WO2022094975A1 - 组播传输控制方法、装置、计算机设备及存储介质 - Google Patents

组播传输控制方法、装置、计算机设备及存储介质 Download PDF

Info

Publication number
WO2022094975A1
WO2022094975A1 PCT/CN2020/127294 CN2020127294W WO2022094975A1 WO 2022094975 A1 WO2022094975 A1 WO 2022094975A1 CN 2020127294 W CN2020127294 W CN 2020127294W WO 2022094975 A1 WO2022094975 A1 WO 2022094975A1
Authority
WO
WIPO (PCT)
Prior art keywords
aps
site
information
multicast
channel quality
Prior art date
Application number
PCT/CN2020/127294
Other languages
English (en)
French (fr)
Inventor
杜永洋
侯蓉晖
黄磊
罗朝明
张军
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to CN202080106900.8A priority Critical patent/CN116472727A/zh
Priority to EP20960436.2A priority patent/EP4243460A4/en
Priority to PCT/CN2020/127294 priority patent/WO2022094975A1/zh
Publication of WO2022094975A1 publication Critical patent/WO2022094975A1/zh
Priority to US18/144,011 priority patent/US20230276265A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/06Selective distribution of broadcast services, e.g. multimedia broadcast multicast service [MBMS]; Services to user groups; One-way selective calling services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/30Resource management for broadcast services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/18Negotiating wireless communication parameters
    • H04W28/22Negotiating communication rate
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/27Control channels or signalling for resource management between access points
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/542Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]

Definitions

  • the present application relates to the field of wireless communication technologies, and in particular, to a multicast transmission control method, apparatus, computer equipment and storage medium.
  • WLAN Wireless Local Area Network
  • WLAN multicast lacks a feedback mechanism such as ACK (Acknowledge, acknowledgment response), so that the access point (Access Point, AP) cannot easily collect the status information of the station (Station, STA) participating in the multicast,
  • ACK Acknowledge, acknowledgment response
  • STA station
  • multicast frames in WLAN are set to be sent at a fixed low bit rate (for example, 1 Mbps).
  • Embodiments of the present application provide a multicast transmission control method, apparatus, computer equipment, and storage medium.
  • the technical solution is as follows:
  • the embodiment of the present application provides a multicast transmission control method, the method includes:
  • the site information table of the target site includes channel quality information of the first type site and channel quality information of the second type site associated with the target AP;
  • the first type of site is a site in the overlapping basic service set OBSS, and the second type of site is a site that is not in the OBSS;
  • the target AP is any one of the at least two APs;
  • the multicast optimization information of the at least two APs is respectively generated, and the multicast optimization information of the at least two APs is used to indicate the multicast rate of the at least two APs , and the multicast receiving sites of the at least two APs.
  • an embodiment of the present application provides a method for controlling multicast transmission.
  • the method is executed by a second AP in at least two wireless access point APs, and the method includes:
  • the site information table of the target AP includes the channel quality information of the first type site and the channel quality information of the second type site associated with the target AP;
  • the first type The site is a site in the overlapping basic service set OBSS, and the second type site is a site that is not in the OBSS;
  • the target AP is any one of the at least two APs;
  • the multicast optimization device Sending the site information table of the second AP to the multicast optimization device, so that the multicast optimization device generates the multicast optimization information of the at least two APs respectively according to the site information tables of the at least two APs , the multicast optimization information of the at least two APs is used to indicate the multicast rates of the at least two APs and the multicast receiving sites of the at least two APs.
  • an embodiment of the present application provides a multicast transmission control device, the device comprising:
  • an information table acquisition module configured to acquire the site information tables of at least two wireless access point APs, the site information table of the target AP includes the channel quality information of the first type site and the second type site associated with the target AP channel quality information;
  • the first type site is a site in the overlapping basic service set OBSS, the second type site is a site not in OBSS;
  • the target AP is any one of the at least two APs one;
  • An optimization information generation module configured to respectively generate multicast optimization information of the at least two APs according to the site information tables of the at least two APs, where the multicast optimization information of the at least two APs is used to indicate the at least two APs.
  • an embodiment of the present application provides a multicast transmission control apparatus, the apparatus is executed by a second AP in at least two wireless access point APs, and the apparatus includes:
  • An information table acquisition module configured to acquire a site information table of the second AP, where the site information table of the target AP includes the channel quality information of the first type site associated with the target AP and the channel quality of the second type site information; the first type site is a site in the overlapping basic service set OBSS, and the second type site is a site not in the OBSS; the target AP is any one of the at least two APs;
  • the information table sending module is configured to send the site information table of the second AP to the multicast optimization device, so that the multicast optimization device generates the at least two APs respectively according to the site information tables of the at least two APs.
  • Multicast optimization information of the at least two APs where the multicast optimization information of the at least two APs is used to indicate the multicast rate of the at least two APs and the multicast receiving sites of the at least two APs.
  • an embodiment of the present application provides a computer device, the computer device includes a processor, a memory, and a transceiver;
  • the transceiver is configured to acquire the site information table of at least two wireless access point APs, and the site information table of the target AP includes the channel quality information of the first type site and the second type site associated with the target AP channel quality information;
  • the first type site is a site in the overlapping basic service set OBSS, the second type site is a site not in OBSS;
  • the target AP is any one of the at least two APs one;
  • the processor is configured to respectively generate multicast optimization information of the at least two APs according to the site information tables of the at least two APs, where the multicast optimization information of the at least two APs is used to indicate the at least two APs.
  • an embodiment of the present application provides a computer device, the computer device being implemented as a second AP in at least two wireless access point APs, the computer device including a processor, a memory, and a transceiver;
  • the transceiver is configured to obtain a site information table of the second AP, and the site information table of the target AP includes the channel quality information of the first type site and the channel quality of the second type site associated with the target AP information;
  • the first type site is a site in the overlapping basic service set OBSS, and the second type site is a site not in the OBSS;
  • the target AP is any one of the at least two APs;
  • the transceiver is further configured to send the site information table of the second AP to the multicast optimization device, so that the multicast optimization device generates the at least two APs respectively according to the site information tables of the at least two APs.
  • the multicast optimization information of the two APs where the multicast optimization information of the at least two APs is used to indicate the multicast rate of the at least two APs, and the multicast receiving sites of the at least two APs.
  • an embodiment of the present application further provides a computer-readable storage medium, where a computer program is stored in the storage medium, and the computer program is loaded and executed by a processor to implement the foregoing multicast transmission control method.
  • a computer program product or computer program comprising computer instructions stored in a computer-readable storage medium.
  • the processor of the computer device reads the computer instruction from the computer-readable storage medium, and the processor executes the computer instruction, so that the computer device executes the above-mentioned multicast transmission control method.
  • the multicast optimization device obtains the channel quality information of the sites associated with the at least two APs, and based on the channel quality information of the sites associated with the at least two APs, and the Whether the associated site is an OBSS site, to optimize the multicast of at least two APs, to optimize the multicast rate of the at least two APs, and to which sites each of the at least two APs provides multicast services, the above solution in this application can Based on the channel quality of the OBSS sites and non-OBSS sites associated with each AP, the sites served by each AP and the multicast rate are optimized. It is not necessary to set the multicast rate of each AP to a fixed value. transmission efficiency.
  • FIG. 1 is a schematic diagram of a network architecture of a communication system provided by an embodiment of the present application.
  • FIG. 2 is a flowchart of a method for controlling multicast transmission provided by an embodiment of the present application
  • FIG. 3 is a flowchart of a method for controlling multicast transmission provided by an embodiment of the present application.
  • FIG. 4 is a schematic diagram of multicast optimization provided by an exemplary embodiment of the present application.
  • FIG. 5 is a flowchart of a method for controlling multicast transmission provided by an embodiment of the present application.
  • FIG. 6 and FIG. 7 are schematic diagrams of two optimized group deployment situations involved in the embodiment shown in FIG. 5;
  • FIG. 8 is a schematic diagram of elements of bearer quantity information involved in the embodiment shown in FIG. 5;
  • FIG. 9 is a schematic diagram of the main AP information element involved in the embodiment shown in FIG. 5;
  • FIG. 10 is a schematic diagram of a process in which the AP involved in the embodiment shown in FIG. 5 indicates measurement quality information to a station;
  • Fig. 11 is the frame format of a kind of RNR involved in the embodiment shown in Fig. 5;
  • FIG. 12 is a schematic diagram of the process of collecting the quality information of the site by the AP involved in the embodiment shown in FIG. 5;
  • FIG. 13 is a schematic diagram of a listening protocol under the situation of multiple receiving ends involved in the embodiment shown in FIG. 5;
  • Fig. 14 is the frame format of the action frame involved in the embodiment shown in Fig. 5;
  • Fig. 15 is the frame format of the "measurement indication for neighboring APs" frame involved in the embodiment shown in Fig. 5;
  • FIG. 16 is a schematic diagram of the format of the CQI reply frame involved in the embodiment shown in FIG. 5;
  • Fig. 17 is a schematic diagram of multicast rate and site optimization involved in the embodiment shown in Fig. 5;
  • Fig. 18 is a flow chart of multicast rate optimization involved in the embodiment shown in Fig. 5;
  • Fig. 19 is the information table request frame format diagram involved in the embodiment shown in Fig. 5;
  • Fig. 20 is the information table response frame format involved in the embodiment shown in Fig. 5;
  • Fig. 21 is the optimization result indication frame format involved in the embodiment shown in Fig. 5;
  • Fig. 22 is the indication frame format involved in the embodiment shown in Fig. 5;
  • FIG. 23 is a schematic diagram of functional modules of each AP involved in the embodiment shown in FIG. 5;
  • FIG. 24 is a schematic diagram of functional modules of the STA involved in the embodiment shown in FIG. 5;
  • 25 is a block diagram of a multicast transmission control apparatus provided by an embodiment of the present application.
  • 26 is a block diagram of a multicast transmission control device provided by an embodiment of the present application.
  • FIG. 27 is a schematic structural diagram of a computer device provided by an embodiment of the present application.
  • the network architecture and service scenarios described in the embodiments of the present application are for the purpose of illustrating the technical solutions of the embodiments of the present application more clearly, and do not constitute a limitation on the technical solutions provided by the embodiments of the present application.
  • the evolution of new business scenarios and the emergence of new business scenarios, the technical solutions provided in the embodiments of the present application are also applicable to similar technical problems.
  • FIG. 1 shows a schematic diagram of a network architecture of a communication system provided by an embodiment of the present application.
  • the network architecture may include: a station 10 and an access point 20 .
  • the number of stations 10 is usually multiple, and each access point 20 may be associated with one or more stations 10 .
  • Site 10 may include various handheld devices, vehicle-mounted devices, wearable devices, computing devices, or other processing devices connected to wireless modems, and various forms of user equipment (UE), mobile stations ( Mobile Station, MS), terminal device, etc.
  • UE user equipment
  • MS Mobile Station
  • terminal device etc.
  • the devices mentioned above are collectively referred to as a station STA.
  • the access point 20 is a device deployed in the access network to provide the station 10 with wireless communication functions.
  • the access point 20 may include various forms of wireless routers, wireless switches, or wireless relay devices, and the like.
  • the above-mentioned network architecture further includes other network devices, such as a gateway device and so on.
  • the station 10 and the access point 20 can associate and communicate through wireless local area network technology, for example, communication based on the IEEE 802.11 protocol.
  • IEEE 802.11 WLAN traffic has exploded, with video traffic growing rapidly.
  • video transmission in user-intensive networks such as sports events, video conferences, and smart classrooms
  • Using multicast transmission not only saves resources, but also has higher transmission efficiency. Therefore, the demand for multicast communication in IEEE 802.11 WLAN is increasing day by day.
  • BSS Basic Service Set
  • BSS is the basic component of an 802.11 wireless local area network (WLAN).
  • WLAN wireless local area network
  • IBSS Independent BSS
  • BSS with infrastructure also called Basic BSS
  • IBSS refers to the Ad-Hoc association established by the sites that communicate directly with each other.
  • An IBSS can consist of several sites, one of which acts as the primary site.
  • a basic BSS corresponds to an AP, and the AP may be connected to a distributed system (Distributed System, DS).
  • DS Distributed System
  • the APs in the underlying BSS periodically broadcast beacon frames.
  • the period of the beacon defines a fixed schedule of Target Beacon Transmission Time (TBTT).
  • Beacon frames carry regulatory information, capability information, and information used to manage the BSS.
  • the 802.11 management function is to actively detect the presence of APs by scanning, that is, passively looking for beacon transmissions or using probe request/probe response exchanges.
  • Scanning here is the process by which a site discovers a BSS and is associated with that BSS. There are two forms of scanning: passive scanning and active scanning. Membership of a site in BSS is dynamic. Stations may be powered on or off, or stations may be mobile and can move in and out of the area covered by the BSS. Sites become members of the BSS by "associating" with the BSS. When leaving the BSS, the site becomes “disassociated”. In an extended BSS (ESS, Extent Service Set) composed of one or more basic BSSs, sites can migrate from one BSS to another through "re-association".
  • ESS Extended BSS
  • ESS Extent Service Set
  • the above association refers to that the station is first associated with the AP, and then is allowed to send data through the AP. That is, a mapping relationship is established between the station and the AP to allow messages in the distributed system to reach the AP associated with the station, and finally reach the station itself.
  • a site can only be associated with one AP at any given moment.
  • Reassociation is to provide support for the mobility of a station so that a station can move from being associated with one AP to being associated with another AP in the same Extended Service Set (ESS).
  • ESS Extended Service Set
  • Disassociation can be initiated by a station or AP to end an existing association. When a site leaves the network, it can actively perform a disassociation operation.
  • each basic service set has a unique identifier called BSSID.
  • overlapping basic service set OBSS For multiple BSSs, the part with similar distance and overlapping coverage is called overlapping basic service set OBSS.
  • AP1 and AP2 there are two basic BSSs, AP1 and AP2, respectively, where AP1 is associated with site 1, site 2, and site 3, and AP2 is associated with site 4, site 5, and site 6, where site 3 and site 4 are in AP1
  • the corresponding basic BSS and the corresponding basic BSS of AP2 that is, site 3 and site 4 can receive the signals sent by AP1 and AP2 respectively
  • site 3 and site 4 can also be called as OBSS site.
  • FIG. 2 shows a flowchart of a method for controlling multicast transmission provided by an embodiment of the present application.
  • the method for controlling multicast transmission may be performed by a multicast optimization device, wherein the multicast optimization device may be at least two One of the APs (such as the access point 20 in the network architecture shown in FIG. 1 ), or the above-mentioned multicast optimization device may also be other devices other than at least two APs, such as a gateway device.
  • the method may include the following steps:
  • Step 201 Acquire site information tables of at least two wireless access point APs, where the site information table of a target AP includes channel quality information of a first type site and channel quality information of a second type site associated with the target AP; Type sites are sites that are in the overlapping basic service set OBSS, and the second type sites are sites that are not in OBSS.
  • the target AP is any one of at least two APs.
  • the channel quality information is used to indicate the channel quality between the station and the AP.
  • the numerical value of the channel quality information is positively correlated with the channel quality. For example, taking the channel quality information as the signal-to-noise ratio as an example, the larger the value of the signal-to-noise ratio, the higher the channel quality and the higher the signal-to-noise ratio. The smaller the value of the noise ratio, the lower the channel quality.
  • the numerical value of the channel quality information and the channel quality may also be inversely correlated, that is, the larger the value of the channel quality information (such as noise power), the lower the channel quality, and the smaller the value of the channel quality information. , the lower the channel quality.
  • the channel quality information of the above-mentioned site may be the channel quality information of the AP associated with the site and/or the non-associated AP adjacent to the site to the site.
  • Step 202 according to the site information table of the at least two APs, respectively generate the multicast optimization information of the at least two APs, the multicast optimization information is used to indicate the multicast rate of the at least two APs, and the at least two The multicast receiving site of the AP.
  • the multicast optimization device generates corresponding multicast optimization information for each AP.
  • the multicast optimization device obtains the channel quality information of the sites associated with the at least two APs, and based on the Channel quality information of the associated sites, and whether the respective associated sites of the at least two APs are OBSS sites, to optimize the multicast of the at least two APs, to optimize the multicast rate of the at least two APs, and to optimize the multicast rate of the at least two APs.
  • the above scheme of the present application can combine the sites associated with multiple APs and the channel quality between the associated AP and adjacent APs
  • the relationship between the multicast rate and the multicast reception is adaptively adjusted, so as to improve the multicast rate while ensuring the stability of the multicast service. That is to say, based on the channel quality of the OBSS sites and non-OBSS sites associated with each AP, the sites served by each AP and the multicast rate are optimized, and the multicast rate of each AP does not need to be set to a fixed value, thereby improving the multi-AP rate. Multicast transmission efficiency in the scenario.
  • FIG. 3 shows a flowchart of a multicast transmission control method provided by an embodiment of the present application.
  • the multicast transmission control method may be executed by a second AP, where the second AP may be at least two APs One of the APs (such as the access point 20 in the network architecture shown in FIG. 1 ).
  • the method may include the following steps:
  • Step 301 obtain the site information table of the second AP, the site information table of the target AP includes the channel quality information of the first type site associated with the target AP and the channel quality information of the second type site; the first type site is in an overlapping A station in the basic service set OBSS, this second type of station is a station not in the OBSS.
  • the target AP is any one of at least two APs.
  • Step 302 Send the site information table of the second AP to the multicast optimization device, so that the multicast optimization device generates the multicast optimization information of the at least two APs respectively according to the site information tables of the at least two APs.
  • the multicast optimization information of the at least two APs is used to indicate the multicast rates of the at least two APs and the multicast receiving sites of the at least two APs.
  • At least two APs obtain channel quality information of their associated sites respectively, and the multicast optimization device based on the at least two APs The channel quality information of the respective associated sites, and whether the respective associated sites of the at least two APs are OBSS sites, to optimize the multicast of the at least two APs, to optimize the multicast rate of the at least two APs, and to optimize the multicast rate of the at least two APs.
  • the above scheme of the present application can combine the stations associated with multiple APs and the channels between the associated AP and adjacent APs According to the quality situation, adaptively adjust the multicast rate and the multicast reception relationship, so as to improve the multicast rate while ensuring the stability of the multicast service.
  • This technical solution utilizes multi-AP cooperation to perform an optimization process for STAs located in an OBSS in an optimization group (that is, can receive signals from multiple APs), and these OBSS STAs are located at the coverage edge of their respective associated APs (that is, the associated APs of the STAs). , compared to BSS STAs (which can only receive signals from associated APs), they are likely to have poorer channel quality, and therefore determine the lower rate limit of their associated APs for multicast transmission with a high probability. If these OBSS STAs can receive There is an AP in the APs receiving the signal that performs multicast transmission at a lower rate. We make these STAs possible to receive the data packets from the AP.
  • FIG. 4 shows a schematic diagram of multicast optimization provided by an exemplary embodiment of the present application.
  • STA1 has the worst channel status among the STAs associated with AP1, which determines the current lower limit of the rate at which AP1 performs multicast transmission.
  • AP2 is a neighboring AP of STA1. If the multicast rate of AP2 is lower than the multicast rate of AP1, and the multicast rate determined by AP2 to STA1 is greater than the multicast rate determined by AP2 to STA5 (optimization condition), then STA1 will receive a data packet from AP2 to optimize The condition guarantees the service quality of STA2. After that, the AP1 can multicast the remaining members STA3, STA4, and STA2 in the multicast group at a higher rate.
  • the flow of the solution of the present application includes a site information table maintenance flow part and a multicast optimization flow part; when the above-mentioned multicast optimization flow part is performed by the master AP, the flow of the solution of the present application also includes a master AP election flow part.
  • FIG. 5 shows a flowchart of a method for controlling multicast transmission provided by an embodiment of the present application. Executed by at least two APs and stations associated with at least two APs; wherein, the APs may be the access points 20 in the network architecture shown in FIG. 1 , and the stations may be the access points in the network architecture shown in FIG. 1 . point 20. As shown in Figure 5, the method may include the following steps:
  • Step 501 At least two APs obtain their respective number of neighbor APs, where the number of neighbor APs is the number of APs adjacent to the corresponding AP.
  • the first AP is any one of the at least two APs; the second AP is any one of the at least two APs except the first AP.
  • an optimization group can be deployed, and an optimization group consists of a master AP and several slave APs. . There must be at least two APs in an optimization group.
  • the master AP can receive all the signals from the slave APs, and the master AP is responsible for sending commands to the slave APs to collect the information table of the slave APs, optimize the multicast rate, and finally indicate the optimization results to the slave APs.
  • FIG. 6 and FIG. 7 show schematic diagrams of two optimization group deployment situations involved in the embodiments of the present application.
  • Figure 6 shows the case of only two APs.
  • the two APs can receive signals from each other, so the two APs are equal, and one of them can be selected as the master AP.
  • Figure 7 shows the multi-AP situation.
  • AP2 can receive the signals of AP1 and AP3, but AP1 and AP3 cannot receive each other's signals. Therefore, AP2 is selected as the main AP.
  • Step 502 at least two APs send their respective neighbor AP numbers.
  • At least two APs send respective numbers of neighbor APs through beacon frames.
  • At least two APs 6 may also send their respective numbers of neighbor APs through other wireless signal frames.
  • the number of neighbor APs of the first AP is sent through a beacon frame.
  • the number of neighbor APs of the second AP is sent through a beacon frame.
  • the number of neighbor APs of the first AP sent through a beacon frame includes:
  • the number of neighbor APs of the first AP is not greater than the threshold of the number of neighbor APs, the number of neighbor APs of the first AP is sent through a beacon frame within the second time period.
  • the number of neighbor APs of the second AP sent through the beacon frame includes:
  • the number of neighbor APs of the second AP is not greater than the threshold of the number of neighbor APs, the number of neighbor APs of the second AP is sent through a beacon frame within the second time period.
  • the above-mentioned first time period is before the second time period.
  • Step 503 At least two APs acquire the number of neighbor APs of each adjacent AP from the beacon frames sent by each adjacent AP.
  • Step 504 at least two APs determine AP identities according to the number of their own neighbor APs and the number of neighbor APs of each adjacent AP, and the AP identities include the master AP or the slave AP.
  • the first AP is determined as the number of neighbor APs of the at least two APs. primary AP.
  • the second AP in the at least two APs, when the number of neighbor APs of any one of the adjacent APs of the second AP is not less than the number of neighbor APs of the second AP, the second AP is determined to be at least The primary AP of the two APs.
  • the second AP sends declaration information to the multicast optimization device (ie, the first AP), where the declaration information is used to declare that the corresponding APs are the at least two APs
  • the first AP receives the declaration information sent by the second AP, and the declaration information is used to declare that the corresponding AP is the secondary AP of the at least two APs; the second AP is the at least two APs , any AP except the first AP.
  • the number of optimization groups is small and the radio environment is simple.
  • the selection of the main AP can be determined directly when the optimization group is deployed. For larger scenarios such as sports venues, it is necessary to deploy multiple optimization groups to solve the coverage problem. The following describes the selection of the main AP in large-scale scenarios.
  • the process is completed in two time periods.
  • the first time period is for master AP selection: each AP in the scenario performs the master AP selection during the master AP selection time period.
  • each AP determines the number of neighbor APs, and puts the number information into in the beacon frame.
  • FIG. 8 shows a schematic diagram of elements of bearer quantity information involved in an embodiment of the present application. This element is a newly added element.
  • the Information field is 1 byte long and is used to indicate the number of neighbor APs.
  • the AP When the number of neighbor APs of the AP is greater than a number threshold, the AP carries the number of neighbor APs in the beacon frame sent by the AP in the first sub-time period of the first time period; otherwise, it is sent in the second sub-time period of the first time period
  • the number of neighbor APs element is carried in the beacon frame. This ensures that APs with a large number of APs preferentially send beacon frames that carry elements of the number of neighbor APs. APs in the same sending time period will send the beacon frame first to the AP that gets the transmission opportunity first.
  • the AP When the number of neighbor APs in the beacon frame received by an AP is greater than the number of its own neighbor APs for the first time, the AP becomes the slave AP and does not send beacon frames after that. At the end of the first time period, the AP that has not become the slave AP automatically becomes the master AP; in the second time period, the slave APs put the master AP information element (that is, the above-mentioned declaration information) in the beacon frame and send it to inform the master AP own existence.
  • FIG. 9 shows a schematic diagram of the primary AP information element involved in the embodiment of the present application. As shown in Figure 9, the main AP information element is a newly added information element. The BSS ID field in the main AP information element identifies the main AP information. When the master AP parses that the information element matches itself, it can know the existence of the slave APs.
  • Step 505 at least two APs send a channel measurement indication to each associated STA; the channel measurement indication is used to indicate a measurement parameter; the measurement parameter includes a measurement channel and a measurement time.
  • a channel measurement indication is sent to each STA associated with the first AP.
  • a channel measurement indication is sent to each STA associated with the second AP.
  • Step 506 each STA performs channel measurement according to the channel measurement instruction, and obtains a channel quality report, where the channel quality report is used to indicate the channel quality from each AP around the corresponding STA to the corresponding STA.
  • each STA sends a channel quality report to the associated AP, and correspondingly, at least two APs receive the channel quality report sent by each associated STA.
  • Step 508 at least two APs each generate a corresponding site information table according to the channel quality reports sent by the associated STAs.
  • a site information table of the first AP is generated according to the channel quality reports sent by each STA associated with the first AP.
  • a site information table of the second AP is generated according to channel quality reports sent by each STA associated with the second AP.
  • the site information table of the target AP contains the channel quality information of the first type site and the channel quality information of the second type site associated with the target AP;
  • the first type site is the site in the overlapping basic service set OBSS,
  • the Type II sites are sites that are not in OBSS.
  • the target AP is any one of at least two APs.
  • the site information table of the target AP includes the following information:
  • the identifier of the first type site associated with the target AP is the identifier of the first type site associated with the target AP
  • the channel quality information of the site of the first type site associated with the target AP is adjacent to the AP, to the channel quality information of the first type site associated with the target AP; the adjacent AP of the site is the at least two APs, except the associated AP, to the corresponding site. AP with the highest channel quality;
  • the identifier of the adjacent AP of the site of the first type of site associated with the target AP is the identifier of the adjacent AP of the site of the first type of site associated with the target AP
  • the identifier of the second type site associated with the target AP is the identifier of the second type site associated with the target AP
  • the AP that is adjacent to a site refers to an AP with the highest channel quality to the site among the non-associated APs of a site.
  • AP1 For example, suppose there are 3 APs near a site, namely AP1, AP2 and AP3, where the site is associated with AP1, and the site can be covered by AP2 and AP3 at the same time (that is, it can receive signals from AP2 and AP3). ), then AP2 and AP3 are the non-associated APs of the site. Among the two APs, AP2 and AP3, the AP with the highest channel quality to the site is called the site-adjacent AP of the site.
  • Step 509 the slave AP in the at least two APs sends the site information table to the master AP; correspondingly, the master AP receives the site information table sent by each slave AP.
  • the second AP sends the site information table of the second AP to the first AP; correspondingly, the first AP receives the site information table sent by the second AP .
  • FIG. 10 shows a schematic diagram of a process in which an AP involved in an embodiment of the present application indicates measurement quality information to a station.
  • APs send Reduced Neighbor Report (RNR) to STAs
  • STAs in OBSS send BSS Color Collision Report (BSS Color Collision Report) to associated AP.
  • RNR exists in beacon frames and probe response frames sent by APs, which contain the channel and other information of nearby APs.
  • OBSS STAs can learn about the attached APs and their channels by receiving this report; whenever OBSS STAs detect a BSS color conflict, they send a BSS color conflict report to the associated AP, and the associated AP can learn the STA user type according to the report.
  • OBSS STAs to the AP with the best channel quality among all nearby APs as Nearby APs.
  • FIG. 11 shows a frame format of an RNR involved in an embodiment of the present application.
  • the length of the Service Class Operating Class field is 1 byte, indicating the channel start frequency.
  • This field together with the Channel Number field indicates primary channel information.
  • the Channel Number field is 1 octet long, and it represents the last known primary channel of the APs in the Neighbor AP Information field. Together, these two fields indicate primary channel related information.
  • the BSS color is used to identify the BSS, and each PPDU carries the BSS color information, which can help the STA to know which BSS the PPDU comes from after receiving a PPDU.
  • the BSS color conflict report uses the relevant content in 802.11ax. This report is used by the STA to notify the AP whether BSS color highlighting has occurred.
  • the report carries the BSS color information detected by the OBSS STA.
  • the event report field of the BSS color conflict event report has a length of 8 bytes, wherein each bit represents a BSS color value. A bit of 1 indicates that the BSS color detected by the STA corresponding to this bit has been used by the OBSS.
  • FIG. 12 shows a schematic diagram of a process of collecting quality information of a site by an AP involved in an embodiment of the present application.
  • APs send NDPA frames, NDP frames, and trigger frames (Trigger Frames) to STAs to reply to channel quality information reports (CQI Reports) and buffer results.
  • the NDPA frame is used to initialize the listening process, including allocating resources, specifying feedback types, and so on.
  • NDP frames are used by STAs to receive channel quality measurements.
  • the trigger frame is used to trigger STAs to reply to the CQI report. In the CQI report, the channel quality is measured by the signal-to-noise ratio.
  • APs collect STAs channel quality part using the listening protocol in 802.11ax, in 802.11ax standard, transmit beamforming and downlink MU-MIMO need to know the channel state information to calculate a training matrix, which is due to optimization of an or Reception by multiple receivers.
  • the STA utilizes this listening protocol to determine channel state information.
  • FIG. 13 shows a schematic diagram of a listening protocol in the case of multiple receiving ends involved in an embodiment of the present application.
  • multiple receivers beamformees
  • OFDMA orthogonal frequency division multiple access
  • the technical solution enables the STA to reply the CQI report and the cached result to the APs at the same time.
  • APs maintain an information table locally based on the received information.
  • Each information table contains the information of all OBSS STAs associated with the AP and a BSS STA with the worst channel quality. The reason for this is that all OBSS STAs may be Being the object of multicast rate optimization, BSS STAs information is a potential termination condition for the multicast rate optimization process.
  • the information of OBSS STAs includes the MAC address of the STA, the SNR of the STA to the associated AP, the MAC addresses of the neighboring APs of the STA, and the user type (for OBSS users).
  • the BSS STAs information includes the MAC address of the STA, the SNR of the STA to the associated AP, and the user type (for BSS users).
  • the content of the information table can be as shown in Table 1 below:
  • an action frame is a category field plus an Action (action detail) field.
  • the Category field identifies the category of the action frame, and its length is one byte, which can identify 256 categories of action frames. There are 24 categories that have been used in the 802.11 standard, 104 categories are reserved, and the remaining 128 categories are not used. Because there are still a lot of reserved categories, the technical solution will use the reserved categories to identify the frames designed by the technical solution, that is, add a new type of action frame.
  • FIG. 15 shows the frame format of the “measurement indication for adjacent APs” frame involved in the embodiment of the present application.
  • the main change is that an element is added to carry the indication information, that is, the adjacent AP element.
  • the Element ID field is 1 byte long and identifies the function of the element.
  • the number of functional identifiers reserved by Element ID in the 802.11 standard is still more, so the adjacent AP element here is designed as a new element.
  • the length of the Length field is 1 byte, which identifies the length of the Information field.
  • the Information field is of variable length and contains several measurement information.
  • a measurement information includes a channel number (Channel Number) field, a start time (Start time) field and a duration (Duration) field.
  • the channel number field indicates the channel to be measured, and the information in this field comes from the RNR generated by the AP; the start time field indicates the time when the measurement starts.
  • the Duration field indicates the duration of the measurement channel. After the STA parses the information, it needs to receive NDP frames from these channels at a specified time to measure the information quality information.
  • FIG. 16 shows a schematic diagram of the format of the CQI reply frame involved in the embodiment of the present application.
  • a CQI report (CQI Report) field STA's SNR For Neighbor AP field and Neighbor AP's MAC Address field are added.
  • the CQI Report field multiplexes the CQI Report field in 802.11ax, the length is variable, and it carries the CQI information;
  • the STA's SNR For Neighbor AP field is used to carry the measurement results of the best channel quality from the STA to all neighboring APs, Neighbor AP's
  • the MAC Address field is used to carry the MAC address of the neighboring AP.
  • the specific setting of the STA's SNR For Neighbor AP field is shown in Table 2.
  • the length of this field is one byte, representing an unsigned integer, with a maximum value of 255.
  • This integer has a mapping relationship with the channel quality SNR (in dB). , an integer of 0 means less than or equal to -13dB, an integer of 255 means greater than or equal to 50.75dB, and the rest of the integers are a definite value that varies in units of 0.25dB.
  • Step 510 The first AP generates multicast optimization information of the at least two APs respectively according to the site information tables of the at least two APs.
  • the multicast optimization information of the at least two APs is used to indicate the multicast rate of the at least two APs and the multicast receiving sites of the at least two APs.
  • the multicast optimization information of the at least two APs are respectively generated according to the site information tables of the at least two APs, including:
  • the optimization parameters include target channel quality information and target sites corresponding to the target channel quality information;
  • the initial target channel quality information is The channel quality information with the lowest channel quality in the site information table of the corresponding AP;
  • Multicast receiving site According to the initial channel quality of the target channel quality information from low to high, perform multicast optimization on the at least two APs in turn to obtain the respective multicast rates of the at least two APs and the respective multicast rates of the at least two APs.
  • Multicast receiving site
  • the multicast optimization information of the at least two APs is respectively generated according to the respective multicast rates of the at least two APs and the respective multicast receiving sites of the at least two APs.
  • performing multicast optimization on the at least two APs in sequence according to the initial channel quality of the target channel quality information from low to high including:
  • the multicast rate of the first AP is acquired according to the initial target channel quality information of the first AP.
  • performing multicast optimization on the at least two APs in sequence according to the initial channel quality of the target channel quality information from low to high including:
  • the target site of the ith AP is set as the The site of the target site of the ith AP is adjacent to the multicast receiving site of the AP;
  • the optimization condition includes: the channel quality of the target channel quality information of the ith AP is higher than the channel quality of the neighbor AP of the site to the ith AP
  • the channel quality of the channel quality information of the target site, and the channel quality of the channel quality information of the target site from the adjacent AP of the site to the i-th AP is higher than the channel quality of the target channel quality information of the adjacent APs of the site;
  • the site information table of the ith AP When there is an unselected site in the site information table of the ith AP, update the site with the lowest channel quality of the channel quality information in the unselected site as the target site of the ith AP; the unselected site is an unselected site. Select the site of the target site of the i-th AP.
  • performing multicast optimization on the at least two APs in sequence according to the channel quality of the initial target channel quality information from low to high further comprising:
  • the target channel quality information is used to obtain the multicast rate of the i-th AP.
  • Step 511 the first AP sends the respective multicast optimization information to other APs in the at least two APs.
  • the first AP sends the multicast optimization information of the second AP to the second AP, and correspondingly, the second AP receives the multicast optimization information of the second AP.
  • Step 512 at least two APs respectively perform multicast optimization according to the corresponding multicast optimization information.
  • the multicast rate of the first AP is set according to the multicast optimization information of the first AP.
  • a first AP among the at least two APs when the multicast optimization information of the first AP indicates that an optimized site exists in the associated sites of the first AP, send a message to the optimized site.
  • a receiving instruction is sent, where the receiving instruction is used to instruct the site to be optimized to receive the multicast data of the AP adjacent to the corresponding site; wherein the site to be optimized is set as the multicast receiving site of the adjacent AP of the corresponding site.
  • a second AP among the at least two APs receive the multicast optimization information of the second AP sent by the multicast optimization device (ie, the first AP); according to the second AP
  • the multicast optimization information of the AP is used to set the multicast rate of the second AP.
  • a second AP among the at least two APs when the multicast optimization information of the second AP indicates that an optimized site exists in the associated sites of the second AP, send the optimized site to the second AP.
  • the station sends a receiving instruction, where the receiving instruction is used to instruct the optimized site to receive multicast data of the AP adjacent to the corresponding site; wherein the optimized site is set as the multicast receiving site of the AP adjacent to the corresponding site.
  • FIG. 17 shows a schematic diagram of multicast rate and site optimization involved in this embodiment of the present application.
  • each AP maintains an information table locally.
  • the main AP requests the information table and multicast optimization from the slave APs.
  • the master AP sends an information table request to the slave APs, and the slave APs responds to the request and sends an information table response to the master AP.
  • the InfoTable response frame contains the InfoTable information.
  • the master AP After receiving the information tables of all slave APs, the master AP has the information tables of all APs in the optimization group, and then the master AP starts multicast optimization.
  • the master AP After completion, the master AP retains its own optimization results and indicates the optimization results of the slave APs. to slave APs. After receiving from the APs, it knows what multicast rate should be used for multicast transmission, and which STAs in the OBSS of the AP need to receive data packets from the neighboring APs.
  • FIG. 18 shows a flowchart of multicast rate optimization involved in the embodiment of the present application.
  • the master AP after receiving the information tables of all slave APs, the master AP only needs to have the information tables of all APs.
  • the SNR of the STA to the associated AP in the information table determines the rate of the associated AP multicast data packets to the STA, and the SNR value of the STA to the adjacent AP determines the theoretical rate of the adjacent AP's multicast data packets to the STA.
  • the upper neighboring AP will not multicast packets to this STA.
  • the master AP determines a minimum SNR value of each AP according to the SNR value of the STA to the associated AP in the information table, and the corresponding STA is the target STA.
  • the master AP optimizes the APs in ascending order according to the target SNR values of each AP.
  • the AP with the smallest target SNR value performs multicast transmission at the smallest rate in the entire optimization group. There are no APs nearby with a lower multicast transmission rate than its multicast transmission rate. Therefore, the OBSS STAs of this AP cannot send packets to nearby APs. reception. Therefore, the multicast rate of the AP is determined. Optimizing the APs in this order can determine the multicast rate of each AP one by one without disorder.
  • the master AP determines whether the target STA of the currently optimized AP is an OBSS STA. If not, the optimization of the current AP has been completed, and the master AP can determine the multicast transmission rate that the AP should perform according to the target SNR value of the AP.
  • BSS STAs can only receive signals from associated APs, so optimization is not possible.
  • Target STA is BSS STA is a termination condition for AP to perform rate optimization.
  • the optimization condition is another termination condition for the AP to perform rate optimization, that is, whether the target SNR value and the SNR value from the STA to the adjacent AP are both greater than the target SNR value of the adjacent AP.
  • the current AP optimization is completed, and the rate determined by the target SNR value of the AP is the rate at which the AP performs multicast transmission; if established, the STA becomes an optimized STA and needs to receive data packets from its neighboring APs.
  • the target SNR value of the current AP is greater than the target SNR value of the adjacent APs of the target STA, and it is determined that the multicast rate of the adjacent APs of the target STA is smaller than that of the associated APs. Preconditions for data reception.
  • the SNR from the target STA to the adjacent AP is greater than the target SNR value of the adjacent AP, and this condition ensures the quality of service when the target STA receives data from the adjacent AP.
  • the currently optimized AP updates the target SNR and the target STA, and the target STA is still the STA with the smallest SNR value from the STA to its associated AP after the optimized STA is removed, that is, the target of each update is to select the STA with the worst channel quality.
  • the SNR value is the target SNR.
  • the entire multicast rate optimization process is completed. Then the master AP indicates the optimization result to the slave APs.
  • frame format design is required to include information table request frame, information table response frame and optimization result indication frame.
  • FIG. 19 shows the format diagram of the information table request frame involved in the embodiment of the present application.
  • an information table request element Information List Request Element
  • an element ID Element ID
  • the request function of the instruction information table can be done, so there is no need to add another field for instruction.
  • FIG. 20 shows the information list response frame format involved in the embodiment of the present application.
  • an information list response element (Information List Response Element) is added, and the Information field of this element is a variable length , which is used to carry the information of the information table.
  • a part of the Information field shown in the figure is a row of data in the information table.
  • the STA SNR field and the adjacent AP STA SNR (STA SNR for Neighbor AP) field are set as shown in Table 2.
  • the Neighbor AP's MAC Address field and the STA's SNR for Neighbor AP field are set to all 0s or all 1s to indicate null.
  • FIG. 21 shows the optimization result indication frame format involved in the embodiment of the present application.
  • a new rate identification field (Rate Identification), STAs quantity field, and STAs address field are added.
  • the rate identification field identifies the rate information. After the APs parse this field, they know the multicast transmission rate that they should perform.
  • Number of STAs field User identifies the number of addresses in the STAs address field.
  • the STAs address field carries the MAC addresses of the optimized OBSS STAs. Used to send indication frames from APs to these STAs for packet reception to neighboring APs.
  • the Rate Identification field in Figure 21 multiplexes the Rate Identification field in the 802.11 standard.
  • the value of the MCS Selector subfield is different, and the MCS identified by the same MCS Index (index) field will change; the MCS Index identifies the MCS scheme.
  • a value of 0 in the Rate Type subfield indicates that the Rate field is reserved, a value of 1 indicates that the Rate field is a data rate in a basic rate set, and a value of 2 indicates that the Rate field is not a data rate in a basic rate set.
  • the Rate field is 2 bytes long and represents an unsigned integer, which varies in units of 0.5Mbps, and determines a PHY rate.
  • Receiving the optimization result indication frame from the APs needs to send an instruction to the STAs in the OBSS, so that these STAs can receive data packets from the neighboring APs.
  • FIG. 22 shows the indication frame format involved in the embodiment of the present application.
  • a new BSSID field for receiving (BSSID for Receive) is added. After OBSS STAs parse this field, they know that they need Receive packets from this BSS.
  • FIG. 23 shows a schematic diagram of functional modules of each AP involved in the embodiment of the present application.
  • the functional modules of the AP include: a signaling interaction module, a multicast rate optimization module, and a data module.
  • the data module also includes a data receiving module and an information table maintenance module.
  • Signaling interaction module used for signaling interaction between APs and between APs and STAs. Including APs sending measurement instruction frames to OBSS STAs for neighboring APs, master AP sending information table request frames to slave APs, slave APs sending information table response frames to master APs, master AP sending optimization result indicating frames to slave APs, APs sending information table response frames to slave APs.
  • OBSS STAs send data reception instruction frames to neighboring APs, APs parse CQI reply frames sent by STAs, and the master AP parses information table response frames sent from APs.
  • the master AP optimizes the multicast rate according to the information in the information table receiving module and the information table maintenance module, and indicates the optimization result to the slave APs and the OBSS STAs of this AP through the signaling exchange module.
  • the data module includes an information table receiving module and an information table maintenance module.
  • the information table receiving module is used for the main AP to receive the information table sent from the APs.
  • the information table maintenance module is used to record the information table of the AP.
  • FIG. 24 shows a schematic diagram of functional modules of an STA involved in an embodiment of the present application.
  • the STA includes a signaling exchange module, and a data receiving module for neighboring APs.
  • the signaling interaction module is used for signaling interaction between APs and STAs. Including STAs sending CQI reply frame to APs, parsing the indication frame from AP.
  • the channel measurement buffer module for nearby APs records a best channel measurement result of all nearby APs by OBSS STAs and the MAC address of the corresponding AP.
  • the module for receiving data from neighboring APs is used to enable STAs to receive data packets from neighboring APs.
  • At least two APs obtain channel quality information of their associated sites respectively, and the multicast optimization device based on the at least two APs The channel quality information of the respective associated sites, and whether the respective associated sites of the at least two APs are OBSS sites, to optimize the multicast of the at least two APs, to optimize the multicast rate of the at least two APs, and to optimize the multicast rate of the at least two APs.
  • the above scheme of the present application can combine the stations associated with multiple APs and the channels between the associated AP and adjacent APs According to the quality situation, adaptively adjust the multicast rate and the multicast reception relationship, so as to improve the multicast rate while ensuring the stability of the multicast service. That is to say, based on the channel quality of the OBSS sites and non-OBSS sites associated with each AP, the sites served by each AP and the multicast rate are optimized, and the multicast rate of each AP does not need to be set to a fixed value, thereby improving the multi-AP rate. Multicast transmission efficiency in the scenario.
  • FIG. 25 shows a block diagram of a multicast transmission control apparatus provided by an embodiment of the present application.
  • the device is used in a multicast optimization device, and has the function of implementing the steps performed by the multicast optimization device/first AP in the method shown in the above-mentioned FIG. 2 or FIG. 5 .
  • the apparatus may include:
  • the information table acquisition module 2501 is configured to acquire the site information tables of at least two wireless access point APs.
  • the site information table of the target AP includes the channel quality information and the second type of the first type site associated with the target AP.
  • An optimization information generation module 2502 configured to respectively generate multicast optimization information of the at least two APs according to the site information tables of the at least two APs, where the multicast optimization information of the at least two APs is used to indicate the Multicast rates of at least two APs, and multicast receiving sites of the at least two APs.
  • the site information table of the target AP includes the following information:
  • the identifier of the first type site associated with the target AP is the identifier of the first type site associated with the target AP
  • the identifier of the adjacent AP of the site of the first type of site associated with the target AP is the identifier of the adjacent AP of the site of the first type of site associated with the target AP
  • the identifier of the second type site associated with the target AP is the identifier of the second type site associated with the target AP
  • the optimization information generation module includes:
  • a parameter acquisition unit configured to acquire initial optimization parameters of the at least two APs according to the site information tables of the at least two APs, where the optimization parameters include target channel quality information and a target corresponding to the target channel quality information site; the initial target channel quality information is the channel quality information with the lowest channel quality in the site information table of the corresponding AP;
  • a multicast optimization unit configured to perform multicast optimization on the at least two APs in sequence according to the channel quality of the initial target channel quality information from low to high, and obtain the respective multicast data of the at least two APs rate, and the respective multicast receiving sites of the at least two APs;
  • An information generating unit configured to respectively generate multicast optimization information of the at least two APs according to the respective multicast rates of the at least two APs and the respective multicast receiving sites of the at least two APs.
  • the multicast optimization unit is configured to, for the first AP in the at least two APs, obtain all the Specifies the multicast rate of the first AP.
  • the multicast optimization unit is configured to:
  • the i-th AP's The target site is set as the site of the target site of the ith AP that is adjacent to the multicast receiving site of the AP;
  • the optimization conditions include: the channel quality of the target channel quality information of the ith AP is higher than the channel quality of the channel quality information of the target site from the adjacent AP to the ith AP, and the channel of the channel quality information of the target site from the adjacent AP to the ith AP The channel quality is higher than the target channel quality information of the adjacent APs of the site;
  • a selected site is a site that is not selected as the target site of the i-th AP.
  • the multicast optimization unit is further configured to:
  • the target site of the i-th AP is the second-type site, or, when the target site of the i-th AP is the first-type site, and the optimization condition does not hold, Obtain the multicast rate of the ith AP according to the target channel quality information of the ith AP.
  • the information table acquiring module is configured to:
  • channel quality report sent by each STA associated with the first AP, where the channel quality report is used to indicate the channel quality from each AP around the corresponding STA to the corresponding STA;
  • a station information table of the first AP is generated according to the channel quality reports sent by each STA associated with the first AP.
  • the information table acquisition module is also used to:
  • the channel measurement indication is used to indicate measurement parameters; the measurement parameters include measurement channel and measurement time.
  • the apparatus when the apparatus is used in the first AP of the at least two APs, the apparatus further includes:
  • an optimization information sending module configured to send multicast optimization information of the second AP to a second AP of the at least two APs; the second AP is one of the at least two APs, except for the first AP. Any AP other than an AP.
  • the apparatus when the apparatus is used in the first AP of the at least two APs, the apparatus further includes:
  • a rate setting module configured to set the multicast rate of the first AP according to the multicast optimization information of the first AP.
  • the apparatus when the apparatus is used in the first AP of the at least two APs, the apparatus further includes:
  • An instruction sending module configured to send a receiving instruction to the optimized site when the multicast optimization information of the first AP indicates that an optimized site exists in the associated sites of the first AP, where the receiving instruction is used to indicate The optimized site receives the multicast data of the adjacent APs of the corresponding site;
  • the optimized site is set as a multicast receiving site of the corresponding site adjacent to the AP.
  • the apparatus when the apparatus is used in the first AP of the at least two APs, the apparatus further includes:
  • a quantity acquisition module configured to acquire the number of neighbor APs of the first AP before the information table acquisition module acquires the site information tables of at least two wireless access point APs, where the number of neighbor APs is adjacent to the corresponding AP the number of APs;
  • a quantity sending module configured to send the number of neighbor APs of the first AP through a beacon frame
  • the beacon frame receiving module is used to receive the beacon frames sent by each adjacent AP;
  • the quantity obtaining module is further configured to obtain the respective number of neighbor APs of the respective adjacent APs from the beacon frames sent by the respective adjacent APs;
  • a determining module configured to determine the first AP as the master AP among the at least two APs when the number of neighbor APs of the respective adjacent APs is less than the number of neighbor APs of the first AP.
  • the quantity sending module is used for,
  • the first time period is before the second time period.
  • the apparatus further includes:
  • a statement receiving module configured to receive statement information sent by the second AP, where the statement information is used to declare that the corresponding AP is a slave AP of the at least two APs; the second AP is one of the at least two APs. , any AP except the first AP.
  • FIG. 26 shows a block diagram of a multicast transmission control apparatus provided by an embodiment of the present application.
  • the device is used in the AP and has the function of implementing the steps performed by the second AP in the method shown in the above-mentioned FIG. 3 or FIG. 5 .
  • the apparatus may include:
  • Information table acquisition module 2601 configured to acquire the site information table of the second AP, the site information table of the target AP includes the channel quality information of the first type site and the channel quality information of the second type site associated with the target AP ; Described first type site is the site in overlapping basic service set OBSS, and described second type site is not in the site in OBSS; Target AP is any one in at least two APs;
  • An information table sending module 2602 configured to send the site information table of the second AP to the multicast optimization device, so that the multicast optimization device can respectively generate the at least two APs according to the site information tables of the at least two APs.
  • the information table acquisition module includes:
  • a report receiving unit configured to receive a channel quality report sent by each STA associated with the second AP, where the channel quality report is used to indicate the channel quality from each AP around the corresponding STA to the corresponding STA;
  • An information table generating unit configured to generate a site information table of the second AP according to channel quality reports sent by each STA associated with the second AP.
  • the information table acquisition module further includes:
  • the measurement instruction sending unit is configured to send a channel measurement instruction to each STA associated with the second AP before the report receiving unit receives the channel quality report sent by each STA associated with the second AP; used to indicate measurement parameters; the measurement parameters include measurement channels and measurement time.
  • the apparatus further includes:
  • an optimization information receiving module configured to receive the multicast optimization information of the second AP sent by the multicast optimization device
  • a rate setting module configured to set the multicast rate of the second AP according to the multicast optimization information of the second AP.
  • the apparatus further includes:
  • an instruction sending module configured to send a receiving instruction to the optimized site when the multicast optimization information of the second AP indicates that an optimized site exists in the associated sites of the second AP, where the receiving instruction is used to indicate The optimized site receives the multicast data of the adjacent APs of the corresponding site;
  • the optimized site is set as a multicast receiving site of the corresponding site adjacent to the AP.
  • the apparatus further includes:
  • a quantity acquisition module configured to acquire the number of neighbor APs of the second AP before the information table acquisition module acquires the site information table of the second AP, where the number of neighbor APs is the number of APs adjacent to the corresponding AP quantity;
  • a quantity sending module configured to send the number of neighbor APs of the second AP through a beacon frame
  • the beacon frame receiving module is used to receive the beacon frames sent by each adjacent AP;
  • the quantity obtaining module is further configured to obtain the respective number of neighbor APs of the respective adjacent APs from the beacon frames sent by the respective adjacent APs;
  • a determining module configured to determine the second AP as the number of neighbor APs among the at least two APs when the number of neighbor APs of any one of the adjacent APs is greater than the number of neighbor APs of the second AP from AP.
  • the quantity sending module is used for,
  • the first time period is before the second time period.
  • the apparatus further includes:
  • An announcement sending module configured to send announcement information to the multicast optimization device, where the announcement information is used to announce that the corresponding AP is a slave AP among the at least two APs.
  • the device provided in the above embodiment realizes its functions, only the division of the above functional modules is used as an example for illustration. In practical applications, the above functions can be allocated to different functional modules according to actual needs. That is, the content structure of the device is divided into different functional modules to complete all or part of the functions described above.
  • FIG. 27 shows a schematic structural diagram of a computer device 2710 provided by an embodiment of the present application.
  • the computer device 2700 may include: a processor 2701 , a receiver 2702 , a transmitter 2703 , a memory 2704 and a bus 2705 .
  • the processor 2701 includes one or more processing cores, and the processor 2701 executes various functional applications and information processing by running software programs and modules.
  • the receiver 2702 and the transmitter 2703 may be implemented as a communication component, which may be a communication chip.
  • the communication chip may also be referred to as a transceiver.
  • the memory 2704 is connected to the processor 2701 through the bus 2705.
  • the memory 2704 can be used to store a computer program, and the processor 2701 is used to execute the computer program, so as to implement various steps performed by the terminal device in the above method embodiments.
  • the memory 2704 may be implemented by any type or combination of volatile or non-volatile storage devices including, but not limited to, magnetic or optical disks, electrically erasable programmable Read Only Memory, Erasable Programmable Read Only Memory, Static Anytime Access Memory, Read Only Memory, Magnetic Memory, Flash Memory, Programmable Read Only Memory.
  • the foregoing computer device may be implemented as the multicast optimization device/first AP in each of the foregoing method embodiments.
  • the above computer device may be implemented as the second AP in each of the above method embodiments.
  • the computer device includes a processor, a memory, and a transceiver (the transceiver may include a receiver for receiving information and a transmitter for transmitting information);
  • the transceiver is configured to acquire the site information table of at least two wireless access point APs, and the site information table of the target AP includes the channel quality information of the first type site and the channel of the second type site associated with the target AP Quality information;
  • the first type of site is a site in an overlapping basic service set OBSS, and the second type of site is a site that is not in OBSS;
  • the target AP is any one of at least two APs;
  • the processor is configured to respectively generate multicast optimization information of the at least two APs according to the site information tables of the at least two APs, where the multicast optimization information of the at least two APs is used to indicate the at least two APs.
  • the transceiver is configured to obtain a site information table of the second AP, where the site information table of the target AP includes channel quality information of the first type site and channel quality information of the second type site associated with the target AP;
  • the site of the first type is a site in the overlapping basic service set OBSS, and the site of the second type is a site not in the OBSS;
  • the target AP is any one of at least two APs;
  • the transceiver is further configured to send the site information table of the second AP to the multicast optimization device, so that the multicast optimization device generates the at least two APs respectively according to the site information tables of the at least two APs.
  • the multicast optimization information of the two APs where the multicast optimization information of the at least two APs is used to indicate the multicast rate of the at least two APs, and the multicast receiving sites of the at least two APs.
  • An embodiment of the present application further provides a computer-readable storage medium, where a computer program is stored in the storage medium, and the computer program is loaded and executed by a processor to implement the method shown in FIG. 2 or FIG.
  • a computer program is stored in the storage medium, and the computer program is loaded and executed by a processor to implement the method shown in FIG. 2 or FIG.
  • Each step performed by the multicast optimization device/first AP; or, the computer program is loaded and executed by the processor to implement each step performed by the second AP in the method shown in FIG. 3 or FIG. 5 above.
  • the application also provides a computer program product or computer program, the computer program product or computer program comprising computer instructions stored in a computer-readable storage medium.
  • the processor of the computer device reads the computer instruction from the computer-readable storage medium, and the processor executes the computer instruction, so that the computer device executes the method shown in FIG. 2 or FIG. or, the computer program is loaded and executed by the processor to implement each step executed by the second AP in the method shown in FIG. 3 or FIG. 5 above.
  • Computer-readable media includes both computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another.
  • a storage medium can be any available medium that can be accessed by a general purpose or special purpose computer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种组播传输控制方法、装置、通信设备及存储介质,属于无线通信技术领域。所述方法包括:获取至少两个AP的站点信息表,站点信息表中包含关联的第一类型站点和第二类型站点的信道质量信息;第一类型站点是处于OBSS中的站点,第二类型站点是不处于OBSS中的站点;根据至少两个AP的站点信息表,分别生成至少两个AP的组播优化信息,组播优化信息用于指示对应AP的组播速率以及组播接收站点;向至少两个AP发送对应的组播优化信息。上述方案通过提供各AP关联的OBSS站点和非OBSS站点的信道质量,对各AP服务的站点以及组播速率进行优化,从而提高多AP场景下的组播传输效率。

Description

组播传输控制方法、装置、计算机设备及存储介质 技术领域
本申请涉及无线通信技术领域,特别涉及一种组播传输控制方法、装置、计算机设备及存储介质。
背景技术
随着移动终端的不断普及,以及移动应用场景的不断发展,无线局域网(Wireless Local Area Network,WLAN)对组播通信的需求也越来越高。
在相关技术中,WLAN组播中缺少诸如ACK(Acknowledge,确认响应)的反馈机制,导致接入点(Access Point,AP)无法轻易收集参与组播的站点(Station,简称STA)的状态信息,为了保证组播的可靠性,WLAN中的组播帧设置为以固定的低比特速率(比如1Mbps)进行发送。
发明内容
本申请实施例提供了一种组播传输控制方法、装置、计算机设备及存储介质。所述技术方案如下:
一方面,本申请实施例提供了一种组播传输控制方法,所述方法包括:
获取至少两个无线接入点AP的站点信息表,目标站点的所述站点信息表中包含所述目标AP关联的第一类型站点的信道质量信息和第二类型站点的信道质量信息;所述第一类型站点是处于重叠基本服务集OBSS中的站点,所述第二类型站点是不处于OBSS中的站点;所述目标AP是所述至少两个AP中的任意一个;
根据所述至少两个AP的站点信息表,分别生成所述至少两个AP的组播优化信息,所述至少两个AP的组播优化信息用于指示所述至少两个AP的组播速率,以及所述至少两个AP的组播接收站点。
另一方面,本申请实施例提供了一种组播传输控制方法,所述方法由至少两个无线接入点AP中的第二AP执行,所述方法包括:
获取所述第二AP的站点信息表,目标AP的所述站点信息表中包含所述目标AP关联的第一类型站点的信道质量信息和第二类型站点的信道质量信息;所述第一类型站点是处于重叠基本服务集OBSS中的站点,所述第二类型站点是不处于OBSS中的站点;所述目标AP是所述至少两个AP中的任意一个;
向组播优化设备发送所述第二AP的所述站点信息表,以便所述组播优化设备根据所述至少两个AP的站点信息表,分别生成所述至少两个AP的组播优化信息,所述至少两个AP的组播优化信息用于指示所述至少两个AP的组播速率,以及所述至少两个AP的组播接收站点。
又一方面,本申请实施例提供了一种组播传输控制装置,所述装置包括:
信息表获取模块,用于获取至少两个无线接入点AP的站点信息表,目标AP的所述站点信息表中包含所述目标AP关联的第一类型站点的信道质量信息和第二类型站点的信道质量信息;所述第一类型站点是处于重叠基本服务集OBSS中的站点,所述第二类型站点是不处于OBSS中的站点;所述目标AP是所述至少两个AP中的任意一个;
优化信息生成模块,用于根据所述至少两个AP的站点信息表,分别生成所述至少两个AP的组播优化信息,所述至少两个AP的组播优化信息用于指示所述至少两个AP的组播速率,以及所述至少两个AP的组播接收站点。
又一方面,本申请实施例提供了一种组播传输控制装置,所述装置由至少两个无线接入点AP中的第二AP执行,所述装置包括:
信息表获取模块,用于获取所述第二AP的站点信息表,目标AP的所述站点信息表中包含所述目标AP关联的第一类型站点的信道质量信息和第二类型站点的信道质量信息;所述第一类型站点是处于重叠基本服务集OBSS中的站点,所述第二类型站点是不处于OBSS中的站点;所述目标AP是所述至少两个AP中的任意一个;
信息表发送模块,用于向组播优化设备发送所述第二AP的所述站点信息表,以便所述组播优化设备根据所述至少两个AP的站点信息表,分别生成所述至少两个AP的组播优化信息,所述至少两个AP的组播优化信息用于指示所述至少两个AP的组播速率,以及所述至少两个AP的组播接收站点。
另一方面,本申请实施例提供了一种计算机设备,所述计算机设备包括处理器、存储器和收发器;
所述收发器,用于获取至少两个无线接入点AP的站点信息表,目标AP的所述站点信息表中包含所述目标AP关联的第一类型站点的信道质量信息和第二类型站点的信道质量信息;所述第一类型站点是处于重叠基本服务集OBSS中的站点,所述第二类型站点是不处于OBSS中的站点;所述目标AP是所述至少两个AP中的任意一个;
所述处理器,用于根据所述至少两个AP的站点信息表,分别生成所述至少两个AP的组播优化信息,所述至少两个AP的组播优化信息用于指示所述至少两个AP的组播速率,以及所述至少两个AP的组播接收站点。
另一方面,本申请实施例提供了一种计算机设备,所述计算机设备实现为至少两个无线接入点AP中的第二AP,所述计算机设备包括处理器、存储器和收发器;
所述收发器,用于获取所述第二AP的站点信息表,目标AP的所述站点信息表中包含所述目标AP关联的第一类型站点的信道质量信息和第二类型站点的信道质量信息;所述第一类型站点是处于重叠基本服务集OBSS中的站点,所述第二类型站点是不处于OBSS中的站点;所述目标AP是所述至少两个AP中的任意一个;
所述收发器,还用于向组播优化设备发送所述第二AP的所述站点信息表,以便所述组播优化设备根据所述至少两个AP的站点信息表,分别生成所述至少两个AP的组播优化信息,所述至少两个AP的组播优化信息用于指示所述至少两个AP的组播速率,以及所述至少两个AP的组播接收站点。
又一方面,本申请实施例还提供了一种计算机可读存储介质,所述存储介质中存储有计算机程序,所述计算机程序由处理器加载并执行以实现上述组播传输控制方法。
另一方面,提供了一种计算机程序产品或计算机程序,该计算机程序产品或计算机程序包括计算机指令,该计算机指令存储在计算机可读存储介质中。计算机设备的处理器从计算机可读存储介质读取该计算机指令,处理器执行该计算机指令,使得该计算机设备执行上述组播传输控制方法。
本申请实施例提供的技术方案可以带来如下有益效果:
对于具有至少两个AP的WLAN场景,通过组播优化设备获取至少两个AP各自关联的站点的信道质量信息,并基于至少两个AP各自关联的站点的信道质量信息,以及至少两个AP各自关联的站点是否为OBSS站点,来对至少两个AP的组播进行优化,以优化至少两个AP的组播速率,以及至少两个AP各自为哪些站点提供组播服务,本申请上述方案能够通过各AP关联的OBSS站点和非OBSS站点的信道质量,对各AP服务的站点以及组播速率进行优化,不需要将各个AP的组播速率设置为固定值,从而提高多AP场景下的组播传输效率。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请一个实施例提供的通信系统的网络架构的示意图;
图2是本申请一个实施例提供的组播传输控制方法的流程图;
图3是本申请一个实施例提供的组播传输控制方法的流程图;
图4是本申请一示例性实施例提供的组播优化示意图;
图5是本申请一个实施例提供的组播传输控制方法的流程图;
图6和图7是图5所示实施例涉及的两种优化组部署情况的示意图;
图8是图5所示实施例涉及的承载数量信息的元素示意图;
图9是图5所示实施例涉及的主AP信息元素示意图;
图10是图5所示实施例涉及的AP向站点指示测量质量信息的过程示意图;
图11是图5所示实施例涉及的一种RNR的帧格式;
图12是图5所示实施例涉及的AP收集站点的质量信息的过程示意图;
图13是图5所示实施例涉及的多个接收端下情况下的侦听协议示意图;
图14是图5所示实施例涉及的行动帧的帧格式;
图15是图5所示实施例涉及的“对邻近APs测量指示”帧的帧格式;
图16是图5所示实施例涉及的CQI回复帧格式示意图;
图17是图5所示实施例涉及的组播速率和站点优化示意图;
图18是图5所示实施例涉及的组播速率优化流程图;
图19是图5所示实施例涉及的信息表请求帧格式图;
图20是图5所示实施例涉及的信息表响应帧格式;
图21是图5所示实施例涉及的优化结果指示帧格式;
图22是图5所示实施例涉及的指示帧格式;
图23是图5所示实施例涉及的各AP的功能模块示意图;
图24是图5所示实施例涉及的STA的功能模块示意图;
图25是本申请一个实施例提供的组播传输控制装置的框图;
图26是本申请一个实施例提供的组播传输控制装置的框图;
图27是本申请一个实施例提供的计算机设备的结构示意图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施方式作进一步地详细描述。
本申请实施例描述的网络架构以及业务场景是为了更加清楚地说明本申请实施例的技术方案,并不构成对本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
请参考图1,其示出了本申请一个实施例提供的通信系统的网络架构的示意图。该网络架构可以包括:站点10和接入点20。
站点10的数量通常为多个,每一个接入点20可以关联一个或多个站点10。站点10可以包括各种具有无线通信功能的手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其它处理设备,以及各种形式的用户设备(User Equipment,UE),移动台(Mobile Station,MS),终端设备(terminal device)等等。为方便描述,本申请实施例中,上面提到的设备统称为站点STA。
接入点20是一种部署在接入网中用以为站点10提供无线通信功能的装置。接入点20可以包括各种形式的无线路由器、无线交换机或者无线中继设备等等。
可选的,图1中未示出的是,上述网络架构还包括其它网络设备,比如:网关设备等等。
站点10和接入点20之间可以通过无线局域网技术进行关联和通信,比如,基于IEEE 802.11协议进行通信。
随着智能手机的广泛采用和多媒体服务的不断增长,IEEE 802.11 WLAN的流量呈爆炸性增长,其中视频流量增长迅速。针对体育赛事、视频会议、智慧课堂等用户密集网络的视频传输,如果将视频流单播到用户将会占用大量的网络资源,而采用组播传输不仅节约资源而且传输效率更高。因此IEEE 802.11 WLAN对组播通信的需求日益增长。
然而基于IEEE 802.11 WLAN中的组播方案,为了确保可靠性,组播帧只能以固定的低比特速率发送,通常是基本速率集中的最低速率。这种方案虽然使得可靠性得到一定保障,却导致组播传输的吞吐量极为有限,同时由于使用基本数据速率会消耗更多的无线电资源,这也会影响其他单播流量的可用容量。
在介绍本申请后续各个实施例所示的方案之前,首先对本申请涉及的几个名词概念进行介绍。
1)基本服务集(Basic Service Set,BSS)
BSS是一个802.11无线局域网(WLAN)的基本组成部分。
BSS分为两种,即独立BSS(Independent BSS,IBSS)和具有基础设施的BSS(也称为基础BSS)。其中,IBSS指的是相互之间直接通信的站点所建立起来的Ad-Hoc关联。IBSS可以由若干个站点组成,其中的一个站点充当主站点。
一个基础BSS对应有一个AP,该AP可能与分布式系统(Distributed System,DS)相连。
基础BSS中的AP定期广播信标帧。信标的时段定义了目标信标传输时间(Target Beacon Transmission Time,TBTT)的固定时刻表。信标帧带有管制信息、能力信息以及用来管理BSS的信息。
802.11管理功能为通过扫描,也就是被动地寻找信标传输或者利用试探请求/试探响应交换来主动探测AP的存在。这里的扫描是站点发现一个BSS以及与该BSS相关联的过程。扫描有两种形式:被动扫描和主动扫描。站点在BSS中的成员身份是动态的。站点可能上电打开或关闭,或者站点可能是移动的,并且可以移进或移出BSS所覆盖的区域。站点通过“关联”到BSS来成为BSS的成员。当离开BSS时,站点则变成“去关联”。在一个或多个基础BSS组成的扩展BSS(ESS,Extent Service Set)中,站点可以通过“重关联”从一个BSS迁移到另一个BSS。
其中,上述关联是指:站点先与AP关联,然后才被允许通过AP发送数据。也就是在站点和AP间建立起一种映射关系,以允许分布系统内的消息可以抵达站点所关联的AP,并最终抵达站点本身。在任何给定时刻,一个站点只能与一个AP关联。重关联是对站点的移动性提供支持,从而使站点可以在同一个扩展服务集(Extended Service Set,ESS)中,从与一个AP相关联转移到与另一个AP相关联。去关联可以由站点或AP发起,以结束一个已有的关联。站点在离开网络时,可以主动执行去关联操作。
无线局域网络中,每个基本服务集都一个唯一的标识,称为BSSID。
2)重叠基本服务集(Overlapping Basic Service Set,OBSS)
对于多个BSS,其中距离相近且有重叠覆盖范围的部分称为重叠基本服务集OBSS。
比如,假设有两个基础BSS分别对应的AP1和AP2,其中,AP1关联有站点1、站点2和站点3,AP2关联有站点4、站点5和站点6,其中,站点3和站点4处于AP1对应的基础BSS和AP2对应的基础BSS内(即站点3和站点4分别可以接收到AP1和AP2发送的信号),则上述站点3和站点4处于OBSS中,也站点3和站点4可以称为OBSS站点。
请参考图2,其示出了本申请一个实施例提供的组播传输控制方法的流程图,该组播传输控制方法可以由组播优化设备执行,其中,上述组播优化设备可以是至少两个AP中的一个AP(比如图1所示的网络架构中的接入点20),或者,上述组播优化设备也可以是至少两个AP之外的其它设备,比如网关设备等。该方法可以包括如下几个步骤:
步骤201,获取至少两个无线接入点AP的站点信息表,目标AP的站点信息表中包含目标AP关联的第一类型站点的信道质量信息和第二类型站点的信道质量信息;该第一类型站点是处于重叠基本服务集OBSS中的站点,该第二类型站点是不处于OBSS中的站点。
其中,目标AP是至少两个AP中的任意一个。
在本申请实施例中,信道质量信息用于指示站点和AP之间的信道质量。在一种可能的实现方式中,信道质量信息的数值大小与信道质量的高低成正相关,比如,以信道质量信息为信噪比为例,信噪比的数值越大,信道质量越高,信噪比的数值越小,信道质量越低。
在某些情况下,信道质量信息的数值大小与信道质量的高低也可能成反相关,也就是信道质量信息(比如噪声功率)的数值越大,信道质量越低,信道质量信息的数值越小,信道质量越低。
在本申请实施例中,上述站点的信道质量信息,可以是站点关联的AP和/或站点相邻的非关联AP到站点的信道质量信息。
步骤202,根据该至少两个AP的站点信息表,分别生成该至少两个AP的组播优化信息,该组播优化信息用于指示该至少两个AP的组播速率,以及该至少两个AP的组播接收站点。
在一种可能的实现方式中,组播优化设备针对每一个AP,生成对应的组播优化信息。
综上所述,本申请实施例所示的方案,对于具有至少两个AP的WLAN场景,通过组播优化设备获取至少两个AP各自关联的站点的信道质量信息,并基于至少两个AP各自关联的站点的信道质量信息,以及至少两个AP各自关联的站点是否为OBSS站点,来对至少两个AP的组播进行优化,以优化至少两个AP的组播速率,以及至少两个AP各自为哪些站点提供组播服务,相比于将组播速率设置为较低的固定值的方案,本申请上述方案能够结合多个AP关联的站点与关联AP和相邻AP之间的信道质量情况,自适应的调整组播速率和组播接收关系,从而在保证组播服务的稳定性的情况下提高组播速率。也就是说,通过各AP关联的OBSS站点和非OBSS站点的信道质量,对各AP服务的站点以及组播速率进行优化,不需要将各个AP的组播速率设置为固定值,从而提高多AP场景下的组播传输效率。
请参考图3,其示出了本申请一个实施例提供的组播传输控制方法的流程图,该组播传输控制方法可以由第二AP执行,其中,上述第二AP可以是至少两个AP中的一个AP(比如图1所示的网络架构中的接入点20)。该方法可以包括如下几个步骤:
步骤301,获取第二AP的站点信息表,目标AP的站点信息表中包含目标AP关联的第一类型站点的信道质量信息和第二类型站点的信道质量信息;该第一类型站点是处于重叠基本服务集OBSS中的站点,该第二类型站点是不处于OBSS中的站点。
其中,目标AP是至少两个AP中的任意一个。
步骤302,向组播优化设备发送该第二AP的该站点信息表,以便该组播优化设备根据该至少两个AP的站点信息表,分别生成该至少两个AP的组播优化信息,该至少两个AP的组播优化信息用于指示该至少两个AP的组播速率,以及该至少两个AP的组播接收站点。
综上所述,本申请实施例所示的方案,对于具有至少两个AP的WLAN场景,至少两个AP分别获取自己关联的站点的信道质量信息,并由组播优化设备基于至少两个AP各自关联的站点的信道质量信息,以及至少两个AP各自关联的站点是否为OBSS站点,来对至少两个AP的组播进行优化,以优化至少两 个AP的组播速率,以及至少两个AP各自为哪些站点提供组播服务,相比于将组播速率设置为较低的固定值的方案,本申请上述方案能够结合多个AP关联的站点与关联AP和相邻AP之间的信道质量情况,自适应的调整组播速率和组播接收关系,从而在保证组播服务的稳定性的情况下提高组播速率。
本技术方案利用多AP协同针对一个优化组中位于OBSS的STAs(即可以接收到多个AP的信号)进行一个优化处理,这些OBSS STAs位于各自的关联AP(即STA的关联AP)的覆盖边缘,相比较BSS STAs(只能接收到关联AP的信号)他们很可能具有较差的信道质量,因此在很大概率上决定了其关联AP进行组播传输的速率下限,如果这些OBSS STAs能够接收到信号的APs中存在一个AP以更低速率进行组播传输,我们就使这些STAs对来自该AP的数据包进行一个可能接收,实际是否进行数据包接收需要满足一定的优化条件,该优化条件保障这些对邻近AP进行数据包接收的STAs的数据包接收率。之后关联AP可以更高的速率对其关联的其他STAs进行一个组播传输。请参考图4,其示出了本申请一示例性实施例提供的组播优化示意图。
图4中所有AP处理相同的组播业务即组播相同的内容。其中各个STA与对应的AP进行了关联,实线代表了关联关系,虚线代表了该STA能够接收到站点邻近AP的信号,即该STA位于OBSS中。如图4中所示STA1、STA5、STA7是OBSS STA。
在一种可能的实现方式中,假设STA1是AP1所关联的STA中信道状态最差的,其决定了当前AP1进行组播传输的速率下限。AP2是STA1的一个邻近AP。若AP2的组播速率小于AP1的组播速率,且AP2到STA1确定的组播速率大于AP2到STA5确定的组播速率(优化条件),则使STA1对来自AP2的数据包进行一个接收,优化条件保障了STA2的服务质量。之后AP1就能够对组播组中剩余的成员STA3、STA4、STA2以更高的速率进行组播。
本申请方案流程包括站点信息表维护流程部分、以及组播优化流程部分;当上述组播优化流程部分由主AP执行时,本申请方案流程还包括主AP选举流程部分。
以本申请方案中组播优化部分由至少两个AP中的主AP执行为例,请参考图5,其示出了本申请一个实施例提供的组播传输控制方法的流程图,该方法可以由至少两个AP和至少两个AP关联的站点执行;其中,上述AP可以是图1所示的网络架构中的接入点20,上述站点可以是图1所示的网络架构中的接入点20。如图5所示,该方法可以包括如下几个步骤:
步骤501,至少两个AP分别获取各自的邻居AP数量,其中,该邻居AP数量是与对应AP相邻的AP的数量。
对于至少两个AP中的第一AP,获取该第一AP的邻居AP数量。
对于至少两个AP中的第二AP,获取该第二AP的邻居AP数量。
其中,第一AP是至少两个AP中的任意一个;第二AP是该至少两个AP中,除了该第一AP之外的任意一个AP。
以本方案针对体育赛事、视频会议、智慧课堂等密集场景进行优化设计为例,其中视频会议和智慧课堂等小场景可以部署一个优化组,其中一个优化组由一个主AP和若干个从AP组成。一个优化组内至少有两个AP。其中主AP能够收到所有从AP的信号,主AP承担着向从AP发送指令以收集从AP的信息表并组播速率优化,最后将优化结果指示给从AP。
请参考图6和图7,其示出了本申请实施例涉及的两种优化组部署情况的示意图。图6是只有两个AP的情况,两个AP可以互相接收到对方的信号,因此两个AP是对等的,可以任选其中之一作为主AP。图7是多AP情况,AP2可以接收到AP1和AP3的信号,AP1和AP3互相不能接收到对方的信号,因此选择AP2作为主AP。
步骤502,至少两个AP发送各自的邻居AP数量。
在一种可能的实现方式中,至少两个AP通过信标帧发送各自的邻居AP数量。
可选的,至少两个AP6也可以通过其它无线信号帧发送各自的邻居AP数量。
对于至少两个AP中的第一AP,通过信标帧发送该第一AP的邻居AP数量。
对于至少两个AP中的第二AP,通过信标帧发送该第二AP的邻居AP数量。
在一种可能的实现方式中,对于第一AP,该通过信标帧发送该第一AP的邻居AP数量,包括:
当该第一AP的邻居AP数量大于邻居AP数量阈值时,在第一时间段内通过信标帧发送该第一AP的邻居AP数量;
当该第一AP的邻居AP数量不大于该邻居AP数量阈值时,在第二时间段内通过信标帧发送该第一AP的邻居AP数量。
在一种可能的实现方式中,对于第二AP,该通过信标帧发送该第二AP的邻居AP数量,包括:
当该第二AP的邻居AP数量大于邻居AP数量阈值时,在第一时间段内通过信标帧发送该第二AP的 邻居AP数量;
当该第二AP的邻居AP数量不大于该邻居AP数量阈值时,在第二时间段内通过信标帧发送该第二AP的邻居AP数量。
其中,上述第一时间段处于第二时间段之前。
步骤503,至少两个AP从各个相邻的AP发送的信标帧中,获取各个相邻的AP各自的邻居AP数量。
步骤504,至少两个AP分别根据自身的邻居AP数量,以及各个相邻的AP各自的邻居AP数量,确定AP身份,AP身份包括主AP或者从AP。
比如,对于至少两个AP中的第一AP,当第一AP的各个相邻的AP各自的邻居AP数量小于第一AP的邻居AP数量时,将第一AP确定为至少两个AP中的主AP。
再比如,对于至少两个AP中的第二AP,当第二AP的各个相邻的AP中任意一个AP的邻居AP数量不小于第二AP的邻居AP数量时,将第二AP确定为至少两个AP中的主AP。
在一种可能的实现方式中,对于上述第二AP,该第二AP向该组播优化设备(即第一AP)发送声明信息,该声明信息用于声明对应的AP为该至少两个AP中的从AP;相应的,第一AP接收第二AP发送的声明信息,该声明信息用于声明对应的AP为该至少两个AP中的从AP;该第二AP是该至少两个AP中,除了该第一AP之外的任意一个AP。
针对视频会议和智慧课堂等小场景,优化组数量很少,无线电环境简单,主AP的选择可以在优化组部署的时候直接进行确定好。而针对体育赛场等较大的场景需要通过部署多个优化组来解决覆盖范围的问题,下面说明大规模场景下的主AP选择。
该过程在两个时间段完成,第一时间段进行主AP选择:场景下的各AP在主AP选择时间段进行主AP选择,在开始时各AP确定邻居APs的数量,将数量信息放入信标帧中。请参考图8,其示出了本申请实施例涉及的承载数量信息的元素示意图。该元素是一个新增的元素。Information字段长度为1字节,用来指示邻居APs的数量。当AP的邻居APs数量大于一个数量阈值时,该AP在第一时间段的第一子时间段发送的信标帧中携带邻居APs数量元素,否则在第一时间段的第二子时间段发送的信标帧中携带邻居APs数量元素。这确保了APs数量多的AP优先发送携带邻居APs数量元素的信标帧。同一发送时间段的APs先争取到传输机会的AP优先发送信标帧。当一个AP收到的信标帧中的邻居APs数量首次大于本身的邻居APs数量时,该AP成为从AP并且之后不发送信标帧。在第一时间段结束时,未成为从AP的AP自动成为主AP;在第二时间段,从APs在信标帧中放入主AP信息元素(即上述声明信息)并发送以告知主AP自身的存在。请参考图9,其示出了本申请实施例涉及的主AP信息元素示意图。如图9所示,主AP信息元素是一个新增的信息元素。主AP信息元素中的BSS ID字段标识了主AP信息。主AP解析出该信息元素与本身匹配时,可得知从APs的存在。
步骤505,至少两个AP向关联的各个STA发送信道测量指示;该信道测量指示用于指示测量参数;该测量参数包括测量信道以及测量时间。
对于至少两个AP中的第一AP,向该第一AP关联的各个STA发送信道测量指示。
对于至少两个AP中的第二AP,向该第二AP关联的各个STA发送信道测量指示。
步骤506,各个STA根据信道测量指示进行信道测量,获得信道质量报告,信道质量报告用于指示对应的STA周围的各个AP到对应的STA的信道质量。
步骤507,各个STA向关联的AP发送信道质量报告,相应的,至少两个AP接收关联的各个STA发送的信道质量报告。
对于至少两个AP中的第一AP,接收该第一AP关联的各个STA发送的信道质量报告。
对于至少两个AP中的第二AP,接收该第二AP关联的各个STA发送的信道质量报告。
步骤508,至少两个AP根据关联的各个STA发送的信道质量报告,各自生成对应的站点信息表。
对于至少两个AP中的第一AP,根据第一AP关联的各个STA发送的信道质量报告,生成第一AP的站点信息表。
对于至少两个AP中的第二AP,根据第二AP关联的各个STA发送的信道质量报告,生成第二AP的站点信息表。
其中,目标AP的站点信息表中包含目标AP关联的第一类型站点的信道质量信息和第二类型站点的信道质量信息;该第一类型站点是处于重叠基本服务集OBSS中的站点,该第二类型站点是不处于OBSS中的站点。
目标AP是至少两个AP中的任意一个。
在一种可能的实现方式中,该目标AP的站点信息表中包含以下信息:
目标AP关联的第一类型站点的标识;
目标AP到关联的第一类型站点的信道质量信息;
目标AP关联的第一类型站点的站点邻近AP,到目标AP关联的第一类型站点的信道质量信息;该站 点邻近AP是该至少两个AP中,除了关联的AP之外,到对应站点的信道质量最高的AP;
目标AP关联的第一类型站点的站点邻近AP的标识;
目标AP关联的第二类型站点的标识;
目标AP到关联的第二类型站点的信道质量信息。
在本申请实施例中,站点邻近AP,是指某个站点的非关联AP中,到该站点的信道质量最高的一个AP。
例如,假设某个站点附近有3个AP,分别为AP1、AP2和AP3,其中,该站点与AP1相关联,并且,站点同时能够被AP2和AP3覆盖(也就是能够接收到AP2和AP3的信号),则AP2和AP3就是站点的非关联AP,其中,AP2和AP3这两个AP中,到该站点的信道质量最高的一个AP,称为该站点的站点邻近AP。
步骤509,至少两个AP中的从AP向主AP发送站点信息表;相应的,主AP接收各个从AP发送的站点信息表。
以从AP中的第二AP为例,在本申请实施例中,第二AP向第一AP发送该第二AP的站点信息表;相应的,第一AP接收第二AP发送的站点信息表。
请参考图10,其示出了本申请实施例涉及的AP向站点指示测量质量信息的过程示意图。如图10所示,APs向STAs发送简化邻居报告(Reduced Neighbor Report,RNR),以及处于OBSS中的STAs向关联AP发送BSS颜色冲突报告(BSS Color Collision Report)。RNR存在于APs发送的信标帧和探测响应帧中,其包含了附近APs的信道以及其他信息。OBSS STAs通过接收该报告可以对附的APs及其信道有所了解;每当OBSS STAs检测BSS颜色冲突的时候,就向关联AP发送BSS颜色冲突报告,关联AP根据该报告可以得知STA用户类型(即是否处于OBSS中),之后对信息表进行维护(信息表的详细说明在方案流程阶段一第2部分;之后APs向OBSS STAs发出对附近APs进行信道质量测量指示,指示中包含了OBSS STAs需要测量的信道信息、测量开始时间和测量持续时间,该信息来自AP生成的RNR。之后OBSS STAs根据指示对所要求测量信道在规定测量开始时间对附近APs的空数据包(Null Data Packet,NDP)帧(在第2部分描述)进行接收测量,并在本地缓存一个最好的测量结果和与之对应的AP的MAC地址。定义:OBSS STAs到所有附近APs中信道质量最好的一个AP作为邻近AP。
其中,RNR和BSS颜色冲突两者都没先后之分。请参考图11其示出了本申请实施例涉及的一种RNR的帧格式。如图11所示,业务等级Operating Class字段长度为1字节,指示了信道开始频率。该字段和Channel Number字段一起指示了主信道信息。Channel Number字段的长度为1字节,它表示Neighbor AP Information field中APs的最后已知主信道。这两个字段一起指示了主信道相关信息。
BSS颜色用于标识BSS,每一个PPDU都携带了BSS颜色信息,这能够帮助STA接收到一个PPDU后知道该PPDU来源于那一个BSS。BSS颜色冲突报告利用了802.11ax中的相关内容,该报告用于STA通知AP是否发生了BSS颜色突出,报告中携带了OBSS STA探测到了的BSS颜色信息。更详细地,BSS颜色冲突事件报告的事件报告字段的长度为8个字节,其中每个比特代表一个BSS颜色值。一个比特位为1表示STA检测到的与该比特位相对应的BSS颜色已被OBSS使用。
请参考图12,其示出了本申请实施例涉及的AP收集站点的质量信息的过程示意图。如图12所示,APs通过发送NDPA帧、NDP帧和触发帧(Triger Frame)使STAs回复信道质量信息报告(CQI Report)和缓存结果。NDPA帧用于初始化侦听过程,包括分配资源、规定反馈类型等。NDP帧用于STAs接收进行信道质量测量。触发帧用于触发STAs回复CQI报告。在CQI报告中,信道质量以信噪比衡量。
备注:APs收集STAs信道质量部分利用了802.11ax中的侦听协议,在802.11ax标准中,传输波束赋形和下行MU-MIMO需要知道信道状态信息以计算一个训练矩阵,该矩阵由于优化一个或多个接收端的接收。STA利用该侦听协议来确定信道状态信息。
请参考图13,其示出了本申请实施例涉及的多个接收端下情况下的侦听协议示意图。其中多个接收端(beamformee)利用OFDMA同时回复CQI报告,解决了在用户密集场景下的信息收集问题。NDP帧在有多个接收端的情况下,其接收地址会被设为广播地址,因此处于OBSS中的STAs也能对附近APs的NDP帧进行接收以测量其信道质量信息。
在STA向AP回复CQI报告的过程中,本技术方案使STA同时将CQI报告和缓存结果回复给APs。APs根据所收到的信息在本地维护一个信息表,每个信息表包含了该AP关联的所有OBSS STAs和一个信道质量最差的BSS STA的信息,这么做的原因是所有OBSS STAs都有可能成为组播速率优化的对象,BSS STAs信息是作为组播速率优化流程的一个潜在终止条件。OBSS STAs的信息包括该STA的MAC地址,该STA到关联AP的SNR,该STA的邻近AP的MAC地址,以及用户类型(为OBSS用户)。BSS STAs信息包括该STA的MAC地址,该STA到关联AP的SNR以及用户类型(为BSS用户)。
其中,信息表的内容可以如下表1所示:
表1
Figure PCTCN2020127294-appb-000001
本阶段需要进行帧格式设计的有第1部分的“对邻近APs测量指示”帧和第二部分的“CQI+缓存结果”回复帧,简称CQI回复帧。这里我们使用管理帧类别下的行动帧来承载本阶段所交互的信息。行动帧原本是来要求STA采取必要的行动,我们在AP和STA端增加新的功能模块来解析这些行动帧。请参考图14,其示出了本申请实施例涉及的行动帧的帧格式,基本上一个行动帧是一个category(类别)字段加上Action(行动细节)字段。
Category字段标识了行动帧的类别,其长度为一字节,可以标识256个类别的行动帧。在802.11标准中已使用的类别有24个,保留的类别有104个,剩余的128个类别不做使用。因为保留的类别数量还剩余很多,所以本技术方案将使用保留的类别标识本技术方案设计的帧,即增加新类型的行动帧。
请参考图15,其示出了本申请实施例涉及的“对邻近APs测量指示”帧的帧格式,主要改动是新增了一个元素来承载指示信息,即邻近AP元素。Element ID字段长度为1字节,标识了该元素的功能。802.11标准中Element ID保留的功能标识数量还有还多,因此这里的邻近AP元素设计为一个新的元素。Length字段长度为1字节,标识了Information字段的长度。Information字段是变长的,包含了若干个测量信息。一个测量信息如图中所示,包含了信道编号(Channel Number)字段,开始时间(Start time)字段和持续时长(Duration)字段。信道编号字段指示了需要测量的信道,该字段信息来自AP生成的RNR;开始时间字段指示了测量开始的时间。持续时长字段指示了测量信道的持续时间。STA解析出这些信息后,需要在规定的时间对来自这些信道上的NDP帧进行接收以测量信息质量信息。
请参考图16,其示出了本申请实施例涉及的CQI回复帧格式示意图,如图16所示,增加了CQI报告(CQI Report)字段,STA's SNR For Neighbor AP字段和Neighbor AP's MAC Address字段。CQI Report字段复用了802.11ax中的CQI Report字段,长度为变长,其承载了CQI信息;STA's SNR For Neighbor AP字段用于承载STA到所有邻近APs中信道质量最好的测量结果,Neighbor AP's MAC Address字段用于承载该邻近AP的MAC地址。STA's SNR For Neighbor AP字段的具体设及如表2所示,该字段长度为一字节,表示一个无符号整数,最大表示255,该整数与信道质量SNR(以dB为单位)有一个映射关系,整数0表示小于等于-13dB,整数255表示大于等于50.75dB,其余整数是一个确定的值,以0.25dB为单位变化。
表2
STA's SNR for Neighbor AP Field SNR(dB)
0 ≤-13
1 -12.75
2 -12.50
…… ……
254 50.50
255 ≥50.75
步骤510,第一AP根据该至少两个AP的站点信息表,分别生成该至少两个AP的组播优化信息。
其中,该至少两个AP的组播优化信息用于指示该至少两个AP的组播速率,以及该至少两个AP的组播接收站点。
在一种可能的实现方式中,该根据该至少两个AP的站点信息表,分别生成该至少两个AP的组播优化信息,包括:
根据该至少两个AP的站点信息表,获取该至少两个AP初始的优化参数,该优化参数包括目标信道质量信息,以及该目标信道质量信息对应的目标站点;初始的该目标信道质量信息是对应AP的站点信息表中信道质量最低的信道质量信息;
按照初始的该目标信道质量信息的信道质量从低到高的顺序,依次对该至少两个AP进行组播优化,获得该至少两个AP各自的组播速率,以及该至少两个AP各自的组播接收站点;
根据该至少两个AP各自的组播速率,以及该至少两个AP各自的组播接收站点,分别生成该至少两 个AP的组播优化信息。
在一种可能的实现方式中,该按照初始的该目标信道质量信息的信道质量从低到高的顺序,依次对该至少两个AP进行组播优化,包括:
对于该至少两个AP中的第1个AP,根据该第1个AP初始的该目标信道质量信息,获取该第1个AP的组播速率。
在一种可能的实现方式中,该按照初始的该目标信道质量信息的信道质量从低到高的顺序,依次对该至少两个AP进行组播优化,包括:
对于该至少两个AP中的第i个AP,当该第i个AP的该目标站点是该第一类型站点,且优化条件成立时,将该第i个AP的该目标站点,设置为该第i个AP的该目标站点的站点邻近AP的组播接收站点;该优化条件包括:该第i个AP的该目标信道质量信息的信道质量高于该站点邻近AP到该第i个AP的该目标站点的信道质量信息的信道质量,并且,该站点邻近AP到该第i个AP的该目标站点的信道质量信息的信道质量高于该站点邻近AP的目标信道质量信息的信道质量;
当该第i个AP的站点信息表中存在未选择站点,将该未选择站点中信道质量信息的信道质量最低的站点更新为该第i个AP的该目标站点;该未选择站点是未被选择为该第i个AP的该目标站点的站点。
在一种可能的实现方式中,该按照初始的该目标信道质量信息的信道质量从低到高的顺序,依次对该至少两个AP进行组播优化,还包括:
当该第i个AP的该目标站点是该第二类型站点时,或者,当该i个AP的该目标站点是该第一类型站点,且该优化条件不成立时,根据该第i个AP的该目标信道质量信息,获取该第i个AP的组播速率。
步骤511,第一AP向至少两个AP中的其它AP发送各自的组播优化信息。
以第二AP为例,第一AP向第二AP发送第二AP的组播优化信息,相应的,第二AP接收该第二AP的组播优化信息。
步骤512,至少两个AP分别根据对应的组播优化信息进行组播优化。
在一种可能的实现方式中,对于该至少两个AP中的第一AP,根据该第一AP的组播优化信息,设置该第一AP的组播速率。
在一种可能的实现方式中,对于至少两个AP中的第一AP,当该第一AP的组播优化信息指示该第一AP的关联站点中存在被优化站点时,向该被优化站点发送接收指示,该接收指示用于指示该被优化站点接收对应的站点邻近AP的组播数据;其中,该被优化站点被设置为对应的站点邻近AP的组播接收站点。
在一种可能的实现方式中,对于该至少两个AP中的第二AP,接收该组播优化设备(即第一AP)发送的,该第二AP的组播优化信息;根据该第二AP的组播优化信息,设置该第二AP的组播速率。
在一种可能的实现方式中,对于该至少两个AP中的第二AP,当该第二AP的组播优化信息指示该第二AP的关联站点中存在被优化站点时,向该被优化站点发送接收指示,该接收指示用于指示该被优化站点接收对应的站点邻近AP的组播数据;其中,该被优化站点被设置为对应的站点邻近AP的组播接收站点。
请参考图17,其示出了本申请实施例涉及的组播速率和站点优化示意图。如图17所示,每个AP都在本地维护了一张信息表,在方案流程阶段一第2部分,主要是主AP向从APs请求信息表和组播优化。如图14所示,包括主AP向从APs发出信息表请求,从APs响应请求向主AP发出信息表响应。信息表响应帧中包含了信息表信息。收到所有从APs的信息表之后,主AP拥有了该优化组所有AP的信息表,之后主AP开始组播优化,完成之后,主AP保留自己的优化结果,并将从APs的优化结果指示给从APs。从APs收到之后得知自己当前应以何种组播速率进行组播传输,以及本AP的OBSS中的哪些STAs需要对邻近AP进行数据包接收。
请参考图18,其示出了本申请实施例涉及的组播速率优化流程图,如图18所示,在收到所有从APs的信息表后,主AP拥有了所有AP的信息表即可开始组播速率优化流程。信息表中的STA到关联AP的SNR确定了关联AP组播数据包到该STA的速率大小,STA到邻近AP的SNR值确定了邻近AP理论上组播数据包到该STA的速率大小,实际上邻近AP不会组播数据包到该STA。
1、首先主AP根据信息表的STA到关联AP的SNR值确定各AP的一个最小的SNR值为目标SNR,对应的STA为目标STA。
2、主AP根据各AP的目标SNR值按照从小到大的顺序对AP进行优化。
目标SNR值最小的AP在整个优化组是以最小的速率进行组播传输,该AP的附近没有比它的组播传输速率更小的APs,因此该AP的OBSS STAs无法对附近APs进行数据包的接收。所以该AP的组播速率是确定的。以该顺序依次对AP进行优化可以逐个确定各AP的组播速率,而不会紊乱。
3、之后主AP判断当前进行优化的AP的目标STA是否为OBSS STA,若不是则当前AP的优化已经完成,主AP能够根据该AP的目标SNR值确定该AP应该进行的组播传输速率。这里BSS STAs只能接收到关联AP的信号,因此无法进行优化。目标STA是BSS STA是一个AP进行速率优化的终止条件。
4、若目标STA是OBSS STA则进行判断优化条件是否成立,优化条件是AP进行速率优化的另一个终止条件,即目标SNR值和STA到邻近AP的SNR值是否都大于邻近AP的目标SNR值,不成立则当前AP优化完成,该AP的目标SNR值确定的速率即为该AP进行组播传输的速率;成立则该STA成为被优化的STA,需要对来自其邻近AP的数据包进行接收。
其中,当前AP的目标SNR值大于目标STA的邻近AP的目标SNR值,确定了目标STA的邻近AP的组播速率比其关联AP的组播速率更小,这是目标STA可以对邻近AP进行数据接收的前提条件。
目标STA到邻近AP的SNR大于邻近AP的目标SNR值,该条件保障了目标STA如果对邻近AP进行数据接收时的服务质量。
之后当前进行优化的AP更新目标SNR和目标STA,目标STA仍是除去被优化STA后STA到其关联AP的SNR值最小的STA,即每次更新目标都是选择信道质量最差的STA。该SNR值为目标SNR。接着再进行终止条件的判断,循环往复,直到所有AP都优化完成。
当所有AP都优化完成后,整个组播速率优化流程就完成了。之后是主AP将优化结果指示给从APs。
该阶段需要进行帧格式设计的有信息表请求帧,信息表响应帧和优化结果指示帧。
请参考图19,其示出了本申请实施例涉及的信息表请求帧格式图,如图19所示,新增了一个信息表请求元素(Information List Request Element),元素ID(Element ID)字段就能做指示信息表请求功能,因此无须再增加别的字段进行指示。
请参考图20,其示出了本申请实施例涉及的信息表响应帧格式,如图20所示,新增了一个信息表响应元素(Information List Response Element),该元素的Information字段是变长的,用于承载信息表信息,图中展示的Information字段的一部分是信息表的一行数据。其中STA SNR字段和邻近AP STA SNR(STA SNR for Neighbor AP)字段设置同表2所示。针对BSS STAs,Neighbor AP's MAC Address字段和STA's SNR for Neighbor AP字段设置为全0或全1表示为空。
请参考图21,其示出了本申请实施例涉及的优化结果指示帧格式,如图21所示,新增了一个速率识别字段(Rate Identification)、STAs数量字段和STAs地址字段。速率识别字段标识了速率信息,从APs解析出该字段后就知道自己应该进行的组播传输速率。STAs数量字段用户标识STAs地址字段中的地址数量。STAs地址字段承载的是被优化的OBSS STAs的MAC地址。用于从APs向这些STAs发出指示帧以对邻近AP进行数据包接收。
图21中速率标识字段复用了802.11标准中Rate Identification field。其中MCS选择(MCS Selector)子字段的值不同,同一MCS Index(索引)字段标识的MCS会变化;MCS Index标识了MCS方案。速率类型(Rate Type)子字段值为0表示Rate字段是保留的,值为1表示Rate字段是一个基本速率集中的数据速率,值为2表示Rate字段不是一个基本速率集中的数据速率。Rate字段长度为2字节,表示一个无符号整数,以0.5Mbps为单位变化,其确定了一个PHY速率。
从APs收到优化结果指示帧需要对OBSS中的STAs发出指示,使这些STAs对邻近AP进行数据包接收。请参考图22,其示出了本申请实施例涉及的指示帧格式,如图22所示,新增了用于接收的BSSID字段(BSSID for Receive),OBSS STAs解析出该字段后就知道需要对来自该BSS的数据包进行接收。
请参考图23,其示出了本申请实施例涉及的各AP的功能模块示意图。如图23所示,AP所具备的功能模块:包括信令交互模块、组播速率优化模块和数据模块。数据模块中又包含数据接收模块和信息表维护模块。
信令交互模块:用于AP之间和AP与STA之间的信令交互。包括APs向OBSS STAs发出对邻近AP测量指示帧,主AP向从APs发出信息表请求帧,从APs响应请求向主AP发出信息表响应帧,主AP向从APs发出优化结果指示帧,APs向OBSS STAs发出对邻近AP进行数据接收指示帧,APs解析STAs发来的CQI回复帧,主AP解析从APs发来的信息表响应帧。
组播速率优化模块:主AP根据信息表接收模块和信息表维护模块中的信息进行组播速率优化,并通过信令交互模块将优化结果指示给从APs和本AP的OBSS STAs。
数据模块:数据模块包括信息表接收模块和信息表维护模块。信息表接收模块用于主AP接收从APs发来的信息表。信息表维护模块用于记录本AP的信息表。
请参考图24,其示出了本申请实施例涉及的STA的功能模块示意图。如图24所示,STA包括信令交互模块,对邻近AP进行数据接收模块。
信令交互模块用于APs和STAs之间的信令交互。包括STAs向APs发送CQI回复帧,解析来自AP的指示帧。
对附近APs信道测量缓存模块记录了OBSS STAs对其附近所有APs的一个最好的信道测量结果和对应的AP的MAC地址。
对邻近AP进行数据接收模块用于使STAs接收来自邻近AP的数据包。
综上所述,本申请实施例所示的方案,对于具有至少两个AP的WLAN场景,至少两个AP分别获取 自己关联的站点的信道质量信息,并由组播优化设备基于至少两个AP各自关联的站点的信道质量信息,以及至少两个AP各自关联的站点是否为OBSS站点,来对至少两个AP的组播进行优化,以优化至少两个AP的组播速率,以及至少两个AP各自为哪些站点提供组播服务,相比于将组播速率设置为较低的固定值的方案,本申请上述方案能够结合多个AP关联的站点与关联AP和相邻AP之间的信道质量情况,自适应的调整组播速率和组播接收关系,从而在保证组播服务的稳定性的情况下提高组播速率。也就是说,通过各AP关联的OBSS站点和非OBSS站点的信道质量,对各AP服务的站点以及组播速率进行优化,不需要将各个AP的组播速率设置为固定值,从而提高多AP场景下的组播传输效率。
下述为本申请装置实施例,可以用于执行本申请方法实施例。对于本申请装置实施例中未披露的细节,请参照本申请方法实施例。
请参考图25,其示出了本申请一个实施例提供的组播传输控制装置的框图。该装置用于组播优化设备中,且具有实现上述图2或图5所示的方法中,由组播优化设备/第一AP执行的步骤的功能。如图25所示,该装置可以包括:
信息表获取模块2501,用于获取至少两个无线接入点AP的站点信息表,目标AP的所述站点信息表中包含所述目标AP关联的第一类型站点的信道质量信息和第二类型站点的信道质量信息;所述第一类型站点是处于重叠基本服务集OBSS中的站点,所述第二类型站点是不处于OBSS中的站点;所述目标AP是至少两个AP中的任意一个。
优化信息生成模块2502,用于根据所述至少两个AP的站点信息表,分别生成所述至少两个AP的组播优化信息,所述至少两个AP的组播优化信息用于指示所述至少两个AP的组播速率,以及所述至少两个AP的组播接收站点。
在一种可能的实现方式中,目标AP的所述站点信息表中包含以下信息:
目标AP关联的第一类型站点的标识;
目标AP到关联的第一类型站点的信道质量信息;
目标AP关联的第一类型站点的站点邻近AP,到目标AP关联的第一类型站点的信道质量信息;所述站点邻近AP是所述至少两个AP中,除了关联的AP之外,到对应站点的信道质量最高的AP;
目标AP关联的第一类型站点的站点邻近AP的标识;
目标AP关联的第二类型站点的标识;
目标AP到关联的第二类型站点的信道质量信息。
在一种可能的实现方式中,所述优化信息生成模块,包括:
参数获取单元,用于根据所述至少两个AP的站点信息表,获取所述至少两个AP初始的优化参数,所述优化参数包括目标信道质量信息,以及所述目标信道质量信息对应的目标站点;初始的所述目标信道质量信息是对应AP的站点信息表中信道质量最低的信道质量信息;
组播优化单元,用于按照初始的所述目标信道质量信息的信道质量从低到高的顺序,依次对所述至少两个AP进行组播优化,获得所述至少两个AP各自的组播速率,以及所述至少两个AP各自的组播接收站点;
信息生成单元,用于根据所述至少两个AP各自的组播速率,以及所述至少两个AP各自的组播接收站点,分别生成所述至少两个AP的组播优化信息。
在一种可能的实现方式中,所述组播优化单元,用于对于所述至少两个AP中的第1个AP,根据所述第1个AP初始的所述目标信道质量信息,获取所述第1个AP的组播速率。
在一种可能的实现方式中,所述组播优化单元,用于,
对于所述至少两个AP中的第i个AP,当所述第i个AP的所述目标站点是所述第一类型站点,且优化条件成立时,将所述第i个AP的所述目标站点,设置为所述第i个AP的所述目标站点的站点邻近AP的组播接收站点;所述优化条件包括:所述第i个AP的所述目标信道质量信息的信道质量高于所述站点邻近AP到所述第i个AP的所述目标站点的信道质量信息的信道质量,并且,所述站点邻近AP到所述第i个AP的所述目标站点的信道质量信息的信道质量高于所述站点邻近AP的目标信道质量信息的信道质量;
当所述第i个AP的站点信息表中存在未选择站点,将所述未选择站点中信道质量信息的信道质量最低的站点更新为所述第i个AP的所述目标站点;所述未选择站点是未被选择为所述第i个AP的所述目标站点的站点。
在一种可能的实现方式中,所述组播优化单元,还用于,
当所述第i个AP的所述目标站点是所述第二类型站点时,或者,当所述i个AP的所述目标站点是所述第一类型站点,且所述优化条件不成立时,根据所述第i个AP的所述目标信道质量信息,获取所述第i个AP的组播速率。
在一种可能的实现方式中,当所述装置用于所述至少两个AP中的第一AP中时,所述信息表获取模块,用于,
接收所述第一AP关联的各个STA发送的信道质量报告,所述信道质量报告用于指示对应的STA周围的各个AP到对应的STA的信道质量;
根据所述第一AP关联的各个STA发送的信道质量报告,生成所述第一AP的站点信息表。
在一种可能的实现方式中,所述信息表获取模块,还用于,
在接收所述第一AP关联的各个STA发送的信道质量报告之前,向所述第一AP关联的各个STA发送信道测量指示;所述信道测量指示用于指示测量参数;所述测量参数包括测量信道以及测量时间。
在一种可能的实现方式中,当所述装置用于所述至少两个AP中的第一AP中时,所述装置还包括:
优化信息发送模块,用于向所述至少两个AP中的第二AP,发送所述第二AP的组播优化信息;所述第二AP是所述至少两个AP中,除了所述第一AP之外的任意一个AP。
在一种可能的实现方式中,当所述装置用于所述至少两个AP中的第一AP中时,所述装置还包括:
速率设置模块,用于根据所述第一AP的组播优化信息,设置所述第一AP的组播速率。
在一种可能的实现方式中,当所述装置用于所述至少两个AP中的第一AP中时,所述装置还包括:
指示发送模块,用于当所述第一AP的组播优化信息指示所述第一AP的关联站点中存在被优化站点时,向所述被优化站点发送接收指示,所述接收指示用于指示所述被优化站点接收对应的站点邻近AP的组播数据;
其中,所述被优化站点被设置为对应的站点邻近AP的组播接收站点。
在一种可能的实现方式中,当所述装置用于所述至少两个AP中的第一AP中时,所述装置还包括:
数量获取模块,用于在所述信息表获取模块获取至少两个无线接入点AP的站点信息表之前,获取所述第一AP的邻居AP数量,所述邻居AP数量是与对应AP相邻的AP的数量;
数量发送模块,用于通过信标帧发送所述第一AP的邻居AP数量;
信标帧接收模块,用于接收各个相邻的AP发送的信标帧;
所述数量获取模块,还用于从所述各个相邻的AP发送的信标帧中,获取所述各个相邻的AP各自的邻居AP数量;
确定模块,用于当所述各个相邻的AP各自的邻居AP数量小于所述第一AP的邻居AP数量时,将所述第一AP确定为所述至少两个AP中的主AP。
在一种可能的实现方式中,所述数量发送模块,用于,
当所述第一AP的邻居AP数量大于邻居AP数量阈值时,在第一时间段内通过信标帧发送所述第一AP的邻居AP数量;
当所述第一AP的邻居AP数量不大于所述邻居AP数量阈值时,在第二时间段内通过信标帧发送所述第一AP的邻居AP数量;
其中,所述第一时间段处于所述第二时间段之前。
在一种可能的实现方式中,所述装置还包括:
声明接收模块,用于接收第二AP发送的声明信息,所述声明信息用于声明对应的AP为所述至少两个AP中的从AP;所述第二AP是所述至少两个AP中,除了所述第一AP之外的任意一个AP。
请参考图26,其示出了本申请一个实施例提供的组播传输控制装置的框图。该装置用于AP中,且具有实现上述图3或图5所示的方法中,由第二AP执行的步骤的功能。如图26所示,该装置可以包括:
信息表获取模块2601,用于获取所述第二AP的站点信息表,目标AP的所述站点信息表中包含目标AP关联的第一类型站点的信道质量信息和第二类型站点的信道质量信息;所述第一类型站点是处于重叠基本服务集OBSS中的站点,所述第二类型站点是不处于OBSS中的站点;目标AP是至少两个AP中的任意一个;
信息表发送模块2602,用于向组播优化设备发送所述第二AP的所述站点信息表,以便所述组播优化设备根据所述至少两个AP的站点信息表,分别生成所述至少两个AP的组播优化信息,所述至少两个AP的组播优化信息用于指示所述至少两个AP的组播速率,以及所述至少两个AP的组播接收站点。
在一种可能的实现方式中,所述信息表获取模块,包括:
报告接收单元,用于接收所述第二AP关联的各个STA发送的信道质量报告,所述信道质量报告用于指示对应的STA周围的各个AP到对应的STA的信道质量;
信息表生成单元,用于根据所述第二AP关联的各个STA发送的信道质量报告,生成所述第二AP的站点信息表。
在一种可能的实现方式中,所述信息表获取模块,还包括:
测量指示发送单元用于在所述报告接收单元接收所述第二AP关联的各个STA发送的信道质量报告之 前,向所述第二AP关联的各个STA发送信道测量指示;所述信道测量指示用于指示测量参数;所述测量参数包括测量信道以及测量时间。
在一种可能的实现方式中,所述装置还包括:
优化信息接收模块,用于接收所述组播优化设备发送的,所述第二AP的组播优化信息;
速率设置模块,用于根据所述第二AP的组播优化信息,设置所述第二AP的组播速率。
在一种可能的实现方式中,所述装置还包括:
指示发送模块,用于当所述第二AP的组播优化信息指示所述第二AP的关联站点中存在被优化站点时,向所述被优化站点发送接收指示,所述接收指示用于指示所述被优化站点接收对应的站点邻近AP的组播数据;
其中,所述被优化站点被设置为对应的站点邻近AP的组播接收站点。
在一种可能的实现方式中,所述装置还包括:
数量获取模块,用于在所述信息表获取模块获取所述第二AP的站点信息表之前,获取所述第二AP的邻居AP数量,所述邻居AP数量是与对应AP相邻的AP的数量;
数量发送模块,用于通过信标帧发送所述第二AP的邻居AP数量;
信标帧接收模块,用于接收各个相邻的AP发送的信标帧;
所述数量获取模块,还用于从所述各个相邻的AP发送的信标帧中,获取所述各个相邻的AP各自的邻居AP数量;
确定模块,用于当所述各个相邻的AP中的任意一个AP的邻居AP数量大于所述第二AP的邻居AP数量时,将所述第二AP确定为所述至少两个AP中的从AP。
在一种可能的实现方式中,所述数量发送模块,用于,
当所述第二AP的邻居AP数量大于邻居AP数量阈值时,在第一时间段内通过信标帧发送所述第二AP的邻居AP数量;
当所述第二AP的邻居AP数量不大于所述邻居AP数量阈值时,在第二时间段内通过信标帧发送所述第二AP的邻居AP数量;
其中,所述第一时间段处于所述第二时间段之前。
在一种可能的实现方式中,所述装置还包括:
声明发送模块,用于向所述组播优化设备发送声明信息,所述声明信息用于声明对应的AP为所述至少两个AP中的从AP。
需要说明的一点是,上述实施例提供的装置在实现其功能时,仅以上述各个功能模块的划分进行举例说明,实际应用中,可以根据实际需要而将上述功能分配由不同的功能模块完成,即将设备的内容结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。
关于上述实施例中的装置,其中各个模块执行操作的具体方式已经在有关该方法的实施例中进行了详细描述,此处将不做详细阐述说明。
请参考图27,其示出了本申请一个实施例提供的计算机设备2710的结构示意图。该计算机设备2700可以包括:处理器2701、接收器2702、发射器2703、存储器2704和总线2705。
处理器2701包括一个或者一个以上处理核心,处理器2701通过运行软件程序以及模块,从而执行各种功能应用以及信息处理。
接收器2702和发射器2703可以实现为一个通信组件,该通信组件可以是一块通信芯片。该通信芯片也可以称为收发器。
存储器2704通过总线2705与处理器2701相连。
存储器2704可用于存储计算机程序,处理器2701用于执行该计算机程序,以实现上述方法实施例中的终端设备执行的各个步骤。
此外,存储器2704可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,易失性或非易失性存储设备包括但不限于:磁盘或光盘,电可擦除可编程只读存储器,可擦除可编程只读存储器,静态随时存取存储器,只读存储器,磁存储器,快闪存储器,可编程只读存储器。
上述计算机设备可以实现为上述各个方法实施例中的组播优化设备/第一AP。或者,上述计算机设备可以实现为上述各个方法实施例中的第二AP。
在示例性实施例中,所述计算机设备包括处理器、存储器和收发器(该收发器可以包括接收器和发射器,接收器用于接收信息,发射器用于发送信息);
当上述计算机设备实现为上述各个方法实施例中的组播优化设备/第一AP时,
所述收发器,用于获取至少两个无线接入点AP的站点信息表,目标AP的所述站点信息表中包含目 标AP关联的第一类型站点的信道质量信息和第二类型站点的信道质量信息;所述第一类型站点是处于重叠基本服务集OBSS中的站点,所述第二类型站点是不处于OBSS中的站点;目标AP是至少两个AP中的任意一个;
所述处理器,用于根据所述至少两个AP的站点信息表,分别生成所述至少两个AP的组播优化信息,所述至少两个AP的组播优化信息用于指示所述至少两个AP的组播速率,以及所述至少两个AP的组播接收站点。
当上述计算机设备实现为上述各个方法实施例中的第二AP时,
所述收发器,用于获取所述第二AP的站点信息表,目标AP的所述站点信息表中包含目标AP关联的第一类型站点的信道质量信息和第二类型站点的信道质量信息;所述第一类型站点是处于重叠基本服务集OBSS中的站点,所述第二类型站点是不处于OBSS中的站点;目标AP是至少两个AP中的任意一个;
所述收发器,还用于向组播优化设备发送所述第二AP的所述站点信息表,以便所述组播优化设备根据所述至少两个AP的站点信息表,分别生成所述至少两个AP的组播优化信息,所述至少两个AP的组播优化信息用于指示所述至少两个AP的组播速率,以及所述至少两个AP的组播接收站点。
本申请实施例还提供了一种计算机可读存储介质,所述存储介质中存储有计算机程序,所述计算机程序由处理器加载并执行以实现上述图2或图5所示的方法中,由组播优化设备/第一AP执行的各个步骤;或者,所述计算机程序由处理器加载并执行以实现上述图3或图5所示的方法中,由第二AP执行的各个步骤。
本申请还提供了一种计算机程序产品或计算机程序,该计算机程序产品或计算机程序包括计算机指令,该计算机指令存储在计算机可读存储介质中。计算机设备的处理器从计算机可读存储介质读取该计算机指令,处理器执行该计算机指令,使得该计算机设备执行上述图2或图5所示的方法中,由组播优化设备/第一AP执行的各个步骤;或者,所述计算机程序由处理器加载并执行以实现上述图3或图5所示的方法中,由第二AP执行的各个步骤。
本领域技术人员应该可以意识到,在上述一个或多个示例中,本申请实施例所描述的功能可以用硬件、软件、固件或它们的任意组合来实现。当使用软件实现时,可以将这些功能存储在计算机可读介质中或者作为计算机可读介质上的一个或多个指令或代码进行传输。计算机可读介质包括计算机存储介质和通信介质,其中通信介质包括便于从一个地方向另一个地方传送计算机程序的任何介质。存储介质可以是通用或专用计算机能够存取的任何可用介质。
以上所述仅为本申请的示例性实施例,并不用以限制本申请,凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (47)

  1. 一种组播传输控制方法,其特征在于,所述方法包括:
    获取至少两个无线接入点AP的站点信息表,目标AP的所述站点信息表中包含所述目标AP关联的第一类型站点的信道质量信息和第二类型站点的信道质量信息;所述第一类型站点是处于重叠基本服务集OBSS中的站点,所述第二类型站点是不处于OBSS中的站点;所述目标AP是所述至少两个AP中的任意一个;
    根据所述至少两个AP的站点信息表,分别生成所述至少两个AP的组播优化信息,所述至少两个AP的组播优化信息用于指示所述至少两个AP的组播速率,以及所述至少两个AP的组播接收站点。
  2. 根据权利要求1所述的方法,其特征在于,目标AP的所述站点信息表中包含以下信息:
    所述目标AP关联的第一类型站点的标识;
    所述目标AP到关联的第一类型站点的信道质量信息;
    所述目标AP关联的第一类型站点的站点邻近AP,到所述目标AP关联的第一类型站点的信道质量信息;所述站点邻近AP是所述至少两个AP中,除了关联的AP之外,到对应站点的信道质量最高的AP;
    所述目标AP关联的第一类型站点的站点邻近AP的标识;
    所述目标AP关联的第二类型站点的标识;
    所述目标AP到关联的第二类型站点的信道质量信息。
  3. 根据权利要求2所述的方法,其特征在于,所述根据所述至少两个AP的站点信息表,分别生成所述至少两个AP的组播优化信息,包括:
    根据所述至少两个AP的站点信息表,获取所述至少两个AP初始的优化参数,所述优化参数包括目标信道质量信息,以及所述目标信道质量信息对应的目标站点;初始的所述目标信道质量信息是对应AP的站点信息表中信道质量最低的信道质量信息;
    按照初始的所述目标信道质量信息的信道质量从低到高的顺序,依次对所述至少两个AP进行组播优化,获得所述至少两个AP各自的组播速率,以及所述至少两个AP各自的组播接收站点;
    根据所述至少两个AP各自的组播速率,以及所述至少两个AP各自的组播接收站点,分别生成所述至少两个AP的组播优化信息。
  4. 根据权利要求3所述的方法,其特征在于,所述按照初始的所述目标信道质量信息的信道质量从低到高的顺序,依次对所述至少两个AP进行组播优化,包括:
    对于所述至少两个AP中的第1个AP,根据所述第1个AP初始的所述目标信道质量信息,获取所述第1个AP的组播速率。
  5. 根据权利要求3所述的方法,其特征在于,所述按照初始的所述目标信道质量信息的信道质量从低到高的顺序,依次对所述至少两个AP进行组播优化,包括:
    对于所述至少两个AP中的第i个AP,当所述第i个AP的所述目标站点是所述第一类型站点,且优化条件成立时,将所述第i个AP的所述目标站点,设置为所述第i个AP的所述目标站点的站点邻近AP的组播接收站点;所述优化条件包括:所述第i个AP的所述目标信道质量信息的信道质量高于所述站点邻近AP到所述第i个AP的所述目标站点的信道质量信息的信道质量,并且,所述站点邻近AP到所述第i个AP的所述目标站点的信道质量信息的信道质量高于所述站点邻近AP的目标信道质量信息的信道质量;
    当所述第i个AP的站点信息表中存在未选择站点,将所述未选择站点中信道质量信息对应的信道质量最低的站点更新为所述第i个AP的所述目标站点;所述未选择站点是未被选择为所述第i个AP的所述目标站点的站点。
  6. 根据权利要求5所述的方法,其特征在于,所述按照初始的所述目标信道质量信息的信道质量从低到高的顺序,依次对所述至少两个AP进行组播优化,还包括:
    当所述第i个AP的所述目标站点是所述第二类型站点时,或者,当所述i个AP的所述目标站点是所述第一类型站点,且所述优化条件不成立时,根据所述第i个AP的所述目标信道质量信息,获取所述第i个AP的组播速率。
  7. 根据权利要求1所述的方法,其特征在于,当所述方法由所述至少两个AP中的第一AP执行时,所述获取至少两个无线接入点AP的站点信息表,包括:
    接收所述第一AP关联的各个STA发送的信道质量报告,所述信道质量报告用于指示对应的STA周围的各个AP到对应的STA的信道质量;
    根据所述第一AP关联的各个STA发送的信道质量报告,生成所述第一AP的站点信息表。
  8. 根据权利要求7所述的方法,其特征在于,所述接收所述第一AP关联的各个STA发送的信道质量报告之前,还包括:
    向所述第一AP关联的各个STA发送信道测量指示;所述信道测量指示用于指示测量参数;所述测量参数包括测量信道以及测量时间。
  9. 根据权利要求1所述的方法,其特征在于,当所述方法由所述至少两个AP中的第一AP执行时,所述方法还包括:
    向所述至少两个AP中的第二AP,发送所述第二AP的组播优化信息;所述第二AP是所述至少两个AP中,除了所述第一AP之外的任意一个AP。
  10. 根据权利要求1所述的方法,其特征在于,当所述方法由所述至少两个AP中的第一AP执行时,所述方法还包括:
    根据所述第一AP的组播优化信息,设置所述第一AP的组播速率。
  11. 根据权利要求10所述的方法,其特征在于,当所述方法由所述至少两个AP中的第一AP执行时,所述方法还包括:
    当所述第一AP的组播优化信息指示所述第一AP的关联站点中存在被优化站点时,向所述被优化站点发送接收指示,所述接收指示用于指示所述被优化站点接收对应的站点邻近AP的组播数据;
    其中,所述被优化站点被设置为对应的站点邻近AP的组播接收站点。
  12. 根据权利要求1所述的方法,其特征在于,当所述方法由所述至少两个AP中的第一AP执行时,所述获取至少两个无线接入点AP的站点信息表之前,还包括:
    获取所述第一AP的邻居AP数量,所述邻居AP数量是与对应AP相邻的AP的数量;
    通过信标帧发送所述第一AP的邻居AP数量;
    接收各个相邻的AP发送的信标帧;
    从所述各个相邻的AP发送的信标帧中,获取所述各个相邻的AP各自的邻居AP数量;
    当所述各个相邻的AP各自的邻居AP数量小于所述第一AP的邻居AP数量时,将所述第一AP确定为所述至少两个AP中的主AP。
  13. 根据权利要求12所述的方法,其特征在于,所述通过信标帧发送所述第一AP的邻居AP数量,包括:
    当所述第一AP的邻居AP数量大于邻居AP数量阈值时,在第一时间段内通过信标帧发送所述第一AP的邻居AP数量;
    当所述第一AP的邻居AP数量不大于所述邻居AP数量阈值时,在第二时间段内通过信标帧发送所述第一AP的邻居AP数量;
    其中,所述第一时间段处于所述第二时间段之前。
  14. 根据权利要求12所述的方法,其特征在于,所述方法还包括:
    接收第二AP发送的声明信息,所述声明信息用于声明对应的AP为所述至少两个AP中的从AP;所述第二AP是所述至少两个AP中,除了所述第一AP之外的任意一个AP。
  15. 一种组播传输控制方法,其特征在于,所述方法由至少两个无线接入点AP中的第二AP执行,所述方法包括:
    获取所述第二AP的站点信息表,目标AP的所述站点信息表中包含所述目标AP关联的第一类型站点的信道质量信息和第二类型站点的信道质量信息;所述第一类型站点是处于重叠基本服务集OBSS中的站点,所述第二类型站点是不处于OBSS中的站点;所述目标AP是所述至少两个AP中的任意一个;
    向组播优化设备发送所述第二AP的所述站点信息表,以便所述组播优化设备根据所述至少两个AP 的站点信息表,分别生成所述至少两个AP的组播优化信息,所述至少两个AP的组播优化信息用于指示所述至少两个AP的组播速率,以及所述至少两个AP的组播接收站点。
  16. 根据权利要求15所述的方法,其特征在于,所述获取所述第二AP的站点信息表,包括:
    接收所述第二AP关联的各个STA发送的信道质量报告,所述信道质量报告用于指示对应的STA周围的各个AP到对应的STA的信道质量;
    根据所述第二AP关联的各个STA发送的信道质量报告,生成所述第二AP的站点信息表。
  17. 根据权利要求16所述的方法,其特征在于,所述接收所述第二AP关联的各个STA发送的信道质量报告之前,还包括:
    向所述第二AP关联的各个STA发送信道测量指示;所述信道测量指示用于指示测量参数;所述测量参数包括测量信道以及测量时间。
  18. 根据权利要求15所述的方法,其特征在于,所述方法还包括:
    接收所述组播优化设备发送的,所述第二AP的组播优化信息;
    根据所述第二AP的组播优化信息,设置所述第二AP的组播速率。
  19. 根据权利要求18所述的方法,其特征在于,所述方法还包括:
    当所述第二AP的组播优化信息指示所述第二AP的关联站点中存在被优化站点时,向所述被优化站点发送接收指示,所述接收指示用于指示所述被优化站点接收对应的站点邻近AP的组播数据;
    其中,所述被优化站点被设置为对应的站点邻近AP的组播接收站点。
  20. 根据权利要求15所述的方法,其特征在于,所述获取所述第二AP的站点信息表之前,还包括:
    获取所述第二AP的邻居AP数量,所述邻居AP数量是与对应AP相邻的AP的数量;
    通过信标帧发送所述第二AP的邻居AP数量;
    接收各个相邻的AP发送的信标帧;
    从所述各个相邻的AP发送的信标帧中,获取所述各个相邻的AP各自的邻居AP数量;
    当所述各个相邻的AP中的任意一个AP的邻居AP数量大于所述第二AP的邻居AP数量时,将所述第二AP确定为所述至少两个AP中的从AP。
  21. 根据权利要求20所述的方法,其特征在于,所述通过信标帧发送所述第二AP的邻居AP数量,包括:
    当所述第二AP的邻居AP数量大于邻居AP数量阈值时,在第一时间段内通过信标帧发送所述第二AP的邻居AP数量;
    当所述第二AP的邻居AP数量不大于所述邻居AP数量阈值时,在第二时间段内通过信标帧发送所述第二AP的邻居AP数量;
    其中,所述第一时间段处于所述第二时间段之前。
  22. 根据权利要求20所述的方法,其特征在于,所述方法还包括:
    向所述组播优化设备发送声明信息,所述声明信息用于声明对应的AP为所述至少两个AP中的从AP。
  23. 一种组播传输控制装置,其特征在于,所述装置包括:
    信息表获取模块,用于获取至少两个无线接入点AP的站点信息表,目标AP的所述站点信息表中包含所述目标AP关联的第一类型站点的信道质量信息和第二类型站点的信道质量信息;所述第一类型站点是处于重叠基本服务集OBSS中的站点,所述第二类型站点是不处于OBSS中的站点;所述目标AP是所述至少两个AP中的任意一个;
    优化信息生成模块,用于根据所述至少两个AP的站点信息表,分别生成所述至少两个AP的组播优化信息,所述至少两个AP的组播优化信息用于指示所述至少两个AP的组播速率,以及所述至少两个AP的组播接收站点。
  24. 根据权利要求23所述的装置,其特征在于,所述目标AP的所述站点信息表中包含以下信息:
    所述目标AP关联的第一类型站点的标识;
    所述目标AP到关联的第一类型站点的信道质量信息;
    所述目标AP关联的第一类型站点的站点邻近AP,到所述目标AP关联的第一类型站点的信道质量信息;所述站点邻近AP是所述至少两个AP中,除了关联的AP之外,到对应站点的信道质量最高的AP;
    所述目标AP关联的第一类型站点的站点邻近AP的标识;
    所述目标AP关联的第二类型站点的标识;
    所述目标AP到关联的第二类型站点的信道质量信息。
  25. 根据权利要求24所述的装置,其特征在于,所述优化信息生成模块,包括:
    参数获取单元,用于根据所述至少两个AP的站点信息表,获取所述至少两个AP初始的优化参数,所述优化参数包括目标信道质量信息,以及所述目标信道质量信息对应的目标站点;初始的所述目标信道质量信息是对应AP的站点信息表中信道质量最低的信道质量信息;
    组播优化单元,用于按照初始的所述目标信道质量信息的信道质量从低到高的顺序,依次对所述至少两个AP进行组播优化,获得所述至少两个AP各自的组播速率,以及所述至少两个AP各自的组播接收站点;
    信息生成单元,用于根据所述至少两个AP各自的组播速率,以及所述至少两个AP各自的组播接收站点,分别生成所述至少两个AP的组播优化信息。
  26. 根据权利要求25所述的装置,其特征在于,
    所述组播优化单元,用于对于所述至少两个AP中的第1个AP,根据所述第1个AP初始的所述目标信道质量信息,获取所述第1个AP的组播速率。
  27. 根据权利要求25所述的装置,其特征在于,所述组播优化单元,用于,
    对于所述至少两个AP中的第i个AP,当所述第i个AP的所述目标站点是所述第一类型站点,且优化条件成立时,将所述第i个AP的所述目标站点,设置为所述第i个AP的所述目标站点的站点邻近AP的组播接收站点;所述优化条件包括:所述第i个AP的所述目标信道质量信息的信道质量高于所述站点邻近AP到所述第i个AP的所述目标站点的信道质量信息的信道质量,并且,所述站点邻近AP到所述第i个AP的所述目标站点的信道质量信息的信道质量高于所述站点邻近AP的目标信道质量信息的信道质量;
    当所述第i个AP的站点信息表中存在未选择站点,将所述未选择站点中信道质量信息的信道质量最低的站点更新为所述第i个AP的所述目标站点;所述未选择站点是未被选择为所述第i个AP的所述目标站点的站点。
  28. 根据权利要求27所述的装置,其特征在于,所述组播优化单元,还用于,
    当所述第i个AP的所述目标站点是所述第二类型站点时,或者,当所述i个AP的所述目标站点是所述第一类型站点,且所述优化条件不成立时,根据所述第i个AP的所述目标信道质量信息,获取所述第i个AP的组播速率。
  29. 根据权利要求23所述的装置,其特征在于,当所述装置用于所述至少两个AP中的第一AP中时,所述信息表获取模块,用于,
    接收所述第一AP关联的各个STA发送的信道质量报告,所述信道质量报告用于指示对应的STA周围的各个AP到对应的STA的信道质量;
    根据所述第一AP关联的各个STA发送的信道质量报告,生成所述第一AP的站点信息表。
  30. 根据权利要求29所述的装置,其特征在于,所述信息表获取模块,还用于,
    在接收所述第一AP关联的各个STA发送的信道质量报告之前,向所述第一AP关联的各个STA发送信道测量指示;所述信道测量指示用于指示测量参数;所述测量参数包括测量信道以及测量时间。
  31. 根据权利要求23所述的装置,其特征在于,当所述装置用于所述至少两个AP中的第一AP中时,所述装置还包括:
    优化信息发送模块,用于向所述至少两个AP中的第二AP,发送所述第二AP的组播优化信息;所述第二AP是所述至少两个AP中,除了所述第一AP之外的任意一个AP。
  32. 根据权利要求23所述的装置,其特征在于,当所述装置用于所述至少两个AP中的第一AP中时,所述装置还包括:
    速率设置模块,用于根据所述第一AP的组播优化信息,设置所述第一AP的组播速率。
  33. 根据权利要求32所述的装置,其特征在于,当所述装置用于所述至少两个AP中的第一AP中时,所述装置还包括:
    指示发送模块,用于当所述第一AP的组播优化信息指示所述第一AP的关联站点中存在被优化站点时,向所述被优化站点发送接收指示,所述接收指示用于指示所述被优化站点接收对应的站点邻近AP的组播数据;
    其中,所述被优化站点被设置为对应的站点邻近AP的组播接收站点。
  34. 根据权利要求23所述的装置,其特征在于,当所述装置用于所述至少两个AP中的第一AP中时,所述装置还包括:
    数量获取模块,用于在所述信息表获取模块获取至少两个无线接入点AP的站点信息表之前,获取所述第一AP的邻居AP数量,所述邻居AP数量是与对应AP相邻的AP的数量;
    数量发送模块,用于通过信标帧发送所述第一AP的邻居AP数量;
    信标帧接收模块,用于接收各个相邻的AP发送的信标帧;
    所述数量获取模块,还用于从所述各个相邻的AP发送的信标帧中,获取所述各个相邻的AP各自的邻居AP数量;
    确定模块,用于当所述各个相邻的AP各自的邻居AP数量小于所述第一AP的邻居AP数量时,将所述第一AP确定为所述至少两个AP中的主AP。
  35. 根据权利要求34所述的装置,其特征在于,所述数量发送模块,用于,
    当所述第一AP的邻居AP数量大于邻居AP数量阈值时,在第一时间段内通过信标帧发送所述第一AP的邻居AP数量;
    当所述第一AP的邻居AP数量不大于所述邻居AP数量阈值时,在第二时间段内通过信标帧发送所述第一AP的邻居AP数量;
    其中,所述第一时间段处于所述第二时间段之前。
  36. 根据权利要求34所述的装置,其特征在于,所述装置还包括:
    声明接收模块,用于接收第二AP发送的声明信息,所述声明信息用于声明对应的AP为所述至少两个AP中的从AP;所述第二AP是所述至少两个AP中,除了所述第一AP之外的任意一个AP。
  37. 一种组播传输控制装置,其特征在于,所述装置由至少两个无线接入点AP中的第二AP执行,所述装置包括:
    信息表获取模块,用于获取所述第二AP的站点信息表,目标AP的所述站点信息表中包含所述目标AP关联的第一类型站点的信道质量信息和第二类型站点的信道质量信息;所述第一类型站点是处于重叠基本服务集OBSS中的站点,所述第二类型站点是不处于OBSS中的站点;所述目标AP是所述至少两个AP中的任意一个;
    信息表发送模块,用于向组播优化设备发送所述第二AP的所述站点信息表,以便所述组播优化设备根据所述至少两个AP的站点信息表,分别生成所述至少两个AP的组播优化信息,所述至少两个AP的组播优化信息用于指示所述至少两个AP的组播速率,以及所述至少两个AP的组播接收站点。
  38. 根据权利要求37所述的装置,其特征在于,所述信息表获取模块,包括:
    报告接收单元,用于接收所述第二AP关联的各个STA发送的信道质量报告,所述信道质量报告用于指示对应的STA周围的各个AP到对应的STA的信道质量;
    信息表生成单元,用于根据所述第二AP关联的各个STA发送的信道质量报告,生成所述第二AP的站点信息表。
  39. 根据权利要求38所述的装置,其特征在于,所述信息表获取模块,还包括:
    测量指示发送单元,用于在所述报告接收单元接收所述第二AP关联的各个STA发送的信道质量报告之前,向所述第二AP关联的各个STA发送信道测量指示;所述信道测量指示用于指示测量参数;所述测量参数包括测量信道以及测量时间。
  40. 根据权利要求37所述的装置,其特征在于,所述装置还包括:
    优化信息接收模块,用于接收所述组播优化设备发送的,所述第二AP的组播优化信息;
    速率设置模块,用于根据所述第二AP的组播优化信息,设置所述第二AP的组播速率。
  41. 根据权利要求40所述的装置,其特征在于,所述装置还包括:
    指示发送模块,用于当所述第二AP的组播优化信息指示所述第二AP的关联站点中存在被优化站点时,向所述被优化站点发送接收指示,所述接收指示用于指示所述被优化站点接收对应的站点邻近AP的组播数据;
    其中,所述被优化站点被设置为对应的站点邻近AP的组播接收站点。
  42. 根据权利要求37所述的装置,其特征在于,所述装置还包括:
    数量获取模块,用于在所述信息表获取模块获取所述第二AP的站点信息表之前,获取所述第二AP的邻居AP数量,所述邻居AP数量是与对应AP相邻的AP的数量;
    数量发送模块,用于通过信标帧发送所述第二AP的邻居AP数量;
    信标帧接收模块,用于接收各个相邻的AP发送的信标帧;
    所述数量获取模块,还用于从所述各个相邻的AP发送的信标帧中,获取所述各个相邻的AP各自的邻居AP数量;
    确定模块,用于当所述各个相邻的AP中的任意一个AP的邻居AP数量大于所述第二AP的邻居AP数量时,将所述第二AP确定为所述至少两个AP中的从AP。
  43. 根据权利要求42所述的装置,其特征在于,所述数量发送模块,用于,
    当所述第二AP的邻居AP数量大于邻居AP数量阈值时,在第一时间段内通过信标帧发送所述第二AP的邻居AP数量;
    当所述第二AP的邻居AP数量不大于所述邻居AP数量阈值时,在第二时间段内通过信标帧发送所述第二AP的邻居AP数量;
    其中,所述第一时间段处于所述第二时间段之前。
  44. 根据权利要求42所述的装置,其特征在于,所述装置还包括:
    声明发送模块,用于向所述组播优化设备发送声明信息,所述声明信息用于声明对应的AP为所述至少两个AP中的从AP。
  45. 一种计算机设备,其特征在于,所述计算机设备包括处理器、存储器和收发器;
    所述收发器,用于获取至少两个无线接入点AP的站点信息表,目标AP的所述站点信息表中包含所述目标AP关联的第一类型站点的信道质量信息和第二类型站点的信道质量信息;所述第一类型站点是处于重叠基本服务集OBSS中的站点,所述第二类型站点是不处于OBSS中的站点;所述目标AP是所述至少两个AP中的任意一个;
    所述处理器,用于根据所述至少两个AP的站点信息表,分别生成所述至少两个AP的组播优化信息,所述至少两个AP的组播优化信息用于指示所述至少两个AP的组播速率,以及所述至少两个AP的组播接收站点。
  46. 一种计算机设备,其特征在于,所述计算机设备实现为至少两个无线接入点AP中的第二AP,所述计算机设备包括处理器、存储器和收发器;
    所述收发器,用于获取所述第二AP的站点信息表,目标AP的所述站点信息表中包含所述目标AP关联的第一类型站点的信道质量信息和第二类型站点的信道质量信息;所述第一类型站点是处于重叠基本服务集OBSS中的站点,所述第二类型站点是不处于OBSS中的站点;所述目标AP是所述至少两个AP中的任意一个;
    所述收发器,还用于向组播优化设备发送所述第二AP的所述站点信息表,以便所述组播优化设备根据所述至少两个AP的站点信息表,分别生成所述至少两个AP的组播优化信息,所述至少两个AP的组播优化信息用于指示所述至少两个AP的组播速率,以及所述至少两个AP的组播接收站点。
  47. 一种计算机可读存储介质,其特征在于,所述存储介质中存储有计算机程序,所述计算机程序用于被处理器执行,以实现如权利要求1至22任一项所述的组播传输控制方法。
PCT/CN2020/127294 2020-11-06 2020-11-06 组播传输控制方法、装置、计算机设备及存储介质 WO2022094975A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202080106900.8A CN116472727A (zh) 2020-11-06 2020-11-06 组播传输控制方法、装置、计算机设备及存储介质
EP20960436.2A EP4243460A4 (en) 2020-11-06 2020-11-06 MULTICAST TRANSMISSION CONTROL METHOD AND APPARATUS, COMPUTER APPARATUS AND STORAGE MEDIUM
PCT/CN2020/127294 WO2022094975A1 (zh) 2020-11-06 2020-11-06 组播传输控制方法、装置、计算机设备及存储介质
US18/144,011 US20230276265A1 (en) 2020-11-06 2023-05-05 Multicast transmission control method and apparatus, computer device and storage medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/127294 WO2022094975A1 (zh) 2020-11-06 2020-11-06 组播传输控制方法、装置、计算机设备及存储介质

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/144,011 Continuation US20230276265A1 (en) 2020-11-06 2023-05-05 Multicast transmission control method and apparatus, computer device and storage medium

Publications (1)

Publication Number Publication Date
WO2022094975A1 true WO2022094975A1 (zh) 2022-05-12

Family

ID=81458486

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/127294 WO2022094975A1 (zh) 2020-11-06 2020-11-06 组播传输控制方法、装置、计算机设备及存储介质

Country Status (4)

Country Link
US (1) US20230276265A1 (zh)
EP (1) EP4243460A4 (zh)
CN (1) CN116472727A (zh)
WO (1) WO2022094975A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101023609A (zh) * 2004-11-01 2007-08-22 思科技术公司 用于无线lan中的多播负载均衡的方法
CN104602299A (zh) * 2013-10-31 2015-05-06 宇龙计算机通信科技(深圳)有限公司 无线通信方法和无线通信设备
US20150124681A1 (en) * 2013-11-01 2015-05-07 Qualcomm Incorporated Synchronized group messaging

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10567186B2 (en) * 2015-04-27 2020-02-18 Apple Inc. Multicast reliability enhancement
TWI589174B (zh) * 2015-12-07 2017-06-21 國立交通大學 用於無線區域網路中多接取點之合作傳輸系統及其方法
US20180115982A1 (en) * 2016-10-20 2018-04-26 Qualcomm Incorporated Techniques for reliable multicast in wlan

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101023609A (zh) * 2004-11-01 2007-08-22 思科技术公司 用于无线lan中的多播负载均衡的方法
CN104602299A (zh) * 2013-10-31 2015-05-06 宇龙计算机通信科技(深圳)有限公司 无线通信方法和无线通信设备
US20150124681A1 (en) * 2013-11-01 2015-05-07 Qualcomm Incorporated Synchronized group messaging

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4243460A4 *

Also Published As

Publication number Publication date
US20230276265A1 (en) 2023-08-31
EP4243460A4 (en) 2024-01-03
EP4243460A1 (en) 2023-09-13
CN116472727A (zh) 2023-07-21

Similar Documents

Publication Publication Date Title
US20230354160A1 (en) Communication method between multi-link devices and apparatus
US10582566B2 (en) Method and apparatus for triggering uplink data in wireless LAN
US10194468B2 (en) Wireless channel reservation
US9974098B2 (en) Method and apparatus for space division multiple access for wireless local area network system
TWI690223B (zh) 關於考慮空間重利用的無線網路中基本服務集之間的傳輸的方法
US11700044B2 (en) Apparatus and methods for multi-AP joint transmission and reception
US20130182652A1 (en) Methods and apparatus in a wireless network
EP2702823B1 (en) Channel access method and apparatus in wireless local area network system
CN1460346A (zh) 通过在集中式无线局域网中同时传输增加链路容量
CN115623426B (zh) 适用于多链路的组播业务传输方法及装置
US10548086B2 (en) Method for neighbor aware network according to paging scheme and wireless terminal using same
WO2015131832A1 (zh) 一种上行数据发送方法、相关装置及系统
US11882625B2 (en) Apparatus and methods for proxy address resolution protocol (ARP) service for multi-link operation
US11844072B2 (en) Simultaneous data transmission between an access point and a plurality of stations
WO2022144006A1 (zh) 一种发送应答帧的方法、装置、站点及存储介质
WO2021078214A1 (zh) 通信方法及装置
CN108111260B (zh) 超密集网络中obss场景跨bss通信的方法
WO2022094975A1 (zh) 组播传输控制方法、装置、计算机设备及存储介质
CN107889168B (zh) 超密集网络中端到端通信的吞吐量增强方法
KR20210025098A (ko) 트리거 기반의 다중 사용자 전송들에서 직접 링크 및 다운링크 전송들
WO2021068990A1 (zh) 波束赋型报告传输方法、通信节点及计算机可读存储介质
CN117693996A (zh) 用于在无线网络中进行协调传输机会共享的方法和设备
WO2024026673A1 (zh) 功率控制方法、传输静默方法、装置、设备及存储介质
CN117395721A (zh) 链路负载均衡方法、多链路接入设备、终端及存储介质
TW201935976A (zh) 分配無線子系統的保護期間的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20960436

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202080106900.8

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020960436

Country of ref document: EP

Effective date: 20230605