WO2022094806A1 - 参数配置方法、装置、系统、设备及存储介质 - Google Patents

参数配置方法、装置、系统、设备及存储介质 Download PDF

Info

Publication number
WO2022094806A1
WO2022094806A1 PCT/CN2020/126536 CN2020126536W WO2022094806A1 WO 2022094806 A1 WO2022094806 A1 WO 2022094806A1 CN 2020126536 W CN2020126536 W CN 2020126536W WO 2022094806 A1 WO2022094806 A1 WO 2022094806A1
Authority
WO
WIPO (PCT)
Prior art keywords
core network
network device
qos
terminal device
pcc rule
Prior art date
Application number
PCT/CN2020/126536
Other languages
English (en)
French (fr)
Inventor
郭雅莉
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to PCT/CN2020/126536 priority Critical patent/WO2022094806A1/zh
Priority to CN202080083017.1A priority patent/CN114747253A/zh
Priority to CN202211574112.9A priority patent/CN115884272A/zh
Priority to EP20960268.9A priority patent/EP4106398A4/en
Publication of WO2022094806A1 publication Critical patent/WO2022094806A1/zh
Priority to US17/946,364 priority patent/US20230018378A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/24Negotiating SLA [Service Level Agreement]; Negotiating QoS [Quality of Service]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0268Traffic management, e.g. flow control or congestion control using specific QoS parameters for wireless networks, e.g. QoS class identifier [QCI] or guaranteed bit rate [GBR]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M15/00Arrangements for metering, time-control or time indication ; Metering, charging or billing arrangements for voice wireline or wireless communications, e.g. VoIP
    • H04M15/66Policy and charging system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/04Terminal devices adapted for relaying to or from another terminal or user

Definitions

  • the embodiments of the present application relate to the field of communication technologies, and in particular, to a parameter configuration method, apparatus, system, device, and storage medium.
  • 3GPP 3rd Generation Partnership Project, 3rd Generation Partnership Project
  • R13 Release 13, 13th version
  • ProSe Proximity Service, short-range communication service
  • Relay communication refers to UE (User Equipment, terminal equipment)-to-Network (terminal equipment connected to the network) based on IP (Internet Protocol, Internet Protocol) layer relay. That is, the Remote UE (remote terminal equipment) accesses the network through the Relay UE (relay terminal equipment).
  • Relay UE undertakes the function of IP layer relay and transmits data between Remote UE and network to establish a communication connection between Remote UE and network.
  • a quality of service (Quality of Service, QoS) architecture is introduced in related technologies to support different services corresponding to different QoS requirements.
  • the terminal device directly establishes a connection with the network, and the network can regulate the transmission of different services between the terminal device and the network according to different QoS parameters.
  • the network can regulate the transmission of different services between the relay terminal equipment directly connected to the network according to different QoS parameters, but cannot regulate the transmission of different services between the remote terminal equipment and the relay terminal equipment. The service transmission quality between the remote terminal equipment and the relay terminal equipment cannot be guaranteed.
  • Embodiments of the present application provide a parameter configuration method, apparatus, system, device, and storage medium.
  • the technical solution is as follows:
  • an embodiment of the present application provides a parameter configuration method, which is applied to a relay terminal device, and the method includes:
  • the parameter configuration information is used to configure the QoS parameters between the relay terminal device and the remote terminal device when the reverse mapping QoS parameter mechanism is activated.
  • an embodiment of the present application provides a parameter configuration method, which is applied in a core network, and the method includes:
  • the parameter configuration information is used to configure the QoS parameters between the relay terminal device and the remote terminal device when the reverse mapping QoS parameter mechanism is activated.
  • an embodiment of the present application provides a parameter configuration apparatus, which is set in a relay terminal device, and the apparatus includes:
  • a configuration information receiving module for receiving parameter configuration information from the core network
  • the parameter configuration information is used to configure the QoS parameters between the relay terminal device and the remote terminal device when the reverse mapping QoS parameter mechanism is activated.
  • an embodiment of the present application provides a parameter configuration system, where the parameter configuration system is used for:
  • the parameter configuration information is used to configure the QoS parameters between the relay terminal device and the remote terminal device when the reverse mapping QoS parameter mechanism is activated.
  • an embodiment of the present application provides a relay terminal device, where the relay terminal device includes: a processor, and a transceiver connected to the processor; wherein:
  • the transceiver configured to receive parameter configuration information from the core network
  • the parameter configuration information is used to configure the QoS parameters between the relay terminal device and the remote terminal device when the reverse mapping QoS parameter mechanism is activated.
  • an embodiment of the present application provides a core network device, where the core network device includes: a processor, and a transceiver connected to the processor; wherein:
  • the transceiver configured to send parameter configuration information to the relay terminal device
  • the parameter configuration information is used to configure the QoS parameters between the relay terminal equipment and the remote terminal equipment when the reverse mapping QoS parameter mechanism is activated.
  • an embodiment of the present application provides a computer-readable storage medium, where a computer program is stored in the storage medium, and the computer program is used to be executed by a processor of a relay terminal device, so as to realize the above-mentioned relaying Parameter configuration method on the terminal device side.
  • an embodiment of the present application provides a computer-readable storage medium, where a computer program is stored in the storage medium, and the computer program is used to be executed by a processor of a core network device, so as to implement the core network side as described above. parameter configuration method.
  • an embodiment of the present application provides a chip, where the chip includes a programmable logic circuit and/or program instructions, and when the chip runs on a relay terminal device, it is used to implement the relay terminal device as described above. side parameter configuration method.
  • an embodiment of the present application provides a chip, where the chip includes a programmable logic circuit and/or program instructions, and when the chip runs on a core network device, it is used to implement the above-mentioned parameters on the core network side configuration method.
  • the embodiments of the present application provide a computer program product, which is used to implement the above-mentioned parameter configuration method on the relay terminal device side when the computer program product runs on the relay terminal device.
  • an embodiment of the present application provides a computer program product, which is used to implement the above-mentioned parameter configuration method on the core network side when the computer program product runs on a core network device.
  • the core network determines to activate the reverse mapping QoS parameter mechanism
  • the core network sends parameter configuration information to the relay terminal equipment to configure the QoS parameters between the relay terminal equipment and the remote terminal equipment, which solves the problem of relay communication.
  • the relay terminal equipment cannot obtain the QoS parameters, which ensures the service transmission quality between the relay terminal equipment and the remote terminal equipment.
  • the parameters can be flexibly set according to the known information exchange structure
  • the sending entity of configuration information conforms to the known information interaction architecture, which improves the compatibility and efficiency of parameter configuration, and on the other hand, improves the flexibility of parameter configuration.
  • FIG. 1 is a schematic diagram of a communication system provided by an embodiment of the present application.
  • FIG. 2 is a schematic diagram of a 5GS system architecture provided by an embodiment of the present application.
  • FIG. 3 is a schematic diagram of a 5GS system architecture provided by another embodiment of the present application.
  • FIG. 4 is a schematic diagram of a relay communication system provided by an embodiment of the present application.
  • FIG. 6 is a flowchart of a parameter configuration method provided by another embodiment of the present application.
  • FIG. 11 is a flowchart of a parameter configuration method provided by another embodiment of the present application.
  • FIG. 12 is a block diagram of a parameter configuration apparatus provided by an embodiment of the present application.
  • FIG. 13 is a block diagram of a parameter configuration apparatus provided by another embodiment of the present application.
  • FIG. 14 is a block diagram of a parameter configuration system provided by an embodiment of the present application.
  • FIG. 15 is a structural block diagram of a relay terminal device provided by an embodiment of the present application.
  • FIG. 16 is a structural block diagram of a core network device provided by an embodiment of the present application.
  • the network architecture and service scenarios described in the embodiments of the present application are for the purpose of illustrating the technical solutions of the embodiments of the present application more clearly, and do not constitute a limitation on the technical solutions provided by the embodiments of the present application.
  • the evolution of new business scenarios and the emergence of new business scenarios, the technical solutions provided in the embodiments of the present application are also applicable to similar technical problems.
  • GSM Global System of Mobile Communication
  • CDMA Code Division Multiple Access, code division multiple access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service, General Packet Radio Service
  • LTE Long Term Evolution, Long Term Evolution
  • FDD Frequency Division Duplex, LTE Frequency Division Duplex
  • TDD Time Division Duplex, LTE Time Division Duplex
  • UMTS Universal Mobile Telecommunication System, Universal Mobile Telecommunications System
  • WiMAX Worldwide Interoperability for Microwave Access
  • 5GS Fifth-Generation System, Fifth generation mobile communication system
  • New Radio New Radio
  • FIG. 1 shows a schematic diagram of a system architecture of a communication system provided by an embodiment of the present application.
  • the system architecture 100 may include: a terminal device 10 , an access network device 20 and a core network device 30 .
  • Terminal equipment 10 may refer to a UE, access terminal, subscriber unit, subscriber station, mobile station, mobile station, remote station, remote terminal, mobile device, wireless communication device, user agent, or user equipment.
  • the terminal device may also be a cellular phone, a cordless phone, a SIP (Session Initiation Protocol, session initiation protocol) phone, a WLL (Wireless Local Loop, wireless local loop) station, a PDA (Personal Digital Assistant, personal digital processing), Handheld devices, computing devices, or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, terminal devices in 5GS, or in the future evolved PLMN (Pub1ic Land Mobi1e Network) terminal equipment, etc., which are not limited in this embodiment of the present application.
  • PLMN Prob1ic Land Mobi1e Network
  • the access network device 20 is a device deployed in the access network to provide wireless communication functions for terminal devices.
  • the access network device 20 may include various forms of macro base stations, micro base stations, relay stations, access points, and the like.
  • the names of devices with access network device functions may be different, for example, in 5GS, they are called gNodeB or gNB.
  • the name "Access Network Equipment” may change.
  • access network equipment For convenience of description, in the embodiments of the present application, the above-mentioned apparatuses for providing wireless communication functions for terminal equipment are collectively referred to as access network equipment.
  • the core network device 30 refers to a device that can provide a terminal device with functions such as session management, mobility relationship, policy management, and security authentication.
  • the core network device 30 may include a first core network device, a second core network device, and a third core network device, where the first core network device is responsible for session management of the terminal device; the second core network device is responsible for User data packet forwarding is performed according to the routing rules of the first core network device; the third core network device is responsible for user policy management.
  • the first core network may be implemented as SMF (Session Management Function, session management function)
  • the second core network device may be implemented as UPF (User Plane Function, user plane function)
  • the third core network The device can be implemented as PCF (Policy Control Function).
  • the terminal devices include a remote (Remote) terminal device 12 and a relay (Relay) terminal device 14 .
  • the relay terminal device 14 may perform data transmission with the remote terminal device 12 to establish a communication connection between the remote terminal device 12 and a network device, where the network device includes the access network device 20 and/or the core network device 30 .
  • FIG. 2 shows a schematic diagram of a system architecture of a 5GS provided by an embodiment of the present application.
  • the system architecture 200 may include: UE, (R)AN ((Radio) Access Network, (Radio) Access Network), Core (Core Network) and DN (Data Network, Data Network).
  • UE, AN, and Core are the main components of the architecture. Logically, they can be divided into two parts: the user plane and the control plane.
  • the control plane is responsible for the management of the mobile network, and the user plane is responsible for the transmission of service data.
  • the NG2 reference point is located between the RAN control plane and the Core control plane
  • the NG3 reference point is located between the RAN user plane and the Core user plane
  • the NG6 reference point is located between the Core user plane and the data network.
  • the UE It is the portal for mobile users to interact with the network. It can provide basic computing capabilities and storage capabilities, display service windows to users, and accept user operation input. The UE will use the next-generation air interface technology to establish a signal connection and a data connection with the RAN, thereby transmitting control signals and service data to the mobile network.
  • (R)AN Similar to the base station in the traditional network, it is deployed close to the UE, provides the network access function for authorized users in a specific area, and can use different quality transmission tunnels to transmit user data according to the user's level, service requirements, etc. .
  • the RAN can manage its own resources, utilize them rationally, provide access services for the UE on demand, and forward control signals and user data between the UE and the core network.
  • Core responsible for maintaining the subscription data of the mobile network, managing the network elements of the mobile network, and providing functions such as session management, mobility management, policy management, and security authentication for the UE.
  • the UE When the UE is attached, it provides network access authentication for the UE; when the UE has a service request, it allocates network resources for the UE; when the UE moves, it updates the network resources for the UE; when the UE is idle, it provides a fast recovery mechanism for the UE:
  • the UE releases network resources for the UE; when the UE has service data, it provides data routing functions for the UE, such as forwarding uplink data to the DN; or receiving the downlink data of the UE from the DN, forwarding it to the RAN, and then sending it to the UE .
  • the DN It is a data network that provides business services for users.
  • the client is located in the UE, and the server is located in the data network.
  • the data network can be a private network, such as a local area network, or an external network that is not controlled by operators, such as the Internet, or a private network jointly deployed by operators, such as in order to configure IMS (IP Multimedia Core Network Subsystem, IP Multimedia Core Network Subsystem, IP Multimedia Core Network Subsystem, IP Multimedia Core Network Subsystem). network subsystem) services.
  • IMS IP Multimedia Core Network Subsystem, IP Multimedia Core Network Subsystem, IP Multimedia Core Network Subsystem, IP Multimedia Core Network Subsystem. network subsystem
  • Figure 3 is the detailed architecture determined on the basis of Figure 2, in which the core network user plane includes UPF; the core network control plane includes AUSF (Authentication Server Function, authentication server function), AMF (Core Access and Mobility Management Function, core network connection access and mobility management function), SMF, UDM (Unified Data Management, unified data management), PCF, AF (Application Function, application function).
  • AUSF Authentication Server Function, authentication server function
  • AMF Core Access and Mobility Management Function, core network connection access and mobility management function
  • SMF Ses and Mobility Management Function
  • UDM Unified Data Management, unified data management
  • PCF Application Function
  • Application Function Application Function
  • UPF perform user data packet forwarding according to the routing rules of SMF
  • AUSF perform security authentication of the UE
  • AMF UE access management and mobility management
  • SMF UE session management
  • UDM user subscription context management
  • PCF User Policy Management
  • the Uu interface is the reference point between the UE and the AN, which is used to exchange access stratum messages and wireless data transmission;
  • the N1 interface is the reference point between the UE and the AMF;
  • the N2 interface is the RAN and AMF
  • the N3 interface is the reference point between RAN and UPF, which is used to transmit user plane data, etc.;
  • the N4 interface is the reference point between SMF and UPF, which is used to transmit, for example, N3 Connected tunnel identification information, data buffer indication information, and downlink data notification messages and other information;
  • the N6 interface is the reference point between the UPF and the DN, and is used to transmit data on the user plane.
  • each network element in FIG. 2 and FIG. 3 is just an example, and the name of the interface in the specific implementation may be other names, which are not specifically limited in this embodiment of the present application.
  • the name of each network element (such as SMF, AF, UPF, etc.) included in FIG. 2 and FIG. 3 is also only an example, and does not limit the function of the network element itself.
  • the above-mentioned network elements may also have other names, which are not specifically limited in this embodiment of the present application.
  • the SMF located in the core network sends the QoS rules to the terminal equipment through control signaling.
  • the terminal equipment uses the QoS rules to match the upstream service data, and maps the upstream service data to the appropriate QoS flow for QoS control.
  • the QoS parameters configured to the terminal equipment may be complicated in structure and frequently updated. For this reason, an optional reverse mapping QoS parameter mechanism has been introduced into the 5G network.
  • the main idea of the reverse mapping QoS parameter mechanism is to add the QoS flow identification QFI and reverse mapping indication in the header of the downlink data packet, and the terminal device determines the QoS rules by itself according to the received downlink data packet, which is used for the transmission of uplink data, thereby reducing the Signaling interaction between SMF and terminal equipment.
  • the terminal device when a terminal device has both the ability to connect to an external data network through a network such as 5G, and the ProSe (Proximity-based Services, short-range service) capability, the terminal device can act as a relay terminal device, and in addition A ProSe capable end device acts as a remote end device.
  • a Prose-capable terminal device can communicate directly with another Prose-capable terminal device through the PC5 interface.
  • the remote terminal device can establish a direct connection with the relay terminal device through the PC5 interface, and interact with the external network through the PDU session established between the relay terminal device and the network.
  • the core network sends the QoS parameters (also called PC5QoS parameters) between the relay terminal device and the remote terminal device to the relay terminal device through a control plane message, or sends the network device and the relay terminal device to the relay terminal device.
  • QoS parameters also referred to as Uu QoS parameters
  • the network equipment including core network equipment and/or access network equipment.
  • the relay terminal device when the relay terminal device receives the QoS parameters between the relay terminal device and the remote terminal device, it can directly use the QoS parameters to regulate the service transmission between the relay terminal device and the remote terminal device; when the relay terminal device receives the network device
  • the QoS parameters between the relay terminal equipment and the relay terminal equipment when used, the QoS parameters between the relay terminal equipment and the remote terminal equipment can be further determined according to the QoS parameters between the network equipment and the relay terminal equipment, and the determined QoS parameters can be used to regulate the Business transmission with remote terminal equipment.
  • the relay terminal equipment will no longer perform signaling interaction with the SMF, so that the relay terminal equipment cannot obtain the QoS parameters. Therefore, although the header of the downlink data packet sent by the UPF in the core network to the relay terminal equipment carries QFI, the relay terminal equipment cannot determine the QoS parameters corresponding to the QFI, and thus cannot guarantee the remote terminal equipment and the relay terminal equipment. The quality of service transmission between them.
  • the embodiment of the present application provides a parameter configuration method, by sending parameter configuration information to the relay terminal device when the core network determines to activate the reverse mapping QoS parameter mechanism, and the parameter configuration information is used in the configuration.
  • QoS parameters between the relay terminal device and the remote terminal device.
  • the core network can either send the parameter configuration information to the relay terminal device through a control plane message, or send the parameter configuration information to the relay terminal device through a user plane message.
  • the content of the parameter configuration information may also be different.
  • FIG. 5 shows a flowchart of a parameter configuration method provided by an embodiment of the present application, and the method may be applied to the communication system shown in FIG. 1 or FIG. 4 above.
  • the method may include the following steps:
  • Step 510 The core network sends parameter configuration information to the relay terminal equipment, wherein the parameter configuration information is used to configure QoS parameters between the relay terminal equipment and the remote terminal equipment when the reverse mapping QoS parameter mechanism is activated.
  • the QoS parameters between the relay terminal equipment and the remote terminal equipment also known as PC5QoS parameters, are used to ensure the service transmission quality between the relay terminal equipment and the remote terminal equipment.
  • the core network sends parameter configuration information to the relay terminal device to configure QoS parameters between the relay terminal device and the remote terminal device when it is determined that the reverse mapping QoS parameter mechanism needs to be activated.
  • This embodiment of the present application does not limit the timing and manner in which the core network sends the parameter configuration information to the relay terminal device.
  • the core network sends parameter configuration information to the relay terminal device before determining to start the reverse mapping QoS mechanism and starting the reverse mapping QoS parameter mechanism, so that the parameter configuration information is sent by the core network to the relay terminal device through a control plane message.
  • the relay terminal device that is, the control plane functional entity in the core network, sends parameter configuration information to the relay terminal device.
  • the core network sends parameter configuration information to the relay terminal device during the process of determining to start the reverse mapping QoS mechanism and starting the reverse mapping QoS parameter mechanism or after starting the reverse mapping QoS parameter mechanism, so that the The parameter configuration information is sent by the core network to the relay terminal device through a user plane message, that is, the user plane functional entity in the core network sends the parameter configuration information to the relay terminal device.
  • the sending entities of the parameter configuration information are different.
  • the sending entity of the parameter configuration information is consistent with the core network functional entity that interacts with the relay terminal device corresponding to the occasion in the existing information interaction architecture.
  • the control plane functional entity in the core network interacts with the relay terminal device, so that before the reverse mapping QoS parameter mechanism is activated,
  • the control plane functional entity is used as the sending entity of the parameter configuration information.
  • the user plane functional entity in the core network interacts with the relay terminal equipment, so that in the process of initiating the reverse mapping During or after the process of mapping the QoS parameter mechanism, the user plane functional entity is used as the sending entity of the parameter configuration information.
  • the content of the parameter configuration information sent by different functional entities in the core network to the relay terminal device may be different.
  • the parameter configuration information sent by the control plane functional entity to the relay terminal device includes QoS parameters
  • the parameter configuration information sent by the user plane functional entity to the relay terminal device includes QFI.
  • the relay terminal device can determine the QoS parameters between the relay terminal device and the remote terminal device according to the received parameter configuration information.
  • the content of the parameter configuration information and the introduction and description of how the relay terminal device determines the QoS parameters please refer to the following embodiments, and details are not repeated here.
  • the technical solutions provided by the embodiments of the present application configure the relay terminal equipment and the relay terminal equipment by sending parameter configuration information to the relay terminal equipment by the core network when the core network determines to activate the reverse mapping QoS parameter mechanism.
  • the QoS parameters between remote terminal devices solve the defect that the relay terminal device cannot obtain the QoS parameters when the core network in the relay communication system starts the reverse mapping of QoS parameters, and ensures that the relay terminal device and the remote terminal device The quality of service transmission between them.
  • the parameters can be flexibly set according to the known information exchange structure
  • the sending entity of configuration information conforms to the known information interaction architecture, which improves the compatibility and efficiency of parameter configuration, and on the other hand, improves the flexibility of parameter configuration.
  • the parameter configuration information includes the QFI bound by the PCC rule and the QoS parameter corresponding to the QFI.
  • PCC Policy and Charging Control, Policy and Charging Control
  • Policy and Charging Control are rules related to user policy management, wherein the PCC rules specify requirements related to QoS flows. It can be seen from the above description that during or after the process of initiating the reverse mapping QoS parameter mechanism, the relay terminal equipment determines the communication with the remote terminal equipment according to the QFI and reverse mapping instructions carried in the header of the downlink data packet. Therefore, the corresponding relationship between the QFI and the QoS parameter can be established, so that the subsequent relay terminal device can determine the corresponding QoS parameter according to the QFI carried in the header of the downlink data packet.
  • the parameter configuration information sent by the core network to the relay terminal device includes the QFI bound by the PCC rule and the QoS parameters corresponding to the QFI.
  • the QoS parameters corresponding to the QFI include at least one of the following: QoS parameters between the relay terminal device and the remote terminal device, and QoS parameters between the relay terminal device and the network device.
  • the embodiment of the present application does not limit the type of the network device, and the network device may be an access network device, such as a base station, or the like, or a core network device, such as a UPF.
  • the control plane functional entity may send the parameter configuration information to the relay terminal device.
  • the core network includes a first core network device, and the first core network device is configured to provide a control plane function, that is, the first core network device is a control plane function entity.
  • the first core network device is implemented as the SMF introduced in the above embodiments. Therefore, the parameter configuration information is carried in a control plane message that is exchanged between the first core network device and the relay terminal device.
  • the QoS parameter in the parameter configuration information corresponds to the QFI bound by the PCC rule, so the first core network device needs to determine the QFI bound by the PCC rule.
  • the above-mentioned core network further includes a third core network device, and the third core network device is used to provide a control plane function, that is, the third core network device is also a control plane function entity.
  • the third core network device is implemented as the PCF described in the above embodiments.
  • the above step 510 includes the following steps:
  • Step 512 The third core network device sends a PCC rule to the first core network device, where the PCC rule includes first mapping indication information, and the first mapping indication information is used to indicate whether to activate the reverse mapping QoS parameter mechanism.
  • the third core network device is used for user policy management, and thus, the PCC rule is generated by the third core network device.
  • the third core network device may send the PCC rule to the first core network device.
  • the third core network device may also determine whether to activate the reverse mapping QoS parameter mechanism, and notify the first core network device of the determination result.
  • the third core network device may carry the first mapping indication information in the PCC rule to indicate to the first core network device whether to start reverse mapping QoS parameter mechanism.
  • Step 514 the first core network device determines the state of the configuration corresponding to the PCC rule.
  • the first core network device can determine the QoS flow bound by the PCC rule, and then determine the QoS flow identifier QFI as the QFI bound by the PCC rule, and then configure it according to the QFI bound by the PCC rule. Parameter configuration information.
  • the first core network device since the embodiment of the present application sends parameter configuration information to the relay terminal device during the relay communication process, the first core network device also needs to determine whether the configuration corresponding to the PCC rule is in the relay state. If the configuration corresponding to the PCC rule is in a non-relay state, the first core network device does not need to configure parameter configuration information for the terminal device.
  • the configuration corresponding to the PCC rule includes at least one of the following: a terminal device corresponding to the PCC rule, a PDU (Protocol Data Unit, protocol data unit) session corresponding to the PCC rule, and an SDF (Service Data Flow, service data) corresponding to the PCC rule. flow).
  • Step 516 the first core network device sends parameter configuration information to the relay terminal device when the first mapping indication information is used to instruct to start the reverse mapping QoS parameter mechanism and the configuration corresponding to the PCC rule is in the relay state.
  • the first core network device determines that parameter configuration information needs to be configured for the relay terminal device. After determining the parameter configuration information according to the QFI bound to the PCC rule, the first core network device sends the parameter configuration information to the relay terminal device before starting the reverse mapping QoS parameter mechanism.
  • the core network further includes a second core network device, and the second core network device is used to provide a user plane function, that is, the second core network device is a user plane function entity.
  • the second core network device is the UPF introduced in the foregoing embodiment.
  • Step 522 the second core network device sends a downlink data packet to the relay terminal device.
  • the second core network device may relay the terminal device to send the downlink data packet, where the downlink data packet carries the QFI, optionally, the QFI is carried by the header of the downlink data packet.
  • Step 524 the relay terminal device determines the QFI carried by the downlink data packet.
  • the relay terminal device may parse the downlink data packet to obtain the QFI carried by the downlink data packet.
  • Step 526 the relay terminal device determines QoS parameters between the relay terminal device and the remote terminal device based on the parameter configuration information and the QFI carried in the downlink data packet.
  • the relay terminal device clarifies the correspondence between QFI and QoS parameters according to the parameter configuration information sent by the first core network device;
  • the QFI is parsed, so that the relay terminal device can determine the QoS parameters corresponding to the QFI carried by the downlink service data packet according to the corresponding relationship between the QFI and the QoS parameters, and then determine the relationship between the relay terminal device and the remote terminal device.
  • the QoS parameters corresponding to the QFI may be the QoS parameters between the relay terminal device and the remote terminal device, or the QoS parameters between the relay terminal device and the network device. between QoS parameters.
  • the QoS parameters corresponding to the QFI include the QoS parameters between the relay terminal equipment and the remote terminal equipment, and the relay terminal equipment directly determines the QoS parameters between the relay terminal equipment and the remote terminal equipment, that is, the above step 526 includes: the relay terminal equipment
  • the QoS parameter corresponding to the QFI carried in the header of the downlink data packet is used as the QoS parameter between the relay terminal device and the remote terminal device.
  • the QoS parameters corresponding to the QFI include the QoS parameters between the relay terminal equipment and the network equipment, and the relay terminal equipment indirectly determines the QoS parameters between the relay terminal equipment and the remote terminal equipment, that is, the above step 526 includes: the relay terminal equipment
  • the QoS parameter corresponding to the QFI carried in the header of the downlink data packet is used as the QoS parameter between the relay terminal device and the network device; based on the QoS parameter between the relay terminal device and the network device, the relay terminal device and the remote terminal are determined.
  • QoS parameters between devices are used as the QoS parameter between devices.
  • the control plane functional entity in the core network sends parameter configuration information to the relay terminal equipment. Including the QFI and the QoS parameters corresponding to the QFI, so that the subsequent relay terminal equipment can determine the QoS parameters with the remote terminal equipment according to the QFI carried by the received downlink data packets, effectively guaranteeing the relay terminal equipment and the remote terminal equipment. Quality of service transmission between terminal devices.
  • the parameter configuration information includes the QFI bound by the PCC rule; wherein the QFI bound by the PCC rule is equal to the system QoS identifier.
  • the system QoS identifier is the most important part of the QoS parameters between the terminal device and the network device. Usually, if the system QoS identifier is specified, the QoS parameters between the terminal device and the network device are also specified. In addition, for relay communication, the QoS parameters between the relay terminal device and the network device can establish a corresponding relationship with the QoS parameters between the relay terminal device and the remote terminal device, so that the relay terminal device can Once the QoS parameters between the relay terminal device and the network device are specified, the QoS parameters between the relay terminal device and the remote terminal device can be further specified.
  • the relay terminal device clarifies the QFI bound by the PCC rule, and also clarifies the QoS parameters between the relay terminal device and the network device. Further clarify the QoS parameters between the relay terminal equipment and the remote terminal equipment.
  • the parameter configuration information sent by the core network to the relay terminal device includes the QFI bound by the PCC rule.
  • the system QoS identifier includes 5QI (5G QoS Identifier, fifth generation mobile communication system QoS identifier).
  • the interaction between the core network and the relay terminal equipment is a user plane message, and the message carries QFI.
  • the core network includes a second core network device, and the second core network device is used to provide a user plane function, that is, the second core network device is a user plane function entity.
  • the second core network device is the UPF introduced in the foregoing embodiment. Therefore, the parameter configuration information is carried in the user plane message that the second core network device interacts with the relay terminal device.
  • the user plane message includes a downlink data packet, and the parameter configuration information is carried in the packet header of the downlink data packet.
  • the QFI bound by the PCC rule is sent by the control plane functional entity in the core network to the user plane functional entity.
  • the core network further includes a first core network device and a third core network device.
  • the first core network device and the third core network device are used to provide control plane functions, that is, the first core network device and the third core network device.
  • a device is a control plane functional entity.
  • the first core network device is the SMF introduced in the above embodiment
  • the third core network device is the PCF introduced in the above embodiment.
  • the first core network device may determine whether the reverse mapping QoS parameter mechanism needs to be activated, or the third core network device may determine whether the reverse mapping QoS parameter mechanism needs to be activated. In the following, the two cases are described separately.
  • step 510 includes the following steps:
  • Step 51A the third core network device sends a PCC rule to the first core network device, where the PCC rule includes first mapping indication information, and the first mapping indication information is used to indicate whether to activate the reverse mapping QoS parameter mechanism.
  • step 51A please refer to the description of step 512, which is not repeated here.
  • Step 51C the first core network device uses the first mapping instruction information to indicate that the reverse mapping QoS parameter mechanism is activated, the configuration corresponding to the PCC rule is in a relay state, and the QFI bound to the PCC rule can be equal to the system QoS identifier.
  • the first core network device determines whether to activate the reverse mapping QoS parameter mechanism. It can be seen from the above description that in the case that the QFI bound by the PCC rule is equal to the system QoS identifier, the relay terminal device can determine the QoS parameter according to the QFI bound by the PCC rule. Therefore, the first core network device may determine whether to activate the reverse mapping QoS parameter mechanism according to whether the QFI bound by the PCC rule can be equal to the system QoS parameter.
  • the first core network device can also determine whether the configuration corresponding to the PCC rule is relay status. If the configuration corresponding to the PCC rule is in a non-relay state, the first core network device does not need to configure parameter configuration information for the terminal device.
  • the configuration corresponding to the PCC rule includes at least one of the following: a terminal device corresponding to the PCC rule, a PDU session corresponding to the PCC rule, and an SDF corresponding to the PCC rule.
  • the first mapping information received at the first core network device is used to indicate that the reverse mapping QoS parameter mechanism is activated, the configuration corresponding to the PCC rule is in the relay state, and the QFI bound to the PCC rule can be equal to the system QoS identifier.
  • the first core network device determines to start the reverse mapping QoS parameter mechanism, and sends the second mapping indication information and the QFI bound to the PCC rule to the second core network device to inform the second core network device.
  • the network device starts the reverse mapping QoS parameter mechanism.
  • the first core network device determines not to activate the reverse mapping QoS parameter mechanism.
  • Step 51E the second core network device sends parameter configuration information to the relay terminal device.
  • the second core network device receives the second mapping indication information and the QFI bound to the PCC rule, and determines the parameter configuration information according to the QFI bound to the PCC rule when determining to activate the reverse mapping QoS parameter mechanism.
  • the second core network device sets the QFI bound by the PCC rule in the packet header of the downlink data packet, that is, the parameter configuration information is carried in the packet header of the downlink data packet. Therefore, after receiving the downlink data packet, the relay terminal device can parse and obtain the QFI bound by the PCC rule.
  • the relay terminal device can specify the QoS parameters between the relay terminal device and the remote terminal device according to the QFI bound by the PCC rule. Therefore, , the first core network device also needs to set the QFI bound by the PCC rule as the system QoS identifier. Based on this, optionally, as shown in FIG. 7 , the above method further includes: the first core network device is in a relay state when the configuration corresponding to the PCC rule is in the relay state, and the QFI bound to the PCC rule can be equal to the system QoS identifier. , and set the QFI bound to the PCC rule as the system QoS identifier.
  • step 510 includes the following steps:
  • Step 51B when the configuration corresponding to the PCC rule is in the relay state, and the QFI bound to the PCC rule can be equal to the system QoS identifier, the third core network device sends the PCC rule to the first core network device.
  • the PCC rule includes the first A mapping indication information, the first mapping indication information is used to instruct to start the reverse mapping QoS parameter mechanism.
  • the relay terminal device can determine the QoS parameter according to the QFI bound by the PCC rule. Therefore, the third core network device may determine whether to activate the reverse mapping QoS parameter mechanism according to whether the QFI bound by the PCC rule can be equal to the system QoS parameter. In addition, as described in the above step 514, since the embodiment of the present application sends parameter configuration information to the relay terminal device during the relay communication process, the third core network device can also determine whether the configuration corresponding to the PCC rule is relay status.
  • the third core network device does not need to determine whether the QFI bound by the PCC rule can be equal to the system QoS identifier.
  • the configuration corresponding to the PCC rule includes at least one of the following: a terminal device corresponding to the PCC rule, a PDU session corresponding to the PCC rule, and an SDF corresponding to the PCC rule.
  • the third core network device determines to start the reverse operation.
  • the first mapping indication information is sent to the mapping QoS parameter mechanism, and the first mapping indication information is sent to the first core network device, so as to inform the first core network device to start the reverse mapping QoS parameter mechanism.
  • the third core network device determines that the configuration corresponding to the PCC rule is in the relay state, and the QFI bound to the PCC rule cannot be equal to the system QoS identifier, the first core network device determines not to start Reverse mapping QoS parameter mechanism.
  • Step 51D the first core network device sends second mapping indication information and the QFI bound to the PCC rule to the second core network device, where the second mapping indication information is used to instruct to start the reverse mapping QoS parameter mechanism.
  • the first core network device When the first core network device receives the first mapping instruction information and explicitly starts the reverse mapping QoS parameter mechanism, it sends the second mapping instruction information and the QFI bound to the PCC rule to the second core network device to inform the second core network device.
  • the core network device starts the reverse mapping QoS parameter mechanism.
  • Step 51F the second core network device sends parameter configuration information to the relay terminal device.
  • step 51F For the description of step 51F, please refer to the description of step 51E, and details are not repeated here.
  • the first core network device also needs to set the QFI bound by the PCC rule as the system QoS identifier.
  • the first core network device can either determine whether the QFI bound by the PCC rule needs to be set as the system QoS identifier, or the third core network device can inform the first core network device whether the PCC needs to be set as the system QoS identifier.
  • the QFI bound to the rule is set as the system QoS identifier. Based on this, in an example, as shown in FIG.
  • the above method further includes: the third core network device is in a relay state in the configuration corresponding to the PCC rule, and the QFI bound by the PCC rule can be equal to the system QoS identifier.
  • the identification setting indication information is sent to the first core network device; the first core network device sets the QFI bound by the PCC rule as the system QoS identification according to the first identification indication information.
  • the identification setting indication information may be carried in the PCC rule, or may be independent of the PCC rule, which is not limited in this embodiment of the present application.
  • the above method further includes: when the configuration corresponding to the PCC rule is in a relay state, the first core network device sets the QFI bound by the PCC rule as the system QoS identifier.
  • the relay terminal device After the relay terminal device clarifies the parameter configuration information, that is, the QFI bound by the PCC rule, the QoS parameter between the relay terminal device and the remote terminal device can be determined according to the QFI. Based on this, as shown in FIG. 7 , the above method further includes the following steps: Step 532 , the relay terminal device determines QoS parameters between the relay terminal device and the network device based on the parameter configuration information. Step 534, the relay terminal device determines the QoS parameters between the relay terminal device and the remote terminal device based on the QoS parameters between the relay terminal device and the network device.
  • the user plane functional entity in the core network sends parameter configuration information to the relay terminal equipment during or after the process of initiating the reverse mapping QoS parameter mechanism in the core network
  • the parameter configuration information includes QFI, and the QFI is equal to the system QoS identifier. Since the relay terminal equipment specifies the system QoS identifier, it also specifies the QoS parameters with the network equipment, and further specifies the QoS parameters with the remote terminal equipment according to the QoS parameters with the network equipment. Therefore, the relay terminal device can determine the QoS parameter between the relay terminal device and the remote terminal device according to the QFI equal to the system QoS identifier, which effectively guarantees the service transmission quality between the relay terminal device and the remote terminal device.
  • the first core network device is SMF
  • the second core network device is UPF
  • the third core network device is PCF
  • the system QoS identifier is 5QI, and so on.
  • FIG. 8 shows a flowchart of a parameter configuration method provided by an embodiment of the present application, and the method can be applied to the communication system shown in FIG. 1 or FIG. 4 above.
  • the method may include the following steps:
  • Step 801 the PCF sends a PCC rule to the SMF, where the PCC rule includes first mapping indication information.
  • the first mapping indication information is used to instruct to start the reverse mapping QoS parameter mechanism.
  • Step 802 the SMF determines the QoS flow bound by the PCC rule. After the SMF determines the QoS flow bound by the PCC rule, the QFI corresponding to the QoS flow can be determined as the QFI bound by the PCC rule.
  • Step 803 the SMF determines the state of the UE or PDU session or SDF corresponding to the PCC rule.
  • the SMF needs to determine whether the UE or PDU session or SDF corresponding to the PCC rule is in the relay state.
  • Step 804 the SMF sends the QFI bound by the PCC rule and the QoS parameter corresponding to the QFI to the Relay UE.
  • the QoS parameters corresponding to QFI can be Uu QoS parameters or PC5 QoS parameters.
  • Step 805 the SMF sends the second mapping indication information and the QFI bound to the PCC rule to the UPF.
  • the second mapping indication information is used to instruct to start the reverse mapping QoS parameter mechanism.
  • Step 806 the UPF sends a downlink data packet to the Relay UE.
  • the downlink data packet carries QFI and third mapping indication information, where the third mapping indication information is used to instruct to start the reverse mapping QoS parameter mechanism.
  • Step 807 the Relay UE determines the QFI carried by the downlink data packet.
  • Step 808 the Relay UE determines the PC5 QoS parameter based on the QFI carried in the downlink data packet, the QFI bound by the PCC rule, and the QoS parameter corresponding to the QFI.
  • step 804 if the QoS parameter corresponding to the QFI obtained by the Relay UE is the PC5QoS parameter, then in step 808, the Relay UE directly uses the QoS parameter corresponding to the QFI carried in the downlink data packet as the PC5QoS parameter;
  • the QoS parameter corresponding to the QFI is the Uu QoS parameter, then in step 808, the Relay UE needs to further determine the PC5QoS parameter based on the QoS parameter corresponding to the QFI carried in the downlink data packet.
  • FIG. 9 shows a flowchart of a parameter configuration method provided by an embodiment of the present application, and the method may be applied to the communication system shown in FIG. 1 or FIG. 4 above.
  • the method may include the following steps:
  • Step 901 the PCF sends a PCC rule to the SMF, where the PCC rule includes first mapping indication information.
  • the first mapping indication information is used to indicate whether to start the reverse mapping QoS parameter mechanism.
  • the PCC rule may further include 5QI.
  • Step 902 the SMF determines the state of the UE or PDU session or SDF corresponding to the PCC rule.
  • the SMF needs to determine whether the UE or PDU session or SDF corresponding to the PCC rule is in the relay state.
  • the SMF determines Start the reverse mapping QoS mechanism, and then perform the following steps:
  • Step 903 the SMF determines the QFI bound by the PCC rule, and sets the QFI bound by the PCC rule to 5QI. After the SMF determines the QoS flow bound by the PCC rule, the QFI corresponding to the QoS flow can be determined, that is, the QFI bound by the PCC rule. At the same time, the SMF sets the QFI bound by the PCC rule to 5QI, for example, sets the value of the QFI bound to the PCC rule to the value of 5QI.
  • Step 904 the SMF sends the second mapping indication information and the QFI bound to the PCC rule to the UPF.
  • the second mapping indication information is used to instruct to start the reverse mapping QoS parameter mechanism.
  • Step 905 the UPF sends a downlink data packet to the Relay UE.
  • the downlink data packet carries QFI and third mapping indication information, where the third mapping indication information is used to instruct to start the reverse mapping QoS parameter mechanism.
  • Step 906 the Relay UE determines the QFI carried by the downlink data packet.
  • Step 907 the Relay UE determines the PC5QoS parameter based on the QFI carried by the downlink data packet. Since the QFI carried by the downlink data packet sent by the SMF is equal to 5QI, the Relay UE can determine the Uu QoS based on the QFI carried by the downlink data packet, and then further determine the PC5QoS according to the Uu QoS.
  • FIG. 10 shows a flowchart of a parameter configuration method provided by an embodiment of the present application, and the method may be applied to the communication system shown in FIG. 1 or FIG. 4 above.
  • the method may include the following steps:
  • Step 1001 the PCF determines the state of the UE or PDU session or SDF corresponding to the PCC rule.
  • the PCF needs to determine whether the UE or PDU session or SDF corresponding to the PCC rule is in the relay state.
  • the PCF determines to activate the reverse mapping QoS mechanism, and then performs the following steps.
  • Step 1002 the PCF sends a PCC rule and identification setting indication information to the SMF, where the PCC rule includes the first mapping indication information.
  • the first mapping indication information is used for instructing to start the reverse mapping QoS parameter mechanism
  • the identification setting indication information is used for instructing to set the QFI bound by the PCC rule to 5QI.
  • the PCC rules may also include 5QI.
  • Step 1003 the SMF determines the QFI bound by the PCC rule, and sets the QFI bound by the PCC rule to 5QI. After the SMF determines the QoS flow bound by the PCC rule, the QFI corresponding to the QoS flow can be determined, that is, the QFI bound by the PCC rule. At the same time, the SMF sets the QFI bound by the PCC rule to 5QI, for example, sets the value of the QFI bound to the PCC rule to the value of 5QI.
  • Step 1004 the SMF sends the second mapping indication information and the QFI bound to the PCC rule to the UPF.
  • the second mapping indication information is used to instruct to start the reverse mapping QoS parameter mechanism.
  • Step 1005 the UPF sends a downlink data packet to the Relay UE.
  • the downlink data packet carries QFI and third mapping indication information, where the third mapping indication information is used to instruct to start the reverse mapping QoS parameter mechanism.
  • Step 1006 the Relay UE determines the QFI carried by the downlink data packet.
  • Step 1007 the Relay UE determines the PC5QoS parameter based on the QFI carried by the downlink data packet. Since the QFI carried by the downlink data packet sent by the SMF is equal to 5QI, the Relay UE can determine the Uu QoS based on the QFI carried by the downlink data packet, and then further determine the PC5QoS according to the Uu QoS.
  • FIG. 11 shows a flowchart of a parameter configuration method provided by an embodiment of the present application, and the method can be applied to the communication system shown in FIG. 1 or FIG. 4 above.
  • the method may include the following steps:
  • Step 1101 the PCF determines the state of the UE or PDU session or SDF corresponding to the PCC rule.
  • the PCF needs to determine whether the UE or PDU session or SDF corresponding to the PCC rule is in the relay state.
  • the PCF determines to activate the reverse mapping QoS mechanism, and then performs the following steps.
  • Step 1102 the PCF sends a PCC rule to the SMF, where the PCC rule includes the first mapping indication information.
  • the first mapping indication information is used to instruct to start the reverse mapping QoS parameter mechanism.
  • the PCC rules may also include 5QI.
  • Step 1103 the SMF determines the state of the UE or PDU session or SDF corresponding to the PCC rule.
  • the SMF needs to determine whether the UE or PDU session or SDF corresponding to the PCC rule is in the relay state.
  • the SMF determines that the UE or the PDU session or the SDF corresponding to the PCC rule is in the relay state, the following steps are performed.
  • Step 1104 the SMF determines the QFI bound by the PCC rule, and sets the QFI bound by the PCC rule to 5QI. After the SMF determines the QoS flow bound by the PCC rule, the QFI corresponding to the QoS flow can be determined, that is, the QFI bound by the PCC rule. At the same time, the SMF sets the QFI bound by the PCC rule to 5QI, for example, sets the value of the QFI bound to the PCC rule to the value of 5QI.
  • Step 1105 the SMF sends the second mapping indication information and the QFI bound to the PCC rule to the UPF.
  • the second mapping indication information is used to instruct to start the reverse mapping QoS parameter mechanism.
  • Step 1106 the UPF sends a downlink data packet to the Relay UE.
  • the downlink data packet carries QFI and third mapping indication information, where the third mapping indication information is used to instruct to start the reverse mapping QoS parameter mechanism.
  • Step 1107 the Relay UE determines the QFI carried by the downlink data packet.
  • Step 1108 the Relay UE determines PC5QoS parameters based on the QFI carried by the downlink data packet. Since the QFI carried by the downlink data packet sent by the SMF is equal to 5QI, the Relay UE can determine the Uu QoS based on the QFI carried by the downlink data packet, and then further determine the PC5QoS according to the Uu QoS.
  • the embodiment of the present application introduces and describes the parameter configuration method provided by the embodiment of the present application from the perspective of interaction between the relay terminal device and the core network.
  • the above steps related to the execution of the relay terminal equipment can be independently implemented as a parameter configuration method on the relay terminal equipment side; the above steps related to the execution of the core network can be independently implemented as a parameter configuration method on the core network side.
  • FIG. 12 shows a block diagram of a parameter configuration apparatus provided by an embodiment of the present application.
  • the apparatus has the function of implementing the above-mentioned method example on the side of the relay terminal device, and the function may be implemented by hardware, or by executing corresponding software in hardware.
  • the apparatus may be the relay terminal device described above, or may be set in the relay terminal device.
  • the apparatus 1200 may include: a configuration information receiving module 1210 .
  • the configuration information receiving module 1210 is configured to receive parameter configuration information from the core network; wherein, the parameter configuration information is used to configure the relay terminal device and the remote terminal device when the reverse mapping QoS parameter mechanism is activated QoS parameters between.
  • the parameter configuration information includes a QFI bound by the PCC rule and a QoS parameter corresponding to the QFI.
  • the QoS parameters corresponding to the QFI include at least one of the following: QoS parameters between the relay terminal device and the remote terminal device, QoS parameters between the relay terminal device and the network device .
  • the core network includes a first core network device, and the first core network device is configured to provide a control plane function; the parameter configuration information is borne on the first core network device and the relay terminal In control plane messages of device interaction.
  • the core network includes a second core network device, and the second core network device is used to provide a user plane function; as shown in FIG. 13 , the apparatus 1200 further includes: a data packet receiving module 1220 for receiving the downlink data packet from the second core network device; the identification determination module 1230 is used to determine the QFI carried by the downlink data packet; the first parameter determination module 1240 is used to configure the information based on the parameters and The QFI carried by the downlink data packet determines the QoS parameter between the relay terminal device and the remote terminal device.
  • a data packet receiving module 1220 for receiving the downlink data packet from the second core network device
  • the identification determination module 1230 is used to determine the QFI carried by the downlink data packet
  • the first parameter determination module 1240 is used to configure the information based on the parameters
  • the QFI carried by the downlink data packet determines the QoS parameter between the relay terminal device and the remote terminal device.
  • the QoS parameter corresponding to the QFI includes the QoS parameter between the relay terminal device and the remote terminal device; as shown in FIG. 13 , the first parameter determination module 1240 is configured to: The QoS parameter corresponding to the QFI carried in the header of the downlink data packet is used as the QoS parameter between the relay terminal device and the remote terminal device.
  • the QoS parameter corresponding to the QFI includes the QoS parameter between the relay terminal device and the network device; as shown in FIG. 13 , the first parameter determination module 1240 is configured to: The QoS parameter corresponding to the QFI carried in the header of the data packet is used as the QoS parameter between the relay terminal device and the network device; based on the QoS parameter between the relay terminal device and the network device, determine QoS parameters between the relay terminal equipment and the remote terminal equipment.
  • the parameter configuration information includes a QFI bound by a PCC rule; wherein, the QFI bound by the PCC rule is equal to a system QoS identifier.
  • the system QoS identification includes 5QI.
  • the core network includes a second core network device, and the second core network device is configured to provide a user plane function; the parameter configuration information is borne on the second core network device and the relay terminal In user plane messages of device interaction.
  • the user plane message includes a downlink data packet
  • the parameter configuration information is carried in a header of the downlink data packet.
  • the apparatus 1200 further includes: a second parameter determination module 1250, configured to determine the QoS parameter between the relay terminal device and the network device based on the parameter configuration information;
  • the first parameter determination module 1260 is configured to determine the QoS parameter between the relay terminal device and the remote terminal device based on the QoS parameter between the relay terminal device and the network device.
  • the technical solutions provided by the embodiments of the present application configure the relay terminal equipment and the relay terminal equipment by sending parameter configuration information to the relay terminal equipment by the core network when the core network determines to activate the reverse mapping QoS parameter mechanism.
  • the QoS parameters between remote terminal devices solve the defect that the relay terminal device cannot obtain the QoS parameters when the core network in the relay communication system starts the reverse mapping of QoS parameters, and ensures the communication between the relay terminal device and the remote terminal device. the quality of service transmission between them.
  • the parameters can be flexibly set according to the known information exchange structure
  • the sending entity of configuration information conforms to the known information interaction architecture, which improves the compatibility and efficiency of parameter configuration, and on the other hand, improves the flexibility of parameter configuration.
  • FIG. 14 shows a block diagram of a parameter configuration system provided by an embodiment of the present application.
  • the system has the function of implementing the above-mentioned method example on the core network side, and the function may be implemented by hardware or by executing corresponding software in hardware.
  • the system may be the core network described above, or may be set in the core network.
  • the parameter configuration system 1400 is used for:
  • the parameter configuration information is used to configure the QoS parameters between the relay terminal device and the remote terminal device when the reverse mapping QoS parameter mechanism is activated.
  • the parameter configuration information includes a QFI bound by the PCC rule and a QoS parameter corresponding to the QFI.
  • the QoS parameters corresponding to the QFI include at least one of the following: QoS parameters between the relay terminal device and the remote terminal device, QoS parameters between the relay terminal device and the network device .
  • the parameter configuration system 1400 includes a first core network device, and the first core network device is configured to provide a control plane function; the parameter configuration information is carried between the first core network device 1410 and the In the control plane messages exchanged by the relay terminal equipment.
  • the parameter configuration system 1400 includes a first core network device 1410 and a third core network device 1430, and the first core network device 1410 and the third core network device 1430 use is used to provide a control plane function; wherein: the third core network device 1430 is configured to send a PCC rule to the first core network device, where the PCC rule includes first mapping indication information, and the first mapping indication information is used for is used to indicate whether to activate the reverse mapping QoS parameter mechanism; the first core network device 1410 is used to determine the state of the configuration corresponding to the PCC rule; the first core network device 1410 is also used to The mapping indication information is used to instruct to start the reverse mapping QoS parameter mechanism, and when the configuration corresponding to the PCC rule is in the relay state, the parameter configuration information is sent to the relay terminal device.
  • the third core network device 1430 is configured to send a PCC rule to the first core network device, where the PCC rule includes first mapping indication information, and the first mapping indication information is used for is used to indicate whether to activate the reverse mapping Qo
  • the parameter configuration information includes a QFI bound by a PCC rule; wherein, the QFI bound by the PCC rule is equal to a system QoS identifier.
  • the system QoS identification includes 5QI.
  • the parameter configuration system 1400 includes a second core network device 1420, and the second core network device 1420 is configured to provide user plane functions; the parameter configuration information is carried in the first In the user plane message that the second core network device 1420 interacts with the relay terminal device.
  • the user plane message includes a downlink data packet
  • the parameter configuration information is carried in a header of the downlink data packet.
  • the parameter configuration system 1400 includes a first core network device 1410, a second core network device 1420 and a third core network device 1430, the first core network device 1410 and the The third core network device 1430 is configured to provide a control plane function, and the second core network device 1420 is configured to provide a user plane function; wherein: the third core network device 1430 is configured to send a message to the first core network device PCC rules, the PCC rules include first mapping indication information, and the first mapping indication information is used to indicate whether to start the reverse mapping QoS parameter mechanism; the first core network device 1410 is used for the first mapping The indication information is used to indicate whether to start the reverse mapping QoS parameter mechanism, when the configuration corresponding to the PCC rule is in the relay state, and the QFI bound by the PCC rule can be equal to the system QoS identifier, send the message to the second The core network device sends second mapping indication information and the QFI bound to the PCC rule, where the second mapping indication information is used
  • the first core network device 1410 is further configured to: the configuration corresponding to the PCC rule is in a relay state, and the QFI bound by the PCC rule can be equal to the system In the case of the QoS identifier, the system QoS identifier is set as the QFI bound by the PCC rule.
  • the parameter configuration system 1400 includes a first core network device 1410, a second core network device 1420 and a third core network device 1430, the first core network device 1410 and the The third core network device 1430 is configured to provide a control plane function, and the second core network device 1420 is configured to provide a user plane function; wherein: the third core network device 1430 is configured to be in the configuration corresponding to the PCC rule In the relay state, and the QFI bound to the PCC rule can be equal to the system QoS identifier, send the PCC rule to the first core network device, where the PCC rule includes first mapping indication information, and the The first mapping indication information is used to instruct to start the reverse mapping QoS parameter mechanism; the first core network device 1410 is used to send the second mapping indication information and the PCC rule bound to the second core network device. QFI, the second mapping indication information is used to instruct to start the reverse mapping QoS parameter mechanism; the second core network device 1420 is used to send the parameter configuration information to
  • the third core network device 1430 is further configured to be in a relay state when the configuration corresponding to the PCC rule, and the QFI bound to the PCC rule can be equal to the system QoS
  • send identification setting indication information to the first core network device
  • the first core network device 1410 is further configured to set the system QoS identification to the first identification indication information according to the first identification indication information The QFI to which the PCC rules are bound.
  • the first core network device 1410 is further configured to set the system QoS identifier to the PCC when the configuration corresponding to the PCC rule is in a relay state The QFI to which the rule is bound.
  • the configuration corresponding to the PCC rule includes at least one of the following: a terminal device corresponding to the PCC rule, a PDU session corresponding to the PCC rule, and a service data flow SDF corresponding to the PCC rule.
  • the device provided in the above embodiment realizes its functions, only the division of the above functional modules is used as an example for illustration. In practical applications, the above functions can be allocated to different functional modules according to actual needs. That is, the content structure of the device is divided into different functional modules to complete all or part of the functions described above.
  • FIG. 15 shows a schematic structural diagram of a relay terminal device 150 provided by an embodiment of the present application.
  • the relay terminal device can be used to execute the above-mentioned parameter configuration method on the relay terminal device side.
  • the relay terminal device 150 may include: a processor 151, and a transceiver 152 connected to the processor 151; wherein:
  • the processor 151 includes one or more processing cores, and the processor 151 executes various functional applications and information processing by running software programs and modules.
  • Transceiver 152 includes a receiver and a transmitter.
  • transceiver 152 is a communication chip.
  • the relay terminal device 150 further includes: a memory and a bus.
  • the memory is connected to the processor through a bus.
  • the memory can be used to store a computer program, and the processor is used to execute the computer program, so as to implement each step performed by the relay terminal device in the above method embodiments.
  • volatile or non-volatile storage devices include but are not limited to: RAM (Random-Access Memory, random access memory) and ROM (Read-Only Memory), EPROM (Erasable Programmable Read-Only Memory, Erasable Programmable Read-Only Memory), EEPROM (Electrically Erasable Programmable Read-Only Memory, Electrically Erasable Programmable Read-Only Memory) ), flash memory or other solid-state storage technology, CD-ROM (Compact Disc Read-Only Memory), DVD (Digital Video Disc, high-density digital video disc) or other optical storage, tape cassettes, tapes, disk storage or other magnetic storage devices. in:
  • the transceiver 152 is configured to receive parameter configuration information from the core network; wherein the parameter configuration information is used to configure the relay terminal device and the remote terminal device under the condition that the reverse mapping QoS parameter mechanism is activated QoS parameters between.
  • the parameter configuration information includes a QFI bound to a policy and a charging control PCC rule, and a QoS parameter corresponding to the QFI.
  • the QoS parameters corresponding to the QFI include at least one of the following: QoS parameters between the relay terminal device and the remote terminal device, QoS parameters between the relay terminal device and the network device .
  • the core network includes a first core network device, and the first core network device is configured to provide a control plane function; the parameter configuration information is borne on the first core network device and the relay terminal In control plane messages of device interaction.
  • the core network includes a second core network device, and the second core network device is configured to provide user plane functions; the transceiver 152 is configured to receive downlink from the second core network device data packet; the processor 151 is configured to determine the QFI carried by the downlink data packet; the processor 151 is configured to determine the QFI carried by the downlink data packet based on the parameter configuration information and the downlink data packet QoS parameters between the relay terminal equipment and the remote terminal equipment.
  • the QoS parameter corresponding to the QFI includes the QoS parameter between the relay terminal device and the remote terminal device; the processor 151 is configured to: carry the packet header carried in the downlink data packet The QoS parameter corresponding to the QFI is used as the QoS parameter between the relay terminal device and the remote terminal device.
  • the QoS parameter corresponding to the QFI includes the QoS parameter between the relay terminal device and the network device; the processor 151 is configured to: correspond to the QFI carried in the header of the downlink data packet
  • the QoS parameter between the relay terminal device and the network device is used as the QoS parameter between the relay terminal device and the network device; based on the QoS parameter between the relay terminal device and the network device, determine the relationship between the relay terminal device and the network device.
  • QoS parameters between remote end devices are examples of the QoS parameters between remote end devices.
  • the parameter configuration information includes a QFI bound by a PCC rule; wherein, the QFI bound by the PCC rule is equal to a system QoS identifier.
  • the system QoS identification includes 5QI.
  • the core network includes a second core network device, and the second core network device is configured to provide a user plane function; the parameter configuration information is borne on the second core network device and the relay terminal In user plane messages of device interaction.
  • the user plane message includes a downlink data packet
  • the parameter configuration information is carried in a header of the downlink data packet.
  • the processor 151 is configured to: determine, based on the parameter configuration information, a QoS parameter between the relay terminal device and the network device; and based on the relationship between the relay terminal device and the network device QoS parameters between the relay terminal equipment and the remote terminal equipment are determined.
  • FIG. 16 shows a schematic structural diagram of a core network device 160 provided by an embodiment of the present application.
  • the core network device may be used to execute the above-mentioned parameter configuration method on the core network side.
  • the core network device 160 may include: a processor 161, and a transceiver 162 connected to the processor 161; wherein:
  • the processor 161 includes one or more processing cores, and the processor 161 executes various functional applications and information processing by running software programs and modules.
  • Transceiver 162 includes a receiver and a transmitter.
  • transceiver 162 is a communication chip.
  • the core network device 160 further includes: a memory and a bus.
  • the memory is connected to the processor through a bus.
  • the memory can be used to store a computer program, and the processor is used to execute the computer program, so as to implement each step performed by the core network in the above method embodiments.
  • volatile or non-volatile storage devices include but are not limited to: RAM (Random-Access Memory, random access memory) and ROM (Read-Only Memory), EPROM (Erasable Programmable Read-Only Memory, Erasable Programmable Read-Only Memory), EEPROM (Electrically Erasable Programmable Read-Only Memory, Electrically Erasable Programmable Read-Only Memory) ), flash memory or other solid-state storage technology, CD-ROM (Compact Disc Read-Only Memory), DVD (Digital Video Disc, high-density digital video disc) or other optical storage, tape cassettes, tapes, disk storage or other magnetic storage devices. in:
  • the transceiver 162 is configured to send parameter configuration information to the relay terminal device; wherein, the parameter configuration information is used to configure the relay terminal device and the remote terminal device when the reverse mapping QoS parameter mechanism is activated. QoS parameters between.
  • the parameter configuration information includes a QFI bound by the PCC rule and a QoS parameter corresponding to the QFI.
  • the QoS parameters corresponding to the QFI include at least one of the following: QoS parameters between the relay terminal device and the remote terminal device, QoS parameters between the relay terminal device and the network device .
  • the parameter configuration system includes a first core network device, and the first core network device is configured to provide a control plane function; the parameter configuration information is carried between the first core network device and the relay In the control plane messages that the terminal device interacts with.
  • the parameter configuration system includes a first core network device and a third core network device, and the first core network device and the third core network device are configured to provide a control plane function; wherein: the first core network device and the third core network device are configured to provide a control plane function;
  • the transceiver of the three-core network device is configured to send a PCC rule to the first core network device, where the PCC rule includes first mapping indication information, and the first mapping indication information is used to indicate whether to enable reverse mapping of QoS parameters mechanism;
  • the processor of the first core network device is configured to determine the state of the configuration corresponding to the PCC rule;
  • the transceiver of the first core network device is further configured to use the first mapping instruction information for Instruct to start the reverse mapping QoS parameter mechanism, and when the configuration corresponding to the PCC rule is in the relay state, send the parameter configuration information to the relay terminal device.
  • the parameter configuration information includes a QFI bound by a PCC rule; wherein, the QFI bound by the PCC rule is equal to a system QoS identifier.
  • the system QoS identification includes 5QI.
  • the parameter configuration system includes a second core network device, the second core network device is configured to provide a user plane function; the parameter configuration information is carried between the second core network device and the relay In the user plane messages that the terminal device interacts with.
  • the user plane message includes a downlink data packet
  • the parameter configuration information is carried in a header of the downlink data packet.
  • the parameter configuration system includes a first core network device, a second core network device, and a third core network device, and the first core network device and the third core network device are configured to provide a control plane function , the second core network device is configured to provide a user plane function; wherein: the transceiver of the third core network device is configured to send PCC rules to the first core network device, where the PCC rules include a first mapping indication information, the first mapping indication information is used to indicate whether to start the reverse mapping QoS parameter mechanism; the transceiver of the first core network device is used to indicate whether to start the reverse direction when the first mapping indication information is used
  • the mapping QoS parameter mechanism when the configuration corresponding to the PCC rule is in a relay state, and the QFI bound to the PCC rule can be equal to the system QoS identifier, send second mapping indication information to the second core network device and the QFI bound by the PCC rule, the second mapping instruction information is used to instruct to start the reverse mapping QoS parameter mechanism; the transceiver
  • the processor of the first core network device is further configured to: when the configuration corresponding to the PCC rule is in a relay state, and the QFI bound to the PCC rule can be equal to the system QoS identifier Next, the system QoS identifier is set as the QFI bound by the PCC rule.
  • the parameter configuration system includes a first core network device, a second core network device, and a third core network device, and the first core network device and the third core network device are configured to provide a control plane function , the second core network device is used to provide a user plane function; wherein: the transceiver of the third core network device is configured to be in a relay state in the configuration corresponding to the PCC rule, and the PCC rule is bound In the case that the predetermined QFI can be equal to the system QoS identifier, send the PCC rule to the first core network device, where the PCC rule includes first mapping indication information, and the first mapping indication information is used to instruct to start the reverse Mapping QoS parameter mechanism; the transceiver of the first core network device is configured to send second mapping indication information and the QFI bound to the PCC rule to the second core network device, the second mapping indication information is used to instruct to start the reverse mapping QoS parameter mechanism; the transceiver of the second core network device is used to send the parameter configuration information to the relay
  • the transceiver of the third core network device is further configured to be in a relay state when the configuration corresponding to the PCC rule is in a relay state, and the QFI bound to the PCC rule can be equal to the system QoS identifier , sending identification setting indication information to the first core network device; the processor of the first core network device is further configured to set the system QoS identification as the PCC rule according to the first identification indication information The bound QFI.
  • the processor of the first core network device is further configured to set the system QoS identifier to be bound by the PCC rule when the configuration corresponding to the PCC rule is in a relay state the QFI.
  • the configuration corresponding to the PCC rule includes at least one of the following: a terminal device corresponding to the PCC rule, a PDU session corresponding to the PCC rule, and a service data flow SDF corresponding to the PCC rule.
  • Embodiments of the present application further provide a computer-readable storage medium, where a computer program is stored in the storage medium, and the computer program is used to be executed by a processor of a relay terminal device, so as to realize the above-mentioned relay terminal device side parameter configuration method.
  • Embodiments of the present application further provide a computer-readable storage medium, where a computer program is stored in the storage medium, and the computer program is used to be executed by a processor of a core network device to implement the above-mentioned parameter configuration on the core network side method.
  • An embodiment of the present application further provides a chip, where a computer program is stored in the storage medium, and the computer program is used to be executed by a processor of a relay terminal device, so as to implement the above-mentioned parameter configuration method on the relay terminal device side .
  • Embodiments of the present application further provide a chip, where the chip includes a programmable logic circuit and/or program instructions, and when the chip runs on a core network device, it is used to implement the above-mentioned method for configuring parameters on the core network side.
  • the embodiment of the present application also provides a computer program product, which is used to implement the above-mentioned parameter configuration method on the relay terminal device side when the computer program product runs on the relay terminal device.
  • the embodiment of the present application also provides a computer program product, which is used to implement the above-mentioned parameter configuration method on the core network side when the computer program product runs on the core network device.
  • Computer-readable media includes both computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another.
  • a storage medium can be any available medium that can be accessed by a general purpose or special purpose computer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种参数配置方法、装置、系统、设备及存储介质,涉及通信技术领域。所述方法包括:核心网向中继终端设备发送参数配置信息,其中,参数配置信息用于在启动反向映射QoS参数机制的情况下,配置中继终端设备与远程终端设备之间的QoS参数。本申请保障了中继终端设备与远程终端设备之间的业务传输质量,另外,本申请并不限定由核心网中的哪一个功能实体向中继终端设备发送参数配置信息,从而在实际应用过程中,可以根据已知的信息交互架构,灵活设置参数配置信息的发送实体,一方面吻合已知的信息交互架构,提升了参数配置的兼容性和效率,另一方面,提升了参数配置的灵活性。

Description

参数配置方法、装置、系统、设备及存储介质 技术领域
本申请实施例涉及通信技术领域,特别涉及一种参数配置方法、装置、系统、设备及存储介质。
背景技术
3GPP(3rd Generation Partnership Project,第三代合作伙伴计划)在R13(Release 13,第13版本)ProSe(Proximity Service,近距离通讯服务)架构中引入了中继通信这一概念。
中继通信是指基于IP(Internet Protocol,互联网协议)层中继的UE(User Equipment,终端设备)-to-Network(终端设备连接至网络)。也即,Remote UE(远程终端设备)通过Relay UE(中继终端设备)接入网络。其中,Relay UE承担IP层中继的功能,在Remote UE和网络之间传输数据,以建立Remote UE与网络之间的通信连接。为了保障业务传输质量,相关技术引入了服务质量(Quality of Service,QoS)架构,支持不同业务对应于不同的QoS需求。针对非中继通信,终端设备直接与网络建立连接,网络可以按照不同的QoS参数规制终端设备与网络之间不同业务的传输。然而,针对中继通信,网络可以按照不同的QoS参数规制与网络直接连接的中继终端设备之间不同业务的传输,却无法规制远程终端设备与中继终端设备之间不同业务的传输,进而无法保障远程终端设备与中继终端设备之间的业务传输质量。
因此,针对中继通信,如何进行远程终端设备与中继终端设备之间的QoS参数的配置,还需要进一步地讨论和研究。
发明内容
本申请实施例提供了一种参数配置方法、装置、系统、设备及存储介质。所述技术方案如下:
一方面,本申请实施例提供了一种参数配置方法,应用于中继终端设备中,所述方法包括:
接收来自于核心网的参数配置信息;
其中,所述参数配置信息用于在启动反向映射QoS参数机制的情况下,配置所述中继终端设备与远程终端设备之间的QoS参数。
另一方面,本申请实施例提供了一种参数配置方法,应用于核心网中,所述方法包括:
向中继终端设备发送参数配置信息;
其中,所述参数配置信息用于在启动反向映射QoS参数机制的情况下,配置所述中继终端设备与远程终端设备之间的QoS参数。
再一方面,本申请实施例提供了一种参数配置装置,设置在中继终端设备中,所述装置包括:
配置信息接收模块,用于接收来自于核心网的参数配置信息;
其中,所述参数配置信息用于在启动反向映射QoS参数机制的情况下,配置所述中继终端设备与远程终端设备之间的QoS参数。
又一方面,本申请实施例提供了一种参数配置系统,所述参数配置系统,用于:
向中继终端设备发送参数配置信息;
其中,所述参数配置信息用于在启动反向映射QoS参数机制的情况下,配置所述中继终端设备与远程终端设备之间的QoS参数。
还一方面,本申请实施例提供了一种中继终端设备,所述中继终端设备包括:处理器,以及与所述处理器相连的收发器;其中:
所述收发器,用于接收来自于核心网的参数配置信息;
其中,所述参数配置信息用于在启动反向映射QoS参数机制的情况下,配置所述中继终端设备与远程终端设备之间的QoS参数。
还一方面,本申请实施例提供了一种核心网设备,所述核心网设备包括:处理器,以及与所述处理器相连的收发器;其中:
所述收发器,用于向中继终端设备发送参数配置信息;
其中,所述参数配置信息用于在启动反向映射QoS参数机制的情况下,配置所述中继终端设备与远程 终端设备之间的QoS参数。
还一方面,本申请实施例提供了一种计算机可读存储介质,所述存储介质中存储有计算机程序,所述计算机程序用于被中继终端设备的处理器执行,以实现如上述中继终端设备侧的参数配置方法。
还一方面,本申请实施例提供了一种计算机可读存储介质,所述存储介质中存储有计算机程序,所述计算机程序用于被核心网设备的处理器执行,以实现如上述核心网侧的参数配置方法。
还一方面,本申请实施例提供了一种芯片,所述芯片包括可编程逻辑电路和/或程序指令,当所述芯片在中继终端设备上运行时,用于实现如上述中继终端设备侧的参数配置方法。
还一方面,本申请实施例提供了一种芯片,所述芯片包括可编程逻辑电路和/或程序指令,当所述芯片在核心网设备上运行时,用于实现如上述核心网侧的参数配置方法。
还一方面,本申请实施例提供了一种计算机程序产品,当计算机程序产品在中继终端设备上运行时,用于实现如上述中继终端设备侧的参数配置方法。
还一方面,本申请实施例提供了一种计算机程序产品,当计算机程序产品在核心网设备上运行时,用于实现如上述核心网侧的参数配置方法。
本申请实施例提供的技术方案可以包括如下有益效果:
通过在核心网确定启动反向映射QoS参数机制的情况下,由核心网向中继终端设备发送参数配置信息,以配置中继终端设备和远程终端设备之间的QoS参数,解决了中继通信系统中核心网在启动反向映射QoS参数的情况下,中继终端设备无法获取QoS参数的缺陷,保障了中继终端设备与远程终端设备之间的业务传输质量。另外,在本申请实施例中,并不限定由核心网中的哪一个功能实体向中继终端设备发送参数配置信息,从而在实际应用过程中,可以根据已知的信息交互架构,灵活设置参数配置信息的发送实体,一方面吻合已知的信息交互架构,提升了参数配置的兼容性和效率,另一方面,提升了参数配置的灵活性。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请一个实施例提供的通信系统的示意图;
图2是本申请一个实施例提供的5GS系统架构的示意图;
图3是本申请另一个实施例提供的5GS系统架构的示意图;
图4是本申请一个实施例提供的中继通信系统的示意图;
图5是本申请一个实施例提供的参数配置方法的流程图;
图6是本申请另一个实施例提供的参数配置方法的流程图;
图7是本申请又一个实施例提供的参数配置方法的流程图;
图8是本申请还一个实施例提供的参数配置方法的流程图;
图9是本申请还一个实施例提供的参数配置方法的流程图;
图10是本申请还一个实施例提供的参数配置方法的流程图;
图11是本申请还一个实施例提供的参数配置方法的流程图;
图12是本申请一个实施例提供的参数配置装置的框图;
图13是本申请另一个实施例提供的参数配置装置的框图;
图14是本申请一个实施例提供的参数配置系统的框图;
图15是本申请一个实施例提供的中继终端设备的结构框图;
图16是本申请一个实施例提供的核心网设备的结构框图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施方式作进一步地详细描述。
本申请实施例描述的网络架构以及业务场景是为了更加清楚地说明本申请实施例的技术方案,并不构成对本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
本申请实施例提供的技术方案可以应用于各种通信系统,例如:GSM(Global System of Mobile Communication,全球移动通讯)系统、CDMA(Code Division Multiple Access,码分多址)系统、WCDMA(Wideband Code Division Multiple Access,宽带码分多址)系统、GPRS(General Packet Radio Service,通 用分组无线业务)、LTE(Long Term Evolution,长期演进)系统、FDD(Frequency Division Duplex,LTE频分双工)系统、TDD(Time Division Duplex,LTE时分双工)系统、UMTS(Universal Mobile Telecommunication System,通用移动通信系统)、WiMAX(Worldwide Interoperability for Microwave Access,全球互联微波接入)通信系统、5GS(5th-Generation System,第五代移动通信系统)或新空口(New Radio,NR)系统、或者后续其它的演进系统等。
请参考图1,其示出了本申请实施例提供的一种通信系统的系统架构的示意图。如图1所示,该系统架构100可以包括:终端设备10、接入网设备20和核心网设备30。
终端设备10可以指UE、接入终端、用户单元、用户站、移动站、移动台、远方站、远端终端、移动设备、无线通信设备、用户代理或用户装置。可选地,终端设备还可以是蜂窝电话、无绳电话、SIP(Session Initiation Protocol,会话启动协议)电话、WLL(Wireless Local Loop,无线本地环路)站、PDA(Personal Digita1Assistant,个人数字处理)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,5GS中的终端设备或者未来演进的PLMN(Pub1ic Land Mobi1e Network,公用陆地移动通信网络)中的终端设备等,本申请实施例对此并不限定。
接入网设备20是一种部署在接入网中用以为终端设备提供无线通信功能的设备。接入网设备20可以包括各种形式的宏基站,微基站,中继站,接入点等等。在采用不同的无线接入技术的系统中,具备接入网设备功能的设备的名称可能会有所不同,例如在5GS中,称为gNodeB或者gNB。随着通信技术的演进,“接入网设备”这一名称可能会变化。为方便描述,本申请实施例中,上述为终端设备提供无线通信功能的装置统称为接入网设备。
核心网设备30是指可以为终端设备提供会话管理、移动性关系、策略管理、安全认证等功能的设备。本申请实施例中,核心网设备30可以包括第一核心网设备、第二核心网设备和第三核心网设备,其中,第一核心网设备负责终端设备的会话管理;第二核心网设备负责根据第一核心网设备的路由规则执行用户数据包转发;第三核心网设备负责用户策略管理。示例性地,在5GS系统中,第一核心网可以实现为SMF(Session Management Function,会话管理功能),第二核心网设备可以实现为UPF(User Plane Function,用户面功能),第三核心网设备可以实现为PCF(Policy Control Function,策略控制功能)。
在一个示例中,如图1所示,终端设备包括远程(Remote)终端设备12和中继(Relay)终端设备14。中继终端设备14可以与远程终端设备12之间进行数据传输,以建立远程终端设备12与网络设备之间的通信连接,该网络设备包括接入网设备20和/或核心网设备30。
图2示出了本申请实施例提供的5GS的系统架构的示意图。如图2所示,该系统架构200可以包括:UE、(R)AN((Radio)Access Network,(无线)接入网)、Core(核心网)和DN(Data Network,数据网络)构成。其中,UE、AN、Core是构成架构的主要成分,逻辑上它们可以分为用户面和控制面两部分,控制面负责移动网络的管理,用户面负责业务数据的传输。图2中,NG2参考点位于RAN控制面和Core控制面之间,NG3参考点位于RAN用户面和Core用户面之间,NG6参考点位于Core用户面和数据网络之间。其中:
UE:是移动用户与网络交互的入口,能够提供基本的计算能力、存储能力,向用户显示业务窗口,接受用户操作输入。UE会采用下一代空口技术,与RAN建立信号连接、数据连接,从而传输控制信号和业务数据到移动网络。
(R)AN:类似于传统网络里面的基站,部署在靠近UE的位置,为特定区域的授权用户提供入网功能,并能够根据用户的级别,业务的需求等使用不同质量的传输隧道传输用户数据。RAN能够管理自身的资源,合理利用,按需为UE提供接入服务,把控制信号和用户数据在UE和核心网之间转发。
Core:负责维护移动网络的签约数据,管理移动网络的网元,为UE提供会话管理、移动性管理、策略管理、安全认证等功能。在UE附着的时候,为UE提供入网认证;在UE有业务请求时,为UE分配网络资源;在UE移动的时候,为UE更新网络资源;在UE空闲的时候,为UE提供快恢复机制:在UE去附着的时候,为UE释放网络资源;在UE有业务数据时,为UE提供数据路由功能,如转发上行数据到DN:或者从DN接收UE下行数据,转发到RAN,从而发送给UE。
DN:是为用户提供业务服务的数据网络,一般客户端位于UE,服务端位于数据网络。数据网络可以是私有网络,如局域网,也可以是不受运营商管控的外部网络,如Internet,还可以是运营商共同部署的专有网络,如为了配置IMS(IP Multimedia Core Network Subsystem,IP多媒体网络子系统)服务。
图3是在图2的基础上确定的详细架构,其中核心网用户面包括UPF;核心网控制面包括AUSF(Authentication Server Function,认证服务器功能)、AMF(Core Access and Mobility Management Function,核心网接入和移动性管理功能)、SMF、UDM(Unified Data Management,统一数据管理)、PCF,AF(Application Function,应用功能)。这些功能实体的功能如下:
UPF:根据SMF的路由规则执行用户数据包转发;
AUSF:执行UE的安全认证;
AMF:UE接入管理和移动性管理;
SMF:UE会话管理;
UDM:用户签约上下文管理;
PCF:用户策略管理;
AF:用户应用管理。
在图3所示架构中,Uu接口为UE与AN之间的参考点,用于交互接入层消息及无线数据传输;N1接口为UE与AMF之间的参考点;N2接口为RAN和AMF的参考点,用于NAS消息的发送等;N3接口为RAN和UPF之间的参考点,用于传输用户面的数据等;N4接口为SMF和UPF之间的参考点,用于传输例如N3连接的隧道标识信息、数据缓存指示信息,以及下行数据通知消息等信息;N6接口为UPF和DN之间的参考点,用于传输用户面的数据等。
需要说明的是,图2和图3中的各个网元之间的接口名称只是一个示例,具体实现中接口的名称可能为其他的名称,本申请实施例对此不作具体限定。图2和图3中包括的各个网元(比如SMF、AF、UPF等)的名称也仅是一个示例,对网元本身的功能不构成限定。在5GS以及未来其它的网络中,上述各个网元也可以是其他的名称,本申请实施例对此不作具体限定。例如,在6G网络中,上述各个网元中的部分或全部可以沿用5G中的术语,也可能采用其他名称,等等,在此进行统一说明,以下不再赘述。此外,应理解,上述各个网元之间的所传输的消息(或信令)的名称也仅仅是一个示例,对消息本身的功能不构成任何限定。
终端设备接入网络之后,位于核心网的SMF通过控制信令将QoS规则发送给终端设备,终端设备使用QoS规则对上行业务数据进行匹配,将上行业务数据映射到合适的QoS流进行QoS控制。5G网络中考虑对多种新业务的支持,可能导致向终端设备配置的QoS参数构造复杂、更新频繁等,为此5G网络中引入了可选的反向映射QoS参数机制。该反向映射QoS参数机制的主要思想是在下行数据包头添加QoS流的标识QFI以及反向映射指示,终端设备根据收到的下行数据包自行确定QoS规则,用于上行数据的传输,从而减少了SMF和终端设备的信令交互。
本申请实施例中,当一个终端设备既具有通过5G等网络连接外部数据网络的能力,还具有ProSe(Proximity-based Services,近距离业务)能力时,这个终端设备可以充当中继终端设备,另外一个具有ProSe能力的终端设备作为远程终端设备。具有Prose能力的终端设备可以通过PC5接口与另一个具有Prose能力的终端设备直接通信。如图4所示,远程终端设备可以通过PC5接口与中继终端设备建立直接连接,并通过中继终端设备与网络建立的PDU会话与外部网络交互。
在一个示例中,核心网通过控制平面消息向中继终端设备发送中继终端设备与远程终端设备之间的QoS参数(也称为PC5QoS参数),或者向中继终端设备发送网络设备与中继终端设备之间的QoS参数(也称为Uu QoS参数),该网络设备包括核心网设备和/或接入网设备。从而,在中继终端设备接收到中继终端设备与远程终端设备之间的QoS参数时,可以直接使用该QoS参数规制与远程终端设备之间的业务传输;在中继终端设备接收到网络设备与中继终端设备之间的QoS参数时,可以根据网络设备与中继终端设备之间的QoS参数进一步确定中继终端设备与远程终端设备之间的QoS参数,后续使用确定得到的QoS参数规制与远程终端设备之间的业务传输。
然而,针对中继通信,若核心网中的SMF启动反向映射QoS参数机制,则中继终端设备不再与SMF进行信令交互,从而中继终端设备也无法获取QoS参数。因此,尽管核心网中的UPF向中继终端设备发送的下行数据包的包头中携带QFI,中继终端设备也无法确定与该QFI对应的QoS参数,进而无法保障远程终端设备与中继终端设备之间的业务传输质量。
基于此,本申请实施例提供了一种参数配置方法,通过在核心网确定启动反向映射QoS参数机制的情况下,向中继终端设备发送参数配置信息,该参数配置信息即用于配置中继终端设备与远程终端设备之间的QoS参数。在本申请实施例中,核心网既可以通过控制平面消息将参数配置信息发送给中继终端设备,也可以通过用户平面消息将参数配置信息发送给中继终端设备,并且,在采用不同的发送方式时,参数配置信息的内容也可能会有所区别。
下面,通过几个实施例对本申请的技术方案进行介绍说明。
请参考图5,其示出了本申请一个实施例提供的参数配置方法的流程图,该方法可以应用于上述图1或图4所示的通信系统中。该方法可以包括如下几个步骤:
步骤510,核心网向中继终端设备发送参数配置信息,其中,参数配置信息用于在启动反向映射QoS参数机制的情况下,配置中继终端设备与远程终端设备之间的QoS参数。
中继终端设备与远程终端设备之间的QoS参数,又可以称为PC5QoS参数,用于保障中继终端设备与远程终端设备之间的业务传输质量。本申请实施例中,核心网在确定需要启动反向映射QoS参数机制的情况下,向中继终端设备发送参数配置信息,以配置中继终端设备与远程终端设备之间的QoS参数。
本申请实施例对核心网向中继终端设备发送参数配置信息的时机和方式不作限定。在一个示例中,核心网在确定启动反向映射QoS机制,且启动反向映射QoS参数机制之前,向中继终端设备发送参数配置信息,从而该参数配置信息是核心网通过控制平面消息发送给中继终端设备的,也即,核心网中的控制平面功能实体向中继终端设备发送参数配置信息。在另一个示例中,核心网在确定启动反向映射QoS机制,且启动反向映射QoS参数机制的过程中或启动反向映射QoS参数机制之后,向中继终端设备发送参数配置信息,从而该参数配置信息是核心网通过用户平面消息发送给中继终端设备的,也即,核心网中的用户平面功能实体向中继终端设备发送参数配置信息。
由上述介绍说明可知,针对核心网在不同时机向中继终端设备发送参数配置信息,该参数配置信息的发送实体有所区别。作为一个示例,在某一时机下,参数配置信息的发送实体与已有的信息交互架构中对应于该时机下与中继终端设备交互的核心网功能实体相吻合。
例如,在已有的信息交互架构中,启动反向映射QoS参数机制之前由核心网中的控制平面功能实体与中继终端设备之间进行交互,从而,在启动反向映射QoS参数机制之前,由控制平面功能实体作为参数配置信息的发送实体。又例如,在已有的信息交互架构中,启动反向映射QoS参数机制的过程中或之后,由核心网中的用户平面功能实体与中继终端设备之间进行交互,从而,在启动反向映射QoS参数机制的过程中或之后,由用户平面功能实体作为参数配置信息的发送实体。
通过在不同时机下,设置与已有的信息交互架构相吻合的参数配置信息的发送实体,能够避免对已有的信息交互架构进行过多地、繁琐地修改,提升了启动反向映射QoS参数时QoS参数配置的兼容性,另外,也避免了中继终端设备同时与过多不同的功能实体进行信息交互,有助于提升QoS参数配置的效率。
可选地,由核心网中不同的功能实体向中继终端设备发送的参数配置信息的内容可能有所不同。示例性地,由控制平面功能实体向中继终端设备发送的参数配置信息包括QoS参数,而由用户平面功能实体向中继终端设备发送的参数配置信息包括QFI。尽管参数配置信息的内容有所不同,但在本申请实施例中,中继终端设备根据接收到的参数配置信息均可以确定中继终端设备与远程终端设备之间的QoS参数。有关参数配置信息的内容,以及中继终端设备如何确定QoS参数等的介绍说明,请参见下述实施例,此处不多赘述。
综上所述,本申请实施例提供的技术方案,通过在核心网确定启动反向映射QoS参数机制的情况下,由核心网向中继终端设备发送参数配置信息,以配置中继终端设备和远程终端设备之间的QoS参数,解决了中继通信系统中核心网在启动反向映射QoS参数的情况下,中继终端设备无法获取QoS参数的缺陷,保障了中继终端设备与远程终端设备之间的业务传输质量。另外,在本申请实施例中,并不限定由核心网中的哪一个功能实体向中继终端设备发送参数配置信息,从而在实际应用过程中,可以根据已知的信息交互架构,灵活设置参数配置信息的发送实体,一方面吻合已知的信息交互架构,提升了参数配置的兼容性和效率,另一方面,提升了参数配置的灵活性。
在一个示例中,参数配置信息包括PCC规则所绑定的QFI,以及QFI对应的QoS参数。
PCC(Policy and Charging Control,策略与计费控制)规则是与用户策略管理相关的规则,其中,PCC规则针对QoS流相关的要求进行了规定。由上述介绍说明可知,在启动反向映射QoS参数机制的过程中或之后,中继终端设备是根据下行数据包的包头所携带的QFI和反向映射指示,来确定与远程终端设备之间的QoS参数,因此,可以建立QFI与QoS参数之间的对应关系,以便于后续中继终端设备根据下行数据包的包头所携带的QFI确定对应的QoS参数。
基于此,核心网向中继终端设备发送的参数配置信息包括PCC规则所绑定的QFI,以及QFI对应的QoS参数。可选地,QFI对应的QoS参数包括以下至少一项:中继终端设备与远程终端设备之间的QoS参数、中继终端设备与网络设备之间的QoS参数。其中,本申请实施例对网络设备的类型不作限定,该网络设备可以为接入网设备,如基站等;也可以为核心网设备,如UPF等。
由于QoS参数由核心网中的控制平面功能实体配置,因此,在参数配置信息包括QoS参数的情况下,可以由控制平面功能实体向中继终端设备发送参数配置信息。可选地,核心网包括第一核心网设备,第一核心网设备用于提供控制平面功能,也即,第一核心网设备为控制平面功能实体。例如,第一核心网设备实现为上述实施例中介绍的SMF。因此,参数配置信息承载在第一核心网设备与中继终端设备交互的控制平面消息中。
本申请实施例中,参数配置信息中的QoS参数是与PCC规则所绑定的QFI相对应的,因而第一核心网设备需要确定PCC规则所绑定的QFI。基于此,上述核心网还包括第三核心网设备,第三核心网设备用于提供控制平面功能,也即,第三核心网设备也为控制平面功能实体。例如,第三核心网设备实现为上述实施例中介绍的PCF。如图6所示,上述步骤510包括如下几个步骤:
步骤512,第三核心网设备向第一核心网设备发送PCC规则,PCC规则包括第一映射指示信息,第一映射指示信息用于指示是否启动反向映射QoS参数机制。
第三核心网设备用于用户策略管理,因而,由第三核心网设备生成PCC规则。第三核心网设备在生成PCC规则后,可以将该PCC规则发送给第一核心网设备。可选地,第三核心网设备还可以确定是否启动反向映射QoS参数机制,并将确定结果告知第一核心网设备。为了减少第三核心网设备与第一核心网设备之间的信令往来,第三核心网设备可以在PCC规则中携带第一映射指示信息,以向第一核心网设备指示是否启动反向映射QoS参数机制。
步骤514,第一核心网设备确定PCC规则对应的配置的状态。
第一核心网设备接收到PCC规则后,可以确定PCC规则所绑定的QoS流,进而将该QoS流标识QFI确定为PCC规则所绑定的QFI,然后根据PCC规则所绑定的QFI来配置参数配置信息。
此外,由于本申请实施例是在中继通信过程中,向中继终端设备发送参数配置信息,因此,第一核心网设备还需要确定PCC规则对应的配置是否为中继状态。若PCC规则对应的配置处于非中继状态,则第一核心网设备无需为终端设备配置参数配置信息。可选地,PCC规则对应的配置包括以下至少一项:PCC规则对应的终端设备、PCC规则对应的PDU(Protocol Data Unit,协议数据单元)会话、PCC规则对应的SDF(Service Data Flow,业务数据流)。
步骤516,第一核心网设备在第一映射指示信息用于指示启动反向映射QoS参数机制,且PCC规则对应的配置处于中继状态的情况下,向中继终端设备发送参数配置信息。
在第一映射指示信息用于指示启动反向映射QoS参数机制,并且PCC规则对应的配置处于中继状态的情况下,第一核心网设备确定需要为中继终端设备配置参数配置信息。第一核心网设备在根据PCC规则所绑定的QFI确定了参数配置信息后,在启动反向映射QoS参数机制之前,向中继终端设备发送参数配置信息。
反向映射QoS参数机制启动过程中或启动之后,核心网中的控制平面功能实体不再与中继终端设备进行信令往来,而由核心网中的用户平面功能实体与中继终端设备进行信令往来。因此,本申请实施例中,核心网还包括第二核心网设备,第二核心网设备用于提供用户平面功能,也即,第二核心网设备为用户平面功能实体。例如,第二核心网设备为上述实施例中介绍的UPF。基于此,如图6所示,上述方法还包括如下几个步骤:
步骤522,第二核心网设备向中继终端设备发送下行数据包。
第二核心网设备可以中继终端设备发送下行数据包,该下行数据包携带QFI,可选地,由下行数据包的包头携带QFI。
步骤524,中继终端设备确定下行数据包所携带的QFI。
中继终端设备接收到下行数据包之后,可以解析该下行数据包,以获取下行数据包所携带的QFI。
步骤526,中继终端设备基于参数配置信息和下行数据包所携带的QFI,确定中继终端设备与远程终端设备之间的QoS参数。
一方面,中继终端设备根据第一核心网设备发送的参数配置信息,明确了QFI和QoS参数之间的对应关系;另一方面,中继终端设备根据第二核心网设备发送的下行数据包解析出QFI,从而,中继终端设备按照QFI和QoS参数之间的对应关系,即可确定与下行业务数据包所携带的QFI对应的QoS参数,进而确定中继终端设备与远程终端设备之间的QoS参数。
由上述介绍可知,第一核心网设备发送的参数配置信息中,与QFI对应的QoS参数可能是中继终端设备与远程终端设备之间的QoS参数,也可能是中继终端设备与网络设备之间的QoS参数。针对QFI对应的QoS参数包括中继终端设备与远程终端设备之间的QoS参数,中继终端设备直接确定与远程终端设备之间的QoS参数,也即,上述步骤526,包括:中继终端设备将下行数据包的包头所携带的QFI对应的QoS参数,作为中继终端设备与远程终端设备之间的QoS参数。针对QFI对应的QoS参数包括中继终端设备与网络设备之间的QoS参数,中继终端设备间接确定与远程终端设备之间的QoS参数,也即,上述步骤526,包括:中继终端设备将下行数据包的包头所携带的QFI对应的QoS参数,作为中继终端设备与网络设备之间的QoS参数;基于中继终端设备与网络设备之间的QoS参数,确定中继终端设备与远程终端设备之间的QoS参数。
综上所述,本申请实施例提供的技术方案,通过在核心网启动反向映射QoS参数机制之前,由核心网中的控制平面功能实体向中继终端设备发送参数配置信息,该参数配置信息包括QFI以及与QFI对应的QoS参数,从而后续中继终端设备可以根据接收到的下行数据包所携带的QFI,来确定与远程终端设备之间的QoS参数,有效保障了中继终端设备与远程终端设备之间的业务传输质量。
在一个示例中,参数配置信息包括PCC规则所绑定的QFI;其中,PCC规则所绑定的QFI等于系统QoS标识。
系统QoS标识是终端设备与网络设备之间的QoS参数中最重要的部分,通常情况下,明确了系统QoS标识,也就明确了终端设备与网络设备之间的QoS参数。另外,针对中继通信而言,中继终端设备与网络 设备之间的QoS参数,可以和中继终端设备与远程终端设备之间的QoS参数之间建立对应关系等,从而,中继终端设备明确了中继终端设备与网络设备之间的QoS参数,也就可以进一步明确中继终端设备与远程终端设备之间的QoS参数。因此,若PCC规则所绑定的QFI等于系统QoS标识,那么,中继终端设备明确了PCC规则所绑定的QFI,也就明确了中继终端设备与网络设备之间的QoS参数,从而可以进一步明确中继终端设备与远程终端设备之间的QoS参数。
基于此,在PCC规则所绑定的QFI等于系统QoS标识的情况下,核心网向中继终端设备发送的参数配置信息包括PCC规则所绑定的QFI。可选地,系统QoS标识包括5QI(5G QoS Identifier,第五代移动通信系统QoS标识)。
由于在启动反向映射QoS参数机制之后,核心网与中继终端设备之间交互的为用户平面消息,且该消息中携带QFI。基于此,核心网包括第二核心网设备,第二核心网设备用于提供用户平面功能,也即,第二核心网设备为用户平面功能实体。例如,第二核心网设备为上述实施例中介绍的UPF。因此,参数配置信息承载在第二核心网设备与中继终端设备交互的用户平面消息中。可选地,用户平面消息包括下行数据包,参数配置信息承载在下行数据包的包头中。
本申请实施例中,PCC规则所绑定的QFI是由核心网中的控制平面功能实体向用户平面功能实体发送的。基于此,核心网还包括第一核心网设备和第三核心网设备,第一核心网设备和第三核心网设备用于提供控制平面功能,也即,第一核心网设备和第三核心网设备为控制平面功能实体。例如,第一核心网设备为上述实施例中介绍的SMF,第三核心网设备为上述实施例中介绍的PCF。
另外,在本申请实施例中,既可以由第一核心网设备确定是否需要启动反向映射QoS参数机制,也可以由第三核心网设备确定是否需要启动反向映射QoS参数机制。下面,分别针对这两种情况进行介绍说明。
在一个示例中,如图7所示,上述步骤510包括如下几个步骤:
步骤51A,第三核心网设备向第一核心网设备发送PCC规则,PCC规则包括第一映射指示信息,第一映射指示信息用于指示是否启动反向映射QoS参数机制。
有关步骤51A的介绍说明,请参见上述步骤512的介绍说明,此处不多赘述。
步骤51C,第一核心网设备在第一映射指示信息用于指示启动反向映射QoS参数机制、PCC规则对应的配置处于中继状态、以及PCC规则所绑定的QFI能够等于系统QoS标识的情况下,向第二核心网设备发送第二映射指示信息以及PCC规则所绑定的QFI,第二映射指示信息用于指示启动反向映射QoS参数机制。
本申请实施例中,第一核心网设备在接收到PCC规则之后,确定是否启动反向映射QoS参数机制。由上述介绍说明可知,在PCC规则所绑定的QFI等于系统QoS标识的情况下,中继终端设备可以根据PCC规则所绑定的QFI来确定QoS参数。因此,第一核心网设备可以根据PCC规则所绑定的QFI是否能够等于系统QoS参数,来确定是否启动反向映射QoS参数机制。
此外,正如上述步骤514的介绍说明,由于本申请实施例是在中继通信过程中,向中继终端设备发送参数配置信息,因此,第一核心网设备还可以确定PCC规则对应的配置是否为中继状态。若PCC规则对应的配置处于非中继状态,则第一核心网设备无需为终端设备配置参数配置信息。可选地,PCC规则对应的配置包括以下至少一项:PCC规则对应的终端设备、PCC规则对应的PDU会话、PCC规则对应的SDF。
基于此,在第一核心网设备接收到的第一映射信息用于指示启动反向映射QoS参数机制、PCC规则对应的配置处于中继状态、PCC规则所绑定的QFI能够等于系统QoS标识这三个条件同时满足的情况下,第一核心网设备确定启动反向映射QoS参数机制,并向第二核心网设备发送第二映射指示信息以及PCC规则所绑定的QFI,以告知第二核心网设备启动反向映射QoS参数机制。此外,本申请实施例中,在上述三个条件不同时满足的情况下,第一核心网设备确定不启动反向映射QoS参数机制。
步骤51E,第二核心网设备向中继终端设备发送参数配置信息。
第二核心网设备接收到第二映射指示信息以及PCC规则所绑定的QFI,确定启动反向映射QoS参数机制时,根据PCC规则所绑定的QFI确定参数配置信息。可选地,第二核心网设备将PCC规则所绑定的QFI设置在下行数据包的包头中,也即,参数配置信息承载在下行数据包的包头中。从而,中继终端设备在接收到下行数据包之后,即可解析得到PCC规则所绑定的QFI。
正是由于PCC规则所绑定的QFI等于系统QoS标识这一条件能够成立,中继终端设备才可以依据PCC规则所绑定的QFI明确中继终端设备与远程终端设备之间的QoS参数,因此,第一核心网设备还需要将PCC规则所绑定的QFI设置为系统QoS标识。基于此,可选地,如图7所示,上述方法还包括:第一核心网设备在PCC规则对应的配置处于中继状态,且PCC规则所绑定的QFI能够等于系统QoS标识的情况下,将PCC规则所绑定的QFI设置为系统QoS标识。
在另一个示例中,如图7所示,上述步骤510包括如下几个步骤:
步骤51B,第三核心网设备在PCC规则对应的配置处于中继状态,且PCC规则所绑定的QFI能够等于系统QoS标识的情况下,向第一核心网设备发送PCC规则,PCC规则包括第一映射指示信息,第一映 射指示信息用于指示启动反向映射QoS参数机制。
由上述介绍说明可知,在PCC规则所绑定的QFI等于系统QoS标识的情况下,中继终端设备可以根据PCC规则所绑定的QFI来确定QoS参数。因此,第三核心网设备可以根据PCC规则所绑定的QFI是否能够等于系统QoS参数,来确定是否启动反向映射QoS参数机制。此外,正如上述步骤514的介绍说明,由于本申请实施例是在中继通信过程中,向中继终端设备发送参数配置信息,因此,第三核心网设备还可以确定PCC规则对应的配置是否为中继状态。若PCC规则对应的配置处于非中继状态,则第三核心网设备无需确定PCC规则所绑定的QFI是否能够等于系统QoS标识。可选地,PCC规则对应的配置包括以下至少一项:PCC规则对应的终端设备、PCC规则对应的PDU会话、PCC规则对应的SDF。
基于此,在第三核心网设备确定PCC规则对应的配置处于中继状态、PCC规则所绑定的QFI能够等于系统QoS标识这两个条件同时满足的情况下,第三核心网设备确定启动反向映射QoS参数机制,并向第一核心网设备发送第一映射指示信息,以告知第一核心网设备启动反向映射QoS参数机制。此外,本申请实施例中,在第三核心网设备确定PCC规则对应的配置处于中继状态,且PCC规则所绑定的QFI无法等于系统QoS标识的情况下,第一核心网设备确定不启动反向映射QoS参数机制。
步骤51D,第一核心网设备向第二核心网设备发送第二映射指示信息以及PCC规则所绑定的QFI,第二映射指示信息用于指示启动反向映射QoS参数机制。
第一核心网设备接收到第一映射指示信息,明确启动反向映射QoS参数机制的情况下,向第二核心网设备发送第二映射指示信息以及PCC规则所绑定的QFI,以告知第二核心网设备启动反向映射QoS参数机制。
步骤51F,第二核心网设备向中继终端设备发送参数配置信息。
有关步骤51F的介绍说明,请参见上述步骤51E的介绍说明,此处不多赘述。
由上述介绍说明可知,第一核心网设备还需要将PCC规则所绑定的QFI设置为系统QoS标识。本申请实施例中,既可以由第一核心网设备自行确定是否需要将PCC规则所绑定的QFI设置为系统QoS标识,也可以由第三核心网设备告知第一核心网设备是否需要将PCC规则所绑定的QFI设置为系统QoS标识。基于此,在一个示例中,如图7所示,上述方法还包括:第三核心网设备在PCC规则对应的配置处于中继状态,且PCC规则所绑定的QFI能够等于系统QoS标识的情况下,向第一核心网设备发送标识设置指示信息;第一核心网设备按照第一标识指示信息,将PCC规则所绑定的QFI设置为系统QoS标识。可选地,标识设置指示信息可以承载于PCC规则中,也可以独立于PCC规则,本申请实施例对此不作限定。在另一个示例中,如图7所示,上述方法还包括:第一核心网设备在PCC规则对应的配置处于中继状态的情况下,将PCC规则所绑定的QFI设置为系统QoS标识。
中继终端设备在明确了参数配置信息,即PCC规则所绑定的QFI之后,即可根据该QFI来确定中继终端设备与远程终端设备之间的QoS参数。基于此,如图7所示,上述方法还包括如下几个步骤:步骤532,中继终端设备基于参数配置信息,确定中继终端设备与网络设备之间的QoS参数。步骤534,中继终端设备基于中继终端设备与网络设备之间的QoS参数,确定中继终端设备与远程终端设备之间的QoS参数。
综上所述,本申请实施例提供的技术方案,通过在核心网启动反向映射QoS参数机制的过程中或之后,由核心网中的用户平面功能实体向中继终端设备发送参数配置信息,该参数配置信息包括QFI,且该QFI等于系统QoS标识。由于中继终端设备明确了系统QoS标识,也就明确了与网络设备之间的QoS参数,并进一步根据与网络设备之间的QoS参数明确与远程终端设备之间的QoS参数。从而,中继终端设备可以根据等于系统QoS标识的QFI,来确定与远程终端设备之间的QoS参数,有效保障了中继终端设备与远程终端设备之间的业务传输质量。
下面,以几个示例性实施例对本申请的技术方案进行介绍说明。假设第一核心网设备为SMF、第二核心网设备为UPF、第三核心网设备为PCF、系统QoS标识为5QI等。
请参考图8,其示出了本申请一个实施例提供的参数配置方法的流程图,该方法可以应用于上述图1或图4所示的通信系统中。该方法可以包括如下几个步骤:
步骤801,PCF向SMF发送PCC规则,该PCC规则包括第一映射指示信息。第一映射指示信息用于指示启动反向映射QoS参数机制。
步骤802,SMF确定PCC规则所绑定的QoS流。SMF确定了PCC规则所绑定的QoS流,即可将该QoS流对应的QFI确定为PCC规则所绑定的QFI。
步骤803,SMF确定PCC规则对应的UE或PDU会话或SDF的状态。SMF需要确定PCC规则对应的UE或PDU会话或SDF是否处于中继状态。
步骤804,SMF向Relay UE发送PCC规则所绑定的QFI以及该QFI对应的QoS参数。QFI对应的QoS参数可以为Uu QoS参数,也可以为PC5QoS参数。
步骤805,SMF向UPF发送第二映射指示信息以及PCC规则所绑定的QFI。第二映射指示信息用于指示启动反向映射QoS参数机制。
步骤806,UPF向Relay UE发送下行数据包。该下行数据包携带QFI以及第三映射指示信息,该第三映射指示信息用于指示启动反向映射QoS参数机制。
步骤807,Relay UE确定下行数据包所携带的QFI。
步骤808,Relay UE基于下行数据包所携带的QFI、PCC规则所绑定的QFI以及该QFI对应的QoS参数,确定PC5QoS参数。
在上述步骤804中,若Relay UE获取的QFI对应的QoS参数为PC5QoS参数,则在步骤808中,Relay UE将下行数据包所携带的QFI对应的QoS参数直接作为PC5QoS参数;若Relay UE获取的QFI对应的QoS参数为Uu QoS参数,则在步骤808中,Relay UE需要基于下行数据包所携带的QFI对应的QoS参数,进一步确定PC5QoS参数。
请参考图9,其示出了本申请一个实施例提供的参数配置方法的流程图,该方法可以应用于上述图1或图4所示的通信系统中。该方法可以包括如下几个步骤:
步骤901,PCF向SMF发送PCC规则,该PCC规则包括第一映射指示信息。第一映射指示信息用于指示是否启动反向映射QoS参数机制。本申请实施例中,PCC规则中还可以包括5QI。
步骤902,SMF确定PCC规则对应的UE或PDU会话或SDF的状态。SMF需要确定PCC规则对应的UE或PDU会话或SDF是否处于中继状态。
在第一映射指示信息用于指示启动反向映射QoS参数机制、PCC规则对应的UE或PDU会话或SDF处于中继状态、5QI能够被设置为PCC规则所绑定的QFI的情况下,SMF确定启动反向映射QoS机制,进而执行如下步骤:
步骤903,SMF确定PCC规则所绑定的QFI,并将PCC规则所绑定的QFI设置为5QI。SMF确定了PCC规则所绑定的QoS流,即可确定该QoS流对应的QFI,也即PCC规则所绑定的QFI。同时,SMF将PCC规则所绑定的QFI设置为5QI,如将PCC规则所绑定的QFI的值设置为5QI的值。
步骤904,SMF向UPF发送第二映射指示信息以及PCC规则所绑定的QFI。第二映射指示信息用于指示启动反向映射QoS参数机制。
步骤905,UPF向Relay UE发送下行数据包。该下行数据包携带QFI以及第三映射指示信息,该第三映射指示信息用于指示启动反向映射QoS参数机制。
步骤906,Relay UE确定下行数据包所携带的QFI。
步骤907,Relay UE基于下行数据包所携带的QFI,确定PC5QoS参数。由于SMF发送的下行数据包所携带的QFI等于5QI,因而,Relay UE基于下行数据包所携带的QFI可以确定Uu QoS,进而根据Uu QoS进一步确定PC5QoS。
请参考图10,其示出了本申请一个实施例提供的参数配置方法的流程图,该方法可以应用于上述图1或图4所示的通信系统中。该方法可以包括如下几个步骤:
步骤1001,PCF确定PCC规则对应的UE或PDU会话或SDF的状态。PCF需要确定PCC规则对应的UE或PDU会话或SDF是否处于中继状态。
在PCC规则对应的UE或PDU会话或SDF处于中继状态、5QI能够被设置为PCC规则所绑定的QFI的情况下,PCF确定启动反向映射QoS机制,进而执行如下步骤。
步骤1002,PCF向SMF发送PCC规则以及标识设置指示信息,该PCC规则包括第一映射指示信息。第一映射指示信息用于指示启动反向映射QoS参数机制,标识设置指示信息用于指示将PCC规则所绑定的QFI设置为5QI。该PCC规则还可以包括5QI。
步骤1003,SMF确定PCC规则所绑定的QFI,并将PCC规则所绑定的QFI设置为5QI。SMF确定了PCC规则所绑定的QoS流,即可确定该QoS流对应的QFI,也即PCC规则所绑定的QFI。同时,SMF将PCC规则所绑定的QFI设置为5QI,如将PCC规则所绑定的QFI的值设置为5QI的值。
步骤1004,SMF向UPF发送第二映射指示信息以及PCC规则所绑定的QFI。第二映射指示信息用于指示启动反向映射QoS参数机制。
步骤1005,UPF向Relay UE发送下行数据包。该下行数据包携带QFI以及第三映射指示信息,该第三映射指示信息用于指示启动反向映射QoS参数机制。
步骤1006,Relay UE确定下行数据包所携带的QFI。
步骤1007,Relay UE基于下行数据包所携带的QFI,确定PC5QoS参数。由于SMF发送的下行数据包所携带的QFI等于5QI,因而,Relay UE基于下行数据包所携带的QFI可以确定Uu QoS,进而根据Uu QoS进一步确定PC5QoS。
请参考图11,其示出了本申请一个实施例提供的参数配置方法的流程图,该方法可以应用于上述图1或图4所示的通信系统中。该方法可以包括如下几个步骤:
步骤1101,PCF确定PCC规则对应的UE或PDU会话或SDF的状态。PCF需要确定PCC规则对应的UE或PDU会话或SDF是否处于中继状态。
在PCC规则对应的UE或PDU会话或SDF处于中继状态、5QI能够被设置为PCC规则所绑定的QFI的情况下,PCF确定启动反向映射QoS机制,进而执行如下步骤。
步骤1102,PCF向SMF发送PCC规则,该PCC规则包括第一映射指示信息。第一映射指示信息用于指示启动反向映射QoS参数机制。该PCC规则还可以包括5QI。
步骤1103,SMF确定PCC规则对应的UE或PDU会话或SDF的状态。SMF需要确定PCC规则对应的UE或PDU会话或SDF是否处于中继状态。
在SMF确定PCC规则对应的UE或PDU会话或SDF处于中继状态时,执行如下步骤。
步骤1104,SMF确定PCC规则所绑定的QFI,并将PCC规则所绑定的QFI设置为5QI。SMF确定了PCC规则所绑定的QoS流,即可确定该QoS流对应的QFI,也即PCC规则所绑定的QFI。同时,SMF将PCC规则所绑定的QFI设置为5QI,如将PCC规则所绑定的QFI的值设置为5QI的值。
步骤1105,SMF向UPF发送第二映射指示信息以及PCC规则所绑定的QFI。第二映射指示信息用于指示启动反向映射QoS参数机制。
步骤1106,UPF向Relay UE发送下行数据包。该下行数据包携带QFI以及第三映射指示信息,该第三映射指示信息用于指示启动反向映射QoS参数机制。
步骤1107,Relay UE确定下行数据包所携带的QFI。
步骤1108,Relay UE基于下行数据包所携带的QFI,确定PC5QoS参数。由于SMF发送的下行数据包所携带的QFI等于5QI,因而,Relay UE基于下行数据包所携带的QFI可以确定Uu QoS,进而根据Uu QoS进一步确定PC5QoS。
需要说明的一点是,本申请实施例从中继终端设备和核心网之间交互的角度对本申请实施例提供的参数配置方法进行了介绍说明。上述有关中继终端设备执行的步骤,可以单独实现为中继终端设备侧的参数配置方法;上述有关核心网执行的步骤,可以单独实现为核心网侧的参数配置方法。
下述为本申请装置实施例,可以用于执行本申请方法实施例。对于本申请装置实施例中未披露的细节,请参照本申请方法实施例。
请参考图12,其示出了本申请一个实施例提供的参数配置装置的框图。该装置具有实现上述中继终端设备侧的方法示例的功能,所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该装置可以是上文介绍的中继终端设备,也可以设置在中继终端设备中。如图12所示,该装置1200可以包括:配置信息接收模块1210。
配置信息接收模块1210,用于接收来自于核心网的参数配置信息;其中,所述参数配置信息用于在启动反向映射QoS参数机制的情况下,配置所述中继终端设备与远程终端设备之间的QoS参数。
在一个示例中,所述参数配置信息包括PCC规则所绑定的QFI,以及所述QFI对应的QoS参数。
在一个示例中,所述QFI对应的QoS参数包括以下至少一项:所述中继终端设备与所述远程终端设备之间的QoS参数、所述中继终端设备与网络设备之间的QoS参数。
在一个示例中,所述核心网包括第一核心网设备,所述第一核心网设备用于提供控制平面功能;所述参数配置信息承载在所述第一核心网设备与所述中继终端设备交互的控制平面消息中。
在一个示例中,所述核心网包括第二核心网设备,所述第二核心网设备用于提供用户平面功能;如图13所示,所述装置1200还包括:数据包接收模块1220,用于接收来自于所述第二核心网设备的下行数据包;标识确定模块1230,用于确定所述下行数据包所携带的QFI;第一参数确定模块1240,用于基于所述参数配置信息和所述下行数据包所携带的QFI,确定所述中继终端设备与所述远程终端设备之间的QoS参数。
在一个示例中,所述QFI对应的QoS参数包括所述中继终端设备与所述远程终端设备之间的QoS参数;如图13所示,所述第一参数确定模块1240,用于:将所述下行数据包的包头所携带的QFI对应的QoS参数,作为所述中继终端设备与所述远程终端设备之间的QoS参数。
在一个示例中,所述QFI对应的QoS参数包括所述中继终端设备与网络设备之间的QoS参数;如图13所示,所述第一参数确定模块1240,用于:将所述下行数据包的包头所携带的QFI对应的QoS参数,作为所述中继终端设备与所述网络设备之间的QoS参数;基于所述中继终端设备与所述网络设备之间的QoS参数,确定所述中继终端设备与所述远程终端设备之间的QoS参数。
在一个示例中,所述参数配置信息包括PCC规则所绑定的QFI;其中,所述PCC规则所绑定的QFI等于系统QoS标识。
在一个示例中,所述系统QoS标识包括5QI。
在一个示例中,所述核心网包括第二核心网设备,所述第二核心网设备用于提供用户平面功能;所述参数配置信息承载在所述第二核心网设备与所述中继终端设备交互的用户平面消息中。
在一个示例中,所述用户平面消息包括下行数据包,所述参数配置信息承载在所述下行数据包的包头中。
在一个示例中,如图13所示,所述装置1200还包括:第二参数确定模块1250,用于基于所述参数配置信息,确定所述中继终端设备与网络设备之间的QoS参数;第一参数确定模块1260,用于基于所述中继终端设备与所述网络设备之间的QoS参数,确定所述中继终端设备与所述远程终端设备之间的QoS参数。
综上所述,本申请实施例提供的技术方案,通过在核心网确定启动反向映射QoS参数机制的情况下,由核心网向中继终端设备发送参数配置信息,以配置中继终端设备和远程终端设备之间的QoS参数,解决了中继通信系统中核心网在启动反向映射QoS参数的情况下,中继终端设备无法获取QoS参数的缺陷,保障中继终端设备与远程终端设备之间的业务传输质量。另外,在本申请实施例中,并不限定由核心网中的哪一个功能实体向中继终端设备发送参数配置信息,从而在实际应用过程中,可以根据已知的信息交互架构,灵活设置参数配置信息的发送实体,一方面吻合已知的信息交互架构,提升了参数配置的兼容性和效率,另一方面,提升了参数配置的灵活性。
请参考图14,其示出了本申请一个实施例提供的参数配置系统的框图。该系统具有实现上述核心网侧的方法示例的功能,所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该系统可以是上文介绍的核心网,也可以设置在核心网中。其中,该参数配置系统1400,用于:
向中继终端设备发送参数配置信息;其中,所述参数配置信息用于在启动反向映射QoS参数机制的情况下,配置所述中继终端设备与远程终端设备之间的QoS参数。
在一个示例中,所述参数配置信息包括PCC规则所绑定的QFI,以及所述QFI对应的QoS参数。
在一个示例中,所述QFI对应的QoS参数包括以下至少一项:所述中继终端设备与所述远程终端设备之间的QoS参数、所述中继终端设备与网络设备之间的QoS参数。
在一个示例中,所述参数配置系统1400包括第一核心网设备,所述第一核心网设备用于提供控制平面功能;所述参数配置信息承载在所述第一核心网设备1410与所述中继终端设备交互的控制平面消息中。
在一个示例中,如图14所示,所述参数配置系统1400包括第一核心网设备1410和第三核心网设备1430,所述第一核心网设备1410和所述第三核心网设备1430用于提供控制平面功能;其中:所述第三核心网设备1430,用于向所述第一核心网设备发送PCC规则,所述PCC规则包括第一映射指示信息,所述第一映射指示信息用于指示是否启动反向映射QoS参数机制;所述第一核心网设备1410,用于确定所述PCC规则对应的配置的状态;所述第一核心网设备1410,还用于在所述第一映射指示信息用于指示启动反向映射QoS参数机制,且所述PCC规则对应的配置处于中继状态的情况下,向中继终端设备发送所述参数配置信息。
在一个示例中,所述参数配置信息包括PCC规则所绑定的QFI;其中,所述PCC规则所绑定的QFI等于系统QoS标识。
在一个示例中,所述系统QoS标识包括5QI。
在一个示例中,如图14所示,所述参数配置系统1400包括第二核心网设备1420,所述第二核心网设备1420用于提供用户平面功能;所述参数配置信息承载在所述第二核心网设备1420与所述中继终端设备交互的用户平面消息中。
在一个示例中,所述用户平面消息包括下行数据包,所述参数配置信息承载在所述下行数据包的包头中。
在一个示例中,如图14所示,所述参数配置系统1400包括第一核心网设备1410、第二核心网设备1420和第三核心网设备1430,所述第一核心网设备1410和所述第三核心网设备1430用于提供控制平面功能,所述第二核心网设备1420用于提供用户平面功能;其中:所述第三核心网设备1430,用于向所述第一核心网设备发送PCC规则,所述PCC规则包括第一映射指示信息,所述第一映射指示信息用于指示是否启动反向映射QoS参数机制;所述第一核心网设备1410,用于在所述第一映射指示信息用于指示是否启动反向映射QoS参数机制、所述PCC规则对应的配置处于中继状态、以及所述PCC规则所绑定的QFI能够等于系统QoS标识的情况下,向所述第二核心网设备发送第二映射指示信息以及所述PCC规则所绑定的QFI,所述第二映射指示信息用于指示启动反向映射QoS参数机制;所述第二核心网设备1420,用于向所述中继终端设备发送所述参数配置信息。
在一个示例中,如图14所示,所述第一核心网设备1410,还用于:在所述PCC规则对应的配置处于中继状态,且所述PCC规则所绑定的QFI能够等于系统QoS标识的情况下,将所述系统QoS标识设置为所述PCC规则所绑定的QFI。
在一个示例中,如图14所示,所述参数配置系统1400包括第一核心网设备1410、第二核心网设备1420和第三核心网设备1430,所述第一核心网设备1410和所述第三核心网设备1430用于提供控制平面功能,所述第二核心网设备1420用于提供用户平面功能;其中:所述第三核心网设备1430,用于在所述PCC规则对应的配置处于中继状态,且所述PCC规则所绑定的QFI能够等于系统QoS标识的情况下,向所述第一核心网设备发送所述PCC规则,所述PCC规则包括第一映射指示信息,所述第一映射指示信息用于指示启动反向映射QoS参数机制;所述第一核心网设备1410,用于向所述第二核心网设备发送第二映射指示信息以及所述PCC规则所绑定的QFI,所述第二映射指示信息用于指示启动反向映射QoS参数机制;所述第二核心网设备1420,用于向所述中继终端设备发送所述参数配置信息。
在一个示例中,如图14所示,所述第三核心网设备1430,还用于在所述PCC规则对应的配置处于中继状态,且所述PCC规则所绑定的QFI能够等于系统QoS标识的情况下,向所述第一核心网设备发送标识设置指示信息;所述第一核心网设备1410,还用于按照所述第一标识指示信息,将所述系统QoS标识设置为所述PCC规则所绑定的QFI。
在一个示例中,如图14所示,所述第一核心网设备1410,还用于在所述PCC规则对应的配置处于中继状态的情况下,将所述系统QoS标识设置为所述PCC规则所绑定的QFI。
在一个示例中,所述PCC规则对应的配置包括以下至少一项:所述PCC规则对应的终端设备、所述PCC规则对应的PDU会话、所述PCC规则对应的业务数据流SDF。
需要说明的一点是,上述实施例提供的装置在实现其功能时,仅以上述各个功能模块的划分进行举例说明,实际应用中,可以根据实际需要而将上述功能分配由不同的功能模块完成,即将设备的内容结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。
关于上述实施例中的装置,其中各个模块执行操作的具体方式已经在有关该方法的实施例中进行了详细描述,此处将不做详细阐述说明。
请参考图15,其示出了本申请一个实施例提供的中继终端设备150的结构示意图,例如,该中继终端设备可以用于执行上述中继终端设备侧的参数配置方法。具体来讲,该中继终端设备150可以包括:处理器151,以及与所述处理器151相连的收发器152;其中:
处理器151包括一个或者一个以上处理核心,处理器151通过运行软件程序以及模块,从而执行各种功能应用以及信息处理。
收发器152包括接收器和发射器。可选地,收发器152是一块通信芯片。
在一个示例中,中继终端设备150还包括:存储器和总线。存储器通过总线与处理器相连。存储器可用于存储计算机程序,处理器用于执行该计算机程序,以实现上述方法实施例中的中继终端设备执行的各个步骤。
此外,存储器可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,易失性或非易失性存储设备包括但不限于:RAM(Random-Access Memory,随机存储器)和ROM(Read-Only Memory,只读存储器)、EPROM(Erasable Programmable Read-Only Memory,可擦写可编程只读存储器)、EEPROM(Electrically Erasable Programmable Read-Only Memory,电可擦写可编程只读存储器)、闪存或其他固态存储其技术,CD-ROM(Compact Disc Read-Only Memory,只读光盘)、DVD(Digital Video Disc,高密度数字视频光盘)或其他光学存储、磁带盒、磁带、磁盘存储或其他磁性存储设备。其中:
所述收发器152,用于接收来自于核心网的参数配置信息;其中,所述参数配置信息用于在启动反向映射QoS参数机制的情况下,配置所述中继终端设备与远程终端设备之间的QoS参数。
在一个示例中,所述参数配置信息包括策略和计费控制PCC规则所绑定的QFI,以及所述QFI对应的QoS参数。
在一个示例中,所述QFI对应的QoS参数包括以下至少一项:所述中继终端设备与所述远程终端设备之间的QoS参数、所述中继终端设备与网络设备之间的QoS参数。
在一个示例中,所述核心网包括第一核心网设备,所述第一核心网设备用于提供控制平面功能;所述参数配置信息承载在所述第一核心网设备与所述中继终端设备交互的控制平面消息中。
在一个示例中,所述核心网包括第二核心网设备,所述第二核心网设备用于提供用户平面功能;所述收发器152,用于接收来自于所述第二核心网设备的下行数据包;所述处理器151,用于确定所述下行数据包所携带的QFI;所述处理器151,用于基于所述参数配置信息和所述下行数据包所携带的QFI,确定所述中继终端设备与所述远程终端设备之间的QoS参数。
在一个示例中,所述QFI对应的QoS参数包括所述中继终端设备与所述远程终端设备之间的QoS参数;所述处理器151,用于:将所述下行数据包的包头所携带的QFI对应的QoS参数,作为所述中继终端设备与所述远程终端设备之间的QoS参数。
在一个示例中,所述QFI对应的QoS参数包括所述中继终端设备与网络设备之间的QoS参数;所述处理器151,用于:将所述下行数据包的包头所携带的QFI对应的QoS参数,作为所述中继终端设备与所述网络设备之间的QoS参数;基于所述中继终端设备与所述网络设备之间的QoS参数,确定所述中继终端设备与所述远程终端设备之间的QoS参数。
在一个示例中,所述参数配置信息包括PCC规则所绑定的QFI;其中,所述PCC规则所绑定的QFI等于系统QoS标识。
在一个示例中,所述系统QoS标识包括5QI。
在一个示例中,所述核心网包括第二核心网设备,所述第二核心网设备用于提供用户平面功能;所述参数配置信息承载在所述第二核心网设备与所述中继终端设备交互的用户平面消息中。
在一个示例中,所述用户平面消息包括下行数据包,所述参数配置信息承载在所述下行数据包的包头中。
在一个示例中,所述处理器151,用于:基于所述参数配置信息,确定所述中继终端设备与网络设备之间的QoS参数;基于所述中继终端设备与所述网络设备之间的QoS参数,确定所述中继终端设备与所述远程终端设备之间的QoS参数。
请参考图16,其示出了本申请一个实施例提供的核心网设备160的结构示意图,例如,该核心网设备可以用于执行上述核心网侧的参数配置方法。具体来讲,该核心网设备160可以包括:处理器161,以及与所述处理器161相连的收发器162;其中:
处理器161包括一个或者一个以上处理核心,处理器161通过运行软件程序以及模块,从而执行各种功能应用以及信息处理。
收发器162包括接收器和发射器。可选地,收发器162是一块通信芯片。
在一个示例中,核心网设备160还包括:存储器和总线。存储器通过总线与处理器相连。存储器可用于存储计算机程序,处理器用于执行该计算机程序,以实现上述方法实施例中的核心网执行的各个步骤。
此外,存储器可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,易失性或非易失性存储设备包括但不限于:RAM(Random-Access Memory,随机存储器)和ROM(Read-Only Memory,只读存储器)、EPROM(Erasable Programmable Read-Only Memory,可擦写可编程只读存储器)、EEPROM(Electrically Erasable Programmable Read-Only Memory,电可擦写可编程只读存储器)、闪存或其他固态存储其技术,CD-ROM(Compact Disc Read-Only Memory,只读光盘)、DVD(Digital Video Disc,高密度数字视频光盘)或其他光学存储、磁带盒、磁带、磁盘存储或其他磁性存储设备。其中:
所述收发器162,用于向中继终端设备发送参数配置信息;其中,所述参数配置信息用于在启动反向映射QoS参数机制的情况下,配置所述中继终端设备与远程终端设备之间的QoS参数。
在一个示例中,所述参数配置信息包括PCC规则所绑定的QFI,以及所述QFI对应的QoS参数。
在一个示例中,所述QFI对应的QoS参数包括以下至少一项:所述中继终端设备与所述远程终端设备之间的QoS参数、所述中继终端设备与网络设备之间的QoS参数。
在一个示例中,所述参数配置系统包括第一核心网设备,所述第一核心网设备用于提供控制平面功能;所述参数配置信息承载在所述第一核心网设备与所述中继终端设备交互的控制平面消息中。
在一个示例中,所述参数配置系统包括第一核心网设备和第三核心网设备,所述第一核心网设备和所述第三核心网设备用于提供控制平面功能;其中:所述第三核心网设备的收发器,用于向所述第一核心网设备发送PCC规则,所述PCC规则包括第一映射指示信息,所述第一映射指示信息用于指示是否启动反向映射QoS参数机制;所述第一核心网设备的处理器,用于确定所述PCC规则对应的配置的状态;所述第一核心网设备的收发器,还用于在所述第一映射指示信息用于指示启动反向映射QoS参数机制,且所述PCC规则对应的配置处于中继状态的情况下,向中继终端设备发送所述参数配置信息。
在一个示例中,所述参数配置信息包括PCC规则所绑定的QFI;其中,所述PCC规则所绑定的QFI等于系统QoS标识。
在一个示例中,所述系统QoS标识包括5QI。
在一个示例中,所述参数配置系统包括第二核心网设备,所述第二核心网设备用于提供用户平面功能;所述参数配置信息承载在所述第二核心网设备与所述中继终端设备交互的用户平面消息中。
在一个示例中,所述用户平面消息包括下行数据包,所述参数配置信息承载在所述下行数据包的包头中。
在一个示例中,所述参数配置系统包括第一核心网设备、第二核心网设备和第三核心网设备,所述第一核心网设备和所述第三核心网设备用于提供控制平面功能,所述第二核心网设备用于提供用户平面功能;其中:所述第三核心网设备的收发器,用于向所述第一核心网设备发送PCC规则,所述PCC规则包括第一映射指示信息,所述第一映射指示信息用于指示是否启动反向映射QoS参数机制;所述第一核心网 设备的收发器,用于在所述第一映射指示信息用于指示是否启动反向映射QoS参数机制、所述PCC规则对应的配置处于中继状态、以及所述PCC规则所绑定的QFI能够等于系统QoS标识的情况下,向所述第二核心网设备发送第二映射指示信息以及所述PCC规则所绑定的QFI,所述第二映射指示信息用于指示启动反向映射QoS参数机制;所述第二核心网设备的收发器,用于向所述中继终端设备发送所述参数配置信息。
在一个示例中,所述第一核心网设备的处理器,还用于:在所述PCC规则对应的配置处于中继状态,且所述PCC规则所绑定的QFI能够等于系统QoS标识的情况下,将所述系统QoS标识设置为所述PCC规则所绑定的QFI。
在一个示例中,所述参数配置系统包括第一核心网设备、第二核心网设备和第三核心网设备,所述第一核心网设备和所述第三核心网设备用于提供控制平面功能,所述第二核心网设备用于提供用户平面功能;其中:所述第三核心网设备的收发器,用于在所述PCC规则对应的配置处于中继状态,且所述PCC规则所绑定的QFI能够等于系统QoS标识的情况下,向所述第一核心网设备发送所述PCC规则,所述PCC规则包括第一映射指示信息,所述第一映射指示信息用于指示启动反向映射QoS参数机制;所述第一核心网设备的收发器,用于向所述第二核心网设备发送第二映射指示信息以及所述PCC规则所绑定的QFI,所述第二映射指示信息用于指示启动反向映射QoS参数机制;所述第二核心网设备的收发器,用于向所述中继终端设备发送所述参数配置信息。
在一个示例中,所述第三核心网设备的收发器,还用于在所述PCC规则对应的配置处于中继状态,且所述PCC规则所绑定的QFI能够等于系统QoS标识的情况下,向所述第一核心网设备发送标识设置指示信息;所述第一核心网设备的处理器,还用于按照所述第一标识指示信息,将所述系统QoS标识设置为所述PCC规则所绑定的QFI。
在一个示例中,所述第一核心网设备的处理器,还用于在所述PCC规则对应的配置处于中继状态的情况下,将所述系统QoS标识设置为所述PCC规则所绑定的QFI。
在一个示例中,所述PCC规则对应的配置包括以下至少一项:所述PCC规则对应的终端设备、所述PCC规则对应的PDU会话、所述PCC规则对应的业务数据流SDF。
本申请实施例还提供了一种计算机可读存储介质,所述存储介质中存储有计算机程序,所述计算机程序用于被中继终端设备的处理器执行,以实现如上述中继终端设备侧的参数配置方法。
本申请实施例还提供了一种计算机可读存储介质,所述存储介质中存储有计算机程序,所述计算机程序用于被核心网设备的处理器执行,以实现如上述核心网侧的参数配置方法。
本申请实施例还提供了一种芯片,所述存储介质中存储有计算机程序,所述计算机程序用于被中继终端设备的处理器执行,以实现如上述中继终端设备侧的参数配置方法。
本申请实施例还提供了一种芯片,所述芯片包括可编程逻辑电路和/或程序指令,当所述芯片在核心网设备上运行时,用于实现如上述核心网侧的参数配置方法。
本申请实施例还提供了一种计算机程序产品,当计算机程序产品在中继终端设备上运行时,用于实现如上述中继终端设备侧的参数配置方法。
本申请实施例还提供了一种计算机程序产品,当计算机程序产品在核心网设备上运行时,用于实现如上述核心网侧的参数配置方法。
本领域技术人员应该可以意识到,在上述一个或多个示例中,本申请实施例所描述的功能可以用硬件、软件、固件或它们的任意组合来实现。当使用软件实现时,可以将这些功能存储在计算机可读介质中或者作为计算机可读介质上的一个或多个指令或代码进行传输。计算机可读介质包括计算机存储介质和通信介质,其中通信介质包括便于从一个地方向另一个地方传送计算机程序的任何介质。存储介质可以是通用或专用计算机能够存取的任何可用介质。
以上所述仅为本申请的示例性实施例,并不用以限制本申请,凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (58)

  1. 一种参数配置方法,其特征在于,应用于中继终端设备中,所述方法包括:
    接收来自于核心网的参数配置信息;
    其中,所述参数配置信息用于在启动反向映射服务质量QoS参数机制的情况下,配置所述中继终端设备与远程终端设备之间的QoS参数。
  2. 根据权利要求1所述的方法,其特征在于,所述参数配置信息包括策略和计费控制PCC规则所绑定的QoS流标识QFI,以及所述QFI对应的QoS参数。
  3. 根据权利要求2所述的方法,其特征在于,所述QFI对应的QoS参数包括以下至少一项:所述中继终端设备与所述远程终端设备之间的QoS参数、所述中继终端设备与网络设备之间的QoS参数。
  4. 根据权利要求2或3所述的方法,其特征在于,所述核心网包括第一核心网设备,所述第一核心网设备用于提供控制平面功能;所述参数配置信息承载在所述第一核心网设备与所述中继终端设备交互的控制平面消息中。
  5. 根据权利要求2至4任一项所述的方法,其特征在于,所述核心网包括第二核心网设备,所述第二核心网设备用于提供用户平面功能;所述方法还包括:
    接收来自于所述第二核心网设备的下行数据包;
    确定所述下行数据包所携带的QFI;
    基于所述参数配置信息和所述下行数据包所携带的QFI,确定所述中继终端设备与所述远程终端设备之间的QoS参数。
  6. 根据权利要求5所述的方法,其特征在于,所述QFI对应的QoS参数包括所述中继终端设备与所述远程终端设备之间的QoS参数;
    所述基于所述参数配置信息和所述下行数据包,确定所述中继终端设备与所述远程终端设备之间的QoS参数,包括:
    将所述下行数据包的包头所携带的QFI对应的QoS参数,作为所述中继终端设备与所述远程终端设备之间的QoS参数。
  7. 根据权利要求5所述的方法,其特征在于,所述QFI对应的QoS参数包括所述中继终端设备与网络设备之间的QoS参数;
    所述基于所述参数配置信息和所述下行数据包,确定所述中继终端设备与所述远程终端设备之间的QoS参数,包括:
    将所述下行数据包的包头所携带的QFI对应的QoS参数,作为所述中继终端设备与所述网络设备之间的QoS参数;
    基于所述中继终端设备与所述网络设备之间的QoS参数,确定所述中继终端设备与所述远程终端设备之间的QoS参数。
  8. 根据权利要求1所述的方法,其特征在于,所述参数配置信息包括PCC规则所绑定的QFI;其中,所述PCC规则所绑定的QFI等于系统QoS标识。
  9. 根据权利要求8所述的方法,其特征在于,所述系统QoS标识包括第五代移动通信系统QoS标识5QI。
  10. 根据权利要求8或9所述的方法,其特征在于,所述核心网包括第二核心网设备,所述第二核心网设备用于提供用户平面功能;所述参数配置信息承载在所述第二核心网设备与所述中继终端设备交互的用户平面消息中。
  11. 根据权利要求10所述的方法,其特征在于,所述用户平面消息包括下行数据包,所述参数配置信息承载在所述下行数据包的包头中。
  12. 根据权利要求8至11任一项所述的方法,其特征在于,所述方法还包括:
    基于所述参数配置信息,确定所述中继终端设备与网络设备之间的QoS参数;
    基于所述中继终端设备与所述网络设备之间的QoS参数,确定所述中继终端设备与所述远程终端设备之间的QoS参数。
  13. 一种参数配置方法,其特征在于,应用于核心网中,所述方法包括:
    向中继终端设备发送参数配置信息;
    其中,所述参数配置信息用于在启动反向映射服务质量QoS参数机制的情况下,配置所述中继终端设备与远程终端设备之间的QoS参数。
  14. 根据权利要求13所述的方法,其特征在于,所述参数配置信息包括策略和计费控制PCC规则所 绑定的QoS流标识QFI,以及所述QFI对应的QoS参数。
  15. 根据权利要求14所述的方法,其特征在于,所述QFI对应的QoS参数包括以下至少一项:所述中继终端设备与所述远程终端设备之间的QoS参数、所述中继终端设备与网络设备之间的QoS参数。
  16. 根据权利要求14或15所述的方法,其特征在于,所述核心网包括第一核心网设备,所述第一核心网设备用于提供控制平面功能;所述参数配置信息承载在所述第一核心网设备与所述中继终端设备交互的控制平面消息中。
  17. 根据权利要求14至16任一项所述的方法,其特征在于,所述核心网包括第一核心网设备和第三核心网设备,所述第一核心网设备和所述第三核心网设备用于提供控制平面功能;所述向中继终端设备发送参数配置信息,包括:
    所述第三核心网设备向所述第一核心网设备发送PCC规则,所述PCC规则包括第一映射指示信息,所述第一映射指示信息用于指示是否启动反向映射QoS参数机制;
    所述第一核心网设备确定所述PCC规则对应的配置的状态;
    所述第一核心网设备在所述第一映射指示信息用于指示启动反向映射QoS参数机制,且所述PCC规则对应的配置处于中继状态的情况下,向中继终端设备发送所述参数配置信息。
  18. 根据权利要求13所述的方法,其特征在于,所述参数配置信息包括PCC规则所绑定的QFI;其中,所述PCC规则所绑定的QFI等于系统QoS标识。
  19. 根据权利要求18所述的方法,其特征在于,所述系统QoS标识包括第五代移动通信系统QoS标识5QI。
  20. 根据权利要求18或19所述的方法,其特征在于,所述核心网包括第二核心网设备,所述第二核心网设备用于提供用户平面功能;所述参数配置信息承载在所述第二核心网设备与所述中继终端设备交互的用户平面消息中。
  21. 根据权利要求20所述的方法,其特征在于,所述用户平面消息包括下行数据包,所述参数配置信息承载在所述下行数据包的包头中。
  22. 根据权利要求18至21任一项所述的方法,其特征在于,所述核心网包括第一核心网设备、第二核心网设备和第三核心网设备,所述第一核心网设备和所述第三核心网设备用于提供控制平面功能,所述第二核心网设备用于提供用户平面功能;所述向中继终端设备发送参数配置信息,包括:
    所述第三核心网设备向所述第一核心网设备发送PCC规则,所述PCC规则包括第一映射指示信息,所述第一映射指示信息用于指示是否启动反向映射QoS参数机制;
    所述第一核心网设备在所述第一映射指示信息用于指示启动反向映射QoS参数机制、所述PCC规则对应的配置处于中继状态、以及所述PCC规则所绑定的QFI能够等于系统QoS标识的情况下,向所述第二核心网设备发送第二映射指示信息以及所述PCC规则所绑定的QFI,所述第二映射指示信息用于指示启动反向映射QoS参数机制;
    所述第二核心网设备向所述中继终端设备发送所述参数配置信息。
  23. 根据权利要求22所述的方法,其特征在于,所述方法还包括:
    所述第一核心网设备在所述PCC规则对应的配置处于中继状态,且所述PCC规则所绑定的QFI能够等于系统QoS标识的情况下,将所述系统QoS标识设置为所述PCC规则所绑定的QFI。
  24. 根据权利要求18至21任一项所述的方法,其特征在于,所述核心网包括第一核心网设备、第二核心网设备和第三核心网设备,所述第一核心网设备和所述第三核心网设备用于提供控制平面功能,所述第二核心网设备用于提供用户平面功能;所述向中继终端设备发送参数配置信息,包括:
    所述第三核心网设备在所述PCC规则对应的配置处于中继状态,且所述PCC规则所绑定的QFI能够等于系统QoS标识的情况下,向所述第一核心网设备发送所述PCC规则,所述PCC规则包括第一映射指示信息,所述第一映射指示信息用于指示启动反向映射QoS参数机制;
    所述第一核心网设备向所述第二核心网设备发送第二映射指示信息以及所述PCC规则所绑定的QFI,所述第二映射指示信息用于指示启动反向映射QoS参数机制;
    所述第二核心网设备向所述中继终端设备发送所述参数配置信息。
  25. 根据权利要求24所述的方法,其特征在于,所述方法还包括:
    所述第三核心网设备在所述PCC规则对应的配置处于中继状态,且所述PCC规则所绑定的QFI能够等于系统QoS标识的情况下,向所述第一核心网设备发送标识设置指示信息;
    所述第一核心网设备按照所述第一标识指示信息,将所述系统QoS标识设置为所述PCC规则所绑定的QFI。
  26. 根据权利要求24所述的方法,其特征在于,所述方法还包括:
    所述第一核心网设备在所述PCC规则对应的配置处于中继状态的情况下,将所述系统QoS标识设置 为所述PCC规则所绑定的QFI。
  27. 根据权利要求17、权利要求22至26任一项所述的方法,其特征在于,所述PCC规则对应的配置包括以下至少一项:所述PCC规则对应的终端设备、所述PCC规则对应的PDU会话、所述PCC规则对应的业务数据流SDF。
  28. 一种参数配置装置,其特征在于,设置在中继终端设备中,所述装置包括:
    配置信息接收模块,用于接收来自于核心网的参数配置信息;
    其中,所述参数配置信息用于在启动反向映射服务质量QoS参数机制的情况下,配置所述中继终端设备与远程终端设备之间的QoS参数。
  29. 根据权利要求28所述的装置,其特征在于,所述参数配置信息包括策略和计费控制PCC规则所绑定的QoS流标识QFI,以及所述QFI对应的QoS参数。
  30. 根据权利要求29所述的装置,其特征在于,所述QFI对应的QoS参数包括以下至少一项:所述中继终端设备与所述远程终端设备之间的QoS参数、所述中继终端设备与网络设备之间的QoS参数。
  31. 根据权利要求29或30所述的装置,其特征在于,所述核心网包括第一核心网设备,所述第一核心网设备用于提供控制平面功能;所述参数配置信息承载在所述第一核心网设备与所述中继终端设备交互的控制平面消息中。
  32. 根据权利要求29至31任一项所述的装置,其特征在于,所述核心网包括第二核心网设备,所述第二核心网设备用于提供用户平面功能;所述装置还包括:
    数据包接收模块,用于接收来自于所述第二核心网设备的下行数据包;
    标识确定模块,用于确定所述下行数据包所携带的QFI;
    第一参数确定模块,用于基于所述参数配置信息和所述下行数据包所携带的QFI,确定所述中继终端设备与所述远程终端设备之间的QoS参数。
  33. 根据权利要求32所述的装置,其特征在于,所述QFI对应的QoS参数包括所述中继终端设备与所述远程终端设备之间的QoS参数;所述第一参数确定模块,用于:
    将所述下行数据包的包头所携带的QFI对应的QoS参数,作为所述中继终端设备与所述远程终端设备之间的QoS参数。
  34. 根据权利要求32所述的装置,其特征在于,所述QFI对应的QoS参数包括所述中继终端设备与网络设备之间的QoS参数;所述第一参数确定模块,用于:
    将所述下行数据包的包头所携带的QFI对应的QoS参数,作为所述中继终端设备与所述网络设备之间的QoS参数;
    基于所述中继终端设备与所述网络设备之间的QoS参数,确定所述中继终端设备与所述远程终端设备之间的QoS参数。
  35. 根据权利要求28所述的装置,其特征在于,所述参数配置信息包括PCC规则所绑定的QFI;其中,所述PCC规则所绑定的QFI等于系统QoS标识。
  36. 根据权利要求35所述的装置,其特征在于,所述系统QoS标识包括第五代移动通信系统QoS标识5QI。
  37. 根据权利要求35或36所述的装置,其特征在于,所述核心网包括第二核心网设备,所述第二核心网设备用于提供用户平面功能;所述参数配置信息承载在所述第二核心网设备与所述中继终端设备交互的用户平面消息中。
  38. 根据权利要求37所述的装置,其特征在于,所述用户平面消息包括下行数据包,所述参数配置信息承载在所述下行数据包的包头中。
  39. 根据权利要求35至38任一项所述的装置,其特征在于,所述装置还包括:
    第二参数确定模块,用于基于所述参数配置信息,确定所述中继终端设备与网络设备之间的QoS参数;
    第一参数确定模块,用于基于所述中继终端设备与所述网络设备之间的QoS参数,确定所述中继终端设备与所述远程终端设备之间的QoS参数。
  40. 一种参数配置系统,其特征在于,所述参数配置系统,用于:
    向中继终端设备发送参数配置信息;
    其中,所述参数配置信息用于在启动反向映射服务质量QoS参数机制的情况下,配置所述中继终端设备与远程终端设备之间的QoS参数。
  41. 根据权利要求40所述的系统,其特征在于,所述参数配置信息包括策略和计费控制PCC规则所绑定的QoS流标识QFI,以及所述QFI对应的QoS参数。
  42. 根据权利要求41所述的系统,其特征在于,所述QFI对应的QoS参数包括以下至少一项:所述中继终端设备与所述远程终端设备之间的QoS参数、所述中继终端设备与网络设备之间的QoS参数。
  43. 根据权利要求41或42所述的系统,其特征在于,所述参数配置系统包括第一核心网设备,所述第一核心网设备用于提供控制平面功能;所述参数配置信息承载在所述第一核心网设备与所述中继终端设备交互的控制平面消息中。
  44. 根据权利要求41至43任一项所述的系统,其特征在于,所述参数配置系统包括第一核心网设备和第三核心网设备,所述第一核心网设备和所述第三核心网设备用于提供控制平面功能;其中:
    所述第三核心网设备,用于向所述第一核心网设备发送PCC规则,所述PCC规则包括第一映射指示信息,所述第一映射指示信息用于指示是否启动反向映射QoS参数机制;
    所述第一核心网设备,用于确定所述PCC规则对应的配置的状态;
    所述第一核心网设备,还用于在所述第一映射指示信息用于指示启动反向映射QoS参数机制,且所述PCC规则对应的配置处于中继状态的情况下,向中继终端设备发送所述参数配置信息。
  45. 根据权利要求40所述的系统,其特征在于,所述参数配置信息包括PCC规则所绑定的QFI;其中,所述PCC规则所绑定的QFI等于系统QoS标识。
  46. 根据权利要求45所述的系统,其特征在于,所述系统QoS标识包括第五代移动通信系统QoS标识5QI。
  47. 根据权利要求45或46所述的系统,其特征在于,所述参数配置系统包括第二核心网设备,所述第二核心网设备用于提供用户平面功能;所述参数配置信息承载在所述第二核心网设备与所述中继终端设备交互的用户平面消息中。
  48. 根据权利要求47所述的系统,其特征在于,所述用户平面消息包括下行数据包,所述参数配置信息承载在所述下行数据包的包头中。
  49. 根据权利要求45至48任一项所述的系统,其特征在于,所述参数配置系统包括第一核心网设备、第二核心网设备和第三核心网设备,所述第一核心网设备和所述第三核心网设备用于提供控制平面功能,所述第二核心网设备用于提供用户平面功能;其中:
    所述第三核心网设备,用于向所述第一核心网设备发送PCC规则,所述PCC规则包括第一映射指示信息,所述第一映射指示信息用于指示是否启动反向映射QoS参数机制;
    所述第一核心网设备,用于在所述第一映射指示信息用于指示是否启动反向映射QoS参数机制、所述PCC规则对应的配置处于中继状态、以及所述PCC规则所绑定的QFI能够等于系统QoS标识的情况下,向所述第二核心网设备发送第二映射指示信息以及所述PCC规则所绑定的QFI,所述第二映射指示信息用于指示启动反向映射QoS参数机制;
    所述第二核心网设备,用于向所述中继终端设备发送所述参数配置信息。
  50. 根据权利要求49所述的系统,其特征在于,所述第一核心网设备,还用于:
    在所述PCC规则对应的配置处于中继状态,且所述PCC规则所绑定的QFI能够等于系统QoS标识的情况下,将所述系统QoS标识设置为所述PCC规则所绑定的QFI。
  51. 根据权利要求45至48任一项所述的系统,其特征在于,所述参数配置系统包括第一核心网设备、第二核心网设备和第三核心网设备,所述第一核心网设备和所述第三核心网设备用于提供控制平面功能,所述第二核心网设备用于提供用户平面功能;其中:
    所述第三核心网设备,用于在所述PCC规则对应的配置处于中继状态,且所述PCC规则所绑定的QFI能够等于系统QoS标识的情况下,向所述第一核心网设备发送所述PCC规则,所述PCC规则包括第一映射指示信息,所述第一映射指示信息用于指示启动反向映射QoS参数机制;
    所述第一核心网设备,用于向所述第二核心网设备发送第二映射指示信息以及所述PCC规则所绑定的QFI,所述第二映射指示信息用于指示启动反向映射QoS参数机制;
    所述第二核心网设备,用于向所述中继终端设备发送所述参数配置信息。
  52. 根据权利要求51所述的系统,其特征在于,
    所述第三核心网设备,还用于在所述PCC规则对应的配置处于中继状态,且所述PCC规则所绑定的QFI能够等于系统QoS标识的情况下,向所述第一核心网设备发送标识设置指示信息;
    所述第一核心网设备,还用于按照所述第一标识指示信息,将所述系统QoS标识设置为所述PCC规则所绑定的QFI。
  53. 根据权利要求51所述的系统,其特征在于,
    所述第一核心网设备,还用于在所述PCC规则对应的配置处于中继状态的情况下,将所述系统QoS标识设置为所述PCC规则所绑定的QFI。
  54. 根据权利要求44、权利要求49至53任一项所述的系统,其特征在于,所述PCC规则对应的配置包括以下至少一项:所述PCC规则对应的终端设备、所述PCC规则对应的PDU会话、所述PCC规则对应的业务数据流SDF。
  55. 一种中继终端设备,其特征在于,所述中继终端设备包括:处理器,以及与所述处理器相连的收发器;其中:
    所述收发器,用于接收来自于核心网的参数配置信息;
    其中,所述参数配置信息用于在启动反向映射服务质量QoS参数机制的情况下,配置所述中继终端设备与远程终端设备之间的QoS参数。
  56. 一种核心网设备,其特征在于,所述核心网设备包括:处理器,以及与所述处理器相连的收发器;其中:
    所述收发器,用于向中继终端设备发送参数配置信息;
    其中,所述参数配置信息用于在启动反向映射服务质量QoS参数机制的情况下,配置所述中继终端设备与远程终端设备之间的QoS参数。
  57. 一种计算机可读存储介质,其特征在于,所述存储介质中存储有计算机程序,所述计算机程序用于被中继终端设备的处理器执行,以实现如权利要求1至12任一项所述的参数配置方法。
  58. 一种计算机可读存储介质,其特征在于,所述存储介质中存储有计算机程序,所述计算机程序用于被核心网设备的处理器执行,以实现如权利要求13至27任一项所述的参数配置方法。
PCT/CN2020/126536 2020-11-04 2020-11-04 参数配置方法、装置、系统、设备及存储介质 WO2022094806A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/CN2020/126536 WO2022094806A1 (zh) 2020-11-04 2020-11-04 参数配置方法、装置、系统、设备及存储介质
CN202080083017.1A CN114747253A (zh) 2020-11-04 2020-11-04 参数配置方法、装置、系统、设备及存储介质
CN202211574112.9A CN115884272A (zh) 2020-11-04 2020-11-04 参数配置方法、装置、系统、设备及存储介质
EP20960268.9A EP4106398A4 (en) 2020-11-04 2020-11-04 METHOD, APPARATUS AND SYSTEM FOR CONFIGURING PARAMETER, DEVICE AND STORAGE MEDIA
US17/946,364 US20230018378A1 (en) 2020-11-04 2022-09-16 Parameter configuration method, apparatus and system, device and storage medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/126536 WO2022094806A1 (zh) 2020-11-04 2020-11-04 参数配置方法、装置、系统、设备及存储介质

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/946,364 Continuation US20230018378A1 (en) 2020-11-04 2022-09-16 Parameter configuration method, apparatus and system, device and storage medium

Publications (1)

Publication Number Publication Date
WO2022094806A1 true WO2022094806A1 (zh) 2022-05-12

Family

ID=81456844

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/126536 WO2022094806A1 (zh) 2020-11-04 2020-11-04 参数配置方法、装置、系统、设备及存储介质

Country Status (4)

Country Link
US (1) US20230018378A1 (zh)
EP (1) EP4106398A4 (zh)
CN (2) CN115884272A (zh)
WO (1) WO2022094806A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024060239A1 (zh) * 2022-09-23 2024-03-28 Oppo广东移动通信有限公司 通信方法、装置、设备、存储介质及程序产品

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109151913A (zh) * 2017-06-16 2019-01-04 电信科学技术研究院 一种服务质量的控制方法及相关装置
CN109548088A (zh) * 2017-07-31 2019-03-29 中国移动通信有限公司研究院 一种配置QoS规则的方法和设备
CN110169097A (zh) * 2017-01-09 2019-08-23 Idac控股公司 无线通信系统的中继

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110505653B (zh) * 2018-05-17 2021-01-22 电信科学技术研究院有限公司 一种服务质量控制的方法、设备及计算机存储介质

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110169097A (zh) * 2017-01-09 2019-08-23 Idac控股公司 无线通信系统的中继
CN109151913A (zh) * 2017-06-16 2019-01-04 电信科学技术研究院 一种服务质量的控制方法及相关装置
CN109548088A (zh) * 2017-07-31 2019-03-29 中国移动通信有限公司研究院 一种配置QoS规则的方法和设备

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
FUTUREWEI: "QoS Control with Sidelink Relay", 3GPP DRAFT; R2-2006724, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Electronic Meeting; 20200817 - 20200828, 7 August 2020 (2020-08-07), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051911632 *
See also references of EP4106398A4 *

Also Published As

Publication number Publication date
EP4106398A1 (en) 2022-12-21
US20230018378A1 (en) 2023-01-19
CN115884272A (zh) 2023-03-31
EP4106398A4 (en) 2023-04-26
CN114747253A (zh) 2022-07-12

Similar Documents

Publication Publication Date Title
CN108260162B (zh) 一种5g系统的sdap层功能实现方法
CN112788543B (zh) 通信方法、装置及设备
EP3923625A1 (en) Data packet latency parameter acquisition method, system and apparatus
EP3972335A1 (en) Method, device and system for managing background data transfer policies
JP7035082B2 (ja) ユーザプレーンリンク確立方法、基地局、およびモビリティ管理デバイス
WO2022170798A1 (zh) 确定策略的方法和通信装置
CN115175117A (zh) 多接入下的数据冗余传输方法及其相关设备
US20230018378A1 (en) Parameter configuration method, apparatus and system, device and storage medium
WO2019196668A1 (zh) 一种信息发送方法、密钥生成方法以及装置
WO2018145292A1 (zh) 通信方法、装置和系统
WO2021088007A1 (zh) 无线通信的方法、终端设备和网络设备
WO2023143177A1 (zh) 一种通信方法和通信装置
WO2020223907A1 (zh) 一种信息传输方法及装置、网络设备
WO2020142884A1 (zh) 切换传输路径的方法及装置
WO2022067540A1 (zh) 中继设备的选择方法、装置、设备及存储介质
WO2021227798A1 (zh) 一种通信方法及装置
WO2021208059A1 (zh) 连接建立方法、装置、设备及存储介质
WO2022067736A1 (zh) 一种通信方法及装置
WO2022021355A1 (zh) 会话建立方法、装置、设备及存储介质
WO2021138878A9 (zh) 侧行链路承载的管理方法、装置、终端和介质
CN115835184A (zh) 终端设备的管理方法及装置
CN113993169B (zh) 数据传输方式的更改方法、装置、设备及存储介质
WO2022165787A1 (zh) 参数配置方法、装置、设备及存储介质
US20230300638A1 (en) Relay mode configuration method and apparatus, relay communication method and apparatus, and device
WO2023164849A1 (zh) 无线通信方法、装置、设备、存储介质及程序产品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20960268

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020960268

Country of ref document: EP

Effective date: 20220912

NENP Non-entry into the national phase

Ref country code: DE