WO2022095009A1 - 光分束器和光投射器 - Google Patents

光分束器和光投射器 Download PDF

Info

Publication number
WO2022095009A1
WO2022095009A1 PCT/CN2020/127432 CN2020127432W WO2022095009A1 WO 2022095009 A1 WO2022095009 A1 WO 2022095009A1 CN 2020127432 W CN2020127432 W CN 2020127432W WO 2022095009 A1 WO2022095009 A1 WO 2022095009A1
Authority
WO
WIPO (PCT)
Prior art keywords
beam splitter
microstructure
optical beam
light
diagonal
Prior art date
Application number
PCT/CN2020/127432
Other languages
English (en)
French (fr)
Inventor
刘跃达
陈柏佑
张思超
蔡斐欣
Original Assignee
深圳市汇顶科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市汇顶科技股份有限公司 filed Critical 深圳市汇顶科技股份有限公司
Priority to PCT/CN2020/127432 priority Critical patent/WO2022095009A1/zh
Publication of WO2022095009A1 publication Critical patent/WO2022095009A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems

Definitions

  • Embodiments of the present application relate to the field of optics, and more particularly, to a light beam splitter and a light projector.
  • Time of Flight (ToF) technology is often used in depth detection or three-dimensional detection.
  • the optical beam splitter is the core device in the emission module used for depth detection or three-dimensional detection of light. For this reason, it is necessary to find a high-performance optical beam splitter.
  • the embodiments of the present application provide an optical beam splitter and a light projector using the optical beam splitter, which can provide a 3 ⁇ 3 optical beam splitter.
  • the light projector can be used as a light emitting module in a depth detection device or a three-dimensional detection device, for example.
  • an optical beam splitter for splitting a single beam of light into multiple beams of 3 ⁇ 3 light
  • the optical beam splitter includes a substrate and an array of light beams disposed on the substrate A plurality of microstructures distributed in the shape of bones with thin middle and wide ends.
  • the microstructure satisfies at least one of the following conditions: 0.772 ⁇ A/P1 ⁇ 1.145, 0.811 ⁇ B/P2 ⁇ 1.180, and 61.2° ⁇ 82.5°.
  • A is the length of the first diagonal formed by the two end points of the most edge of the microstructure in the first direction
  • B is the formation of the two end points of the most edge of the microstructure in the second direction
  • P1 is the distribution period of the microstructure in the first direction
  • P2 is the distribution period of the microstructure in the second direction
  • the first direction is perpendicular to the second direction
  • the first direction is closer to the first diagonal than the second direction
  • the second direction is closer to the second diagonal than the first direction
  • is the first The included angle between the diagonal and the second diagonal.
  • the optical beam splitter provided by the embodiment of the present application is formed by a plurality of microstructures distributed in an array, and the microstructures are in the shape of a bone with a thin middle and wide ends.
  • the error function of the beam energy can be converged to the global optimal solution faster in the subsequent optimization algorithm, so that the desired energy distribution can be obtained more accurately.
  • a 3 ⁇ 3 beam splitter is obtained, so that a single beam of light passes through the beam splitter to form multiple beams of 3 ⁇ 3, and the diffraction energy can be mainly distributed in the center zero order and the surrounding 8 first-order orders, with high diffraction efficiency.
  • the microstructure further satisfies at least one of the following conditions: 0.128 ⁇ C/X ⁇ 0.227, 0.445 ⁇ D/X ⁇ 0.683, 4.5° ⁇ A ⁇ 14.3°, 68.4° ⁇ ⁇ B ⁇ 92.4°, and 31.5° ⁇ ⁇ D ⁇ 56.1°, wherein C is the width of the middle thinnest position of the microstructure, D is the length of the mid-perpendicular line of the middle thinnest position of the microstructure, ⁇ A is the angle between the first diagonal and the first direction, ⁇ B is the angle between the second diagonal and the first direction, and ⁇ D is the micro The included angle between the vertical line of the middle thinnest position of the structure and the first direction.
  • the bone shape is centrosymmetric.
  • the diffraction angle of the optical beam splitter in the first direction is any one of the following: 10°, 12.5°, 15°, 17.5°, and 20°.
  • the diffraction angle of the optical beam splitter in the second direction is any one of the following: 10°, 12.5°, 15°, 17.5°, and 20°.
  • the substrate is made of glass
  • the material of the microstructure is UV glue
  • a residual glue layer is formed between the microstructure and the substrate.
  • the thickness of the substrate is 0.3 mm
  • the thickness of the microstructure is 0.86 um
  • the thickness of the residual glue layer is 1.2 um.
  • the wavelength of incident light of the optical beam splitter is 940 nm.
  • the optical beam splitter is applied in three-dimensional detection based on time-of-flight TOF or structured light.
  • a second aspect provides a light projector, comprising: a light source; and the light beam splitter according to the first aspect and any possible implementations thereof, wherein the light beam splitter is configured to emit light to the light source beams of light.
  • the light projector is applied in three-dimensional detection based on TOF or structured light.
  • the light projector further includes a collimating mirror, and the collimating mirror is disposed between the light source and the light beam splitter.
  • FIG. 1 is a schematic diagram of the shape of a bone-like microstructure used to form a beam splitter according to an embodiment of the present application.
  • FIG. 2 is a schematic diagram of the shape parameters of the microstructure obtained by optimizing the initial shape shown in FIG. 1 .
  • FIG. 3 is a schematic diagram of the shapes of bone-like microstructures corresponding to different diffraction angles.
  • FIG. 4 is a phase diagram of an optical beam splitter formed based on the microstructure shown in FIG. 1 .
  • FIG. 5 is a schematic structural diagram of an optical beam splitter formed based on the microstructure shown in FIG. 1 .
  • FIG. 6 is a schematic diagram of spot positions corresponding to 3 ⁇ 3 light beams formed based on the beam splitter formed by the microstructure shown in FIG. 1 .
  • the light projector In three-dimensional detection, it is generally necessary to project an optical signal such as a laser for detection to the target object through a light projector (light emission module).
  • the light projector In addition to the light-emitting element, the light projector generally includes some optical devices such as collimation A mirror, a beam splitter, etc., usually a diffractive optical element (Diffractive Optical Element, DOE) can be used as a beam splitter (hereinafter referred to as a beam splitter).
  • DOE diffractive Optical Element
  • the divergence angle, uniformity, and diffraction efficiency of the diffraction pattern are all determined by the DOE.
  • This application provides a 3 ⁇ 3 beam splitter, and its microstructure is specifically designed.
  • FIG. 1 is a schematic diagram of a microstructure for forming the optical beam splitter according to an embodiment of the present application.
  • the black area represents the substrate
  • the white area represents the microstructure, which is formed on the substrate.
  • the substrate can be, for example, a glass substrate, and the material of the microstructure can be UV glue.
  • a layer of UV glue may be formed on the substrate first, and a plurality of microstructures may be formed on the UV glue layer by means of embossing.
  • a residual adhesive layer may form between the microstructure and the substrate.
  • the microstructure is in the shape of a bone with a thin middle and wide ends.
  • the bone shape may also be centrosymmetric.
  • the microstructure in the embodiments of the present application satisfies at least one of the following conditions: 0.772 ⁇ A/P1 ⁇ 1.145, 0.811 ⁇ B/P2 ⁇ 1.180, and 61.2° ⁇ 82.5°.
  • FIG. 1 shows the initial shape of the bone-like microstructure
  • FIG. 2 is a schematic diagram of the bone-like microstructure obtained after optimization based on the initial shape shown in FIG. 1 .
  • A is the length of the first diagonal formed by the two end points of the most edge of the microstructure in the first direction
  • B is the microstructure
  • P1 is the distribution period of the microstructure in the first direction
  • P2 is the distribution period of the microstructure in the second direction
  • is the angle between the first diagonal and the second diagonal.
  • the distribution period in the first direction refers to the distance between two adjacent microstructures arranged in the first direction; the distribution period in the second direction refers to the adjacent two microstructures arranged in the second direction the distance between.
  • first direction is perpendicular to the second direction, and below, the first direction is the horizontal direction and the second direction is the vertical direction as an example for description.
  • first direction is closer to the first diagonal direction than the second direction
  • second direction is closer to the second diagonal direction than the first direction.
  • the angle between the first direction and the first diagonal is smaller than the angle between the second direction and the first diagonal; the angle between the second direction and the second diagonal, less than the angle between the first direction and the second diagonal.
  • first direction and the second direction form a two-dimensional coordinate system
  • One endpoint is the point in the microstructure that takes the smallest coordinate value in the first direction
  • the other endpoint is the point in the microstructure that takes the largest coordinate value in the second direction
  • use Among the two end points of the most edge forming the second diagonal one end point is the point in the microstructure at which the minimum coordinate value is obtained in the second direction
  • the other end point is the point in the microstructure in the second direction The point on which the maximum coordinate value is obtained.
  • a bone-like microstructure with a thin middle, wide ends, and center symmetry can be obtained.
  • the beam splitter formed based on the bone-like microstructure can convert a single beam
  • the light is split into 3 ⁇ 3 multi-beams, and the diffracted energy can be mainly distributed on the center zero-order and the surrounding 8 first-order orders, with high diffraction efficiency.
  • the bone-like microstructure can also satisfy at least one of the following conditions: 0.128 ⁇ C/X ⁇ 0.227, 0.445 ⁇ D/X ⁇ 0.683, 4.5° ⁇ A ⁇ 14.3°, 68.4° ⁇ B ⁇ 92.4°, and 31.5° ⁇ D ⁇ 56.1 °.
  • C is the width of the thinnest position in the middle of the microstructure
  • D is the length of the vertical line at the thinnest position in the middle of the microstructure
  • ⁇ A is the angle between the first diagonal and the first direction
  • ⁇ B is the angle between the second diagonal and the first direction
  • ⁇ D is the smallest position in the middle of the microstructure. The angle between the vertical line and the first direction.
  • the diffraction energy of the 3 ⁇ 3 optical beam splitter of the present application can be mainly distributed on the center zero-order and the surrounding 8 first-order orders.
  • the relative energy between the two beams also needs to be realized by specific optimization of the above parameter values, and different parameter values can obtain different energy distributions.
  • the bone-like edge can also be finely adjusted, such as continuous optimization of details such as the thinnest position in the middle and the length and position of the vertical line, the curvature of the four corners of the bone, etc., so as to meet various energy distributions. 3x3 beam splitter required.
  • the minimum feature size of the microstructure should also meet the processing conditions, and should not be too small, otherwise it will be difficult to process.
  • the minimum feature size is typically greater than 250 nm.
  • the beam splitter of the embodiment of the present application may have various diffraction angles in the first direction and the second direction.
  • the diffraction angle of the beam splitter in the first direction is any one of the following: 10°, 12.5°, 15°, 17.5°, and 20°; and/or, the beam splitter is in the first direction
  • the diffraction angle in the two directions is any one of the following: 10°, 12.5°, 15°, 17.5°, and 20°.
  • the diffraction angle in one direction is related to the distribution period of the microstructure in this direction, and finally determines the relative positions of the light spots corresponding to the 3 ⁇ 3 beams output by the optical beam splitter.
  • the beam splitter satisfies the diffraction condition Among them, k represents the diffraction order; ⁇ is the wavelength of the incident light; P is the size of the distribution period of the microstructure, such as the aforementioned P1 or P2; are the diffraction angles of the ( ⁇ 1, 0) and (0, ⁇ 1) orders, where ( ⁇ 1, 0) is located on the left and right sides of the zero order, and (0, ⁇ 1) is located on the upper and lower sides of the zero order.
  • Table 1 shows the diffraction angles in the first direction and the second direction of the 3 ⁇ 3 beam splitters with 15 different diffraction angles provided in the embodiments of the present application, respectively.
  • Table 1 shows the diffraction angles in the first direction and the second direction of the 3 ⁇ 3 beam splitters with 15 different diffraction angles provided in the embodiments of the present application, respectively.
  • Table 1 shows the diffraction angles in the first direction and the second direction of the 3 ⁇ 3 beam splitters with 15 different diffraction angles provided in the embodiments of the present application, respectively.
  • Table 1 shows the diffraction angles in the (0, ⁇ 1) order
  • the first column shows the diffraction angle of the ( ⁇ 1,0) order.
  • FIG. 3 shows the bone-like microstructures in the optical beam splitters numbered (1) to (15) in Table 1.
  • the 15 microstructures shown in Figure 1 are all bone-like, and there is not much difference in the overall shape of each other, but there are slight changes in the edges, which include the aforementioned P1, P2, A, B, C, D and ⁇ . of multiple parameter values.
  • the white area is the bone-like microstructure
  • the black area is the substrate
  • the phase difference between the white area and the black area is ⁇ to form a second-order phase beam splitter.
  • the lengths A of the first diagonals of the microstructures are respectively equal to a 1 to a 15
  • the second diagonals of the microstructures The lengths B of the microstructures are respectively equal to b 1 to b 15
  • the widths C of the middle thinnest positions of the microstructures are respectively equal to c 1 to c 15
  • the lengths D of the perpendicular lines of the middle thinnest positions of the microstructures are respectively equal to d 1 to c 15 .
  • d 15 the included angle ⁇ between the first diagonal and the second diagonal is equal to ⁇ 1 to ⁇ 16 , respectively.
  • Table 3 shows the included angle ⁇ A between the first diagonal line and the first direction, the included angle ⁇ B between the second diagonal line and the first direction, and the middle thinnest position of the microstructure The included angle ⁇ D between the mid-perpendicular line and the first direction.
  • each parameter value of the microstructure of the optical beam splitters numbered (1) to (15) satisfies the aforementioned conditions, that is, 0.772 ⁇ A/P1 ⁇ 1.145, 0.811 ⁇ B/P2 ⁇ 1.180, 0.128 ⁇ C /X ⁇ 0.227 and 0.445 ⁇ D/X ⁇ 0.683, and also satisfy the conditions 4.5° ⁇ A ⁇ 14.3°, 68.4° ⁇ B ⁇ 92.4°, 31.5° ⁇ D ⁇ 56.1°, and 61.2° ⁇ , respectively ⁇ 82.5°.
  • the 15 groups of parameters in Table 2 and Table 3 respectively correspond to the microstructures of the beam splitters with 15 different diffraction angles in Table 1.
  • a beam splitter with 15 diffraction angles as shown in Table 1 is used, then, when optimizing the bone-like microstructure of the beam splitter, according to the required diffraction angle, first Set the initial value of each parameter of the bone shape to meet the parameter value corresponding to the diffraction angle in Table 2, and further adjust each parameter on this basis, so as to obtain the various parameters of the microstructure that meet the energy distribution requirements quickly. , saving time.
  • optical beam splitters with the same diffraction angle can be obtained.
  • a beam splitter with a diffraction angle of 20° ⁇ 10° is obtained.
  • parameters such as the height and material of the microstructure also need to be considered.
  • the design of a specific microstructure of the optical beam splitter according to the embodiment of the present application is described.
  • the initial shape of the microstructure can be obtained, such as the bone shape shown in FIG. 1 .
  • the diffraction efficiency of the beam splitter formed by the microstructure can reach more than 72%.
  • the obtained microstructures are arranged in an array in the first direction and the second direction to form a phase diagram of a possible 3 ⁇ 3 optical beam splitter shown in FIG. 4 , wherein the period is 3.63um ⁇ 3.13um.
  • FIG. 5 is a schematic structural diagram of a beam splitter formed by the bone-like microstructure shown in FIG. 3 . It is assumed that an unpolarized light source 401 with normal incidence is used, and the wavelength is 940 nm.
  • the material of the microstructure 402 is UV glue, and the thickness is 0.86um.
  • 403 shows the residual adhesive layer left when the microstructure 402 is fabricated, and the thickness is 1.2um.
  • the thickness of the glass substrate 404 is 0.3 mm.
  • the microstructure 402 shown in FIG. 5 is a convex structure formed on the substrate 404, but in practical applications, the microstructure 402 can also be designed as a concave structure, and only the mold used for the imprinting process needs to be adjusted, Concave bone-like microstructures can then be pressed on the UV glue layer on the surface of the substrate 404 . This application does not limit this.
  • the single beam emitted by the light source 401 is split into 3 ⁇ 3 beams by the beam splitter.
  • the relative positions of the corresponding light spots are shown in FIG. 6 , where X is the first direction and Y is the second direction. Among them, the center is a zero-order light spot, and there are 8 first-order light spots distributed around it.
  • the optical beam splitter in this embodiment of the present application can be applied to depth detection or three-dimensional detection, for example, depth detection or three-dimensional detection based on TOF or structured light.
  • the present application further provides a light projector, comprising: a light source; and the light beam splitter described in any of the above embodiments, the light beam splitter is used to split the light emitted by the light source.
  • the light source may be, for example, a Vertical-Cavity Surface-Emitting Laser (VCSEL).
  • VCSEL Vertical-Cavity Surface-Emitting Laser
  • the light projector can be applied in, for example, depth detection or three-dimensional detection based on TOF or structured light.
  • the light projector further includes a collimating mirror, and the collimating mirror is arranged between the light source and the light beam splitter.
  • the systems, devices, and methods disclosed in the embodiments of the present application may be implemented in other manners. For example, some features of the method embodiments described above may be omitted or not implemented.
  • the apparatus embodiments described above are only illustrative, and the division of units is only a logical function division. In actual implementation, there may be other division methods, and multiple units or components may be combined or integrated into another system.
  • the coupling between the various units or the coupling between the various components may be direct coupling or indirect coupling, and the above-mentioned coupling includes electrical, mechanical or other forms of connection.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Optics & Photonics (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

一种光分束器和光投射器,用于将单束光分束为3×3的多束光,光分束器包括衬底(404)以及设置在衬底(404)上的阵列式分布的多个微结构(402),微结构(402)呈中间细、两头宽的骨头状,且满足以下条件中的至少一个:0.772≤A/P1≤1.145、0.811≤B/P2≤1.180、以及61.2°≤θ≤82.5°。A为微结构(402)在第一方向上的最边缘的两个端点形成的第一对角线的长度,B为微结构(402)在第二方向上的最边缘的两个端点的形成的第二对角线的长度,P1和P2分别为微结构(402)在第一方向和第二方向上的分布周期,第一方向与第二方向垂直,第一方向比第二方向靠近第一对角线的方向,第二方向比第一方向靠近第二对角线的方向,θ为第一对角线与第二对角线之间的夹角。

Description

光分束器和光投射器 技术领域
本申请实施例涉及光学领域,并且更具体地,涉及一种光分束器和光投射器。
背景技术
基于飞行时间(Time of Flight,ToF)技术常用于深度检测或者三维检测中,通过测量发射光信号经被测物体反射回来到达接收端的飞行时间,计算被测物体的距离。光分束器是用于深度检测或者三维检测光的发射模组中的核心器件,为此,需要寻找高性能的光分束器。
发明内容
本申请实施例提供一种光分束器和采用该光分束器的光投射器,能够提供一种3×3光分束器。其中,该光投射器例如可以作为深度检测装置或三维检测装置中的光发射模组。
第一方面,提供了一种光分束器,用于将单束光分束为3×3的多束光,所述光分束器包括衬底以及设置在所述衬底上的阵列式分布的多个微结构,所述微结构呈中间细、两头宽的骨头状。所述微结构满足以下条件中的至少一个:0.772≤A/P1≤1.145、0.811≤B/P2≤1.180、以及61.2°≤θ≤82.5°。
其中,A为所述微结构在第一方向上的最边缘的两个端点形成的第一对角线的长度,B为所述微结构在第二方向上的最边缘的两个端点的形成的第二对角线的长度,P1为所述微结构在第一方向的分布周期,P2为所述微结构在第二方向的分布周期,所述第一方向与所述第二方向垂直,所述第一方向比所述第二方向靠近所述第一对角线的方向,所述第二方向比所述第一方向靠近所述第二对角线的方向,θ为所述第一对角线与所述第二对角线之间的夹角。
本申请实施例提供的光分束器,由阵列式分布的多个微结构形成,该微结构呈中间细、两头宽的骨头状。采用骨头状的微结构,可以在后续的优化算法中使光束能量的误差函数更快地收敛到全局最优解,从而更准确地获得所期望的能量分布。通过设定该骨头状的形状参数,得到3×3光分束器, 使单束光经过该光分束器后形成3×3的多束光,并且使衍射能量能够主要分布在中心零级和周围的8个一级级次上,具有较高的衍射效率。
在一种可能的实现方式中,所述微结构还满足以下条件中的至少一个:0.128≤C/X≤0.227、0.445≤D/X≤0.683、4.5°≤θ A≤14.3°、68.4°≤θ B≤92.4°、以及31.5°≤θ D≤56.1°,其中,C为所述微结构的中间最细位置的宽度,D为所述微结构的中间最细位置的中垂线的长度,
Figure PCTCN2020127432-appb-000001
θ A为所述第一对角线与所述第一方向之间的夹角,θ B为所述第二对角线与所述第一方向之间的夹角,θ D为所述微结构的中间最细位置的中垂线与所述第一方向的夹角。
通过进一步设定这些参数的范围,可以得到更精确的骨头状,从而在后续优化过程中更易实现所需的能量分布需求。
在一种可能的实现方式中,所述光分束器在所述第一方向和所述第二方向上的衍射角分别为15°和17.5°,P1=3.63um、P2=3.13um、A=3.41um、B=2.91um、θ=71°,C=0.87um、D=2.90um、θ A=8°、θ B=79°、θ D=39°。
在一种可能的实现方式中,所述骨头状是中心对称的。
在一种可能的实现方式中,所述光分束器在所述第一方向上的衍射角度为以下中的任意一个:10°、12.5°、15°、17.5°、以及20°。
在一种可能的实现方式中,所述光分束器在所述第二方向上的衍射角度为以下中的任意一个:10°、12.5°、15°、17.5°、以及20°。
在一种可能的实现方式中,所述衬底为的材料玻璃,所述微结构的材料为UV胶,所述微结构与所述衬底之间为余胶层。
在一种可能的实现方式中,所述衬底的厚度为0.3mm,所述微结构的厚度为0.86um,所述余胶层的厚度为1.2um。
在一种可能的实现方式中,所述光分束器的入射光波长为940nm。
在一种可能的实现方式中,所述光分束器应用在基于飞行时间TOF或者结构光的三维检测中。
第二方面,提供了一种光投射器,包括:光源;以及,根据第一方面及其任意可能的实现方式中的光分束器,其中,所述光分束器用于对所述光源发出的光线进行分束。
在一种可能的实现方式中,所述光投射器应用于基于TOF或者结构光的三维检测中。
在一种可能的实现方式中,所述光投射器还包括准直镜,所述准直镜设置于所述光源与所述光分束器之间。
附图说明
图1是本申请实施例的用于形成光分束器的骨头状的微结构的形状示意图。
图2是对图1所示的初始形状进行优化后得到的微结构的形状参数的示意图。
图3是对应不同衍射角度的骨头状的微结构的形状示意图。
图4是基于图1所示的微结构形成的光分束器的相位图。
图5是基于图1所示的微结构形成的光分束器的结构示意图。
图6是基于由图1所示的微结构形成的光分束器形成的3×3个光束对应的光斑位置的示意图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
在三维检测中,一般需要通过光投射器(光发射模组)向目标物体投射例如激光等用于检测的光信号,光投射器除了包括发光元件之外,一般还包括一些光学器件诸如准直镜、光束分束器等,通常可以采用衍射光学元件(Diffractive Optical Element,DOE)作为光束分束器(以下简称光分束器)。衍射图案的发散角、均匀性、衍射效率等均由DOE决定。本申请提供了一种3×3光分束器,并对其微结构进行了具体设计。
本申请实施例的光分束器用于将单束光分束成3×3的多束光。该光分束器包括阵列式分布的多个微结构。图1是本申请实施例的用于形成该光分束器的微结构的示意图。其中,黑色区域表示衬底,白色区域表示该微结构,该微结构形成在该衬底上。该衬底例如可以采用玻璃衬底,而该微结构的材料可以是UV胶。具体地,可以在衬底上先形成一层UV胶,并通过压印的方式,在该UV胶层上形成多个微结构。在压印过程中,可能会在微结构和衬底之间形成余胶层。
可以看出,该微结构呈中间细、两头宽的骨头状。优选地,该骨头状还可以是中心对称的。通过大量实验可以得到,相比于采用其他形状作为分束 器的微结构的形状,采用骨头状作为微结构的形状,可以在后续的优化算法中使光束能量的误差函数更快地收敛到全局最优解,也就是说,可以使分束后的光束能量相对于期望值具有更小的误差,从而更准确地获得满足需求的光束能量分布。
其中,本申请实施例中的该微结构满足以下条件中的至少一个:0.772≤A/P1≤1.145、0.811≤B/P2≤1.180、以及61.2°≤θ≤82.5°。
图1所示为骨头状的微结构的初始形状,图2是基于图1所示的初始形状进行优化后得到的骨头状的微结构的示意图。其中,在图2所示的骨头状的微结构的各个参数中,A为该微结构在第一方向上的最边缘的两个端点形成的第一对角线的长度,B为该微结构在第二方向上的最边缘的两个端点的形成的第二对角线的长度,P1为该微结构在第一方向的分布周期,P2为该微结构在第二方向的分布周期,θ为第一对角线与第二对角线之间的夹角。
其中,第一方向的分布周期,指第一方向上的排布的相邻两个微结构之间的距离;第二方向的分布周期,指第二方向上排布的相邻两个微结构之间的距离。
这里,第一方向与第二方向垂直,以下,均以第一方向为水平方向、第二方向为竖直方向为例进行描述。
并且,第一方向比第二方向靠近该第一对角线的方向,第二方向比第一方向靠近该第二对角线的方向。换句话说,第一方向与第一对角线之间的夹角,小于第二方向与第一对角线之间的夹角;第二方向与第二对角线之间的夹角,小于第一方向与第二对角线之间的夹角。
另外,如果第一方向和第二方向形成二维坐标系,在考虑坐标值的正负的情况下,在第一方向上用于形成第一对角线的最边缘的两个端点中,其中一个端点是该微结构内的在第一方向上取得最小坐标值的点,另一个端点是该微结构内的在第二方向上取得最大坐标值的点;类似地,在第二方向上用于形成第二对角线的最边缘的两个端点中,其中一个端点是该微结构内的在第二方向上取得最小坐标值的点,另一个端点是该微结构内的在第二方向上取得最大坐标值的点。
在上述的参数范围内,通过对各个参数进行优化,可以得到中间细、两头宽、且中心对称的骨头状的微结构,基于该骨头状的微结构形成的光分束器,可以将单束光分束成3×3的多束光,并且使衍射能量能够主要分布在 中心零级和周围的8个一级级次上,具有较高的衍射效率。
进一步地,该骨头状的微结构还可以满足以下条件中的至少一个:0.128≤C/X≤0.227、0.445≤D/X≤0.683、4.5°≤θ A≤14.3°、68.4°≤θ B≤92.4°、以及31.5°≤θ D≤56.1°。
其中,如图2所示,C为该微结构的中间最细位置的宽度,D为该微结构的中间最细位置的中垂线的长度,
Figure PCTCN2020127432-appb-000002
θ A为该第一对角线与第一方向之间的夹角,θ B为该第二对角线与第一方向之间的夹角,θ D为该微结构的中间最细位置的中垂线与第一方向的夹角。
通过进一步设定C/X、D/X、θ A、θ B、θ D的范围,可以得到更精确的骨头状,从而在后续优化过程中更易实现所需的能量分布需求。
应理解,本申请的3×3光分束器的衍射能量能够主要分布在中心零级和周围的8个一级级次上,但是,单束光经过光分束器后形成的3×3个光束之间的相对能量还需要通过对上述参数值的具体优化来实现,不同的参数值可以得到不同的能量分布情况。进一步地,还可以对该骨头状的边缘的细微调整,例如对中间最细位置及其中垂线的长度和位置、骨头的四个角的弧度等细节不断进行优化,从而实现满足各种能量分布需求的3×3光分束器。
此外,为了在工艺上实现该骨头状的微结构,微结构的最小特征尺寸也应满足工艺加工的条件,不能过小,否则不易加工。例如,该最小特征尺寸通常大于250nm。
本申请实施例的光分束器在第一方向和第二方向上可以具有各种衍射角度。优选地,该光分束器在第一方向上的衍射角度为以下中的任意一个:10°、12.5°、15°、17.5°、以及20°;和/或,该光分束器在第二方向上的衍射角度为以下中的任意一个:10°、12.5°、15°、17.5°、以及20°。
一个方向上的衍射角度与微结构在该方向上的分布周期相关,并最终决定光分束器输出的3×3个光束对应的光斑的相对位置。该光分束器满足衍射条件
Figure PCTCN2020127432-appb-000003
其中,k表示衍射级次;λ为入射光的波长;P为微结构的分布周期的大小,例如前述的P1或者P2;
Figure PCTCN2020127432-appb-000004
为(±1,0)级和(0,±1)级的衍射角度,其中,(±1,0)位于零级的左右两侧,(0,±1)位于零级的上下两侧。
表一示出了本申请实施例提供的15种不同衍射角度的3×3光分束器分别在第一方向和第二方向上的衍射角度。如表一所示,在入射光的波长为 940nm,k=1,最小特征尺寸大于250nm的情况下,基于不同的衍射角度φ,设计得到如下编号(1)至编号(15)的骨头状的微结构,相应地,基于这些骨头状的微结构,可以分别得到15种具有不同衍射角度的3×3光分束器。其中,表一中的第一行所示为(0,±1)级的衍射角度,第一列所示为(±1,0)级的衍射角度。
表一
Figure PCTCN2020127432-appb-000005
与表一相对应,图3示出了表一中的编号(1)至编号(15)的光分束器中的骨头状的微结构。图1所示的15个微结构均为骨头状,彼此在整体形状上并没有太大差异,只是边缘存在细微变化,具体由包括前述P1、P2、A、B、C、D和θ在内的多个参数值来决定。其中,在图3中,白色区域为骨头状的微结构,黑色区域为衬底,白色区域与黑色区域之间的相位差为π,以形成二阶相位型分束器。
对于编号(1)至编号(15)的光分束器的微结构而言,该微结构的第一对角线的长度A分别等于a 1至a 15,该微结构的第二对角线的长度B分别等于b 1至b 15,该微结构的中间最细位置的宽度C分别等于c 1至c 15,该微结构的中间最细位置的中垂线的长度D分别等于d 1至d 15,第一对角线和第二对角线之间的夹角θ分别等于θ 1至θ 16。a 1至a 15、b 1至b 15、c 1至c 15、d 1至d 15、以及θ 1至θ 16的具体数值参见表二,其中,P1、P2、A、B、C、D的单位均为um。
表二
编号 P1 P2 A B C D θ
(1) 5.41 5.41 5.14 4.99 1.36 4.71 73°
(2) 5.41 4.34 5.03 4.15 1.30 4.00 75°
(3) 5.41 3.63 4.74 3.39 0.98 3.68 71°
(4) 5.41 3.13 4.67 3.02 0.95 3.30 69°
(5) 5.41 2.75 4.64 2.70 0.86 3.00 69°
(6) 4.34 4.34 3.92 4.05 1.07 3.80 70°
(7) 4.34 3.63 3.82 3.34 0.91 3.41 72°
(8) 4.34 3.13 3.79 3.00 0.89 3.26 70°
(9) 4.34 2.75 3.74 2.62 0.81 2.95 68°
(10) 3.63 3.63 3.41 3.39 0.89 3.13 72°
(11) 3.63 3.13 3.41 2.90 0.86 2.92 71°
(12) 3.63 2.75 3.35 2.55 0.80 2.83 73°
(13) 3.13 3.13 2.78 2.82 0.91 2.52 75°
(14) 3.13 2.75 2.78 2.55 0.79 2.45 70°
(15) 2.75 2.75 2.50 2.49 0.71 2.39 69°
基于表二中的各个参数值,得到表三所示的A/P1、B/P2、C/X以及D/X的值,具体如表三所示。并且,表三示出了第一对角线与第一方向之间的夹角θ A、第二对角线与第一方向之间的夹角θ B、以及该微结构的中间最细位置的中垂线与第一方向的夹角θ D
表三
编号 A/P1 B/P2 C/X D/X θ A θ B θ D
(1) 0.950 0.922 0.178 0.616 11° 84° 47°
(2) 0.930 0.956 0.187 0.577 82° 45°
(3) 0.876 0.934 0.150 0.565 80° 45°
(4) 0.863 0.956 0.152 0.528 76° 46°
(5) 0.858 0.982 0.142 0.494 76° 51°
(6) 0.903 0.933 0.174 0.619 13° 83° 38°
(7) 0.880 0.920 0.161 0.603 81° 44°
(8) 0.873 0.958 0.166 0.609 78° 41°
(9) 0.862 0.953 0.158 0.574 76° 47°
(10) 0.939 0.934 0.173 0.610 82° 45°
(11) 0.939 0.927 0.179 0.609 80° 35°
(12) 0.923 0.927 0.176 0.621 78° 35°
(13) 0.888 0.901 0.206 0.569 82° 46°
(14) 0.888 0.927 0.190 0.588 78° 40°
(15) 0.909 0.905 0.183 0.615 11° 80° 45°
从表二和表三中可以看出,0.858≤A/P1≤0.950,0.901≤B/P2≤0.982,0.142≤C/X≤0.206,0.494≤D/X≤0.621,5°≤θ A≤13°,76°≤θ B≤84°,35°≤θ D≤51°,68°≤θ≤75°。因此,编号(1)至编号(15)的光分束器的微结构的各个参数值均满足前述的条件,即,0.772≤A/P1≤1.145、0.811≤B/P2≤1.180、0.128≤C/X≤0.227以及0.445≤D/X≤0.683,并且,也分别满足条件4.5°≤θ A≤14.3°、68.4°≤θ B≤92.4°、31.5°≤θ D≤56.1°以及61.2°≤θ≤82.5°。
应理解,表二和表三中的15组参数,分别对应于表一中的15种不同衍射角度的光分束器的微结构。在实际应用中,若采用表一所示的15种衍射角度的光分束器,那么,在对该光分束器的骨头状的微结构进行优化时,可以根据所需要的衍射角度,先设定骨头状的各个参数的初始值满足表二中与该衍射角度相对应的参数值,并在此基础上对各个参数进一步调整,从而较快地得到满足能量分布需求的微结构的各个参数,节省了时间。例如,如果想得到衍射角度为15°×17.5°的3×3光分束器,那么在对骨头状的微结构进行优化时,可以先将骨头状的各个参数的初始值设置为表2中的编号(11)对应的值,然后对编号(11)对应的值进一步调整,直到满足所期望的能量分布需求。
应理解,在单个周期内,对微结构进行垂直翻转、水平翻转后,可以得到衍射角度相同的光分束器。对微结构进行向左旋转90°或者向右旋转90°,可以得到第一方向和第二方向的衍射角度互换后的光分束器,例如,对衍射角度为10°×20°的光分束器的微结构向左或者向右旋转90°时,得到衍射角度为20°×10°的光分束器。
本申请实施例中,为了实现二阶相位型分束器,还需要考虑微结构的高度、材料等参数。下面,作为示例,描述本申请实施例的一种具体的光分束器的微结构的设计。
假设需要得到衍射角度为15°×17.5°的3×3光分束器,且分束后的各个光束的能量相等。首先,可以先得到该微结构的初始形状,例如图1所示的骨头状。为了使该光分束器的9个级次的能量均匀分布,并且实现较高的衍射效率,即入射光经过光分束器后形成的9个级次上的光束能量占入射光束能量的百分比较高。在满足对上述A/P1、B/P2、θ、C/X、D/X、θ A、θ B、θ D的限定要求的情况下,对骨头状的各个参数值P1、P2、A、B、C、D、θ A、θ B、θ D、θ以及骨头状的边缘曲线进行优化,得到骨头状的各个参数值分别为:P1=3.63um、P2=3.03um、A=3.41um、B=2.91um、C=0.87um、D=2.90um、θ A=8°、θ B=79°、θ D=39°、θ=71°。该微结构形成的光分束器的衍射效率可达72%以上。
将得到的该微结构在第一方向和第二方向上阵列式排布,形成图4所示的一种可能的3×3光分束器的相位图,其中周期为3.63um×3.13um。
图5为由图3所示的骨头状的微结构形成的光分束器的结构示意图。假设采用垂直入射的无偏振的光源401,波长为940nm。微结构402的材料为UV胶,厚度为0.86um。403所示为制作微结构402时留下的余胶层,厚度为1.2um。玻璃衬底404的厚度为0.3mm。
图5所示的微结构402是形成在衬底404上的凸起结构,但在实际应用中,也可以将微结构402设计成凹陷结构,只需要对用于压印处理的模具进行调整,就可以在衬底404表面的UV胶层上压制出凹陷的骨头状的微结构。本申请对此不做限定。
光源401发出的单光束,被该光分束器分束成的3×3个光束,其对应的光斑的相对位置如图6所示,其中X为第一方向,Y为第二方向。其中,中心为零级光斑,四周分布有8个一级光斑。
本申请实施例的光分束器可以应用深度检测或者三维检测中,例如应用在基于TOF或者结构光的深度检测或者三维检测中。
本申请还提供一种光投射器,包括:光源;以及,上述任意实施例中所述的光分束器,该光分束器用于对该光源发出的光线进行分束。
该光源例如可以是垂直共振腔面发射型激光器(Vertical-Cavity  Surface-Emitting Laser,VCSEL)。
其中,该光投射器例如可以应用在基于TOF或者结构光的深度检测或三维检测中。
可选地,该光投射器还包括准直镜,该准直镜设置于光源与该光分束器之间。
需要说明的是,在不冲突的前提下,本申请描述的各个实施例和/或各个实施例中的技术特征可以任意的相互组合,组合之后得到的技术方案也应落入本申请的保护范围。
本申请实施例中所揭露的系统、装置和方法,可以通过其它方式实现。例如,以上所描述的方法实施例的一些特征可以忽略或者不执行。以上所描述的装置实施例仅仅是示意性的,单元的划分仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,多个单元或组件可以结合或者可以集成到另一个系统。另外,各单元之间的耦合或各个组件之间的耦合可以是直接耦合,也可以是间接耦合,上述耦合包括电的、机械的或其它形式的连接。
应理解,本申请实施例中的具体的例子只是为了帮助本领域技术人员更好地理解本申请实施例,而非限制本申请实施例的范围,本领域技术人员可以在上述实施例的基础上进行各种改进和变形,而这些改进或者变形均落在本申请的保护范围内。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (13)

  1. 一种光分束器,其特征在于,用于将单束光分束为3×3的多束光,所述光分束器包括衬底以及设置在所述衬底上的阵列式分布的多个微结构,所述微结构呈中间细、两头宽的骨头状,
    其中,所述微结构满足以下条件中的至少一个:0.772≤A/P1≤1.145、0.811≤B/P2≤1.180、以及61.2°≤θ≤82.5°,
    其中,A为所述微结构在第一方向上的最边缘的两个端点形成的第一对角线的长度,B为所述微结构在第二方向上的最边缘的两个端点的形成的第二对角线的长度,P1为所述微结构在第一方向的分布周期,P2为所述微结构在第二方向的分布周期,所述第一方向与所述第二方向垂直,所述第一方向比所述第二方向靠近所述第一对角线的方向,所述第二方向比所述第一方向靠近所述第二对角线的方向,θ为所述第一对角线与所述第二对角线之间的夹角。
  2. 根据权利要求1所述的光分束器,其特征在于,所述微结构还满足以下条件中的至少一个:0.128≤C/X≤0.227、0.445≤D/X≤0.683、4.5°≤θ A≤14.3°、68.4°≤θ B≤92.4°、以及31.5°≤θ D≤56.1°,
    其中,C为所述微结构的中间最细位置的宽度,D为所述微结构的中间最细位置的中垂线的长度,
    Figure PCTCN2020127432-appb-100001
    θ A为所述第一对角线与所述第一方向之间的夹角,θ B为所述第二对角线与所述第一方向之间的夹角,θ D为所述微结构的中间最细位置的中垂线与所述第一方向的夹角。
  3. 根据权利要求2所述的光分束器,其特征在于,所述光分束器在所述第一方向和所述第二方向上的衍射角分别为15°和17.5°,P1=3.63um、P2=3.13um、A=3.41um、B=2.91um、θ=71°,C=0.87um、D=2.90um、θ A=8°、θ B=79°、θ D=39°。
  4. 根据权利要求1至3中任一项所述的光分束器,其特征在于,所述骨头状是中心对称的。
  5. 根据权利要求1至4中任一项所述的光分束器,其特征在于,所述光分束器在所述第一方向上的衍射角度为以下中的任意一个:10°、12.5°、15°、17.5°、以及20°。
  6. 根据权利要求1至5中任一项所述的光分束器,其特征在于,所述光分束器在所述第二方向上的衍射角度为以下中的任意一个:10°、12.5°、 15°、17.5°、以及20°。
  7. 根据权利要求1至6中任一项所述的光分束器,其特征在于,所述衬底为的材料玻璃,所述微结构的材料为UV胶,所述微结构与所述衬底之间为余胶层。
  8. 根据权利要求7所述的光分束器,其特征在于,所述衬底的厚度为0.3mm,所述微结构的厚度为0.86um,所述余胶层的厚度为1.2um。
  9. 根据权利要求1至8中任一项所述的光分束器,其特征在于,所述光分束器的入射光波长为940nm。
  10. 根据权利要求1至9中任一项所述的光分束器,其特征在于,所述光分束器应用在基于飞行时间TOF或者结构光的三维检测中。
  11. 一种光投射器,其特征在于,包括:
    光源;以及,
    根据权利要求1至10中任一项所述的光分束器,其中,所述光分束器用于对所述光源发出的光线进行分束。
  12. 根据权利要求11所述的光投射器,其特征在于,所述光投射器应用于基于飞行时间TOF或者结构光的深度检测或者三维检测中。
  13. 根据权利要求11或12所述的光投射器,其特征在于,所述光投射器还包括准直镜,所述准直镜设置于所述光源与所述光分束器之间。
PCT/CN2020/127432 2020-11-09 2020-11-09 光分束器和光投射器 WO2022095009A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/127432 WO2022095009A1 (zh) 2020-11-09 2020-11-09 光分束器和光投射器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/127432 WO2022095009A1 (zh) 2020-11-09 2020-11-09 光分束器和光投射器

Publications (1)

Publication Number Publication Date
WO2022095009A1 true WO2022095009A1 (zh) 2022-05-12

Family

ID=81456859

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/127432 WO2022095009A1 (zh) 2020-11-09 2020-11-09 光分束器和光投射器

Country Status (1)

Country Link
WO (1) WO2022095009A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1894593A (zh) * 2003-12-19 2007-01-10 莱卡地球系统公开股份有限公司 测量至远处和近处目标的距离的装置
CN105334575A (zh) * 2015-12-14 2016-02-17 华中科技大学 一种硅基光分束器及其制造方法
CN108205176A (zh) * 2018-01-09 2018-06-26 四川天邑康和通信股份有限公司 一种新型无散件插片式光分路器
CN110749948A (zh) * 2019-11-15 2020-02-04 杭州驭光光电科技有限公司 衍射光学元件、包括其的光学组件以及基准线投射装置
WO2020059217A1 (ja) * 2018-09-21 2020-03-26 国立研究開発法人情報通信研究機構 Tofカメラ
CN111650681A (zh) * 2020-06-24 2020-09-11 欧菲微电子技术有限公司 衍射光学元件、tof深度传感器、光学系统及装置
CN111736359A (zh) * 2018-10-26 2020-10-02 唯亚威通讯技术有限公司 包括多个区域的光学元件

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1894593A (zh) * 2003-12-19 2007-01-10 莱卡地球系统公开股份有限公司 测量至远处和近处目标的距离的装置
CN105334575A (zh) * 2015-12-14 2016-02-17 华中科技大学 一种硅基光分束器及其制造方法
CN108205176A (zh) * 2018-01-09 2018-06-26 四川天邑康和通信股份有限公司 一种新型无散件插片式光分路器
WO2020059217A1 (ja) * 2018-09-21 2020-03-26 国立研究開発法人情報通信研究機構 Tofカメラ
CN111736359A (zh) * 2018-10-26 2020-10-02 唯亚威通讯技术有限公司 包括多个区域的光学元件
CN110749948A (zh) * 2019-11-15 2020-02-04 杭州驭光光电科技有限公司 衍射光学元件、包括其的光学组件以及基准线投射装置
CN111650681A (zh) * 2020-06-24 2020-09-11 欧菲微电子技术有限公司 衍射光学元件、tof深度传感器、光学系统及装置

Similar Documents

Publication Publication Date Title
CN112051581B (zh) 光分束器和光投射器
US10422934B2 (en) Diffraction gratings and the manufacture thereof
WO2018209987A1 (zh) Vcsel阵列光源
US20220131345A1 (en) Improved illumination device
TWI764107B (zh) 繞射光導板以及眼用佩戴品
WO2019086003A1 (zh) 结构光投影模组、深度相机及制造结构光投影模组的方法
CN111650681A (zh) 衍射光学元件、tof深度传感器、光学系统及装置
GB2509536A (en) Diffraction grating
JP7436369B2 (ja) ランバート分布を有する光をバットウィング分布に変換するマイクロ構造
CN113671612A (zh) 一种超表面光学元件及设计方法、结构光投影模组
CN113281909A (zh) 衍射光学元件、投射模组及电子设备
US20220385042A1 (en) Single Element Dot Pattern Projector
CN113671613A (zh) 一种超表面光学元件及设计方法、结构光投影模组
CN212379600U (zh) 衍射光学元件、tof深度传感器、光学系统及装置
US11137246B2 (en) Optical device
WO2022095009A1 (zh) 光分束器和光投射器
JP2003227904A (ja) 光学素子の製造方法および光学素子
CN113325595B (zh) 一种衍射光学元件及光学设备
WO2023097850A1 (zh) 衍射光学元件及其制备方法、母版衍射图案的设计方法
US20210141199A1 (en) Small scale light projection device facilitating the structuring of light emitted for depth-calculating purposes
CN113376721A (zh) 一种工程扩散片及其设计、制作方法
CN113625461A (zh) 衍射光学元件、投射模组及电子设备
CN215297842U (zh) 衍射光学元件、投射模组及电子设备
WO2023024381A1 (zh) 一种超表面光学元件及设计方法、结构光投影模组
CN215297843U (zh) 衍射光学元件、投射模组及电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20960467

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20960467

Country of ref document: EP

Kind code of ref document: A1