WO2022092886A1 - 포인트 클라우드 데이터 송신 장치, 포인트 클라우드 데이터 송신 방법, 포인트 클라우드 데이터 수신 장치 및 포인트 클라우드 데이터 수신 방법 - Google Patents
포인트 클라우드 데이터 송신 장치, 포인트 클라우드 데이터 송신 방법, 포인트 클라우드 데이터 수신 장치 및 포인트 클라우드 데이터 수신 방법 Download PDFInfo
- Publication number
- WO2022092886A1 WO2022092886A1 PCT/KR2021/015409 KR2021015409W WO2022092886A1 WO 2022092886 A1 WO2022092886 A1 WO 2022092886A1 KR 2021015409 W KR2021015409 W KR 2021015409W WO 2022092886 A1 WO2022092886 A1 WO 2022092886A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- point cloud
- cloud data
- geometry
- data
- encoding
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 276
- 230000005540 biological transmission Effects 0.000 title claims abstract description 57
- 238000012545 processing Methods 0.000 description 83
- 230000008569 process Effects 0.000 description 79
- 238000013139 quantization Methods 0.000 description 45
- 238000007906 compression Methods 0.000 description 41
- 230000006835 compression Effects 0.000 description 41
- 230000011664 signaling Effects 0.000 description 29
- 238000005516 engineering process Methods 0.000 description 28
- 230000009466 transformation Effects 0.000 description 27
- 238000009987 spinning Methods 0.000 description 25
- 238000006243 chemical reaction Methods 0.000 description 24
- 230000015654 memory Effects 0.000 description 14
- 238000009877 rendering Methods 0.000 description 9
- 238000004458 analytical method Methods 0.000 description 8
- 238000004891 communication Methods 0.000 description 8
- 238000000638 solvent extraction Methods 0.000 description 7
- 230000006870 function Effects 0.000 description 6
- 239000011449 brick Substances 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 238000005538 encapsulation Methods 0.000 description 4
- 238000012986 modification Methods 0.000 description 4
- 230000004048 modification Effects 0.000 description 4
- 238000005070 sampling Methods 0.000 description 4
- 230000001131 transforming effect Effects 0.000 description 4
- 230000003044 adaptive effect Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 230000014509 gene expression Effects 0.000 description 3
- 230000003993 interaction Effects 0.000 description 3
- 230000007774 longterm Effects 0.000 description 3
- 239000000344 soap Substances 0.000 description 3
- 238000003860 storage Methods 0.000 description 3
- 230000002194 synthesizing effect Effects 0.000 description 3
- 239000013598 vector Substances 0.000 description 3
- 238000003491 array Methods 0.000 description 2
- 230000003190 augmentative effect Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 239000003086 colorant Substances 0.000 description 2
- 238000004590 computer program Methods 0.000 description 2
- 238000013144 data compression Methods 0.000 description 2
- 230000006837 decompression Effects 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 241000238413 Octopus Species 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 238000004422 calculation algorithm Methods 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 238000012805 post-processing Methods 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 238000010187 selection method Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/10—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
- H04N19/134—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
- H04N19/136—Incoming video signal characteristics or properties
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S17/00—Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
- G01S17/88—Lidar systems specially adapted for specific applications
- G01S17/89—Lidar systems specially adapted for specific applications for mapping or imaging
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T9/00—Image coding
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/10—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
- H04N19/102—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
- H04N19/117—Filters, e.g. for pre-processing or post-processing
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/10—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
- H04N19/169—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
- H04N19/17—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object
- H04N19/174—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object the region being a slice, e.g. a line of blocks or a group of blocks
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/50—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
- H04N19/597—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding specially adapted for multi-view video sequence encoding
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/90—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using coding techniques not provided for in groups H04N19/10-H04N19/85, e.g. fractals
- H04N19/96—Tree coding, e.g. quad-tree coding
Definitions
- Embodiments relate to a method and apparatus for processing point cloud content.
- the point cloud content is content expressed as a point cloud, which is a set of points (points) belonging to a coordinate system representing a three-dimensional space.
- Point cloud content can express three-dimensional media, and provides various services such as VR (Virtual Reality), AR (Augmented Reality), MR (Mixed Reality), and autonomous driving service. used to provide However, tens of thousands to hundreds of thousands of point data are needed to express point cloud content. Therefore, a method for efficiently processing a large amount of point data is required.
- Embodiments provide an apparatus and method for efficiently processing point cloud data.
- Embodiments provide a point cloud data processing method and apparatus for solving latency and encoding/decoding complexity.
- a method for transmitting point cloud data may include encoding the point cloud data and transmitting a bitstream including the point cloud data.
- An apparatus for receiving point cloud data according to embodiments may include receiving a bitstream including point cloud data and decoding the point cloud data.
- the apparatus and method according to the embodiments may process point cloud data with high efficiency.
- the apparatus and method according to the embodiments may provide a high quality point cloud service.
- the apparatus and method according to the embodiments may provide point cloud content for providing universal services such as a VR service and an autonomous driving service.
- FIG. 1 shows an example of a point cloud content providing system according to embodiments.
- FIG. 2 is a block diagram illustrating an operation of providing point cloud content according to embodiments.
- FIG 3 shows an example of a point cloud video capture process according to embodiments.
- FIG. 4 shows an example of a point cloud encoder according to embodiments.
- FIG. 5 illustrates an example of a voxel according to embodiments.
- FIG. 6 shows an example of an octree and an occupancy code according to embodiments.
- FIG. 7 shows an example of a neighbor node pattern according to embodiments.
- FIG. 10 shows an example of a point cloud decoder according to embodiments.
- FIG. 11 shows an example of a point cloud decoder according to embodiments.
- FIG. 13 is an example of a receiving apparatus according to embodiments.
- FIG. 14 illustrates an example of a structure capable of interworking with a method/device for transmitting and receiving point cloud data according to embodiments.
- FIG. 15 shows a spinning (rotating) LiDAR acquisition model according to embodiments.
- 16-17 show examples of points of point cloud data according to embodiments.
- FIG. 19 shows an example of a method for estimating a lidar sensor position value according to embodiments.
- FIG. 20 illustrates an example of estimating a slice sensor position according to embodiments.
- 21 shows an apparatus for transmitting point cloud data according to embodiments.
- FIG. 22 shows an apparatus for receiving point cloud data according to embodiments.
- FIG. 23 shows a bitstream including point cloud data according to embodiments.
- 25 shows a method of transmitting point cloud data according to embodiments.
- 26 shows a method of receiving point cloud data according to embodiments.
- FIG. 1 shows an example of a point cloud content providing system according to embodiments.
- the point cloud content providing system shown in FIG. 1 may include a transmission device 10000 and a reception device 10004 .
- the transmitting device 10000 and the receiving device 10004 are capable of wired/wireless communication in order to transmit/receive point cloud data.
- the transmission device 10000 may secure, process, and transmit a point cloud video (or point cloud content).
- the transmitting device 10000 may be a fixed station, a base transceiver system (BTS), a network, an Ariticial Intelligence (AI) device and/or system, a robot, an AR/VR/XR device and/or a server and the like.
- BTS base transceiver system
- AI Ariticial Intelligence
- the transmission device 10000 uses a radio access technology (eg, 5G NR (New RAT), LTE (Long Term Evolution)) to communicate with a base station and/or other wireless devices; It may include robots, vehicles, AR/VR/XR devices, mobile devices, home appliances, Internet of Things (IoT) devices, AI devices/servers, and the like.
- a radio access technology eg, 5G NR (New RAT), LTE (Long Term Evolution)
- 5G NR New RAT
- LTE Long Term Evolution
- IoT Internet of Things
- Transmission device 10000 is a point cloud video acquisition unit (Point Cloud Video Acquisition, 10001), a point cloud video encoder (Point Cloud Video Encoder, 10002) and / or a transmitter (Transmitter (or Communication module), 10003 ) contains
- the point cloud video acquisition unit 10001 acquires the point cloud video through processing such as capturing, synthesizing, or generating.
- the point cloud video is point cloud content expressed as a point cloud that is a set of points located in a three-dimensional space, and may be referred to as point cloud video data or the like.
- a point cloud video according to embodiments may include one or more frames. One frame represents a still image/picture. Accordingly, the point cloud video may include a point cloud image/frame/picture, and may be referred to as any one of a point cloud image, a frame, and a picture.
- the point cloud video encoder 10002 encodes the obtained point cloud video data.
- the point cloud video encoder 10002 may encode point cloud video data based on point cloud compression coding.
- Point cloud compression coding may include Geometry-based Point Cloud Compression (G-PCC) coding and/or Video based Point Cloud Compression (V-PCC) coding or next-generation coding.
- G-PCC Geometry-based Point Cloud Compression
- V-PCC Video based Point Cloud Compression
- the point cloud video encoder 10002 may output a bitstream including encoded point cloud video data.
- the bitstream may include not only the encoded point cloud video data, but also signaling information related to encoding of the point cloud video data.
- the transmitter 10003 transmits a bitstream including encoded point cloud video data.
- the bitstream according to the embodiments is encapsulated into a file or segment (eg, a streaming segment) and transmitted through various networks such as a broadcasting network and/or a broadband network.
- the transmission device 10000 may include an encapsulation unit (or an encapsulation module) that performs an encapsulation operation.
- the encapsulation unit may be included in the transmitter 10003 .
- the file or segment may be transmitted to the receiving device 10004 through a network or stored in a digital storage medium (eg, USB, SD, CD, DVD, Blu-ray, HDD, SSD, etc.).
- the transmitter 10003 may communicate with the receiving device 10004 (or a receiver 10005) through wired/wireless communication through networks such as 4G, 5G, and 6G. Also, the transmitter 10003 may perform a necessary data processing operation according to a network system (eg, a communication network system such as 4G, 5G, 6G, etc.). Also, the transmission device 10000 may transmit encapsulated data according to an on demand method.
- a network system eg, a communication network system such as 4G, 5G, 6G, etc.
- the transmission device 10000 may transmit encapsulated data according to an on demand method.
- the receiving device 10004 includes a receiver (Receiver, 10005), a point cloud video decoder (Point Cloud Decoder, 10006), and/or a renderer (Renderer, 10007).
- the receiving device 10004 uses a radio access technology (eg, 5G NR (New RAT), LTE (Long Term Evolution)) to communicate with a base station and/or other wireless devices, a device or a robot , vehicles, AR/VR/XR devices, portable devices, home appliances, Internet of Things (IoT) devices, AI devices/servers, and the like.
- 5G NR New RAT
- LTE Long Term Evolution
- the receiver 10005 receives a bitstream including point cloud video data or a file/segment in which the bitstream is encapsulated from a network or a storage medium.
- the receiver 10005 may perform a necessary data processing operation according to a network system (eg, a communication network system such as 4G, 5G, or 6G).
- the receiver 10005 may output a bitstream by decapsulating the received file/segment.
- the receiver 10005 may include a decapsulation unit (or a decapsulation module) for performing a decapsulation operation.
- the decapsulation unit may be implemented as an element (or component) separate from the receiver 10005 .
- the point cloud video decoder 10006 decodes a bitstream including point cloud video data.
- the point cloud video decoder 10006 may decode the point cloud video data according to an encoded manner (eg, a reverse process of the operation of the point cloud video encoder 10002 ). Accordingly, the point cloud video decoder 10006 may decode the point cloud video data by performing point cloud decompression coding, which is a reverse process of the point cloud compression.
- Point cloud decompression coding includes G-PCC coding.
- the renderer 10007 renders the decoded point cloud video data.
- the renderer 10007 may output point cloud content by rendering audio data as well as point cloud video data.
- the renderer 10007 may include a display for displaying the point cloud content.
- the display may not be included in the renderer 10007 and may be implemented as a separate device or component.
- the feedback information is information for reflecting the interactivity with the user who consumes the point cloud content, and includes user information (eg, head orientation information, viewport information, etc.).
- user information eg, head orientation information, viewport information, etc.
- the feedback information is provided by the content transmitting side (eg, the transmission device 10000) and/or the service provider can be passed on to According to embodiments, the feedback information may be used by the receiving device 10004 as well as the transmitting device 10000 or may not be provided.
- the head orientation information is information about the user's head position, direction, angle, movement, and the like.
- the reception apparatus 10004 may calculate viewport information based on head orientation information.
- the viewport information is information about the area of the point cloud video that the user is looking at.
- a viewpoint is a point at which a user is watching a point cloud video, and may mean a central point of the viewport area. That is, the viewport is an area centered on a viewpoint, and the size and shape of the area may be determined by a Field Of View (FOV).
- FOV Field Of View
- the reception device 10004 may extract viewport information based on a vertical or horizontal FOV supported by the device in addition to the head orientation information.
- the receiving device 10004 checks the user's point cloud consumption method, the point cloud video area the user gazes on, the gaze time, and the like by performing a gaze analysis or the like.
- the receiving device 10004 may transmit feedback information including the result of the gaze analysis to the transmitting device 10000 .
- Feedback information may be obtained during rendering and/or display.
- Feedback information may be secured by one or more sensors included in the receiving device 10004 .
- the feedback information may be secured by the renderer 10007 or a separate external element (or device, component, etc.).
- a dotted line in FIG. 1 shows a process of transmitting the feedback information secured by the renderer 10007 .
- the point cloud content providing system may process (encode/decode) the point cloud data based on the feedback information. Accordingly, the point cloud video data decoder 10006 may perform a decoding operation based on the feedback information. Also, the receiving device 10004 may transmit feedback information to the transmitting device 10000 . The transmission device 10000 (or the point cloud video data encoder 10002 ) may perform an encoding operation based on the feedback information. Therefore, the point cloud content providing system does not process (encode / decode) all point cloud data, but efficiently processes necessary data (for example, point cloud data corresponding to the user's head position) based on the feedback information, and the user can provide point cloud content to
- the transmitting apparatus 10000 may be referred to as an encoder, a transmitting device, a transmitter, etc.
- the receiving apparatus 10004 may be referred to as a decoder, a receiving device, a receiver, or the like.
- Point cloud data (processed in a series of acquisition/encoding/transmission/decoding/rendering) processed in the point cloud content providing system of FIG. 1 according to embodiments may be referred to as point cloud content data or point cloud video data.
- the point cloud content data may be used as a concept including metadata or signaling information related to the point cloud data.
- the elements of the point cloud content providing system shown in FIG. 1 may be implemented by hardware, software, a processor and/or a combination thereof.
- FIG. 2 is a block diagram illustrating an operation of providing point cloud content according to embodiments.
- the block diagram of FIG. 2 shows the operation of the point cloud content providing system described in FIG. 1 .
- the point cloud content providing system may process point cloud data based on point cloud compression coding (eg, G-PCC).
- point cloud compression coding eg, G-PCC
- the point cloud content providing system may acquire a point cloud video (20000).
- a point cloud video is expressed as a point cloud belonging to a coordinate system representing a three-dimensional space.
- the point cloud video according to embodiments may include a Ply (Polygon File format or the Stanford Triangle format) file.
- the acquired point cloud video may include one or more Ply files.
- the Ply file contains point cloud data such as the point's geometry and/or attributes. Geometry includes positions of points.
- the position of each point may be expressed by parameters (eg, values of each of the X-axis, Y-axis, and Z-axis) representing a three-dimensional coordinate system (eg, a coordinate system including XYZ axes).
- the attribute includes attributes of points (eg, texture information of each point, color (YCbCr or RGB), reflectance (r), transparency, etc.).
- a point has one or more attributes (or properties).
- one point may have one attribute of color, or two attributes of color and reflectance.
- the geometry may be referred to as positions, geometry information, geometry data, and the like, and the attribute may be referred to as attributes, attribute information, attribute data, and the like.
- the point cloud content providing system receives points from information (eg, depth information, color information, etc.) related to the point cloud video acquisition process. Cloud data can be obtained.
- the point cloud content providing system may encode the point cloud data (20001).
- the point cloud content providing system may encode point cloud data based on point cloud compression coding.
- the point cloud data may include the geometry and attributes of the point.
- the point cloud content providing system may output a geometry bitstream by performing geometry encoding for encoding the geometry.
- the point cloud content providing system may output an attribute bitstream by performing attribute encoding for encoding an attribute.
- the point cloud content providing system may perform attribute encoding based on geometry encoding.
- the geometry bitstream and the attribute bitstream according to the embodiments may be multiplexed and output as one bitstream.
- the bitstream according to embodiments may further include signaling information related to geometry encoding and attribute encoding.
- the point cloud content providing system may transmit the encoded point cloud data (20002).
- the encoded point cloud data may be expressed as a geometry bitstream and an attribute bitstream.
- the encoded point cloud data may be transmitted in the form of a bitstream together with signaling information related to encoding of the point cloud data (eg, signaling information related to geometry encoding and attribute encoding).
- the point cloud content providing system may encapsulate the bitstream for transmitting the encoded point cloud data and transmit it in the form of a file or segment.
- the point cloud content providing system (eg, the receiving device 10004 or the receiver 10005) according to the embodiments may receive a bitstream including the encoded point cloud data. Also, the point cloud content providing system (eg, the receiving device 10004 or the receiver 10005) may demultiplex the bitstream.
- the point cloud content providing system may decode the encoded point cloud data (for example, a geometry bitstream, an attribute bitstream) transmitted as a bitstream. there is.
- the point cloud content providing system (for example, the receiving device 10004 or the point cloud video decoder 10005) may decode the point cloud video data based on signaling information related to encoding of the point cloud video data included in the bitstream. there is.
- the point cloud content providing system (eg, the receiving device 10004 or the point cloud video decoder 10005) may decode the geometry bitstream to restore positions (geometry) of the points.
- the point cloud content providing system may restore attributes of points by decoding an attribute bitstream based on the restored geometry.
- the point cloud content providing system (eg, the receiving device 10004 or the point cloud video decoder 10005) may reconstruct the point cloud video based on positions and decoded attributes according to the reconstructed geometry.
- the point cloud content providing system may render the decoded point cloud data (20004).
- the point cloud content providing system may render the geometry and attributes decoded through the decoding process according to various rendering methods according to the rendering method.
- the points of the point cloud content may be rendered as a vertex having a certain thickness, a cube having a specific minimum size centered at the vertex position, or a circle centered at the vertex position. All or part of the rendered point cloud content is provided to the user through a display (eg, VR/AR display, general display, etc.).
- the point cloud content providing system (eg, the reception device 10004) according to the embodiments may secure the feedback information (20005).
- the point cloud content providing system may encode and/or decode the point cloud data based on the feedback information. Since the operation of the feedback information and point cloud content providing system according to the embodiments is the same as the feedback information and operation described with reference to FIG. 1 , a detailed description thereof will be omitted.
- FIG 3 shows an example of a point cloud video capture process according to embodiments.
- FIG. 3 shows an example of a point cloud video capture process of the point cloud content providing system described with reference to FIGS. 1 and 2 .
- the point cloud content is an object located in various three-dimensional spaces (eg, a three-dimensional space representing a real environment, a three-dimensional space representing a virtual environment, etc.) and/or a point cloud video representing the environment (images and/or videos) are included.
- one or more cameras eg, an infrared camera capable of securing depth information, color information corresponding to depth information
- the point cloud content providing system according to the embodiments may extract a shape of a geometry composed of points in a three-dimensional space from depth information, and extract an attribute of each point from color information to secure point cloud data.
- An image and/or an image according to embodiments may be captured based on at least one of an inward-facing method and an outward-facing method.
- the left side of FIG. 3 shows an inward-pacing scheme.
- the inward-pacing method refers to a method in which one or more cameras (or camera sensors) located surrounding the central object capture the central object.
- the inward-facing method provides a 360-degree image of a point cloud content that provides a user with a 360-degree image of a core object (for example, a 360-degree image of an object (e.g., a core object such as a character, player, object, actor, etc.) to the user. It can be used to create VR/AR content).
- the right side of FIG. 3 shows an outward-pacing scheme.
- the outward-pacing method refers to a method in which one or more cameras (or camera sensors) positioned surrounding the central object capture the environment of the central object rather than the central object.
- the outward-pacing method may be used to generate point cloud content (eg, content representing an external environment that may be provided to a user of an autonomous vehicle) for providing a surrounding environment that appears from the user's point of view.
- point cloud content eg, content representing an external environment that may be provided to a user of an autonomous vehicle
- the point cloud content may be generated based on a capture operation of one or more cameras.
- the point cloud content providing system may perform calibration of one or more cameras in order to set a global coordinate system before the capture operation.
- the point cloud content providing system may generate the point cloud content by synthesizing the image and/or image captured by the above-described capture method and an arbitrary image and/or image.
- the point cloud content providing system may not perform the capture operation described with reference to FIG. 3 when generating point cloud content representing a virtual space.
- the point cloud content providing system according to the embodiments may perform post-processing on the captured image and/or the image. That is, the point cloud content providing system removes an unwanted area (eg, a background), recognizes a space where captured images and/or images are connected, and fills in a spatial hole if there is one. can
- the point cloud content providing system may generate one point cloud content by performing coordinate system transformation on points of the point cloud video secured from each camera.
- the point cloud content providing system may perform coordinate system transformation of points based on the position coordinates of each camera. Accordingly, the point cloud content providing system may generate content representing one wide range and may generate point cloud content having a high density of points.
- FIG. 4 shows an example of a point cloud encoder according to embodiments.
- the point cloud encoder controls point cloud data (eg, positions of points and/or attributes) and perform an encoding operation.
- point cloud data e.g, positions of points and/or attributes
- the point cloud content providing system may not be able to stream the corresponding content in real time. Accordingly, the point cloud content providing system may reconfigure the point cloud content based on a maximum target bitrate in order to provide it according to a network environment.
- the point cloud encoder may perform geometry encoding and attribute encoding. Geometry encoding is performed before attribute encoding.
- the point cloud encoder may include a coordinate system transformation unit (Transformation Coordinates, 40000), a quantization unit (Quantize and Remove Points (Voxelize), 40001), an octree analysis unit (Analyze Octree, 40002), and a surface appropriation analysis unit ( Analyze Surface Approximation (40003), Arithmetic Encode (40004), Reconstruct Geometry (40005), Color Transformer (Transform Colors, 40006), Attribute Transformer (Transfer Attributes, 40007), RAHT Transform It includes a unit 40008, an LOD generator (Generated LOD, 40009), a lifting transform unit (Lifting) 40010, a coefficient quantization unit (Quantize Coefficients, 40011) and/or an arithmetic encoder (Arithmetic Encode, 40012).
- a coordinate system transformation unit Transformation Coordinates, 40000
- a quantization unit Quantization and Remove Points (Voxelize)
- the coordinate system transformation unit 40000, the quantization unit 40001, the octree analysis unit 40002, the surface approxy analysis unit 40003, the arithmetic encoder 40004, and the geometry reconstruction unit 40005 perform geometry encoding. can do.
- Geometry encoding according to embodiments may include octree geometry coding, direct coding, trisoup geometry encoding, and entropy encoding. Direct coding and trisup geometry encoding are applied selectively or in combination. Also, geometry encoding is not limited to the above example.
- the coordinate system conversion unit 40000 receives the positions and converts them into a coordinate system.
- the positions may be converted into position information in a three-dimensional space (eg, a three-dimensional space expressed in an XYZ coordinate system, etc.).
- Location information in 3D space may be referred to as geometry information.
- the quantizer 40001 quantizes the geometry.
- the quantization unit 40001 may quantize the points based on the minimum position values of all points (eg, the minimum values on each axis with respect to the X-axis, Y-axis, and Z-axis).
- the quantization unit 40001 performs a quantization operation to find the nearest integer value by multiplying the difference between the minimum position value and the position value of each point by a preset quatization scale value, and then rounding down or rounding it up. Accordingly, one or more points may have the same quantized position (or position value).
- the quantizer 40001 according to embodiments performs voxelization based on quantized positions to reconstruct quantized points.
- a minimum unit including 2D image/video information is a pixel, and points of point cloud content (or 3D point cloud video) according to embodiments may be included in one or more voxels.
- the quantizer 40001 may match groups of points in a 3D space to voxels.
- one voxel may include only one point.
- one voxel may include one or more points.
- a position of a center point of the voxel may be set based on positions of one or more points included in one voxel.
- attributes of all positions included in one voxel may be combined and assigned to a corresponding voxel.
- the octree analyzer 40002 performs octree geometry coding (or octree coding) to represent voxels in an octree structure.
- the octree structure represents points matched to voxels based on the octal tree structure.
- the surface appropriation analyzer 40003 may analyze and approximate the octree.
- Octree analysis and approximation is a process of analyzing to voxelize a region including a plurality of points in order to efficiently provide octree and voxelization.
- the arithmetic encoder 40004 entropy encodes the octree and/or the approximated octree.
- the encoding method includes an arithmetic encoding method.
- the encoding results in a geometry bitstream.
- Color transform unit 40006 performs attribute encoding.
- one point may have one or more attributes. Attribute encoding according to embodiments is equally applied to attributes of one point. However, when one attribute (eg, color) includes one or more elements, independent attribute encoding is applied to each element.
- Attribute encoding may include color transform coding, attribute transform coding, region adaptive hierarchical transform (RAHT) coding, interpolaration-based hierarchical nearest-neighbor prediction-Prediction Transform coding, and interpolation-based hierarchical nearest -neighbor prediction with an update/lifting step (Lifting Transform)) may include coding.
- RAHT region adaptive hierarchical transform
- coding interpolaration-based hierarchical nearest-neighbor prediction-Prediction Transform coding
- Lifting Transform interpolation-based hierarchical nearest -neighbor prediction with an update/lifting step
- attribute encoding is not limited to the above-described example.
- the color conversion unit 40006 performs color conversion coding for converting color values (or textures) included in attributes.
- the color converter 40006 may convert the format of color information (eg, convert RGB to YCbCr).
- the operation of the color converter 40006 according to embodiments may be optionally applied according to color values included in the attributes.
- the geometry reconstruction unit 40005 reconstructs (decompresses) an octree and/or an approximated octree.
- the geometry reconstruction unit 40005 reconstructs an octree/voxel based on a result of analyzing the distribution of points.
- the reconstructed octree/voxel may be referred to as a reconstructed geometry (or a reconstructed geometry).
- the attribute transform unit 40007 performs an attribute transform that transforms attributes based on positions to which geometry encoding has not been performed and/or a reconstructed geometry. As described above, since the attributes are dependent on the geometry, the attribute transform unit 40007 may transform the attributes based on the reconstructed geometry information. For example, the attribute conversion unit 40007 may convert an attribute of a point at the position based on the position value of the point included in the voxel. As described above, when the position of the center point of a voxel is set based on the positions of one or more points included in one voxel, the attribute conversion unit 40007 converts attributes of the one or more points. When the tri-soup geometry encoding is performed, the attribute conversion unit 40007 may convert the attributes based on the tri-soup geometry encoding.
- the attribute conversion unit 40007 is an average value of attributes or attribute values (eg, color of each point, reflectance, etc.) of neighboring points within a specific position/radius from the position (or position value) of the central point of each voxel. can be calculated to perform attribute transformation.
- the attribute conversion unit 40007 may apply a weight according to the distance from the center point to each point when calculating the average value.
- each voxel has a position and a computed attribute (or attribute value).
- the attribute conversion unit 40007 may search for neighboring points existing within a specific position/radius from the position of the center point of each voxel based on the K-D tree or the Morton code.
- the K-D tree is a binary search tree and supports a data structure that can manage points based on location so that Nearest Neighbor Search-NNS is possible quickly.
- the Molton code represents a coordinate value (eg (x, y, z)) indicating a three-dimensional position of all points as a bit value, and is generated by mixing the bits. For example, if the coordinate value indicating the position of the point is (5, 9, 1), the bit value of the coordinate value is (0101, 1001, 0001).
- the attribute transform unit 40007 may align the points based on the Molton code value and perform a shortest neighbor search (NNS) through a depth-first traversal process. After the attribute transformation operation, if the nearest neighbor search (NNS) is required in another transformation process for attribute coding, a K-D tree or a Molton code is used.
- NSS shortest neighbor search
- the converted attributes are input to the RAHT conversion unit 40008 and/or the LOD generation unit 40009.
- the RAHT converter 40008 performs RAHT coding for predicting attribute information based on the reconstructed geometry information.
- the RAHT transform unit 40008 may predict attribute information of a node at an upper level of the octree based on attribute information associated with a node at a lower level of the octree.
- the LOD generator 40009 generates a level of detail (LOD) to perform predictive transform coding.
- LOD level of detail
- the LOD according to the embodiments indicates the detail of the point cloud content, and the smaller the LOD value, the lower the detail of the point cloud content, and the higher the LOD value, the higher the detail of the point cloud content. Points may be classified according to LOD.
- the lifting transform unit 40010 performs lifting transform coding that transforms the attributes of the point cloud based on weights. As described above, lifting transform coding may be selectively applied.
- the coefficient quantizer 40011 quantizes the attribute-coded attributes based on coefficients.
- the arithmetic encoder 40012 encodes the quantized attributes based on arithmetic coding.
- the elements of the point cloud encoder of FIG. 4 are hardware including one or more processors or integrated circuits configured to communicate with one or more memories included in the point cloud providing device. , software, firmware, or a combination thereof.
- the one or more processors may perform at least any one or more of the operations and/or functions of the elements of the point cloud encoder of FIG. 4 described above.
- the one or more processors may operate or execute a set of software programs and/or instructions for performing operations and/or functions of the elements of the point cloud encoder of FIG. 4 .
- One or more memories in accordance with embodiments may include high speed random access memory, non-volatile memory (eg, one or more magnetic disk storage devices, flash memory devices, or other non-volatile solid state memory). memory devices (such as solid-state memory devices).
- FIG. 5 illustrates an example of a voxel according to embodiments.
- voxel 5 is an octree structure that recursively subdivides a bounding box defined by two poles (0,0,0) and (2 d , 2 d , 2 d ).
- An example of a voxel generated through One voxel includes at least one or more points.
- a voxel may estimate spatial coordinates from a positional relationship with a voxel group.
- voxels have attributes (such as color or reflectance) like pixels of a 2D image/image.
- a detailed description of the voxel is the same as that described with reference to FIG. 4 and thus will be omitted.
- FIG. 6 shows an example of an octree and an occupancy code according to embodiments.
- the point cloud content providing system (point cloud video encoder 10002) or point cloud encoder (eg, octree analysis unit 40002) efficiently manages the area and/or position of voxels
- octree geometry coding (or octree coding) based on the octree structure is performed.
- FIG. 6 shows the octree structure.
- the three-dimensional space of the point cloud content according to embodiments is expressed by axes (eg, X-axis, Y-axis, and Z-axis) of the coordinate system.
- An octree structure is created by recursive subdividing a bounding box defined by two poles (0,0,0) and (2 d , 2 d , 2 d ). . 2d may be set as a value constituting the smallest bounding box surrounding all points of the point cloud content (or point cloud video).
- d represents the depth of the octree.
- the value of d is determined according to the following equation. In the following equation (x int n , y int n , z int n ) represents positions (or position values) of quantized points.
- the entire 3D space may be divided into eight spaces according to the division.
- Each divided space is expressed as a cube with six faces.
- each of the eight spaces is again divided based on the axes of the coordinate system (eg, X-axis, Y-axis, and Z-axis). Therefore, each space is further divided into 8 small spaces.
- the divided small space is also expressed as a cube with six faces. This division method is applied until a leaf node of the octree becomes a voxel.
- the lower part of FIG. 6 shows the occupancy code of the octree.
- the occupancy code of the octree is generated to indicate whether each of the eight divided spaces generated by dividing one space includes at least one point.
- one occupanci code is expressed by eight child nodes.
- Each child node represents an occupancy of the divided space, and each child node has a value of 1 bit. Therefore, the occupanci code is expressed as an 8-bit code. That is, if at least one point is included in the space corresponding to the child node, the corresponding node has a value of 1. If the space corresponding to the child node does not contain a point (empty), the node has a value of 0. Since the occupancy code shown in FIG.
- a point cloud encoder (eg, arithmetic encoder 40004 ) according to embodiments may entropy encode the occult code. In addition, to increase the compression efficiency, the point cloud encoder can intra/inter-code the occupanci code.
- the receiving apparatus (eg, the receiving apparatus 10004 or the point cloud video decoder 10006) according to embodiments reconstructs an octree based on the occupanci code.
- the point cloud encoder (eg, the point cloud encoder of FIG. 4 , or the octree analyzer 40002) according to embodiments may perform voxelization and octree coding to store positions of points.
- the points in the 3D space are not always evenly distributed, there may be a specific area where there are not many points. Therefore, it is inefficient to perform voxelization on the entire 3D space. For example, if there are few points in a specific area, there is no need to perform voxelization up to the corresponding area.
- the point cloud encoder does not perform voxelization on the above-described specific region (or a node other than a leaf node of an octree), but directly codes positions of points included in the specific region. ) can be done. Coordinates of direct coding points according to embodiments are called direct coding mode (DCM).
- DCM direct coding mode
- the point cloud encoder according to embodiments may perform trisoup geometry encoding for reconstructing positions of points in a specific region (or node) based on a voxel based on a surface model.
- Tri-Soop geometry encoding is a geometry encoding that expresses the representation of an object as a series of triangle meshes.
- the point cloud decoder can generate a point cloud from the mesh surface.
- Direct coding and trisup geometry encoding according to embodiments may be selectively performed.
- direct coding and trisup geometry encoding according to embodiments may be performed in combination with octree geometry coding (or octree coding).
- the option to use a direct mode for applying direct coding must be activated, and a node to which direct coding is to be applied is not a leaf node, but is less than a threshold within a specific node. points must exist. In addition, the number of whole points to be subjected to direct coding must not exceed a preset limit value. If the above condition is satisfied, the point cloud encoder (or the arithmetic encoder 40004 ) according to the embodiments may entropy-code positions (or position values) of points.
- the point cloud encoder (for example, the surface appropriation analyzer 40003) according to the embodiments determines a specific level of the octree (when the level is smaller than the depth d of the octree), and from that level, a node using the surface model It is possible to perform tri-soup geometry encoding, which reconstructs the position of a point in a region based on voxels (tri-soup mode).
- the point cloud encoder may designate a level to which tri-soup geometry encoding is to be applied. For example, if the specified level is equal to the depth of the octree, the point cloud encoder will not operate in tri-soup mode.
- the point cloud encoder may operate in the tri-soup mode only when the specified level is smaller than the depth value of the octree.
- a three-dimensional cube region of nodes of a specified level according to embodiments is called a block.
- One block may include one or more voxels.
- a block or voxel may correspond to a brick.
- the geometry is represented as a surface.
- a surface according to embodiments may intersect each edge of the block at most once.
- a vertex existing along an edge is detected when there is at least one occupied voxel adjacent to the edge among all blocks sharing the edge.
- An ocupided voxel means a voxel including a point. The position of the vertex detected along the edge is the average position along the edge of all voxels of all voxels adjacent to the edge among all blocks sharing the edge.
- the point cloud encoder When a vertex is detected, the point cloud encoder according to the embodiments entropy-codes the starting point (x, y, z) of the edge, the direction vectors ( ⁇ x, ⁇ y, ⁇ z) of the edge, and the vertex position values (relative position values within the edge).
- the point cloud encoder eg, the geometry reconstruction unit 40005
- the point cloud encoder performs triangle reconstruction, up-sampling, and voxelization processes. to create a reconstructed geometry (reconstructed geometry).
- Vertices located on the edge of a block determine the surface that passes through the block.
- the surface according to embodiments is a non-planar polygon.
- the triangle reconstruction process reconstructs the surface represented by a triangle based on the starting point of the edge, the direction vector of the edge, and the position value of the vertex.
- the triangle reconstruction process is as follows. 1 Calculate the centroid of each vertex, 2 perform the square on the values obtained by subtracting the centroid from each vertex value, and obtain the sum of all the values.
- the minimum value of the added values is obtained, and the projection process is performed along the axis with the minimum value. For example, if the x element is the minimum, each vertex is projected on the x-axis with respect to the center of the block and projected on the (y, z) plane. If the value that comes out when projecting on the (y, z) plane is (ai, bi), the ⁇ value is obtained through atan2(bi, ai), and the vertices are aligned based on the ⁇ value.
- the table below shows combinations of vertices for generating a triangle according to the number of vertices. Vertices are sorted in order from 1 to n.
- the table below shows that for four vertices, two triangles can be formed according to a combination of vertices.
- the first triangle may be composed of 1st, 2nd, and 3rd vertices among the aligned vertices
- the second triangle may be composed of 3rd, 4th, and 1st vertices among the aligned vertices. .
- the upsampling process is performed to voxelize the triangle by adding points along the edge of the triangle. Create additional points based on the upsampling factor and the width of the block. The additional points are called refined vertices.
- the point cloud encoder may voxel the refined vertices.
- the point cloud encoder may perform attribute encoding based on the voxelized position (or position value).
- FIG. 7 shows an example of a neighbor node pattern according to embodiments.
- the point cloud encoder may perform entropy coding based on context adaptive arithmetic coding.
- the point cloud content providing system or the point cloud encoder directly transmits the occupanci code.
- Entropy coding is possible.
- the point cloud content providing system or point cloud encoder performs entropy encoding (intra-encoding) based on the occupancies of the current node and the occupancies of neighboring nodes, or entropy encoding (inter-encoding) based on the occupancies of the previous frame. ) can be done.
- a frame according to embodiments means a set of point cloud videos generated at the same time.
- a point cloud encoder determines occupancy of neighboring nodes of each node of an octree and obtains a neighbor pattern value.
- the neighbor node pattern is used to infer the occupancies pattern of the corresponding node.
- the left side of FIG. 7 shows a cube corresponding to a node (a cube located in the center) and six cubes (neighboring nodes) that share at least one face with the cube.
- the nodes shown in the figure are nodes of the same depth (depth).
- the numbers shown in the figure represent the weights (1, 2, 4, 8, 16, 32, etc.) associated with each of the six nodes. Each weight is sequentially assigned according to the positions of neighboring nodes.
- the right side of FIG. 7 shows the neighboring node pattern values.
- the neighbor node pattern value is the sum of values multiplied by the weights of the ocupided neighbor nodes (neighbor nodes with points). Therefore, the neighbor node pattern values range from 0 to 63.
- the neighbor node pattern value is 0, it indicates that there is no node (ocupid node) having a point among the neighboring nodes of the corresponding node.
- the neighbor node pattern value is 63, it indicates that all of the neighboring nodes are ocupid nodes.
- the neighboring node pattern value is 15, which is the sum of 1, 2, 4, and 8.
- the point cloud encoder may perform coding according to the value of the neighboring node pattern (eg, when the value of the neighboring node pattern is 63, 64 types of coding are performed). According to embodiments, the point cloud encoder may reduce coding complexity by changing the neighbor node pattern value (eg, based on a table that changes 64 to 10 or 6).
- the encoded geometry is reconstructed (decompressed).
- the geometry reconstruction operation may include changing the arrangement of the direct coded points (eg, placing the direct coded points in front of the point cloud data).
- tri-soap geometry encoding is applied, the geometry reconstruction process is triangular reconstruction, upsampling, and voxelization. Since the attribute is dependent on the geometry, attribute encoding is performed based on the reconstructed geometry.
- the point cloud encoder may reorganize the points by LOD.
- the figure shows the point cloud content corresponding to the LOD.
- the left side of the figure shows the original point cloud content.
- the second figure from the left of the figure shows the distribution of the points of the lowest LOD, and the rightmost figure of the figure shows the distribution of the points of the highest LOD. That is, the points of the lowest LOD are sparsely distributed, and the points of the highest LOD are tightly distributed. That is, as the LOD increases according to the direction of the arrow indicated at the bottom of the drawing, the interval (or distance) between the points becomes shorter.
- the point cloud content providing system or the point cloud encoder (for example, the point cloud video encoder 10002, the point cloud encoder of FIG. 4, or the LOD generator 40009) generates an LOD. can do.
- the LOD is created by reorganizing the points into a set of refinement levels according to a set LOD distance value (or set of Euclidean Distance).
- the LOD generation process is performed not only in the point cloud encoder but also in the point cloud decoder.
- FIG. 9 shows examples (P0 to P9) of points of point cloud content distributed in a three-dimensional space.
- the original order of FIG. 9 indicates the order of points P0 to P9 before LOD generation.
- the LOD based order of FIG. 9 indicates the order of points according to the LOD generation. Points are rearranged by LOD. Also, the high LOD includes points belonging to the low LOD.
- LOD0 includes P0, P5, P4 and P2.
- LOD1 includes the points of LOD0 and P1, P6 and P3.
- LOD2 includes points of LOD0, points of LOD1, and P9, P8 and P7.
- the point cloud encoder may perform predictive transform coding, lifting transform coding, and RAHT transform coding selectively or in combination.
- the point cloud encoder may generate predictors for points and perform predictive transform coding to set prediction attributes (or prediction attribute values) of each point. That is, N predictors may be generated for N points.
- the prediction attribute (or attribute value) is a weight calculated based on the distance to each neighboring point in the attributes (or attribute values, for example, color, reflectance, etc.) of neighboring points set in the predictor of each point (or the weight value) is set as the average value of the multiplied value.
- the point cloud encoder eg, the coefficient quantization unit 40011
- the quantization process is shown in the following table.
- the point cloud encoder (eg, the arithmetic encoder 40012) according to the embodiments may entropy-code the quantized and dequantized residual values as described above when there are points adjacent to the predictor of each point.
- the point cloud encoder according to the examples (eg, the arithmetic encoder 40012) may entropy-code the attributes of each point without performing the above-described process if there are no neighboring points in the predictor of each point.
- a point cloud encoder (eg, lifting transform unit 40010) generates a predictor of each point, sets an LOD calculated in the predictor, registers neighboring points, and weights according to distances to neighboring points
- Lifting transform coding can be performed by setting .Lifting transform coding according to embodiments is similar to the aforementioned predictive transform coding, except that a weight is accumulated and applied to an attribute value. The process of cumulatively applying weights to values is as follows.
- the weights calculated for all predictors are additionally multiplied by the weights stored in the QW corresponding to the predictor index, and the calculated weights are cumulatively added to the update weight array as the indices of neighboring nodes.
- the value obtained by multiplying the calculated weight by the attribute value of the index of the neighbor node is accumulated and summed.
- a predicted attribute value is calculated by additionally multiplying an attribute value updated through the lift update process by a weight updated through the lift prediction process (stored in QW).
- a point cloud encoder eg, the coefficient quantization unit 40011
- a point cloud encoder eg, arithmetic encoder 40012
- entropy codes the quantized attribute values.
- the point cloud encoder (for example, the RAHT transform unit 40008) according to the embodiments may perform RAHT transform coding for estimating the attributes of nodes of a higher level by using an attribute associated with a node at a lower level of the octree.
- RAHT transform coding is an example of attribute intra coding with octree backward scan.
- the point cloud encoder according to the embodiments scans the entire area from the voxel, and repeats the merging process up to the root node while merging the voxels into a larger block at each step.
- the merging process according to the embodiments is performed only for the ocupid node. A merging process is not performed on an empty node, and a merging process is performed on a node immediately above the empty node.
- g lx, y, and z represent the average attribute values of voxels in level l.
- g lx, y, z can be calculated from g l+1 2x, y, z and g l+1 2x+1, y, z .
- g l-1 x, y, z are low-pass values, which are used in the merging process at the next higher level.
- h l-1 x, y, and z are high-pass coefficients, and the high-pass coefficients in each step are quantized and entropy-coded (eg, encoding of the arithmetic encoder 400012 ).
- the root node is created as follows through the last g 1 0, 0, 0 and g 1 0, 0, 1 ,
- FIG. 10 shows an example of a point cloud decoder according to embodiments.
- the point cloud decoder shown in FIG. 10 is an example of the point cloud video decoder 10006 described in FIG. 1 , and may perform the same or similar operations to the operation of the point cloud video decoder 10006 described in FIG. 1 .
- the point cloud decoder may receive a geometry bitstream and an attribute bitstream included in one or more bitstreams.
- the point cloud decoder includes a geometry decoder and an attribute decoder.
- the geometry decoder outputs decoded geometry by performing geometry decoding on the geometry bitstream.
- the attribute decoder outputs decoded attributes by performing attribute decoding based on the decoded geometry and the attribute bitstream.
- the decoded geometry and decoded attributes are used to reconstruct the point cloud content (decoded point cloud).
- FIG. 11 shows an example of a point cloud decoder according to embodiments.
- the point cloud decoder shown in FIG. 11 is an example of the point cloud decoder described with reference to FIG. 10 , and may perform a decoding operation that is a reverse process of the encoding operation of the point cloud encoder described with reference to FIGS. 1 to 9 .
- the point cloud decoder may perform geometry decoding and attribute decoding. Geometry decoding is performed before attribute decoding.
- a point cloud decoder may include an arithmetic decoder 11000, a synthesize octree 11001, a synthesize surface approximation 11002, and a reconstruct geometry , 11003), inverse transform coordinates (11004), arithmetic decoder (11005), inverse quantize (11006), RAHT transform unit (11007), LOD generator (generate LOD, 11008) ), inverse lifting unit (Inverse lifting, 11009), and / or color inverse transform unit (inverse transform colors, 11010).
- the arithmetic decoder 11000 , the octree synthesizer 11001 , the surface opproximation synthesizer 11002 , the geometry reconstruction unit 11003 , and the coordinate system inverse transformation unit 11004 may perform geometry decoding.
- Geometry decoding according to embodiments may include direct coding and trisoup geometry decoding. Direct coding and trisup geometry decoding are optionally applied. Also, the geometry decoding is not limited to the above example, and is performed as a reverse process of the geometry encoding described with reference to FIGS. 1 to 9 .
- the arithmetic decoder 11000 decodes the received geometry bitstream based on arithmetic coding.
- the operation of the arithmetic decoder 11000 corresponds to the reverse process of the arithmetic encoder 40004 .
- the octree synthesizer 11001 may generate an octree by obtaining an occupanci code from a decoded geometry bitstream (or information about a geometry secured as a result of decoding).
- a detailed description of the occupanci code is the same as described with reference to FIGS. 1 to 9 .
- the surface op-proximation synthesizing unit 11002 may synthesize a surface based on a decoded geometry and/or a generated octree when trisupe geometry encoding is applied.
- the geometry reconstruction unit 11003 may reconstruct a geometry based on the surface and/or the decoded geometry. As described with reference to FIGS. 1 to 9 , direct coding and tri-soup geometry encoding are selectively applied. Accordingly, the geometry reconstruction unit 11003 directly brings and adds position information of points to which direct coding is applied. In addition, when tri-soap geometry encoding is applied, the geometry reconstruction unit 11003 may perform a reconstruction operation of the geometry reconstruction unit 40005, for example, triangle reconstruction, up-sampling, and voxelization to restore the geometry. there is. Specific details are the same as those described with reference to FIG. 6 and thus will be omitted.
- the reconstructed geometry may include a point cloud picture or frame that does not include attributes.
- the coordinate system inverse transform unit 11004 may obtain positions of points by transforming the coordinate system based on the restored geometry.
- the arithmetic decoder 11005, the inverse quantization unit 11006, the RAHT transform unit 11007, the LOD generator 11008, the inverse lifting unit 11009, and/or the inverse color transform unit 11010 are the attributes described with reference to FIG. decoding can be performed.
- Attribute decoding according to embodiments includes Region Adaptive Hierarchical Transform (RAHT) decoding, Interpolaration-based hierarchical nearest-neighbor prediction-Prediction Transform decoding, and interpolation-based hierarchical nearest-neighbor prediction with an update/lifting step (Lifting Transform)) decoding may be included.
- RAHT Region Adaptive Hierarchical Transform
- Interpolaration-based hierarchical nearest-neighbor prediction-Prediction Transform decoding Interpolaration-based hierarchical nearest-neighbor prediction-Prediction Transform decoding
- interpolation-based hierarchical nearest-neighbor prediction with an update/lifting step (Lifting Transform)) decoding may be included.
- the arithmetic decoder 11005 decodes an attribute bitstream by arithmetic coding.
- the inverse quantization unit 11006 inverse quantizes the decoded attribute bitstream or information on the attribute secured as a result of decoding, and outputs inverse quantized attributes (or attribute values). Inverse quantization may be selectively applied based on attribute encoding of the point cloud encoder.
- the RAHT transformation unit 11007, the LOD generation unit 11008, and/or the inverse lifting unit 11009 may process the reconstructed geometry and dequantized attributes. As described above, the RAHT converting unit 11007, the LOD generating unit 11008, and/or the inverse lifting unit 11009 may selectively perform a corresponding decoding operation according to the encoding of the point cloud encoder.
- the color inverse transform unit 11010 performs inverse transform coding for inverse transforming color values (or textures) included in decoded attributes.
- the operation of the color inverse transform unit 11010 may be selectively performed based on the operation of the color transform unit 40006 of the point cloud encoder.
- the elements of the point cloud decoder of FIG. 11 are not shown in the figure, hardware including one or more processors or integrated circuits configured to communicate with one or more memories included in the point cloud providing device , software, firmware, or a combination thereof.
- the one or more processors may perform at least any one or more of the operations and/or functions of the elements of the point cloud decoder of FIG. 11 described above.
- the one or more processors may operate or execute a set of software programs and/or instructions for performing operations and/or functions of the elements of the point cloud decoder of FIG. 11 .
- the transmission device shown in FIG. 12 is an example of the transmission device 10000 of FIG. 1 (or the point cloud encoder of FIG. 4 ).
- the transmitting apparatus shown in FIG. 12 may perform at least any one or more of the same or similar operations and methods to the operations and encoding methods of the point cloud encoder described with reference to FIGS. 1 to 9 .
- the transmission apparatus includes a data input unit 12000 , a quantization processing unit 12001 , a voxelization processing unit 12002 , an occupancy code generation unit 12003 , a surface model processing unit 12004 , and an intra/ Inter-coding processing unit 12005, arithmetic coder 12006, metadata processing unit 12007, color conversion processing unit 12008, attribute conversion processing unit (or attribute conversion processing unit) 12009, prediction/lifting/RAHT conversion It may include a processing unit 12010 , an arithmetic coder 12011 , and/or a transmission processing unit 12012 .
- the data input unit 12000 receives or acquires point cloud data.
- the data input unit 12000 may perform the same or similar operation and/or acquisition method to the operation and/or acquisition method of the point cloud video acquisition unit 10001 (or the acquisition process 20000 described in FIG. 2 ).
- the coder 12006 performs geometry encoding. Since the geometry encoding according to the embodiments is the same as or similar to the geometry encoding described with reference to FIGS. 1 to 9 , a detailed description thereof will be omitted.
- the quantization processing unit 12001 quantizes a geometry (eg, a position value or a position value of points).
- the operation and/or quantization of the quantization processing unit 12001 is the same as or similar to the operation and/or quantization of the quantization unit 40001 described with reference to FIG. 4 .
- a detailed description is the same as that described with reference to FIGS. 1 to 9 .
- the voxelization processing unit 12002 voxelizes position values of quantized points.
- the voxelization processing unit 12002 may perform the same or similar operations and/or processes to those of the quantization unit 40001 described with reference to FIG. 4 and/or the voxelization process. A detailed description is the same as that described with reference to FIGS. 1 to 9 .
- the octree occupancy code generator 12003 performs octree coding on the positions of voxelized points based on the octree structure.
- the octree occupancy code generator 12003 may generate an occult code.
- the octree occupancy code generator 12003 may perform the same or similar operations and/or methods to those of the point cloud encoder (or the octree analyzer 40002) described with reference to FIGS. 4 and 6 . A detailed description is the same as that described with reference to FIGS. 1 to 9 .
- the surface model processing unit 12004 may perform tri-supply geometry encoding for reconstructing positions of points in a specific region (or node) based on voxels based on a surface model.
- the fore surface model processing unit 12004 may perform the same or similar operations and/or methods to those of the point cloud encoder (eg, the surface appropriation analyzer 40003) described with reference to FIG. 4 .
- a detailed description is the same as that described with reference to FIGS. 1 to 9 .
- the intra/inter coding processing unit 12005 may perform intra/inter coding of point cloud data.
- the intra/inter coding processing unit 12005 may perform the same or similar coding to the intra/inter coding described with reference to FIG. 7 . A detailed description is the same as that described with reference to FIG. 7 .
- the intra/inter coding processing unit 12005 may be included in the arithmetic coder 12006 .
- the arithmetic coder 12006 entropy encodes an octree and/or an approximated octree of point cloud data.
- the encoding method includes an arithmetic encoding method.
- the arithmetic coder 12006 performs the same or similar operations and/or methods as the operations and/or methods of the arithmetic encoder 40004 .
- the metadata processing unit 12007 processes metadata related to point cloud data, for example, a setting value, and provides it to necessary processing such as geometry encoding and/or attribute encoding. Also, the metadata processing unit 12007 according to embodiments may generate and/or process signaling information related to geometry encoding and/or attribute encoding. Signaling information according to embodiments may be encoded separately from geometry encoding and/or attribute encoding. Also, signaling information according to embodiments may be interleaved.
- the color conversion processing unit 12008, the attribute conversion processing unit 12009, the prediction/lifting/RAHT conversion processing unit 12010, and the arithmetic coder 12011 perform attribute encoding. Since the attribute encoding according to the embodiments is the same as or similar to the attribute encoding described with reference to FIGS. 1 to 9 , a detailed description thereof will be omitted.
- the color conversion processing unit 12008 performs color conversion coding for converting color values included in the attributes.
- the color conversion processing unit 12008 may perform color conversion coding based on the reconstructed geometry.
- the description of the reconstructed geometry is the same as described with reference to FIGS. 1 to 9 .
- the same or similar operation and/or method to the operation and/or method of the color conversion unit 40006 described with reference to FIG. 4 is performed. A detailed description will be omitted.
- the attribute transformation processing unit 12009 performs an attribute transformation for transforming attributes based on positions where geometry encoding has not been performed and/or a reconstructed geometry.
- the attribute transformation processing unit 12009 performs the same or similar operations and/or methods to those of the attribute transformation unit 40007 described in FIG. 4 . A detailed description will be omitted.
- the prediction/lifting/RAHT transform processing unit 12010 may code the transformed attributes in any one or a combination of RAHT coding, predictive transform coding, and lifting transform coding.
- the prediction/lifting/RAHT transformation processing unit 12010 performs at least one or more of the same or similar operations to the operations of the RAHT transformation unit 40008, the LOD generation unit 40009, and the lifting transformation unit 40010 described with reference to FIG. 4 . do.
- the descriptions of predictive transform coding, lifting transform coding, and RAHT transform coding are the same as those described in FIGS. 1 to 9 , detailed descriptions thereof will be omitted.
- the arithmetic coder 12011 may encode coded attributes based on arithmetic coding.
- the arithmetic coder 12011 performs the same or similar operations and/or methods to the operations and/or methods of the arithmetic encoder 400012 .
- the transmission processing unit 12012 transmits each bitstream including the encoded geometry and/or encoded attribute and metadata information, or converts the encoded geometry and/or the encoded attribute and metadata information into one It can be transmitted by composing it as a bitstream.
- the bitstream may include one or more sub-bitstreams.
- the bitstream according to the embodiments includes a sequence parameter set (SPS) for sequence-level signaling, a geometry parameter set (GPS) for signaling of geometry information coding, an attribute parameter set (APS) for signaling of attribute information coding, and a tile Signaling information including a Tile Parameter Set (TPS) for level signaling and slice data may be included.
- SPS sequence parameter set
- GPS geometry parameter set
- APS attribute parameter set
- TPS Tile Parameter Set
- Slice data may include information about one or more slices.
- One slice according to embodiments may include one geometry bitstream (Geom00) and one or more attribute bitstreams (Attr00, Attr10).
- a slice refers to a series of syntax elements representing all or a part of a coded point cloud frame.
- the TPS may include information about each tile (eg, coordinate value information and height/size information of a bounding box, etc.) for one or more tiles.
- a geometry bitstream may include a header and a payload.
- the header of the geometry bitstream according to the embodiments may include identification information (geom_ parameter_set_id), a tile identifier (geom_tile_id), a slice identifier (geom_slice_id) of a parameter set included in GPS, and information on data included in a payload, etc.
- the metadata processing unit 12007 may generate and/or process signaling information and transmit it to the transmission processing unit 12012 .
- elements performing geometry encoding and elements performing attribute encoding may share data/information with each other as dotted line processing.
- the transmission processing unit 12012 may perform the same or similar operation and/or transmission method to the operation and/or transmission method of the transmitter 10003 . Since the detailed description is the same as that described with reference to FIGS. 1 to 2 , a detailed description thereof will be omitted.
- FIG. 13 is an example of a receiving apparatus according to embodiments.
- the receiving device shown in FIG. 13 is an example of the receiving device 10004 of FIG. 1 (or the point cloud decoder of FIGS. 10 and 11 ).
- the receiving apparatus shown in FIG. 13 may perform at least any one or more of the same or similar operations and methods to the operations and decoding methods of the point cloud decoder described with reference to FIGS. 1 to 11 .
- the reception apparatus includes a reception unit 13000 , a reception processing unit 13001 , an arithmetic decoder 13002 , an Occupancy code-based octree reconstruction processing unit 13003 , and a surface model processing unit (triangle reconstruction). , up-sampling, voxelization) 13004, inverse quantization processing unit 13005, metadata parser 13006, arithmetic decoder 13007, inverse quantization processing unit 13008, prediction It may include a /lifting/RAHT inverse transformation processing unit 13009 , an inverse color transformation processing unit 13010 , and/or a renderer 13011 .
- Each component of decoding according to embodiments may perform a reverse process of a component of encoding according to embodiments.
- the receiver 13000 receives point cloud data.
- the receiver 13000 may perform the same or similar operation and/or reception method to the operation and/or reception method of the receiver 10005 of FIG. 1 . A detailed description will be omitted.
- the reception processing unit 13001 may acquire a geometry bitstream and/or an attribute bitstream from the received data.
- the reception processing unit 13001 may be included in the reception unit 13000 .
- the arithmetic decoder 13002 , the occupancy code-based octree reconstruction processing unit 13003 , the surface model processing unit 13004 , and the inverse quantization processing unit 13005 may perform geometry decoding. Since the geometry decoding according to the embodiments is the same as or similar to the geometry decoding described with reference to FIGS. 1 to 10 , a detailed description thereof will be omitted.
- the arithmetic decoder 13002 may decode a geometry bitstream based on arithmetic coding.
- the arithmetic decoder 13002 performs the same or similar operations and/or coding to the operations and/or coding of the arithmetic decoder 11000 .
- the occupancy code-based octree reconstruction processing unit 13003 may reconstruct the octopus by obtaining an occupanci code from a decoded geometry bitstream (or information about a geometry secured as a result of decoding).
- the occupancy code-based octree reconstruction processing unit 13003 performs the same or similar operations and/or methods to those of the octree synthesis unit 11001 and/or the octree generation method.
- the surface model processing unit 13004 may decode a trichop geometry based on the surface model method and reconstruct a geometry related thereto (eg, triangle reconstruction, up-sampling, voxelization) based on the surface model method, when trisoop geometry encoding is applied. can be performed.
- the surface model processing unit 13004 performs the same or similar operations to those of the surface op-proximation synthesis unit 11002 and/or the geometry reconstruction unit 11003 .
- the inverse quantization processing unit 13005 may inverse quantize the decoded geometry.
- the metadata parser 13006 may parse metadata included in the received point cloud data, for example, a setting value.
- the metadata parser 13006 may pass the metadata to geometry decoding and/or attribute decoding. A detailed description of the metadata is the same as that described with reference to FIG. 12 , and thus will be omitted.
- the arithmetic decoder 13007, the inverse quantization processing unit 13008, the prediction/lifting/RAHT inverse transformation processing unit 13009, and the inverse color transformation processing unit 13010 perform attribute decoding. Since the attribute decoding is the same as or similar to the attribute decoding described with reference to FIGS. 1 to 10 , a detailed description thereof will be omitted.
- the arithmetic decoder 13007 may decode an attribute bitstream by arithmetic coding.
- the arithmetic decoder 13007 may perform decoding of the attribute bitstream based on the reconstructed geometry.
- the arithmetic decoder 13007 performs the same or similar operations and/or coding to the operations and/or coding of the arithmetic decoder 11005 .
- the inverse quantization processing unit 13008 may inverse quantize the decoded attribute bitstream.
- the inverse quantization processing unit 13008 performs the same or similar operations and/or methods to those of the inverse quantization unit 11006 and/or the inverse quantization method.
- the prediction/lifting/RAHT inverse transform processing unit 13009 may process the reconstructed geometry and inverse quantized attributes.
- the prediction/lifting/RAHT inverse transform processing unit 13009 performs the same or similar operations and/or decodings as the operations and/or decodings of the RAHT transform unit 11007, the LOD generation unit 11008 and/or the inverse lifting unit 11009 and/or At least any one or more of the decodings are performed.
- the color inverse transform processing unit 13010 according to embodiments performs inverse transform coding for inverse transforming color values (or textures) included in decoded attributes.
- the color inverse transform processing unit 13010 performs the same or similar operation and/or inverse transform coding to the operation and/or inverse transform coding of the color inverse transform unit 11010 .
- the renderer 13011 may render point cloud data.
- FIG. 14 illustrates an example of a structure capable of interworking with a method/device for transmitting and receiving point cloud data according to embodiments.
- the structure of FIG. 14 includes at least one or more of a server 1460 , a robot 1410 , an autonomous vehicle 1420 , an XR device 1430 , a smartphone 1440 , a home appliance 1450 , and/or an HMD 1470 .
- a configuration connected to the cloud network 1410 is shown.
- the robot 1410 , the autonomous driving vehicle 1420 , the XR device 1430 , the smartphone 1440 , or the home appliance 1450 are referred to as devices.
- the XR device 1430 may correspond to a point cloud data (PCC) device according to embodiments or may be linked with the PCC device.
- PCC point cloud data
- the cloud network 1400 may constitute a part of the cloud computing infrastructure or may refer to a network existing in the cloud computing infrastructure.
- the cloud network 1400 may be configured using a 3G network, a 4G or Long Term Evolution (LTE) network, or a 5G network.
- LTE Long Term Evolution
- the server 1460 includes at least one of a robot 1410 , an autonomous vehicle 1420 , an XR device 1430 , a smartphone 1440 , a home appliance 1450 and/or an HMD 1470 , and a cloud network 1400 . It is connected through and may help at least a part of the processing of the connected devices 1410 to 1470 .
- a Head-Mount Display (HMD) 1470 represents one of the types in which an XR device and/or a PCC device according to embodiments may be implemented.
- the HMD type device according to the embodiments includes a communication unit, a control unit, a memory unit, an I/O unit, a sensor unit, a power supply unit, and the like.
- the devices 1410 to 1450 shown in FIG. 14 may be linked/coupled with the point cloud data transmission/reception device according to the above-described embodiments.
- XR / PCC device 1430 is PCC and / or XR (AR + VR) technology is applied, HMD (Head-Mount Display), HUD (Head-Up Display) provided in the vehicle, television, mobile phone, smart phone, It may be implemented as a computer, a wearable device, a home appliance, a digital signage, a vehicle, a stationary robot, or a mobile robot.
- HMD Head-Mount Display
- HUD Head-Up Display
- the XR/PCC device 1430 analyzes three-dimensional point cloud data or image data acquired through various sensors or from an external device to generate position data and attribute data for three-dimensional points in the surrounding space or real objects. Information can be obtained and the XR object to be output can be rendered and output. For example, the XR/PCC apparatus 1430 may output an XR object including additional information on the recognized object to correspond to the recognized object.
- the XR/PCC device 1430 may be implemented as a mobile phone 1440 or the like to which PCC technology is applied.
- the mobile phone 1440 may decode and display the point cloud content based on the PCC technology.
- the autonomous driving vehicle 1420 may be implemented as a mobile robot, a vehicle, an unmanned aerial vehicle, etc. by applying PCC technology and XR technology.
- the autonomous driving vehicle 1420 to which the XR/PCC technology is applied may mean an autonomous driving vehicle equipped with a means for providing an XR image or an autonomous driving vehicle subject to control/interaction within the XR image.
- the autonomous driving vehicle 1420 that is the target of control/interaction within the XR image may be distinguished from the XR device 1430 and may be interlocked with each other.
- the autonomous vehicle 1420 having means for providing an XR/PCC image may obtain sensor information from sensors including a camera, and output an XR/PCC image generated based on the acquired sensor information.
- the autonomous vehicle 1420 may provide an XR/PCC object corresponding to a real object or an object in the screen to the occupant by outputting an XR/PCC image with a HUD.
- the XR/PCC object when the XR/PCC object is output to the HUD, at least a portion of the XR/PCC object may be output to overlap the real object to which the passenger's gaze is directed.
- the XR/PCC object when the XR/PCC object is output to a display provided inside the autonomous vehicle, at least a portion of the XR/PCC object may be output to overlap the object in the screen.
- the autonomous vehicle 1220 may output XR/PCC objects corresponding to objects such as a lane, other vehicles, traffic lights, traffic signs, two-wheeled vehicles, pedestrians, and buildings.
- VR Virtual Reality
- AR Augmented Reality
- MR Magnetic Reality
- PCC Point Cloud Compression
- VR technology is a display technology that provides objects or backgrounds in the real world only as CG images.
- AR technology refers to a technology that shows a virtual CG image on top of a real object image.
- MR technology is similar to the aforementioned AR technology in that it shows virtual objects by mixing and combining them in the real world.
- real objects and virtual objects made of CG images are clear, and virtual objects are used in a form that complements real objects, whereas in MR technology, virtual objects are regarded as having the same characteristics as real objects. distinct from technology. More specifically, for example, a hologram service to which the aforementioned MR technology is applied.
- VR, AR, and MR technologies are sometimes called XR (extended reality) technologies rather than clearly distinguishing them. Accordingly, embodiments of the present invention are applicable to all of VR, AR, MR, and XR technologies.
- encoding/decoding based on PCC, V-PCC, and G-PCC technology may be applied.
- the PCC method/apparatus according to the embodiments may be applied to a vehicle providing an autonomous driving service.
- a vehicle providing an autonomous driving service is connected to a PCC device to enable wired/wireless communication.
- the point cloud data (PCC) transceiver receives/processes AR/VR/PCC service-related content data that can be provided together with the autonomous driving service when connected to a vehicle to enable wired/wireless communication, can be sent to
- the point cloud transceiver may receive/process AR/VR/PCC service-related content data according to a user input signal input through the user interface device and provide it to the user.
- a vehicle or a user interface device may receive a user input signal.
- a user input signal according to embodiments may include a signal indicating an autonomous driving service.
- a method/apparatus for transmitting point cloud data is a transmitting device 10000 of FIG. 1 , a point cloud video encoder 10002 , a transmitter 10003 , and an acquisition-encoding-transmitting (20000-20001-20002) of FIG. 2 .
- the encoder of FIG. 4 the transmitter of FIG. 12
- the device of FIG. 14 the encoder of FIG. 20
- the like the like.
- a method/apparatus for receiving point cloud data is a receiving device 10004, a receiver 10005, a point cloud video decoder 10006 of FIG. 1, and a transmission-decoding-rendering (20002-20003-20004) of FIG. , the decoder of Figs. 10-11, the receiver of Fig. 13, the device of Fig. 14, the decoder of Fig. 21, and the like.
- the method/device for transmitting and receiving point cloud data according to the embodiments may be abbreviated as a method/device according to the embodiments.
- geometry data, geometry information, location information, and the like constituting point cloud data are interpreted to have the same meaning.
- Attribute data, attribute information, and attribute information constituting the point cloud data are interpreted as the same meaning.
- a method/apparatus for transmitting and receiving point cloud data may perform a slice division operation for 3D map content related to point cloud data.
- Point cloud data may be point cloud frames captured by a LiDAR device. Such data can become point cloud content, and for efficient geometry compression of geometry-based point cloud compression (G-PCC), the point cloud data can be divided into slices, compressed and restored. .
- the data acquired by the lidar equipment may be lidar 3D map data.
- the method/apparatus according to the embodiments may encode and decode various types of point cloud data. For example, it can encode and decode 3D map data.
- the method/apparatus according to the embodiments may provide a slice division method and a signaling method for using a geometry angular mode.
- Embodiments relate to a method for increasing the compression efficiency of Geometry-based Point Cloud Compression (G-PCC) for 3D point cloud data compression.
- G-PCC Geometry-based Point Cloud Compression
- an encoder and an encoder are referred to as an encoder, and a decoder and a decoder are referred to as a decoder.
- a point cloud is composed of a set of points, and each point may have geometry information and attribute information.
- Geometry information is three-dimensional position (XYZ) information
- attribute information is color (RGB, YUV, etc.) and/or reflection (Reflectance) value.
- the G-PCC decoding process includes a process of receiving an encoded slice-unit geometry bitstream and attribute bitstream, decoding the geometry, and decoding attribute information based on the geometry reconstructed through the decoding process. .
- the geometry information compression method includes an octree-based, predictive tree-based, or trisoup-based compression method.
- the embodiments include a slice division method for increasing the geometry compression efficiency of content captured by the lidar device.
- FIG. 15 shows a spinning (rotating) LiDAR acquisition model according to embodiments.
- the point cloud data processed by the method/device for transmitting and receiving point cloud data may be data obtained based on the spitting lidar acquisition model, as shown in FIG. 15 .
- depth information can be extracted through LIDAR equipment that uses a radar system that measures the position coordinates of a reflector by shooting a laser pulse and measuring the time it takes to reflect and return.
- the point cloud content generated through the lidar device may consist of several frames, or may integrate several frames (multiple frames) into one content.
- N 16, 32, 64, etc.
- This type is called a spinning LiDAR model, and the content captured by the spinning LiDAR model has an angular characteristic.
- the laser i hits the object M, and the position of M can be estimated as (x, y, z) on the Cartesian coordinate system (see Fig. 15). Due to the fixed position, straight forward characteristic of laser sensors, and the characteristic that the sensors rotate in a certain azimuth, the position of M is coordinates other than (x, y, z) on the Cartesian coordinate system.
- the rule between points may have a property that can be derived favorably for compression.
- r is the radius or radius, may be azimuth or azimuth, and i may be an index i or lidar ID according to elevation or lidar elevation.
- a transmission method/device (eg, an encoder, a data input unit, a coordinate system transformation unit, a space division unit, etc.) according to the embodiments is configured for each laser obtained through rotation of a plurality of LiDAR lasers (eg, Laser ID, 1500) It is possible to scan points having rules related to rotational properties, and express the points in a LiDAR-based coordinate system rather than a Cartesian coordinate system.
- LiDAR lasers eg, Laser ID, 1500
- Angular mode is not (x, y, z) method of compression.
- Embodiments may process both a Cartesian coordinate system and/or a spherical coordinate system suitable for data characteristics.
- Angle mode can be applied when capturing and saving frame by frame through lidar equipment.
- data with different central positions of lidar equipment may be mixed.
- Embodiments may efficiently geometrically compress 3D map data captured through lidar equipment, and captured frames are integrated into one content. You can split the data into slides so that you can apply an angle mode for this.
- Slice division may be performed in a PCC encoder and may be integrated in a PCC decoder.
- the application of the angular mode of the divided point cloud slice may be performed by the PCC geometry encoder and may be restored through the PCC geometry decoding process of the PCC decoder.
- the method/apparatus may include and perform 1. A method of dividing 3D map data into a slice, 2. A step of coding a geometry, and/or an step of attribute coding.
- the slice division method step of 3D map data includes time and laser angle, slice division method, time only, slice division method, laser angle only, slice division method, time and laser angle case, it may include a slice division method, a slice division method when there is a frame id, a slice division method, and/or a slice division method when there is location information of the lidar equipment.
- the geometry coding step is a method of deriving position information of a sensor when it is divided into slices using a laser angle value, a method of deriving position information of a sensor when it is divided into slices with position information of a lidar equipment, and the In other cases, it may include a method of deriving location information of a sensor, and the like.
- the method/apparatus according to the embodiments may perform attribution coding after slice division and geometry coding according to the embodiments.
- 16-17 show examples of points of point cloud data according to embodiments.
- a point that is point cloud data encoded/decoded by a method/device for transmitting/receiving according to embodiments may have a location and properties as shown in FIGS. 16-17 .
- 3D map data captured through lidar equipment and integrated into one content can be divided into slices so that geometry compression can be performed by utilizing the characteristics of content captured by lidar.
- a point cloud can have the following additional data in addition to the geometric data of position (x, y, z) and attribute data (red, green, blue, reflectance). there is. For example, there may be a time, a laser angle, a normal position (nx, ny, nz), and the like. normal position means a normal vector.
- slices may be separated through the following process (steps 1 to 5).
- the decimal point position may be a set value and may be input to the apparatus according to the embodiments.
- Whether to divide the number of spinning cycles into one slice can be set as a value of c.
- the number of cycles may be a set value and may be input to the apparatus according to the embodiments.
- Time ti rounded off at the nth decimal point can be called t' i.
- a minimum to a maximum (laser_angle_min, laser_angle_max) that is a range of laser angles of points having the same t′ i may be obtained.
- Points belonging to cycle c can be classified and registered as one slice.
- the slice partitioning method When there is only time according to the embodiments, the slice partitioning method:
- slices can be separated through the following process (steps 1 to 4).
- the decimal point position may be a set value and may be input to the apparatus according to the embodiments.
- Whether to divide the number of spinning cycles into one slice can be set as a value of c.
- the number of cycles may be a set value and may be input to the apparatus according to the embodiments.
- Time ti rounded off at the nth decimal point can be called t' i.
- Points with the same t' i can be classified as points in one spinning cycle.
- Points belonging to cycle c can be classified and registered as one slice.
- the slice division method When there is only a laser angle according to the embodiments, the slice division method:
- slices can be separated through the following process (1-4).
- the maximum distance value may be a set value and may be input to the apparatus according to the embodiments.
- the decimal point position may be a set value and may be input to the apparatus according to the embodiments.
- the reference point coordinates may be set values and may be input to the apparatus according to the embodiments. However, if there is no input, (0,0,0) can be used.
- laser_angle_min, laser_angle_max which are the laser angle ranges of all points, can be obtained.
- Laser angle i rounded off at the nth decimal point can be referred to as 'i'.
- the method/apparatus may divide the points into slices.
- the points 1800 are points obtained by the lidar equipment, and have regularity according to the laser angle. Based on steps 1 to 4 described above, points within the laser angle range may be aligned through a rounding process, and the points may be classified based on the maximum distance value and set as a slice ( 1801 ).
- the center point 1802 shown in FIG. 18 may mean a line above the road when the lidar equipment captures road data for autonomous driving.
- the center point may be a reference point according to embodiments.
- the coordinates of the reference point may be a set value or (0,0,0).
- the slice division method When there is no time and laser angle according to the embodiments, the slice division method:
- slices may be separated through the following processes (1 to 4). We use the property that the points are sorted based on the Morton code.
- the maximum distance value may be a set value and may be input to the apparatus according to the embodiments.
- the reference point may be a set value and may be input to the device according to the embodiments. However, if there is no input, (0,0,0) can be used.
- Points can be sorted by Morton code.
- the radius (radius, r) value of each point from the reference point can be obtained. Points having a radius value within a maximum distance value (max_cycle_range) may be classified and registered as a slice.
- the method/device according to the embodiments may capture point cloud content and compose the point cloud data into a frame.
- the point cloud data may have frame ID information.
- the frame ID means a frame captured at the same time (time).
- Whether to divide the number of spinning cycles into one slice can be set as a value of c.
- the number of spinning cycles may be a set value and may be input to the apparatus according to embodiments.
- Points with the same frame id can be classified as points of one spinning cycle.
- Points belonging to cycle c can be classified and registered as one slice.
- the slice partitioning method When there is location information of the lidar equipment according to the embodiments, the slice partitioning method:
- slices can be separated through the following processes (1 to 2).
- Whether to divide the number of spinning cycles into one slice can be set as a value of c.
- the number of spinning cycles may be a set value and may be input to the apparatus according to embodiments.
- Points with the same location information of lidar equipment can be classified as points of one spinning cycle.
- Points belonging to cycle c can be classified and registered as one slice.
- a slice may be generated according to the slice construction methods according to the above-described embodiments, and the method/apparatus according to the embodiments may perform slice-based geometry coding (geometry coding).
- Geometry coding may be performed by applying an angular mode to the 3D map point cloud.
- the position values (x, y, z) of the Cartesian coordinate system are coordinates according to the embodiments. can be converted to That is, the position of the point according to the Cartesian coordinate system may be expressed as a radius (radius), an azimuth angle, and an elevation angle (or laser ID).
- the coordinate conversion process must be converted through the central position value of the lidar sensor to change to an accurate angle. Knowing the exact angle value can reveal the data characteristics of the content captured with LiDAR. Therefore, the high-accuracy lidar sensor center position can affect the compression efficiency of the geometry.
- point cloud data and/or prediction data regarding roads and buildings adjacent to the road may be accurate.
- point cloud data can be predicted by maintaining the regularity associated with rotation. Therefore, slicing the points based on the same center (center) of the lidar increases the coding performance. That is, the method of setting the center of each slice is important.
- the position value of each radar sensor must be signaled for each slice so that position information can be accurately restored in the decoding process.
- the location information of the sensor can be estimated through calculation according to the division method.
- a method of estimating the sensor position will be described.
- the position information of the lidar sensor can be derived.
- FIG. 19 shows an example of a method for estimating a lidar sensor position value according to embodiments.
- Whether to divide the number of spinning cycles into one slice can be set as a value of c.
- the number of spinning cycles may be a set value and may be input to the apparatus according to embodiments.
- one spinning cycle may constitute one slice, or two or more sparring cycle groups may constitute one slice.
- Two straight lines can be formed using the angle and position values of the point 1901 having the smallest laser angle and the point 1900 having the largest laser angle.
- a position where two straight lines meet may be estimated as a position value 1902 of the lidar sensor.
- the position value of each lidar sensor at the position c is estimated, and the average value of the position values of the c sensors can be set as the sensor position value of the corresponding slice.
- each point When each point has location information captured by the LIDAR device of the point cloud content and the value is divided into slices, it can be derived through location information of the corresponding LIDAR sensor.
- Whether to divide the number of spinning cycles into one slice can be set as a value of c.
- the value c may be a set value and may be input to the device according to the embodiments.
- the position value of each lidar sensor at the position c is estimated, and the average value of the position values of the c sensors can be set as the sensor position value of the corresponding slice.
- the position of the lidar sensor through the following processes (1 to 6) information can be derived.
- the decimal point may be a set value and may be input to the apparatus according to the embodiments.
- FIG. 20 illustrates an example of estimating a slice sensor position according to embodiments.
- the estimated position of the LiDAR sensor of the slice can be simplified into the following five forms (refer to Fig. 20)
- the above form example can be changed depending on the axis.
- the above axis may correspond to a case where the yz plane is a road.
- the axis order can be changed, and thus the yz plane can be made into a road.
- the x, y, and z axes of FIG. 20 may vary according to embodiments, and the sensor estimated position of the slice may be the center of the slice, left, right, top, bottom, or the like of the slice.
- the radius ri rounded from the nth decimal point can be called r' i.
- the center point can be estimated as the position value of the lidar sensor.
- the angular mode according to the embodiments may not be applied to the slice.
- the method/apparatus according to the embodiments may not use the angular mode when the data does not have regularity suitable for the angular mode.
- the method/apparatus according to the embodiments may inform the receiver of information indicating whether the angle mode is applied or not for each slice (refer to FIGS. 23 to 24 ).
- the method/apparatus according to the embodiments may perform attribute coding of point cloud data (attribute coding).
- the 3D map point cloud divided into slices may be encoded/decoded.
- a geometry and an attribute may exist as a pair.
- the Pi point may be configured as (position information (xi, yi, zi), color information (ri, gi, bi), reflectancei, etc.).
- Geometry coding and attribute coding may be sequentially performed for each slice. If angular mode is used in geometry coding, attribute coding can also generate LOD based on the position of angular mode and set Nearest Neighbors, or can be applied to RAHT.
- 21 shows an apparatus for transmitting point cloud data according to embodiments.
- the point cloud data transmission apparatus includes the transmission apparatus 10000 of FIG. 1, the point cloud video encoder 10002, the transmitter 10003, and the acquisition-encoding-transmission 20000-20001-20002 of FIG. ), the encoder of FIG. 4 , the transmission apparatus of FIG. 12 , the device of FIG. 14 , and the like, and perform the transmission method according to the embodiments.
- Each component of the transmitting apparatus may correspond to hardware, software, a processor and/or a combination thereof.
- the data input unit may receive geometric data of the point cloud data, attribute data, and/or a parameter setting value.
- the data input unit may parse additional information about the point cloud data.
- the additional information may include a time, a laser angle, a sensor position, and the like, and a characteristic of the additional information may be displayed as a flag.
- the coordinate system conversion unit may convert a coordinate system indicating the position of the point cloud data into a coordinate system suitable for coding.
- the primary geometric information transformation quantization processing unit may quantize geometry data (geometric information). For example, quantization may be performed based on a quantization parameter.
- the space dividing unit may divide the space of the point cloud data. In order to increase geometry/attribute encoding efficiency, appropriate spatial unit division may be performed.
- the tile divider may divide the point cloud data into a tile unit, which is one of spatial units.
- the slice divider may divide a tile into slices. Encoding may be applied in units of slices.
- the slice division unit may receive a flag indicating whether the content is captured by the lidar device.
- the slice division unit may perform operations by the lidar content division unit or other uniform/octree/sequential division units according to whether the content is captured by the LIDAR device.
- the lidar content division unit may adjust/apply a content division scheme through additional information parsed through the data input unit.
- the content division method includes 1) time and laser angle, slice division method, 2) time only, slice division method, 3) laser angle only, slice division method , 4) If there is no time and laser angle, slice division method, 5) if there is frame id, slice division method, and 6) if there is location information of lidar equipment, slice division method, etc. It can be partitioned based on slice.
- a slice may be adaptively newly created in consideration of data characteristics.
- the geometry information encoder may encode the geometry data based on the slice.
- the secondary geometric information transformation quantization processing unit may additionally quantize the geometry data. Quantization may be applied based on the quantization parameter.
- the voxelization processing unit may voxelize the point cloud data.
- prediction tree-based coding octree-based coding
- tri-soup-based coding may be performed.
- the prediction tree generation unit may set the position value of the lidar sensor when data is divided through the lidar content division unit.
- the method for deriving the position of the lidar sensor includes 1) a method of deriving the position information of the lidar sensor when it is divided into slices using the laser angle value, and 2) the position of the lidar sensor when it is divided into slices using the position information of the lidar equipment.
- a method of deriving information, and 3) in other cases, a method of deriving location information of a lidar sensor may be supported.
- the estimated position information of the lidar sensor may be transmitted to the decoder as signaling information (metadata, parameters). (Signaling of lidar sensor location information for each slice)
- the prediction tree generation unit may check whether an angular mode is applied or not by examining the position value of the lidar sensor.
- the angle mode can be applied, the angle mode of geometry coding can be set and the angle mode can be applied. Whether or not the angle mode is applied may be transmitted to the decoder as signaling information (metadata, parameters). (Slicing angle mode signaling per slice).
- the prediction tree generator may generate a prediction tree to which the angle mode is applied.
- the octree generation unit may set the position value of the lidar sensor when data is divided through the lidar content division unit.
- the method for deriving the position of the lidar sensor includes 1) a method of deriving the position information of the lidar sensor when it is divided into slices using the laser angle value, and 2) the position of the lidar sensor when it is divided into slices using the position information of the lidar equipment.
- a method of deriving information, and 3) in other cases, a method of deriving location information of a lidar sensor may be supported.
- the estimated position information of the lidar sensor may be transmitted to the decoder as signaling information (metadata, parameters). (Signaling of lidar sensor location information for each slice)
- the octree generation unit When the octree generation unit is divided through the lidar content division unit, it is possible to check whether an angular mode is applied or not by examining the position value of the lidar sensor.
- the angle mode When the angle mode can be applied, the angle mode of geometry coding can be set and the angle mode can be applied. Whether or not the angle mode is applied may be transmitted to the decoder as signaling information (metadata, parameters). (Slicing angle mode signaling per slice).
- the octree generator may generate an octree to which the angle mode is applied.
- the geometric information prediction unit may predict the geometric information based on the prediction tree, and generate residual geometric information based on the predicted geometric information.
- the RDO prediction determiner may predict geometry data based on ratio distortion optimization (RDO) and generate residual geometry information.
- RDO ratio distortion optimization
- the tri-soup generator may encode the geometry based on the tri-soup.
- the geometry position reconstruction unit may reconstruct the coded geometry. Attribute data of point cloud data may be encoded based on the restored geometric information.
- the geometry information entropy encoder may encode the residual geometry information based on an entropy coding method.
- the geometry information encoder may generate a geometry bitstream including geometry data.
- the attribute information encoder encodes the attribute data based on the restored geometric information, and further encodes the residual attribute information to generate an attribute bitstream including the attribute data.
- Fig. 21 The contents omitted in Fig. 21 are the transmitting device 10000, the point cloud video encoder 10002, the transmitter 10003 of Fig. 1, the acquisition-encoding-transmitting (20000-20001-20002) of Fig. 2, the encoder of Fig. 4, The description of the encoding operation of the transmitting apparatus in Fig. 12 and the device in Fig. 14 is followed.
- FIG. 22 shows an apparatus for receiving point cloud data according to embodiments.
- the point cloud data receiving apparatus includes the receiving apparatus 10004, the receiver 10005, the point cloud video decoder 10006 of FIG. 1, and the transmission-decoding-rendering 20002-20003-20004 of FIG. ), the decoder of Figs. 10-11, the receiving apparatus of Fig. 13, the device of Fig. 14, and the like, and performing the receiving method according to the embodiments.
- Each component of the receiving device corresponds to hardware, software, a processor and/or a combination thereof.
- the receiving method and the transmitting method may correspond to each other or may be reversed.
- the geometry information decoding unit may decode the geometry data.
- the geometric information entropy decoder may encode the geometry data based on the entropy method.
- the geometry information decoder may restore the geometry data of the point cloud data according to a decoding method suitable for each coding type, such as prediction-based coding, octree-based coding, and/or trisup-based coding according to the geometry coding type.
- the prediction tree reconstructor may reconstruct (restore) the geometry data based on the prediction tree.
- the prediction tree reconstructor may receive and restore whether an angular mode is applied according to the embodiments, reconstruct the prediction tree accordingly, and decode a geometry prediction value (angle mode restoration/application for each slice). That is, as shown in FIGS. 23-24 , the receiving device parses the metadata included in the bitstream, and can know whether the angle mode is applied through parameter information included in the metadata.
- the prediction tree reconstruction unit can be used to receive and restore the position information of the lidar sensor and decode the transmitted geometry bitstream value accordingly (restore/apply the position information of the lidar sensor for each slice) ). That is, as shown in FIGS. 22-23 , the receiving device parses the metadata included in the bitstream, and can know the location information of the lidar sensor through the parameter information included in the metadata.
- Fig. 22 shows the configuration (decoding process) of a receiving method/apparatus (point cloud data receiving method/apparatus) and a point cloud data decoder according to the embodiments.
- the restoration process of the prediction tree reconstruction unit according to the embodiments may correspond to the reverse process of the prediction tree generation unit.
- the octree reconstruction unit may reconstruct (restore) the geometry data based on the octree when the geometry coding type is octree-based coding.
- the octree reconstruction unit may receive and restore whether an angular mode is applied, reconstruct a prediction tree (octree) accordingly, and decode a geometry prediction value (restore/apply angular mode for each slice). That is, as shown in FIGS. 23-24 , the receiving device parses the metadata included in the bitstream, and can know whether an angular mode is applied through parameter information included in the metadata.
- the octree reconstruction unit may receive and restore the position information of the lidar sensor and decode the transmitted geometry bitstream value accordingly (restore/apply position information of the lidar sensor for each slice). That is, as shown in FIGS. 2-243 , the receiving device parses the metadata included in the bitstream, and can know the location information of the lidar sensor through the parameter information included in the metadata.
- the restoration process of the octree reconstruction unit may correspond to the reverse process of the octree generator.
- the trisup reconstructor may reconstruct (restore) the geometry data based on the trisup.
- the geometry position reconstruction unit may reconstruct a position value of the geometry based on the prediction tree, the octree, and/or the trisup.
- the restored position is transmitted to the attribute information decoder to encode the attribute data of the corresponding position.
- the geometric information prediction unit may generate a predicted value for the geometry (geometric information).
- the original geometry can be restored by summing the residual geometry of the predicted values.
- the geometric information transformation inverse quantization processing unit may inversely quantize the geometric information.
- quantization may be performed inversely to restore geometric information.
- the coordinate system inverse transform unit may inversely transform the coordinate system to restore the geometry.
- the geometry information decoder may restore geometry information (geometric data).
- the attribute information decoder may receive the attribute information bitstream to restore attribute information (attribute data).
- the contents omitted in FIG. 22 are the receiving device 10004, the receiver 10005, the point cloud video decoder 10006 of FIG. 1, the transmission-decoding-rendering (20002-20003-20004) of FIG.
- the description of the decoding operation of the decoder, the receiving apparatus of Fig. 13, the device of Fig. 14, and the like is followed.
- FIG. 23 shows a bitstream including point cloud data according to embodiments.
- Transmitting device 10000 in Fig. 1 point cloud video encoder 10002, transmitter 10003, Acquisition-encoding-transmitting (20000-20001-20002) in Fig. 2, Encoder in Fig. 4, Transmitting device in Fig. 12, Fig.
- the device of FIG. 14 and the transmitting apparatus of FIG. 21 may encode the geometry data and attribute data, generate encoding processing related metadata, and generate a bitstream including the point cloud data and parameter information as shown in FIG. 23 .
- the receiving device 10004, the receiver 10005, the point cloud video decoder 10006 of FIG. 1, the transmit-decode-render (20002-20003-20004) of FIG. 2, the decoder of FIGS. 10-11, the receiving device of FIG. , the device of FIG. 14, and the receiving apparatus of FIG. 22 may receive the bitstream as shown in FIG. 23, decode metadata, and decode, restore, and render point cloud data based on the metadata.
- a slice may be a unit of encoding/decoding, and a brick may correspond to a slice or may be a detailed unit.
- geometry/attribute may be located in slice units in the bitstream, and if brick units are applied, geometry/attributes may be located in units of bricks.
- the transmission method/apparatus according to the embodiments generates angular mode-related option information for each slice according to the embodiments, and adds it to a geometry header for each slice in the bitstream structure to be transmitted.
- the receiving method/apparatus according to the embodiments may decode the point cloud data based on such information.
- a tile or a slice is provided so that the point cloud can be divided into regions and processed.
- different neighbor point set generation options are set for each region to provide a low-complexity and low-reliability result or, conversely, a high-complexity but high-reliability selection method. It can be set differently according to the processing capacity of the receiver.
- Fig. 24 shows the syntax of information that may be additionally included in a geometry data unit header.
- Fig. 24 shows a geometry data unit header included in the bitstream of Fig. 22;
- angular mode-related option information can be added to the geometry data unit header and signaled. In combination with other parameter information, it can be efficiently signaled to support the angular mode function for each slice.
- the name of the signaling information may be understood within the scope of the meaning and function of the signaling information.
- GSH geometry angular origin position (gsh_geom_angular_origin_xyz[k]): Indicates the lidar sensor position value for the corresponding slice.
- GSH geometry parameter set ID (gsh_geometry_parameter_set_id): Indicates a value of a GPS geometry parameter set ID for active GPS.
- GSH tile ID (gsh_tile_id): Indicates the value of the tile ID referenced by GSH.
- the value of the GSH tile ID may range from 0 to XX (inclusive).
- GSH slice ID (gsh_slice_id): Identifies a slice header for reference by other syntax elements. This value can range from 0 to XX (inclusive).
- the PCC encoding method, the PCC decoding method, and the signaling method of the above-described embodiments may provide the following effects.
- Angle mode can be applied when capturing and saving frame by frame through lidar equipment.
- multiple frames are captured with LiDAR equipment to generate 3D map data and integrated into one content, data with different central positions of LiDAR equipment are mixed.
- inventions provide methods for maintaining the characteristics captured by the LIDAR device even in 3D map data in order to increase compression efficiency by using the characteristics captured by the RADAR device.
- Embodiments include a method of dividing into slides to be able to apply an angular mode for supporting efficient geometry compression of 3D map data captured through lidar equipment and integrated into one content.
- the embodiments are slides for efficient geometry compression of Geometry-based Point Cloud Compression (G-PCC) when the point cloud frames captured by the LIDAR device are integrated into one point cloud content.
- G-PCC Geometry-based Point Cloud Compression
- a method/device for transmitting and receiving point cloud data more efficiently compresses point cloud data based on an operation of dividing point cloud data captured by LiDAR equipment based on a 3D map and related signaling information and has the effect of restoration.
- the transmission method/device according to the embodiments may transmit data by efficiently compressing the point cloud data, and by delivering signaling information for this, the receiving method/device according to the embodiments also efficiently transmits the point cloud data It can be decoded/restored.
- 25 shows a method of transmitting point cloud data according to embodiments.
- Point cloud data transmission method/apparatus may encode and transmit point cloud data in the same manner as in FIG. 25 .
- the method for transmitting point cloud data may include encoding the point cloud data.
- Fig. 1 transmission apparatus 10000 point cloud video encoder 10002, Fig. 2 encoding 20001, Fig. 4 encoder, Fig. 12 encoder, and Fig. 14 encoding of the XR device 1430, Fig. It may include operations such as encoding of 15-20, geometry and attribute encoding of FIG. 21, bitstream generation of FIGS. 23-24, and metadata generation.
- the method for transmitting point cloud data may further include transmitting a bitstream including the point cloud data.
- Transmission operations according to the embodiments may include: FIG. 1 transmission apparatus 10000, transmitter 10003, FIG. 2 transmission 20002, FIG. 4 encoded bitstream transmission, FIG. 12 transmission, FIG. 14 transmission of the XR device 1430; It may include operations such as transmission after encoding of FIGS. 15-20, transmission after encoding the geometry and attributes of FIG. 21, bitstream transmission of FIGS. 23-24, and metadata transmission.
- 26 shows a method of receiving point cloud data according to embodiments.
- a method/apparatus for receiving point cloud data can decode the point cloud data in the same manner as in Fig. 26 .
- the method for receiving point cloud data may include receiving a bitstream including point cloud data.
- Receiving operations according to the embodiments are shown in FIG. 1 receiving apparatus 10004 , receiver 10005 , FIG. 2 receiving according to transmission, FIG. 11 bitstream receiving, FIG. 13 receiving, FIG. 14 receiving of XR device 1730 , and FIG. 15 . It may include operations such as data reception according to encoding of -20, transport for geometry and attribute decoding of FIG. 22, bitstream reception of FIGS. 23-24, and metadata reception.
- the method for receiving point cloud data may further include decoding the point cloud data.
- the decoding operation includes the decoding of the receiving apparatus 10004 in FIG. 1 , the point cloud video decoder 10006 , the decoding 20003 in FIG. , decoding of FIGS. 15-20, geometry and attribute decoding of FIG. 22, bitstream decoding of FIGS. 23-24, metadata decoding, and the like.
- a method for transmitting point cloud data may include encoding point cloud data; and transmitting the point cloud data; may include
- point cloud data is obtained based on an angle of rotation.
- such data may be referred to as 3D map data, and in particular, has rules in terms of time and laser angle.
- the laser angle may be abbreviated as angle.
- the point cloud data may be distinguished according to at least one of time or angle.
- the embodiments propose a slice division method using an angular characteristic, and the angular characteristic may include a time (TIME) and an angle (LASER ANGLE).
- TIME time
- LASER ANGLE angle
- the method according to the embodiments may further include dividing the point cloud data into slices, wherein the dividing includes: aligning points of the point cloud data based on time, and aligned points based on an angle You can create a slice containing
- the method according to embodiments further includes partitioning point cloud data into slices, wherein the partitioning includes dividing points of the point cloud data based on time to align and create a slice including the sorted points based on time.
- the method according to embodiments further includes dividing the point cloud data into slices, wherein the dividing includes generating a slice including points of the point cloud data based on the angle can do.
- this slice configuration method utilizes the rotational regularity even if the data measured by the lidar equipment is integrated, thereby providing an effect that enables efficient data compression/restore.
- the encoding according to the embodiments may include encoding the geometric data of the point cloud data, and a center position with respect to rotation may be estimated based on a minimum value of an angle for a slice and a maximum value of the angle.
- the encoding according to the embodiments may include encoding geometry data of the point cloud data, and if there is position information of the equipment regarding the acquisition of the point cloud data for the slice, rotation based on the position information of the equipment Estimate the central position with respect to , and if the rotation is at least twice, an average value of the central position for the rotation with respect to the number of rotations may be generated.
- a slice that is not an angle may be used.
- a method may further include dividing the point cloud data into slices, wherein the encoding includes encoding geometry data of the point cloud data, based on a center point of the slice. We can estimate the center position for the rotation.
- an apparatus may include an encoder for encoding point cloud data; and a transmitter for transmitting a bitstream including point cloud data; may include The transmitting device may perform each operation of the transmitting method.
- a method for receiving point cloud data includes receiving a bitstream including point cloud data; and decoding the point cloud data; may include The reception method may perform the reverse process of the transmission method.
- the point cloud data is obtained based on the angle of rotation, and the point cloud data is distinguished according to at least one of time or angle, it may have a time-based characteristic and an angle-based characteristic.
- the decoding may include decoding geometry data of the point cloud data, and the decoding of the geometry data may include decoding a slice including the geometry data based on position information regarding rotation.
- a bitstream may include angle mode information about a slice including point cloud data.
- Receiving apparatus may include a receiver configured to receive a bitstream including point cloud data; and a decoder for decoding the point cloud data; may include The receiving device may perform the operation of the receiving method.
- embodiments can perform efficient geometry compression of 3D map data captured through lidar equipment and integrated into one content.
- a mode using an angular characteristic may be referred to as an angular mode.
- You can compress and restore data by splitting it into slides based on angular mode.
- the embodiments are slides for efficient geometry compression of Geometry-based Point Cloud Compression (G-PCC) when the point cloud frames captured by the LIDAR device are integrated into one point cloud content.
- G-PCC Geometry-based Point Cloud Compression
- Various components of the apparatus of the embodiments may be implemented by hardware, software, firmware, or a combination thereof.
- Various components of the embodiments may be implemented with one chip, for example, one hardware circuit.
- the components according to the embodiments may be implemented with separate chips.
- at least one or more of the components of the device according to the embodiments may be composed of one or more processors capable of executing one or more programs, and the one or more programs may be implemented Any one or more of the operations/methods according to the examples may be performed or may include instructions for performing the operations/methods.
- Executable instructions for performing the method/acts of the apparatus according to the embodiments may be stored in non-transitory CRM or other computer program products configured for execution by one or more processors, or one or more may be stored in temporary CRM or other computer program products configured for execution by processors.
- the memory according to the embodiments may be used as a concept including not only volatile memory (eg, RAM, etc.) but also non-volatile memory, flash memory, PROM, and the like. Also, it may be implemented in the form of a carrier wave, such as transmission through the Internet.
- the processor-readable recording medium is distributed in a computer system connected through a network, so that the processor-readable code can be stored and executed in a distributed manner.
- first, second, etc. may be used to describe various components of the embodiments. However, interpretation of various components according to the embodiments should not be limited by the above terms. These terms are only used to distinguish one component from another. it is only For example, the first user input signal may be referred to as a second user input signal. Similarly, the second user input signal may be referred to as a first user input signal. Use of these terms should be interpreted as not departing from the scope of the various embodiments. Although both the first user input signal and the second user input signal are user input signals, they do not mean the same user input signals unless the context clearly indicates otherwise.
- the operations according to the embodiments described in this document may be performed by a transceiver including a memory and/or a processor according to the embodiments.
- the memory may store programs for processing/controlling operations according to the embodiments, and the processor may control various operations described in this document.
- the processor may be referred to as a controller or the like.
- operations may be performed by firmware, software, and/or a combination thereof, and the firmware, software, and/or a combination thereof may be stored in a processor or stored in a memory.
- the transceiver device may include a transceiver for transmitting and receiving media data, a memory for storing instructions (program code, algorithm, flowchart and/or data) for a process according to embodiments, and a processor for controlling operations of the transmitting/receiving device.
- a processor may be referred to as a controller or the like, and may correspond to, for example, hardware, software, and/or a combination thereof. Operations according to the above-described embodiments may be performed by a processor.
- the processor may be implemented as an encoder/decoder or the like for the operation of the above-described embodiments.
- the embodiments may be applied in whole or in part to a point cloud data transmission/reception device and system.
- Embodiments may include modifications/modifications, which do not depart from the scope of the claims and the like.
Landscapes
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Electromagnetism (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Compression Or Coding Systems Of Tv Signals (AREA)
Abstract
실시예들에 따른 포인트 클라우드 데이터 송신 방법은 포인트 클라우드 데이터를 인코딩하는 단계; 및 포인트 클라우드 데이터를 전송하는 단계; 를 포함할 수 있다. 실시예들에 따른 포인트 클라우드 데이터 수신 장치는 포인트 클라우드 데이터를 포함하는 비트스트림을 수신하는 수신부; 및 포인트 클라우드 데이터를 디코딩하는 디코더; 를 포함할 수 있다.
Description
실시예들은 포인트 클라우드 콘텐트(Point Cloud Content)를 처리하는 방법 및 장치에 대한 것이다.
포인트 클라우드 콘텐트는 3차원 공간을 표현하는 좌표계에 속한 점(포인트)들의 집합인 포인트 클라우드로 표현되는 콘텐트이다. 포인트 클라우드 콘텐트는3차원으로 이루어진 미디어를 표현할 수 있으며, VR (Virtual Reality, 가상현실), AR (Augmented Reality, 증강현실), MR (Mixed Reality, 혼합현실), 및 자율 주행 서비스 등의 다양한 서비스를 제공하기 위해 사용된다. 하지만 포인트 클라우드 콘텐트를 표현하기 위해서는 수만개에서 수십만개의 포인트 데이터가 필요하다. 따라서 방대한 양의 포인트 데이터를 효율적으로 처리하기 위한 방법이 요구된다.
실시예들은 포인트 클라우드 데이터를 효율적으로 처리하기 위한 장치 및 방법을 제공한다. 실시예들은 지연시간(latency) 및 인코딩/디코딩 복잡도를 해결하기 위한 포인트 클라우드 데이터 처리 방법 및 장치를 제공한다.
다만, 전술한 기술적 과제만으로 제한되는 것은 아니고, 기재된 전체 내용에 기초하여 당업자가 유추할 수 있는 다른 기술적 과제로 실시예들의 권리범위가 확장될 수 있다.
기술적 과제를 달성하기 위해서, 실시예들에 따른 포인트 클라우드 데이터 송신 방법은 포인트 클라우드 데이터를 인코딩하는 단계, 포인트 클라우드 데이터를 포함하는 비트스트림을 전송하는 단계를 포함할 수 있다. 실시예들에 따른 포인트 클라우드 데이터 수신 장치는 포인트 클라우드 데이터를 포함하는 비트스트림을 수신하는 단계, 포인트 클라우드 데이터를 디코딩하는 단계를 포함할 수 있다.
실시예들에 따른 장치 및 방법은 높은 효율로 포인트 클라우드 데이터를 처리할 수 있다.
실시예들에 따른 장치 및 방법은 높은 퀄리티의 포인트 클라우드 서비스를 제공할 수 있다.
실시예들에 따른 장치 및 방법은 VR 서비스, 자율주행 서비스 등 범용적인 서비스를 제공하기 위한 포인트 클라우드 콘텐트를 제공할 수 있다.
도면은 실시예들을 더욱 이해하기 위해서 포함되며, 도면은 실시예들에 관련된 설명과 함께 실시예들을 나타낸다. 이하에서 설명하는 다양한 실시예들의 보다 나은 이해를 위하여, 하기 도면들에 걸쳐 유사한 참조 번호들이 대응하는 부분들을 포함하는 다음의 도면들과 관련하여 이하의 실시예들의 설명을 반드시 참조해야 한다.
도1은 실시예들에 따른 포인트 클라우드콘텐츠 제공 시스템의 예시를 나타낸다.
도 2는 실시예들에 따른 포인트 클라우드 콘텐트 제공 동작을 나타내는 블록도이다.
도 3은 실시예들에 따른 포인트 클라우드 비디오 캡쳐 과정의 예시를 나타낸다.
도 4는 실시예들에 따른 포인트 클라우드 인코더(Point Cloud Encoder)의 예시를 나타낸다.
도 5 는 실시예들에 따른 복셀의 예시를 나타낸다.
도 6은 실시예들에 따른 옥트리 및 오큐판시 코드 (occupancy code)의 예시를 나타낸다.
도 7은 실시예들에 따른 이웃 노드 패턴의 예시를 나타낸다.
도 8은 실시예들에 따른 LOD 별 포인트 구성의 예시를 나타낸다.
도 9는 실시예들에 따른 LOD 별 포인트 구성의 예시를 나타낸다.
도 10은 실시예들에 따른 포인트 클라우드 디코더(Point Cloud Decoder)의 예시를 나타낸다.
도 11은 실시예들에 따른 포인트 클라우드 디코더(Point Cloud Decoder)의 예시를 나타낸다.
도 12는 실시예들에 따른 전송 장치의 예시이다.
도 13은 실시예들에 따른 수신 장치의 예시이다.
도 14는 실시예들에 따른 포인트 클라우드 데이터 송수신 방법/장치와 연동 가능한 구조의 예시를 나타낸다.
도15는 실시예들에 따른 스피닝(회전) 라이다 습득 모델(spinning LiDAR acquisition model)을 나타낸다.
도16-17은 실시예들에 따른 포인트 클라우드 데이터의 포인트 예시를 나타낸다.
도18은 실시예들에 따른 레이저 앵글 기반 슬라이스 분할 예시이다.
도19는 실시예들에 따른 라이더 센서 위치값 추정 방법 예시를 나타낸다.
도20은 실시예들에 따른 슬라이스 센서 위치 추정 예시를 나타낸다.
도21은 실시예들에 따른 포인트 클라우드 데이터 송신 장치를 나타낸다.
도22는 실시예들에 따른 포인트 클라우드 데이터 수신 장치를 나타낸다.
도23은 실시예들에 따른 포인트 클라우드 데이터를 포함하는 비트스트림을 나타낸다.
도24는 실시예들에 따른 지오메트리 데이터 유닛 헤더의 신택스를 나타낸다.
도25는 실시예들에 따른 포인트 클라우드 데이터 송신 방법을 나타낸다.
도26은 실시예들에 따른 포인트 클라우드 데이터 수신 방법을 나타낸다.
실시예들의 바람직한 실시예에 대해 구체적으로 설명하며, 그 예는 첨부된 도면에 나타낸다. 첨부된 도면을 참조한 아래의 상세한 설명은 실시예들의 실시예에 따라 구현될 수 있는 실시예만을 나타내기보다는 실시예들의 바람직한 실시예를 설명하기 위한 것이다. 다음의 상세한 설명은 실시예들에 대한 철저한 이해를 제공하기 위해 세부 사항을 포함한다. 그러나 실시예들이 이러한 세부 사항 없이 실행될 수 있다는 것은 당업자에게 자명하다.
실시예들에서 사용되는 대부분의 용어는 해당 분야에서 널리 사용되는 일반적인 것들에서 선택되지만, 일부 용어는 출원인에 의해 임의로 선택되며 그 의미는 필요에 따라 다음 설명에서 자세히 서술한다. 따라서 실시예들은 용어의 단순한 명칭이나 의미가 아닌 용어의 의도된 의미에 근거하여 이해되어야 한다.
도1은 실시예들에 따른 포인트 클라우드콘텐츠 제공 시스템의 예시를 나타낸다.
도 1에 도시된 포인트 클라우드 콘텐트 제공 시스템은 전송 장치(transmission device)(10000) 및 수신 장치(reception device)(10004)를 포함할 수 있다. 전송 장치(10000) 및 수신 장치(10004)는 포인트 클라우드 데이터를 송수신하기 위해 유무선 통신 가능하다.
. 실시예들에 따른 전송 장치(10000)는 포인트 클라우드 비디오(또는 포인트 클라우드 콘텐트)를 확보하고 처리하여 전송할 수 있다. 실시예들에 따라, 전송 장치(10000)는 고정국(fixed station), BTS(base transceiver system), 네트워크, AI(Ariticial Intelligence) 기기 및/또는 시스템, 로봇, AR/VR/XR 기기 및/또는 서버 등을 포함할 수 있다. 또한 실시예들에 따라 전송 장치(10000)는 무선 접속 기술(예, 5G NR(New RAT), LTE(Long Term Evolution))을 이용하여, 기지국 및/또는 다른 무선 기기와 통신을 수행하는 기기, 로봇, 차량, AR/VR/XR 기기, 휴대기기, 가전, IoT(Internet of Thing)기기, AI 기기/서버 등을 포함할 수 있다.
실시예들에 따른 전송 장치(10000)는 포인트 클라우드 비디오 획득부(Point Cloud Video Acquisition, 10001), 포인트 클라우드 비디오 인코더(Point Cloud Video Encoder, 10002) 및/또는 트랜스미터(Transmitter (or Communication module), 10003)를 포함한다
실시예들에 따른 포인트 클라우드 비디오 획득부(10001)는 캡쳐, 합성 또는 생성 등의 처리 과정을 통해 포인트 클라우드 비디오를 획득한다. 포인트 클라우드 비디오는 3차원 공간에 위치한 포인트들의 집합인 포인트 클라우드로 표현되는 포인트 클라우드 콘텐트로서, 포인트 클라우드 비디오 데이터 등으로 호칭될 수 있다. 실시예들에 따른 포인트 클라우드 비디오는 하나 또는 그 이상의 프레임들을 포함할 수 있다. 하나의 프레임은 정지 영상/픽쳐를 나타낸다. 따라서 포인트 클라우드 비디오는 포인트 클라우드 영상/프레임/픽처를 포함할 수 있으며, 포인트 클라우드 영상, 프레임 및 픽처 중 어느 하나로 호칭될 수 있다.
실시예들에 따른 포인트 클라우드 비디오 인코더(10002)는 확보된 포인트 클라우드 비디오 데이터를 인코딩한다. 포인트 클라우드 비디오 인코더(10002)는 포인트 클라우드 컴프레션(Point Cloud Compression) 코딩을 기반으로 포인트 클라우드 비디오 데이터를 인코딩할 수 있다. 실시예들에 따른 포인트 클라우드 컴프레션 코딩은 G-PCC(Geometry-based Point Cloud Compression) 코딩 및/또는 V-PCC(Video based Point Cloud Compression) 코딩 또는 차세대 코딩을 포함할 수 있다. 또한 실시예들에 따른 포인트 클라우드 컴프레션 코딩은 상술한 실시예에 국한되는 것은 아니다. 포인트 클라우드 비디오 인코더(10002)는 인코딩된 포인트 클라우드 비디오 데이터를 포함하는 비트스트림을 출력할 수 있다. 비트스트림은 인코딩된 포인트 클라우드 비디오 데이터뿐만 아니라, 포인트 클라우드 비디오 데이터의 인코딩과 관련된 시그널링 정보를 포함할 수 있다.
실시예들에 따른 트랜스미터(10003)는 인코딩된 포인트 클라우드 비디오 데이터를 포함하는 비트스트림을 전송한다. 실시예들에 따른 비트스트림은 파일 또는 세그먼트(예를 들면 스트리밍 세그먼트) 등으로 인캡슐레이션되어 방송망 및/또는 브로드밴드 망등의 다양한 네트워크를 통해 전송된다. 도면에 도시되지 않았으나, 전송 장치(10000)는 인캡슐레이션 동작을 수행하는 인캡슐레이션부(또는 인캡슐레이션 모듈)을 포함할 수 있다. 또한 실시예들에 따라 인캡슐레이션부는 트랜스미터(10003)에 포함될 수 있다. 실시예들에 따라 파일 또는 세그먼트는 네트워크를 통해 수신 장치(10004)로 전송되거나, 디지털 저장매체(예를 들면 USB, SD, CD, DVD, 블루레이, HDD, SSD 등)에 저장될 수 있다. 실시예들에 따른 트랜스미터(10003)는 수신 장치(10004) (또는 리시버(Receiver, 10005))와 4G, 5G, 6G 등의 네트워크를 통해 유/무선 통신 가능하다. 또한 트랜스미터(10003)는 네트워크 시스템(예를 들면 4G, 5G, 6G 등의 통신 네트워크 시스템)에 따라 필요한 데이터 처리 동작을 수행할 수 있다. 또한 전송 장치(10000)는 온 디맨드(On Demand) 방식에 따라 인캡슐레이션된 데이터를 전송할 수도 있다.
실시예들에 따른 수신 장치(10004)는 리시버(Receiver, 10005), 포인트 클라우드 비디오 디코더(Point Cloud Decoder, 10006) 및/또는 렌더러(Renderer, 10007)를 포함한다. 실시예들에 따라 수신 장치(10004)는 무선 접속 기술(예, 5G NR(New RAT), LTE(Long Term Evolution))을 이용하여, 기지국 및/또는 다른 무선 기기와 통신을 수행하는 기기, 로봇, 차량, AR/VR/XR 기기, 휴대기기, 가전, IoT(Internet of Thing)기기, AI 기기/서버 등을 포함할 수 있다.
실시예들에 따른 리시버(10005)는 포인트 클라우드 비디오 데이터를 포함하는 비트스트림 또는 비트스트림이 인캡슐레이션된 파일/세그먼트 등을 네트워크 또는 저장매체로부터 수신한다. 리시버(10005)는 네트워크 시스템(예를 들면 4G, 5G, 6G 등의 통신 네트워크 시스템)에 따라 필요한 데이터 처리 동작을 수행할 수 있다. 실시예들에 따른 리시버(10005)는 수신한 파일/세그먼트를 디캡슐레이션하여 비트스트림을 출력할수 있다. 또한 실시예들에 따라 리시버(10005)는 디캡슐레이션 동작을 수행하기 위한 디캡슐레이션부(또는 디캡슐레이션 모듈)을 포함할 수 있다. 또한 디캡슐레이션부는 리시버(10005)와 별개의 엘레멘트(또는 컴포넌트)로 구현될 수 있다.
포인트 클라우드 비디오 디코더(10006)는 포인트 클라우드 비디오 데이터를 포함하는 비트스트림을 디코딩한다. 포인트 클라우드 비디오 디코더(10006)는 포인트 클라우드 비디오 데이터가 인코딩된 방식에 따라 디코딩할 수 있다(예를 들면 포인트 클라우드 비디오 인코더(10002)의 동작의 역과정). 따라서 포인트 클라우드 비디오 디코더(10006)는 포인트 클라우드 컴프레션의 역과정인 포인트 클라우드 디컴프레션 코딩을 수행하여 포인트 클라우드 비디오 데이터를 디코딩할 수 있다. 포인트 클라우드 디컴프레션 코딩은 G-PCC 코딩을 포함한다.
렌더러(10007)는 디코딩된 포인트 클라우드 비디오 데이터를 렌더링한다. 렌더러(10007)는 포인트 클라우드 비디오 데이터 뿐만 아니라 오디오 데이터도 렌더링하여 포인트 클라우드 콘텐트를 출력할 수 있다. 실시예들에 따라 렌더러(10007)는 포인트 클라우드 콘텐트를 디스플레이하기 위한 디스플레이를 포함할 수 있다. 실시예들에 따라 디스플레이는 렌더러(10007)에 포함되지 않고 별도의 디바이스 또는 컴포넌트로 구현될 수 있다.
도면에 점선으로 표시된 화살표는 수신 장치(10004)에서 획득한 피드백 정보(feedback information)의 전송 경로를 나타낸다. 피드백 정보는 포인트 클라우드 컨텐트를 소비하는 사용자와의 인터랙티비를 반영하기 위한 정보로서, 사용자의 정보(예를 들면 헤드 오리엔테이션 정보), 뷰포트(Viewport) 정보 등)을 포함한다. 특히 포인트 클라우드 콘텐트가 사용자와의 상호작용이 필요한 서비스(예를 들면 자율주행 서비스 등)를 위한 콘텐트인 경우, 피드백 정보는 콘텐트 송신측(예를 들면 전송 장치(10000)) 및/또는 서비스 프로바이더에게 전달될 수 있다. 실시예들에 따라 피드백 정보는 전송 장치(10000) 뿐만 아니라 수신 장치(10004)에서도 사용될 수 있으며, 제공되지 않을 수도 있다.
실시예들에 따른 헤드 오리엔테이션 정보는 사용자의 머리 위치, 방향, 각도, 움직임 등에 대한 정보이다. 실시예들에 따른 수신 장치(10004)는 헤드 오리엔테이션 정보를 기반으로 뷰포트 정보를 계산할 수 있다. 뷰포트 정보는 사용자가 바라보고 있는 포인트 클라우드 비디오의 영역에 대한 정보이다. 시점(viewpoint)은 사용자가 포인트 클라우 비디오를 보고 있는 점으로 뷰포트 영역의 정중앙 지점을 의미할 수 있다. 즉, 뷰포트는 시점을 중심으로 한 영역으로서, 영역의 크기, 형태 등은 FOV(Field Of View) 에 의해 결정될 수 있다. 따라서 수신 장치(10004)는 헤드 오리엔테이션 정보 외에 장치가 지원하는 수직(vertical) 혹은 수평(horizontal) FOV 등을 기반으로 뷰포트 정보를 추출할 수 있다. 또한 수신 장치(10004)는 게이즈 분석 (Gaze Analysis) 등을 수행하여 사용자의 포인트 클라우드 소비 방식, 사용자가 응시하는 포인트 클라우 비디오 영역, 응시 시간 등을 확인한다. 실시예들에 따라 수신 장치(10004)는 게이즈 분석 결과를 포함하는 피드백 정보를 송신 장치(10000)로 전송할 수 있다. 실시예들에 따른 피드백 정보는 렌더링 및/또는 디스플레이 과정에서 획득될 수 있다. 실시예들에 따른 피드백 정보는 수신 장치(10004)에 포함된 하나 또는 그 이상의 센서들에 의해 확보될 수 있다. 또한 실시예들에 따라 피드백 정보는 렌더러(10007) 또는 별도의 외부 엘레멘트(또는 디바이스, 컴포넌트 등)에 의해 확보될 수 있다. 도1의 점선은 렌더러(10007)에서 확보한 피드백 정보의 전달 과정을 나타낸다. 포인트 클라우드 콘텐트 제공 시스템은 피드백 정보를 기반으로 포인트 클라우드 데이터를 처리(인코딩/디코딩)할 수 있다. 따라서 포인트 클라우드 비디오 데이터 디코더(10006)는 피드백 정보를 기반으로 디코딩 동작을 수행할 수 있다. 또한 수신 장치(10004)는 피드백 정보를 전송 장치(10000)로 전송할 수 있다. 전송 장치(10000)(또는 포인트 클라우드 비디오 데이터 인코더(10002))는 피드백 정보를 기반으로 인코딩 동작을 수행할 수 있다. 따라서 포인트 클라우드 콘텐트 제공 시스템은 모든 포인트 클라우드 데이터를 처리(인코딩/디코딩)하지 않고, 피드백 정보를 기반으로 필요한 데이터(예를 들면 사용자의 헤드 위치에 대응하는 포인트 클라우드 데이터)를 효율적으로 처리하고, 사용자에게 포인트 클라우드 콘텐트를 제공할 수 있다.
실시예들에 따라, 전송 장치(10000)는 인코더, 전송 디바이스, 전송기 등으로 호칭될 수 있으며, 수신 장치(10004)는 디코더, 수신 디바이스, 수신기 등으로 호칭될 수 있다.
실시예들에 따른 도 1 의 포인트 클라우드 콘텐트 제공 시스템에서 처리되는 (획득/인코딩/전송/디코딩/렌더링의 일련의 과정으로 처리되는) 포인트 클라우드 데이터는 포인트 클라우드 콘텐트 데이터 또는 포인트 클라우드 비디오 데이터라고 호칭할 수 있다. 실시예들에 따라 포인트 클라우드 콘텐트 데이터는 포인트 클라우드 데이터와 관련된 메타데이터 내지 시그널링 정보를 포함하는 개념으로 사용될 수 있다.
도 1에 도시된 포인트 클라우드 콘텐트 제공 시스템의 엘리먼트들은 하드웨어, 소프트웨어, 프로세서 및/또는 그것들의 결합등으로 구현될 수 있다.
도 2는 실시예들에 따른 포인트 클라우드 콘텐트 제공 동작을 나타내는 블록도이다.
도 2의 블록도는 도 1에서 설명한 포인트 클라우드 콘텐트 제공 시스템의 동작을 나타낸다. 상술한 바와 같이 포인트 클라우드 콘텐트 제공 시스템은 포인트 클라우드 컴프레션 코딩(예를 들면 G-PCC)을 기반으로 포인트 클라우드 데이터를 처리할 수 있다.
실시예들에 따른 포인트 클라우드 콘텐트 제공 시스템(예를 들면 포인트 클라우드 전송 장치(10000) 또는 포인트 클라우드 비디오 획득부(10001))은 포인트 클라우드 비디오를 획득할 수 있다(20000). 포인트 클라우드 비디오는 3차원 공간을 표현하는 좌표계에 속한 포인트 클라우드로 표현된다. 실시예들에 따른 포인트 클라우드 비디오는 Ply (Polygon File format or the Stanford Triangle format) 파일을 포함할 수 있다. 포인트 클라우드 비디오가 하나 또는 그 이상의 프레임들을 갖는 경우, 획득한 포인트 클라우드 비디오는 하나 또는 그 이상의 Ply 파일들을 포함할 수 있다. Ply 파일은 포인트의 지오메트리(Geometry) 및/또는 어트리뷰트(Attribute)와 같은 포인트 클라우드 데이터를 포함한다. 지오메트리는 포인트들의 포지션들을 포함한다. 각 포인트의 포지션은 3차원 좌표계(예를 들면 XYZ축들로 이루어진 좌표계 등)를 나타내는 파라미터들(예를 들면 X축, Y축, Z축 각각의 값)로 표현될 수 있다. 어트리뷰트는 포인트들의 어트리뷰트들(예를 들면, 각 포인트의 텍스쳐 정보, 색상(YCbCr 또는 RGB), 반사율(r), 투명도 등)을 포함한다. 하나의 포인트는 하나 또는 그 이상의 어트리뷰트들(또는 속성들)을 가진다. 예를 들어 하나의 포인트는 하나의 색상인 어트리뷰트를 가질 수도 있고, 색상 및 반사율인 두 개의 어트리뷰트들을 가질 수도 있다. 실시예들에 따라, 지오메트리는 포지션들, 지오메트리 정보, 지오메트리 데이터 등으로 호칭 가능하며, 어트리뷰트는 어트리뷰트들, 어트리뷰트 정보, 어트리뷰트 데이터 등으로 호칭할 수 있다. 또한 포인트 클라우드 콘텐트 제공 시스템(예를 들면 포인트 클라우드 전송 장치(10000) 또는 포인트 클라우드 비디오 획득부(10001))은 포인트 클라우드 비디오의 획득 과정과 관련된 정보(예를 들면 깊이 정보, 색상 정보 등)으로부터 포인트 클라우드 데이터를 확보할 수 있다.
실시예들에 따른 포인트 클라우드 콘텐트 제공 시스템(예를 들면 전송 장치(10000) 또는 포인트 클라우드 비디오 인코더(10002))은 포인트 클라우드 데이터를 인코딩할 수 있다(20001). 포인트 클라우드 콘텐트 제공 시스템은 포인트 클라우드 컴프레션 코딩을 기반으로 포인트 클라우드 데이터를 인코딩할 수 있다. 상술한 바와 같이 포인트 클라우드 데이터는 포인트의 지오메트리 및 어트리뷰트를 포함할 수 있다. 따라서 포인트 클라우드 콘텐트 제공 시스템은 지오메트리를 인코딩하는 지오메트리 인코딩을 수행하여 지오메트리 비트스트림을 출력할 수 있다. 포인트 클라우드 콘텐트 제공 시스템은 어트리뷰트를 인코딩하는 어트리뷰트 인코딩을 수행하여 어트리뷰트 비트스트림을 출력할 수 있다. 실시예들에 따라 포인트 클라우드 콘텐트 제공 시스템은 지오메트리 인코딩에 기초하여 어트리뷰트 인코딩을 수행할 수 있다. 실시예들에 따른 지오메트리 비트스트림 및 어트리뷰트 비트스트림은 멀티플렉싱되어 하나의 비트스트림으로 출력될 수 있다. 실시예들에 따른 비트스트림은 지오메트리 인코딩 및 어트리뷰트 인코딩과 관련된 시그널링 정보를 더 포함할 수 있다.
실시예들에 따른 포인트 클라우드 콘텐트 제공 시스템(예를 들면 전송 장치(10000) 또는 트랜스미터(10003))는 인코딩된 포인트 클라우드 데이터를 전송할 수 있다(20002). 도1에서 설명한 바와 같이 인코딩된 포인트 클라우드 데이터는 지오메트리 비트스트림, 어트리뷰트 비트스트림으로 표현될 수 있다. 또한 인코딩된 포인트 클라우드 데이터는 포인트 클라우드 데이터의 인코딩과 관련된 시그널링 정보(예를 들면 지오메트리 인코딩 및 어트리뷰트 인코딩과 관련된 시그널링 정보)과 함께 비트스트림의 형태로 전송될 수 있다. 또한 포인트 클라우드 콘텐트 제공 시스템은 인코딩된 포인트 클라우드 데이터를 전송하는 비트스트림을 인캡슐레이션 하여 파일 또는 세그먼트의 형태로 전송할 수 있다.
실시예들에 따른 포인트 클라우드 콘텐트 제공 시스템(예를 들면 수신 장치(10004) 또는 리시버(10005))은 인코딩된 포인트 클라우드 데이터를 포함하는 비트스트림을 수신할 수 있다. 또한 포인트 클라우드 콘텐트 제공 시스템(예를 들면 수신 장치(10004) 또는 리시버(10005))은 비트스트림을 디멀티플렉싱할 수 있다.
포인트 클라우드 콘텐트 제공 시스템(예를 들면 수신 장치(10004) 또는 포인트 클라우드 비디오 디코더(10005))은 비트스트림으로 전송되는 인코딩된 포인트 클라우드 데이터(예를 들면 지오메트리 비트스트림, 어트리뷰트 비트스트림)을 디코딩할 수 있다. 포인트 클라우드 콘텐트 제공 시스템(예를 들면 수신 장치(10004) 또는 포인트 클라우드 비디오 디코더(10005))은 비트스트림에 포함된 포인트 클라우드 비디오 데이터의 인코딩과 관련된 시그널링 정보를 기반으로 포인트 클라우드 비디오 데이터를 디코딩할 수 있다. 포인트 클라우드 콘텐트 제공 시스템(예를 들면 수신 장치(10004) 또는 포인트 클라우드 비디오 디코더(10005))은 지오메트리 비트스트림을 디코딩하여 포인트들의 포지션들(지오메트리)을 복원할 수 있다. 포인트 클라우드 콘텐트 제공 시스템은 복원한 지오메트리를 기반으로 어트리뷰트 비트스트림을 디코딩하여 포인트들의 어트리뷰트들을 복원할 수 있다. 포인트 클라우드 콘텐트 제공 시스템(예를 들면 수신 장치(10004) 또는 포인트 클라우드 비디오 디코더(10005))은 복원된 지오메트리에 따른 포지션들 및 디코딩된 어트리뷰트를 기반으로 포인트 클라우드 비디오를 복원할 수 있다.
실시예들에 따른 포인트 클라우드 콘텐트 제공 시스템(예를 들면 수신 장치(10004) 또는 렌더러(10007))은 디코딩된 포인트 클라우드 데이터를 렌더링할 수 있다(20004). 포인트 클라우드 콘텐트 제공 시스템(예를 들면 수신 장치(10004) 또는 렌더러(10007))은 디코딩 과정을 통해 디코딩된 지오메트리 및 어트리뷰트들을 다양한 렌더링 방식에 따라 렌더링 방식에 따라 렌더링 할 수 있다. 포인트 클라우드 콘텐트의 포인트들은 일정 두께를 갖는 정점, 해당 정점 위치를 중앙으로 하는 특정 최소 크기를 갖는 정육면체, 또는 정점 위치를 중앙으로 하는 원 등으로 렌더링 될 수도 있다. 렌더링된 포인트 클라우드 콘텐트의 전부 또는 일부 영역은 디스플레이 (예를 들면 VR/AR 디스플레이, 일반 디스플레이 등)을 통해 사용자에게 제공된다.
실시예들에 따른 포인트 클라우드 콘텐트 제공 시스템(예를 들면 수신 장치(10004))는 피드백 정보를 확보할 수 있다(20005). 포인트 클라우드 콘텐트 제공 시스템은 피드백 정보를 기반으로 포인트 클라우드 데이터를 인코딩 및/또는 디코딩할 수 있다. 실시예들에 따른 피드백 정보 및 포인트 클라우드 콘텐트 제공 시스템의 동작은 도 1에서 설명한 피드백 정보 및 동작과 동일하므로 구체적인 설명은 생략한다.
도 3은 실시예들에 따른 포인트 클라우드 비디오 캡쳐 과정의 예시를 나타낸다.
도 3은 도 1 내지 도 2에서 설명한 포인트 클라우드 콘텐트 제공 시스템의 포인트 클라우드 비디오 캡쳐 과정의 예시를 나타낸다.
포인트 클라우드 콘텐트는 다양한 3차원 공간(예를 들면 현실 환경을 나타내는 3차원 공간, 가상 환경을 나타내는3차원 공간 등)에 위치한 오브젝트(object) 및/또는 환경을 나타내는 포인트 클라우드 비디오(이미지들 및/또는 영상들)을 포함한다. 따라서 실시예들에 따른 포인트 클라우드 콘텐트 제공 시스템은 포인트 클라우드 콘텐트를 생성하기 위하여 하나 또는 그 이상의 카메라(camera)들(예를 들면, 깊이 정보를 확보할 수 있는 적외선 카메라, 깊이 정보에 대응되는 색상 정보를 추출 할 수 있는 RGB 카메라 등), 프로젝터(예를 들면 깊이 정보를 확보하기 위한 적외선 패턴 프로젝터 등), 라이다(LiDAR)등을 사용하여 포인트 클라우드 비디오를 캡쳐할 수 있다. 실시예들에 따른 포인트 클라우드 콘텐트 제공 시스템은 깊이 정보로부터 3차원 공간상의 포인트들로 구성된 지오메트리의 형태를 추출하고, 색상정보로부터 각 포인트의 어트리뷰트를 추출하여 포인트 클라우드 데이터를 확보할 수 있다. 실시예들에 따른 이미지 및/또는 영상은 인워드-페이싱(inward-facing) 방식 및 아웃워드-페이싱(outward-facing) 방식 중 적어도 어느 하나 이상을 기반으로 캡쳐될 수 있다.
도3의 왼쪽은 인워드-페이싱 방식을 나타낸다. 인워드-페이싱 방식은 중심 오브젝트를 둘러싸고 위치한 하나 또는 그 이상의 카메라들(또는 카메라 센서들)이 중심 오브젝트를 캡쳐하는 방식을 의미한다. 인워드-페이싱 방식은 핵심 객체에 대한 360도 이미지를 사용자에게 제공하는 포인트 클라우드 콘텐트(예를 들면 사용자에게 객체(예-캐릭터, 선수, 물건, 배우 등 핵심이 되는 객체)의 360도 이미지를 제공하는 VR/AR 콘텐트)를 생성하기 위해 사용될 수 있다.
도3의 오른쪽은 아웃워드-페이싱 방식을 나타낸다. 아웃워드-페이싱 방식은 중심 오브젝트를 둘러싸고 위치한 하나 또는 그 이상의 카메라들(또는 카메라 센서들)이 중심 오브젝트가 아닌 중심 오브젝트의 환경을 캡쳐하는 방식을 의미한다. 아웃워드-페이싱 방식은 사용자의 시점에서 나타나는 주변 환경을 제공하기 위한 포인트 클라우드 콘텐트(예를 들면자율 주행 차량의 사용자에게 제공될 수 있는 외부 환경을 나타내는 콘텐트)를 생성하기 위해 사용될 수 있다.
도면에 도시된 바와 같이, 포인트 클라우드 콘텐트는 하나 또는 그 이상의 카메라들의 캡쳐 동작을 기반으로 생성될 수 있다. 이 경우 각 카메라의 좌표계가 다를 수 있으므로 포인트 클라우드 콘텐트 제공 시스템은 캡쳐 동작 이전에 글로벌 공간 좌표계(global coordinate system)을 설정하기 위하여 하나 또는 그 이상의 카메라들의 캘리브레이션을 수행할 수 있다. 또한 포인트 클라우드 콘텐트 제공 시스템은 상술한 캡쳐 방식으로 캡쳐된 이미지 및/또는 영상과 임의의 이미지 및/또는 영상을 합성하여 포인트 클라우드 콘텐트를 생성할 수 있다. 또한 포인트 클라우드 콘텐트 제공 시스템은 가상 공간을 나타내는 포인트 클라우드 콘텐트를 생성하는 경우 도3에서 설명한 캡쳐 동작을 수행하지 않을 수 있다. 실시예들에 따른 포인트 클라우드 콘텐트 제공 시스템은 캡쳐한 이미지 및/또는 영상에 대해 후처리를 수행할 수 있다. 즉, 포인트 클라우드 콘텐트 제공 시스템은 원하지 않는 영역(예를 들면 배경)을 제거하거나, 캡쳐한 이미지들 및/또는 영상들이 연결된 공간을 인식하고, 구명(spatial hole)이 있는 경우 이를 메우는 동작을 수행할 수 있다.
또한 포인트 클라우드 콘텐트 제공 시스템은 각 카메라로부터 확보한 포인트 클라우드 비디오의 포인트들에 대하여 좌표계 변환을 수행하여 하나의 포인트 클라우드 콘텐트를 생성할 수 있다. 포인트 클라우드 콘텐트 제공 시스템은 각 카메라의 위치 좌표를 기준으로 포인트들의 좌표계 변환을 수행할 수 있다. 이에 따라, 포인트 클라우드 콘텐트 제공 시스템은 하나의 넓은 범위를 나타내는 콘텐트를 생성할 수도 있고, 포인트들의 밀도가 높은 포인트 클라우드 콘텐트를 생성할 수 있다.
도 4는 실시예들에 따른 포인트 클라우드 인코더(Point Cloud Encoder)의 예시를 나타낸다.
도 4는 도 1의 포인트 클라우드 비디오 인코더(10002)의 예시를 나타낸다. 포인트 클라우드 인코더는 네트워크의 상황 혹은 애플리케이션 등에 따라 포인트 클라우드 콘텐트의 질(예를 들어 무손실-lossless, 손실-lossy, near-lossless)을 조절하기 위하여 포인트 클라우드 데이터(예를 들면 포인트들의 포지션들 및/또는 어트리뷰트들)을 재구성하고 인코딩 동작을 수행한다. 포인트 클라우드 콘텐트의 전체 사이즈가 큰 경우(예를 들어 30 fps의 경우 60 Gbps인 포인트 클라우드 콘텐트) 포인트 클라우드 콘텐트 제공 시스템은 해당 콘텐트를 리얼 타임 스트리밍하지 못할 수 있다. 따라서 포인트 클라우드 콘텐트 제공 시스템은 네트워크 환경등에 맞춰 제공하기 위하여 최대 타깃 비트율(bitrate)을 기반으로 포인트 클라우드 콘텐트를 재구성할 수 있다.
도 1 내지 도2 에서 설명한 바와 같이 포인트 클라우드 인코더는 지오메트리 인코딩 및 어트리뷰트 인코딩을 수행할 수 있다. 지오메트리 인코딩은 어트리뷰트 인코딩보다 먼저 수행된다.
실시예들에 따른 포인트 클라우드 인코더는 좌표계 변환부(Transformation Coordinates, 40000), 양자화부(Quantize and Remove Points (Voxelize), 40001), 옥트리 분석부(Analyze Octree, 40002), 서페이스 어프록시메이션 분석부(Analyze Surface Approximation, 40003), 아리스메틱 인코더(Arithmetic Encode, 40004), 지오메트리 리컨스트럭션부(Reconstruct Geometry, 40005), 컬러 변환부(Transform Colors, 40006), 어트리뷰트 변환부(Transfer Attributes, 40007), RAHT 변환부(40008), LOD생성부(Generated LOD, 40009), 리프팅 변환부(Lifting)(40010), 계수 양자화부(Quantize Coefficients, 40011) 및/또는 아리스메틱 인코더(Arithmetic Encode, 40012)를 포함한다.
좌표계 변환부(40000), 양자화부(40001), 옥트리 분석부(40002), 서페이스 어프록시메이션 분석부(40003), 아리스메틱 인코더(40004), 및 지오메트리 리컨스트럭션부(40005)는 지오메트리 인코딩을 수행할 수 있다. 실시예들에 따른 지오메트리 인코딩은 옥트리 지오메트리 코딩, 다이렉트 코딩(direct coding), 트라이숩 지오메트리 인코딩(trisoup geometry encoding) 및 엔트로피 인코딩을 포함할 수 있다. 다이렉트 코딩 및 트라이숩 지오메트리 인코딩은 선택적으로 또는 조합으로 적용된다. 또한 지오메트리 인코딩은 위의 예시에 국한되지 않는다.
도면에 도시된 바와 같이, 실시예들에 따른 좌표계 변환부(40000)는 포지션들을 수신하여 좌표계(coordinate)로 변환한다. 예를 들어, 포지션들은 3차원 공간 (예를 들면XYZ 좌표계로 표현되는 3차원 공간 등)의 위치 정보로 변환될 수 있다. 실시예들에 따른 3차원 공간의 위치 정보는 지오메트리 정보로 지칭될 수 있다.
실시예들에 따른 양자화부(40001)는 지오메트리를 양자화한다. 예를 들어, 양자화부(40001)는 전체 포인트들의 최소 위치 값(예를 들면 X축, Y축, Z축 에 대하여 각축상의 최소 값)을 기반으로 포인트들을 양자화 할 수 있다. 양자화부(40001)는 최소 위치 값과 각 포인트의 위치 값의 차이에 기 설정된 양자 스케일(quatization scale) 값을 곱한 뒤, 내림 또는 올림을 수행하여 가장 가까운 정수 값을 찾는 양자화 동작을 수행한다. 따라서 하나 또는 그 이상의 포인트들은 동일한 양자화된 포지션 (또는 포지션 값)을 가질 수 있다. 실시예들에 따른 양자화부(40001)는 양자화된 포인트들을 재구성하기 위해 양자화된 포지션들을 기반으로 복셀화(voxelization)를 수행한다. 2차원 이미지/비디오 정보를 포함하는 최소 단위는 픽셀(pixel)과 같이, 실시예들에 따른 포인트 클라우드 콘텐트(또는 3차원 포인트 클라우드 비디오)의 포인트들은 하나 또는 그 이상의 복셀(voxel)들에 포함될 수 있다. 복셀은 볼륨(Volume)과 픽셀(Pixel)의 조합어로서, 3차원 공간을 표현하는 축들(예를 들면 X축, Y축, Z축)을 기반으로 3차원 공간을 유닛(unit=1.0) 단위로 나누었을 때 발생하는 3차원 큐빅 공간을 의미한다. 양자화부(40001)는 3차원 공간의 포인트들의 그룹들을 복셀들로 매칭할 수 있다. 실시예들에 따라 하나의 복셀은 하나의 포인트만 포함할 수 있다. 실시예들에 따라 하나의 복셀은 하나 또는 그 이상의 포인트들을 포함할 수 있다. 또한 하나의 복셀을 하나의 포인트로 표현하기 위하여, 하나의 복셀에 포함된 하나 또는 그 이상의 포인트들의 포지션들을 기반으로 해당 복셀의 중앙점(center)의 포지션을 설정할 수 있다. 이 경우 하나의 복셀에 포함된 모든 포지션들의 어트리뷰트들은 통합되어(combined) 해당 복셀에 할당될(assigned)수 있다.
실시예들에 따른 옥트리 분석부(40002)는 복셀을 옥트리(octree) 구조로 나타내기 위한 옥트리 지오메트리 코딩(또는 옥트리 코딩)을 수행한다. 옥트리 구조는 팔진 트리 구조에 기반하여 복셀에 매칭된 포인트들을 표현한다.
실시예들에 따른 서페이스 어프록시메이션 분석부(40003)는 옥트리를 분석하고, 근사화할 수 있다. 실시예들에 따른 옥트리 분석 및 근사화는 효율적으로 옥트리 및 복셀화를 제공하기 위해서 다수의 포인트들을 포함하는 영역에 대해 복셀화하기 위해 분석하는 과정이다.
실시예들에 따른 아리스메틱 인코더(40004)는 옥트리 및/또는 근사화된 옥트리를 엔트로피 인코딩한다. 예를 들어, 인코딩 방식은 아리스메틱(Arithmetic) 인코딩 방법을 포함한다. 인코딩의 결과로 지오메트리 비트스트림이 생성된다.
컬러 변환부(40006), 어트리뷰트 변환부(40007), RAHT 변환부(40008), LOD생성부(40009), 리프팅 변환부(40010), 계수 양자화부(40011) 및/또는 아리스메틱 인코더(40012)는 어트리뷰트 인코딩을 수행한다. 상술한 바와 같이 하나의 포인트는 하나 또는 그 이상의 어트리뷰트들을 가질 수 있다. 실시예들에 따른 어트리뷰트 인코딩은 하나의 포인트가 갖는 어트리뷰트들에 대해 동일하게 적용된다. 다만, 하나의 어트리뷰트(예를 들면 색상)이 하나 또는 그 이상의 요소들을 포함하는 경우, 각 요소마다 독립적인 어트리뷰트 인코딩이 적용된다. 실시예들에 따른 어트리뷰트 인코딩은 컬러 변환 코딩, 어트리뷰트 변환 코딩, RAHT(Region Adaptive Hierarchial Transform) 코딩, 예측 변환(Interpolaration-based hierarchical nearest-neighbour prediction-Prediction Transform) 코딩 및 리프팅 변환 (interpolation-based hierarchical nearest-neighbour prediction with an update/lifting step (Lifting Transform)) 코딩을 포함할 수 있다. 포인트 클라우드 콘텐트에 따라 상술한 RAHT 코딩, 예측 변환 코딩 및 리프팅 변환 코딩은 선택적으로 사용되거나, 하나 또는 그 이상의 코딩들의 조합이 사용될 수 있다. 또한 실시예들에 따른 어트리뷰트 인코딩은 상술한 예시에 국한되는 것은 아니다.
실시예들에 따른 컬러 변환부(40006)는 어트리뷰트들에 포함된 컬러 값(또는 텍스쳐)을 변환하는 컬러 변환 코딩을 수행한다. 예를 들어, 컬러 변환부(40006)는 색상 정보의 포맷을 변환(예를 들어 RGB에서 YCbCr로 변환)할 수 있다. 실시예들에 따른 컬러 변환부(40006)의 동작은 어트리뷰트들에 포함된 컬러값에 따라 옵셔널(optional)하게 적용될 수 있다.
실시예들에 따른 지오메트리 리컨스트럭션부(40005)는 옥트리 및/또는 근사화된 옥트리를 재구성(디컴프레션)한다. 지오메트리 리컨스트럭션부(40005)는 포인트들의 분포를 분석한 결과에 기반하여 옥트리/복셀을 재구성한다. 재구성된 옥트리/복셀은 재구성된 지오메트리(또는 복원된 지오메트리)로 호칭될 수 있다.
실시예들에 따른 어트리뷰트 변환부(40007)는 지오메트리 인코딩이 수행되지 않은 포지션들 및/또는 재구성된 지오메트리를 기반으로 어트리뷰트들을 변환하는 어트리뷰트 변환을 수행한다. 상술한 바와 같이 어트리뷰트들은 지오메트리에 종속되므로, 어트리뷰트 변환부(40007)는 재구성된 지오메트리 정보를 기반으로 어트리뷰트들을 변환할 수 있다. 예를 들어, 어트리뷰트 변환부(40007)는 복셀에 포함된 포인트의 포지션값을 기반으로 그 포지션의 포인트가 가지는 어트리뷰트를 변환할 수 있다. 상술한 바와 같이 하나의 복셀에 포함된 하나 또는 그 이상의 포인트들의 포지션들을 기반으로 해당 복셀의 중앙점의 포지션이 설정된 경우, 어트리뷰트 변환부(40007)는 하나 또는 그 이상의 포인트들의 어트리뷰트들을 변환한다. 트라이숩 지오메트리 인코딩이 수행된 경우, 어트리뷰트 변환부(40007)는 트라이숩 지오메트리 인코딩을 기반으로 어트리뷰트들을 변환할 수 있다.
어트리뷰트 변환부(40007)는 각 복셀의 중앙점의 포지션(또는 포지션 값)으로부터 특정 위치/반경 내에 이웃하고 있는 포인트들의 어트리뷰트들 또는 어트리뷰트 값들(예를 들면 각 포인트의 색상, 또는 반사율 등)의 평균값을 계산하여 어트리뷰트 변환을 수행할 수 있다. 어트리뷰트 변환부(40007)는 평균값 계산시 중앙점으로부터 각 포인트까지의 거리에 따른 가중치를 적용할 수 있다. 따라서 각 복셀은 포지션과 계산된 어트리뷰트(또는 어트리뷰트 값)을 갖게 된다.
어트리뷰트 변환부(40007)는 K-D 트리 또는 몰톤 코드를 기반으로 각 복셀의 중앙점의 포지션으로부터 특정 위치/반경 내에 존재하는 이웃 포인트들을 탐색할 수 있다. K-D 트리는 이진 탐색 트리(binary search tree)로 빠르게 최단 이웃점 탐색(Nearest Neighbor Search-NNS)이 가능하도록 point들을 위치 기반으로 관리할 수 있는 자료 구조를 지원한다. 몰튼 코드는 모든 포인트들의 3차원 포지션을 나타내는 좌표값(예를 들면 (x, y, z))을 비트값으로 나타내고, 비트들을 믹싱하여 생성된다. 예를 들어 포인트의 포지션을 나타내는 좌표값이 (5, 9, 1)일 경우 좌표값의 비트 값은 (0101, 1001, 0001)이다. 비트 값을z, y, x 순서로 비트 인덱스에 맞춰 믹싱하면 010001000111이다. 이 값을 10진수로 나타내면 1095이 된다. 즉, 좌표값이 (5, 9, 1)인 포인트의 몰톤 코드 값은 1095이다. 어트리뷰트 변환부(40007)는 몰튼 코드 값을 기준으로 포인트들을 정렬하고depth-first traversal 과정을 통해 최단 이웃점 탐색(NNS)을 할 수 있다. 어트리뷰트 변환 동작 이후, 어트리뷰트 코딩을 위한 다른 변환 과정에서도 최단 이웃점 탐색(NNS)이 필요한 경우, K-D 트리 또는 몰톤 코드가 활용된다.
도면에 도시된 바와 같이 변환된 어트리뷰트들은 RAHT 변환부(40008) 및/또는 LOD 생성부(40009)로 입력된다.
실시예들에 따른 RAHT 변환부(40008)는 재구성된 지오메트리 정보에 기반하여 어트리뷰트 정보를 예측하는 RAHT코딩을 수행한다. 예를 들어, RAHT 변환부(40008)는 옥트리의 하위 레벨에 있는 노드와 연관된 어트리뷰트 정보에 기반하여 옥트리의 상위 레벨에 있는 노드의 어트리뷰트 정보를 예측할 수 있다.
실시예들에 따른 LOD생성부(40009)는 예측 변환 코딩을 수행하기 위하여LOD(Level of Detail)를 생성한다. 실시예들에 따른 LOD는 포인트 클라우드 콘텐트의 디테일을 나타내는 정도로서, LOD 값이 작을 수록 포인트 클라우드 콘텐트의 디테일이 떨어지고, LOD 값이 클 수록 포인트 클라우드 콘텐트의 디테일이 높음을 나타낸다. 포인트들을 LOD에 따라 분류될 수 있다.
실시예들에 따른 리프팅 변환부(40010)는 포인트 클라우드의 어트리뷰트들을 가중치에 기반하여 변환하는 리프팅 변환 코딩을 수행한다. 상술한 바와 같이 리프팅 변환 코딩은 선택적으로 적용될 수 있다.
실시예들에 따른 계수 양자화부(40011)은 어트리뷰트 코딩된 어트리뷰트들을 계수에 기반하여 양자화한다.
실시예들에 따른 아리스메틱 인코더(40012)는 양자화된 어트리뷰트들을 아리스메틱 코딩 에 기반하여 인코딩한다.
도 4의 포인트 클라우드 인코더의 엘레멘트들은 도면에 도시되지 않았으나 포인트 클라우드 제공 장치에 포함된 하나 또는 그 이상의 메모리들과 통신가능하도록 설정된 하나 또는 그 이상의 프로세서들 또는 집적 회로들(integrated circuits)을 포함하는 하드웨어, 소프트웨어, 펌웨어 또는 이들의 조합으로 구현될 수 있다. 하나 또는 그 이상의 프로세서들은 상술한 도 4의 포인트 클라우드 인코더의 엘레멘트들의 동작들 및/또는 기능들 중 적어도 어느 하나 이상을 수행할 수 있다. 또한 하나 또는 그 이상의 프로세서들은 도 4의 포인트 클라우드 인코더의 엘레멘트들의 동작들 및/또는 기능들을 수행하기 위한 소프트웨어 프로그램들 및/또는 인스트럭션들의 세트를 동작하거나 실행할 수 있다. 실시예들에 따른 하나 또는 그 이상의 메모리들은 하이 스피드 랜덤 억세스 메모리를 포함할 수도 있고, 비휘발성 메모리(예를 들면 하나 또는 그 이상의 마그네틱 디스크 저장 디바이스들, 플래쉬 메모리 디바이스들, 또는 다른 비휘발성 솔리드 스테이트 메모리 디바이스들(Solid-state memory devices)등)를 포함할 수 있다.
도 5 는 실시예들에 따른 복셀의 예시를 나타낸다.
도 5는 X축, Y축, Z축의 3가지 축으로 구성된 좌표계로 표현되는 3차원 공간상에 위치한 복셀을 나타낸다. 도 4에서 설명한 바와 같이 포인트 클라우드 인코더(예를 들면 양자화부(40001) 등)은 복셀화를 수행할 수 있다. 복셀은 3차원 공간을 표현하는 축들(예를 들면 X축, Y축, Z축)을 기반으로 3차원 공간을 유닛(unit=1.0) 단위로 나누었을 때 발생하는 3차원 큐빅 공간을 의미한다. 도 5는 두 개의 극점들(0,0,0) 및 (2d, 2d, 2d) 으로 정의되는 바운딩 박스(cubical axis-aligned bounding box)를 재귀적으로 분할(reculsive subdividing)하는 옥트리 구조를 통해 생성된 복셀의 예시를 나타낸다. 하나의 복셀은 적어도 하나 이상의 포인트를 포함한다. 복셀은 복셀군(voxel group)과의 포지션 관계로부터 공간 좌표를 추정 할 수 있다. 상술한 바와 같이 복셀은 2차원 이미지/영상의 픽셀과 마찬가지로 어트리뷰트(색상 또는 반사율 등)을 가진다. 복셀에 대한 구체적인 설명은 도 4에서 설명한 바와 동일하므로 생략한다.
도 6은 실시예들에 따른 옥트리 및 오큐판시 코드 (occupancy code)의 예시를 나타낸다.
도 1 내지 도 4에서 설명한 바와 같이 포인트 클라우드 콘텐트 제공 시스템(포인트 클라우드 비디오 인코더(10002)) 또는 포인트 클라우드 인코더(예를 들면 옥트리 분석부(40002))는 복셀의 영역 및/또는 포지션을 효율적으로 관리하기 위하여 옥트리 구조 기반의 옥트리 지오메트리 코딩(또는 옥트리 코딩)을 수행한다.
도 6의 상단은 옥트리 구조를 나타낸다. 실시예들에 따른 포인트 클라우드 콘텐트의 3차원 공간은 좌표계의 축들(예를 들면 X축, Y축, Z축)로 표현된다. 옥트리 구조는 두 개의 극점들(0,0,0) 및 (2d, 2d, 2d) 으로 정의되는 바운딩 박스(cubical axis-aligned bounding box)를 재귀적으로 분할(reculsive subdividing)하여 생성된다. 2d는 포인트 클라우드 콘텐트(또는 포인트 클라우드 비디오)의 전체 포인트들을 감싸는 가장 작은 바운딩 박스를 구성하는 값으로 설정될 수 있다. d는 옥트리의 깊이(depth)를 나타낸다. d값은 다음의 식에 따라 결정된다. 하기 식에서 (xint
n, yint
n, zint
n)는 양자화된 포인트들의 포지션들(또는 포지션 값들)을 나타낸다.
d =Ceil(Log2(Max(x_n^int,y_n^int,z_n^int,n=1,…,N)+1))
도 6의 상단의 중간에 도시된 바와 같이, 분할에 따라 전체 3차원 공간은 8개의 공간들로 분할될 수 있다. 분할된 각 공간은 6개의 면들을 갖는 큐브로 표현된다. 도 6 상단의 오른쪽에 도시된 바와 같이 8개의 공간들 각각은 다시 좌표계의 축들(예를 들면 X축, Y축, Z축)을 기반으로 분할된다. 따라서 각 공간은 다시 8개의 작은 공간들로 분할된다. 분할된 작은 공간 역시 6개의 면들을 갖는 큐브로 표현된다. 이와 같은 분할 방식은 옥트리의 리프 노드(leaf node)가 복셀이 될 때까지 적용된다.
도 6의 하단은 옥트리의 오큐판시 코드를 나타낸다. 옥트리의 오큐판시 코드는 하나의 공간이 분할되어 발생되는 8개의 분할된 공간들 각각이 적어도 하나의 포인트를 포함하는지 여부를 나타내기 위해 생성된다. 따라서 하나의 오큐판시 코드는 8개의 자식 노드(child node)들로 표현된다. 각 자식 노드는 분할된 공간의 오큐판시를 나타내며, 자식 노드는 1비트의 값을 갖는다. 따라서 오큐판시 코드는 8 비트 코드로 표현된다. 즉, 자식 노드에 대응하는 공간에 적어도 하나의 포인트가 포함되어 있으면 해당 노드는 1값을 갖는다. 자식 노드에 대응하는 공간에 포인트가 포함되어 있지 않으면 (empty), 해당 노드는 0값을 갖는다. 도 6에 도시된 오큐판시 코드는 00100001이므로 8개의 자식 노드 중 3번째 자식 노드 및 8번째 자식 노드에 대응하는 공간들은 각각 적어도 하나의 포인트를 포함함을 나타낸다. 도면에 도시된 바와 같이 3번째 자식 노드 및 8번째 자식 노드는 각각 8개의 자식 노드를 가지며, 각 자식 노드는 8비트의 오큐판시 코드로 표현된다. 도면은 3번째 자식 노드의 오큐판시 코드가 10000111이고, 8번째 자식 노드의 오큐판시 코드가 01001111임을 나타낸다. 실시예들에 따른 포인트 클라우드 인코더(예를 들면 아리스메틱 인코더(40004))는 오큐판시 코드를 엔트로피 인코딩할 수 있다. 또한 압축 효율을 높이기 위해 포인트 클라우드 인코더는 오큐판시 코드를 인트라/인터 코딩할 수 있다. 실시예들에 따른 수신 장치(예를 들면 수신 장치(10004) 또는 포인트 클라우드 비디오 디코더(10006))는 오큐판시 코드를 기반으로 옥트리를 재구성한다.
실시예들에 따른 포인트 클라우드 인코더(예를 들면 도 4의 포인트 클라우드 인코더, 또는 옥트리 분석부(40002))는 포인트들의 포지션들을 저장하기 위해 복셀화 및 옥트리 코딩을 수행할 수 있다. 하지만 3차원 공간 내 포인트들이 언제나 고르게 분포하는 것은 아니므로, 포인트들이 많이 존재하지 않는 특정 영역이 존재할 수 있다. 따라서 3차원 공간 전체에 대해 복셀화를 수행하는 것은 비효율 적이다. 예를 들어 특정 영역에 포인트가 거의 존재하지 않는다면, 해당 영역까지 복셀화를 수행할 필요가 없다.
따라서 실시예들에 따른 포인트 클라우드 인코더는 상술한 특정 영역(또는 옥트리의 리프 노드를 제외한 노드)에 대해서는 복셀화를 수행하지 않고, 특정 영역에 포함된 포인트들의 포지션을 직접 코딩하는 다이렉트 코딩(Direct coding)을 수행할 수 있다. 실시예들에 따른 다이렉트 코딩 포인트의 좌표들은 다이렉트 코딩 모드(Direct Coding Mode, DCM)으로 호칭된다. 또한 실시예들에 따른 포인트 클라우드 인코더는 표면 모델(surface model)을 기반으로 특정 영역(또는 노드)내의 포인트들의 포지션들을 복셀 기반으로 재구성하는 트라이숩 지오메트리 인코딩(Trisoup geometry encoding)을 수행할 수 있다. 트라이숩 지오메트리 인코딩은 오브젝트의 표현을 삼각형 메쉬(triangle mesh)의 시리즈로 표현하는 지오메트리 인코딩이다. 따라서 포인트 클라우드 디코더는 메쉬 표면으로부터 포인트 클라우드를 생성할 수 있다. 실시예들에 따른 다이렉트 코딩 및 트라이숩 지오메트리 인코딩은 선택적으로 수행될 수 있다. 또한 실시예들에 따른 다이렉트 코딩 및 트라이숩 지오메트리 인코딩은 옥트리 지오메트리 코딩(또는 옥트리 코딩)과 결합되어 수행될 수 있다.
다이렉트 코딩(Direct coding)을 수행하기 위해서는 다이렉트 코딩을 적용하기 위한 직접 모드(direct mode) 사용 옵션이 활성화 되어 있어야 하며, 다이렉트 코딩을 적용할 노드는 리프 노드가 아니고, 특정 노드 내에 한계치(threshold) 이하의 포인트들이 존재해야 한다. 또한 다이텍트 코딩의 대상이 되는 전채 포인트들의 개수는 기설정된 한계값을 넘어서는 안된다. 위의 조건이 만족되면, 실시예들에 따른 포인트 클라우드 인코더(또는 아리스메틱 인코더(40004))는 포인트들의 포지션들(또는 포지션 값들)을 엔트로피 코딩할 수 있다.
실시예들에 따른 포인트 클라우드 인코더(예를 들면 서페이스 어프록시메이션 분석부(40003))는 옥트리의 특정 레벨(레벨은 옥트리의 깊이 d보다는 작은 경우)을 정하고, 그 레벨부터는 표면 모델을 사용하여 노드 영역내의 포인트의 포지션을 복셀 기반으로 재구성하는 트라이숩 지오메트리 인코딩을 수행할 수 있다(트라이숩 모드). 실시예들에 따른 포인트 클라우드 인코더는 트라이숩 지오메트리 인코딩을 적용할 레벨을 지정할 수 있다. 예를 들어, 지정된 레벨이 옥트리의 깊이와 같으면 포인트 클라우드 인코더는 트라이숩 모드로 동작하지 않는다. 즉, 실시예들에 따른 포인트 클라우드 인코더는 지정된 레벨이 옥트리의 깊이값 보다 작은 경우에만 트라이숩 모드로 동작할 수 있다. 실시예들에 따른 지정된 레벨의 노드들의 3차원 정육면체 영역을 블록(block)이라 호칭한다. 하나의 블록은 하나 또는 그 이상의 복셀들을 포함할 수 있다. 블록 또는 복셀은 브릭(brick)에 대응될 수도 있다. 각 블록 내에서 지오메트리는 표면(surface)으로 표현된다. 실시예들에 따른 표면은 최대 한번 블록의 각 엣지(edge, 모서리)와 교차할 수 있다.
하나의 블록은 12개의 엣지들을 가지므로, 하나의 블록 내 적어도 12개의 교차점들이 존재한다. 각 교차점은 버텍스(vertex, 정점 또는 꼭지점)라 호칭된다. 엣지를 따라 존재하는 버텍스은 해당 엣지를 공유하는 모든 블록들 중 그 엣지에 인접한 적어도 하나의 오큐파이드 복셀(occupied voxel)이 있는 경우 감지된다. 실시예들에 따른 오큐파이드 복셀은 포인트를 포함하는 복셀을 의미한다. 엣지를 따라 검출된 버텍스의 포지션은 해당 엣지를 공유하는 모든 블록들 중 해당 엣지에 인접한 모든 복셀들의 엣지에 따른 평균 포지션(the average position along the edge of all voxels)이다.
버텍스가 검출되면 실시예들에 따른 포인트 클라우드 인코더는 엣지의 시작점(x, y, z), 엣지의 방향벡터(Δx, Δy, Δz), 버텍스 위치 값 (엣지 내의 상대적 위치 값)들을 엔트로피코딩할 수 있다. 트라이숩 지오메트리 인코딩이 적용된 경우, 실시예들에 따른 포인트 클라우드 인코더(예를 들면 지오메트리 리컨스트럭션부(40005))는 삼각형 재구성(triangle reconstruction), 업-샘플링(up-sampling), 복셀화 과정을 수행하여 복원된 지오메트리(재구성된 지오메트리)를 생성할 수 있다.
블록의 엣지에 위치한 버텍스들은 블록을 통과하는 표면(surface)를 결정한다. 실시예들에 따른 표면은 비평면 다각형이다. 삼각형 재구성 과정은 엣지의 시작점, 엣지의 방향 벡터와 버텍스의 위치값을 기반으로 삼각형으로 나타내는 표면을 재구성한다. 삼각형 재구성 과정은 다음과 같다. ①각 버텍스들의 중심(centroid)값을 계산하고, ②각 버텍스값에서 중심 값을 뺀 값들에 ③ 자승을 수행하고 그 값을 모두 더한 값을 구한다.
더해진 값의 최소값을 구하고, 최소값이 있는 축에 따라서 프로젝션 (Projection, 투영) 과정을 수행한다. 예를 들어 x 요소(element)가 최소인 경우, 각 버텍스를 블록의 중심을 기준으로 x축으로 프로젝션 시키고, (y, z) 평면으로 프로젝션 시킨다. (y, z)평면으로 프로젝션 시키면 나오는 값이 (ai, bi)라면 atan2(bi, ai)를 통해 θ값을 구하고, θ값을 기준으로 버텍스들(vertices)을 정렬한다. 하기의 표는 버텍스들의 개수에 따라 삼각형을 생성하기 위한 버텍스들의 조합을 나타낸다. 버텍스들은 1부터 n까지의 순서로 정렬된다. 하기 표는4개의 버텍스들에 대하여, 버텍스들의 조합에 따라 두 개의 삼각형들이 구성될 수 있음을 나타낸다. 첫번째 삼각형은 정렬된 버텍스들 중 1, 2, 3번째 버텍스들로 구성되고, 두번째 삼각형은 정렬된 버텍스들 중 3, 4, 1번째 버텍스들로 구성될 수 있다. .
표2-1. Triangles formed from vertices ordered 1,…,n
n triangles
3 (1,2,3)
4 (1,2,3), (3,4,1)
5 (1,2,3), (3,4,5), (5,1,3)
6 (1,2,3), (3,4,5), (5,6,1), (1,3,5)
7 (1,2,3), (3,4,5), (5,6,7), (7,1,3), (3,5,7)
8 (1,2,3), (3,4,5), (5,6,7), (7,8,1), (1,3,5), (5,7,1)
9 (1,2,3), (3,4,5), (5,6,7), (7,8,9), (9,1,3), (3,5,7), (7,9,3)
10 (1,2,3), (3,4,5), (5,6,7), (7,8,9), (9,10,1), (1,3,5), (5,7,9), (9,1,5)
11 (1,2,3), (3,4,5), (5,6,7), (7,8,9), (9,10,11), (11,1,3), (3,5,7), (7,9,11), (11,3,7)
12 (1,2,3), (3,4,5), (5,6,7), (7,8,9), (9,10,11), (11,12,1), (1,3,5), (5,7,9), (9,11,1), (1,5,9)
업샘플링 과정은 삼각형의 엣지를 따라서 중간에 점들을 추가하여 복셀화 하기 위해서 수행된다. 업샘플링 요소 값(upsampling factor)과 블록의 너비를 기준으로 추가 점들을 생성한다. 추가점은 리파인드 버텍스(refined vertice)라고 호칭된다. 실시예들에 따른 포인트 클라우드 인코더는 리파인드 버텍스들을 복셀화할 수 있다. 또한 포인트 클라우드 인코더는 복셀화 된 포지션(또는 포지션 값)을 기반으로 어트리뷰트 인코딩을 수행할 수 있다.
도 7은 실시예들에 따른 이웃 노드 패턴의 예시를 나타낸다.
포인트 클라우드 비디오의 압축 효율을 증가시키기 위하여 실시예들에 따른 포인트 클라우드 인코더는 콘텍스트 어탭티브 아리스메틱 (context adaptive arithmetic) 코딩을 기반으로 엔트로피 코딩을 수행할 수 있다.
도 1 내지 도 6에서 설명한 바와 같이 포인트 클라우드 콘텐트 제공 시스템 또는 포인트 클라우드 인코더(예를 들면 포인트 클라우드 비디오 인코더(10002), 도 4의 포인트 클라우드 인코더 또는 아리스메틱 인코더(40004))는 오큐판시 코드를 곧바로 엔트로피 코딩할 수 있다. 또한 포인트 클라우드 콘텐트 제공 시스템 또는 포인트 클라우드 인코더는 현재 노드의 오큐판시 코드와 이웃 노드들의 오큐판시를 기반으로 엔트로피 인코딩(인트라 인코딩)을 수행하거나, 이전 프레임의 오큐판시 코드를 기반으로 엔트로피 인코딩(인터 인코딩)을 수행할 수 있다. 실시예들에 따른 프레임은 동일한 시간에 생성된 포인트 클라우드 비디오의 집합을 의미한다. 실시예들에 따른 인트라 인코딩/인터 인코딩의 압축 효율은 참조하는 이웃 노드들의 개수에 따라 달라질 수 있다. 비트가 커지면 복잡해지지만 한쪽으로 치우치게 만들어서 압축 효율이 높아질 수 있다. 예를 들어 3-bit context를 가지면, 2의 3승인 = 8가지 방법으로 코딩 해야 한다. 나누어 코딩을 하는 부분은 구현의 복잡도에 영향을 준다. 따라서 압축의 효율과 복잡도의 적정 수준을 맞출 필요가 있다.
도7은 이웃 노드들의 오큐판시를 기반으로 오큐판시 패턴을 구하는 과정을 나타낸다. 실시예들에 따른 포인트 클라우드 인코더는 옥트리의 각 노드의 이웃 노드들의 오큐판시(occupancy)를 판단하고 이웃 노드 패턴(neighbor pattern) 값을 구한다. 이웃 노드 패턴은 해당 노드의 오큐판시 패턴을 추론하기 위해 사용된다. 도7의 왼쪽은 노드에 대응하는 큐브(가운데 위치한 큐브) 및 해당 큐브와 적어도 하나의 면을 공유하는 6개의 큐브들(이웃 노드들)을 나타낸다. 도면에 도시된 노드들은 같은 뎁스(깊이)의 노드들이다. 도면에 도시된 숫자는 6개의 노드들 각각과 연관된 가중치들(1, 2, 4, 8, 16, 32, 등)을 나타낸다. 각 가중치는 이웃 노드들의 위치에 따라 순차적으로 부여된다.
도 7의 오른쪽은 이웃 노드 패턴 값을 나타낸다. 이웃 노드 패턴 값은 오큐파이드 이웃 노드(포인트를 갖는 이웃 노드)의 가중치가 곱해진 값들의 합이다. 따라서 이웃 노드 패턴 값은 0에서 63까지의 값을 갖는다. 이웃 노드 패턴 값이 0 인 경우, 해당 노드의 이웃 노드 중 포인트를 갖는 노드(오큐파이드 노드)가 없음을 나타낸다. 이웃 노드 패턴 값이 63인 경우, 이웃 노드들이 전부 오큐파이드 노드들임을 나타낸다. 도면에 도시된 바와 같이 가중치1, 2, 4, 8가 부여된 이웃 노드들은 오큐파이드 노드들이므로, 이웃 노드 패턴 값은 1, 2, 4, 8을 더한 값인 15이다. 포인트 클라우드 인코더는 이웃 노드 패턴 값에 따라 코딩을 수행할 수 있다(예를 들어 이웃 노드 패턴 값이 63인 경우, 64가지의 코딩을 수행). 실시예들에 따라 포인트 클라우드 인코더는 이웃 노드 패턴 값을 변경 (예를 들면 64를 10 또는 6으로 변경하는 테이블을 기반으로) 하여 코딩의 복잡도를 줄일 수 있다.
도 8은 실시예들에 따른 LOD 별 포인트 구성의 예시를 나타낸다.
도 1 내지 도 7에서 설명한 바와 같이, 어트리뷰트 인코딩이 수행되기 전 인코딩된 지오메트리는 재구성(디컴프레션) 된다. 다이렉트 코딩이 적용된 경우, 지오메트리 재구성 동작은 다이렉트 코딩된 포인트들의 배치를 변경하는 것을 포함할 수 있다(예를 들면 다이렉트 코딩된 포인트들을 포인트 클라우드 데이터의 앞쪽에 배치). 트라이숩 지오메트리 인코딩이 적용된 경우, 지오메트리 재구성 과정은 삼각형 재구성, 업샘플링, 복셀화 과정을 어트리뷰트는 지오메트리에 종속되므로, 어트리뷰트 인코딩은 재구성된 지오메트리를 기반으로 수행된다.
포인트 클라우드 인코더(예를 들면 LOD 생성부(40009))는 포인트들을 LOD별로 분류(reorganization)할 수 있다. 도면은 LOD에 대응하는 포인트 클라우드 콘텐트를 나타낸다. 도면의 왼쪽은 오리지널 포인트 클라우드 콘텐트를 나타낸다. 도면의 왼쪽에서 두번째 그림은 가장 낮은 LOD의 포인트들의 분포를 나타내며, 도면의 가장 오른쪽 그림은 가장 높은 LOD의 포인트들의 분포를 나타낸다. 즉, 가장 낮은 LOD의 포인트들은 드문드문(sparse) 분포하며, 가장 높은 LOD의 포인트들은 촘촘히 분포한다. 즉, 도면 하단에 표시된 화살표 방향에 따라 LOD가 증가할수록 포인트들 간의 간격(또는 거리)는 더 짧아진다.
도 9는 실시예들에 따른 LOD 별 포인트 구성의 예시를 나타낸다.
도 1 내지 도 8에서 설명한 바와 같이 포인트 클라우드 콘텐트 제공 시스템, 또는 포인트 클라우드 인코더(예를 들면 포인트 클라우드 비디오 인코더(10002), 도 4의 포인트 클라우드 인코더, 또는 LOD 생성부(40009))는 LOD를 생성할 수 있다. LOD는 포인트들을 설정된 LOD 거리 값(또는 유클리이디언 디스턴스(Euclidean Distance)의 세트)에 따라 리파인먼트 레벨들(refinement levels)의 세트로 재정열(reorganize)하여 생성된다. LOD 생성 과정은 포인트 클라우드 인코더뿐만 아니라 포인트 클라우드 디코더에서도 수행된다.
도 9의 상단은 3차원 공간에 분포된 포인트 클라우드 콘텐트의 포인트들의 예시(P0내지 P9)를 나타낸다. 도 9의 오리지널 오더(Original order)는 LOD 생성전 포인트들 P0내지 P9의 순서를 나타낸다. 도 9의 LOD 기반 오더 (LOD based order)는 LOD 생성에 따른 포인트들의 순서를 나타낸다. 포인트들은 LOD별 재정열된다. 또한 높은 LOD는 낮은 LOD에 속한 포인트들을 포함한다. 도 9에 도시된 바와 같이 LOD0는 P0, P5, P4 및 P2를 포함한다. LOD1은 LOD0의 포인트들과 P1, P6 및 P3를 포함한다. LOD2는 LOD0의 포인트들, LOD1의 포인트들 및 P9, P8 및 P7을 포함한다.
도 4에서 설명한 바와 같이 실시예들에 따른 포인트 클라우드 인코더는 예측 변환 코딩, 리프팅 변환 코딩 및 RAHT 변환 코딩을 선택적으로 또는 조합하여 수행할 수 있다.
실시예들에 따른 포인트 클라우드 인코더는 포인트들에 대한 예측기(predictor)를 생성하여 각 포인트의 예측 어트리뷰트(또는 예측 어트리뷰트값)을 설정하기 위한 예측 변환 코딩을 수행할 수 있다. 즉, N개의 포인트들에 대하여 N개의 예측기들이 생성될 수 있다. 실시예들에 따른 예측기는 각 포인트의 LOD 값과 LOD별 설정된 거리 내에 존재하는 이웃 포인트들에 대한 인덱싱 정보 및 이웃 포인트들까지의 거리 값을 기반으로 가중치(=1/거리) 값을 계산하할 수 있다.
실시예들에 따른 예측 어트리뷰트(또는 어트리뷰트값)은 각 포인트의 예측기에 설정된 이웃 포인트들의 어트리뷰트들(또는 어트리뷰트 값들, 예를 들면 색상, 반사율 등)에 각 이웃 포인트까지의 거리를 기반으로 계산된 가중치(또는 가중치값)을 곱한 값의 평균값으로 설정된다. 실시예들에 따른 포인트 클라우드 인코더(예를 들면 계수 양자화부(40011)는 각 포인트의 어트리뷰트(어트리뷰트 값)에서 예측 어트리뷰트(어트리뷰트값)을 뺀 잔여값들(residuals, 잔여 어트리뷰트, 잔여 어트리뷰트값, 어트리뷰트 예측 잔여값 등으로 호칭할 수 있다)을 양자화(quatization) 및 역양자화(inverse quantization)할 수 있다. 양자화 과정은 다음의 표에 나타난 바와 같다.
표. Attribute prediction residuals quantization pseudo code
int PCCQuantization(int value, int quantStep) {
if( value >=0) {
return floor(value / quantStep + 1.0 / 3.0);
} else {
return -floor(-value / quantStep + 1.0 / 3.0);
}
}
표. Attribute prediction residuals inverse quantization pseudo code
int PCCInverseQuantization(int value, int quantStep) {
if( quantStep ==0) {
return value;
} else {
return value * quantStep;
}
}
실시예들에 따른 포인트 클라우드 인코더(예를 들면 아리스메틱 인코더(40012)는 각 포인트의 예측기에 이웃한 포인트들이 있는 경우, 상술한 바와 같이 양자화 및 역양자화된 잔여값을 엔트로피 코딩 할 수 있다. 실시예들에 따른 포인트 클라우드 인코더(예를 들면 아리스메틱 인코더(40012)는 각 포인트의 예측기에 이웃한 포인트들이 없으면 상술한 과정을 수행하지 않고 해당 포인트의 어트리뷰트들을 엔트로피 코딩할 수 있다.
실시예들에 따른 포인트 클라우드 인코더 (예를 들면 리프팅 변환부(40010)는 각 포인트의 예측기를 생성하고, 예측기에 계산된 LOD를 설정 및 이웃 포인트들을 등록하고, 이웃 포인트들까지의 거리에 따른 가중치를 설정하여 리프팅 변환 코딩을 수행할 수 있다. 실시예들에 따른 리프팅 변환 코딩은 상술한 예측 변환 코딩과 유사하나, 어트리뷰트값에 가중치를 누적 적용한다는 점에서 차이가 있다. 실시예들에 따른 어트리뷰트값에 가중치를 누적 적용하는 과정은 다음과 같다.
1) 각 포인트의 가중치 값을 저장하는 배열 QW(QuantizationWieght)를 생성한다. QW의 모든 요소들의 초기값은 1.0이다. 예측기에 등록된 이웃 노드의 예측기 인덱스의 QW 값에 현재 포인트의 예측기의 가중치를 곱한 값을 더한다.
2) 리프트 예측 과정: 예측된 어트리뷰트 값을 계산하기 위하여 포인트의 어트리뷰트 값에 가중치를 곱한 값을 기존 어트리뷰트값에서 뺀다.
3) 업데이트웨이트(updateweight) 및 업데이트(update)라는 임시 배열들을 생성하고 임시 배열들을 0으로 초기화한다.
4) 모든 예측기에 대해서 계산된 가중치에 예측기 인덱스에 해당하는 QW에 저장된 가중치를 추가로 곱해서 산출된 가중치를 업데이트웨이트 배열에 이웃 노드의 인덱스로 누적으로 합산한다. 업데이트 배열에는 이웃 노드의 인덱스의 어트리뷰트 값에 산출된 가중치를 곱한 값을 누적 합산한다.
5) 리프트 업데이트 과정: 모든 예측기에 대해서 업데이트 배열의 어트리뷰트 값을 예측기 인덱스의 업데이트웨이트 배열의 가중치 값으로 나누고, 나눈 값에 다시 기존 어트리뷰트 값을 더한다.
6) 모든 예측기에 대해서, 리프트 업데이트 과정을 통해 업데이트된 어트리뷰트 값에 리프트 예측 과정을 통해 업데이트 된(QW에 저장된) 가중치를 추가로 곱하여 예측 어트리뷰트 값을 산출한다. 실시예들에 따른 포인트 클라우드 인코더(예를 들면 계수 양자화부(40011))는 예측 어트리뷰트 값을 양자화한다. 또한 포인트 클라우드 인코더(예를 들면 아리스메틱 인코더(40012))는 양자화된 어트리뷰트 값을 엔트로피 코딩한다.
실시예들에 따른 포인트 클라우드 인코더(예를 들면 RAHT 변환부(40008))는 옥트리의 하위 레벨에 있는 노드와 연관된 어트리뷰트를 사용하여 상위 레벨의 노드들의 어트리뷰트를 에측하는 RAHT 변환 코딩을 수행할 수 있다. RAHT 변환 코딩은 옥트리 백워드 스캔을 통한 어트리뷰트 인트라 코딩의 예시이다. 실시예들에 따른 포인트 클라우드 인코더는 복셀에서 전체 영역으로 스캔하고, 각 스텝에서 복셀을 더 큰 블록으로 합치면서 루트 노드까지의 병합 과정을 반복수행한다. 실시예들에 따른 병합 과정은 오큐파이드 노드에 대해서만 수행된다. 엠티 노드(empty node)에 대해서는 병합 과정이 수행되지 않으며, 엠티 노드의 바로 상위 노드에 대해 병합 과정이 수행된다.
하기의 식은 RAHT 변환 행렬을 나타낸다. gl x, y, z 는 레벨 l에서의 복셀들의 평균 어트리뷰트 값을 나타낸다. gl x, y, z 는 gl+1 2x, y, z와 gl+1 2x+1, y, z로부터 계산될 수 있다. gl 2x, y, z 와 gl 2x+1, y, z 의 가중치를 w1=w l 2x, y, z 과 w2=w l 2x+1, y, z 이다.
gl-1 x, y, z는 로-패스(low-pass) 값으로, 다음 상위 레벨에서의 병합 과정에서 사용된다. hl-1 x, y, z은 하이패스 계수(high-pass coefficients)이며, 각 스텝에서의 하이패스 계수들은 양자화되어 엔트로피 코딩 된다(예를 들면 아리스메틱 인코더(400012)의 인코딩). 가중치는 w l-1 x, y, z=w l 2x, y, z+w l 2x+1, y, z로 계산된다. 루트 노드는 마지막 g1 0, 0, 0 과 g1 0, 0, 1을 통해서 다음과 같이 생성된다.,
도 10은 실시예들에 따른 포인트 클라우드 디코더(Point Cloud Decoder)의 예시를 나타낸다.
도 10에 도시된 포인트 클라우드 디코더는 도 1에서 설명한 포인트 클라우드 비디오 디코더(10006) 예시로서, 도 1에서 설명한 포인트 클라우드 비디오 디코더(10006)의 동작 등과 동일 또는 유사한 동작을 수행할 수 있다. 도면이 도시된 바와 같이 포인트 클라우드 디코더는 하나 또는 그 이상의 비트스트림(bitstream)들에 포함된 지오메트리 비트스트림(geometry bitstream) 및 어트리뷰트 비트스트림(attribute bitstream)을 수신할 수 있다. 포인트 클라우드 디코더는 지오메트리 디코더(geometry decoder)및 어트리뷰트 디코더(attribute decoder)를 포함한다. 지오메트리 디코더는 지오메트리 비트스트림에 대해 지오메트리 디코딩을 수행하여 디코딩된 지오메트리(decoded geometry)를 출력한다. 어트리뷰트 디코더는 디코딩된 지오메트리 및 어트리뷰트 비트스트림을 기반으로 어트리뷰트 디코딩을 수행하여 디코딩된 어트리뷰트들(decoded attributes)을 출력한다. 디코딩된 지오메트리 및 디코딩된 어트리뷰트들은 포인트 클라우드 콘텐트를 복원(decoded point cloud)하는데 사용된다.
도 11은 실시예들에 따른 포인트 클라우드 디코더(Point Cloud Decoder)의 예시를 나타낸다.
도 11에 도시된 포인트 클라우드 디코더는 도 10에서 설명한 포인트 클라우드 디코더의 예시로서, 도 1 내지 도 9에서 설명한 포인트 클라우드 인코더의 인코딩 동작의 역과정인 디코딩 동작을 수행할 수 있다.
도 1 및 도 10에서 설명한 바와 같이 포인트 클라우드 디코더는 지오메트리 디코딩 및 어트리뷰트 디코딩을 수행할 수 있다. 지오메트리 디코딩은 어트리뷰트 디코딩보다 먼저 수행된다.
실시예들에 따른 포인트 클라우드 디코더는 아리스메틱 디코더(arithmetic decode, 11000), 옥트리 합성부(synthesize octree, 11001), 서페이스 오프록시메이션 합성부(synthesize surface approximation, 11002), 지오메트리 리컨스트럭션부(reconstruct geometry, 11003), 좌표계 역변환부(inverse transform coordinates, 11004), 아리스메틱 디코더(arithmetic decode, 11005), 역양자화부(inverse quantize, 11006), RAHT변환부(11007), LOD생성부(generate LOD, 11008), 인버스 리프팅부(Inverse lifting, 11009), 및/또는 컬러 역변환부(inverse transform colors, 11010)를 포함한다.
아리스메틱 디코더(11000), 옥트리 합성부(11001), 서페이스 오프록시메이션 합성부(11002), 지오메트리 리컨스럭션부(11003), 좌표계 역변환부(11004)는 지오메트리 디코딩을 수행할 수 있다. 실시예들에 따른 지오메트리 디코딩은 다이렉트 코딩(direct coding) 및 트라이숩 지오메트리 디코딩(trisoup geometry decoding)을 포함할 수 있다. 다이렉트 코딩 및 트라이숩 지오메트리 디코딩은 선택적으로 적용된다. 또한 지오메트리 디코딩은 위의 예시에 국한되지 않으며, 도 1 내지 도 9에서 설명한 지오메트리 인코딩의 역과정으로 수행된다.
실시예들에 따른 아리스메틱 디코더(11000)는 수신한 지오메트리 비트스트림을 아리스메틱 코딩을 기반으로 디코딩한다. 아리스메틱 디코더(11000)의 동작은 아리스메틱 인코더(40004)의 역과정에 대응한다.
실시예들에 따른 옥트리 합성부(11001)는 디코딩된 지오메트리 비트스트림으로부터 (또는 디코딩 결과 확보된 지오메트리에 관한 정보)로부터 오큐판시 코드를 획득하여 옥트리를 생성할 수 있다. 오큐판시 코드에 대한 구체적인 설명은 도 1 내지 도 9에서 설명한 바와 같다.
실시예들에 따른 서페이스 오프록시메이션 합성부(11002)는 트라이숩 지오메트리 인코딩이 적용된 경우, 디코딩된 지오메트리 및/또는 생성된 옥트리에 기반하여 서페이스를 합성할 수 있다.
실시예들에 따른 지오메트리 리컨스트럭션부(11003)는 서페이스 및 또는 디코딩된 지오메트리에 기반하여 지오메트리를 재생성할 수 있다. 도 1 내지 도 9에서 설명한 바와 같이, 다이렉트 코딩 및 트라이숩 지오메트리 인코딩은 선택적으로 적용된다. 따라서 지오메트리 리컨스트럭션부(11003)는 다이렉트 코딩이 적용된 포인트들의 포지션 정보들을 직접 가져와서 추가한다. 또한, 트라이숩 지오메트리 인코딩이 적용된 경우, 지오메트리 리컨스트럭션부(11003)는 지오메트리 리컨스트럭션부(40005)의 재구성 동작, 예를 들면 삼각형 재구성, 업-샘플링, 복셀화 동작을 수행하여 지오메트리를 복원할 수 있다. 구체적인 내용은 도 6에서 설명한 바와 동일하므로 생략한다. 복원된 지오메트리는 어트리뷰트들을 포함하지 않는 포인트 클라우드 픽쳐 또는 프레임을 포함할 수 있다.
실시예들에 따른 좌표계 역변환부(11004)는 복원된 지오메트리를 기반으로 좌표계를 변환하여 포인트들의 포지션들을 획득할 수 있다.
아리스메틱 디코더(11005), 역양자화부(11006), RAHT 변환부(11007), LOD생성부(11008), 인버스 리프팅부(11009), 및/또는 컬러 역변환부(11010)는 도 10에서 설명한 어트리뷰트 디코딩을 수행할 수 있다. 실시예들에 따른 어트리뷰트 디코딩은 RAHT(Region Adaptive Hierarchial Transform) 디코딩, 예측 변환(Interpolaration-based hierarchical nearest-neighbour prediction-Prediction Transform) 디코딩 및 리프팅 변환 (interpolation-based hierarchical nearest-neighbour prediction with an update/lifting step (Lifting Transform)) 디코딩을 포함할 수 있다. 상술한 3가지의 디코딩들은 선택적으로 사용되거나, 하나 또는 그 이상의 디코딩들의 조합이 사용될 수 있다. 또한 실시예들에 따른 어트리뷰트 디코딩은 상술한 예시에 국한되는 것은 아니다.
실시예들에 따른 아리스메틱 디코더(11005)는 어트리뷰트 비트스트림을 아리스메틱 코딩으로 디코딩한다.
실시예들에 따른 역양자화부(11006)는 디코딩된 어트리뷰트 비트스트림 또는 디코딩 결과 확보한 어트리뷰트에 대한 정보를 역양자화(inverse quantization)하고 역양자화된 어트리뷰트들(또는 어트리뷰트 값들)을 출력한다. 역양자화는 포인트 클라우드 인코더의 어트리뷰트 인코딩에 기반하여 선택적으로 적용될 수 있다.
실시예들에 따라 RAHT 변환부(11007), LOD생성부(11008) 및/또는 인버스 리프팅부(11009)는 재구성된 지오메트리 및 역양자화된 어트리뷰트들을 처리할 수 있다. 상술한 바와 같이 RAHT 변환부(11007), LOD생성부(11008) 및/또는 인버스 리프팅부(11009)는 포인트 클라우드 인코더의 인코딩에 따라 그에 대응하는 디코딩 동작을 선택적으로 수행할 수 있다.
실시예들에 따른 컬러 역변환부(11010)는 디코딩된 어트리뷰트들에 포함된 컬러 값(또는 텍스쳐)을 역변환하기 위한 역변환 코딩을 수행한다. 컬러 역변환부(11010)의 동작은 포인트 클라우드 인코더의 컬러 변환부(40006)의 동작에 기반하여 선택적으로 수행될 수 있다.
도 11의 포인트 클라우드 디코더의 엘레멘트들은 도면에 도시되지 않았으나 포인트 클라우드 제공 장치에 포함된 하나 또는 그 이상의 메모리들과 통신가능하도록 설정된 하나 또는 그 이상의 프로세서들 또는 집적 회로들(integrated circuits)을 포함하는 하드웨어, 소프트웨어, 펌웨어 또는 이들의 조합으로 구현될 수 있다. 하나 또는 그 이상의 프로세서들은 상술한 도 11의 포인트 클라우드 디코더의 엘레멘트들의 동작들 및/또는 기능들 중 적어도 어느 하나 이상을 수행할 수 있다. 또한 하나 또는 그 이상의 프로세서들은 도11의 포인트 클라우드 디코더의 엘레멘트들의 동작들 및/또는 기능들을 수행하기 위한 소프트웨어 프로그램들 및/또는 인스트럭션들의 세트를 동작하거나 실행할 수 있다.
도 12는 실시예들에 따른 전송 장치의 예시이다.
도 12에 도시된 전송 장치는 도 1의 전송장치(10000) (또는 도 4의 포인트 클라우드 인코더)의 예시이다. 도 12에 도시된 전송 장치는 도 1 내지 도 9에서 설명한 포인트 클라우드 인코더의 동작들 및 인코딩 방법들과 동일 또는 유사한 동작들 및 방법들 중 적어도 어느 하나 이상을 수행할 수 있다. 실시예들에 따른 전송 장치는 데이터 입력부(12000), 양자화 처리부(12001), 복셀화 처리부(12002), 옥트리 오큐판시 코드 (Occupancy code) 생성부(12003), 표면 모델 처리부(12004), 인트라/인터 코딩 처리부(12005), 아리스메틱 (Arithmetic) 코더(12006), 메타데이터 처리부(12007), 색상 변환 처리부(12008), 어트리뷰트 변환 처리부(또는 속성 변환 처리부)(12009), 예측/리프팅/RAHT 변환 처리부(12010), 아리스메틱 (Arithmetic) 코더(12011) 및/또는 전송 처리부(12012)를 포함할 수 있다.
실시예들에 따른 데이터 입력부(12000)는 포인트 클라우드 데이터를 수신 또는 획득한다. 데이터 입력부(12000)는 포인트 클라우드 비디오 획득부(10001)의 동작 및/또는 획득 방법(또는 도2에서 설명한 획득과정(20000))과 동일 또는 유사한 동작 및/또는 획득 방법을 수행할 수 있다.
데이터 입력부(12000), 양자화 처리부(12001), 복셀화 처리부(12002), 옥트리 오큐판시 코드 (Occupancy code) 생성부(12003), 표면 모델 처리부(12004), 인트라/인터 코딩 처리부(12005), Arithmetic 코더(12006)는 지오메트리 인코딩을 수행한다. 실시예들에 따른 지오메트리 인코딩은 도 1 내지 도 9에서 설명한 지오메트리 인코딩과 동일 또는 유사하므로 구체적인 설명은 생략한다.
실시예들에 따른 양자화 처리부(12001)는 지오메트리(예를 들면 포인트들의 위치값, 또는 포지션값)을 양자화한다. 양자화 처리부(12001)의 동작 및/또는 양자화는 도 4에서 설명한 양자화부(40001)의 동작 및/또는 양자화와 동일 또는 유사하다. 구체적인 설명은 도 1 내지 도 9에서 설명한 바와 동일하다.
실시예들에 따른 복셀화 처리부(12002)는 양자화된 포인트들의 포지션 값을 복셀화한다. 복셀화 처리부(120002)는 도 4에서 설명한 양자화부(40001)의 동작 및/또는 복셀화 과정과 동일 또는 유사한 동작 및/또는 과정을 수행할 수 있다. 구체적인 설명은 도 1 내지 도 9에서 설명한 바와 동일하다.
실시예들에 따른 옥트리 오큐판시 코드 생성부(12003)는 복셀화된 포인트들의 포지션들을 옥트리 구조를 기반으로 옥트리 코딩을 수행한다. 옥트리 오큐판시 코드 생성부(12003)는 오큐판시 코드를 생성할 수 있다. 옥트리 오큐판시 코드 생성부(12003)는 도 4 및 도 6에서 설명한 포인트 클라우드 인코더 (또는 옥트리 분석부(40002))의 동작 및/또는 방법과 동일 또는 유사한 동작 및/또는 방법을 수행할 수 있다. 구체적인 설명은 도 1 내지 도 9에서 설명한 바와 동일하다.
실시예들에 따른 표면 모델 처리부(12004)는 표면 모델(surface model)을 기반으로 특정 영역(또는 노드)내의 포인트들의 포지션들을 복셀 기반으로 재구성하는 트라이숩 지오메트리 인코딩을 수행할 수 있다. 포면 모델 처리부(12004)는 도 4 에서 설명한 포인트 클라우드 인코더(예를 들면 서페이스 어프록시메이션 분석부(40003))의 동작 및/또는 방법과 동일 또는 유사한 동작 및/또는 방법을 수행할 수 있다. 구체적인 설명은 도 1 내지 도 9에서 설명한 바와 동일하다.
실시예들에 따른 인트라/인터 코딩 처리부(12005)는 포인트 클라우드 데이터를 인트라/인터 코딩할 수 있다. 인트라/인터 코딩 처리부(12005)는 도 7에서 설명한 인트라/인터 코딩과 동일 또는 유사한 코딩을 수행할 수 있다. 구체적인 설명은 도 7에서 설명한 바와 동일하다. 실시예들에 따라 인트라/인터 코딩 처리부(12005)는 아리스메틱 코더(12006)에 포함될 수 있다.
실시예들에 따른 아리스메틱 코더(12006)는 포인트 클라우드 데이터의 옥트리 및/또는 근사화된 옥트리를 엔트로피 인코딩한다. 예를 들어, 인코딩 방식은 아리스메틱(Arithmetic) 인코딩 방법을 포함한다. . 아리스메틱 코더(12006)는 아리스메틱 인코더(40004)의 동작 및/또는 방법과 동일 또는 유사한 동작 및/또는 방법을 수행한다.
실시예들에 따른 메타데이터 처리부(12007)는 포인트 클라우드 데이터에 관한 메타데이터, 예를 들어 설정 값 등을 처리하여 지오메트리 인코딩 및/또는 어트리뷰트 인코딩 등 필요한 처리 과정에 제공한다. 또한 실시예들에 따른 메타데이터 처리부(12007)는 지오메트리 인코딩 및/또는 어트리뷰트 인코딩과 관련된 시그널링 정보를 생성 및/또는 처리할 수 있다. 실시예들에 따른 시그널링 정보는 지오메트리 인코딩 및/또는 어트리뷰트 인코딩과 별도로 인코딩처리될 수 있다. 또한 실시예들에 따른 시그널링 정보는 인터리빙 될 수도 있다.
색상 변환 처리부(12008), 어트리뷰트 변환 처리부(12009), 예측/리프팅/RAHT 변환 처리부(12010), 아리스메틱 (Arithmetic) 코더(12011)는 어트리뷰트 인코딩을 수행한다. 실시예들에 따른 어트리뷰트 인코딩은 도 1 내지 도 9에서 설명한 어트리뷰트 인코딩과 동일 또는 유사하므로 구체적인 설명은 생략한다.
실시예들에 따른 색상 변환 처리부(12008)는 어트리뷰트들에 포함된 색상값을 변환하는 색상 변환 코딩을 수행한다. 색상 변환 처리부(12008)는 재구성된 지오메트리를 기반으로 색상 변환 코딩을 수행할 수 있다. 재구성된 지오메트리에 대한 설명은 도 1 내지 도 9에서 설명한 바와 동일하다. 또한 도 4에서 설명한 컬러 변환부(40006)의 동작 및/또는 방법과 동일 또는 유사한 동작 및/또는 방법을 수행한다. 구체적인 설명은 생략한다.
실시예들에 따른 어트리뷰트 변환 처리부(12009)는 지오메트리 인코딩이 수행되지 않은 포지션들 및/또는 재구성된 지오메트리를 기반으로 어트리뷰트들을 변환하는 어트리뷰트 변환을 수행한다. 어트리뷰트 변환 처리부(12009)는 도 4에 설명한 어트리뷰트 변환부(40007)의 동작 및/또는 방법과 동일 또는 유사한 동작 및/또는 방법을 수행한다. 구체적인 설명은 생략한다. 실시예들에 따른 예측/리프팅/RAHT 변환 처리부(12010)는 변환된 어트리뷰트들을 RAHT 코딩, 예측 변환 코딩 및 리프팅 변환 코딩 중 어느 하나 또는 조합하여 코딩할 수 있다. 예측/리프팅/RAHT 변환 처리부(12010)는 도 4에서 설명한 RAHT 변환부(40008), LOD 생성부(40009) 및 리프팅 변환부(40010)의 동작들과 동일 또는 유사한 동작들 중 적어도 하나 이상을 수행한다. 또한 예측 변환 코딩, 리프팅 변환 코딩 및 RAHT 변환 코딩에 대한 설명은 도 1 내지 도 9에서 설명한 바와 동일하므로 구체적인 설명은 생략한다.
실시예들에 따른 아리스메틱 코더(12011)는 코딩된 어트리뷰트들을 아리스메틱 코딩에 기반하여 인코딩할 수 있다. 아리스메틱 코더(12011)는 아리스메틱 인코더(400012)의 동작 및/또는 방법과 동일 또는 유사한 동작 및/또는 방법을 수행한다.
실시예들에 따른 전송 처리부(12012)는 인코딩된 지오메트리 및/또는 인코딩된 어트리뷰트, 메타 데이터 정보를 포함하는 각 비트스트림을 전송하거나, 인코딩된 지오메트리 및/또는 인코딩된 어트리뷰트, 메타 데이터 정보를 하나의 비트스트림으로 구성하여 전송할 수 있다. 실시예들에 따른 인코딩된 지오메트리 및/또는 인코딩된 어트리뷰트, 메타 데이터 정보가 하나의 비트스트림으로 구성되는 경우, 비트스트림은 하나 또는 그 이상의 서브 비트스트림들을 포함할 수 있다. 실시예들에 따른 비트스트림은 시퀀스 레벨의 시그널링을 위한 SPS (Sequence Parameter Set), 지오메트리 정보 코딩의 시그널링을 위한 GPS(Geometry Parameter Set), 어트리뷰트 정보 코딩의 시그널링을 위한 APS(Attribute Parameter Set), 타일 레벨의 시그널링을 위한 TPS (Tile Parameter Set)를 포함하는 시그널링 정보 및 슬라이스 데이터를 포함할 수 있다. 슬라이스 데이터는 하나 또는 그 이상의 슬라이스들에 대한 정보를 포함할 수 있다. 실시예들에 따른 하나의 슬라이스는 하나의 지오메트리 비트스트림(Geom00) 및 하나 또는 그 이상의 어트리뷰트 비트스트림들(Attr00, Attr10)을 포함할 수 있다.
슬라이스(slice)란, 코딩된 포인트 클라우드 프레임의 전체 또는 일부를 나타내는 신택스 엘리먼트의 시리즈를 말한다.
실시예들에 따른 TPS는 하나 또는 그 이상의 타일들에 대하여 각 타일에 관한 정보(예를 들면 bounding box의 좌표값 정보 및 높이/크기 정보 등)을 포함할 수 있다. 지오메트리 비트스트림은 헤더와 페이로드를 포함할 수 있다. 실시예들에 따른 지오메트리 비트스트림의 헤더는 GPS에 포함된 파라미터 세트의 식별 정보(geom_ parameter_set_id), 타일 식별자(geom_tile_id), 슬라이스 식별자(geom_slice_id) 및 페이로드에 포함된 데이터에 관한 정보 등을 포함할 수 있다. 상술한 바와 같이 실시예들에 따른 메타데이터 처리부(12007)는 시그널링 정보를 생성 및/또는 처리하여 전송 처리부(12012)로 전송할 수 있다. 실시예들에 따라, 지오메트리 인코딩을 수행하는 엘레멘트들 및 어트리뷰트 인코딩을 수행하는 엘레멘트들은 점선 처리된 바와 같이 상호 데이터/정보를 공유할 수 있다. 실시예들에 따른 전송 처리부(12012)는 트랜스미터(10003)의 동작 및/또는 전송 방법과 동일 또는 유사한 동작 및/또는 전송 방법을 수행할 수 있다. 구체적인 설명은 도 1 내지 도 2에서 설명한 바와 동일하므로 생략한다.
도 13은 실시예들에 따른 수신 장치의 예시이다.
도 13에 도시된 수신 장치는 도 1의 수신장치(10004) (또는 도 10 및 도 11의 포인트 클라우드 디코더)의 예시이다. 도 13에 도시된 수신 장치는 도 1 내지 도 11에서 설명한 포인트 클라우드 디코더의 동작들 및 디코딩 방법들과 동일 또는 유사한 동작들 및 방법들 중 적어도 어느 하나 이상을 수행할 수 있다.
실시예들에 따른 수신 장치는 수신부(13000), 수신 처리부(13001), 아리스메틱 (arithmetic) 디코더(13002), 오큐판시 코드 (Occupancy code) 기반 옥트리 재구성 처리부(13003), 표면 모델 처리부(삼각형 재구성, 업-샘플링, 복셀화)(13004), 인버스(inverse) 양자화 처리부(13005), 메타데이터 파서(13006), 아리스메틱 (arithmetic) 디코더(13007), 인버스(inverse)양자화 처리부(13008), 예측/리프팅/RAHT 역변환 처리부(13009), 색상 역변환 처리부(13010) 및/또는 렌더러(13011)를 포함할 수 있다. 실시예들에 따른 디코딩의 각 구성요소는 실시예들에 따른 인코딩의 구성요소의 역과정을 수행할 수 있다.
실시예들에 따른 수신부(13000)는 포인트 클라우드 데이터를 수신한다. 수신부(13000)는 도 1의 리시버(10005)의 동작 및/또는 수신 방법과 동일 또는 유사한 동작 및/또는 수신 방법을 수행할 수 있다. 구체적인 설명은 생략한다.
실시예들에 따른 수신 처리부(13001)는 수신한 데이터로부터 지오메트리 비트스트림 및/또는 어트리뷰트 비트스트림을 획득할 수 있다. 수신 처리부(13001)는 수신부(13000)에 포함될 수 있다.
아리스메틱 디코더(13002), 오큐판시 코드 기반 옥트리 재구성 처리부(13003), 표면 모델 처리부(13004) 및 인버스 양자화 처리부(13005)는 지오메트리 디코딩을 수행할 수 있다. 실시예들에 따른 지오메트리 디코딩은 도 1 내지 도 10에서 설명한 지오메트리 디코딩과 동일 또는 유사하므로 구체적인 설명은 생략한다.
실시예들에 따른 아리스메틱 디코더(13002)는 지오메트리 비트스트림을 아리스메틱 코딩을 기반으로 디코딩할 수 있다. 아리스메틱 디코더(13002)는 아리스메틱 디코더(11000)의 동작 및/또는 코딩과 동일 또는 유사한 동작 및/또는 코딩을 수행한다.
실시예들에 따른 오큐판시 코드 기반 옥트리 재구성 처리부(13003)는 디코딩된 지오메트리 비트스트림으로부터 (또는 디코딩 결과 확보된 지오메트리에 관한 정보)로부터 오큐판시 코드를 획득하여 옥트리를 재구성할 수 있다. 오큐판시 코드 기반 옥트리 재구성 처리부(13003)는 옥트리 합성부(11001)의 동작 및/또는 옥트리 생성 방법과 동일 또는 유사한 동작 및/또는 방법을 수행한다. 실시예들에 따른 표면 모델 처리부(13004)는 트라이숩 지오메트리 인코딩이 적용된 경우, 표면 모델 방식에 기반하여 트라이숩 지오메트리 디코딩 및 이와 관련된 지오메트리 리컨스트럭션(예를 들면 삼각형 재구성, 업-샘플링, 복셀화)을 수행할 수 있다. 표면 모델 처리부(13004)는 서페이스 오프록시메이션 합성부(11002) 및/또는 지오메트리 리컨스트럭션부(11003)의 동작과 동일 또는 유사한 동작을 수행한다.
실시예들에 따른 인버스 양자화 처리부(13005)는 디코딩된 지오메트리를 인버스 양자화할 수 있다.
실시예들에 따른 메타데이터 파서(13006)는 수신한 포인트 클라우드 데이터에 포함된 메타데이터, 예를 들어 설정 값 등을 파싱할 수 있다. 메타데이터 파서(13006)는 메타데이터를 지오메트리 디코딩 및/또는 어트리뷰트 디코딩에 전달할 수 있다. 메타데이터에 대한 구체적인 설명은 도 12에서 설명한 바와 동일하므로 생략한다.
아리스메틱 디코더(13007), 인버스 양자화 처리부(13008), 예측/리프팅/RAHT 역변환 처리부(13009) 및 색상 역변환 처리부(13010)는 어트리뷰트 디코딩을 수행한다. 어트리뷰트 디코딩는 도 1 내지 도 10에서 설명한 어트리뷰트 디코딩과 동일 또는 유사하므로 구체적인 설명은 생략한다.
실시예들에 따른 아리스메틱 디코더(13007)는 어트리뷰트 비트스트림을 아리스메틱 코딩으로 디코딩할 수 있다. 아리스메틱 디코더(13007)는 재구성된 지오메트리를 기반으로 어트리뷰트 비트스트림의 디코딩을 수행할 수 있다. 아리스메틱 디코더(13007)는 아리스메틱 디코더(11005)의 동작 및/또는 코딩과 동일 또는 유사한 동작 및/또는 코딩을 수행한다.
실시예들에 따른 인버스 양자화 처리부(13008)는 디코딩된 어트리뷰트 비트스트림을 인버스 양자화할 수 있다. 인버스 양자화 처리부(13008)는 역양자화부(11006)의 동작 및/또는 역양자화 방법과 동일 또는 유사한 동작 및/또는 방법을 수행한다.
실시예들에 따른 예측/리프팅/RAHT 역변환 처리부(13009)는 재구성된 지오메트리 및 역양자화된 어트리뷰트들을 처리할 수 있다. 예측/리프팅/RAHT 역변환 처리부(13009)는 RAHT 변환부(11007), LOD생성부(11008) 및/또는 인버스 리프팅부(11009)의 동작들 및/또는 디코딩들과 동일 또는 유사한 동작들 및/또는 디코딩들 중 적어도 어느 하나 이상을 수행한다. 실시예들에 따른 색상 역변환 처리부(13010)는 디코딩된 어트리뷰트들에 포함된 컬러 값(또는 텍스쳐)을 역변환하기 위한 역변환 코딩을 수행한다. 색상 역변환 처리부(13010)는 컬러 역변환부(11010)의 동작 및/또는 역변환 코딩과 동일 또는 유사한 동작 및/또는 역변환 코딩을 수행한다. 실시예들에 따른 렌더러(13011)는 포인트 클라우드 데이터를 렌더링할 수 있다.
도 14는 실시예들에 따른 포인트 클라우드 데이터 송수신 방법/장치와 연동 가능한 구조의 예시를 나타낸다.
도 14의 구조는 서버(1460), 로봇(1410), 자율 주행 차량(1420), XR 장치(1430), 스마트폰(1440), 가전(1450) 및/또는 HMD(1470) 중에서 적어도 하나 이상이 클라우드 네트워크(1410)와 연결된 구성을 나타낸다. 로봇(1410), 자율 주행 차량(1420), XR 장치(1430), 스마트폰(1440) 또는 가전(1450) 등은 장치라 호칭된다. 또한, XR 장치(1430)는 실시예들에 따른 포인트 클라우드 데이터 (PCC) 장치에 대응되거나 PCC장치와 연동될 수 있다.
클라우드 네트워크(1400)는 클라우드 컴퓨팅 인프라의 일부를 구성하거나 클라우드 컴퓨팅 인프라 안에 존재하는 네트워크를 의미할 수 있다. 여기서, 클라우드 네트워크(1400)는 3G 네트워크, 4G 또는 LTE(Long Term Evolution) 네트워크 또는 5G 네트워크 등을 이용하여 구성될 수 있다.
서버(1460)는 로봇(1410), 자율 주행 차량(1420), XR 장치(1430), 스마트폰(1440), 가전(1450) 및/또는 HMD(1470) 중에서 적어도 하나 이상과 클라우드 네트워크(1400)을 통하여 연결되고, 연결된 장치들(1410 내지 1470)의 프로세싱을 적어도 일부를 도울 수 있다.
HMD (Head-Mount Display)(1470)는 실시예들에 따른 XR 디바이스 및/또는 PCC 디바이스가 구현될 수 있는 타입 중 하나를 나타낸다. 실시예들에 따른HMD 타입의 디바이스는, 커뮤니케이션 유닛, 컨트롤 유닛, 메모리 유닛, I/O 유닛, 센서 유닛, 그리고 파워 공급 유닛 등을 포함한다.
이하에서는, 상술한 기술이 적용되는 장치(1410 내지 1450)의 다양한 실시 예들을 설명한다. 여기서, 도 14에 도시된 장치(1410 내지 1450)는 상술한 실시예들에 따른 포인트 클라우드 데이터 송수신 장치와 연동/결합될 수 있다.
<PCC+XR>
XR/PCC 장치(1430)는 PCC 및/또는 XR(AR+VR) 기술이 적용되어, HMD(Head-Mount Display), 차량에 구비된 HUD(Head-Up Display), 텔레비전, 휴대폰, 스마트 폰, 컴퓨터, 웨어러블 디바이스, 가전 기기, 디지털 사이니지, 차량, 고정형 로봇이나 이동형 로봇 등으로 구현될 수도 있다.
XR/PCC 장치(1430)는 다양한 센서들을 통해 또는 외부 장치로부터 획득한 3차원 포인트 클라우드 데이터 또는 이미지 데이터를 분석하여 3차원 포인트들에 대한 위치 데이터 및 어트리뷰트 데이터를 생성함으로써 주변 공간 또는 현실 객체에 대한 정보를 획득하고, 출력할 XR 객체를 렌더링하여 출력할 수 있다. 예컨대, XR/PCC 장치(1430)는 인식된 물체에 대한 추가 정보를 포함하는 XR 객체를 해당 인식된 물체에 대응시켜 출력할 수 있다.
<PCC+XR+모바일폰>
XR/PCC 장치(1430)는 PCC기술이 적용되어 모바일폰(1440) 등으로 구현될 수 있다.
모바일폰(1440)은 PCC 기술에 기반하여 포인트 클라우드 콘텐츠를 디코딩하고, 디스플레이할 수 있다.
<PCC+자율주행+XR>
자율 주행 차량(1420)은 PCC 기술 및 XR 기술이 적용되어, 이동형 로봇, 차량, 무인 비행체 등으로 구현될 수 있다.
XR/PCC 기술이 적용된 자율 주행 차량(1420)은 XR 영상을 제공하는 수단을 구비한 자율 주행 차량이나, XR 영상 내에서의 제어/상호작용의 대상이 되는 자율 주행 차량 등을 의미할 수 있다. 특히, XR 영상 내에서의 제어/상호작용의 대상이 되는 자율 주행 차량(1420)은 XR 장치(1430)와 구분되며 서로 연동될 수 있다.
XR/PCC영상을 제공하는 수단을 구비한 자율 주행 차량(1420)은 카메라를 포함하는 센서들로부터 센서 정보를 획득하고, 획득한 센서 정보에 기초하여 생성된 XR/PCC 영상을 출력할 수 있다. 예컨대, 자율 주행 차량(1420)은 HUD를 구비하여 XR/PCC 영상을 출력함으로써, 탑승자에게 현실 객체 또는 화면 속의 객체에 대응되는 XR/PCC 객체를 제공할 수 있다.
이때, XR/PCC 객체가 HUD에 출력되는 경우에는 XR/PCC 객체의 적어도 일부가 탑승자의 시선이 향하는 실제 객체에 오버랩되도록 출력될 수 있다. 반면, XR/PCC 객체가 자율 주행 차량의 내부에 구비되는 디스플레이에 출력되는 경우에는 XR/PCC 객체의 적어도 일부가 화면 속의 객체에 오버랩되도록 출력될 수 있다. 예컨대, 자율 주행 차량(1220)은 차로, 타 차량, 신호등, 교통 표지판, 이륜차, 보행자, 건물 등과 같은 객체와 대응되는 XR/PCC 객체들을 출력할 수 있다.
실시예들에 의한 VR (Virtual Reality) 기술, AR (Augmented Reality) 기술, MR (Mixed Reality) 기술 및/또는 PCC(Point Cloud Compression)기술은, 다양한 디바이스에 적용 가능하다.
즉, VR 기술은, 현실 세계의 객체나 배경 등을 CG 영상으로만 제공하는 디스플레이 기술이다. 반면, AR 기술은, 실제 사물 영상 위에 가상으로 만들어진 CG 영상을 함께 보여 주는 기술을 의미한다. 나아가, MR 기술은, 현실세계에 가상 객체들을 섞고 결합시켜서 보여준다는 점에서 전술한 AR 기술과 유사하다. 그러나, AR 기술에서는 현실 객체와 CG 영상으로 만들어진 가상 객체의 구별이 뚜렷하고, 현실 객체를 보완하는 형태로 가상 객체를 사용하는 반면, MR 기술에서는 가상 객체가 현실 객체와 동등한 성격으로 간주된다는 점에서 AR 기술과는 구별이 된다. 보다 구체적으로 예를 들면, 전술한 MR 기술이 적용된 것이 홀로그램 서비스 이다.
다만, 최근에는 VR, AR, MR 기술을 명확히 구별하기 보다는 XR (extended Reality) 기술로 부르기도 한다. 따라서, 본 발명의 실시예들은 VR, AR, MR, XR 기술 모두에 적용 가능하다. 이러한 기술은 PCC, V-PCC, G-PCC 기술 기반 인코딩/디코딩이 적용될 수 있다.
실시예들에 따른 PCC방법/장치는 자율 주행 서비스를 제공하는 차량에 적용될 수 있다.
자율 주행 서비스를 제공하는 차량은 PCC 디바이스와 유/무선 통신이 가능하도록 연결된다.
실시예들에 따른 포인트 클라우드 데이터 (PCC) 송수신 장치는 차량과 유/무선 통신이 가능하도록 연결된 경우, 자율 주행 서비스와 함께 제공할 수 있는 AR/VR/PCC 서비스 관련 콘텐트 데이터를 수신/처리하여 차량에 전송할 수 있다. 또한 포인트 클라우드 데이터 송수신 장치 차량에 탑재된 경우, 포인트 클라우드 송수신 장치는 사용자 인터페이스 장치를 통해 입력된 사용자 입력 신호에 따라 AR/VR/PCC 서비스 관련 콘텐트 데이터를 수신/처리하여 사용자에게 제공할 수 있다. 실시예들에 따른 차량 또는 사용자 인터페이스 장치는 사용자 입력 신호를 수신할 수 있다. 실시예들에 따른 사용자 입력 신호는 자율 주행 서비스를 지시하는 신호를 포함할 수 있다.
실시예들에 따른 포인트 클라우드 데이터 송신 방법/장치는 도1의 송신 장치(10000), 포인트 클라우드 비디오 인코더(10002), 트랜스미터(10003), 도2의 획득-인코딩-전송(20000-20001-20002), 도4의 인코더, 도12의 송신 장치, 도14의 디바이스, 도20의 인코더 등을 지칭하는 용어로 해석된다.
실시예들에 따른 포인트 클라우드 데이터 수신 방법/장치는 도1의 수신 장치(10004), 리시버(10005), 포인트 클라우드 비디오 디코더(10006), 도2의 전송-디코딩-렌더링(20002-20003-20004), 도10-11의 디코더, 도13의 수신 장치, 도14의 디바이스, 도21의 디코더 등을 지칭하는 용어로 해석된다.
또한, 실시예들에 따른 포인트 클라우드 데이터 송수신 방법/장치는 실시예들에 따른 방법/장치로 줄여서 호칭될 수 있다.
실시예들에 따라, 포인트 클라우드 데이터를 구성하는 지오메트리 데이터, 지오메트리 정보, 위치 정보 등은 서로 동일한 의미로 해석된다. 포인트 클라우드 데이터를 구성하는 어트리뷰트 데이터, 어트리뷰트 정보, 속성 정보 등은 서로 동일한 의미로 해석된다.
실시예들에 따른 포인트 클라우드 데이터 송수신 방법/장치는 포인트 클라우드 데이터에 관한 3D 맵 콘텐츠를 위한 슬라이스 분할 동작을 수행할 수 있다.
실시예들에 따른 포인트 클라우드 데이터는 라이다(LiDAR) 장비로 캡처된 포인트 클라우드(point cloud) 프레임(frame)들일 수 있다. 이러한 데이터가 포인트 클라우드 콘텐츠가 될 수 있고, 지오메트리 기반 포인트 클라우드 압축(Geometry-based Point Cloud Compression (G-PCC))의 효율적인 지오메트리 압축을 위해, 포인트 클라우드 데이터를 슬라이스로 분할하여 압축하고 복원할 수 있다. 라이다 장비로 획득된 데이터는 라이다 3D 맵 데이터일 수 있다.
실시예들에 따른 방법/장치는 다양한 형태의 포인트 클라우드 데이터를 인코딩하고, 디코딩할 수 있다. 예를 들어, 3D 맵 데이터를 인코딩하고 디코딩할 수 있다. 실시예들에 따른 방법/장치는 슬라이스 분할 방안 및 지오메트리 각도 모드(angular mode) 사용을 위한 시그널링 방안을 제공할 수 있다.
실시예들은 3차원 포인트 클라우드(point cloud) 데이터 압축을 위한 Geometry-based Point Cloud Compression (G-PCC)의 압축 효율을 높이기 위한 방안에 관한 것이다.
이하 인코더(encoder), 부호화기는 부호화기로 디코더(decoder), 복호화기는 복호화기로 지칭한다.
포인트 클라우드는 포인트(point)들의 집합으로 구성되며, 각 포인트는 지오메트리(geometry) 정보와 속성(attributes) 정보를 갖을 수 있다. 지오메트리 정보는 3차원 위치(XYZ) 정보이며, 속성 정보는 색상 (RGB, YUV 등) 또는/과 반사(Reflectance) 값이다.
G-PCC 부호화(encoding) 과정은 포인트 클라우드를 영역에 따라 타일로 분할하고, 병렬 처리를 위해 각 타일을 슬라이스들로 분할할 수 있다. 각 슬라이스 단위로 지오메트리를 압축하고, 압축을 통해 변경된 위치 정보들로 재구성 된 지오메트리(reconstructed geometry=복호화된 지오메트리)를 바탕으로 속성 정보를 압축하는 과정으로 구성될 수 있다.
G-PCC 복호화(decoding) 과정은 부호화된 슬라이스 단위의 지오메트리 비트스트림(bitstream)과 속성 비트스트림을 전송 받아서 지오메트리를 복호화하고 복호화 과정을 통해 재구성된 지오메트리를 기반으로 속성 정보를 복호화하는 과정을 포함한다.
지오메트리 정보 압축 방법은 옥트리(octree) 기반, 예측 트리(predictive tree) 기반, 또는 트라이숩(trisoup) 기반 압축 방법을 포함한다.
나아가, 실시예들은 라이다 장비로 캡처된 콘텐츠의 지오메트리 압축 효율을 높이기 위한 슬라이스 분할 방식을 포함한다.
도15는 실시예들에 따른 스피닝(회전) 라이다 습득 모델(spinning LiDAR acquisition model)을 나타낸다.
실시예들에 따른 포인트 클라우드 데이터 송수신 방법/장치가 처리하는 포인트 클라우드 데이터는 도15와 같이, 스피팅 라이다 습득 모델에 기반하여 획득된 데이터일 수 있다.
포인트 클라우드 콘텐츠 캡처를 위해서 레이저 펄스를 쏘고 반사되어 돌아오는 시간을 측정하여 반사체의 위치 좌표를 측정하는 레이더 시스템을 이용하는 라이다 장비를 통해 깊이 정보를 추출할 수 있다. 라이다 장비를 통해 생성된 포인트 클라우드 콘텐츠는 여러 개의 프레임들로 구성될 수도 있고, 여러 개의 프레임들(멀티플 프레임들)을 하나의 콘텐츠로 통합할 수도 있다.
라이다는 서로 다른 고도(elevation) 에 있는 N개의 레이저(N=16, 32, 64 등)(1500)로 구성되고, 레이저들은 Z축을 기준으로 방위각(azimuth, 1501) 를 따라 회전(spinning)을 하면서 포인트 클라우드 데이터를 캡처할 수 있다 (도15 참조). 이러한 타입을 스피닝 라이다 모델(spinning LiDAR model)이라고 하고, 스피닝 라이다 모델로 캡처된 콘텐츠는 각도의 특성을 가지고 있다.
레이저 i가 물체 M을 히트하고, M의 위치를 직교좌표계상의 (x, y, z)로 추정할 수 있다 (도15참조). 레이저 센서들의 고정된 위치, 곧바로(straight) 나아가는 특성 및 센서들이 일정 방위각으로 회전하는 특성 인해서 M의 위치는 직교 좌표계 상에서 (x, y, z)가 아닌 좌표로 표현할 때 포인트들간의 규칙이 압축에 유리하게 유도될 수 있는 특성을 가질 수 있다. r은 반지름 또는 반경, 은 아지무스 또는 방위각, i는 엘리베이션(elevation, 고도각) 또는 라이다 고도에 따른 인덱스 i 또는 라이다 ID일 수 있다.
실시예들에 따른 송신 방법/장치(예를 들어, 인코더, 데이터 입력부, 좌표계 변환부, 공간 분할부 등)는 복수 개의 라이다의 레이저가의 회전을 통해 획득된 각 레이저마다(예를 들어, 레이저 아이디, 1500) 회전 성질과 연관된 규칙을 가진 포인트들을 스캔하고, 포인트들을 직교 좌계가 아닌 라이다 기반 좌표계 등으로 표현할 수 있다.
따라서, 이러한 특성을 활용하여, 스피닝 라이다 장비로 캡처된 데이터의 경우, 지오메트리 부호화/복호화 과정에서 각도 모드(angular mode)를 적용하면 압축 효율이 더 높아질 수 있다 (최대 약 20%). 각도 모드란 (x, y, z)가 아닌 로 압축하는 방법이다. 실시예들은 데이터 특성에 맞는 직교 좌표계 및/또는 구면 좌표계 모두 처리할 수 있다.
라이다 장비를 통해서 한 프레임씩 캡처하고 저장하는 경우 각도 모드를 적용할 수 있다. 3D 맵 데이터 생성을 위해서 라이다 장비로 여러 장의 프레임들을 캡처하고 하나의 콘텐츠로 통합한 경우 라이다 장비의 중심 위치가 서로 다른 데이터들이 섞일 수 있다. 라이다 장비로 캡처된 데이터에서 나타나는 각도상의 특성, 즉 각도 로 변경했을 때의 포인트간의 규칙이 감춰질 수 있다. 이에 각도 모드를 적용하는 것이 직교 좌표계 기반 압축보다 효율적이지 않을 수 있다.
실시예들은 라이다 장비를 통해 캡처되고, 캡쳐된 프레임들이 하나의 콘텐츠로 통합된 3D 맵 데이터를 효율적으로 지오메트리 압축할 수 있다. 이를 위한 각도 모드를 적용할 수 있도록 슬라이드로 데이터를 분할할 수 있다.
실시 예들 간 변경 및 결합이 가능하다. 본 문서에서 사용되는 용어는 해당 분야에서 널리 사용되는 범위 내에서, 용어의 의도된 의미에 근거하여 이해될 수 있다.
슬라이스 분할은 PCC 부호화기에서 수행되고, PCC 복호화기에서 통합될 수 있다. 분할된 포인트 클라우드 슬라이스의 각도 모드(angular mode) 적용은 PCC 지오메트리 부호화부에서 수행되고 PCC 복호화기의 PCC 지오메트리 복호화 과정을 통해 복원될 수 있다.
실시예들에 따른 방법/장치는 1. 3D 맵 데이터의 슬라이스 분할 방법 단계, 2. 지오메트리 코딩 단계, 및/또는 어트리뷰트 코딩 단계를 포함하고, 수행할 수 있다. 구체적으로, 3D 맵 데이터의 슬라이스 분할 방법 단계는 Time과 laser angle이 있는 경우, 슬라이스 분할 방법, Time만 있는 경우, 슬라이스 분할 방법, Laser angle만 있는 경우, 슬라이스 분할 방법, Time, Laser angle이 모두 없는 경우, 슬라이스 분할 방법, Frame id가 있는 경우, 슬라이스 분할 방법, 및/또는 라이다 장비의 위치 정보가 있는 경우, 슬라이스 분할 방법 등을 포함할 수 있다.
또한, 지오메트리 코딩 단계는 레이저 앵글(laser angle)값을 사용하여 슬라이스로 분할된 경우, 센서의 위치 정보 도출 방법, 라이다 장비의 위치 정보로 슬라이스로 분할된 경우, 센서의 위치 정보 도출 방법, 그 외의 경우, 센서의 위치 정보 도출 방법 등을 포함할 수 있다.
실시예들에 따른 방법/장치는 실시예들에 따른 슬라이스 분할 및 지오메트리 코딩 후 어트리뷰 코딩을 수행할 수 있다.
도16-17은 실시예들에 따른 포인트 클라우드 데이터의 포인트 예시를 나타낸다.
실시예들에 따른 송수신 방법/장치가 인코딩/디코딩하는 포인트 클라우드 데이터인 포인트는 도16-17과 같이 위치 및 속성들을 가질 수 있다.
라이다 장비를 통해 캡처되고, 하나의 콘텐츠로 통합된 3D 맵 데이터를 라이다로 캡처된 콘텐츠의 특성을 활용해서 지오메트리 압축을 수행할 수 있도록 슬라이스들로 분할 할 수 있다.
포인트 클라우드는 지오메트리 데이터인 위치(x, y, z), 어트리뷰트 데이터인 속성(red(적색), green(녹색), blue(청색), reflectance(반사도)) 값 외에 다음과 같은 추가 데이터를 가질 수 있다. 예를 들어 시간(time), 레이저 앵글(laser angle), 노멀 위치(normal position(nx, ny, nz)) 등이 있을 수 있다. normal position은 노멀 벡터를 의미한다.
도16-17을 보면, 시간(time)과 레이저 앵글(laser angle)을 통해서 같은 시간에 레이저 앵글(laser angle) 방위각(azimuth) 의 1회전 데이터 셋을 구별할 수 있다. 예를 들어, 2번 열부터 285번 열(1600)까지 -5~ 185도까지를 한 사이클로 구분할 수 있다.
실시예들에 따른 시간(Time)과 레이저 앵글(laser angle)이 있는 경우, 슬라이스 분할 방법:
포인트 클라우드 콘텐츠가 시간(Time)과 레이저 앵글(laser angle)을 갖는 경우, 다음 과정(1단계 내지 5단계)을 통해서 슬라이스들을 분리할 수 있다.
시간(Time)의 정확도를 반올림하는 소수점 위치 n을 설정 할 수 있다. 소수점 위치는 설정된 값일 수 있고, 실시예들에 따른 장치에 입력될 수 있다.
몇 개의 스피닝 사이클을 하나의 슬라이스로 분할하는지 여부는 c값으로 설정할 수 있다. 사이클 개수는 설정된 값일 수 있고, 실시예들에 따른 장치에 입력될 수 있다.
1. 포인트들을 시간 순서로 정렬할 수 있다.
2. Time ti를 소수점 n번째 위치에서 반올림된 Time을 t' i이라고 할 수 있다.
3. t' i이 같은 포인트들의 레이저 앵글(laser angle) 범위인 최소 내지 최대(laser_angle_min, laser_angle_max)를 구할 수 있다.
4. t' i이 같고 laser angle 범위 (laser_angle_min, laser_angle_max)에 속하는 포인트들을 하나의 스피닝 사이클의 포인트로 분류 할 수 있다.
5. c번의 사이클에 속하는 포인트들을 분류하고, 하나의 슬라이스로 등록할 수 있다.
실시예들에 따른 시간(Time)만 있는 경우, 슬라이스 분할 방법:
포인트 클라우드 콘텐츠가 시간(time)만 가지고 있다면, 다음 과정(1단계 내지 4단계)을 통해서 슬라이스들을 분리할 수 있다.
Time의 정확도를 반올림 소수점 위치 n을 설정할 수 있다. 소수점 위치는 설정된 값일 수 있고, 실시예들에 따른 장치에 입력될 수 있다.
몇 개의 스피닝 사이클을 하나의 슬라이스로 분할하는지 여부는 c값으로 설정할 수 있다. 사이클 개수는 설정된 값일 수 있고, 실시예들에 따른 장치에 입력될 수 있다.
1. 포인트들을 시간 순서로 정렬할 수 있다.
2. Time ti를 소수점 n번째 위치에서 반올림된 Time을 t' i이라고 할 수 있다.
3. t' i이 같은 포인트들을 하나의 스피닝 사이클의 포인트로 분류 할 수 있다.
4. c번의 사이클에 속하는 포인트들을 분류하고, 하나의 슬라이스로 등록할 수 있다.
실시예들에 따른 레이저 앵글(Laser angle)만 있는 경우, 슬라이스 분할 방법:
포인트 클라우드 콘텐츠가 laser angle만 가지고 있다면, 다음 과정(1~4)을 통해서 슬라이스들을 분리할 수 있다.
최대 거리 값 (max_cycle_range)를 설정 할 수 있다. 최대 거리 값은 설정된 값일 수 있고, 실시예들에 따른 장치에 입력될 수 있다.
Laser angle의 정확도를 반올림하는 소수점 위치 n을 설정 할 수 있다. 소수점 위치는 설정된 값일 수 있고, 실시예들에 따른 장치에 입력될 수 있다.
기준점 (centerx, centery, centerz)를 설정할 수 있다. 기준점 좌표는 설정된 값일 수 있고, 실시예들에 따른 장치에 입력될 수 있다. 단, 입력이 없는 경우 (0,0,0)을 사용할 수 있다.
1. 전체 포인트들의 laser angle 범위인 최소 내지 최대(laser_angle_min, laser_angle_max)를 구할 수 있다.
2. Laser angle i를 소수점 n번째 위치에서 반올림된 Laser angle을 'i라고 할 수 있다.
3. 같은 'i 로 정렬할 수 있다. 'i 가 같은 경우, 기준점으로부터 계산된 반지름(radius, r)으로 정렬할 수 있다.
4. 가장 길게 포인트를 갖고 있는 laser angle을 기준으로 시작 포인트로부터(예를들어, 가장 왼쪽에 있는 포인트) 최대 거리 값(max_cycle_range)값을 기준으로 포인트들을 분류하여 슬라이스로 등록할 수 있다(도18참조).
도18은 실시예들에 따른 레이저 앵글 기반 슬라이스 분할 예시이다.
전술한 레이저 앵글에 기반하여, 실시예들에 따른 방법/장치는 포인트들을 슬라이스들로 분할할 수 있다.
포인트들(1800)은 라이다 장비에 의해 획득된 포인트들이고, 레이저 앵글에 따른 규칙성을 가지고 있다. 전술한 1 내지 4단계에 기반하여 레이저 앵글 범위 내 포인트들에 대해 반올림 과정을 통해 정렬하고, 최대 거리 값을 기준으로 포인트들을 분류하여 슬라이스로 설정할 수 있다(1801).
도18에 표시된 중심점(1802)은 라이다 장비가 자율주행을 위한 도로 데이터를 캡쳐하는 경우 도로 위 선을 의미할 수 있다. 중심점이 실시예들에 따른 기준점일 수 있다. 기준점의 좌표는 설정된 값이거나 (0,0,0)일 수 있다.
실시예들에 따른 시간(Time), 레이저 앵글(Laser angle)이 모두 없는 경우, 슬라이스 분할 방법:
포인트 클라우드 콘텐츠가 시간(time)과 레이저 앵글(laser angle)에 대한 정보를 포함하고 있지 않는 경우, 다음 과정(1 내지 4)을 통해서 슬라이스들을 분리할 수 있다. 포인트들이 몰톤코드에 기반하여 정렬되는 특성을 이용한다.
최대 거리 값 (max_cycle_range)를 설정 할 수 있다. 최대 거리 값은 설정된 값일 수 있고, 실시예들에 따른 장치에 입력될 수 있다.
기준점 (centerx, centery, centerz)를 설정할 수 있다. 기준점은 설정된 값일 수 있고, 실시예들에 따른 장치에 입력될 수 있다. 단, 입력이 없는 경우 (0,0,0)을 사용할 수 있다.
1. 포인트들을 몰톤 코드 기준으로 정렬할 수 있다.
2. 기준점으로부터의 각 포인트들의 반지름(radius, r) 값을 구할 수 있다. radius 값이 최대 거리 값(max_cycle_range) 내 속하는 포인트들을 분류하여 슬라이스로 등록할 수 있다.
3. 부모 노드의 몰톤 코드가 변경(예, shifting을 통한 변경)되거나, 다른 부모 노드에 속하거나, 및/또는 포인트의 radius값이 최대 거리 값(max_cycle_range) 보다 크다면, 해당 노드의 좌/바닥/앞(left/bottom/front) 위치를 기준점으로 다시 설정할 수 있다.
4. 모든 포인트들이 모든 슬라이스에 등록 될 때까지 위 3 단계, 4단계를 반복 수행할 수 있다.
실시예들에 따른 프레임 아이디(Frame id)가 있는 경우, 슬라이스 분할 방법:
실시예들에 따른 방법/장치는 포인트 클라우드 콘텐츠를 캡쳐하고 포인트 클라우드 데이터를 프레임으로 구성할 수 있다. 포인트 클라우드 데이터는 프레임 아이디 정보를 가질 수 있다. 프레임 아이디는 동일한 타임(시간)에 캡쳐된 프레임을 의미한다.
몇 개의 스피닝 사이클을 하나의 슬라이스로 분할하는지 여부는 c값으로 설정할 수 있다. 스피닝 사이클 개수는 설정된 값일 수 있고, 실시예들에 따른 장치에 입력될 수 있다.
1. 같은 frame id를 갖는 포인트들을 하나의 스피닝 사이클의 포인트로 분류 할 수 있다.
2. c번의 사이클에 속하는 포인트들을 분류하고, 하나의 슬라이스로 등록할 수 있다.
실시예들에 따른 라이다 장비의 위치 정보가 있는 경우, 슬라이스 분할 방법:
포인트 클라우드 콘텐츠가 캡쳐된frame id 정보를 추가로 가지고 있지 않은 경우, 다음 과정(1 내지 2)을 통해서 슬라이스들을 분리할 수 있다.
몇 개의 스피닝 사이클을 하나의 슬라이스로 분할하는지 여부는 c값으로 설정할 수 있다. 스피닝 사이클 개수는 설정된 값일 수 있고, 실시예들에 따른 장치에 입력될 수 있다.
1. 라이다 장비의 위치 정보가 같은 포인트들을 하나의 스피닝 사이클의 포인트로 분류 할 수 있다.
2. c번의 사이클에 속하는 포인트들을 분류하고, 하나의 슬라이스로 등록할 수 있다.
라이다 장비가 움직이면서 포인트 클라우드 데이터를 캡쳐하는 경우, 위치가 동일한 또는 유사한 포인트들을 분류하여 압축하면 압축 성능이 더 좋기 때문이다.
전술한 실시예들에 따른 슬라이스 구성 방법들에 따라 슬라이스를 생성하고, 실시예들에 따른 방법/장치는 슬라이스 기반 지오메트리 코딩을 수행할 수 있다(지오메트리 코딩).
즉, 슬라이스로 분할된 3D 맵 포인트 클라우드를 부호화/복호화할 수 있다. 3D 맵 포인트 클라우드에 각도 모드(angular mode)를 적용하여 지오메트리 코딩을 수행할 수 있다. 각도 모드로 변경하는 과정에는 직교 좌표계의 위치값 (x, y, z)을 실시예들에 따른 좌표 로 변환할 수 있다. 즉, 직교 좌표계에 따른 포인트의 위치가 반지름(반경), 아지무스 각도, 엘리베이션 각도(또는 레이저 아이디)로 표현될 수 있다.
좌표 변환 과정은 라이다 센서의 중심 위치 값을 통해 변환되어야 정확한 각도로 변경할 수 있다. 정확한 각도 값을 알아야 라이다로 캡처된 콘텐츠의 데이터 특성이 나타날 수 있다. 따라서 정확성이 높은 라이다 센서 중심 위치는 지오메트리의 압축 효율에 영향을 미칠 수 있다.
예를 들어, 라이다 기반 회전하는 스피닝 데이터를 보면, 처음 시작점을 원점으로 시작하면 도로 및 도로에 인접한 건물 등에 관한 포인트 클라우드 데이터 및/또는 예측 데이터가 정확할 수 있다. 또한, 회전과 연관된 규칙성을 그대로 살려서 포인트 클라우드 데이터를 예측할 수 있다. 따라서, 라이다의 동일한 센터(중심)을 기반으로 포인트들을 슬라이싱하면 코딩 성능이 증가한다. 즉, 각 슬라이스의 센터 설정 방법이 중요하다.
각 레이다 센서의 위치 값은 각 슬라이스마다 시그널링 되어야 복호화 과정에서 위치 정보를 정확하게 복원할 수 있다.
3D 맵 포인트 클라우드는 여러 개의 프레임들이 결합되어서 임의로 슬라이스로 분할된 형태이기 때문에 분할한 방법에 따라서 센서의 위치 정보를 계산을 통해 추정할 수 있다. 이하에서, 센서 위치를 추정하는 방법을 설명한다.
실시예들에 따른 레이저 앵글(laser angle) 값을 사용하여 슬라이스로 분할된 경우, 센서의 위치 정보 도출 방법:
포인트 클라우드 콘텐츠가 시간(time)과 레이저 앵글(laser angle)을 갖고 있거나, 레이저 앵글(laser angle) 값을 갖고 있어서, 레이저 앵글(laser angle) 값을 통해 슬라이스로 분할된 경우, 다음 과정(1 내지 2)을 통해서 라이다 센서의 위치 정보를 도출할 수 있다.
도19는 실시예들에 따른 라이더 센서 위치값 추정 방법 예시를 나타낸다.
몇 개의 스피닝 사이클을 하나의 슬라이스로 분할하는지 여부는 c값으로 설정할 수 있다. 스피닝 사이클 개수는 설정된 값일 수 있고, 실시예들에 따른 장치에 입력될 수 있다.
실시예들에 따른 스피팅 사이클 예시를 보면, 하나의 스피닝 사이클이 하나의 슬라이스를 구성하거나, 2 개 이상의 스파팅 사이클 그룹이 하나의 슬라이스를 구성할 수 있다.
1. 레이저 앵글(Laser angle)이 가장 작은 포인트(1901)와 레이저 앵글(laser angle)이 가장 큰 포인트(1900)의 앵글(angle)값과 위치 값을 사용하여 두 개의 직선을 만들 수 있다. 두 개의 직선이 만나는 위치를 라이다 센서의 위치값(1902)으로 추정할 수 있다.
2. c번의 사이클에 속하는 포인트들로 분류된 경우, c번의 위치 각각의 라이다 센서 위치값을 추정하고, c개의 센서 위치값의 평균값으로 해당 슬라이스의 센서 위치 값으로 설정할 수 있다.
실시예들에 따른 평균값 외에도 중앙값 등 데이터 특성에 따른 다양한 값으로 추정이 가능하다.
실시예들에 따른 라이다 장비의 위치 정보로 슬라이스로 분할된 경우, 센서의 위치 정보 도출 방법:
포인트 클라우드 콘텐츠가 라이다 장비로 캡쳐된 위치 정보를 각 포인트가 가지고 있고, 그 값으로 슬라이스로 분할된 경우, 해당 라이다 센서의 위치 정보를 통해 도출할 수 있다.
몇 개의 스피닝 사이클을 하나의 슬라이스로 분할하는지 여부는 c값으로 설정할 수 있다. c값은 설정된 값일 수 있고, 실시예들에 따른 장치에 입력될 수 있다.
1. 콘텐츠에 포함된 라이다 센서 위치값을 센서 위치 값(슬라이스에 대한 레이저 포지션)으로 설정할 수 있다. 이 과정에서 센서의 위치값이 사용된 좌표계에 따라서 좌표계 변환을 수행할 수도 있다.
2. c번의 사이클에 속하는 포인트들로 분류된 경우, c번의 위치 각각의 라이다 센서 위치값을 추정하고, c개의 센서 위치값의 평균값으로 해당 슬라이스의 센서 위치 값으로 설정할 수 있다.
실시예들에 따른 평균값 외에도 중앙값 등 데이터 특성에 따른 다양한 값으로 추정이 가능하다.
실시예들에 따른 기타 센서의 위치 정보 도출 방법:
포인트 클라우드 콘텐츠가 레이저 앵글(laser angle)의 추가 데이터 없이 슬라이스로 분할된 경우 또는 라이다 장비의 위치 정보로 슬라이스로 분할된 경우가 아닌 경우, 다음 과정(1 내지 6)을 통해서 라이다 센서의 위치 정보를 도출할 수 있다.
반지름(radius)의 정확도를 반올림 하는 소수점 위치 n을 설정 할 수 있다. 소수점은 설정된 값일 수 있고, 실시예들에 따른 장치에 입력될 수 있다.
도20은 실시예들에 따른 슬라이스 센서 위치 추정 예시를 나타낸다.
1. 슬라이스의 라이다 센서 추정 위치는 다음 5가지 형태로 간략화 할 수 있다 (도20 참조)
1) 슬라이스의 중심(centroid)점(2000)
2) x=왼쪽, y, z는 슬라이스의 중심점(2001)
3) x=오른쪽, y, z는 슬라이스의 중심점(2002)
4) y=위쪽, x, z는 슬라이스의 중심점(2003)
5) y=아래쪽, x, z는 슬라이스의 중심점(2004)
위 형태 예시는 축에 따라서 변경 될 수 있다. 위 축은 yz 평면이 도로인 경우에 해당할 수 있다. G-PCC 압축 방법에서 축 순서를 변경할 수 있고, 이에 따라 yz평면을 도로로 만들 수도 있다.
도20의 x, y, z축은 실시예들에 따라 다양할 수 있고, 슬라이스의 센서 추정 위치는 슬라이스의 중심, 슬라이스의 좌측, 우측, 탑, 바닥 등일 수 있다.
3. 반지름(radius) ri를 소수점 n번째 위치에서 반올림된 radius을 r' i이라고 할 수 있다.
4. 반지름(radius) r' i를 기준으로 포인트들을 정렬할 수 있다.
6. 모든 중심점 방법으로 5단계와 같은 형태가 발견되지 않는 경우, 해당 슬라이스는 실시예들에 따른 각도 모드(angular mode)를 적용하지 않을 수 있다.
중심점에서 방위각이 다양하게 나오는 데이터가 도15와 같이, 각도 모드에 적합한 타입이기 때문이다. 실시예들에 따른 방법/장치는 각도 모드에 적합한 규칙성을 가진 데이터가 아닌 경우 각도 모드를 사용하지 않을 수 있다.
실시예들에 따른 방법/장치는 각도 모드 적용 여부를 나타내는 정보를 각 슬라이스마다 수신 측에 알려줄 수 있다(도23 내지 24 참조).
실시예들에 따른 방법/장치는 포인트 클라우드 데이터의 어트리뷰트 코딩을 수행할 수 있다(어트리뷰트 코딩).
실시예들에 따라 슬라이스로 분할된 3D 맵 포인트 클라우드를 부호화/복호화할 수 있다. 하나의 슬라이스에는 각각의 포인트들에 대해서 지오메트리와 어트리뷰트는 페어(pair)로 존재할 수 있다. 예를 들어, Pi 포인트는 (위치정보(xi, yi, zi), 색상정보(ri, gi, bi), 반사도(reflectancei) 등)와 같이 구성될 수 있다.
슬라이스 별로 지오메트리 코딩, 어트리뷰트 코딩이 순차적으로 수행될 수 있다. 지오메트리 코딩에서 각도 모드를 사용했다면, 어트리뷰트 코딩 또한 각도 모드의 위치를 기준으로 LOD를 생성하고 이웃 포인트(Nearest Neighbours)를 설정할 수 있고, 또는 RAHT에 적용할 수 있다.
도21은 실시예들에 따른 포인트 클라우드 데이터 송신 장치를 나타낸다.
도21의 실시예들에 따른 포인트 클라우드 데이터 송신 장치는 도1의 송신 장치(10000), 포인트 클라우드 비디오 인코더(10002), 트랜스미터(10003), 도2의 획득-인코딩-전송(20000-20001-20002), 도4의 인코더, 도12의 송신 장치, 도14의 디바이스 등에 대응하고, 실시예들에 따른 송신 방법을 수행한다. 송신 장치의 각 구성요소는 하드웨어, 소프트웨어, 프로세서 및/또는 그것들의 조합에 대응할 수 있다.
데이터 입력부는 포인트 클라우드 데이터의 지오메트리 데이터, 어트리뷰트 데이터, 및/또는 파라미터에 관한 설정값 등을 수신할 수 있다.
데이터 입력부는 포인트 클라우드 데이터에 관한 추가 정보를 파싱할 수 있다. 추가 정보는 시간(time), 레이저 앵글(laser angle), 센서 위치(sensor position) 등이 있을 수 있고, 추가 정보의 특성을 플래그(flag)로 표시할 수 있다.
좌표계 변환부는 포인트 클라우드 데이터의 위치를 나타내는 좌표계를 코딩에 적합한 좌표계로 변환할 수 있다.
1차 기하정보 변환 양자화 처리부는 지오메트리 데이터(기하 정보)를 양자화할 수 있다. 예를 들어, 양자화 파라미터에 기반하여 양자화를 할 수 있다.
공간 분할부는 포인트 클라우드 데이터의 공간을 분할할 수 있다. 지오메트리/어트리뷰트 부호화 효율을 높이기 위해서 적합한 공간 단위 분할을 수행할 수 있다.
타일 분할부는 포인트 클라우드 데이터을 공간 단위 중 하나인 타일 단위로 분할할 수 있다.
슬라이스 분할부는 타일을 슬라이스로 분할할 수 있다. 슬라이스 단위로 부호화가 적용될 수 있다. 슬라이스 분할부는 라이다 장비로 캡쳐된 콘텐츠인지 여부를 나타내는 플래그를 수신할 수 있다. 슬라이스 분할부는 라이다 장비로 캡쳐된 콘텐츠 여부에 따라서 라이다 콘텐츠 분할부, 또는 그외의 유니폼/옥트리/순차적 분할부에 의한 동작들을 수행할 수 있다.
라이다 콘텐츠 분할부에서는 데이터 입력부를 통해서 파싱된 추가 정보를 통해서 콘텐츠 분할 방안을 조절/적용할 수 있다. 콘텐츠 분할 방안에는 1) 시간(Time)과 레이저 앵글(laser angle)이 있는 경우, 슬라이스 분할 방법, 2) 시간(Time)만 있는 경우, 슬라이스 분할 방법, 3) Laser angle만 있는 경우, 슬라이스 분할 방법, 4) Time, Laser angle이 모두 없는 경우, 슬라이스 분할 방법, 5) Frame id가 있는 경우, 슬라이스 분할 방법, 그리고 6) 라이다 장비의 위치 정보가 있는 경우, 슬라이스 분할 방법 등을 적용하여 콘텐츠를 슬라이스 기반하여 분할할 수 있다.
즉, 콘텐츠에 대한 정해진 슬라이스를 그대로 부호화하는 것이 아니라, 데이터 특성을 고려하여 어답티브하게 슬라이스를 새롭게 생성할 수 있다.
지오메트리 정보 부호화부는 지오메트리 데이터를 슬라이스에 기반하여 부호화할 수 있다.
2차 기하정보 변환 양자화 처리부는 지오메트리 데이터를 추가적으로 양자화할 수 있다. 양자화 파라미터에 기반하여 양자화가 적용될 수 있다.
복셀화 처리부는 포인트 클라우드 데이터를 복셀화할 수 있다.
지오메트리 코딩 타입에 따라서, 예측 트리 기반 코딩, 옥트리 기반 코딩, 트라이숩 기반 코딩을 할 수 있다.
예측 트리 생성부는 라이다 콘텐츠 분할부를 통해서 데이터가 분할된 경우, 라이다 센서 위치값을 설정할 수 있다. 라이다 센서 위치 도출 방안에는 1) laser angle값을 사용하여 슬라이스로 분할된 경우, 라이다 센서의 위치 정보 도출 방법, 2) 라이다 장비의 위치 정보로 슬라이스로 분할된 경우, 라이다 센서의 위치 정보 도출 방법, 그리고 3) 그 외의 경우, 라이다 센서의 위치 정보 도출 방법이 지원될 수 있다. 추정된 라이다 센서의 위치 정보를 복호기로 시그널링 정보(메타데이터, 파라미터)로써 전송할 수 있다. (슬라이스별 라이다 센서 위치 정보의 시그널링)
예측 트리 생성부는 라이다 콘텐츠 분할부를 통해서 데이터가 분할된 경우, 각도 모드(angular mode) 적용 여부를 라이다 센서 위치 값 조사를 통해서 체크할 수 있다. 각도 모드 적용이 가능한 경우, 지오메트리 코딩의 각도 모드를 설정하고 각도 모드를 적용할 수 있다. 각도 모드 적용 여부는 복호기로 시그널링 정보(메타데이터, 파라미터)로써 전송할 수 있다. (슬라이스별 각도 모드 시그널링).
예측 트리 생성부는 각도 모드가 적용된 예측 트리를 생성할 수 있다.
옥트리 생성부는 라이다 콘텐츠 분할부를 통해서 데이터가 분할된 경우, 라이다 센서 위치값을 설정할 수 있다. 라이다 센서 위치 도출 방안에는 1) laser angle값을 사용하여 슬라이스로 분할된 경우, 라이다 센서의 위치 정보 도출 방법, 2) 라이다 장비의 위치 정보로 슬라이스로 분할된 경우, 라이다 센서의 위치 정보 도출 방법, 그리고 3) 그 외의 경우, 라이다 센서의 위치 정보 도출 방법이 지원될 수 있다. 추정된 라이다 센서의 위치 정보를 복호기로 시그널링 정보(메타데이터, 파라미터)로써 전송할 수 있다. (슬라이스별 라이다 센서 위치 정보 시그널링)
옥트리 생성부는 라이다 콘텐츠 분할부를 통해서 분할된 경우, 각도 모드(angular mode) 적용 여부를 라이다 센서 위치 값 조사를 통해서 체크할 수 있다. 각도 모드 적용이 가능한 경우, 지오메트리 코딩의 각도 모드를 설정하고 각도 모드를 적용할 수 있다. 각도 모드 적용 여부는 복호기로 시그널링 정보(메타데이터, 파라미터)로써 전송할 수 있다. (슬라이스별 각도 모드 시그널링).
옥트리 생성부는 각도 모드가 적용된 옥트리를 생성할 수 있다.
기하정보 예측부는 예측 트리에 기반하여 기하정보를 예측하고, 예측된 기하정보에 기반하여 잔차 기하정보를 생성할 수 있다.
RDO 예측 결정부는 RDO(ratio distortion optimization) 기반하여 지오메트리 데이터를 예측하고, 잔차 기하정보를 생성할 수 있다.
트라이숩 생성부는 트라이숩에 기반하여 지오메트리를 부호화할 수 있다.
지오메트리 위치 재구성부는 부호화된 지오메트리를 다시 복원할 수 있다. 복원된 기하정보에 기반하여 포인트 클라우드 데이터의 어트리뷰트 데이터를 부호화할 수 있다.
지오메트리 정보 엔트로피 부호화부는 엔트로피 코딩 방삭에 기반하여 잔차 기하정보를 부호화할 수 있다.
지오메트리 정보 부호화부는 지오메트리 데이터를 포함하는 지오메트리 비트스트림을 생성할 수 있다.
속성정보 부호화부는 복원된 기하정보에 기반하여 어트리뷰트 데이터를 인코딩하고, 나아가, 잔차 속성정보를 인코딩하여 어트리뷰트 데이터를 포함하는 어트리뷰트 비트스트림을 생성한다.
도21에 생략된 내용은 도1의 송신 장치(10000), 포인트 클라우드 비디오 인코더(10002), 트랜스미터(10003), 도2의 획득-인코딩-전송(20000-20001-20002), 도4의 인코더, 도12의 송신 장치, 도14의 디바이스 등의 부호화 동작의 설명을 따른다.
도22는 실시예들에 따른 포인트 클라우드 데이터 수신 장치를 나타낸다.
도22의 실시예들에 따른 포인트 클라우드 데이터 수신 장치는 도1의 수신 장치(10004), 리시버(10005), 포인트 클라우드 비디오 디코더(10006), 도2의 전송-디코딩-렌더링(20002-20003-20004), 도10-11의 디코더, 도13의 수신 장치, 도14의 디바이스 등에 대응하고, 실시예들에 따른 수신 방법을 수행한다. 수신 장치의 각 구성요소는 하드웨어, 소프트웨어, 프로세서 및/또는 그것들의 조합에 대응한다. 수신 방법 및 송신 방법은 서로 대응하거나 역과정일 수 있다.
지오메트리 정보 복호화부는 지오메트리 데이터를 복호화할 수 있다.
기하정보 엔트로피 복호화부는 지오메트리 데이터를 엔트로피 방식에 기반하여 부호화할 수 있다.
지오메트리 정보 복호화부는 지오메트리 코딩 타입에 따른 예측 기반 코딩, 옥트리 기반 코딩, 및/또는 트라이숩 기반 코딩 등 각 코딩 타입에 맞는 디코딩 방식에 따라 포인트 클라우드 데이터의 지오메트리 데이터를 복원할 수 있다.
예측 트리 재구성부는 코딩 타입이 예측 기반 코딩인 경우, 예측 트리에 기반하여 지오메트리 데이터를 재구성(복원)할 수 있다.
예측 트리 재구성부는 실시예들에 따른 각도 모드(angular mode) 적용 여부를 전달 받아 복원하여 그에 따라 예측 트리를 재구성하고 지오메트리 예측값을 복호화할 수 있다 (슬라이스별 각도 모드 복원/적용). 즉, 도23-24과 같이 수신 장치는 비트스트림에 포함된 메타데이터를 파싱하고, 메타데이터에 포함된 파라미터 정보를 통해 각도 모드 적용 여부를 알 수 있다.
예측 트리 재구성부는 각도 모드(angular mode)가 적용된 경우, 라이다 센서의 위치 정보를 전달 받아 복원하여 그에 따라 전송된 지오메트리 비트스트림 값을 복호화 하는데 사용될 수 있다 (슬라이스별 라이다 센서 위치 정보 복원/적용). 즉, 도22-23과 같이 수신 장치는 비트스트림에 포함된 메타데이터를 파싱하고, 메타데이터에 포함된 파라미터 정보를 통해 라이다 센서의 위치 정보를 알 수 있다.
도22는 실시예들에 따른 수신 방법/장치(포인트 클라우드 데이터 수신 방법/장치), 포인트 클라우드 데이터 디코더의 구성(디코딩 프로세스)를 나타낸다. 실시예들에 따른 예측 트리 재구성부의 복원 과정은 예측 트리 생성부의 역과정 에 대응할 수 있다.
옥트리 재구성부는 지오메트리 코딩 타입이 옥트리 기반 코딩인 경우 옥트리에 기반하여 지오메트리 데이터를 재구성(복원)할 수 있다.
옥트리 재구성부는 각도 모드(angular mode) 적용 여부를 전달 받아 복원하여 그에 따라 예측 트리(옥트리)를 재구성하고 지오메트리 예측값을 복호화할 수 있다 (슬라이스별 각도 모드 복원/적용). 즉, 도23-24과 같이 수신 장치는 비트스트림에 포함된 메타데이터를 파싱하고, 메타데이터에 포함된 파라미터 정보를 통해 각도 모드(angular mode) 적용 여부를 알 수 있다.
옥트리 재구성부는 각도 모드(angular mode)가 적용된 경우, 라이다 센서의 위치 정보를 전달 받아 복원하여 그에 따라 전송된 지오메트리 비트스트림 값을 복호화할 수 있다 (슬라이스별 라이다 센서 위치 정보 복원/적용). 즉, 도2-243과 같이 수신 장치는 비트스트림에 포함된 메타데이터를 파싱하고, 메타데이터에 포함된 파라미터 정보를 통해 라이다 센서의 위치 정보를 알 수 있다.
실시예들에 따른 옥트리 재구성부의 복원 과정은 옥트리 생성부의 역과정 에 대응할 수 있다.
트라이숩 재구성부는 지오메트리 코딩 타입이 트라이숩 기반 코딩인 경우 트라이숩에 기반하여 지오메트리 데이터를 재구성(복원)할 수 있다.
지오메트리 위치 재구성부는 예측 트리, 옥트리, 및/또는 트라이숩에 기반하여 지오메트리의 위치값을 재구성할 수 있다. 복원된 위치는 해당 위치의 어트리뷰트 데이터를 부호화하기 위해서 속성정보 복호화부에 전달된다.
기하정보 예측부는 지오메트리(기하 정보)에 대한 예측값을 생성할 수 있다. 예측값에 대한 잔차 기하정보를 합산하여 오리지날 지오메트리를 복원할 수 있다.
기하정보 변환 역양자화 처리부는 기하정보를 역으로 양자화할 수 있다. 송신 측에서 양자화 파라미터로 양자화 처리를 적용한 것에 대응하여 역으로 양자화를 하여 기하정보를 복원할 수 있다.
좌표계 역변환부는 기하정보(지오메트리)의 좌표계가 송신 측에서 변환된 경우, 역으로 좌표계를 변환하여, 지오메트리를 복원할 수 있다.
지오메트리 정보 복호화부는 지오메트리 정보(지오메트리 데이터)를 복원할 수 있다.
속성정보 복호화부는 속성정보 비트스트림을 수신하여 속성정보(어트리뷰트 데이터)를 복원할 수 있다.
도22에 생략된 내용은 도1의 수신 장치(10004), 리시버(10005), 포인트 클라우드 비디오 디코더(10006), 도2의 전송-디코딩-렌더링(20002-20003-20004), 도10-11의 디코더, 도13의 수신 장치, 도14의 디바이스 등의 복호화 동작의 설명을 따른다.
도23은 실시예들에 따른 포인트 클라우드 데이터를 포함하는 비트스트림을 나타낸다.
도1의 송신 장치(10000), 포인트 클라우드 비디오 인코더(10002), 트랜스미터(10003), 도2의 획득-인코딩-전송(20000-20001-20002), 도4의 인코더, 도12의 송신 장치, 도14의 디바이스, 도21의 송신 장치 등은 지오메트리 데이터 및 어트리뷰트 데이터를 부호화하고, 부호화 처리 관련 메타데이터를 생성하여, 도23와 같은 포인트 클라우드 데이터 및 파라미터 정보를 포함하는 비트스트림을 생성할 수 있다.
도1의 수신 장치(10004), 리시버(10005), 포인트 클라우드 비디오 디코더(10006), 도2의 전송-디코딩-렌더링(20002-20003-20004), 도10-11의 디코더, 도13의 수신 장치, 도14의 디바이스, 도22의 수신 장치는 도23와 같은 비트스트림을 수신하여, 메타데이터를 디코딩하고, 메타데이터에 기반하여 포인트 클라우드 데이터를 디코딩하고 복원하고 렌더링할 수 있다.
각 약어는 다음을 의미한다. 각 약어는 동등한 의미의 범위 내에서 다른 용어로 지칭될 수 있다: SPS: 시퀀스 파라미터 세트(Sequence Parameter Set), GPS: 지오메트리 파라미터 세트(Geometry Parameter Set), APS: 어트리뷰트 파라미터 세트(Attribute Parameter Set), TPS: 타일 파라미터 세트(Tile Parameter Set), Geom(지오메트리): 지오메트리 비트스트림(Geometry bitstream) = 지오메트리 슬라이스 헤더(geometry slice header)+ 지오메트리 슬라이스 데이터(geometry slice data), Attr(어트리뷰트): 어트리뷰트 비트스트림(Attribute bitstream) = 어트리뷰트 블릭 헤더(attribute blick header) + 어트리뷰트 브렉 데이터(attribute brick data).
실시예들에 따라, 슬라이스는 인코딩/디코딩의 단위일 수 있고, 브릭은 슬라이스에 대응하거나 세부 단위일 수 있다. 슬라이스 단위 처리인 경우 비트스트림은 슬라이스 단위로 지오메트리/어트리뷰트가 위치하고, 브릭 단위가 적용되면 브릭 단위로 지오메트리/어트리뷰트가 위치할 수 있다.
실시예들에 따른 송신 방법/장치는 실시예들에 따른 슬라이스별 각도 모드(angular mode) 관련 옵션 정보를 생성하고, 비트스트림 구조 상 각 슬라이스(Slice)별 지오메트리 헤더(Geometry header)에 추가하여 전송할 수 있다. 실시예들에 따른 수신 방법/장치는 이러한 정보에 기초하여 포인트 클라우드 데이터를 디코딩할 수 있다.
예를 들어, 포인트 클라우드를 영역별로 나누어 처리할 수 있도록 타일, 또는 슬라이스를 제공한다.
영역별로 나눌 때 각각의 영역 별로 다른 이웃 포인트 집합 생성 옵션을 설정해서 복잡도(complexity)는 낮고, 결과의 신뢰도는 다소 떨어지거나 반대로 복잡도가 높으나 신뢰도가 높은 선택 방안을 제공할 수 있다. 수신기의 처리능력(capacity)에 따라서 다르게 설정할 수 있다.
포인트 클라우드는 슬라이스(Slice)로 나누어지는 경우, 각 슬라이스별로 다른 옵션을 적용할 수 있다.
도24는 실시예들에 따른 지오메트리 데이터 유닛 헤더의 신택스를 나타낸다.
도24는 지오메트리 데이터 유닛 헤더(Geometry data unit header)에 추가로 포함될 수 있는 정보의 Syntax를 나타낸다. 도24는 도22 비트스트림에 포하된 지오메트리 데이터 유닛 헤더를 나타낸다.
지오메트리 데이터의 인코딩/디코딩 과정에서 각도 모드(angular mode) 관련 옵션 정보는 Geometry data unit Header에 추가 되어 시그널링 할 수 있다. 다른 파라미터 정보와 결합하여 슬라이스별 각도 모드 기능 지원을 위해 효율적으로 시그널링될 수 있다. 시그널링 정보의 명칭은 시그널링 정보의 의미 및 기능의 범위 내에서 이해될 수 있다.
GSH 지오메트리 앵귤러 오리진 포지션(gsh_geom_angular_origin_xyz[k]): 해당 슬라이스를 위한 라이다 센서 위치값을 나타낸다.
GSH 지오메트리 파라미터 세트 아이디(gsh_geometry_parameter_set_id): 액티브 GPS를 위한 GPS 지오메트리 파라미터 세트 아이디의 값을 나타낸다.
GSH 타일 아이디(gsh_tile_id): GSH에 의해 참조되는 타일 아이디의 값을 나타낸다. GSH 타일 아이디의 값은 0내지XX(포함) 범위일 수 있다.
GSH 슬라이스 아이디(gsh_slice_id): 다른 신택스 엘리먼트들에 의한 참조를 위한 슬라이스 헤더를 식별한다. 이 값의 범위는 0내지XX(포함) 범위일 수 있다.
상술한 실시예들의 PCC 부호화 방법, PCC복호화 방법, 시그널링 방법은 다음의 효과를 제공할 수 있다.
라이다 장비를 통해서 한 프레임씩 캡처하고 저장하는 경우, 각도 모드를 적용할 수 있다. 3D 맵 데이터 생성을 위해서 라이다(LiDAR) 장비로 여러 장의 프레임들을 캡처하고 하나의 콘텐츠로 통합한 경우 라이다 장비의 중심 위치가 다른 데이터들이 섞인다.
라이다 장비로 캡처된 데이터에서 나타나는 각도상의 특성, 즉 각도 로 변경했을 때의 포인트간의 규칙이 감춰질 수 있고, 이에 각도 모드를 적용하는 것이 직교 좌표계 기반 압축보다 효율적이지 않을 수 있다. 따라서, 라디아 장비로 캡처된 특성을 이용하여 압축 효율을 높이기 위해 3D 맵 데이터에도 라이다 장비로 캡처된 특성을 유지할 수 있는 방법들을 실시예들이 제공한다.
실시예들은 라이다 장비를 통해 캡처되고, 하나의 콘텐츠로 통합된 3D 맵 데이터의 효율적인 지오메트리 압축을 지원 위한 각도 모드(angular mode)를 적용할 수 있도록 슬라이드로 분할하는 방법을 포함한다.
이로써 실시예들은 라이다 장비로 캡처된 포인트 클라우드(point cloud) 프레임(frame)들을 하나의 포인트 클라우드 콘텐츠로 통합했을 때, Geometry-based Point Cloud Compression (G-PCC)의 효율적인 지오메트리 압축을 위해 슬라이드로 분할 하는 방법을 제공함으로써 지오메트리 압축 코딩/디코딩 효율성을 증가시키는 효과를 제공할 수 있다.
실시예들에 따른 포인트 클라우드 데이터 송수신 방법/장치는 라이다(LiDAR) 장비로 캡처된 포인트 클라우드 데이터를 3D 맵에 기반하여 분할하는 동작 및 관련 시그널링 정보에 기반하여 포인트 클라우드 데이터를 좀 더 효율적으로 압축하고 복원할 수 있는 효과가 있다.
따라서, 실시예들에 따른 송신 방법/장치는 포인트 클라우드 데이터를 효율적으로 압축하여 데이터를 전송할 수 있고, 이를 위한 시그널링 정보를 전달함으로써, 실시예들에 따른 수신 방법/장치 역시 포인트 클라우드 데이터를 효율적으로 디코딩/복원할 수 있다.
도25는 실시예들에 따른 포인트 클라우드 데이터 송신 방법을 나타낸다.
실시예들에 따른 포인트 클라우드 데이터 송신 방법/장치(도1의 송신 장치(10000), 포인트 클라우드 비디오 인코더(10002), 트랜스미터(10003), 도2의 획득-인코딩-전송(20000-20001-20002), 도4의 인코더, 도12의 송신 장치, 도14의 디바이스, 도21의 송신 장치 등 대응)는 도25와 같은 방법으로, 포인트 클라우드 데이터를 인코딩하고 전송할 수 있다.
S2500, 실시예들에 따른 포인트 클라우드 데이터 송신 방법은 포인트 클라우드 데이터를 인코딩하는 단계를 포함할 수 있다.
실시예들에 따른 인코딩 동작은 도1 송신 장치(10000), 포인트 클라우드 비디오 인코더(10002), 도2 인코딩(20001), 도4 인코더, 도12 인코더, 도14 XR 디바이스(1430)의 인코딩, 도15-20의 인코딩, 도21의 지오메트리, 어트리뷰트 인코딩, 도23-24 비트스트림 생성, 메타데이터 생성 등의 동작을 포함할 수 있다.
S2501, 실시예들에 따른 포인트 클라우드 데이터 송신 방법은 포인트 클라우드 데이터를 포함하는 비트스트림을 전송하는 단계를 더 포함할 수 있다.
실시예들에 따른 전송 동작은 도1 송신 장치(10000), 트랜스미터(10003), 도2 전송(20002), 도4 인코딩된 비트스트림 전송, 도12 전송, 도14 XR 디바이스(1430)의 송신, 도15-20의 인코딩 후 전송, 도21의 지오메트리, 어트리뷰트 인코딩 후 전송, 도23-24 비트스트림 전송, 메타데이터 전송 등의 동작을 포함할 수 있다.
도26은 실시예들에 따른 포인트 클라우드 데이터 수신 방법을 나타낸다.
실시예들에 따른 포인트 클라우드 데이터 수신 방법/장치(도1의 수신 장치(10004), 리시버(10005), 포인트 클라우드 비디오 디코더(10006), 도2의 전송-디코딩-렌더링(20002-20003-20004), 도10-11의 디코더, 도13의 수신 장치, 도14의 디바이스, 도22의 수신 장치/방법 등 대응)는 도26와 같은 방법으로, 포인트 클라우드 데이터를 디코딩할 수 있다.
S2600, 실시예들에 따른 포인트 클라우드 데이터 수신 방법은 포인트 클라우드 데이터를 포함하는 비트스트림을 수신하는 단계를 포함할 수 있다.
실시예들에 따른 수신 동작은 도1 수신 장치(10004), 리시버(10005), 도2 전송에 따른 수신, 도11 비트스트림 수신, 도13 수신, 도14 XR 디바이스(1730)의 수신, 도15-20의 인코딩에 따른 데이터 수신, 도22의 지오메트리, 어트리뷰트 디코딩을 위한 수송, 도23-24 비트스트림 수신, 메타데이터 수신 등의 동작을 포함할 수 있다.
S2601, 실시예들에 따른 포인트 클라우드 데이터 수신 방법은 포인트 클라우드 데이터를 디코딩하는 단계를 더 포함할 수 있다.
실시예들에 따른 디코딩 동작은 도1 수신 장치(10004), 포인트 클라우드 비디오 디코더(10006), 도2 디코딩(20003), 도10-11 디코더, 도13 디코더, 도14 XR 디바이스(1730)의 디코딩, 도15-20의 디코딩, 도22의 지오메트리, 어트리뷰트 디코딩, 도23-24 비트스트림 디코딩, 메타데이터 디코딩 등의 동작을 포함할 수 있다.
도1을 참조하면, 실시예들에 따른 포인트 클라우드 데이터 송신 방법은 포인트 클라우드 데이터를 인코딩하는 단계; 및 포인트 클라우드 데이터를 전송하는 단계; 를 포함할 수 있다.
도15 및 도16-17를 참조하면, 실시예들에 따른 라이다 데이터가 스피닝 규칙성을 가지는 점을 활용하여 효율적인 압축/복원이 가능한 것을 알 수 있다.
예를 들어, 포인트 클라우드 데이터는 회전의 각도에 기반하여 획득된다.
도16-17을 참조하면, 이러한 데이터는 3D 맵 데이터라고 지칭할 수 있으며, 특히 시간(TIME), 레이저 앵글(LASER ANGLE) 관점에서 규칙을 가진다. 실시예들에 따라 레이저 앵글은 앵글로 줄여서 지칭가능하다.
예를 들어, 포인트 클라우드 데이터는 시간 또는 앵글 중 적어도 하나에 따라 구별될 수 있다.
도15-18를 참조하면, 각도 특성을 이용한 슬라이스 분할방법을 실시예들이 제안하고, 각도 특성은 시간(TIME) 및 앵글(LASER ANGLE) 등을 포함할 수 있다.
예를 들어, 실시예들에 따른 방법은 포인트 클라우드 데이터를 슬라이스로 분할하는 단계를 더 포함하고, 분할하는 단계는, 포인트 클라우드 데이터의 포인트들을 시간에 기반하여 정렬하고, 앵글에 기반하여 정렬된 포인트들을 포함하는 슬라이스를 생성할 수 있다.
도15-18를 참조하면, 시간 기반 슬라이스 분할방법으로, 실시예들에 따른 방법은 포인트 클라우드 데이터를 슬라이스로 분할하는 단계를 더 포함하고, 분할하는 단계는, 포인트 클라우드 데이터의 포인트들을 시간에 기반하여 정렬하고, 시간에 기반하여 정렬된 포인트들을 포함하는 슬라이스를 생성할 수 있다.
나아가, 앵글 기반 슬라이스 분할방법으로, 실시예들에 따른 방법은 포인트 클라우드 데이터를 슬라이스로 분할하는 단계를 더 포함하고, 분할하는 단계는, 앵글에 기반하여 포인트 클라우드 데이터의 포인트들을 포함하는 슬라이스를 생성할 수 있다.
즉, 이러한 슬라이스 구성 방법은 라이다 장비로 측정된 데이터가 통합되더라도 회전하는 규칙성을 살려서, 효율적인 데이터 압축/복원이 가능한 효과를 제공한다.
도19을 참조하면, 레이저 앵글(laser angle) 기반 센서의 위치 정보 도출이 가능하다.
실시예들에 따른 인코딩하는 단계는, 포인트 클라우드 데이터의 지오메트리 데이터를 인코딩하는 단계를 포함하고, 슬라이스에 대한 앵글의 최소값 및 앵글의 최대값에 기반하여 회전에 대한 중심 위치를 추정할 수 있다.
도19-20를 참조하면, 라이다 장비 위치 기반 센서 위치 정보 도출이 가능하다.
실시예들에 따른 인코딩하는 단계는, 포인트 클라우드 데이터의 지오메트리 데이터를 인코딩하는 단계를 포함하고, 슬라이스에 대한 포인트 클라우드 데이터의 획득에 관한 장비의 위치 정보가 잇는 경우, 장비의 위치 정보에 기반하여 회전에 대한 중심 위치를 추정하고, 회전이 적어도 두 번 이상인 경우, 회전의 횟수에 대한 회전에 대한 중심 위치의 평균값을 생성할 수 있다.
도20를 참조하면, 각도가 아닌 경우의 슬라이스를 이용할 수 있다.
예를 들어, 실시예들에 따른 방법은 포인트 클라우드 데이터를 슬라이스로 분할하는 단계를 더 포함하고, 인코딩하는 단계는, 포인트 클라우드 데이터의 지오메트리 데이터를 인코딩하는 단계를 포함하고, 슬라이스의 중심점에 기반하여 회전에 대한 중심 위치를 추정할 수 있다.
도21을 참조하면, 실시예들에 따른 장치는 포인트 클라우드 데이터를 인코딩하는 인코더; 및 포인트 클라우드 데이터를 포함하는 비트스트림을 전송하는 트랜스미터; 를 포함할 수 있다. 송신 장치는 송신 방법의 각 동작을 수행할 수 있다.
실시예들에 따른 포인트 클라우드 데이터 수신 방법은 포인트 클라우드 데이터를 포함하는 비트스트림을 수신하는 단계; 및 포인트 클라우드 데이터를 디코딩하는 단계; 를 포함할 수 있다. 수신 방법은 송신 방법의 역과정을 수행할 수 있다.
포인트 클라우드 데이터는 회전의 각도에 기반하여 획득되고, 포인트 클라우드 데이터는 시간 또는 앵글 중 적어도 하나에 따라 구별되므로, 시간 기반 특성, 앵글 기반 특성을 가질 수 있다.
디코딩하는 단계는, 포인트 클라우드 데이터의 지오메트리 데이터를 디코딩하는 단계를 포함하고, 지오메트리 데이터를 디코딩하는 단계는, 지오메트리 데이터를 포함하는 슬라이스를 회전에 관한 위치 정보에 기반하여 디코딩할 수 있다.
도23을 참조하면, 비트스트림은 포인트 클라우드 데이터를 포함하는 슬라이스에 대한 각도 모드 정보를 포함할 수 있다.
실시예들에 따른 수신 장치는 포인트 클라우드 데이터를 포함하는 비트스트림을 수신하는 수신부; 및 포인트 클라우드 데이터를 디코딩하는 디코더; 를 포함할 수 있다. 수신 장치는 수신 방법의 동작을 수행할 수 있다.
이로 인하여, 실시예들은 라이다 장비를 통해 캡처되고, 하나의 콘텐츠로 통합된 3D 맵 데이터의 효율적인 지오메트리 압축을 할 수 있다. 각도 특성(스피닝 특성)을 이용하는 모드를 각도 모드(angular mode)라고 지칭할 수 있다. 각도 모드 기반 슬라이드로 분할하여 데이터를 압축하고 복원할 수 있다.
이로써 실시예들은 라이다 장비로 캡처된 포인트 클라우드(point cloud) 프레임(frame)들을 하나의 포인트 클라우드 콘텐츠로 통합했을 때, Geometry-based Point Cloud Compression (G-PCC)의 효율적인 지오메트리 압축을 위해 슬라이드로 분할 하는 방법을 제공함으로써 지오메트리 압축 코딩/디코딩 효율성을 증가시키는 효과를 제공할 수 있다.
실시예들은 방법 및/또는 장치 관점에서 설명되었으며, 방법의 설명 및 장치의 설명은 상호 보완하여 적용될 수 있다.
설명의 편의를 위하여 각 도면을 나누어 설명하였으나, 각 도면에 서술되어 있는 실시 예들을 병합하여 새로운 실시 예를 구현하도록 설계하는 것도 가능하다. 그리고, 통상의 기술자의 필요에 따라, 이전에 설명된 실시 예들을 실행하기 위한 프로그램이 기록되어 있는 컴퓨터에서 판독 가능한 기록 매체를 설계하는 것도 실시예들의 권리범위에 속한다. 실시예들에 따른 장치 및 방법은 상술한 바와 같이 설명된 실시 예들의 구성과 방법이 한정되게 적용될 수 있는 것이 아니라, 실시 예들은 다양한 변형이 이루어질 수 있도록 각 실시 예들의 전부 또는 일부가 선택적으로 조합되어 구성될 수도 있다. 실시예들의 바람직한 실시 예에 대하여 도시하고 설명하였지만, 실시예들은 상술한 특정의 실시 예에 한정되지 아니하며, 청구범위에서 청구하는 실시예들의 요지를 벗어남이 없이 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 다양한 변형실시가 가능한 것은 물론이고, 이러한 변형실시들은 실시예들의 기술적 사상이나 전망으로부터 개별적으로 이해돼서는 안 될 것이다.
실시예들의 장치의 다양한 구성요소들은 하드웨어, 소프트웨어, 펌웨어 또는 그것들의 조합에 의해 수행될 수 있다. 실시예들의 다양한 구성요소들은 하나의 칩, 예를 들면 하나의 하드웨어 서킷으로 구현될 수 있다 실시예들에 따라, 실시예들에 따른 구성요소들은 각각 별도의 칩들로 구현될 수 있다. 실시예들에 따라, 실시예들에 따른 장치의 구성요소들 중 적어도 하나 이상은 하나 또는 그 이상의 프로그램들을 실행 할 수 있는 하나 또는 그 이상의 프로세서들로 구성될 수 있으며, 하나 또는 그 이상의 프로그램들은 실시예들에 따른 동작/방법들 중 어느 하나 또는 그 이상의 동작/방법들을 수행시키거나, 수행시키기 위한 인스트럭션들을 포함할 수 있다. 실시예들에 따른 장치의 방법/동작들을 수행하기 위한 실행 가능한 인스트럭션들은 하나 또는 그 이상의 프로세서들에 의해 실행되기 위해 구성된 일시적이지 않은 CRM 또는 다른 컴퓨터 프로그램 제품들에 저장될 수 있거나, 하나 또는 그 이상의 프로세서들에 의해 실행되기 위해 구성된 일시적인 CRM 또는 다른 컴퓨터 프로그램 제품들에 저장될 수 있다. 또한 실시예들에 따른 메모리는 휘발성 메모리(예를 들면 RAM 등)뿐 만 아니라 비휘발성 메모리, 플래쉬 메모리, PROM등을 전부 포함하는 개념으로 사용될 수 있다. 또한, 인터넷을 통한 전송 등과 같은 캐리어 웨이브의 형태로 구현되는 것도 포함될 수 있다. 또한, 프로세서가 읽을 수 있는 기록매체는 네트워크로 연결된 컴퓨터 시스템에 분산되어, 분산방식으로 프로세서가 읽을 수 있는 코드가 저장되고 실행될 수 있다.
이 문서에서 “/”와 “,”는 “및/또는”으로 해석된다. 예를 들어, “A/B”는 “A 및/또는 B”로 해석되고, “A, B”는 “A 및/또는 B”로 해석된다. 추가적으로, “A/B/C”는 “A, B 및/또는 C 중 적어도 하나”를 의미한다. 또한, “A, B, C”도 “A, B 및/또는 C 중 적어도 하나”를 의미한다. 추가적으로, 이 문서에서 “또는”는 “및/또는”으로 해석된다. 예를 들어, “A 또는 B”은, 1) “A” 만을 의미하고, 2) “B” 만을 의미하거나, 3) “A 및 B”를 의미할 수 있다. 달리 표현하면, 본 문서의 “또는”은 “추가적으로 또는 대체적으로(additionally or alternatively)”를 의미할 수 있다.
제1, 제2 등과 같은 용어는 실시예들의 다양한 구성요소들을 설명하기 위해 사용될 수 있다. 하지만 실시예들에 따른 다양한 구성요소들은 위 용어들에 의해 해석이 제한되어서는 안된다. 이러한 용어는 하나의 구성요소를 다른 구성요소와 구별하기 위해 사욛외는 것에 불과하다. 것에 불과하다. 예를 들어, 제1 사용자 인풋 시그널은 제2사용자 인풋 시그널로 지칭될 수 있다. 이와 유사하게, 제2사용자 인풋 시그널은 제1사용자 인풋시그널로 지칭될 수 있다. 이러한 용어의 사용은 다양한 실시예들의 범위 내에서 벗어나지 않는 것으로 해석되어야만 한다. 제1사용자 인풋 시그널 및 제2사용자 인풋 시그널은 모두 사용자 인풋 시그널들이지만, 문맥 상 명확하게 나타내지 않는 한 동일한 사용자 인풋 시그널들을 의미하지 않는다.
실시예들을 설명하기 위해 사용된 용어는 특정 실시예들을 설명하기 위한 목적으로 사용되고, 실시예들을 제한하기 위해서 의도되지 않는다. 실시예들의 설명 및 청구항에서 사용된 바와 같이, 문맥 상 명확하게 지칭하지 않는 한 단수는 복수를 포함하는 것으로 의도된다. 및/또는 표현은 용어 간의 모든 가능한 결합을 포함하는 의미로 사용된다. 포함한다 표현은 특징들, 수들, 단계들, 엘리먼트들, 및/또는 컴포넌트들이 존재하는 것을 설명하고, 추가적인 특징들, 수들, 단계들, 엘리먼트들, 및/또는 컴포넌트들을 포함하지 않는 것을 의미하지 않는다. 실시예들을 설명하기 위해 사용되는, ~인 경우, ~때 등의 조건 표현은 선택적인 경우로만 제한 해석되지 않는다. 특정 조건을 만족하는 때, 특정 조건에 대응하여 관련 동작을 수행하거나, 관련 정의가 해석되도록 의도되었다.
또한, 본 문서에서 설명하는 실시예들에 따른 동작은 실시예들에 따라서 메모리 및/또는 프로세서를 포함하는 송수신 장치에 의해 수행될 수 있다. 메모리는 실시예들에 따른 동작을 처리/제어하기 위한 프로그램들을 저장할 수 있고, 프로세서는 본 문서에서 설명한 다양한 동작을 제어할 수 있다. 프로세서는 컨트롤러 등으로 지칭가능하다. 실시예들에 동작들은 펌웨어, 소프트웨어, 및/또는 그것들의 조합에 의해 수행될 수 있고, 펌웨어, 소프트웨어, 및/또는 그것들의 조합은 프로세서에 저장되거나 메모리에 저장될 수 있다.
한편, 상술한 실시예들에 따른 동작은 실시예들 따른 송신 장치 및/또는 수신 장치에 의해서 수행될 수 있다. 송수신 장치는 미디어 데이터를 송수신하는 송수신부, 실시예들에 따른 프로세스에 대한 인스트럭션(프로그램 코드, 알고리즘, flowchart 및/또는 데이터)을 저장하는 메모리, 송/수신 장치의 동작들을 제어하는 프로세서를 포함할 수 있다.
프로세서는 컨트롤러 등으로 지칭될 수 있고, 예를 들어, 하드웨어, 소프트웨어, 및/또는 그것들의 조합에 대응할 수 있다. 상술한 실시예들에 따른 동작은 프로세서에 의해 수행될 수 있다. 또한, 프로세서는 상술한 실시예들의 동작을 위한 인코더/디코더 등으로 구현될 수 있다.
상술한 바와 같이, 실시예들을 실시하기 위한 최선의 형태에서 관련 내용을 설명하였다.
상술한 바와 같이, 실시예들은 포인트 클라우드 데이터 송수신 장치 및 시스템에 전체적 또는 부분적으로 적용될 수 있다.
당업자는 실시예들의 범위 내에서 실시예들을 다양하게 변경 또는 변형할 수 있다.
실시예들은 변경/변형들을 포함할 수 있고, 변경/변형은 청구항들 및 그 와 동일한 것들의 범위를 벗어나지 않는다.
Claims (20)
- 포인트 클라우드 데이터를 인코딩하는 단계; 및상기 포인트 클라우드 데이터를 전송하는 단계; 를 포함하는,포인트 클라우드 데이터 송신 방법.
- 제1항에 있어서,상기 포인트 클라우드 데이터는 회전의 각도에 기반하여 획득되는,포인트 클라우드 데이터 송신 방법.
- 제2항에 있어서,상기 포인트 클라우드 데이터는 시간 또는 앵글 중 적어도 하나에 따라 구별되는,포인트 클라우드 데이터 송신 방법.
- 제3항에 있어서, 상기 방법은상기 포인트 클라우드 데이터를 슬라이스로 분할하는 단계를 더 포함하고,상기 분할하는 단계는,상기 포인트 클라우드 데이터의 포인트들을 상기 시간에 기반하여 정렬하고,상기 앵글에 기반하여 상기 정렬된 포인트들을 포함하는 슬라이스를 생성하는,포인트 클라우드 데이터 송신 방법.
- 제3항에 있어서, 상기 방법은상기 포인트 클라우드 데이터를 슬라이스로 분할하는 단계를 더 포함하고,상기 분할하는 단계는,상기 포인트 클라우드 데이터의 포인트들을 상기 시간에 기반하여 정렬하고,상기 시간에 기반하여 정렬된 포인트들을 포함하는 슬라이스를 생성하는,포인트 클라우드 데이터 송신 방법.
- 제3항에 있어서, 상기 방법은상기 포인트 클라우드 데이터를 슬라이스로 분할하는 단계를 더 포함하고,상기 분할하는 단계는,상기 앵글에 기반하여 상기 포인트 클라우드 데이터의 포인트들을 포함하는 슬라이스를 생성하는,포인트 클라우드 데이터 송신 방법.
- 제4항 또는 제6항에 있어서, 상기 인코딩하는 단계는,상기 포인트 클라우드 데이터의 지오메트리 데이터를 인코딩하는 단계를 포함하고,상기 슬라이스에 대한 상기 앵글의 최소값 및 상기 앵글의 최대값에 기반하여 상기 회전에 대한 중심 위치를 추정하는,포인트 클라우드 데이터 송신 방법.
- 제4항에 있어서,상기 인코딩하는 단계는,상기 포인트 클라우드 데이터의 지오메트리 데이터를 인코딩하는 단계를 포함하고,상기 슬라이스에 대한 상기 포인트 클라우드 데이터의 획득에 관한 장비의 위치 정보가 잇는 경우, 상기 장비의 위치 정보에 기반하여 상기 회전에 대한 중심 위치를 추정하고,상기 회전이 적어도 두 번 이상인 경우, 상기 회전의 횟수에 대한 회전에 대한 중심 위치의 평균값을 생성하는,포인트 클라우드 데이터 송신 방법.
- 제3항에 있어서, 상기 방법은상기 포인트 클라우드 데이터를 슬라이스로 분할하는 단계를 더 포함하고,상기 인코딩하는 단계는,상기 포인트 클라우드 데이터의 지오메트리 데이터를 인코딩하는 단계를 포함하고,상기 슬라이스의 중심점에 기반하여 상기 회전에 대한 중심 위치를 추정하는,포인트 클라우드 데이터 송신 방법.
- 포인트 클라우드 데이터를 인코딩하는 인코더; 및상기 포인트 클라우드 데이터를 포함하는 비트스트림을 전송하는 트랜스미터; 를 포함하는,포인트 클라우드 데이터 송신 장치.
- 제10항에 있어서,상기 포인트 클라우드 데이터는 회전의 각도에 기반하여 획득되고,상기 장치는상기 포인트 클라우드 데이터를 슬라이스로 분할하는 분할부를 더 포함하고,상기 분할부는상기 포인트 클라우드 데이터의 포인트들을 상기 시간에 기반하여 정렬하고,상기 앵글에 기반하여 상기 정렬된 포인트들을 포함하는 슬라이스를 생성하는,포인트 클라우드 데이터 송신 장치.
- 포인트 클라우드 데이터를 포함하는 비트스트림을 수신하는 단계; 및상기 포인트 클라우드 데이터를 디코딩하는 단계; 를 포함하는,포인트 클라우드 데이터 수신 방법.
- 제12항에 있어서,상기 포인트 클라우드 데이터는 회전의 각도에 기반하여 획득되는,포인트 클라우드 데이터 수신 방법.
- 제13항에 있어서,상기 포인트 클라우드 데이터는 시간 또는 앵글 중 적어도 하나에 따라 구별되는,포인트 클라우드 데이터 수신 방법.
- 제14항에 있어서, 상기 디코딩하는 단계는,상기 포인트 클라우드 데이터의 지오메트리 데이터를 디코딩하는 단계를 포함하고,상기 지오메트리 데이터를 디코딩하는 단계는,상기 지오메트리 데이터를 포함하는 슬라이스를 상기 회전에 관한 위치 정보에 기반하여 디코딩하는,포인트 클라우드 데이터 수신 방법.
- 제12항에 있어서, 상기 비트스트림은상기 포인트 클라우드 데이터를 포함하는 슬라이스에 대한 각도 모드 정보를 포함하는,포인트 클라우드 데이터 수신 방법.
- 포인트 클라우드 데이터를 포함하는 비트스트림을 수신하는 수신부; 및상기 포인트 클라우드 데이터를 디코딩하는 디코더; 를 포함하는,포인트 클라우드 데이터 수신 장치.
- 제17항에 있어서,상기 포인트 클라우드 데이터는 회전의 각도에 기반하여 획득되는,포인트 클라우드 데이터 수신 장치.
- 제18항에 있어서,상기 포인트 클라우드 데이터는 시간 또는 앵글 중 적어도 하나에 따라 구별되는,포인트 클라우드 데이터 수신 장치.
- 제19항에 있어서,상기 디코더는,상기 포인트 클라우드 데이터의 지오메트리 데이터를 디코딩하는 지오메트리 디코더를 포함하고,상기 지오메트리 디코더는,상기 지오메트리 데이터를 포함하는 슬라이스를 상기 회전에 관한 위치 정보에 기반하여 디코딩하는,포인트 클라우드 데이터 수신 장치.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US18/026,741 US20230345008A1 (en) | 2020-10-30 | 2021-10-29 | Point cloud data transmission device, point cloud data transmission method, point cloud data reception device, and point cloud data reception method |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2020-0143426 | 2020-10-30 | ||
KR20200143426 | 2020-10-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022092886A1 true WO2022092886A1 (ko) | 2022-05-05 |
Family
ID=81384279
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2021/015409 WO2022092886A1 (ko) | 2020-10-30 | 2021-10-29 | 포인트 클라우드 데이터 송신 장치, 포인트 클라우드 데이터 송신 방법, 포인트 클라우드 데이터 수신 장치 및 포인트 클라우드 데이터 수신 방법 |
Country Status (2)
Country | Link |
---|---|
US (1) | US20230345008A1 (ko) |
WO (1) | WO2022092886A1 (ko) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020005363A1 (en) * | 2018-06-26 | 2020-01-02 | Futurewei Technologies, Inc. | High-level syntax designs for point cloud coding |
KR20200007733A (ko) * | 2018-07-13 | 2020-01-22 | 한국전자통신연구원 | Pcc 데이터의 효과적인 압축을 위한 부호화/복호화 방법 및 장치 |
KR20200007735A (ko) * | 2018-07-13 | 2020-01-22 | 한국전자통신연구원 | 스케일러블 포인트 클라우드 부호화/복호화 방법 및 장치 |
KR20200038534A (ko) * | 2017-09-18 | 2020-04-13 | 애플 인크. | 포인트 클라우드 압축 |
-
2021
- 2021-10-29 US US18/026,741 patent/US20230345008A1/en active Pending
- 2021-10-29 WO PCT/KR2021/015409 patent/WO2022092886A1/ko active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20200038534A (ko) * | 2017-09-18 | 2020-04-13 | 애플 인크. | 포인트 클라우드 압축 |
WO2020005363A1 (en) * | 2018-06-26 | 2020-01-02 | Futurewei Technologies, Inc. | High-level syntax designs for point cloud coding |
KR20200007733A (ko) * | 2018-07-13 | 2020-01-22 | 한국전자통신연구원 | Pcc 데이터의 효과적인 압축을 위한 부호화/복호화 방법 및 장치 |
KR20200007735A (ko) * | 2018-07-13 | 2020-01-22 | 한국전자통신연구원 | 스케일러블 포인트 클라우드 부호화/복호화 방법 및 장치 |
Non-Patent Citations (1)
Title |
---|
"G-PCC codec description", 131. MPEG MEETING; 20200629 - 20200703; ONLINE; (MOTION PICTURE EXPERT GROUP OR ISO/IEC JTC1/SC29/WG11), 10 October 2020 (2020-10-10), XP030292244 * |
Also Published As
Publication number | Publication date |
---|---|
US20230345008A1 (en) | 2023-10-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021066312A1 (ko) | 포인트 클라우드 데이터 송신 장치, 포인트 클라우드 데이터 송신 방법, 포인트 클라우드 데이터 수신 장치 및 포인트 클라우드 데이터 수신 방법 | |
WO2020189976A1 (ko) | 포인트 클라우드 데이터 처리 장치 및 방법 | |
WO2020242244A1 (ko) | 포인트 클라우드 데이터 처리 방법 및 장치 | |
WO2021002604A1 (ko) | 포인트 클라우드 데이터 처리 방법 및 장치 | |
WO2021261840A1 (ko) | 포인트 클라우드 데이터 송신 장치, 포인트 클라우드 데이터 송신 방법, 포인트 클라우드 데이터 수신 장치 및 포인트 클라우드 데이터 수신 방법 | |
WO2021049758A1 (ko) | 포인트 클라우드 데이터 송신 장치, 포인트 클라우드 데이터 송신 방법, 포인트 클라우드 데이터 수신 장치 및 포인트 클라우드 데이터 수신 방법 | |
WO2020246689A1 (ko) | 포인트 클라우드 데이터 전송 장치, 포인트 클라우드 데이터 전송 방법, 포인트 클라우드 데이터 수신 장치 및 포인트 클라우드 데이터 수신 방법 | |
WO2020256308A1 (ko) | 포인트 클라우드 데이터 처리 장치 및 방법 | |
WO2021206291A1 (ko) | 포인트 클라우드 데이터 전송 장치, 전송 방법, 처리 장치 및 처리 방법 | |
WO2021210743A1 (ko) | 포인트 클라우드 데이터 송신 장치, 포인트 클라우드 데이터 송신 방법, 포인트 클라우드 데이터 수신 장치 및 포인트 클라우드 데이터 수신 방법 | |
WO2021002594A1 (ko) | 포인트 클라우드 데이터 처리 장치 및 방법 | |
WO2021002592A1 (ko) | 포인트 클라우드 데이터 송신 장치, 포인트 클라우드 데이터 송신 방법, 포인트 클라우드 데이터 수신 장치 및 포인트 클라우드 데이터 수신 방법 | |
WO2021029511A1 (ko) | 포인트 클라우드 데이터 전송 장치, 포인트 클라우드 데이터 전송 방법, 포인트 클라우드 데이터 수신 장치 및 포인트 클라우드 데이터 수신 방법 | |
WO2021215811A1 (ko) | 포인트 클라우드 데이터 송신 장치, 포인트 클라우드 데이터 송신 방법, 포인트 클라우드 데이터 수신 장치 및 포인트 클라우드 데이터 수신 방법 | |
WO2022050650A1 (ko) | 포인트 클라우드 데이터 송신 장치, 포인트 클라우드 데이터 송신 방법, 포인트 클라우드 데이터 수신 장치 및 포인트 클라우드 데이터 수신 방법 | |
WO2021246837A1 (ko) | 포인트 클라우드 데이터 처리 디바이스 및 처리 방법 | |
WO2021029575A1 (ko) | 포인트 클라우드 데이터 송신 장치, 포인트 클라우드 데이터 송신 방법, 포인트 클라우드 데이터 수신 장치 및 포인트 클라우드 데이터 수신 방법 | |
WO2021002665A1 (ko) | 포인트 클라우드 데이터 처리 장치 및 방법 | |
WO2022220645A1 (ko) | 포인트 클라우드 데이터 송신 장치, 포인트 클라우드 데이터 송신 방법, 포인트 클라우드 데이터 수신 장치 및 포인트 클라우드 데이터 수신 방법 | |
WO2022225145A1 (ko) | 포인트 클라우드 데이터 송신 장치, 포인트 클라우드 데이터 송신 방법, 포인트 클라우드 데이터 수신 장치 및 포인트 클라우드 데이터 수신 방법 | |
WO2021141221A1 (ko) | 포인트 클라우드 데이터 송신 장치, 포인트 클라우드 데이터 송신 방법, 포인트 클라우드 데이터 수신 장치 및 포인트 클라우드 데이터 수신 방법 | |
WO2021132834A1 (ko) | 포인트 클라우드 데이터 송신 장치, 포인트 클라우드 데이터 송신 방법, 포인트 클라우드 데이터 수신 장치 및 포인트 클라우드 데이터 수신 방법 | |
WO2021025392A1 (ko) | 포인트 클라우드 데이터 처리 장치 및 방법 | |
WO2022225333A1 (ko) | 포인트 클라우드 데이터 송신 장치, 포인트 클라우드 데이터 송신 방법, 포인트 클라우드 데이터 수신 장치 및 포인트 클라우드 데이터 수신 방법 | |
WO2023003144A1 (ko) | 포인트 클라우드 데이터 송신 장치, 포인트 클라우드 데이터 송신 방법, 포인트 클라우드 데이터 수신 장치 및 포인트 클라우드 데이터 수신 방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21886880 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21886880 Country of ref document: EP Kind code of ref document: A1 |