体油泵

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20960529

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20960529

Country of ref document: EP

Kind code of ref document: A1