WO2021002665A1 - 포인트 클라우드 데이터 처리 장치 및 방법 - Google Patents

포인트 클라우드 데이터 처리 장치 및 방법 Download PDF

Info

Publication number
WO2021002665A1
WO2021002665A1 PCT/KR2020/008571 KR2020008571W WO2021002665A1 WO 2021002665 A1 WO2021002665 A1 WO 2021002665A1 KR 2020008571 W KR2020008571 W KR 2020008571W WO 2021002665 A1 WO2021002665 A1 WO 2021002665A1
Authority
WO
WIPO (PCT)
Prior art keywords
point cloud
attribute
octree
information
cloud data
Prior art date
Application number
PCT/KR2020/008571
Other languages
English (en)
French (fr)
Inventor
오현묵
오세진
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to EP20834989.4A priority Critical patent/EP3971832A4/en
Priority to JP2021577128A priority patent/JP7440546B2/ja
Priority to CN202080048759.0A priority patent/CN114051730A/zh
Priority to US17/624,071 priority patent/US20220360823A1/en
Publication of WO2021002665A1 publication Critical patent/WO2021002665A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T17/00Three dimensional [3D] modelling, e.g. data description of 3D objects
    • G06T17/005Tree description, e.g. octree, quadtree
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/184Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being bits, e.g. of the compressed video stream
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/90Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using coding techniques not provided for in groups H04N19/10-H04N19/85, e.g. fractals
    • H04N19/96Tree coding, e.g. quad-tree coding
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T9/00Image coding
    • G06T9/001Model-based coding, e.g. wire frame
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T9/00Image coding
    • G06T9/40Tree coding, e.g. quadtree, octree
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/124Quantisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/30Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using hierarchical techniques, e.g. scalability
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/42Methods or arrangements for coding, decoding, compressing or decompressing digital video signals characterised by implementation details or hardware specially adapted for video compression or decompression, e.g. dedicated software implementation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/597Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding specially adapted for multi-view video sequence encoding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/90Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using coding techniques not provided for in groups H04N19/10-H04N19/85, e.g. fractals
    • H04N19/91Entropy coding, e.g. variable length coding [VLC] or arithmetic coding
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2210/00Indexing scheme for image generation or computer graphics
    • G06T2210/56Particle system, point based geometry or rendering

Definitions

  • Embodiments provide Point Cloud content to provide users with various services such as VR (Virtual Reality, Virtual Reality), AR (Augmented Reality, Augmented Reality), MR (Mixed Reality, Mixed Reality), and autonomous driving service.
  • VR Virtual Reality, Virtual Reality
  • AR Augmented Reality
  • MR Magnetic Reality, Mixed Reality
  • autonomous driving service Provide a solution.
  • the point cloud content is content expressed as a point cloud, which is a set of points (points) belonging to a coordinate system representing a three-dimensional space.
  • Point cloud content can express media consisting of three dimensions, and provides various services such as VR (Virtual Reality, Virtual Reality), AR (Augmented Reality, Augmented Reality), MR (Mixed Reality, Mixed Reality), and autonomous driving services. Used to provide. However, tens of thousands to hundreds of thousands of point data are required to represent point cloud content. Therefore, a method for efficiently processing a vast amount of point data is required.
  • Embodiments provide an apparatus and method for efficiently processing point cloud data.
  • Embodiments provide a point cloud data processing method and apparatus for solving latency and encoding/decoding complexity.
  • a point cloud processing method includes encoding point cloud data including geometry information and attribute information; And transmitting a bitstream including the encoded point cloud data. It may include.
  • the geometry information may be information indicating positions of points of point cloud data
  • the attribute information may be information indicating attributes of points of point cloud data
  • Encoding point cloud data may include encoding geometry information; And encoding the attribute information. It may include. Further, encoding the attribute information may include receiving an octree structure of geometry information; And generating a colored octree by matching one or more attributes to each level of the octree structure.
  • the octree structure may be expressed in one or more levels, and the colored octree encodes attribute information to enable a scalable representation of some or all of the attribute information. Can be used for
  • the colored octree may match one or more attributes to leaf nodes of an octree structure, and leaf one or more attributes matched to the leaf nodes. It can be created by matching nodes other than nodes.
  • the colored octree may be generated by stepping down from a root node of an octree structure to a leaf node and matching one or more attributes to nodes other than leaf nodes.
  • the signaling information may include information indicating whether a bitstream includes data on a full level of an octree structure or only data on a partial level of an octree structure.
  • the encoding of the attribute information may further include removing redundant data among data matched to the collated octree.
  • the point cloud processing method includes: receiving a bitstream including point cloud data; And decoding the point cloud data. It may include.
  • Point cloud data may include geometry information and attribute information, and the geometry information may be information indicating the positions of points of the point cloud data, and the attribute information is one or more of points of the point cloud data. It may be information indicating attributes.
  • the decoding of the point cloud data may include decoding geometric information; And decoding the attribute information. It may include.
  • the signaling information may include information indicating whether the bitstream includes data on a full level of the octree structure or only data on a partial level of the octree structure.
  • the decoding of the attribute information may generate a colored octree for decoding attribute information so that a scalable representation of the point cloud data may be performed based on the information.
  • the apparatus and method according to the embodiments may process point cloud data with high efficiency.
  • the apparatus and method according to the embodiments may provide a point cloud service of high quality.
  • the apparatus and method according to the embodiments may provide point cloud content for providing general-purpose services such as VR services and autonomous driving services.
  • the point cloud data transmission apparatus may provide a method for applying a different encoding operation according to the importance and using an encoding method having good quality in an important area.
  • it can support efficient encoding/decoding and transmission according to the characteristics of the point cloud, and provide attribute values according to user requirements.
  • the point cloud data transmission apparatus and reception apparatus may independently or non-independently perform encoding and decoding on a tile and/or slice unit, thereby preventing an error accumulated in the encoding and decoding process. Can be prevented.
  • Point cloud data transmission device By generating a colored octree, encoding attribute information, and transmitting the attribute information, attribute encoding can be performed without encoding all of the octree structure, so unnecessary delay in a system requiring high-speed processing This can solve the problem that occurs.
  • the point cloud data receiving apparatus receives and decodes a colored octree, so that the attribute information can be decoded without necessarily decoding all the attribute information, thereby enabling scalable decoding. .
  • FIG. 1 shows an example of a point cloud content providing system according to embodiments.
  • FIG. 2 is a block diagram illustrating an operation of providing point cloud content according to embodiments.
  • FIG 3 shows an example of a point cloud video capture process according to embodiments.
  • FIG. 4 shows an example of a point cloud encoder according to embodiments.
  • FIG. 5 shows an example of a voxel according to embodiments.
  • FIG. 6 shows an example of an octree and an occupancy code according to embodiments.
  • FIG. 7 shows an example of a neighbor node pattern according to embodiments.
  • FIG. 10 shows an example of a point cloud decoder according to embodiments.
  • FIG. 11 shows an example of a point cloud decoder according to embodiments.
  • FIG 13 is an example of a reception device according to embodiments.
  • FIG. 14 illustrates an architecture for G-PCC-based point cloud content streaming according to embodiments.
  • 15 shows an example of a transmission device according to embodiments.
  • FIG. 16 shows an example of a reception device according to embodiments.
  • FIG. 17 shows an example of a structure capable of interworking with a method/device for transmitting and receiving point cloud data according to embodiments.
  • FIG. 18 shows a point cloud encoder according to embodiments.
  • 19 shows an octree and a colored octree according to embodiments.
  • FIG. 20 shows a point cloud data encoder according to embodiments.
  • 21 illustrates a process of generating a colored octree according to embodiments.
  • FIG. 23 shows a process in which an encoder according to embodiments detects a neighbor according to embodiments.
  • FIG. 24 illustrates an equation for matching attribute information to a parent node by an encoder according to embodiments based on a neighbor according to the embodiments.
  • 25 illustrates an operation of removing a duplicate attribute within an octree in which attribute information is matched by an encoder according to embodiments.
  • 26 shows an operation of an encoder according to embodiments.
  • FIG. 27 illustrates an example of a bitstream structure of point cloud data according to embodiments.
  • 29 shows an attribute bitstream according to embodiments.
  • FIG. 30 illustrates operations of a point cloud data transmission apparatus and a reception apparatus according to embodiments for a scalable representation.
  • 31 illustrates a point cloud data decoder according to embodiments.
  • FIG. 32 illustrates a point cloud data decoder according to embodiments.
  • 33 illustrates a process of generating a colored octree by an apparatus for receiving point cloud data according to embodiments.
  • 34 illustrates an operation of performing attribute to node matching by a point cloud data decoder according to embodiments.
  • 35 illustrates a process in which a reception device according to embodiments performs position estimation according to embodiments.
  • FIG. 36 illustrates another embodiment of a process in which a point cloud data decoder according to embodiments generates a colored octree.
  • FIG. 37 illustrates a process of decoding for a scalable representation by a point cloud data decoder according to embodiments.
  • 38 illustrates a process of decoding for a scalable representation by a point cloud data decoder according to embodiments.
  • 39 shows a point cloud data transmission step according to embodiments.
  • FIG. 40 illustrates a step of receiving point cloud data according to embodiments.
  • FIG. 1 shows an example of a point cloud content providing system according to embodiments.
  • the point cloud content providing system illustrated in FIG. 1 may include a transmission device 10000 and a reception device 10004.
  • the transmission device 10000 and the reception device 10004 are capable of wired or wireless communication to transmit and receive point cloud data.
  • the transmission device 10000 may secure, process, and transmit point cloud video (or point cloud content).
  • the transmission device 10000 is a fixed station, a base transceiver system (BTS), a network, an artificial intelligence (AI) device and/or system, a robot, an AR/VR/XR device and/or server. And the like.
  • the transmission device 10000 uses a radio access technology (eg, 5G NR (New RAT), LTE (Long Term Evolution)) to communicate with a base station and/or other wireless devices, Robots, vehicles, AR/VR/XR devices, portable devices, home appliances, Internet of Thing (IoT) devices, AI devices/servers, etc. may be included.
  • 5G NR New RAT
  • LTE Long Term Evolution
  • the transmission device 10000 includes a point cloud video acquisition unit (Point Cloud Video Acquisition, 10001), a point cloud video encoder (Point Cloud Video Encoder, 10002) and/or a transmitter (Transmitter (or Communication module), 10003). Include)
  • the point cloud video acquisition unit 10001 acquires a point cloud video through a process such as capture, synthesis, or generation.
  • the point cloud video is point cloud content expressed as a point cloud, which is a set of points located in a three-dimensional space, and may be referred to as point cloud video data.
  • a point cloud video according to embodiments may include one or more frames. One frame represents a still image/picture. Accordingly, the point cloud video may include a point cloud image/frame/picture, and may be referred to as any one of a point cloud image, a frame, and a picture.
  • the point cloud video encoder 10002 encodes the secured point cloud video data.
  • the point cloud video encoder 10002 may encode point cloud video data based on Point Cloud Compression coding.
  • Point cloud compression coding may include Geometry-based Point Cloud Compression (G-PCC) coding and/or Video based Point Cloud Compression (V-PCC) coding or next-generation coding.
  • G-PCC Geometry-based Point Cloud Compression
  • V-PCC Video based Point Cloud Compression
  • point cloud compression coding according to the embodiments is not limited to the above-described embodiments.
  • the point cloud video encoder 10002 may output a bitstream including encoded point cloud video data.
  • the bitstream may include not only the encoded point cloud video data, but also signaling information related to encoding of the point cloud video data.
  • the transmitter 10003 transmits a bitstream including encoded point cloud video data.
  • the bitstream according to the embodiments is encapsulated into a file or segment (for example, a streaming segment) and transmitted through various networks such as a broadcasting network and/or a broadband network.
  • the transmission device 10000 may include an encapsulation unit (or an encapsulation module) that performs an encapsulation operation.
  • the encapsulation unit may be included in the transmitter 10003.
  • a file or segment may be transmitted to the receiving device 10004 through a network or stored in a digital storage medium (eg, USB, SD, CD, DVD, Blu-ray, HDD, SSD, etc.).
  • the transmitter 10003 may perform wired/wireless communication with the reception device 10004 (or a receiver 10005) through a network such as 4G, 5G, or 6G.
  • the transmitter 10003 may perform necessary data processing operations according to a network system (for example, a communication network system such as 4G, 5G, or 6G).
  • the transmission device 10000 may transmit encapsulated data according to an on demand method.
  • the reception device 10004 includes a receiver 10005, a point cloud video decoder 10006, and/or a renderer 10007.
  • the receiving device 10004 uses a wireless access technology (eg, 5G NR (New RAT), LTE (Long Term Evolution)) to communicate with a base station and/or other wireless devices, a robot , Vehicles, AR/VR/XR devices, portable devices, home appliances, Internet of Thing (IoT) devices, AI devices/servers, and the like.
  • 5G NR New RAT
  • LTE Long Term Evolution
  • the receiver 10005 receives a bitstream including point cloud video data or a file/segment in which the bitstream is encapsulated from a network or a storage medium.
  • the receiver 10005 may perform necessary data processing operations according to a network system (for example, a communication network system such as 4G, 5G, or 6G).
  • the receiver 10005 may decapsulate the received file/segment and output a bitstream.
  • the receiver 10005 may include a decapsulation unit (or a decapsulation module) for performing a decapsulation operation.
  • the decapsulation unit may be implemented as an element (or component) separate from the receiver 10005.
  • the point cloud video decoder 10006 decodes a bitstream including point cloud video data.
  • the point cloud video decoder 10006 may decode the point cloud video data according to the encoding method (for example, a reverse process of the operation of the point cloud video encoder 10002). Accordingly, the point cloud video decoder 10006 may decode the point cloud video data by performing point cloud decompression coding, which is a reverse process of the point cloud compression.
  • Point cloud decompression coding includes G-PCC coding.
  • the renderer 10007 renders the decoded point cloud video data.
  • the renderer 10007 may output point cloud content by rendering audio data as well as point cloud video data.
  • the renderer 10007 may include a display for displaying point cloud content.
  • the display is not included in the renderer 10007 and may be implemented as a separate device or component.
  • the feedback information is information for reflecting an interaction ratio with a user who consumes point cloud content, and includes user information (eg, head orientation information, viewport information, etc.).
  • user information eg, head orientation information, viewport information, etc.
  • the feedback information is the content sending side (for example, the transmission device 10000) and/or a service provider.
  • the feedback information may be used not only in the transmitting device 10000 but also in the receiving device 10004, and may not be provided.
  • Head orientation information is information on a position, direction, angle, and movement of a user's head.
  • the receiving device 10004 may calculate viewport information based on the head orientation information.
  • the viewport information is information on the area of the point cloud video that the user is viewing.
  • a viewpoint is a point at which the user is watching a point cloud video, and may mean a center point of a viewport area. That is, the viewport is an area centered on a viewpoint, and the size and shape of the area may be determined by a field of view (FOV).
  • FOV field of view
  • the receiving device 10004 may extract viewport information based on a vertical or horizontal FOV supported by the device in addition to the head orientation information.
  • the receiving device 10004 performs a gaze analysis and the like to check the point cloud consumption method of the user, the point cloud video area that the user gazes, and the gaze time.
  • the receiving device 10004 may transmit feedback information including the result of gaze analysis to the transmitting device 10000.
  • Feedback information may be obtained during rendering and/or display.
  • Feedback information may be secured by one or more sensors included in the receiving device 10004.
  • the feedback information may be secured by the renderer 10007 or a separate external element (or device, component, etc.).
  • a dotted line in FIG. 1 shows a process of transmitting feedback information secured by the renderer 10007.
  • the point cloud content providing system may process (encode/decode) point cloud data based on feedback information.
  • the point cloud video data decoder 10006 may perform a decoding operation based on the feedback information.
  • the receiving device 10004 may transmit feedback information to the transmitting device 10000.
  • the transmission device 10000 (or the point cloud video data encoder 10002) may perform an encoding operation based on feedback information. Therefore, the point cloud content providing system does not process (encode/decode) all point cloud data, but efficiently processes necessary data (e.g., point cloud data corresponding to the user's head position) based on feedback information. Point cloud content can be provided to users.
  • the transmission device 10000 may be referred to as an encoder, a transmission device, a transmitter, and the like
  • the reception device 10004 may be referred to as a decoder, a reception device, a receiver, or the like.
  • Point cloud data (processed in a series of acquisition/encoding/transmission/decoding/rendering) processed in the point cloud content providing system of FIG. 1 according to embodiments may be referred to as point cloud content data or point cloud video data.
  • the point cloud content data may be used as a concept including metadata or signaling information related to the point cloud data.
  • Elements of the point cloud content providing system shown in FIG. 1 may be implemented by hardware, software, processor, and/or a combination thereof.
  • FIG. 2 is a block diagram illustrating an operation of providing point cloud content according to embodiments.
  • the block diagram of FIG. 2 shows the operation of the point cloud content providing system described in FIG. 1.
  • the point cloud content providing system may process point cloud data based on point cloud compression coding (eg, G-PCC).
  • point cloud compression coding eg, G-PCC
  • a point cloud content providing system may acquire a point cloud video (20000).
  • the point cloud video is expressed as a point cloud belonging to a coordinate system representing a three-dimensional space.
  • a point cloud video may include a Ply (Polygon File format or the Stanford Triangle format) file.
  • Ply files contain point cloud data such as the geometry and/or attributes of the point.
  • the geometry includes the positions of the points.
  • the position of each point may be expressed by parameters (eg, values of each of the X-axis, Y-axis, and Z-axis) representing a three-dimensional coordinate system (eg, a coordinate system composed of XYZ axes).
  • Attributes include attributes of points (eg, texture information of each point, color (YCbCr or RGB), reflectance (r), transparency, etc.).
  • a point has one or more attributes (or attributes).
  • one point may have an attribute of one color, or two attributes of a color and reflectance.
  • geometry may be referred to as positions, geometry information, geometry data, and the like, and attributes may be referred to as attributes, attribute information, attribute data, and the like.
  • the point cloud content providing system (for example, the point cloud transmission device 10000 or the point cloud video acquisition unit 10001) provides points from information related to the acquisition process of the point cloud video (eg, depth information, color information, etc.). Cloud data can be secured.
  • the point cloud content providing system may encode point cloud data (20001).
  • the point cloud content providing system may encode point cloud data based on point cloud compression coding.
  • the point cloud data may include the geometry and attributes of the point.
  • the point cloud content providing system may output a geometry bitstream by performing geometry encoding for encoding geometry.
  • the point cloud content providing system may output an attribute bitstream by performing attribute encoding for encoding the attribute.
  • the point cloud content providing system may perform attribute encoding based on geometry encoding.
  • the geometry bitstream and the attribute bitstream according to the embodiments may be multiplexed and output as one bitstream.
  • the bitstream according to embodiments may further include signaling information related to geometry encoding and attribute encoding.
  • the point cloud content providing system may transmit encoded point cloud data (20002).
  • the encoded point cloud data may be expressed as a geometry bitstream and an attribute bitstream.
  • the encoded point cloud data may be transmitted in the form of a bitstream together with signaling information related to encoding of the point cloud data (eg, signaling information related to geometry encoding and attribute encoding).
  • the point cloud content providing system may encapsulate the bitstream for transmitting the encoded point cloud data and transmit it in the form of a file or segment.
  • the point cloud content providing system may receive a bitstream including encoded point cloud data.
  • the point cloud content providing system may demultiplex the bitstream.
  • the point cloud content providing system can decode the encoded point cloud data (e.g., geometry bitstream, attribute bitstream) transmitted as a bitstream. have.
  • the point cloud content providing system (for example, the receiving device 10004 or the point cloud video decoder 10005) can decode the point cloud video data based on signaling information related to encoding of the point cloud video data included in the bitstream. have.
  • the point cloud content providing system (for example, the receiving device 10004 or the point cloud video decoder 10005) may restore positions (geometry) of points by decoding a geometry bitstream.
  • the point cloud content providing system may restore the attributes of points by decoding an attribute bitstream based on the restored geometry.
  • the point cloud content providing system (for example, the receiving device 10004 or the point cloud video decoder 10005) may restore the point cloud video based on the decoded attributes and positions according to the restored geometry.
  • the point cloud content providing system may render the decoded point cloud data (20004 ).
  • the point cloud content providing system may render geometry and attributes decoded through a decoding process according to a rendering method according to various rendering methods. Points of the point cloud content may be rendered as a vertex having a certain thickness, a cube having a specific minimum size centered on the vertex position, or a circle centered on the vertex position. All or part of the rendered point cloud content is provided to the user through a display (eg VR/AR display, general display, etc.).
  • a display eg VR/AR display, general display, etc.
  • the point cloud content providing system may secure feedback information (20005).
  • the point cloud content providing system may encode and/or decode point cloud data based on feedback information. Since the operation of the feedback information and point cloud content providing system according to the embodiments is the same as the feedback information and operation described in FIG. 1, a detailed description will be omitted.
  • FIG 3 shows an example of a point cloud video capture process according to embodiments.
  • FIGS. 1 to 2 shows an example of a point cloud video capture process in the point cloud content providing system described in FIGS. 1 to 2.
  • the point cloud content is an object located in various three-dimensional spaces (for example, a three-dimensional space representing a real environment, a three-dimensional space representing a virtual environment, etc.) and/or a point cloud video (images and/or Videos). Therefore, the point cloud content providing system according to the embodiments includes one or more cameras (eg, an infrared camera capable of securing depth information, color information corresponding to the depth information) to generate the point cloud content. You can capture a point cloud video using an RGB camera that can extract the image), a projector (for example, an infrared pattern projector to secure depth information), and LiDAR.
  • cameras eg, an infrared camera capable of securing depth information, color information corresponding to the depth information
  • a projector for example, an infrared pattern projector to secure depth information
  • LiDAR LiDAR
  • the point cloud content providing system may obtain point cloud data by extracting a shape of a geometry composed of points in a 3D space from depth information, and extracting an attribute of each point from color information.
  • An image and/or an image according to the embodiments may be captured based on at least one or more of an inward-facing method and an outward-facing method.
  • the left side of Fig. 3 shows an inword-facing scheme.
  • the inword-facing method refers to a method in which one or more cameras (or camera sensors) located surrounding a central object capture a central object.
  • the in-word-facing method provides point cloud content that provides users with 360-degree images of key objects (e.g., provides users with 360-degree images of objects (eg, key objects such as characters, players, objects, actors, etc.) VR/AR content).
  • the outward-facing method refers to a method in which one or more cameras (or camera sensors) located surrounding the central object capture the environment of the central object other than the central object.
  • the outward-pacing method may be used to generate point cloud content (for example, content representing an external environment that may be provided to a user of a self-driving vehicle) to provide an environment that appears from a user's point of view.
  • the point cloud content may be generated based on the capture operation of one or more cameras.
  • the point cloud content providing system may calibrate one or more cameras to set a global coordinate system before the capture operation.
  • the point cloud content providing system may generate point cloud content by synthesizing an image and/or image captured by the above-described capture method with an arbitrary image and/or image.
  • the point cloud content providing system may not perform the capture operation described in FIG. 3 when generating point cloud content representing a virtual space.
  • the point cloud content providing system may perform post-processing on the captured image and/or image. In other words, the point cloud content providing system removes an unwanted area (e.g., background), recognizes the space where captured images and/or images are connected, and performs an operation to fill in a spatial hole if there is. I can.
  • the point cloud content providing system may generate one point cloud content by performing coordinate system transformation on points of the point cloud video acquired from each camera.
  • the point cloud content providing system may perform a coordinate system transformation of points based on the position coordinates of each camera. Accordingly, the point cloud content providing system may generate content representing a wide range, or may generate point cloud content having a high density of points.
  • FIG. 4 shows an example of a point cloud encoder according to embodiments.
  • the point cloud encoder uses point cloud data (for example, positions and/or positions of points) to adjust the quality of the point cloud content (for example, lossless-lossless, loss-lossy, near-lossless) according to network conditions or applications. Attributes) and perform an encoding operation.
  • point cloud data for example, positions and/or positions of points
  • the quality of the point cloud content for example, lossless-lossless, loss-lossy, near-lossless
  • Attributes perform an encoding operation.
  • the point cloud content providing system may not be able to stream the content in real time. Therefore, the point cloud content providing system can reconstruct the point cloud content based on the maximum target bitrate in order to provide it according to the network environment.
  • the point cloud encoder may perform geometry encoding and attribute encoding. Geometry encoding is performed before attribute encoding.
  • Point cloud encoders include a coordinate system transform unit (Transformation Coordinates, 40000), a quantization unit (Quantize and Remove Points (Voxelize), 40001), an octree analysis unit (Analyze Octree, 40002), and a surface aproximation analysis unit ( Analyze Surface Approximation, 40003), Arithmetic Encode (40004), Reconstruct Geometry (40005), Transform Colors (40006), Transfer Attributes (40007), RAHT Transformation A unit 40008, an LOD generation unit (Generated LOD) 40009, a lifting transform unit (Lifting) 40010, a coefficient quantization unit (Quantize Coefficients, 40011), and/or an Arithmetic Encode (40012).
  • a coordinate system transform unit Transformation Coordinates, 40000
  • a quantization unit Quantization and Remove Points (Voxelize)
  • An octree analysis unit Analyze Octree, 40002
  • the coordinate system transform unit 40000, the quantization unit 40001, the octree analysis unit 40002, the surface aproximation analysis unit 40003, the arithmetic encoder 40004, and the geometry reconstruction unit 40005 perform geometry encoding. can do.
  • Geometry encoding according to embodiments may include octree geometry coding, direct coding, trisoup geometry encoding, and entropy encoding. Direct coding and trisoup geometry encoding are applied selectively or in combination. Also, geometry encoding is not limited to the above example.
  • the coordinate system conversion unit 40000 receives positions and converts them into a coordinate system.
  • positions may be converted into position information in a three-dimensional space (eg, a three-dimensional space represented by an XYZ coordinate system).
  • the location information of the 3D space according to embodiments may be referred to as geometry information.
  • the quantization unit 40001 quantizes geometry. For example, the quantization unit 40001 may quantize points based on the minimum position values of all points (eg, minimum values on each axis with respect to the X-axis, Y-axis, and Z-axis). The quantization unit 40001 multiplies the difference between the minimum position value and the position value of each point by a preset quantum scale value, and then performs a quantization operation to find the nearest integer value by performing a rounding or a rounding. Thus, one or more points may have the same quantized position (or position value). The quantization unit 40001 according to embodiments performs voxelization based on the quantized positions to reconstruct the quantized points.
  • the quantization unit 40001 performs voxelization based on the quantized positions to reconstruct the quantized points.
  • the minimum unit including the 2D image/video information is a pixel, and points of the point cloud content (or 3D point cloud video) according to the embodiments may be included in one or more voxels.
  • Voxel is a combination of volume and pixel
  • the quantization unit 40001 may match groups of points in a 3D space with voxels.
  • one voxel may include only one point.
  • one voxel may include one or more points.
  • a position of a center point (ceter) of a corresponding voxel may be set based on positions of one or more points included in one voxel.
  • attributes of all positions included in one voxel may be combined and assigned to a corresponding voxel.
  • the octree analysis unit 40002 performs octree geometry coding (or octree coding) to represent voxels in an octree structure.
  • the octree structure represents points matched to voxels based on an octal tree structure.
  • the surface aproxiation analysis unit 40003 may analyze and approximate the octree.
  • the octree analysis and approximation according to the embodiments is a process of analyzing to voxelize a region including a plurality of points in order to efficiently provide octree and voxelization.
  • the arithmetic encoder 40004 entropy encodes the octree and/or the approximated octree.
  • the encoding method includes an Arithmetic encoding method.
  • a geometry bitstream is generated.
  • Color conversion unit 40006, attribute conversion unit 40007, RAHT conversion unit 40008, LOD generation unit 40009, lifting conversion unit 40010, coefficient quantization unit 40011 and/or Arismatic encoder 40012 Performs attribute encoding.
  • one point may have one or more attributes. Attribute encoding according to embodiments is applied equally to attributes of one point. However, when one attribute (eg, color) includes one or more elements, independent attribute encoding is applied to each element.
  • Attribute encoding includes color transform coding, attribute transform coding, Region Adaptive Hierarchial Transform (RAHT) coding, Interpolaration-based hierarchical nearest-neighbor prediction-Prediction Transform coding, and interpolation-based hierarchical nearest -Neighbor prediction with an update/lifting step (Lifting Transform)) coding may be included.
  • RAHT Region Adaptive Hierarchial Transform
  • Interpolaration-based hierarchical nearest-neighbor prediction-Prediction Transform coding Interpolaration-based hierarchical nearest-neighbor prediction-Prediction Transform coding
  • interpolation-based hierarchical nearest -Neighbor prediction with an update/lifting step (Lifting Transform)) coding may be included.
  • the aforementioned RAHT coding, predictive transform coding, and lifting transform coding may be selectively used, or a combination of one or more codings may be used.
  • attribute encoding according to embodiments is not limited to the above-de
  • the color conversion unit 40006 performs color conversion coding for converting color values (or textures) included in attributes.
  • the color conversion unit 40006 may convert the format of color information (eg, convert from RGB to YCbCr).
  • the operation of the color conversion unit 40006 according to the embodiments may be selectively applied according to color values included in attributes.
  • the geometry reconstruction unit 40005 reconstructs (decompresses) an octree and/or an approximated octree.
  • the geometry reconstruction unit 40005 reconstructs an octree/voxel based on a result of analyzing the distribution of points.
  • the reconstructed octree/voxel may be referred to as reconstructed geometry (or reconstructed geometry).
  • the attribute conversion unit 40007 performs attribute conversion for converting attributes based on the reconstructed geometry and/or positions for which geometry encoding has not been performed. As described above, since attributes are dependent on geometry, the attribute conversion unit 40007 may transform the attributes based on the reconstructed geometry information. For example, the attribute conversion unit 40007 may convert an attribute of the point of the position based on the position value of the point included in the voxel. As described above, when a position of a center point of a corresponding voxel is set based on positions of one or more points included in one voxel, the attribute conversion unit 40007 converts attributes of one or more points. When tri-soup geometry encoding is performed, the attribute conversion unit 40007 may convert attributes based on trisoup geometry encoding.
  • the attribute conversion unit 40007 is an average value of attributes or attribute values (for example, the color of each point or reflectance) of points neighboring within a specific position/radius from the position (or position value) of the center point of each voxel. Attribute conversion can be performed by calculating.
  • the attribute conversion unit 40007 may apply a weight according to a distance from a central point to each point when calculating an average value. Thus, each voxel has a position and a calculated attribute (or attribute value).
  • the attribute conversion unit 40007 may search for neighboring points existing within a specific position/radius from the position of the center point of each voxel based on a K-D tree or a Molton code.
  • the K-D tree is a binary search tree and supports a data structure that can manage points based on location so that the Nearest Neighbor Search (NNS) can be quickly performed.
  • the Molton code represents a coordinate value (for example, (x, y, z)) representing a three-dimensional position of all points as a bit value, and is generated by mixing the bits. For example, if the coordinate value indicating the position of the point is (5, 9, 1), the bit value of the coordinate value is (0101, 1001, 0001).
  • the attribute conversion unit 40007 may sort points based on a Morton code value and perform a shortest neighbor search (NNS) through a depth-first traversal process. After the attribute transformation operation, when the shortest neighbor search (NNS) is required in another transformation process for attribute coding, a K-D tree or a Molton code is used.
  • NSS shortest neighbor search
  • the converted attributes are input to the RAHT conversion unit 40008 and/or the LOD generation unit 40009.
  • the RAHT conversion unit 40008 performs RAHT coding for predicting attribute information based on the reconstructed geometry information. For example, the RAHT conversion unit 40008 may predict attribute information of a node at a higher level of the octree based on attribute information associated with a node at a lower level of the octree.
  • the LOD generation unit 40009 generates a level of detail (LOD) to perform predictive transform coding.
  • LOD level of detail
  • the LOD according to the embodiments is a degree representing the detail of the point cloud content, and a smaller LOD value indicates that the detail of the point cloud content decreases, and a larger LOD value indicates that the detail of the point cloud content is high. Points can be classified according to LOD.
  • the lifting transform unit 40010 performs lifting transform coding that transforms attributes of a point cloud based on weights. As described above, the lifting transform coding can be selectively applied.
  • the coefficient quantization unit 40011 quantizes attribute-coded attributes based on coefficients.
  • Arismatic encoder 40012 encodes quantized attributes based on Arismatic coding.
  • the elements of the point cloud encoder of FIG. 4 are not shown in the drawing, but hardware including one or more processors or integrated circuits configured to communicate with one or more memories included in the point cloud providing apparatus. , Software, firmware, or a combination thereof.
  • One or more processors may perform at least one or more of the operations and/or functions of the elements of the point cloud encoder of FIG. 4 described above. Further, one or more processors may operate or execute a set of software programs and/or instructions for performing operations and/or functions of the elements of the point cloud encoder of FIG. 4.
  • One or more memories according to embodiments may include high speed random access memory, and nonvolatile memory (e.g., one or more magnetic disk storage devices, flash memory devices, or other nonvolatile solid state Memory devices (solid-state memory devices, etc.).
  • FIG. 5 shows an example of a voxel according to embodiments.
  • voxels located in a three-dimensional space represented by a coordinate system composed of three axes of the X-axis, Y-axis, and Z-axis.
  • a point cloud encoder eg, quantization unit 40001
  • voxel 5 is an octree structure recursively subdividing a cubical axis-aligned bounding box defined by two poles (0,0,0) and (2 d , 2 d , 2 d ) Shows an example of a voxel generated through.
  • One voxel includes at least one or more points.
  • the voxel can estimate spatial coordinates from the positional relationship with the voxel group.
  • voxels have attributes (color or reflectance, etc.) like pixels of a 2D image/video. A detailed description of the voxel is the same as that described with reference to FIG. 4 and thus is omitted.
  • FIG. 6 shows an example of an octree and an occupancy code according to embodiments.
  • a point cloud content providing system (point cloud video encoder 10002) or a point cloud encoder (for example, octree analysis unit 40002) efficiently manages the area and/or position of the voxel.
  • octree geometry coding (or octree coding) based on an octree structure is performed.
  • FIG. 6 shows an octree structure.
  • the three-dimensional space of the point cloud content according to the embodiments is represented by axes of a coordinate system (eg, X-axis, Y-axis, Z-axis).
  • the octree structure is created by recursive subdividing of a cubical axis-aligned bounding box defined by two poles (0,0,0) and (2 d , 2 d , 2 d ). . 2d may be set to a value constituting the smallest bounding box surrounding all points of the point cloud content (or point cloud video).
  • d represents the depth of the octree.
  • the d value is determined according to the following equation. In the following equation, (x int n , y int n , z int n ) represents positions (or position values) of quantized points.
  • the entire 3D space may be divided into eight spaces according to the division.
  • Each divided space is represented by a cube with 6 faces.
  • each of the eight spaces is divided again based on the axes of the coordinate system (eg, X axis, Y axis, Z axis).
  • axes of the coordinate system e.g, X axis, Y axis, Z axis.
  • each space is further divided into eight smaller spaces.
  • the divided small space is also represented as a cube with 6 faces. This division method is applied until a leaf node of an octree becomes a voxel.
  • the lower part of FIG. 6 shows the octree ocupancy code.
  • the octree's ocupancy code is generated to indicate whether each of the eight divided spaces generated by dividing one space includes at least one point. Therefore, one Okufanshi code is represented by 8 child nodes. Each child node represents the occupancy of the divided space, and the child node has a value of 1 bit. Therefore, the Ocufanshi code is expressed as an 8-bit code. That is, if at least one point is included in the space corresponding to the child node, the node has a value of 1. If the point is not included in the space corresponding to the child node (empty), the node has a value of 0. Since the ocupancy code shown in FIG.
  • the point cloud encoder (for example, the Arismatic encoder 40004) according to embodiments may entropy encode an ocupancy code. In addition, in order to increase the compression efficiency, the point cloud encoder can intra/inter code the ocupancy code.
  • the reception device (for example, the reception device 10004 or the point cloud video decoder 10006) according to the embodiments reconstructs an octree based on an ocupancy code.
  • a point cloud encoder may perform voxelization and octree coding to store positions of points.
  • points in the 3D space are not always evenly distributed, there may be a specific area where there are not many points. Therefore, it is inefficient to perform voxelization over the entire 3D space. For example, if there are almost no points in a specific area, it is not necessary to perform voxelization to the corresponding area.
  • the point cloud encoder does not perform voxelization for the above-described specific region (or nodes other than the leaf nodes of the octree), but directly codes the positions of points included in the specific region. ) Can be performed. Coordinates of a direct coding point according to embodiments are referred to as a direct coding mode (DCM).
  • the point cloud encoder according to embodiments may perform trisoup geometry encoding in which positions of points within a specific region (or node) are reconstructed based on voxels based on a surface model. Trisoup geometry encoding is a geometry encoding that expresses the representation of an object as a series of triangle meshes.
  • Direct coding and trisoup geometry encoding may be selectively performed.
  • direct coding and trisoup geometry encoding according to embodiments may be performed in combination with octree geometry coding (or octree coding).
  • the option to use direct mode to apply direct coding must be activated, and the node to which direct coding is applied is not a leaf node, but below the threshold within a specific node. There must be points of. In addition, the number of all points subject to direct coding must not exceed a preset limit.
  • the point cloud encoder (or the arithmetic encoder 40004) according to the embodiments may entropy-code the positions (or position values) of the points.
  • the point cloud encoder determines a specific level of the octree (if the level is less than the depth d of the octree), and from that level, the node Trisoup geometry encoding that reconstructs the position of a point in the region based on voxels can be performed (tri-soup mode).
  • a point cloud encoder may designate a level to which trisoup geometry encoding is applied. For example, if the specified level is equal to the depth of the octree, the point cloud encoder does not operate in the try-soup mode.
  • the point cloud encoder may operate in the try-soup mode only when the specified level is less than the depth value of the octree.
  • a three-dimensional cube area of nodes of a designated level according to the embodiments is referred to as a block.
  • One block may include one or more voxels.
  • the block or voxel may correspond to a brick.
  • the geometry is represented by a surface.
  • the surface according to embodiments may intersect each edge (edge) of the block at most once.
  • one block has 12 edges, there are at least 12 intersection points within one block. Each intersection is called a vertex (vertex, or vertex).
  • a vertex existing along an edge is detected when there is at least one occupied voxel adjacent to the edge among all blocks sharing the edge.
  • An occupied voxel refers to a voxel including a point. The position of the vertex detected along the edge is the average position along the edge of all voxels among all blocks sharing the edge.
  • the point cloud encoder When a vertex is detected, the point cloud encoder according to the embodiments entropycodes the starting point (x, y, z) of the edge, the direction vector of the edge ( ⁇ x, ⁇ y, ⁇ z), and vertex position values (relative position values within the edge). I can.
  • the point cloud encoder e.g., the geometry reconstruction unit 40005
  • the point cloud encoder performs a triangle reconstruction, up-sampling, and voxelization process. By doing so, you can create reconstructed geometry (reconstructed geometry).
  • the vertices located at the edge of the block determine the surface that passes through the block.
  • the surface according to the embodiments is a non-planar polygon.
  • the triangle reconstruction process reconstructs the surface represented by a triangle based on the starting point of the edge, the direction vector of the edge, and the position value of the vertex.
  • the triangle reconstruction process is as follows. 1 Calculate the centroid value of each vertex, 2 calculate the squared values of the values subtracted from each vertex value by subtracting the center value, and calculate the sum of all the values.
  • each vertex is projected on the x-axis based on the center of the block, and projected on the (y, z) plane.
  • the projected value on the (y, z) plane is (ai, bi)
  • is obtained through atan2(bi, ai)
  • vertices are aligned based on the ⁇ value.
  • the table below shows a combination of vertices for generating a triangle according to the number of vertices. Vertices are ordered from 1 to n.
  • the table below shows that for four vertices, two triangles may be formed according to a combination of vertices.
  • the first triangle may be composed of 1st, 2nd, and 3rd vertices among the aligned vertices
  • the second triangle may be composed of 3rd, 4th, and 1st vertices among the aligned vertices. .
  • the upsampling process is performed to voxelize by adding points in the middle along the edge of the triangle. Additional points are created based on the upsampling factor and the width of the block. The additional point is called a refined vertice.
  • the point cloud encoder may voxelize refined vertices. In addition, the point cloud encoder may perform attribute encoding based on the voxelized position (or position value).
  • FIG. 7 shows an example of a neighbor node pattern according to embodiments.
  • the point cloud encoder may perform entropy coding based on context adaptive arithmetic coding.
  • a point cloud content providing system or a point cloud encoder directly converts the Ocufanshi code.
  • Entropy coding is possible.
  • the point cloud content providing system or point cloud encoder performs entropy encoding (intra encoding) based on the ocupancy code of the current node and the ocupancy of neighboring nodes, or entropy encoding (inter encoding) based on the ocupancy code of the previous frame. ) Can be performed.
  • a frame according to embodiments means a set of point cloud videos generated at the same time.
  • the compression efficiency of intra-encoding/inter-encoding may vary depending on the number of referenced neighbor nodes. The larger the bit, the more complicated it is, but it can be skewed to one side, increasing compression efficiency. For example, if you have a 3-bit context, you have to code in 8 ways. The divided coding part affects the complexity of the implementation. Therefore, it is necessary to match the appropriate level of compression efficiency and complexity.
  • a point cloud encoder determines occupancy of neighboring nodes of each node of an octree and obtains a value of a neighbor pattern.
  • the neighboring node pattern is used to infer the occupancy pattern of the corresponding node.
  • the left side of FIG. 7 shows a cube corresponding to a node (centered cube) and six cubes (neighbor nodes) that share at least one surface with the cube. Nodes shown in the figure are nodes of the same depth (depth). Numbers shown in the figure indicate weights (1, 2, 4, 8, 16, 32, etc.) associated with each of the six nodes. Each weight is sequentially assigned according to the positions of neighboring nodes.
  • the right side of FIG. 7 shows neighboring node pattern values.
  • the neighbor node pattern value is the sum of values multiplied by weights of the occupied neighbor nodes (neighbor nodes having points). Therefore, the neighbor node pattern value has a value from 0 to 63. When the neighbor node pattern value is 0, it indicates that no node (occupied node) has a point among neighboring nodes of the corresponding node. If the neighboring node pattern value is 63, it indicates that all neighboring nodes are occupied nodes. As shown in the figure, since neighboring nodes to which weights 1, 2, 4, and 8 are assigned are occupied nodes, the neighboring node pattern value is 15, which is the sum of 1, 2, 4, and 8.
  • the point cloud encoder may perform coding according to the neighboring node pattern value (for example, if the neighboring node pattern value is 63, 64 codings are performed). According to embodiments, the point cloud encoder may reduce coding complexity by changing a neighbor node pattern value (for example, based on a table changing 64 to 10 or 6).
  • the encoded geometry is reconstructed (decompressed) before attribute encoding is performed.
  • the geometry reconstruction operation may include changing the placement of the direct coded points (eg, placing the direct coded points in front of the point cloud data).
  • the geometry reconstruction process is triangular reconstruction, upsampling, voxelization, and the attribute is dependent on geometry, so the attribute encoding is performed based on the reconstructed geometry.
  • the point cloud encoder may reorganize points for each LOD.
  • the figure shows point cloud content corresponding to the LOD.
  • the left side of the figure shows the original point cloud content.
  • the second figure from the left of the figure shows the distribution of the lowest LOD points, and the rightmost figure in the figure shows the distribution of the highest LOD points. That is, the points of the lowest LOD are sparsely distributed, and the points of the highest LOD are densely distributed. That is, as the LOD increases according to the direction of the arrow indicated at the bottom of the drawing, the spacing (or distance) between points becomes shorter.
  • a point cloud content providing system or a point cloud encoder (for example, a point cloud video encoder 10002, a point cloud encoder in FIG. 4, or an LOD generator 40009) generates an LOD. can do.
  • the LOD is generated by reorganizing the points into a set of refinement levels according to a set LOD distance value (or a set of Euclidean distance).
  • the LOD generation process is performed not only in the point cloud encoder but also in the point cloud decoder.
  • FIG. 9 shows examples (P0 to P9) of points of point cloud content distributed in a three-dimensional space.
  • the original order of FIG. 9 represents the order of points P0 to P9 before LOD generation.
  • the LOD based order of FIG. 9 represents the order of points according to LOD generation. Points are rearranged by LOD. Also, the high LOD includes points belonging to the low LOD.
  • LOD0 includes P0, P5, P4 and P2.
  • LOD1 includes the points of LOD0 and P1, P6 and P3.
  • LOD2 includes points of LOD0, points of LOD1 and P9, P8 and P7.
  • the point cloud encoder may selectively or combine predictive transform coding, lifting transform coding, and RAHT transform coding.
  • the point cloud encoder may generate a predictor for points and perform predictive transform coding to set a predicted attribute (or predicted attribute value) of each point. That is, N predictors may be generated for N points.
  • the predicted attribute (or attribute value) is a weight calculated based on the distance to each neighboring point to the attributes (or attribute values, for example, color, reflectance, etc.) of neighboring points set in the predictor of each point. It is set as the average value multiplied by (or weight value).
  • a point cloud encoder e.g., the coefficient quantization unit 40011
  • the quantization process is as shown in the following table.
  • the point cloud encoder (for example, the arithmetic encoder 40012) according to the embodiments may entropy-code the quantized and dequantized residual values as described above when there are points adjacent to the predictors of each point.
  • the point cloud encoder according to embodiments (for example, the arithmetic encoder 40012) may entropy-code attributes of the corresponding point without performing the above-described process if there are no points adjacent to the predictor of each point.
  • the point cloud encoder (for example, the lifting transform unit 40010) according to the embodiments generates a predictor of each point, sets the calculated LOD to the predictor, registers neighboring points, and increases the distance to the neighboring points.
  • Lifting transform coding can be performed by setting weights. Lifting transform coding according to embodiments is similar to the above-described predictive transform coding, but differs in that a weight is accumulated and applied to an attribute value.
  • a process of cumulatively applying a weight to an attribute value according to embodiments is as
  • the weights calculated by additionally multiplying the weights calculated for all predictors by the weights stored in the QW corresponding to the predictor indexes are cumulatively added to the update weight array by the indexes of neighboring nodes.
  • the value obtained by multiplying the calculated weight by the attribute value of the index of the neighboring node is accumulated and summed.
  • the predicted attribute value is calculated by additionally multiplying the attribute value updated through the lift update process by the weight updated through the lift prediction process (stored in QW).
  • a point cloud encoder for example, the coefficient quantization unit 40011
  • the point cloud encoder for example, the Arismatic encoder 40012
  • the point cloud encoder (for example, the RAHT transform unit 40008) according to the embodiments may perform RAHT transform coding that estimates the attributes of higher-level nodes by using an attribute associated with a node at a lower level of the octree.
  • RAHT transform coding is an example of attribute intra coding through octree backward scan.
  • the point cloud encoder according to the embodiments scans from voxels to the entire area, and repeats the merging process up to the root node while merging the voxels into larger blocks in each step.
  • the merging process according to the embodiments is performed only for an occupied node.
  • the merging process is not performed for the empty node, and the merging process is performed for the node immediately above the empty node.
  • the following equation represents the RAHT transformation matrix. Denotes the average attribute value of voxels at level l. Is Wow Can be calculated from Wow The weight of and to be.
  • Is high-pass coefficients, and the high-pass coefficients in each step are quantized and entropy-coded (for example, encoding of the arithmetic encoder 400012).
  • Weight is Is calculated as Root node is the last and It is created as follows:
  • the gDC value is also quantized and entropy coded like the high pass coefficient.
  • FIG. 10 shows an example of a point cloud decoder according to embodiments.
  • the point cloud decoder illustrated in FIG. 10 is an example of the point cloud video decoder 10006 described in FIG. 1, and may perform the same or similar operation as that of the point cloud video decoder 10006 described in FIG. 1.
  • the point cloud decoder may receive a geometry bitstream and an attribute bitstream included in one or more bitstreams.
  • the point cloud decoder includes a geometry decoder and an attribute decoder.
  • the geometry decoder performs geometry decoding on the geometry bitstream and outputs decoded geometry.
  • the attribute decoder outputs decoded attributes by performing attribute decoding on the basis of the decoded geometry and the attribute bitstream.
  • the decoded geometry and decoded attributes are used to reconstruct the point cloud content.
  • FIG. 11 shows an example of a point cloud decoder according to embodiments.
  • the point cloud decoder illustrated in FIG. 11 is an example of the point cloud decoder described in FIG. 10, and may perform a decoding operation that is a reverse process of the encoding operation of the point cloud encoder described in FIGS. 1 to 9.
  • the point cloud decoder may perform geometry decoding and attribute decoding. Geometry decoding is performed prior to attribute decoding.
  • the point cloud decoder includes an arithmetic decoder (11000), an octree synthesis unit (synthesize octree, 11001), a surface optimization synthesis unit (synthesize surface approximation, 11002), and a geometry reconstruction unit (reconstruct geometry). , 11003), inverse transform coordinates (11004), arithmetic decode (11005), inverse quantize (11006), RAHT transform unit (11007), LOD generator (generate LOD, 11008) ), Inverse lifting (11009), and/or inverse transform colors (11010).
  • the arithmetic decoder 11000, the octree synthesis unit 11001, the surface opoxidation synthesis unit 11002, the geometry reconstruction unit 11003, and the coordinate system inverse transform unit 11004 may perform geometry decoding.
  • Geometry decoding according to embodiments may include direct coding and trisoup geometry decoding. Direct coding and trisoup geometry decoding are optionally applied. Further, the geometry decoding is not limited to the above example, and is performed in the reverse process of the geometry encoding described in FIGS. 1 to 9.
  • the Arismatic decoder 11000 decodes the received geometry bitstream based on Arismatic coding.
  • the operation of the Arismatic decoder 11000 corresponds to the reverse process of the Arismatic encoder 40004.
  • the octree synthesizer 11001 may generate an octree by obtaining an ocupancy code from a decoded geometry bitstream (or information on a geometry obtained as a result of decoding).
  • a detailed description of the OQFancy code is as described in FIGS. 1 to 9.
  • the surface opoxidation synthesizer 11002 may synthesize a surface based on the decoded geometry and/or the generated octree.
  • the geometry reconstruction unit 11003 may regenerate the geometry based on the surface and/or the decoded geometry. 1 to 9, direct coding and trisoup geometry encoding are selectively applied. Accordingly, the geometry reconstruction unit 11003 directly imports and adds position information of points to which direct coding is applied. In addition, when trisoup geometry encoding is applied, the geometry reconstruction unit 11003 performs a reconstruction operation of the geometry reconstruction unit 40005, such as triangle reconstruction, up-sampling, and voxelization, to restore the geometry. have. Details are the same as those described in FIG. 6 and thus will be omitted.
  • the reconstructed geometry may include a point cloud picture or frame that does not include attributes.
  • the coordinate system inverse transform unit 11004 may acquire positions of points by transforming a coordinate system based on the restored geometry.
  • Arithmetic decoder 11005, inverse quantization unit 11006, RAHT conversion unit 11007, LOD generation unit 11008, inverse lifting unit 11009, and/or color inverse conversion unit 11010 are attributes described in FIG. Decoding can be performed.
  • Attribute decoding according to embodiments includes Region Adaptive Hierarchial Transform (RAHT) decoding, Interpolaration-based hierarchical nearest-neighbor prediction-Prediction Transform decoding, and interpolation-based hierarchical nearest-neighbor prediction with an update/lifting. step (Lifting Transform)) decoding may be included.
  • RAHT Region Adaptive Hierarchial Transform
  • Interpolaration-based hierarchical nearest-neighbor prediction-Prediction Transform decoding Interpolaration-based hierarchical nearest-neighbor prediction-Prediction Transform decoding
  • interpolation-based hierarchical nearest-neighbor prediction with an update/lifting step (Lifting Transform)) decoding may be included.
  • the Arismatic decoder 11005 decodes the attribute bitstream by arithmetic coding.
  • the inverse quantization unit 11006 inverse quantizes information on the decoded attribute bitstream or the attribute obtained as a result of decoding, and outputs inverse quantized attributes (or attribute values). Inverse quantization may be selectively applied based on the attribute encoding of the point cloud encoder.
  • the RAHT conversion unit 11007, the LOD generation unit 11008 and/or the inverse lifting unit 11009 may process reconstructed geometry and inverse quantized attributes. As described above, the RAHT conversion unit 11007, the LOD generation unit 11008, and/or the inverse lifting unit 11009 may selectively perform a decoding operation corresponding thereto according to the encoding of the point cloud encoder.
  • the inverse color transform unit 11010 performs inverse transform coding for inverse transforming a color value (or texture) included in the decoded attributes.
  • the operation of the color inverse transform unit 11010 may be selectively performed based on the operation of the color transform unit 40006 of the point cloud encoder.
  • elements of the point cloud decoder of FIG. 11 are not shown in the drawing, hardware including one or more processors or integrated circuits configured to communicate with one or more memories included in the point cloud providing apparatus , Software, firmware, or a combination thereof.
  • One or more processors may perform at least one or more of the operations and/or functions of the elements of the point cloud decoder of FIG. 11 described above. Further, one or more processors may operate or execute a set of software programs and/or instructions for performing operations and/or functions of elements of the point cloud decoder of FIG. 11.
  • the transmission device shown in FIG. 12 is an example of the transmission device 10000 of FIG. 1 (or a point cloud encoder of FIG. 4 ).
  • the transmission device illustrated in FIG. 12 may perform at least one or more of the same or similar operations and methods as the operations and encoding methods of the point cloud encoder described in FIGS. 1 to 9.
  • the transmission apparatus includes a data input unit 12000, a quantization processing unit 12001, a voxelization processing unit 12002, an octree occupancy code generation unit 12003, a surface model processing unit 12004, an intra/ Inter-coding processing unit (12005), Arithmetic coder (12006), metadata processing unit (12007), color conversion processing unit (12008), attribute transformation processing unit (or attribute transformation processing unit) (12009), prediction/lifting/RAHT transformation
  • a processing unit 12010, an Arithmetic coder 12011, and/or a transmission processing unit 12012 may be included.
  • the data input unit 12000 receives or acquires point cloud data.
  • the data input unit 12000 may perform the same or similar operation and/or an acquisition method to the operation and/or acquisition method of the point cloud video acquisition unit 10001 (or the acquisition process 20000 described in FIG. 2 ).
  • the coder 12006 performs geometry encoding.
  • the geometry encoding according to the embodiments is the same as or similar to the geometry encoding described in FIGS. 1 to 9, so a detailed description thereof will be omitted.
  • the quantization processing unit 12001 quantizes geometry (eg, a position value or position value of points).
  • the operation and/or quantization of the quantization processor 12001 is the same as or similar to the operation and/or quantization of the quantization unit 40001 described in FIG. 4. Detailed descriptions are the same as those described in FIGS. 1 to 9.
  • the voxelization processor 12002 voxelsizes the position values of the quantized points.
  • the voxelization processor 120002 may perform the same or similar operation and/or process as the operation and/or the voxelization process of the quantization unit 40001 described in FIG. 4. Detailed descriptions are the same as those described in FIGS. 1 to 9.
  • the octree occupancy code generation unit 12003 performs octree coding on positions of voxelized points based on an octree structure.
  • the octree ocupancy code generation unit 12003 may generate an ocupancy code.
  • the octree occupancy code generation unit 12003 may perform the same or similar operation and/or method as the operation and/or method of the point cloud encoder (or octree analysis unit 40002) described in FIGS. 4 and 6. Detailed descriptions are the same as those described in FIGS. 1 to 9.
  • the surface model processing unit 12004 may perform trisoup geometry encoding to reconstruct positions of points within a specific area (or node) based on a voxel based on a surface model.
  • the face model processing unit 12004 may perform the same or similar operation and/or method as the operation and/or method of the point cloud encoder (eg, the surface aproxiation analysis unit 40003) described in FIG. 4. Detailed descriptions are the same as those described in FIGS. 1 to 9.
  • the intra/inter coding processor 12005 may intra/inter code point cloud data.
  • the intra/inter coding processing unit 12005 may perform the same or similar coding as the intra/inter coding described in FIG. 7. The detailed description is the same as described in FIG. 7. According to embodiments, the intra/inter coding processing unit 12005 may be included in the arithmetic coder 12006.
  • the arithmetic coder 12006 entropy encodes an octree and/or an approximated octree of point cloud data.
  • the encoding method includes an Arithmetic encoding method.
  • the arithmetic coder 12006 performs the same or similar operation and/or method to the operation and/or method of the arithmetic encoder 40004.
  • the metadata processing unit 12007 processes metadata related to point cloud data, for example, a set value, and provides it to a necessary processing such as geometry encoding and/or attribute encoding.
  • the metadata processing unit 12007 may generate and/or process signaling information related to geometry encoding and/or attribute encoding. Signaling information according to embodiments may be encoded separately from geometry encoding and/or attribute encoding. In addition, signaling information according to embodiments may be interleaved.
  • the color conversion processing unit 12008, the attribute conversion processing unit 12009, the prediction/lifting/RAHT conversion processing unit 12010, and the Arithmetic coder 12011 perform attribute encoding.
  • Attribute encoding according to embodiments is the same as or similar to the attribute encoding described in FIGS. 1 to 9, and thus a detailed description thereof will be omitted.
  • the color conversion processing unit 12008 performs color conversion coding that converts color values included in attributes.
  • the color conversion processing unit 12008 may perform color conversion coding based on the reconstructed geometry. Description of the reconstructed geometry is the same as described in FIGS. 1 to 9. In addition, the same or similar operation and/or method to the operation and/or method of the color conversion unit 40006 described in FIG. 4 is performed. Detailed description will be omitted.
  • the attribute conversion processing unit 12009 performs attribute conversion for converting attributes based on the reconstructed geometry and/or positions for which geometry encoding has not been performed.
  • the attribute conversion processing unit 12009 performs the same or similar operation and/or method to the operation and/or method of the attribute conversion unit 40007 described in FIG. 4. Detailed description will be omitted.
  • the prediction/lifting/RAHT transform processing unit 12010 may code transformed attributes by using any one or a combination of RAHT coding, predictive transform coding, and lifting transform coding.
  • the prediction/lifting/RAHT conversion processing unit 12010 performs at least one of the same or similar operations as the RAHT conversion unit 40008, LOD generation unit 40009, and lifting conversion unit 40010 described in FIG. 4. do.
  • descriptions of predictive transform coding, lifting transform coding, and RAHT transform coding are the same as those described in FIGS.
  • the Arismatic coder 12011 may encode coded attributes based on Arismatic coding.
  • the Arismatic coder 12011 performs the same or similar operation and/or method to the operation and/or method of the Arismatic encoder 400012.
  • the transmission processor 12012 transmits each bitstream including the encoded geometry and/or the encoded attribute, and metadata information, or transmits the encoded geometry and/or the encoded attribute, and the metadata information in one piece. It can be configured as a bitstream and transmitted. When the encoded geometry and/or encoded attribute and metadata information according to the embodiments are configured as one bitstream, the bitstream may include one or more sub-bitstreams.
  • the bitstream according to the embodiments is a sequence parameter set (SPS) for signaling of a sequence level, a geometry parameter set (GPS) for signaling of geometry information coding, an attribute parameter set (APS) for signaling of attribute information coding, and a tile.
  • SPS sequence parameter set
  • GPS geometry parameter set
  • APS attribute parameter set
  • TPS Transaction Parameter Set
  • Slice data may include information on one or more slices.
  • One slice according to embodiments may include one geometry bitstream (Geom0 0 ) and one or more attribute bitstreams (Attr0 0 and Attr1 0 ).
  • the TPS according to the embodiments may include information about each tile (eg, coordinate value information and height/size information of a bounding box) for one or more tiles.
  • the geometry bitstream may include a header and a payload.
  • the header of the geometry bitstream may include identification information of a parameter set included in GPS (geom_ parameter_set_id), a tile identifier (geom_tile_id), a slice identifier (geom_slice_id), and information about data included in the payload.
  • the metadata processing unit 12007 may generate and/or process signaling information and transmit the generated signaling information to the transmission processing unit 12012.
  • elements that perform geometry encoding and elements that perform attribute encoding may share data/information with each other as dotted line processing.
  • the transmission processing unit 12012 according to the embodiments may perform the same or similar operation and/or transmission method as the operation and/or transmission method of the transmitter 10003. Detailed descriptions are the same as those described in FIGS. 1 to 2 and thus will be omitted.
  • FIG 13 is an example of a reception device according to embodiments.
  • the receiving device illustrated in FIG. 13 is an example of the receiving device 10004 of FIG. 1 (or the point cloud decoder of FIGS. 10 and 11 ).
  • the receiving device illustrated in FIG. 13 may perform at least one or more of the same or similar operations and methods as the operations and decoding methods of the point cloud decoder described in FIGS. 1 to 11.
  • the receiving apparatus includes a receiving unit 13000, a receiving processing unit 13001, an arithmetic decoder 13002, an octree reconstruction processing unit 13003 based on an Occupancy code, and a surface model processing unit (triangle reconstruction).
  • a receiving unit 13000 Up-sampling, voxelization) (13004), inverse quantization processing unit (13005), metadata parser (13006), arithmetic decoder (13007), inverse quantization processing unit (13008), prediction A /lifting/RAHT inverse transformation processing unit 13009, a color inverse transformation processing unit 13010, and/or a renderer 13011 may be included.
  • Each component of decoding according to the embodiments may perform a reverse process of the component of encoding according to the embodiments.
  • the receiving unit 13000 receives point cloud data.
  • the receiving unit 13000 may perform the same or similar operation and/or a receiving method as the operation and/or receiving method of the receiver 10005 of FIG. 1. Detailed description will be omitted.
  • the reception processing unit 13001 may obtain a geometry bitstream and/or an attribute bitstream from received data.
  • the reception processing unit 13001 may be included in the reception unit 13000.
  • the arithmetic decoder 13002, the ocupancy code-based octree reconstruction processing unit 13003, the surface model processing unit 13004, and the inverse quantization processing unit 13005 may perform geometry decoding. Since the geometry decoding according to the embodiments is the same as or similar to the geometry decoding described in FIGS. 1 to 10, a detailed description will be omitted.
  • the Arismatic decoder 13002 may decode a geometry bitstream based on Arismatic coding.
  • the Arismatic decoder 13002 performs the same or similar operation and/or coding as the operation and/or coding of the Arismatic decoder 11000.
  • the ocupancy code-based octree reconstruction processing unit 13003 may obtain an ocupancy code from a decoded geometry bitstream (or information on a geometry obtained as a result of decoding) to reconstruct the octree.
  • the ocupancy code-based octree reconstruction processing unit 13003 performs the same or similar operation and/or method as the operation and/or the octree generation method of the octree synthesis unit 11001.
  • the surface model processing unit 13004 decodes the trisoup geometry based on the surface model method and reconstructs the related geometry (e.g., triangle reconstruction, up-sampling, voxelization). Can be done.
  • the surface model processing unit 13004 performs an operation identical or similar to that of the surface opoxidation synthesis unit 11002 and/or the geometry reconstruction unit 11003.
  • the inverse quantization processing unit 13005 may inverse quantize the decoded geometry.
  • the metadata parser 13006 may parse metadata included in the received point cloud data, for example, a setting value.
  • the metadata parser 13006 may pass metadata to geometry decoding and/or attribute decoding.
  • the detailed description of the metadata is the same as that described in FIG. 12 and thus will be omitted.
  • the arithmetic decoder 13007, the inverse quantization processing unit 13008, the prediction/lifting/RAHT inverse transformation processing unit 13009, and the color inverse transformation processing unit 13010 perform attribute decoding. Since the attribute decoding is the same as or similar to the attribute decoding described in FIGS. 1 to 10, a detailed description will be omitted.
  • the Arismatic decoder 13007 may decode the attribute bitstream through Arismatic coding.
  • the arithmetic decoder 13007 may perform decoding of the attribute bitstream based on the reconstructed geometry.
  • the Arismatic decoder 13007 performs the same or similar operation and/or coding as the operation and/or coding of the Arismatic decoder 11005.
  • the inverse quantization processing unit 13008 may inverse quantize the decoded attribute bitstream.
  • the inverse quantization processing unit 13008 performs the same or similar operation and/or method as the operation and/or the inverse quantization method of the inverse quantization unit 11006.
  • the prediction/lifting/RAHT inverse transform processing unit 13009 may process reconstructed geometry and inverse quantized attributes.
  • the prediction/lifting/RAHT inverse transform processing unit 13009 is the same or similar to the operations and/or decodings of the RAHT transform unit 11007, the LOD generator 11008 and/or the inverse lifting unit 11009, and/or At least one or more of the decodings is performed.
  • the color inverse transform processing unit 13010 according to embodiments performs inverse transform coding for inverse transforming a color value (or texture) included in the decoded attributes.
  • the color inverse transform processing unit 13010 performs the same or similar operation and/or inverse transform coding as the operation and/or inverse transform coding of the color inverse transform unit 11010.
  • the renderer 13011 may render point cloud data.
  • FIG. 14 illustrates an architecture for G-PCC-based point cloud content streaming according to embodiments.
  • FIG. 14 shows a process in which the transmission device (for example, the transmission device 10000, the transmission device of FIG. 12, etc.) described in FIGS. 1 to 13 processes and transmits the point cloud content.
  • the transmission device for example, the transmission device 10000, the transmission device of FIG. 12, etc.
  • the transmission device may obtain audio Ba of the point cloud content (Audio Acquisition), encode the acquired audio, and output audio bitstreams Ea.
  • the transmission device acquires a point cloud (Bv) (or point cloud video) of the point cloud content (Point Acqusition), performs point cloud encoding on the acquired point cloud, and performs a point cloud video bitstream ( Eb) can be output.
  • the point cloud encoding of the transmission device is the same as or similar to the point cloud encoding described in FIGS. 1 to 13 (for example, encoding of the point cloud encoder of FIG. 4, etc.), so a detailed description thereof will be omitted.
  • the transmission device may encapsulate the generated audio bitstreams and video bitstreams into files and/or segments (File/segment encapsulation).
  • the encapsulated file and/or segment may include a file of a file format such as ISOBMFF or a DASH segment.
  • Point cloud-related metadata may be included in an encapsulated file format and/or segment.
  • Meta data may be included in boxes of various levels in the ISOBMFF file format or may be included in separate tracks in the file.
  • the transmission device may encapsulate the metadata itself as a separate file.
  • the transmission device according to the embodiments may deliver an encapsulated file format and/or segment through a network. Since the encapsulation and transmission processing method of the transmission device is the same as those described in FIGS. 1 to 13 (for example, the transmitter 10003, the transmission step 20002 of FIG. 2, etc.), detailed descriptions are omitted.
  • FIG. 14 shows a process of processing and outputting point cloud content by the receiving device (for example, the receiving device 10004, the receiving device of FIG. 13, etc.) described in FIGS. 1 to 13.
  • the receiving device for example, the receiving device 10004, the receiving device of FIG. 13, etc.
  • the receiving device includes a device that outputs final audio data and final video data (e.g., loudspeakers, headphones, display), and a point cloud player that processes point cloud content ( Point Cloud Player).
  • the final data output device and the point cloud player may be configured as separate physical devices.
  • the point cloud player according to the embodiments may perform Geometry-based Point Cloud Compression (G-PCC) coding and/or Video based Point Cloud Compression (V-PCC) coding and/or next-generation coding.
  • G-PCC Geometry-based Point Cloud Compression
  • V-PCC Video based Point Cloud Compression
  • the receiving device secures a file and/or segment (F', Fs') included in the received data (for example, a broadcast signal, a signal transmitted through a network, etc.) and decapsulation (File/ segment decapsulation). Since the reception and decapsulation method of the reception device is the same as that described in FIGS. 1 to 13 (for example, the receiver 10005, the reception unit 13000, the reception processing unit 13001, etc.), a detailed description will be omitted.
  • the receiving device secures an audio bitstream E'a and a video bitstream E'v included in a file and/or segment. As shown in the drawing, the receiving device outputs the decoded audio data B'a by performing audio decoding on the audio bitstream, and rendering the decoded audio data to final audio data. (A'a) is output through speakers or headphones.
  • the receiving device outputs decoded video data B'v by performing point cloud decoding on the video bitstream E'v. Since the point cloud decoding according to the embodiments is the same as or similar to the point cloud decoding described in FIGS. 1 to 13 (for example, decoding of the point cloud decoder of FIG. 11 ), a detailed description will be omitted.
  • the receiving device may render the decoded video data and output the final video data through the display.
  • the receiving device may perform at least one of decapsulation, audio decoding, audio rendering, point cloud decoding, and rendering operations based on metadata transmitted together.
  • the description of the metadata is the same as that described with reference to FIGS. 12 to 13 and thus will be omitted.
  • the receiving device may generate feedback information (orientation, viewport).
  • the feedback information according to the embodiments may be used in a decapsulation process, a point cloud decoding process and/or a rendering process of a receiving device, or may be transmitted to a transmitting device.
  • the description of the feedback information is the same as that described with reference to FIGS. 1 to 13 and thus will be omitted.
  • 15 shows an example of a transmission device according to embodiments.
  • the transmission device of FIG. 15 is a device that transmits point cloud content, and the transmission device described in FIGS. 1 to 14 (for example, the transmission device 10000 of FIG. 1, the point cloud encoder of FIG. 4, the transmission device of FIG. 12, 14). Accordingly, the transmission device of FIG. 15 performs the same or similar operation to that of the transmission device described in FIGS. 1 to 14.
  • the transmission device may perform at least one or more of point cloud acquisition, point cloud encoding, file/segment encapsulation, and delivery. Can be done.
  • the transmission device may perform geometry encoding and attribute encoding.
  • Geometry encoding according to embodiments may be referred to as geometry compression, and attribute encoding may be referred to as attribute compression.
  • attribute compression As described above, one point may have one geometry and one or more attributes. Therefore, the transmission device performs attribute encoding for each attribute.
  • the drawing shows an example in which a transmission device performs one or more attribute compressions (attribute #1 compression, ... attribute #N compression).
  • the transmission apparatus may perform auxiliary compression. Additional compression is performed on the metadata. Description of the meta data is the same as that described with reference to FIGS. 1 to 14 and thus will be omitted.
  • the transmission device may perform mesh data compression.
  • Mesh data compression according to embodiments may include the trisoup geometry encoding described in FIGS. 1 to 14.
  • the transmission device may encapsulate bitstreams (eg, point cloud streams) output according to point cloud encoding into files and/or segments.
  • a transmission device performs media track encapsulation for carrying data other than metadata (for example, media data), and metadata tracak for carrying meta data. encapsulation) can be performed.
  • metadata may be encapsulated as a media track.
  • the transmitting device receives feedback information (orientation/viewport metadata) from the receiving device, and based on the received feedback information, at least one of point cloud encoding, file/segment encapsulation, and transmission operations. Any one or more can be performed. Detailed descriptions are the same as those described with reference to FIGS.
  • FIG. 16 shows an example of a receiving device according to embodiments.
  • the receiving device of FIG. 16 is a device that receives point cloud content, and the receiving device described in FIGS. 1 to 14 (for example, the receiving device 10004 of FIG. 1, the point cloud decoder of FIG. 11, the receiving device of FIG. 13, 14). Accordingly, the receiving device of FIG. 16 performs the same or similar operation to that of the receiving device described in FIGS. 1 to 14. In addition, the receiving device of FIG. 16 may receive a signal transmitted from the transmitting device of FIG. 15, and may perform a reverse process of the operation of the transmitting device of FIG. 15.
  • the receiving device may perform at least one or more of delivery, file/segement decapsulation, point cloud decoding, and point cloud rendering. Can be done.
  • the reception device performs decapsulation on a file and/or segment acquired from a network or a storage device.
  • the receiving device performs media track decapsulation carrying data other than meta data (for example, media data), and metadata track decapsulation carrying meta data. decapsulation) can be performed.
  • the metadata track decapsulation is omitted.
  • the receiving device may perform geometry decoding and attribute decoding on bitstreams (eg, point cloud streams) secured through decapsulation.
  • Geometry decoding according to embodiments may be referred to as geometry decompression, and attribute decoding may be referred to as attribute decompression.
  • a point may have one geometry and one or more attributes, and are each encoded. Therefore, the receiving device performs attribute decoding for each attribute.
  • the drawing shows an example in which the receiving device performs one or more attribute decompressions (attribute #1 decompression, ... ute #N decompression).
  • the receiving device may perform auxiliary decompression. Additional decompression is performed on the metadata.
  • the receiving device may perform mesh data decompression.
  • the mesh data decompression according to embodiments may include decoding the trisoup geometry described in FIGS. 1 to 14.
  • the receiving device according to the embodiments may render the output point cloud data according to the point cloud decoding.
  • the receiving device secures orientation/viewport metadata using a separate sensing/tracking element, etc., and transmits feedback information including the same to a transmission device (for example, the transmission device of FIG. 15). Can be transmitted.
  • the receiving device may perform at least one or more of a receiving operation, file/segment decapsulation, and point cloud decoding based on the feedback information. Detailed descriptions are the same as those described with reference to FIGS.
  • FIG. 17 shows an example of a structure capable of interworking with a method/device for transmitting and receiving point cloud data according to embodiments.
  • the structure of FIG. 17 includes at least one of a server 1760, a robot 1710, an autonomous vehicle 1720, an XR device 1730, a smartphone 1740, a home appliance 1750, and/or an HMD 1770.
  • a configuration connected to the cloud network 1710 is shown.
  • the robot 1710, the autonomous vehicle 1720, the XR device 1730, the smartphone 1740, the home appliance 1750, and the like are referred to as devices.
  • the XR device 1730 may correspond to a point cloud data (PCC) device according to embodiments or may be interlocked with a PCC device.
  • PCC point cloud data
  • the cloud network 1700 may constitute a part of a cloud computing infrastructure or may mean a network that exists in the cloud computing infrastructure.
  • the cloud network 1700 may be configured using a 3G network, a 4G or long term evolution (LTE) network, or a 5G network.
  • LTE long term evolution
  • the server 1760 includes at least one of a robot 1710, an autonomous vehicle 1720, an XR device 1730, a smartphone 1740, a home appliance 1750, and/or an HMD 1770, and a cloud network 1700.
  • the connected devices 1710 to 1770 may be connected through, and may help at least part of the processing of the connected devices.
  • the HMD (Head-Mount Display) 1770 represents one of types in which an XR device and/or a PCC device according to embodiments may be implemented.
  • the HMD type device according to the embodiments includes a communication unit, a control unit, a memory unit, an I/O unit, a sensor unit, and a power supply unit.
  • the devices 1710 to 1750 shown in FIG. 17 may be interlocked/coupled with the point cloud data transmission/reception apparatus according to the above-described embodiments.
  • the XR/PCC device 1730 is applied with PCC and/or XR (AR+VR) technology to provide a head-mount display (HMD), a head-up display (HUD) provided in a vehicle, television, mobile phone, smart phone It may be implemented as a computer, wearable device, home appliance, digital signage, vehicle, fixed robot or mobile robot.
  • HMD head-mount display
  • HUD head-up display
  • the XR/PCC device 1730 analyzes 3D point cloud data or image data acquired through various sensors or from an external device to generate position data and attribute data for 3D points, thereby Information can be obtained, and the XR object to be output can be rendered and output.
  • the XR/PCC device 1730 may output an XR object including additional information on the recognized object in correspondence with the recognized object.
  • the autonomous vehicle 1720 may be implemented as a mobile robot, a vehicle, or an unmanned aerial vehicle by applying PCC technology and XR technology.
  • the autonomous driving vehicle 1720 to which the XR/PCC technology is applied may refer to an autonomous driving vehicle having a means for providing an XR image, an autonomous driving vehicle that is an object of control/interaction within the XR image.
  • the autonomous vehicle 1720 which is the object of control/interaction in the XR image, is distinguished from the XR device 1730 and may be interlocked with each other.
  • the autonomous vehicle 1720 having a means for providing an XR/PCC image may acquire sensor information from sensors including a camera, and may output an XR/PCC image generated based on the acquired sensor information.
  • the autonomous vehicle 1720 may provide an XR/PCC object corresponding to a real object or an object in a screen to the occupant by outputting an XR/PCC image with a HUD.
  • the XR/PCC object when the XR/PCC object is output to the HUD, at least a part of the XR/PCC object may be output to overlap the actual object facing the occupant's gaze.
  • the XR/PCC object when the XR/PCC object is output on a display provided inside the autonomous vehicle, at least a part of the XR/PCC object may be output to overlap the object in the screen.
  • the autonomous vehicle 1220 may output XR/PCC objects corresponding to objects such as lanes, other vehicles, traffic lights, traffic signs, motorcycles, pedestrians, and buildings.
  • VR Virtual Reality
  • AR Augmented Reality
  • MR Magnetic Reality
  • PCC Point Cloud Compression
  • VR technology is a display technology that provides objects or backgrounds in the real world only as CG images.
  • AR technology refers to a technology that shows a virtually created CG image on a real object image.
  • MR technology is similar to the AR technology described above in that virtual objects are mixed and combined in the real world.
  • real objects and virtual objects made from CG images are clear, and virtual objects are used in a form that complements the real objects, whereas in MR technology, the virtual objects are regarded as having the same characteristics as the real objects. It is distinct from technology. More specifically, for example, it is a hologram service to which the aforementioned MR technology is applied.
  • VR, AR, and MR technologies are sometimes referred to as XR (extended reality) technology rather than clearly distinguishing between them. Therefore, embodiments of the present invention are applicable to all of VR, AR, MR, and XR technologies.
  • This technology can be applied to encoding/decoding based on PCC, V-PCC, and G-PCC technology.
  • the PCC method/apparatus according to the embodiments may be applied to a vehicle providing an autonomous driving service.
  • Vehicles providing autonomous driving service are connected to PCC devices to enable wired/wireless communication.
  • the vehicle receives/processes AR/VR/PCC service related content data that can be provided together with the autonomous driving service. Can be transferred to.
  • the point cloud transmission/reception device may receive/process AR/VR/PCC service related content data according to a user input signal input through the user interface device and provide it to the user.
  • the vehicle or user interface device may receive a user input signal.
  • the user input signal may include a signal indicating an autonomous driving service.
  • FIG. 18 illustrates a point cloud data encoder according to embodiments.
  • the point cloud encoder 18000 receives point cloud data (PCC data, 18000a) and encodes them.
  • the point cloud encoder according to the embodiments outputs a geometric information bitstream 18000b and an attribute information bitstream 18000c.
  • the point cloud encoder 18000 according to the embodiments may include a spatial division unit 18001, a geometric information encoding unit 18002, and/or an attribute information encoding unit 18003.
  • the spatial division unit 18001 may receive the point cloud data (PCC data, 18000a) from the point cloud encoder, and divide the point cloud data into one or more three-dimensional spaces.
  • the spatial divider 18001 may receive point cloud data and spatially divide the point cloud data into 3D blocks.
  • the point cloud data may include geometric information and/or attribute information of a point (or points).
  • the spatial divider 18001 may spatially divide point cloud data (PCC data) based on a bounding box and/or a sub-bounding box.
  • the method/apparatus according to the embodiments may perform encoding/decoding based on a divided unit (box).
  • the space division unit 18001 is a part of the operation of the Point Cloud Acquisition (10001) of FIG. 1, the acquisition (20000) of FIG. 2, the operation of FIGS. 3 to 5, and the data input unit 12000 of FIG. 12 /Can do all.
  • the geometric information encoding unit 18002 receives geometry information of point cloud data (PCC data) according to embodiments and encodes them.
  • the geometry information may mean location information of points included in the point cloud data.
  • the geometry information encoder 18002 encodes geometry information and outputs a geometry information bitstream.
  • the geometric information encoder 18002 may reconstruct the location information of the points and output the reconstructed geometric information 18002a.
  • the geometric information encoding unit 18002 may transmit the reconstructed geometric information to the attribute information encoding unit 18002.
  • the geometric information encoding unit 18002 is a point cloud video encoder 10002 of FIG. 1, an encoding 20001 of FIG. 2, a coordinate system transforming unit 40000 of FIG. 4, a quantization 40001, an octree analysis unit. (40002), a surface aproximation analysis unit (40003), an Arismatic encoder (40004), a geometry reconstruction unit (40005), a quantization processing unit (12001) of FIG. 12, a voxelization processing unit (12002), an octree occupancy
  • Some/all of the operations of the code generation unit 12003, the surface model processing unit 12004, the intra/inter coding processing unit 12005, and/or the arithmetic coder 12006 may be performed.
  • the attribute information encoding unit 18003 may receive attribute information of the point cloud data according to embodiments, and may encode the attribute information using the reconstructed geometric information received from the geometric information encoder 18003.
  • the attribute information encoding unit 18003 encodes attribute information and outputs an attribute information bitstream 18000c.
  • the attribute information encoder 18003 may, for example, perform prediction transform, lifting transform, and/or region adaptive hierarchical transform (RAHT) transform according to embodiments.
  • RAHT region adaptive hierarchical transform
  • the attribute information encoding unit 18003 may, for example, perform prediction lifting (or predictive lifting) transformation.
  • the prediction lifting transformation may mean a combination of some or all of the detailed operations of the predictive transformation and/or the lifting transformation according to embodiments.
  • the point cloud encoder encodes some, all and/or a combination of prediction transform, lifting transform, and/or Region Adaptive Hierarchical Transform (RAHT) transform according to the embodiments. Can be done.
  • RAHT Region Adaptive Hierarchical Transform
  • the attribute information encoding unit 18003 includes a point cloud video encoder 10002 of FIG. 1, an encoding 20001 of FIG. 2, a color converter 40006 of FIG. 4, an attribute converter 40007, and a RATH converter 40008. , LOD generation unit 40009, Lifting transform unit 40010, coefficient quantization unit 40011 and/or operation of Arismatic encoding unit 40012, color conversion processing unit 12008 of FIG. 12, attribute conversion processing unit 12009 , All/some operations of the prediction/lifting/RAHT conversion processor 12010 and the Arismatic coder 12011 may be performed.
  • the reconstructed geometric information 18002c may mean an octree reconstructed by the Reconstruct Geometry 40005 described in FIG. 4 and/or an approximated octree.
  • the restored geometric information may refer to the occupancy code described in FIG. 6 or may refer to an octree structure.
  • the restored geometric information may refer to an octree occupancy code generated by the octree occupancy code generator 12003 described in FIG. 12.
  • the attribute information encoder 18003 may encode attribute information of point cloud data according to embodiments.
  • the encoder 18003 according to the embodiments may encode attribute information by using reconstructed geometric information (or reconstructed geometric information) according to the embodiments.
  • the attribute information encoder 18003 may generate a bitstream including attribute information (or attribute information) by encoding the received data.
  • the attribute information encoding unit 18003 includes a color conversion unit 40006, an attribute transmission unit 40007, a RAHT conversion unit 40008, an LOD generation unit 40009, a lifting unit 40010, and A quantization unit 40011 and/or an arithmetic encoding unit 400012 may be included.
  • the point cloud data includes geometry information indicating the location of each point and attribute information indicating an attribute (attribute) of each point. Since point cloud data can be distributed unevenly in a 3D space, compression is performed using an octree structure according to embodiments in order to efficiently compress the point cloud data. That is, the encoder according to embodiments generates an octree, and encodes attribute information based on the generated octree. A method of encoding attribute information according to embodiments may be performed based on a region adaptive hierarchical transform (RAHT) and a level of detail (LoD).
  • RAHT region adaptive hierarchical transform
  • LoD level of detail
  • RAHT-based attribute encoding uses the transformation matrix described in FIG. 9.
  • the coefficients used in the transformation matrix are calculated according to the level of the octree structure, and thus depend on the octree structure. Accordingly, since RAHT-based attribute encoding can be performed after encoding the octree structure (ie, after performing geometry encoding), unnecessary delay may occur in a system requiring high-speed processing.
  • a nearest neighbor search process is performed to search for neighboring points at a specific point.
  • the nearest neighbor search process can search for exact neighboring points, but since the time required for the search process is relatively long, unnecessary delay may occur in a system requiring high-speed processing.
  • the encoder generates a colored octree by matching the attribute and/or position information of a point with nodes of an octree, and performs attribute encoding based on the colored octree. Perform.
  • the encoder according to the embodiments may perform attribute encoding with a small amount of operation based on the colored octree.
  • the transmitting device may transmit signaling information related to the colored octree to the receiving device.
  • the receiving device may secure signaling information related to the collated octree and generate a colored octree.
  • the decoder according to the embodiments may perform attribute decoding simultaneously with geometry decoding based on the colored octree, thereby preventing unnecessary delay in providing point cloud data. Also, since the decoder according to the embodiments processes the encoded attribute based on the colored octree, attribute decoding is performed with a smaller amount of operation.
  • the reception device according to the embodiments may render or output content having various levels of resolution according to the performance of the reception device (eg, renderer performance, output performance, etc.) based on the colored octree. A process of generating a colored octree by colorizing an octree according to the embodiments, and transmitting the colorized octree, will be described below.
  • 19 shows an octree and a colored octree according to embodiments.
  • the point cloud data encoder may generate an octree according to the embodiments, and may generate a colored octree by using the generated octree.
  • 19 shows a method of generating a colored octree.
  • the colored octree structure means a colored octree structure in which attribute information is included in one or more nodes included in the octree. That is, the colored octree may refer to a structure that simultaneously indicates location information of points by using an octree structure and simultaneously includes attribute information matching the corresponding location.
  • the octree structure refers to a data structure representing location information of points.
  • the octree structure means an octree described in FIGS. 5 to 6.
  • the octree structure consists of a k-gene tree made up of one or more nodes. As described with reference to FIGS. 5 to 6, the octree structure indicates whether points are occupied in 3D space by using 0 and 1.
  • the octree structure includes one root node (19000a).
  • the root node 19000a includes eight child nodes 19000b-1 to 19000b-2.
  • the child node has a value of 0 or 1 as whether or not points are occupied in the 3D space.
  • the eight child nodes may be referred to as nodes having a level of 1. Some of the eight child nodes may further include lower child nodes.
  • the octree structure includes nodes of the lowest level, that is, one or more leaf nodes (19000c-1 to 19000c-2).
  • the leaf node corresponds to a three-dimensional space (ie, voxel) that is no longer divided.
  • the octree structure shown in FIG. 19(A) may be generated by the geometric information encoding unit 18002 of FIG. 18, and may be generated by the geometry reconstruction unit 11003 of FIG. 11.
  • the octree structure shown in FIG. 19A includes only location information of points in a 3D space. Leaf nodes in the octree structure only indicate whether or not there is a point in space within a voxel unit by using 0 and 1.
  • 19(B) shows that attribute information is matched to a leaf node of an octree structure. Since leaf nodes in the octree structure only indicate whether or not a point in the space in the voxel unit exists, the encoder according to embodiments may match attribute information corresponding to the space in the voxel unit corresponding to the leaf node. .
  • the encoder according to the embodiments does not need to match the attribute information with the corresponding leaf node (19001-1).
  • the other leaf node 19000c-2 in FIG. 19A has one or more points in the corresponding voxel.
  • the encoder according to the embodiments may match attribute information representing one or more points to a corresponding leaf node (19001a-2). Matching attribute information to a leaf node can be understood as substituting the value of the corresponding leaf node into the corresponding attribute information.
  • an operation of matching geometry information and/or attribute information to one or more nodes in an octree structure may be referred to as colorize. That is, when geometry information and/or attribute information are matched with a specific node (including a leaf node) in an octree structure, it can be expressed as colorizing a specific node. For example, when geometry information and/or attribute information is matched with a leaf node in an octree structure, it may be expressed as colorizing the leaf node. In addition, when geometry information and/or attribute information are matched with a root node of an octree node, it may be expressed as colorizing the root node.
  • the encoder according to embodiments may match attribute information of the corresponding point to a leaf node corresponding to the corresponding voxel.
  • attribute information eg, average information, etc.
  • 19(C) shows a process of generating a colored octree by using an octree in which attribute information is matched to a leaf node.
  • the encoder matches some data of attribute information matched to the leaf node to nodes other than the leaf node of the octree. For example, in FIG. 19C, if attribute information representing in the entire point cloud data is C2, C2 may be matched to the root node 19002a.
  • the encoder may further remove leaf nodes having redundant information since the matched attribute information may be duplicated in one of the leaf nodes. (19002b-1 and 19002b-2).
  • the encoder according to the embodiments can perform attribute encoding without encoding all the octree structures, resulting in unnecessary delay in a system requiring high-speed processing Can be solved.
  • the encoder according to embodiments may generate a colored octree using an octree structure, so that a process for searching for a peripheral point may be performed faster than an attribute coding method using LoD. Accordingly, the transmitting end according to the embodiments may compress attribute information based on a small amount of computation.
  • the point cloud data receiving apparatus can decode the attribute information without necessarily decoding all attribute information by decoding using a colored octree, so that it is scalable.
  • One decoding is possible. That is, receivers of various performances may be supported based on one compressed bitstream using the colored octree according to the embodiments.
  • the transmission device when the transmission device according to the embodiments compresses information for a decoder of various performances, instead of generating or storing independent compression information suitable for each decoder performance, a receiver of various performances through one bitstream Because it can support the transmission unit storage space and bit efficiency can be increased.
  • the transmission unit can generate and deliver low-resolution point cloud data.
  • FIG. 20 shows a point cloud data encoder according to embodiments.
  • the point cloud data encoder 20000 receives and encodes point cloud data, and then outputs a geometry bitstream and an attribute bitstream.
  • the point cloud data encoder 20000 according to the embodiments includes an octree generation unit (Octree generation, 20001), a geometry prediction unit (Geometry prediction 20002), a geometry entropy coding unit (Entropy coding, 20003), and an octree matching unit (Octree matching). 20004), colored octree generation (20004), attribute prediction (20005), transform & quantization (20006), and attribute entropy coding (20007). Include.
  • Point cloud data may mean PCC data 18000a of FIG. 18 or data divided by the space division unit 18001.
  • Point cloud data includes geometry data and attribute data.
  • Geometry data is information representing location information of point cloud data.
  • the attribute data is information representing attribute information of point cloud data.
  • the geometry bitstream corresponds to the geometry information bitstream 18000b of FIG. 18.
  • the attribute bitstream corresponds to the attribute information bitstream 18000c of FIG. 18.
  • the octree generator 20001 receives geometry data according to embodiments.
  • the octree generation unit 20001 generates an octree structure of position information of pointers using geometry data.
  • the octree structure refers to the octree structure described in FIGS. 5 to 6.
  • the octree generation unit 20001 transfers the generated octree structure to the geometry prediction unit 19002 and/or the octree matching unit 20004.
  • the octree generator 20001 may be included in the geometric information encoding unit 18002 of FIG. 18, and may mean the geometry reconstruction unit 11003 of FIG. 11.
  • the geometry prediction unit 20002 predicts geometry information using the octree according to the embodiments.
  • the transmission device may perform prediction based on positional proximity between child nodes within a certain range from a specific point. For example, the transmitting device or the receiving device may assume that lower nodes having the same parent node are adjacent to each other in the octree structure, and the transmitting device or the receiving device may assume that predicted values between adjacent child nodes are similar. Accordingly, the receiving device predicts the attribute data of the parent node by defining a sibling node having the same parent node to have the same predicted attribute value rather than derive a predicted attribute value for each child node.
  • the transmitting and receiving apparatuses can increase the coding efficiency by reducing the number of coefficients required when encoding each child node.
  • properties matching the octree structure can be predicted.
  • the transmission device may obtain a property prediction error of each child node based on the prediction information as follows.
  • the attribute prediction error means a difference between the original attribute data and the predicted attribute data.
  • different methods e.g., weighted difference, weighted averaged difference, etc. can be used for attribute prediction errors.
  • the geometry entry P coding unit 20003 entropy-codes predicted geometry information according to the embodiments to output a geometry bitstream.
  • the colored octree generator 20004 receives the octree structure and attribute data generated by the octree generator 20001 to generate a colored octree according to the embodiments.
  • the colored octree generator 20004 may generate a colored octree according to the operation described in FIG. 21.
  • the octree structure generated by the octree generator 20001 may mean an octree structure illustrated in FIG. 19A.
  • the colored octree generator 20004 may include, for example, an octree matching unit 20004a and/or an inter-node duplication removal unit 24000b.
  • the octree matching unit 20004a may receive an octree structure and attribute data, and may match the attribute data to a leaf node having an octree structure.
  • the octree matching unit 20004a may match the attribute data to nodes other than the leaf node by using the octree matched to the leaf node.
  • the octree matching unit 20004 may generate an octree structure in which attribute information is matched to a leaf node, as shown in FIG. 19(B), and as shown in FIG. 19(C), Attribute information may be matched to nodes other than leaf nodes by using an octree structure in which attribute information is matched to a node. That is, the octree matching unit 20004 generates a colored octree in which attribute data is matched to nodes of an octree structure.
  • the inter-node redundant data removal unit 20004b receives the colored octree according to the embodiments, and removes redundant data included in the colored octree.
  • the inter-node redundant data removal unit 20004b as shown in FIG. 19(C), includes duplicated data when there is data that is duplicated in a leaf node and nodes other than the leaf node. Deleted data can be removed (19002b-1).
  • the inter-node redundant data removal unit 20004b generates and outputs a colored octree from which redundant data has been removed.
  • the attribute predictor 20005 receives a colored octree according to the embodiments and predicts required attribute information.
  • the attribute predictor 20005 generates residual or predicted attribute information for each depth level.
  • the transform & quantization unit 20006 receives predicted attribute data or residual attribute data generated by the attribute predictor 20005, transforms them, and quantizes them.
  • the attribute entropy coding unit 20007 entropy-codes the transformed & quantized attribute information according to embodiments to output an attribute bitstream.
  • the encoder By generating a colored octree and transmitting attribute information, the encoder according to the embodiments can perform attribute encoding without encoding all the octree structures, resulting in unnecessary delay in a system requiring high-speed processing Can be solved, and attribute information can be compressed based on a small amount of computation.
  • the colored octree is a structure that indicates location information of points by using an octree structure and simultaneously includes attribute information matching the corresponding location.
  • attribute information is distributed not limited to leaf nodes, but distributed among nodes.
  • the decoder according to the embodiments may perform decoding adaptively to the performance of the decoder while sequentially traversing the geometric information and attribute information of the colored octree from the root node to the leaf node. That is, the point cloud data receiving apparatus (or decoder) according to the embodiments receives a colored octree, so that the attribute information can be decoded without necessarily decoding all of the attribute information, so that it is scalable. Decoding is possible.
  • the colored octree can support receivers of various performances because attribute information is matched to nodes according to decoder performance.
  • FIG. 21 illustrates a process of generating a colored octree by a point cloud data transmission apparatus according to embodiments.
  • the process of generating the colored octree shown in FIG. 21 may be performed by the colored octree generator 20004 of FIG. 20.
  • an operation of matching attribute information to one or more nodes in an octree structure may be referred to as colorize. That is, when attribute information is matched to a specific node (including a leaf node) in an octree structure, it can be expressed as colorizing a specific node. For example, when attribute information is matched to a leaf node in an octree structure, it can be expressed as colorizing the leaf node. In addition, when attribute information is matched to a root node of an octree node, it may be expressed as colorizing the root node.
  • the process of generating a colored octree includes a leaf node colorization (21000), a neighbor detection (21001), a point data selection (21002), and an octree node colorization. It includes an operation step (Octree node colorization, 21003), and an inter-node attribute duplication removal step (Inter-node attribute duplication removal, 21004).
  • the process of first matching attribute data to a root node and then generating the root node colored octree is a leaf node colorization step (Leaf node colorization, 21000), and neighbor detection (Neighbor detection). detection, 21001), point data selection (21002), octree node cultivator selection (21002), octree node colorization (21003) and/or inter-node redundant data removal (21004) You can do it.
  • the process of generating the colored octree may be performed for every level except for a level including a leaf node (21005 and 21006).
  • attribute data and octree structure of point cloud data are received, and the attribute data is matched to leaf nodes of the octree structure.
  • a neighbor of a specific point may mean a set of neighboring points adjacent to a specific point.
  • a neighbor may be defined based on an octree structure according to embodiments.
  • a neighbor based on an octree structure may mean a set of points corresponding to lower nodes of a parent node of a leaf node corresponding to a specific point.
  • the parent node may mean an upper node of a certain level from a corresponding leaf node, and a certain level may be arbitrarily determined.
  • the encoder in order for the encoder to match attribute data with a root node, it is necessary to detect points corresponding to leaf nodes existing in a lower node than the root node. Therefore, in order to match attribute data to a root node, the encoder makes a parent node a root node, and leaf nodes included at a lower level than the parent node (root node). Points corresponding to can be detected.
  • first node a node other than a leaf node
  • a neighbor of a point in a 3D space corresponding to level 4 must be detected.
  • Points corresponding to leaf nodes included in a lower level than the parent node (first node) may be detected, with a parent node as the first node.
  • the encoder according to the embodiments may implement a colored octree in consideration of the distribution of attribute information of point cloud data.
  • a specific point (or attribute information of a specific point) is selected from points corresponding to the neighbor detected in the neighbor detection step.
  • the specific point means a point that can represent points corresponding to the neighbor detected in the neighbor detection step 21001.
  • the encoder according to embodiments may select a specific point through various methods.
  • the encoder according to embodiments may select a specific point in various ways even within one 3D space.
  • the encoder according to embodiments may match the selected specific point to nodes (ie, parent nodes) other than leaf nodes in the octree structure.
  • a specific point may mean a point close to a location corresponding to a corresponding parent node. That is, the encoder according to the embodiments may select a leaf node corresponding to a point close to a position corresponding to the parent node.
  • a specific point may mean a point close to the average position of points corresponding to neighbors. That is, the encoder according to embodiments may select a leaf node corresponding to a point close to the average position of the detected neighbors.
  • the encoder according to the embodiments may match the selected specific point to nodes (ie, parent nodes) other than leaf nodes in the octree structure.
  • the encoder according to embodiments matches the attribute information of the selected specific point and residual information (eg point-Attr(x_n, y_n, z_n)) of the average attribute of the points corresponding to the neighbors to the parent node. You may.
  • a selected specific point according to the embodiments is matched with a parent node. Matching the selected specific point to the parent node may be referred to as colorizing the parent node.
  • Inter-node attribute duplication removal 21004
  • an attribute matched to a parent node and redundant data in a leaf node where the attribute information existed are removed.
  • a parent node is matched based on attribute information of points corresponding to the detected neighbors according to embodiments
  • duplicate data of a leaf node and a parent node may occur.
  • An encoder according to embodiments may further remove such redundant data.
  • the inter-node redundant data removal step 21004 may be performed simultaneously with matching attribute data to each node, or may be performed after attribute data is matched to all nodes.
  • the encoder performs a leaf node colorization step 21000 on an octree structure, and then a neighbor detection step 21001, a point data selection step 21002, and an octree node colorization step.
  • Step 21003 and inter-node redundant data removal step 21004 may be performed as follows.
  • Steps 21001 to 21004 described above are recursively (or repeatedly) performed on sub-nodes of the ocupid nodes (21007). If the lower node of the occupied nodes is a leaf node, steps 21001 to 21004 are no longer performed (21006).
  • the encoder By generating a colored octree and transmitting attribute information, the encoder according to the embodiments can perform attribute encoding without encoding all the octree structures, resulting in unnecessary delay in a system requiring high-speed processing Can be solved, and attribute information can be compressed based on a small amount of computation.
  • the colored octree is a structure that indicates location information of points by using an octree structure and simultaneously includes attribute information matching the corresponding location.
  • attribute information is distributed not limited to leaf nodes, but distributed among nodes.
  • the decoder according to the embodiments may perform decoding adaptively to the performance of the decoder while sequentially traversing the geometric information and attribute information of the colored octree from the root node to the leaf node. That is, the point cloud data receiving apparatus (or decoder) according to the embodiments receives a colored octree, so that the attribute information can be decoded without necessarily decoding all of the attribute information, so that it is scalable. Decoding is possible.
  • the colored octree can support receivers of various performances because attribute information is matched to nodes according to decoder performance.
  • FIG. 22 may refer to an operation performed in the leaf node colorization (21000) step of FIG. 21, and a colored octree generation (20004) or an octree matching unit ( 20004a).
  • FIG. 22A shows an example of attribute data (attribute information) according to embodiments.
  • the attribute data may include, for example, color values.
  • the attribute data shown in FIG. 22A represents an example of attribute information (attribute data) described in FIGS. 1 to 17.
  • FIG. 22(A) exemplarily shows attribute information of points distributed in a 3D space. There are 9 points in the 3D space, and each attribute information is as shown in FIG. 22(A).
  • 22(B) shows an octree structure including leaf nodes on which colorization has been performed.
  • 22(B) shows a process of matching attribute information to an octree structure according to embodiments with points shown in FIG. 22(A). For example, a point corresponding to c1 is distributed at a position of (0, 2, 0), and thus corresponds to a 22000B-1 leaf node of the octree shown in FIG. The c1 attribute information is matched to the corresponding 22000B-1 leaf node. Similarly, c2 to c9 are also matched to corresponding leaf nodes.
  • FIG. 23 shows a process in which an encoder according to embodiments detects a neighbor according to embodiments.
  • the operation of detecting a neighbor shown in FIGS. 23A and 23B may mean an operation of the step 21001 of detecting a neighbor of FIG. 21.
  • An encoder according to embodiments may detect neighbor points for a specific point in order to match attribute information to nodes of an octree structure. The encoder according to embodiments may select attribute information based on the detected neighbor points and then match the selected attribute information to nodes of an octree structure.
  • the encoder may match attribute information to nodes while increasing a level from a root node (ie, descending to a lower node).
  • 23A shows a process of detecting neighbor points having a root node as a parent node in order to derive attribute information to be matched to a root node by an encoder according to embodiments.
  • the encoder according to embodiments may select one (eg, a point corresponding to C1, 23000a) among points 23001 in a 3D space corresponding to a parent node (root node).
  • the encoder according to the embodiments may search for leaf nodes that are child nodes of the same parent node other than the selected point. For example, as lower leaf nodes that share a point corresponding to C1 and a parent node (root node), nodes corresponding to C2 to C9 may be searched as neighbor points 23000b.
  • the encoder may select attribute information based on the selected neighbor points 23000b and then match the corresponding parent node (root node).
  • 23(B) shows a process of detecting neighbor points with a corresponding node as a parent node in order to derive attribute information to be matched to a node other than the root node by the encoder according to the embodiments.
  • the encoder according to embodiments may select one (eg, a point corresponding to C1, 23001a) among points 23001 in a 3D space corresponding to the parent node.
  • the encoder according to the embodiments may search for leaf nodes that are child nodes of the same parent node other than the selected point. For example, as lower leaf nodes that share a point corresponding to C1 and a parent node, nodes corresponding to C2 to C4 may be searched as neighbor points 23000b.
  • the encoder may select the attribute information 23001a based on the selected neighbor points 23001b and then match the corresponding parent node.
  • FIG. 24 illustrates an equation for matching attribute information to a parent node by an encoder according to embodiments based on a neighbor according to the embodiments.
  • 24A is an equation showing an example of a method of selecting attribute information for matching attribute information to a parent node among neighbor points according to embodiments.
  • (x_n, y_n, z_n) represents n points according to embodiments in (x, y, z) coordinates.
  • Attr(x_n, y_n, z_n) represents attribute information for n points. That is, Attr (x_n, y_n, z_n) represents attribute information of a point at the (x_n, y_n, z_n) position.
  • the Attr(point) function can be understood as a function that returns point attribute information.
  • P_GeoCtr (x, y, z) means attribute information of a parent node according to embodiments. That is, in FIG. 24A, P_GeoCtr (x, y, z), that is, attribute information of a parent node is determined.
  • NEIGHBOR may mean a set of points corresponding to the neighbor of the (x_n, y_n, z_n) point.
  • NEIGHBOR ⁇ is attribute information of a point (x_n, y_n, z_n) that is one of the corresponding neighbor points when points corresponding to the neighbor of a specific point are input.
  • NEIGHBOR ⁇ means the attribute value of the point (x_n, y_n, z_n) at which the value of the equation shown in 24000a is the minimum.
  • s(x_n, y_n, z_n) indicates whether a parent node is selected among points according to embodiments. For example, if the value of s(x_n, y_n, z_n) for the corresponding node is 0, this point indicates that the parent node was selected and matched. For example, if the value of s(x_n, y_n, z_n) for the corresponding node is 1, this point indicates that no parent node has been selected.
  • a point cloud data encoder detects neighbor points for a corresponding parent node in order to match an attribute with a specific parent node, and then checks s(x_n, y_n, z_n) values of the neighbor points. do. After that, the encoder according to the embodiments matches the attribute of one point among the points having a value of s(x_n, y_n, z_n) of 1 to the corresponding parent node. Due to this configuration, the encoder according to the embodiments may not match the same attribute data with respect to a plurality of parent nodes.
  • M may mean the number of neighbor points according to embodiments.
  • [x ⁇ -, y ⁇ -, z ⁇ -] ⁇ T may mean an average position of neighbor points according to embodiments.
  • the average position of the neighbor points according to the embodiments may be calculated based on position information of the neighbor points. Specifically, the average position of the neighbor points according to the embodiments may be calculated by dividing the number of neighbor points by the sum of each position of the neighbor points. For example, the average position of the neighbor points according to the embodiments may be obtained by dividing the number of neighbor points by the sum of the neighbor points and a weight value (weight(x_n, y_n, z_n)) to be applied to each of the neighbor points. Can be calculated (24000b).
  • the weight value (weight(x_n, y_n, z_n)) to be applied to each of the neighbor points is,
  • the point cloud data encoder When selecting one of the neighbor points, a point already matched to a parent node may not be considered. That is, the point cloud data encoder according to the embodiments is
  • ⁇ 2 by s(x_n, y_n, z_n) the points already matched to the parent node are May not be considered.
  • an attribute value to be matched to a parent node may mean attribute data of a point in which the formula shown in 24000a has a minimum value. That is, the point cloud data encoder according to the embodiments is
  • FIG. 24B is an equation showing an example of another method of selecting attribute information for matching attribute information to a parent node among neighbor points according to embodiments.
  • the point cloud data encoder may select a point having a median value thereof when neighbor points are sorted in an ascending order.
  • the point cloud data encoder according to the embodiments has a median value of the values obtained by multiplying each neighbor point and a weight applied to each of them in ascending order. You can choose points. Likewise, when selecting one of the neighbor points, a point already matched to the parent node may not be considered.
  • the point cloud data encoder is by multiplying ⁇ weight(x_n, y_n, z_n
  • FIG. 24C is an equation showing an example of another method of selecting attribute information for matching attribute information to a parent node among neighbor points according to embodiments.
  • the point cloud data encoder may select a point having a value of the k-th order when neighbor points are sorted in ascending order.
  • the point cloud data encoder according to the embodiments is a point having a k-th order of values obtained by multiplying each neighbor point and a weight applied to each of them in ascending order. You can choose Likewise, when selecting one of the neighbor points, a point already matched to the parent node may not be considered.
  • 25 illustrates an operation of removing a duplicate attribute within an octree in which attribute information is matched by an encoder according to embodiments.
  • FIG. 25A illustrates a tree in which attribute information according to embodiments is matched to each node.
  • an octree structure in which attribute information is matched may be referred to as a colored octree.
  • a leaf node colorization operation 21000, a neighbor detection operation 21001, a point data selection operation 21002, and an octree note colorization operation 21003 in FIG. 21 are performed. It can mean an octree structure.
  • Duplicate attribute data may refer to attribute data that is duplicately matched when attribute data of points is duplicated and matched to other nodes other than a leaf node. That is, due to such an operation, there is a possibility that the same information may be duplicated to a higher level due to recursive selection, which may be a factor deteriorating coding efficiency due to an increase in the total number of data. For example, in the process of generating a colored octree, C1 may exist in the leaf node 25000b-1 or in the upper node 25000b. When the encoder stage according to embodiments transmits both attribute data, transmission efficiency may decrease. In addition, the purpose of achieving a scalable representation while increasing bit efficiency cannot be achieved. Therefore, it is necessary to remove the above duplicated attribute data.
  • the encoder may remove attribute information 25000b-1 corresponding to a leaf node from among the redundant data 25000b and 25000b-1.
  • the C2 attribute information may also exist in duplicate in the root node 25000a and the leaf node 25000a-1.
  • attribute information of a leaf node among the root node 25000a and the leaf node 25000a-1 may be removed.
  • the C5 attribute information may also exist in duplicate in the specific node 25000c and the leaf node 25000c-1.
  • attribute information of a leaf node among the specific node 25000c and the leaf node 25000c-1 may be removed.
  • the decoder By removing the attribute data from the leaf node among the redundant data, the decoder according to the embodiments can quickly decode the attribute information without searching and decoding the leaf node, and can quickly render PCC data to the user.
  • 26 shows an operation of an encoder according to embodiments.
  • the operations shown in FIG. 26 may be performed in an encoder according to embodiments.
  • the operations shown in FIG. 25 may be performed by the colored octree generator 20004 of FIG. 20.
  • the encoder according to the embodiments may include matching point cloud data to a leaf node (26000), matching attribute information to a root node (26001), from lower nodes to upper nodes of leaf nodes. (leaf-1 level) matching the attribute information (26002) and/or removing redundant data in the octree structure in which the attribute information is matched (26003).
  • the step 26000 of matching the point cloud data to the leaf node may be performed by the operation described in FIG. 22. That is, the encoder according to the embodiments receives attribute data (Input: c1, c2, c3, c4, c5, c6, c7, c8, c9) and an octree structure according to the embodiments. The encoder according to the embodiments matches the received attribute data to corresponding leaf nodes 26000a of an octree structure.
  • the step of matching attribute information to a root node (26001) is, after detecting neighbor points having a root node as a parent node, an attribute of one of the detected neighbor points After selecting information, the selected attribute information is matched to the root node.
  • the neighbor points that make the root node a parent node are points corresponding to C1 to C9.
  • An encoder according to embodiments may select a point corresponding to C2 among corresponding points, and the encoder may match attribute information of the selected point to a root node (selected and matched: c2).
  • the selected point according to the embodiments may be stored as 0 or 1 using a separate arrangement or a suitable data structure.
  • the step of matching attribute information from lower nodes to upper nodes of leaf nodes (leaf-1 level) (26002) includes operations performed in step 26001 of matching attribute information to the root node above. It can be performed repeatedly or recursively for lower nodes.
  • the redundant attribute data may be removed from the octree structure in which the attribute information is matched to the root node or each node.
  • the step of removing redundant data in the octree structure in which the attribute information is matched (26003) may be performed according to the operation described in FIG.
  • FIG. 27 illustrates an example of a bitstream structure of point cloud data according to embodiments.
  • the point cloud data transmission apparatus may transmit a bitstream 27000 having a bitstream structure as illustrated in FIG. 27.
  • the bitstream (27000) of the point cloud data is SPS (Sequential Parameter Set, 27001), GPS (Geometry Parameter Set, 27002), APS (Attribute Parameter Set, 27003), TPS (Tile Parameter Set, 27004), and one or more It may include slices (slice 0, slice 1... slice n, 27005).
  • the bitstream of the point cloud data may include one or more tiles.
  • a tile according to embodiments may be a group of slices including one or more slices.
  • the bitstream 27000 provides a tile or slice so that point cloud data can be divided and processed by regions.
  • Each region of the bitstream 27000 according to embodiments may have different importance. Accordingly, when the point cloud data is divided into tiles, different filters (coding methods) and different filter units may be applied for each tile. When the point cloud is divided into slices, different filters and different filter units may be applied for each slice.
  • the transmission/reception apparatus may transmit and receive a bitstream according to a high-level syntax structure for selective transmission of attribute information within a divided region when the point cloud is divided and compressed.
  • the point cloud data transmission apparatus transmits the point cloud data according to the structure of the bitstream 27000 as shown in FIG. 27, so that a different encoding operation can be applied according to the importance, and the quality is improved. It can provide a way to use a good coding method in an important area. In addition, it can support efficient encoding/decoding and transmission according to the characteristics of the point cloud, and provide attribute values according to user requirements.
  • the point cloud data transmission apparatus and reception apparatus may independently or non-independently perform encoding and decoding on a tile and/or slice unit, thereby preventing an error accumulated in the encoding and decoding process. Can be prevented.
  • SPS Sequence Parameter Set, 27001
  • SPS Sequence Parameter Set, 27001
  • SPS Sequence Parameter Set, 27001
  • SPS is applied to zero or more total CVSs determined by the contents of the syntax element in the PPS referenced by the syntax element in each slice segment header. It is a syntax structure that includes syntax elements that are used. (A syntax structure containing syntax elements that apply to zero or more entire CVSs as determined by the content of a syntax element found in the PPS referred to by a syntax element found in each slice segment header.)
  • SPS is a point according to embodiments It may include sequence information of the cloud data bitstream.
  • GPS Global Parameter Set, 27002
  • the GPS 27002 may mean a syntax structure including syntax elements to which zero or more total geometry (or encoded geometry) is applied.
  • the GPS 27002 may include information on a method of encoding attribute (attribute) information of point cloud data included in one or more slices 27005.
  • the GPS 27002 may include SPS identifier information indicating which geometry parameter associated with the SPS 27001 according to embodiments, and GPS identifier information for identifying the corresponding GPS.
  • An Attribute Parameter Set (APS) 27003 may mean a syntax structure including syntax elements to which zero or more all attributes (or encoded attributes) are applied.
  • the APS 27003 according to the embodiments may include information on a method of encoding attribute (attribute) information of point cloud data included in one or more slices 19005.
  • the APS 27003 may include SPS identifier information indicating which geometry parameter associated with the SPS 27001 according to embodiments, and GPS identifier information identifying the corresponding APS.
  • TPS Tile Parameter Set
  • TPS Tile Parameter Set
  • TPS Tile Parameter Set
  • the tile inventory includes information on zero or more tiles included in the point cloud data bitstream according to embodiments.
  • the tile inventory may be referred to as a tile parameter set (TPS) according to embodiments.
  • the TPS (Tile Parameter Set) 27004 may include identifier information identifying one or more tiles and information indicating a range of one or more tiles (ie, a bounding box of a tile).
  • Information indicating a range of one or more tiles is coordinate information of a point that is a reference of a bounding box represented by a corresponding tile (eg, Tile(n).tile_bounding_box_xyz0) and Information about the width, height, and depth of the corresponding bounding box (eg, Tile(n).tile_boudning_box_whd) may be included.
  • the tile inventory may include information indicating a bounding box for each of the tiles. For example, when each tile is represented by 0 to n by the identifier information of the tiles, the information indicating the bounding box of each tile is Tile(0).tile_bounding_box_xyz0, Tile(0).tile_bounding_box_whd, Tile(1).tile_bounding_box_xyz0 , Tile(1).tile_bounding_box_whd... It can be expressed as such.
  • the slice 27005 may mean a unit for encoding point cloud data by the apparatus for transmitting point cloud data according to the embodiments.
  • the slice 27005 according to the embodiments may refer to a unit including one geometry bitstream (Geom00, 27005a) and one or more attribute bitstreams (Attr00, Attr10, 27005b, 27005c).
  • a slice (27005) is a geometry slice (Geom, 27005a) representing the geometry information of the point cloud data included in the slice, and one or more attribute slices representing the attribute information of the point cloud data included in the slice. (Attribute Slice, Attr, 27005b, 27005c) may be included.
  • a geometry slice (Geometry Slice, Geom, 27005a) includes geometry slice data (Geometry Slice Data, Geom_slice_data, 19005a-2) including geometry information of point cloud data and a geometry slice header including information about geometry slice data. Header, Geom_slice_header, GSH, 27005a-1).
  • the geometry slice header 27005a-1 includes information about the geometry slice data 27005a-2 in the slice.
  • the geometry slice header 27005a-1 is a geometry parameter set identifier (geom_geom_parameter_set_id) for identifying which GPS 27002 represents the geometry information of a corresponding slice, and a geometry slice identifier for identifying the corresponding geometry slice.
  • geom_slice_id geometry box origin information indicating the box origin of the corresponding geometry slice data
  • information indicating the lock scale of the geometry slice (geom_box_log2_scale)
  • information related to the number of points in the corresponding geometry slice (geom_num_points), etc. I can.
  • the header of the geometry bitstream according to the embodiments is information for identifying a tile including the geometry bitstream (geom_tile_id ) May be further included.
  • Attribute Slice (Attr, 27005b) includes attribute slice data (Attribute Slice Data, Attr_slice_data, 27005b-2) including attribute information of point cloud data, and attribute slice header (Attribute Slice) including information on attribute slice data. Header, Attr_slice_header, ASH, 27005b-1).
  • parameters necessary for encoding a point cloud may be newly defined as parameter set and header information of a point cloud.
  • attribute parameter set RBSP syntax can be added when encoding attribute information
  • tile_header syntax can be added when tile-based encoding is performed.
  • the point cloud data transmission/reception method provides such a bitstream structure, so that the receiver can improve the decoding performance of attribute information of the point cloud data.
  • the bitstream (or bitstream received by the point cloud data receiving device) transmitted by the point cloud data transmission device includes one or more Attribute Parameter Sets (APS).
  • APS according to the embodiments means the APS of FIG. 27.
  • APS may include, for example, aps_attr_parameter_set_id, aps_seq_parameter_set_id, octree_full_level_present_flag, scalable_represenatation_available_flag, octree_colorization_type, matched_attribute_type, attribute_selection_type, and/or point_data_selection_info, point_data_selection_type
  • aps_attr_parameter_set_id represents the identifier (id) of the APS for reference by other syntax elements. This parameter may have a value of 0 to 15. (provides an identifier for the APS for reference by other syntax elements. The value of aps_attr_parameter_set_id may be in the range of 0 to 15, inclusive.)
  • aps_seq_parameter_set_id represents the value of sps_seq_parameter_set_id for the currently active SPS.
  • aps_seq_parameter_set_id may have a value of 0 to 15. (specifies the value of sps_seq_parameter_set_id for the active SPS. The value of aps_seq_parameter_set_id may be in the range of 0 to 15, inclusive.)
  • octree_full_level_present_flag When the value of octree_full_level_present_flag is 1, it indicates that data for all levels of the octree structure according to the embodiments are delivered. That is, when the value of this parameter is 1, it means that the point cloud data transmission apparatus according to the embodiments transmits data for all levels of the octree structure of geometry data as a bitstream.
  • octree_full_level_present_flag When the value of octree_full_level_present_flag is 0, this indicates that data on a partial level of the octree structure according to embodiments is transmitted. That is, when the value of this parameter is 1, it means that the point cloud data transmission apparatus according to the embodiments transmits data on some levels of the octree structure of geometric data, that is, a partial octree, as a bitstream. .
  • the value of octree_full_level_present_flag may be 0.
  • the value of octree_full_level_present_flag may be 1.
  • the point cloud data receiving apparatus when the value of octree_full_level_present_flag is 1, performs an attribute-node matching and attribute-point matching process, thereby performing partial And/or full point cloud data.
  • the point cloud data receiving apparatus (decoder) may output partial point cloud data by performing an attribute-node matching process when the value of octree_full_level_present_flag is 0. Attribute to node matching and attribute to point matching among the operations of the decoder according to the embodiments will be described below with reference to FIG. 33 and the like.
  • scalable_representation_available_flag indicates whether scalable decoding (or scalable representation) is applicable.
  • a point cloud encoder according to embodiments generates a colored octree to enable scalable representation, Attributes can be processed based on octrees If the value of scalable_representation_available_flag is 1, scalable_representation_available_flag indicates that the decoded point cloud data (decoded attribute) has a structure capable of scalable representation (a colored octree structure).
  • the receiving device can generate a colored octree based on this information to provide a scalable representation If the value of scalable_representation_available_flag is 0, scalable_representation_available_flag means that the decoded point cloud data is capable of scalable representation. It indicates that it has no structure.
  • octree_colorization_type represents a colored octree type or a method of generating a colored octree. If the value of octree_colorization_type is 0, it indicates that the colored octree is generated according to the attribute paired octree generation method. When the value of octree_colorization_type is 1, it indicates that the colored octree is generated according to the point paired octree generation method.
  • octree_colorization_type 0 when the value of octree_colorization_type is 0, that is, when the colored octree is an attribute paired octree.
  • matched_attribute_type represents the type of the attribute matched to the octree node.
  • matched_attribute_type indicates that the attribute is an extrapolated attribute (for example, an attribute estimated based on the attributes of a neighboring node or a child node).
  • matched_attribute_type indicates that the attribute is an actual attribute (for example, an attribute of a child node).
  • attribute_selection_type represents a method of matching an attribute to an octree node.
  • the attribute_selection_type value is 0, the estimated attribute corresponds to the average value of the attributes of child nodes.
  • the attribute_selection_type value is 1, the estimated attribute corresponds to the median value of the attributes of child nodes.
  • the attribute_selection_type value is 2, the attribute corresponds to the attributes of the child nodes in a fixed order (for example, the attribute of the first child node or the attribute of the second child node among child nodes sorted in ascending order).
  • octree_colorization_type 1, that is, when the colored octree is a point paired octree.
  • point_data_selection_type represents a method or type of selecting point data to match an octree node.
  • point_data_selection_type is the point cloud data (or point) of a node in a fixed order among the child nodes of the node (for example, the first node in an ascending order). Shows how to choose.
  • point_data_selection_type represents a method of selecting a point of a child node having a position closest to the average value of the positions of the ocupid nodes among child nodes.
  • point_data_selection_type represents a method of selecting a point of a child node having a position closest to the median value of the positions of occupied nodes among child nodes.
  • the point_cloud_geometry_info_present_flag indicates whether geometry information for point data (or points) matched to the octree node is directly provided.
  • point_cloud_geometry_info_present_flag 1
  • geometry information eg, position
  • point_cloud_geometry_info_present_flag 0
  • geometry information for point data (or points) matched to the octree node is transmitted together.
  • 29 shows an attribute bitstream according to embodiments.
  • the attribute bitstream 29000 of FIG. 29 may correspond to the attribute slice of FIG. 27. That is, the attribute bitstream 29000 according to embodiments includes an attribute slice header 29001 and/or attribute slice data 29002.
  • the attribute slice header 29001 refers to the attribute slice header of FIG. 27.
  • the attribute slice header 29001 may include abh_attr_parameter_set_id and abh_attr_sps_attr_idx.
  • abh_attr_parameter_set_id represents the value of aps_attr_parameter_set_id of the current active APS. (specifies the value of the aps_attr_parameter_set_id of the active APS.)
  • abh_attr_sps_attr_idx represents an attribute set in the currently active SPS.
  • a value of abh_attr_sps_attr_idx may range from 0 to a value of sps_num_attribute_setsd of the current active SPS. (specifies the attribute set in the active SPS.
  • the value of abh_attr_sps_attr_idx may be in the range of 0 to sps_num_attribute_sets in the active SPS.
  • the attribute slice data 29002 may include attribute data corresponding to an attribute coding type according to embodiments.
  • Attr_coding_type information is 0, PredictingWeight_Lifting_bitstream is included.
  • attr_coding_type information is 1, RAHT_bitstream is included.
  • attr_coding_type information is 2, FixedWeight_Lifting_bitstream is included.
  • FIG. 30 illustrates operations of a point cloud data transmission apparatus and a reception apparatus according to embodiments for a scalable representation.
  • the operation of the encoder stage according to the embodiments shown in FIGS. 19 to 26 is the point cloud data so that the apparatus for receiving point cloud data according to the embodiments can effectively perform a scalable representation.
  • the point cloud data transmission apparatus according to the embodiments provides a scalable representation, so that the receiving apparatus can provide point cloud data contents of various performances, and effectively represent the user even in the reception apparatus of various performances. Can be done.
  • the transmission device compresses point cloud data for a decoder having various performances by generating a colored octree according to the embodiments.
  • This configuration is effective in terms of storage space and bit efficiency of a transmission device, since it is possible to support receivers of various performances through one bitstream without generating or storing independent compressed information suitable for each decoder performance.
  • the transmission device according to the embodiments can generate and transmit low-resolution point cloud data.
  • the point cloud data transmission apparatus includes a scalable encoder 30001 that performs the operation shown in FIGS. 19 to 26 and encodes.
  • the scalable encoder 30001 generates an attribute bitstream by generating a colored octree according to embodiments. That is, the scalable encoder generates a single PCC bitstream (30002a) including a geometry bitstream and an attribute bitstream according to embodiments.
  • the scalable encoder 30001 generates a source geometry (Source geometry, 30000a) and a source attribute (Source attribute, 30000b).
  • the source geometry 30000a represents location information of points of point cloud data.
  • the source geometry 30000a may mean an octree structure including geometry information.
  • the source attribute 30000b represents attribute information of points of point cloud data.
  • the source geometry 30000b may mean a colored octree structure according to embodiments including attribute information.
  • the scalable encoder 30001 that is, generates a geometry bitstream corresponding to an octree structure and an attribute bitstream corresponding to a colored octree.
  • the point cloud data transmission apparatus and reception apparatus may further include a storage unit 30002b.
  • the storage unit 30002b stores a geometry bitstream and an attribute bitstream (or a single PCC bitstream including them) according to the embodiments.
  • the point cloud data transmission apparatus may transmit data stored in the storage unit 30002b as a point cloud data reception device according to the embodiments.
  • the point cloud data receiving apparatus may receive them and store them in the storage unit 30002b.
  • the point cloud data receiving apparatus includes a bitstream selector (30003) for selecting some or all of the bitstreams including the point cloud data according to the embodiments and/or decoding them. It may include one or more scalable decoders (30004a to 30004c).
  • the bitstream selector 30003 may receive the received bitstream according to the embodiments and determine whether to decode all or only part of them.
  • the bitstream selector 30003 according to embodiments may determine whether to decode only a part or all of a geometry bitstream and an attribute bitstream included in the received bitstream.
  • the scalable decoders 30004a to 30004c may decode a bitstream selected by the bitstream selector 30003 among received bitstreams according to the embodiments.
  • the scalable decoders 30004a to 30004c may perform decoding in three ways.
  • the scalable decoder 30004a may receive only a part of the geometry bitstream and a part of the attribute bitstream from the bitstream selector 30003 and decode them.
  • the geometry bitstream corresponds to an octree structure.
  • a part of the geometry bitstream 30004a-1 is data including only a partial level (ie, from a root level to a range of a partial level) of an octree structure including geometry data according to embodiments.
  • the attribute bitstream corresponds to a colored octree structure according to embodiments.
  • a part 30004a-2 of the attribute bitstream is data including only a partial level (ie, from a root level to a range of a partial level) of a colored octree structure including attribute data according to embodiments.
  • the scalable decoder 30004a may receive and decode a part of the geometry bitstream (partial geometry data, partial geometry) and a part of the attribute bitstream (partial attribute data, partial attribute).
  • the scalable decoder 30004b may receive all of the geometry bitstream and only a part of the attribute bitstream from the bitstream selection unit 30003 and decode them.
  • the geometry bitstream corresponds to an octree structure.
  • all of the geometry bitstream 30004b-1 is data including all levels of an octree structure including geometry data according to embodiments.
  • the attribute bitstream corresponds to a colored octree structure according to embodiments.
  • a part 30004b-2 of the attribute bitstream is data including only a partial level (ie, from a root level to a range of a partial level) of a colored octree structure including attribute data according to embodiments.
  • the scalable decoder 30004b may receive and decode all of the geometry bitstream (full geometry data, full geometry) and a part of the attribute bitstream (partial attribute data, partial attribute).
  • the scalable decoder 30004c may receive all of the geometry bitstream and all of the attribute bitstream from the bitstream selection unit 30003 and decode them.
  • the geometry bitstream corresponds to an octree structure.
  • all of the geometry bitstream 30004c-1 is data including all levels of an octree structure including geometry data according to embodiments.
  • the attribute bitstream corresponds to a colored octree structure according to embodiments.
  • all of the attribute bitstream 30004b-2 is data including all levels of a colored octree structure including attribute data according to embodiments.
  • the scalable decoder 30004c may receive and decode the entire geometry bitstream (full geometry data, full geometry) and a part of the attribute bitstream (full attribute data, full attribute).
  • the point cloud data transmission apparatus transmits the point cloud data according to the structure of the bitstream 27000 as shown in FIG. 27, so that a different encoding operation can be applied according to the importance, and the quality is improved. It can provide a way to use a good coding method in an important area. In addition, it can support efficient encoding/decoding and transmission according to the characteristics of the point cloud, and provide attribute values according to user requirements.
  • the point cloud data transmission apparatus and reception apparatus may independently or non-independently perform encoding and decoding on a tile and/or slice unit, thereby preventing an error accumulated in the encoding and decoding process. Can be prevented.
  • 31 illustrates a point cloud data decoder according to embodiments.
  • the point cloud decoder 31000 may include a geometric information decoding unit 31001 and/or an attribute information decoding unit 3102 2.
  • the point cloud decoder may be referred to as a PCC decoder, a PCC decoder, a point cloud decoder, a point cloud decoder, a PCC decoder, or the like.
  • the geometric information decoding unit 31001 receives a geometric information bitstream 31000a of point cloud data.
  • the geometric information decoding unit 31001 may decode (decode) the geometric information bitstream 31000a of the point cloud data and output attribute information of the restored point cloud data 31000c.
  • the geometric information decoding unit 31001 may reconstruct the geometric information bitstream into geometric information and output the restored geometric information 31001.
  • the geometry information bitstream 31000a may mean a geometry information bitstream and a geometry bitstream of FIGS. 18 to 26.
  • the attribute information bitstream 31000b may mean an attribute information bitstream and an attribute bitstream of FIGS. 18 to 26.
  • the geometric information decoding unit 31001 restores the geometric information by decoding the received geometric information bitstream.
  • the restored geometric information may be input to the attribute information decoding unit.
  • the attribute information decoding unit 3102 receives the received attribute information bitstream and the restored geometric information received from the geometry information decoding unit and restores the attribute information.
  • the reconstructed geometric information may mean a geometry reconstructed by a geometry reconstructing unit 11003 described in FIG. 11.
  • the restored geometric information may mean an octree occupancy code reconstructed by the occupancy code-based octree reconstruction processing unit 13003 described in FIG. 13.
  • the geometric information decoding unit 31001 receives the geometric information bitstream received by the reception device according to the embodiments.
  • the geometry information decoding unit 31001 may decode a geometry information bitstream.
  • the geometric information decoding unit 31001 includes the operation of the point cloud video decoder of Fig. 1, the decoding 20003 of Fig. 2, the operation of the geometry decoder of Fig. 10, the arithmetic decoder 11000 described in Fig. 11, and the octree synthesis unit 11001. ), the surface opoxidation synthesis unit 11002, the geometry reconstruction unit 11003, and/or the coordinate system inverse transform unit 11004 may perform all/part of the operations.
  • the attribute information decoding unit 3102 receives an attribute information bitstream 31000b of point cloud data.
  • the attribute information decoding unit 3102 may decode (decode) the attribute information bitstream 31000b of the point cloud data and output attribute information of the restored point cloud data 31000c.
  • the attribute information decoding unit 3102 may decode (decode) the attribute information bitstream based on the restored geometric information 31001a generated by the geometric information decoding unit 31001.
  • the attribute information decoding unit 3102 receives the attribute information bitstream received by the reception device according to the embodiments.
  • the attribute information decoding unit may decode attribute information of the attribute information bitstream based on the restored geometric information. Geometric information and/or attribute information included in the point cloud data may be decoded and restored PCC data.
  • the attribute information decoding unit 3102 is the point cloud video decoder of FIG. 1, the operation of the decoding 20003 of FIG. 2, the operation of the attribute decoder described in FIG. 10, the inverse quantization unit 11006 of FIG. 11, and RAHT. (11007), LOD generation unit (11008), inverse lifting unit (11009), and/or color inverse transform unit (11010) operation, the Arismatic decoder (13007) described in FIG. 13, inverse quantization processing unit (13008), prediction/lifting Some or all of the operations of the /RAHT inverse transform processing unit 13009, the color inverse transform processing unit 13010, and/or the renderer 13011 may be performed.
  • FIG. 32 illustrates a point cloud data decoder according to embodiments.
  • the point cloud data decoder 32000 receives and decodes a bitstream including the encoded point cloud data, and then determines geometry data and attribute data. ) Is displayed.
  • the bitstream including the encoded point cloud data includes a geometry bitstream including geometry data and/or an attribute bitstream including attribute data.
  • the point cloud data decoder 32000 includes an entropy decoder 32001 for decoding a geometry bitstream, an octree reconstruction unit 32002, an entropy decoder 32003 for decoding an attribute bitstream, and an inverse quantization unit 32004. ), an inverse transform unit 32005, an attribute reconstruction & octree matching unit 32006, and/or a scalable representation unit 32007.
  • the attribute reconstruction & octree matching unit 32006 includes an attribute reconstruction unit 32006a, an attribute-node matching unit 32006b, and/or an octree-point cloud data matching unit 32006c.
  • the entropy decoder 32001 that decodes the geometry bitstream receives the geometry bitstream according to the embodiments.
  • the octree reconstruction unit 32002 receives geometry data according to embodiments, and converts (or reconstructs) geometry data indicating the locations of points in the point cloud data into an octree structure by using them. .
  • the octree reconstruction unit 32002 outputs an octree structure based on geometry data.
  • the entropy decoder 32003 for decoding the attribute bitstream receives the attribute bitstream according to the embodiments and decodes them.
  • the entropy decoder 32003 that decodes the attribute bitstream decodes the attribute bitstream and outputs non-quantized attribute information.
  • the non-quantized attribute information includes non-quantized residual attribute information and/or predicted attribute information.
  • the inverse quantization unit 32004 receives the data decoded by the entropy decoder 32003 and dequantizes them.
  • the inverse quantization unit 32004 receives the data decoded by the entropy decoder 32003, inverse-quantizes them, and outputs the converted attribute information.
  • the transformed attribute information includes transformed residual attribute information and/or predicted attribute information.
  • the inverse transform unit 32005 receives data that has been inverse quantized by the inverse quantization unit 32004 according to the embodiments and inverse transforms them.
  • the inverse transform unit 32005 dequantizes the data dequantized by the inverse quantization unit 32004 and outputs reconstructed attribute information.
  • the reconstructed attribute information includes reconstructed residual attribute information and/or predicted attribute information.
  • the reception device may predict the attribute data (in a direction from the root node to the leaf node) as the level decreases, as in the attribute prediction performed by the transmission device according to the embodiments.
  • the prediction method according to the embodiments may use the same method as the method used by the transmitter.
  • reconstructed attribute data of a parent node may be used as a predicted value for a child node of the parent node.
  • a range determined according to the definition of a neighbor may be differently applied to the predicted value.
  • attribute data of a parent node according to embodiments may be predicted as follows by the transmission apparatus according to the embodiments.
  • the receiving device may perform the reverse of the prediction error generation method used by the transmitting device in order to reconstruct the attribute of each child node based on the predicted attribute data. For example, when the transmitting device according to the embodiments generates a prediction error based on a difference (residue) between an original attribute and a predicted attribute, the receiving device may The attribute data may be reconstructed by adding the predicted attribute estimated by the corresponding receiving device to the value of the decoded prediction error.
  • the transmitting device may transmit information on the method of generating an attribute error to the receiving device. For example, attribute data of a child node (or leaf nodes) according to the embodiments may be predicted by the receiving apparatus according to the embodiments as follows.
  • C ⁇ l (x, y, z) is attribute data of child nodes according to embodiments.
  • g-1 ⁇ is a function representing the inverse of a method for the transmission device to perform prediction according to the embodiments.
  • p ⁇ l(x, y, z) means attribute data of a predicted parent node according to embodiments.
  • r ⁇ l(x, y, z) means a residual value (which may be included in decoded attribute data) to be applied to attribute data of a predicted parent node according to embodiments.
  • the attribute reconstruction & octree matching unit 32006 receives reconstructed attribute information and an octree structure according to embodiments to generate and output a colored octree structure.
  • the scalable representation unit 32007 receives colored octrees according to embodiments, and provides a scalable representation based on them.
  • 33 illustrates a process of generating a colored octree by an apparatus for receiving point cloud data according to embodiments.
  • All or part of the operations described in FIG. 33 may be performed by the attribute reconstruction & octree matching unit 32006 and/or the scalable representation unit 32007 according to the embodiments of FIG. 32.
  • the point cloud data receiving apparatus may generate reconstructed point cloud data based on the received attribute data and an octree structure according to the embodiments.
  • the operation of reconstructing point cloud data by the point cloud data receiving apparatus includes receiving a decoded attribute and an octree structure, reconstructing the attribute. Including an attribute reconstruction step (33000, attribute reconstruction), an attribute-node matching step (attribute to node matching, 33001), a position estimation step (position estimation, 33003), and an attribute-point matching step (attribute to point matching, 33004). .
  • Reconstructing an attribute according to embodiments (33000), an attribute-node matching step (33001), a position prediction step (33003), and an attribute-point matching step (33004) are performed in the octree structure according to the embodiments. It can be performed repeatedly for every node.
  • the decoder may step down from a root node of an octree structure to a previous level of a leaf node and retrieve attributes for nodes included in each level.
  • a constructing step 33000, an attribute-node matching step 33001, a position prediction step 33003, and an attribute-point matching step 33004 may be performed (33007).
  • the decoder according to the embodiments reconstructs attributes while traversing nodes of an octree structure in level order (33000), an attribute-node matching step (33001), and a position prediction step ( 33003), an attribute-point matching step 33004 may be performed. That is, the decoder according to the embodiments first reconstructs an attribute for a root node (33000), an attribute-node matching step (33001), a position prediction step (33003), and an attribute-point. The matching step 33004 may be performed.
  • the decoder according to the embodiments reconstructs attributes for child nodes of the root node, that is, nodes having a level of 1 (33000), an attribute-node matching step (33001), and a position prediction step ( 33003), an attribute-point matching step 33004 may be performed.
  • the decoder according to the embodiments may perform the above processes for nodes included in level 1 again.
  • the decoder according to the embodiments may perform the above operations up to the node of the previous level of the leaf node (33005).
  • the position estimation step (position estimation, 33003) and the attribute-point matching step (attribute to point matching, 33004) according to the embodiments are based on the value of the octree_full_level_present_flag parameter included in the signaling information in the received bitstream according to the embodiments. Can be performed (33002). For example, if the value of octree_full_level_present_flag is 1, the position prediction step 33003 and the attribute-point matching step 33004 may be performed for each node or entirely.
  • the decoded attribute means attribute information decoded by a decoder according to embodiments. That is, it means data from which the attribute bitstream in the received bitstream is decoded.
  • the attribute bitstream of FIG. 32 is decoded, inverse quantized, and/or inversely transformed by an entropy decoder 32003, an inverse quantization unit 32004, and/or an inverse transform unit 32005.
  • the octree structure refers to an octree structure reconstructed by the octree reconstruction unit 32002 of FIG. 32 according to embodiments.
  • Attribute-node matching means matching the decoded attribute received by the point cloud data receiving device (decoder) according to the embodiments to nodes of an octree structure. do.
  • the decoder according to embodiments first matches attribute data corresponding to a root node among the decoded attribute data to a root node of an octree structure.
  • attribute data corresponding to sub-nodes (child nodes) other than the leaf node are matched from sub-nodes (child nodes) to nodes included in the level of the leaf node, respectively.
  • an actual position of a point to which a received decoded attribute is matched is predicted.
  • a leaf node corresponding to an actual position of a point to which a decoded attribute received in an octree structure is matched may be predicted.
  • the position prediction step 33003 a method of predicting an actual location of a point or a leaf node corresponding to the actual location by the point cloud data decoder according to embodiments will be described in detail with reference to FIG. 35.
  • the octree is used for scalable decoding/representation. It is possible to output the actual point position rather than an arbitrary point without matching nodes of all levels.
  • Attribute-point matching means matching a decoded attribute to an actual position (or a leaf node corresponding thereto) of a point predicted in the position prediction step 33003. That is, it means matching attribute data matched in attribute-node matching to a leaf node corresponding to a point at which the actual location is located.
  • the decoder according to the embodiments performs the position prediction step 33003 and the attribute-point matching step 33004 separately for each of the nodes corresponding to the upper node of the leaf node from the root node. You may.
  • the decoder according to the embodiments performs a position prediction step (33003) and an attribute-point matching step (33004) to be performed last after matching attribute data to all nodes except for leaf nodes included in the octree structure. May be.
  • 34 illustrates an operation of performing attribute to node matching by a point cloud data decoder according to embodiments.
  • the decoder of the point cloud data according to the embodiments generates a colored octree according to the embodiments.
  • Operations according to the embodiments described with reference to FIG. 34 may be performed by the attribute reconstruction & octree matching unit 32006 of FIG. 32.
  • Operations according to the embodiments described in FIG. 34 may correspond to some or all of the operations according to the embodiments described in FIG. 33.
  • 34 illustrates a process of matching attribute data to an occupied node included in an octree structure (full geometry) according to embodiments.
  • the point cloud data decoder (or scalable decoder) according to the embodiments decodes the attribute bitstream to generate decoded attribute data to generate a colored octree according to the embodiments.
  • Generating (34000), matching attribute data corresponding to a root node of an octree structure among the decoded and decoded attribute data to a root node of an octree structure (34001), a child of the root node Matching the decoded attribute data from the child nodes to the immediately preceding upper node of the leaf node (34002) and/or matching the decoded attribute data to the leaf node (34003) may be included.
  • the reception device according to the embodiments performs an operation 34000 of decoding an attribute bitstream.
  • the reception device may match attribute data corresponding to a root node among decoded attribute data to a root node of an octree structure (34001a).
  • the reception device may separately signal or store the matched attribute data among the decoded attribute data. For example, by storing the matched attribute data in the reconstructred array, it is possible to indicate that the c2 attribute data is already matched decoded data.
  • the reception device may separately signal or store the remaining attribute data except for the matched attribute data among the decoded attribute data. For example, by storing the remaining attribute data in the residuals array, it is possible to indicate that the attribute data c'1 and c'5 relates to the remaining decoded data that has not yet been matched.
  • the receiving device matches attribute data corresponding to nodes other than a leaf node among the decoded attribute data to corresponding nodes of an octree structure (34002a). can do.
  • the receiving device may separately signal or store the matched attribute data among the decoded attribute data. For example, by storing the matched attribute data in the reconstructed array, it is possible to indicate that the attribute data c2, c1, and c5 is decoded data that has already been matched.
  • the reception device may separately signal or store the remaining attribute data excluding the matched attribute data among the decoded attribute data.
  • the attribute data c'3, c'4, c'6, c'7, c'8, c'9 is not yet matched and the remaining decoded data is Can indicate that it is.
  • the reception device may match (34003) the decoded attribute data to nodes included in the level of a leaf node.
  • Operation 34003 may correspond to the attribute-point cloud data matching unit 32006c of FIG. 32 and/or the attribute to node matching 33001 of FIG. 33.
  • attribute data corresponding to c3, c4, c6, c7, c8, and c9 among the decoded attribute data remain.
  • Attribute data corresponding to c3, c4, c6, c7, c8, and c9 may all be matched to leaf nodes (attribute to node matching).
  • the point cloud data receiving apparatus uses signaling information (for example, octree_full_level_present_flag information according to the embodiments). Based on attribute-point matching, attribute-point matching may be performed. This process may refer to a position prediction step 33003 and/or an attribute-point matching step 33004 described in FIG. 33.
  • 35 illustrates a process in which a reception device according to embodiments performs position estimation according to embodiments.
  • the operation according to the equation shown in FIG. 35 may correspond to the position estimation step 33003 and/or the attribute-point matching step 33004 of FIG. 33. That is, the point cloud data receiving apparatus (or decoder) according to the embodiments may determine a leaf node corresponding to an actual location of a point or an actual location of an octree structure based on the equation shown in FIG. 35. By predicting, the decoded attribute data may be matched to the predicted leaf node.
  • the operation according to the equation shown in FIG. 35 may be performed in the octree-point cloud data matching unit 32006c of FIG. 32, and may correspond to step 34003 shown in FIG. 34.
  • the equation shown in FIG. 35 is a leaf node corresponding to the attribute data in order to match the decoded attribute data to a leaf node, that is, to perform attribute to point matching according to embodiments. Or its location).
  • the reception device may predict the attribute data (in a direction from the root node to the leaf node) as the level decreases, as in the attribute prediction performed by the transmission device according to the embodiments.
  • the prediction method according to the embodiments may use the same method as the method used by the transmitter.
  • reconstructed attribute data of a parent node may be used as a predicted value for a child node of the parent node.
  • a range determined according to the definition of a neighbor may be differently applied to the predicted value.
  • attribute data of a parent node according to embodiments may be predicted as follows by the transmission apparatus according to the embodiments.
  • the receiving device may perform the reverse of the prediction error generation method used by the transmitting device in order to reconstruct the attribute of each child node based on the predicted attribute data. For example, when the transmitting device according to the embodiments generates a prediction error based on a difference (residue) between an original attribute and a predicted attribute, the receiving device may The attribute data may be reconstructed by adding the predicted attribute estimated by the corresponding receiving device to the value of the decoded prediction error.
  • the transmitting device may transmit information on the method of generating an attribute error to the receiving device. For example, attribute data of a child node (or leaf nodes) according to the embodiments may be predicted by the receiving apparatus according to the embodiments as follows.
  • C ⁇ l (x, y, z) is attribute data of child nodes according to embodiments.
  • g-1 ⁇ is a function representing the inverse of a method for the transmission device to perform prediction according to the embodiments.
  • p ⁇ l(x, y, z) means attribute data of a predicted parent node according to embodiments.
  • r ⁇ l(x, y, z) means a residual value (which may be included in decoded attribute data) to be applied to attribute data of a predicted parent node according to embodiments.
  • the receiving device performs attribute to node matching on the decoded attribute data according to embodiments. That is, the receiving device matches the decoded attribute data according to embodiments to a specific node other than a leaf node.
  • the receiving device detects occupied leaf nodes having the matched node as a parent node.
  • Occupied leaf nodes may be referred to as neighbor nodes having a matched node as a parent node.
  • P_GeoCtr (x, y, z) means attribute information of a parent node according to embodiments.
  • (x_n, y_n, z_n) represents n points according to embodiments in (x, y, z) coordinates.
  • NEIGHBOR may mean a set of points corresponding to the neighbor of the (x_n, y_n, z_n) point.
  • Attr(x_n, y_n, z_n) represents attribute information for each of n points. That is, Attr (x_n, y_n, z_n) represents attribute information of a point at the (x_n, y_n, z_n) position.
  • Attr(point) function can be understood as a function that returns point attribute information.
  • (x_n, y_n, z_n) ⁇ NEIGHBOR ⁇ is attribute information of a point (x_n, y_n, z_n) that is one of the corresponding neighbor points when points corresponding to the neighbor of a specific point are input.
  • (x_n, y_n, z_n) ⁇ NEIGHBOR ⁇ means the attribute value of the point (x_n, y_n, z_n) at which the value of the equation shown in 35000a is the minimum.
  • s(x_n, y_n, z_n) indicates whether a parent node is selected among points according to embodiments.
  • s(x_n, y_n, z_n) may mean a node that has not yet been selected as a node to be matched as a parent node by an encoder according to embodiments.
  • M may mean the number of neighbor points according to embodiments.
  • [x ⁇ -, y ⁇ -, z ⁇ -] ⁇ T may mean an average position of neighbor points according to embodiments. The average position of the neighbor points according to the embodiments may be determined as illustrated in FIG. 24.
  • is the distance between each neighbor point and the average position of the neighbor points (e.g., Euclidean distance) Can mean
  • the reception device may predict an actual position of a point corresponding to the decoded attribute using the equation shown in FIG. 35.
  • the receiving device may search for (x_n, y_n, z_n) corresponding to NEIGHBOR of a specific node using geometry data, and the above-described M value of points corresponding to NEIGHBOR, s(x_n, y_n , z_n) value, weight(x_n, y_n, z_n) value, [x ⁇ -, y ⁇ -, z ⁇ -] ⁇ T value and
  • Etc. can be calculated. Accordingly, after calculating a value corresponding to 35000a for the positions of each point, the position of the point corresponding to the attribute data to be matched to a specific node can be predicted by checking whether it matches the decode
  • FIG. 36 illustrates another embodiment of a process in which a point cloud data decoder according to embodiments generates a colored octree.
  • FIG. 36 shows that the decoder according to the embodiments performs attribute to node matching and/or attribute to point matching to perform partial representation or full level. It represents the process of generating a colored octree for a full representation.
  • the decoder of the point cloud data according to the embodiments generates a colored octree according to the embodiments.
  • Operations according to the embodiments described in FIG. 36 may be performed by the attribute reconstruction & octree matching unit 32006 and/or the scalable representation unit 32007 of FIG. 32.
  • Operations according to the embodiments described in FIG. 36 may correspond to some or all of the operations according to the embodiments described in FIG. 33.
  • operations according to the embodiments described in FIG. 36 include operations described in FIG. 34.
  • the point cloud data decoder decodes the attribute bitstream to generate decoded attribute data to generate a colored octree according to the embodiments. Generating (34000), matching attribute data corresponding to a root node of an octree structure among the decoded and decoded attribute data to a root node of an octree structure (34001), a child of the root node An operation (34002) of matching the decoded attribute data from the child nodes to the immediately preceding upper node of the leaf node may be performed.
  • the point cloud data decoder according to the embodiments may further include an operation (34003) of matching leaf nodes.
  • the reception device performs an operation 34000 of decoding an attribute bitstream.
  • the attribute bitstream received in this step refers to a bitstream that includes some attribute data selected by the bitstream selector 30003 of FIG. 30. That is, in this step, since the attribute bitstream includes only partial attribute information, attribute data shown in 34000b may not be included.
  • the reception device may match (36002a) attribute data corresponding to a root node among the decoded attribute data to a root node of an octree structure.
  • Operation 36002a may correspond to the attribute-node matching unit 32006b of FIG. 32 and/or the attribute to node matching 33001 of FIG. 33.
  • the reception device may separately signal or store the matched attribute data among the decoded attribute data as described with reference to FIG. 34.
  • the reception device according to the embodiments may separately signal or store the remaining attribute data excluding the matched attribute data among decoded attribute data as described in FIG. 34. .
  • the attribute data according to the embodiments may be further matched with the leaf node of the actual point (36002b). Operation 36002b may correspond to the attribute-node matching unit 32006c of FIG. 32 and/or the attribute to point matching 33004 of FIG. 33.
  • the reception device may separately signal or store that the corresponding attribute information is matched to the leaf node of the actual point.
  • the receiving device may store in matched signaling information or an array that corresponding attribute information is matched to a leaf node of an actual point.
  • the receiving device matches attribute data corresponding to the remaining nodes except for a leaf node among the decoded attribute data to corresponding nodes of an octree structure (36003a). can do.
  • Operation 36003a may correspond to the attribute-node matching unit 32006b of FIG. 32 and/or the attribute to node matching 33001 of FIG. 33.
  • attribute data to be matched The attribute data according to the embodiments may be further matched to the leaf node of the actual point corresponding to (36003b). Operation 36003b may correspond to the attribute-node matching unit 32006c of FIG. 32 and/or the attribute to point matching 33004 of FIG. 33.
  • the reception device may match (36004a) attribute data corresponding to a leaf node among the decoded attribute data to corresponding nodes of an octree structure. Operation 36004a may correspond to the attribute-node matching unit 32006b of FIG. 32 and/or the attribute to node matching 33001 of FIG. 33.
  • step 36004a since the attribute data is matched to the leaf node, attribute to point matching may not be performed on the matched attribute data.
  • attribute data for which attribute to node matching is not performed is matched to an occupied leaf node that is not matched. That is, the receiving device may perform attribute-to-point matching on attribute data for which attribute-node matching has not been performed (36004b).
  • the operation described in FIG. 36 may mean the scalable decoder 30004a-30004c described in FIG. 30.
  • a combination of some or all of the operations described in FIG. 36 may include the scalable decoder 30004a according to the first embodiments described in FIG. 30, the scalable decoder 30004b according to the second embodiments, or three. This may mean an operation of the scalable decoder 30004c according to the first embodiments.
  • the scalable decoder 30004a receives partial geometry information and partial attribute information.
  • the octree structure shown in FIG. 36 represents only some levels of an octree structure indicating location information of points of the reception point cloud data. (Ie, partial geometry information)
  • octree_full_level_present_flag information included in signaling information included in the bitstream may be 0. Accordingly, the scalable decoder 30004b according to the first embodiments does not perform an attribute-point matching operation according to embodiments in response to the value of octree_full_level_present_flag being 0. This is because the octree structure according to the embodiments received by the scalable decoder according to the first embodiments is an octree structure for some levels and does not include exact location information of a point.
  • the receiving device does not perform an attribute-point matching operation instead of performing a partial representation in order to provide point cloud content of low resolution.
  • Point cloud content can be provided.
  • the scalable decoder 30004b according to embodiments that receives partial geometry information and partial attribute information is included in the octree structure in response to the value of octree_full_level_present_flag being 0.
  • the scalable decoder 30004b receives full geometry information and partial attribute information.
  • the octree structure shown in FIG. 36 includes all levels of an octree structure indicating location information of points of the reception point cloud data. (That is, partial geometry information)
  • octree_full_level_present_flag information included in signaling information included in the bitstream may be 1.
  • the scalable decoder 30004b according to the second embodiments may perform an attribute-point matching operation according to embodiments in response to the value of octree_full_level_present_flag being 1. This is because the octree structure according to the embodiments received by the scalable decoder according to the second embodiments is an octree structure for all levels and includes accurate location information of a point.
  • the scalable decoder 30004b according to the second embodiments according to the embodiments may perform matching only on points (nodes) corresponding to the received attribute data. Accordingly, the scalable decoder 30004b according to the second embodiments performs attribute-to-node matching (36002a, 36003a) in an octree structure only for the received attribute data, and attribute -It is possible to perform attribute to point matching (36002b, 36003b).
  • the receiving device performs a partial representation to provide point cloud content of relatively high resolution for point cloud data where the location information of the points is relatively important. Instead, point cloud content can be quickly provided to a user by not performing a matching operation on unnecessary attribute information.
  • the scalable decoder 30004b according to embodiments that receives full geometry information and partial attribute information is included in the octree structure, corresponding to the value of octree_full_level_present_flag being 1
  • the scalable decoder 30004c receives full geometry information and full attribute information.
  • the octree structure shown in FIG. 36 includes all levels of an octree structure indicating location information of points of the reception point cloud data. (That is, partial geometry information)
  • octree_full_level_present_flag information included in signaling information included in the bitstream may be 1. Accordingly, the scalable decoder 30004c according to the third embodiments may perform an attribute-point matching operation according to embodiments in response to the value of octree_full_level_present_flag being 1.
  • the scalable decoder 30004c according to the third embodiments may perform matching only on points (nodes) corresponding to the received attribute data. Accordingly, the scalable decoder 30004c according to the third embodiments performs attribute to node matching on nodes included in an octree structure with respect to all received attribute data (36002a). , 36003a, 36004a), and attribute to point matching (36002b, 36003b, 36004b) may be performed. That is, the scalable decoder 30004c according to the third embodiments may match attribute data with respect to all occupied nodes included in the octree structure.
  • the receiving apparatus performs a full representation to provide point cloud content of high resolution in which the location and attributes of points are accurately displayed, and the receiving environment is good. Or it is suitable for content that needs to be provided with accurate point cloud content.
  • the scalable decoder 30004c according to embodiments that receives full geometry information and full attribute information is included in the octree structure, corresponding to the value of octree_full_level_present_flag being 1
  • FIG. 37 illustrates a process of decoding for a scalable representation by a point cloud data decoder according to embodiments.
  • 37A is an example of a scalable representation according to embodiments.
  • FIG. 37A is an example of a scalable representation of a point cloud decoder (for example, described with reference to FIGS. 30 to 36) according to embodiments.
  • the arrows indicated on the left of FIG. 37A indicate the direction in which the depth of the octree structure of the geometry increases.
  • the highest node of the octree structure according to the embodiments corresponds to the lowest depth or the first depth, and is called a root.
  • the lowest node of the octree structure according to the embodiments corresponds to the highest depth or the last depth and is called a leaf.
  • the depth of the octree structure according to the embodiments increases from the root to the leaf.
  • the point cloud decoder provides scalable decoding 37003b or low resolution point cloud content 37004a for providing high resolution point cloud content 37004b according to performance. For scalable decoding (37003a) is performed.
  • the point cloud decoder decodes (37003b) a geometry bitstream (37001) and an attribute bitstream (37002) corresponding to the entire octree structure.
  • the point cloud decoder for providing low-resolution point cloud content decodes (37003a) a partial geometry bitstream (37001) and a partial attribute bitstream (37002) corresponding to a specific depth of an octree structure.
  • Attribute decoding is performed based on geometry decoding. Therefore, even when the point cloud decoder decodes an attribute corresponding to the partial attribute bitstream 1812-2, the point cloud decoder must decode the geometry bitstream 37001. That is, the hatched portion in 37001 corresponds to geometric information that is not displayed, but is transmitted and decoded to decode an attribute corresponding to the partial attribute bitstream 37002.
  • a transmission device for example, a transmission device 10000 described in FIG. 1 or a transmission device described in FIG. 12 or a point cloud encoder (point cloud video encoder 10002 in FIG. 1, point cloud in FIG.
  • the encoder, the point cloud encoder described in FIGS. 12, 14, and 15 can transmit only a partial geometry bitstream (upper part of 37001) and a partial attribute bitstream (upper part of 37002) corresponding to a specific depth of an octree structure.
  • the point cloud decoder for providing low-resolution point cloud content decodes a partial geometry bitstream (upper part of 37001) and a partial attribute bitstream (upper part of 37002) corresponding to a specific depth of an octree structure (37003a).
  • a point cloud encoder generates a colored octree described in FIGS. 30 to 36 by matching attributes with a geometric structure.
  • the colored octree according to the embodiments is generated by matching nodes and attributes of each level with respect to one or more levels (or depths) representing an octree structure of a geometry.
  • the point cloud encoder performs attribute encoding based on the generated colored octree.
  • the point cloud encoder generates scalable representation information including information related to colored octrees so that the receiving device can perform scalable decoding and scalable representation, and the encoded geometry and encoded att It is transmitted through a bitstream with a review.
  • the receiving device may generate a colored octree as a reverse process of the transmitting device or the point cloud encoder based on the scalable representation information.
  • the colored octree represents an attribute matched to the octree structure of a geometry. Accordingly, the receiving device may select a specific level based on the colored octree and output or render low-resolution point cloud content according to the matched attributes. In particular, the receiving device may provide point cloud content of various resolutions according to the performance of the receiving device without a separate receiving or processing process.
  • Both the transmitting device (or point cloud encoder) and the receiving device (or point cloud decoder) according to the embodiments may generate a colored octree.
  • the process or method of generating a colored octree according to embodiments may be referred to as octree colorization.
  • the point cloud encoder according to the embodiments may perform octree colorization for the entire octree structure from the highest node (lowest level) to the lowest node (highest level) of the octree structure.
  • the point cloud encoder according to the embodiments may perform octree colorization for an arbitrary depth section (eg, from n-1 level to n level) of an octree structure.
  • the point cloud decoder according to the embodiments may perform octree colorization based on the above-described scalable coding information.
  • 37(B) shows details of geometry and attributes according to scalable decoding according to embodiments.
  • FIG. 37(B) The upper part of FIG. 37(B) is an example showing details of geometry according to scalable decoding.
  • a first arrow 37005c indicates a direction from an upper node (ie, a node close to the root node) to a lower node (ie, a node close to a leaf node) of the octree.
  • the scalable decoding proceeds from an upper octree node to a lower node, more points exist, so that the detail of the geometry increases.
  • the leaf nodes of the octree structure correspond to the top level detail of the geometry.
  • FIG. 37(B) The lower part of FIG. 37(B) is an example showing details of an attribute according to scalable decoding.
  • a second arrow 37005d indicates a direction from an upper node to a lower node of the octree. As shown in the figure, when scalable decoding is performed from an upper octree node to a lower node, the detail of an attribute increases.
  • 38 illustrates a process of decoding for a scalable representation by a point cloud data decoder according to embodiments.
  • FIG. 38 illustrates a method of decoding by a scalable decoder according to embodiments described with reference to FIG. 36.
  • ⁇ Case 1> is that a scalable decoder according to embodiments receives full geometry (38001a) information and full attribute (full attribute, 38001b) information according to the embodiments to provide scalable decoding (scalable decoder). decoding).
  • Operations described in ⁇ case 1> may be performed by the scalable decoder 30004c according to the third embodiments described in FIGS. 36 and 30.
  • the scalable decoder performing the ⁇ case 1> operation is a reconstructed colorized octree that matches attribute data to occupied nodes included in an octree structure representing the locations of all points. , Also called colored octree).
  • the reconstructed colored octree generated by the scalable decoder performing the ⁇ case 1> operation is characterized by the attribute to node matching and attribute to point matching described in FIGS. 30 to 37. ) Can be created by an action.
  • the scalable decoder can provide point cloud content to a user with high quality content with high resolution, if necessary.
  • ⁇ Case 2> is that a scalable decoder according to embodiments receives partial geometry (38002a) information and partial attribute (38002b) information according to the embodiments to provide scalable decoding. decoding).
  • Operations described in ⁇ case 2> may be performed by the scalable decoder 30004a according to the first embodiments described in FIGS. 36 and 30.
  • the scalable decoder performing the ⁇ case 2> operation is reconstructed colorized by matching attribute data to occupied nodes included in the octree structure including only data on some levels of the octree structure indicating the location of points. Creates an octree (reconstructed colorized octree, also called a colored octree).
  • the reconstructed colored octree generated by the scalable decoder performing the ⁇ case 2> operation may be generated by the attribute to node matching operation described in FIGS. 30 to 37.
  • the scalable decoder can quickly provide point cloud content to a user with an average resolution.
  • the output point cloud data is scaled down to S x S x S. It becomes down) information.
  • the output point cloud data may indicate a center position of a cube having a size of S x S x S that binds the point cloud data to be scaled down, not a restored value for an actual position existing in the input data.
  • ⁇ Case 3> is that a scalable decoder according to embodiments receives full geometry (38003a) information and partial attribute (38003b) information according to the embodiments to provide scalable decoding (scalable decoder). decoding).
  • Operations described in ⁇ case 3> may be performed by the scalable decoder 30004b according to the second embodiments described in FIGS. 36 and 30.
  • the scalable decoder performing the operation is a reconstructed color in which a part of attribute data is matched to occupied nodes included in the octree structure including only data for all levels of the octree structure indicating the location of points. Creates a reconstructed colorized octree (also called a colored octree).
  • the reconstructed colored octree generated by the scalable decoder that performs the operation is the attribute to node matching and attribute to point matching described in FIGS. 30 to 37. ) Can be created by an action.
  • the scalable decoder performs the operations described in ⁇ case 3> to provide point cloud content with relatively high resolution for point cloud data where the location information of the points is relatively important. representation), it is possible to quickly provide point cloud content to a user by not performing a matching operation on unnecessary attribute information.
  • 39 shows a point cloud data transmission step according to embodiments.
  • the point cloud data transmission step includes encoding (39000) the point cloud data and/or transmitting (39001) a bitstream including the point cloud data and signaling information on the point cloud data. can do.
  • Point cloud data may include geometry information representing position information (position, position) of points of point cloud data, and attribute information representing attributes (attributes) of points of int cloud data.
  • the step of encoding the point cloud data 3900 includes encoding geometric information included in the point cloud according to embodiments and encoding attribute information included in the point cloud according to the embodiments.
  • the operations described in FIGS. 18 and 20 and the operations described in FIGS. 19 and 21-26 may be performed.
  • encoding attribute information includes receiving an octree structure of geometric information, and generating a colored octree by matching one or more attributes to each level of the octree structure. can do.
  • the octree structure may be expressed in one or more levels, and the colored octree may be used to encode attribute information so that some or all of the attribute information can be represented in a scalable representation.
  • the encoding of the attribute information may further include removing redundant data among data matched to the collated octree.
  • step 39001 transmitting a bitstream including point cloud data and signaling information on the point cloud data, the above-described encoded point cloud data is transmitted.
  • Signaling information may include the information described with reference to FIG. 27.
  • the signaling information is information indicating whether the bitstream includes data on a full level of the octree structure or only data on a partial level of the octree structure (e.g., in embodiments According to octree_full_level_present_flag information) may be included.
  • FIG. 40 illustrates a step of receiving point cloud data according to embodiments.
  • the receiving of point cloud data includes receiving (40000) a bitstream including point cloud data and signaling information, decoding the point cloud data (40001), and/or the decoded point cloud data. Rendering 40002.
  • Point cloud data included in a bitstream includes geometry information indicating positions of points of the point cloud data and attribute information indicating one or more attributes of points of the point cloud data.
  • the signaling information according to the embodiments includes information indicating whether the bitstream according to the embodiments includes data on a full level of the octree structure or only data on a partial level of the octree structure ( For example, octree_full_level_present_flag information according to embodiments) is included.
  • the step of decoding the point cloud data 40001 includes decoding geometric information and decoding attribute information.
  • a scalable representation e.g., octree_full_level_present_flag
  • octree_full_level_present_flag is based on information indicating whether the point cloud data includes only data for a partial level of the octree structure.
  • a colored octree for decoding attribute information can be created to enable scalable representation.
  • the decoding step 40001 may mean an operation of a decoder according to the embodiments described with reference to FIGS. 30 to 38 or decoding.
  • the decoded point cloud data according to the embodiments is rendered.
  • a full representation or a partial representation may be performed based on the generated colored octree.
  • Components of the point cloud data processing apparatus according to the embodiments described with reference to FIGS. 1 to 40 may be implemented by hardware, software, firmware, or a combination thereof including one or more processors combined with a memory.
  • Components of the device according to the embodiments may be implemented with one chip, for example, one hardware circuit.
  • components of the point cloud data processing apparatus according to embodiments may be implemented as separate chips.
  • at least one of the components of the point cloud data processing apparatus according to the embodiments may be composed of one or more processors capable of executing one or more programs, and one or more programs are shown in FIG. 1.
  • To 40 or instructions for performing any one or more of the operations/methods of the point cloud data processing apparatus described in FIG. 40.
  • each drawing has been described separately, but it is also possible to design a new embodiment by merging the embodiments described in each drawing.
  • designing a computer-readable recording medium in which a program for executing the previously described embodiments is recorded is also within the scope of the rights of the embodiments according to the needs of the skilled person.
  • the apparatus and method according to the embodiments are not limitedly applicable to the configuration and method of the described embodiments as described above, but the embodiments are all or part of each of the embodiments selectively combined so that various modifications can be made. It can also be configured.
  • the point cloud data transmission method according to the embodiments may be performed by components included in the point cloud data transmission device or the point cloud data transmission device according to the embodiments.
  • the point cloud data receiving method according to the embodiments may be performed by the point cloud data receiving apparatus or the components included in the point cloud data receiving apparatus according to the embodiments.
  • Various components of the device according to the embodiments may be configured by hardware, software, firmware, or a combination thereof.
  • Various components of the embodiments may be implemented as one chip, for example, one hardware circuit.
  • the components according to the embodiments may be implemented as separate chips.
  • at least one or more of the components of the device according to the embodiments may be composed of one or more processors capable of executing one or more programs, and one or more programs may be implemented. It may include instructions for performing or performing any one or more of the operations/methods according to the examples.
  • Executable instructions for performing the method/operations of the apparatus may be stored in a non-transitory CRM or other computer program products configured to be executed by one or more processors, or may be stored in one or more It may be stored in a temporary CRM or other computer program products configured for execution by the processors.
  • the memory according to the embodiments may be used as a concept including not only volatile memory (eg, RAM, etc.) but also non-volatile memory, flash memory, PROM, and the like.
  • it may be implemented in the form of a carrier wave such as transmission through the Internet.
  • the processor-readable recording medium is distributed over a computer system connected through a network, so that the processor-readable code can be stored and executed in a distributed manner.
  • first and second may be used to describe various elements of the embodiments. However, the interpretation of various components according to the embodiments should not be limited by the above terms. These terms are only used to distinguish one component from another. It's just a thing For example, a first user input signal may be referred to as a second user input signal. Similarly, the second user input signal may be referred to as a first user input signal. The use of these terms should be construed as not departing from the scope of various embodiments.
  • the first user input signal and the second user input signal are both user input signals, but do not mean the same user input signals unless clearly indicated in context.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Graphics (AREA)
  • Geometry (AREA)
  • Software Systems (AREA)
  • Compression Or Coding Systems Of Tv Signals (AREA)
  • Image Generation (AREA)

Abstract

실시예들에 따른 포인트 클라우드 데이터 처리 장치는 지오메트리(geometry) 정보 및 어트리뷰트(attribute) 정보를 포함하는 포인트 클라우드 데이터(point cloud data)를 인코딩하는 단계, 인코딩된 포인트 클라우드 데이터를 포함하는 비트스트림을 전송하는 단계를 포함할 수 있다.

Description

포인트 클라우드 데이터 처리 장치 및 방법
실시예들은 사용자에게 VR (Virtual Reality, 가상현실), AR (Augmented Reality, 증강현실), MR (Mixed Reality, 혼합현실), 및 자율 주행 서비스 등의 다양한 서비스를 제공하기 위하여 Point Cloud 콘텐츠를 제공하는 방안을 제공한다.
포인트 클라우드 콘텐트는 3차원 공간을 표현하는 좌표계에 속한 점(포인트)들의 집합인 포인트 클라우드로 표현되는 콘텐트이다. 포인트 클라우드 콘텐트는3차원으로 이루어진 미디어를 표현할 수 있으며, VR (Virtual Reality, 가상현실), AR (Augmented Reality, 증강현실), MR (Mixed Reality, 혼합현실), 및 자율 주행 서비스 등의 다양한 서비스를 제공하기 위해 사용된다. 하지만 포인트 클라우드 콘텐트를 표현하기 위해서는 수만개에서 수십만개의 포인트 데이터가 필요하다. 따라서 방대한 양의 포인트 데이터를 효율적으로 처리하기 위한 방법이 요구된다.
실시예들은 포인트 클라우드 데이터를 효율적으로 처리하기 위한 장치 및 방법을 제공한다. 실시예들은 지연시간(latency) 및 인코딩/디코딩 복잡도를 해결하기 위한 포인트 클라우드 데이터 처리 방법 및 장치를 제공한다.
다만, 전술한 기술적 과제만으로 제한되는 것은 아니고, 기재된 전체 내용에 기초하여 당업자가 유추할 수 있는 다른 기술적 과제로 실시예들의 권리범위가 확장될 수 있다.
따라서 효율적으로 포인트 클라우드 데이터를 처리하기 위하여 실시예들에 따른 포인트 클라우드 처리 방법은 지오메트리(geometry) 정보 및 어트리뷰트(attribute) 정보를 포함하는 포인트 클라우드 데이터(point cloud data)를 인코딩하는 단계; 및 인코딩된 포인트 클라우드 데이터를 포함하는 비트스트림을 전송하는 단계; 를 포함할 수 있다.
실시예들에 따르면, 지오메트리 정보는 포인트 클라우드 데이터의 포인트들의 포지션(position)들을 나타내는 정보일 수 있고, 어트리뷰트 정보는 포인트 클라우드 데이터의 포인트들의 어트리뷰트들을 나타내는 정보일 수 있다.
실시예들에 따른 포인트 클라우드 데이터를 인코딩하는 단계는 지오메트리 정보를 인코딩하는 단계; 및 어트리뷰트 정보를 인코딩하는 단계; 를 포함할 수 있다. 나아가, 어트리뷰트 정보를 인코딩하는 단계는 지오메트리 정보의 옥트리 구조를 수신하는 단계; 및 옥트리 구조의 각 레벨에 하나 또는 그 이상의 어트리뷰트들을 매칭하여 컬러라이즈드 옥트리(colorized octree)를 생성하는 단계를 포함할 수 있다.
실시예들에 따르면, 옥트리 구조는 하나 또는 그 이상의 레벨들로 표현될 수 있고, 컬러라이즈드 옥트리는 어트리뷰트 정보의 일부 또는 전부를 스케일러블 레프리젠테이션(scalable representation)할 수 있도록 어트리뷰트 정보를 인코딩하기 위해 사용될 수 있다.
실시예들에 따르면, 컬러라이즈드 옥트리는, 하나 또는 그 이상의 어트리뷰트들을 옥트리 구조의 리프 노드(leaf node)들에 매칭(matching)할 수 있고, 리프 노드들에 매칭된 하나 또는 그 이상의 어트리뷰트들을 리프 노드들이 아닌 노드들에 매칭함으로써 생성될 수 있다. 또한, 컬러라이즈드 옥트리는 옥트리 구조의 루트 노드(root node)부터 리프 노드까지 스텝 다운(step down)하여 하나 또는 그 이상의 어트리뷰트들을 리프 노드들이 아닌 노드들에 매칭함으로써 생성될 수 있다.
실시예들에 따르면, 시그널링 정보는 비트스트림이 옥트리 구조의 풀 레벨(full level)에 대한 데이터를 포함하는지 옥트리 구조의 일부 레벨(level)에 대한 데이터만 포함하는지 여부를 나타내는 정보를 포함할 수 있다.
나아가, 실시예들에 따르면, 어트리뷰트 정보를 인코딩하는 단계는 컬라이즈드 옥트리에 매칭된 데이터 중 중복되는 데이터를 제거하는 단계를 더 포함할 수 있다.
또한, 효율적으로 포인트 클라우드 데이터를 처리하기 위하여 실시예들에 따른 포인트 클라우드 처리 방법은, 포인트 클라우드 데이터를 포함하는 비트스트림을 수신하는 단계; 및 포인트 클라우드 데이터를 디코딩하는 단계; 를 포함할 수 있다.
실시예들에 따른 포인트 클라우드 데이터는 지오메트리 정보 및 어트리뷰트 정보를 포함할 수 있고, 지오메트리 정보는 포인트 클라우드 데이트의 포인트들의 포지션을 나타내는 정보일 수 있고, 어트리뷰트 정보는 포인트 클라우드 데이터의 포인트들의 하나 또는 그 이상의 어트리뷰트들을 나타내는 정보일 수 있다.
상기 포인트 클라우드 데이터를 디코딩하는 단계는, 지오메트리 정보를 디코딩하는 단계; 및 어트리뷰트 정보를 디코딩하는 단계; 를 포함할 수 있다.
나아가, 시그널링 정보는 비트스트림이 옥트리 구조의 풀 레벨(full level)에 대한 데이터를 포함하는지 옥트리 구조의 일부 레벨(level)에 대한 데이터만 포함하는지 여부를 나타내는 정보를 포함할 수 있다. 또한, 어트리뷰트 정보를 디코딩하는 단계는, 포인트 클라우드 데이터를 정보에 기초하여 스케일러블 레프리젠테이션(scalable representation)할 수 있도록 어트리뷰트 정보를 디코딩하기 위한 컬러라이즈드 옥트리를 생성할 수 있다.
실시예들에 따른 장치 및 방법은 높은 효율로 포인트 클라우드 데이터를 처리할 수 있다.
실시예들에 따른 장치 및 방법은 높은 퀄리티의 포인트 클라우드 서비스를 제공할 수 있다.
실시예들에 따른 장치 및 방법은 VR 서비스, 자율주행 서비스 등 범용적인 서비스를 제공하기 위한 포인트 클라우드 콘텐트를 제공할 수 있다.
실시예들에 따른 포인트 클라우드 데이터 송신 장치는, 중요도에 따라서 다른 부호화 동작을 적용할 수 있게 하고, 품질(quality)이 좋은 부호화 방법을 중요한 영역에 사용할 수 있는 방안을 제공할 수 있다. 또한 포인트 클라우드의 특성에 따른 효율적인 부호화/복호화 및 전송을 지원하고 사용자의 요구사항에 따른 속성 값을 제공할 수 있다.
실시예들에 따른 포인트 클라우드 데이터 전송 장치 및 수신 장치는, 타일(tile) 및/또는 슬라이스(slice) 단위로 독립적으로 또는 비독립적으로 부호화 및 복호화를 수행함으로써, 부호화 및 복호화 과정에서 누적되는 오류를 방지할 수 있다.
실시예들에 따른 포인트 클라우드 데이터 전송 장치 컬러라이즈드 옥트리를 생성하여 어트리뷰트 정보를 인코딩하여 전송함으로써 옥트리 구조를 모두 인코딩하지 않아도 어트리뷰트 인코딩을 수행할 수 있어 고속 처리를 요구하는 시스템에서 불필요한 지연(delay)이 발생되는 문제를 해결할 수 있다.
실시예들에 따른 포인트 클라우드 데이터 수신 장치는 컬러라이즈드 옥트리(colorized octree)를 수신하여 디코딩함으로써, 반드시 어트리뷰트 정보를 모두 디코딩하지 않아도 어트리뷰트 정보를 디코딩할 수 있어 스케일러블(scalable)한 디코딩이 가능하다.
첨부된 도면은 본 발명의 실시예들을 나타내고 설명과 함께 본 발명의 원리를 설명한다.
도면은 실시예들을 더욱 이해하기 위해서 포함되며, 도면은 실시예들에 관련된 설명과 함께 실시예들을 나타낸다.
도 1은 실시예들에 따른 포인트 클라우드 콘텐츠 제공 시스템의 예시를 나타낸다.
도 2는 실시예들에 따른 포인트 클라우드 콘텐트 제공 동작을 나타내는 블록도이다.
도 3은 실시예들에 따른 포인트 클라우드 비디오 캡쳐 과정의 예시를 나타낸다.
도 4는 실시예들에 따른 포인트 클라우드 인코더(Point Cloud Encoder)의 예시를 나타낸다.
도 5는 실시예들에 따른 복셀의 예시를 나타낸다.
도 6은 실시예들에 따른 옥트리 및 오큐판시 코드 (occupancy code)의 예시를 나타낸다.
도 7은 실시예들에 따른 이웃 노드 패턴의 예시를 나타낸다.
도 8은 실시예들에 따른 LOD 별 포인트 구성의 예시를 나타낸다.
도 9는 실시예들에 따른 LOD 별 포인트 구성의 예시를 나타낸다.
도 10은 실시예들에 따른 포인트 클라우드 디코더(Point Cloud Decoder)의 예시를 나타낸다.
도 11은 실시예들에 따른 포인트 클라우드 디코더(Point Cloud Decoder)의 예시를 나타낸다.
도 12는 실시예들에 따른 전송 장치의 예시이다.
도 13은 실시예들에 따른 수신 장치의 예시이다.
도 14는 실시예들에 따른 G-PCC 기반 포인트 클라우드 콘텐트 스트리밍을 위한 아키텍쳐를 나타낸다.
도 15는 실시예들에 따른 전송 장치의 예시를 나타낸다.
도 16은 실시예들에 따른 수신 장치의 예시를 나타낸다.
도 17은 실시예들에 따른 포인트 클라우드 데이터 송수신 방법/장치와 연동 가능한 구조의 예시를 나타낸다.
도 18은 실시예들에 따른 포인트 클라우드 인코더를 나타낸다.
도 19는 실시예들에 따른 옥트리와 컬러라이즈드 옥트리(colorized octree)를 나타낸다.
도 20는 실시예들에 따른 포인트 클라우드 데이터 인코더를 나타낸다.
도 21은 실시예들에 따른 컬러라이즈드 옥트리를 생성하는 과정을 나타낸다.
도 22는 옥트리 구조의 리프 노드를 컬러라이즈(colorize)하는 동작을 나타낸다.
도 23은 실시예들에 따른 인코더가 실시예들에 따른 네이버(neighbor)를 검출하는 과정을 나타낸다.
도 24는 실시예들에 따른 인코더가 실시예들에 따른 네이버(neighbor)에 기초하여 부모 노드(parent node)에 어트리뷰트 정보를 매칭하기 위한 수식을 나타낸다.
도 25는 실시예들에 따른 인코더가, 어트리뷰트 정보가 매칭된 옥트리 내의 중복된 어트리뷰트(duplicate attribute)를 제거하는 동작을 나타낸다.
도 26는 실시예들에 따른 인코더의 동작을 나타낸다.
도 27은 실시예들에 따른 포인트 클라우드 데이터의 비트스트림 구조의 예시를 나타낸다.
도 28은 실시예들에 따른 APS(Attribute Parameter Set)를 나타낸다.
도 29는 실시예들에 따른 어트리뷰트 비트스트림(attribute bitstream)을 나타낸다.
도 30은 스케일러블 표현(scalable representation)을 위한 실시예들에 따른 포인트 클라우드 데이터 송신 장치 및 수신 장치의 동작을 나타낸다.
도 31은 실시예들에 따른 포인트 클라우드 데이터 디코더를 나타낸다.
도 32는 실시예들에 따른 포인트 클라우드 데이터 디코더를 나타낸다.
도 33는 실시예들에 따른 포인트 클라우드 데이터 수신 장치가 컬러라이즈드 옥트리를 생성하는 과정을 나타낸다.
도 34는 실시예들에 따른 포인트 클라우드 데이터 디코더가 어트리뷰트-노드 매칭(attribute to node matching)을 수행하는 동작을 나타낸다.
도 35은 실시예들에 따른 수신 장치가 실시예들에 따른 위치 예측(position estimation)을 수행하는 과정을 나타낸다.
도 36은 실시예들에 따른 포인트 클라우드 데이터 디코더가 컬러라이즈드 옥트리(colorized octree)를 생성하는 과정의 다른 실시예를 나타낸다.
도 37은 실시예들에 따른 포인트 클라우드 데이터 디코더가 스케일러블 레프리젠테이션(scalable representation)을 위해 디코딩하는 과정을 나타낸다.
도 38은 실시예들에 따른 포인트 클라우드 데이터 디코더가 스케일러블 레프리젠테이션(scalable representation)을 위해 디코딩하는 과정을 나타낸다.
도 39는 실시예들에 따른 포인트 클라우드 데이터 송신 단계를 나타낸다.
도 40는 실시예들에 따른 포인트 클라우드 데이터 수신 단계를 나타낸다.
실시예들의 바람직한 실시예에 대해 구체적으로 설명하며, 그 예는 첨부된 도면에 나타낸다. 첨부된 도면을 참조한 아래의 상세한 설명은 실시예들의 실시예에 따라 구현될 수 있는 실시예만을 나타내기보다는 실시예들의 바람직한 실시예를 설명하기 위한 것이다. 다음의 상세한 설명은 실시예들에 대한 철저한 이해를 제공하기 위해 세부 사항을 포함한다. 그러나 실시예들이 이러한 세부 사항 없이 실행될 수 있다는 것은 당업자에게 자명하다.
실시예들에서 사용되는 대부분의 용어는 해당 분야에서 널리 사용되는 일반적인 것들에서 선택되지만, 일부 용어는 출원인에 의해 임의로 선택되며 그 의미는 필요에 따라 다음 설명에서 자세히 서술한다. 따라서 실시예들은 용어의 단순한 명칭이나 의미가 아닌 용어의 의도된 의미에 근거하여 이해되어야 한다.
도 1은 실시예들에 따른 포인트 클라우드 콘텐츠 제공 시스템의 예시를 나타낸다.
도 1에 도시된 포인트 클라우드 콘텐트 제공 시스템은 전송 장치(transmission device)(10000) 및 수신 장치(reception device)(10004)를 포함할 수 있다. 전송 장치(10000) 및 수신 장치(10004)는 포인트 클라우드 데이터를 송수신하기 위해 유무선 통신 가능하다.
. 실시예들에 따른 전송 장치(10000)는 포인트 클라우드 비디오(또는 포인트 클라우드 콘텐트)를 확보하고 처리하여 전송할 수 있다. 실시예들에 따라, 전송 장치(10000)는 고정국(fixed station), BTS(base transceiver system), 네트워크, AI(Ariticial Intelligence) 기기 및/또는 시스템, 로봇, AR/VR/XR 기기 및/또는 서버 등을 포함할 수 있다. 또한 실시예들에 따라 전송 장치(10000)는 무선 접속 기술(예, 5G NR(New RAT), LTE(Long Term Evolution))을 이용하여, 기지국 및/또는 다른 무선 기기와 통신을 수행하는 기기, 로봇, 차량, AR/VR/XR 기기, 휴대기기, 가전, IoT(Internet of Thing)기기, AI 기기/서버 등을 포함할 수 있다.
실시예들에 따른 전송 장치(10000)는 포인트 클라우드 비디오 획득부(Point Cloud Video Acquisition, 10001), 포인트 클라우드 비디오 인코더(Point Cloud Video Encoder, 10002) 및/또는 트랜스미터(Transmitter (or Communication module), 10003)를 포함한다
실시예들에 따른 포인트 클라우드 비디오 획득부(10001)는 캡쳐, 합성 또는 생성 등의 처리 과정을 통해 포인트 클라우드 비디오를 획득한다. 포인트 클라우드 비디오는 3차원 공간에 위치한 포인트들의 집합인 포인트 클라우드로 표현되는 포인트 클라우드 콘텐트로서, 포인트 클라우드 비디오 데이터 등으로 호칭될 수 있다. 실시예들에 따른 포인트 클라우드 비디오는 하나 또는 그 이상의 프레임들을 포함할 수 있다. 하나의 프레임은 정지 영상/픽쳐를 나타낸다. 따라서 포인트 클라우드 비디오는 포인트 클라우드 영상/프레임/픽처를 포함할 수 있으며, 포인트 클라우드 영상, 프레임 및 픽처 중 어느 하나로 호칭될 수 있다.
실시예들에 따른 포인트 클라우드 비디오 인코더(10002)는 확보된 포인트 클라우드 비디오 데이터를 인코딩한다. 포인트 클라우드 비디오 인코더(10002)는 포인트 클라우드 컴프레션(Point Cloud Compression) 코딩을 기반으로 포인트 클라우드 비디오 데이터를 인코딩할 수 있다. 실시예들에 따른 포인트 클라우드 컴프레션 코딩은 G-PCC(Geometry-based Point Cloud Compression) 코딩 및/또는 V-PCC(Video based Point Cloud Compression) 코딩 또는 차세대 코딩을 포함할 수 있다. 또한 실시예들에 따른 포인트 클라우드 컴프레션 코딩은 상술한 실시예에 국한되는 것은 아니다. 포인트 클라우드 비디오 인코더(10002)는 인코딩된 포인트 클라우드 비디오 데이터를 포함하는 비트스트림을 출력할 수 있다. 비트스트림은 인코딩된 포인트 클라우드 비디오 데이터 뿐만 아니라, 포인트 클라우드 비디오 데이터의 인코딩과 관련된 시그널링 정보를 포함할 수 있다.
실시예들에 따른 트랜스미터(10003)는 인코딩된 포인트 클라우드 비디오 데이터를 포함하는 비트스트림을 전송한다. 실시예들에 따른 비트스트림은 파일 또는 세그먼트(예를 들면 스트리밍 세그먼트) 등으로 인캡슐레이션되어 방송망 및/또는 브로드밴드 망등의 다양한 네트워크를 통해 전송된다. 도면에 도시되지 않았으나, 전송 장치(10000)는 인캡슐레이션 동작을 수행하는 인캡슐레이션부(또는 인캡슐레이션 모듈)을 포함할 수 있다. 또한 실시예들에 따라 인캡슐레이션부는 트랜스미터(10003)에 포함될 수 있다. 실시예들에 따라 파일 또는 세그먼트는 네트워크를 통해 수신 장치(10004)로 전송되거나, 디지털 저장매체(예를 들면 USB, SD, CD, DVD, 블루레이, HDD, SSD 등)에 저장될 수 있다. 실시예들에 따른 트랜스미터(10003)는 수신 장치(10004) (또는 리시버(Receiver, 10005))와 4G, 5G, 6G 등의 네트워크를 통해 유/무선 통신 가능하다. 또한 트랜스미터(10003)는 네트워크 시스템(예를 들면 4G, 5G, 6G 등의 통신 네트워크 시스템)에 따라 필요한 데이터 처리 동작을 수행할 수 있다. 또한 전송 장치(10000)는 온 디맨드(On Demand) 방식에 따라 인캡슐레이션된 데이터를 전송할 수도 있다.
실시예들에 따른 수신 장치(10004)는 리시버(Receiver, 10005), 포인트 클라우드 비디오 디코더(Point Cloud Decoder, 10006) 및/또는 렌더러(Renderer, 10007)를 포함한다. 실시예들에 따라 수신 장치(10004)는 무선 접속 기술(예, 5G NR(New RAT), LTE(Long Term Evolution))을 이용하여, 기지국 및/또는 다른 무선 기기와 통신을 수행하는 기기, 로봇, 차량, AR/VR/XR 기기, 휴대기기, 가전, IoT(Internet of Thing)기기, AI 기기/서버 등을 포함할 수 있다.
실시예들에 따른 리시버(10005)는 포인트 클라우드 비디오 데이터를 포함하는 비트스트림 또는 비트스트림이 인캡슐레이션된 파일/세그먼트 등을 네트워크 또는 저장매체로부터 수신한다. 리시버(10005)는 네트워크 시스템(예를 들면 4G, 5G, 6G 등의 통신 네트워크 시스템)에 따라 필요한 데이터 처리 동작을 수행할 수 있다. 실시예들에 따른 리시버(10005)는 수신한 파일/세그먼트를 디캡슐레이션하여 비트스트림을 출력할수 있다. 또한 실시예들에 따라 리시버(10005)는 디캡슐레이션 동작을 수행하기 위한 디캡슐레이션부(또는 디캡슐레이션 모듈)을 포함할 수 있다. 또한 디캡슐레이션부는 리시버(10005)와 별개의 엘레멘트(또는 컴포넌트)로 구현될 수 있다.
포인트 클라우드 비디오 디코더(10006)는 포인트 클라우드 비디오 데이터를 포함하는 비트스트림을 디코딩한다. 포인트 클라우드 비디오 디코더(10006)는 포인트 클라우드 비디오 데이터가 인코딩된 방식에 따라 디코딩할 수 있다(예를 들면 포인트 클라우드 비디오 인코더(10002)의 동작의 역과정). 따라서 포인트 클라우드 비디오 디코더(10006)는 포인트 클라우드 컴프레션의 역과정인 포인트 클라우드 디컴프레션 코딩을 수행하여 포인트 클라우드 비디오 데이터를 디코딩할 수 있다. 포인트 클라우드 디컴프레션 코딩은 G-PCC 코딩을 포함한다.
렌더러(10007)는 디코딩된 포인트 클라우드 비디오 데이터를 렌더링한다. 렌더러(10007)는 포인트 클라우드 비디오 데이터 뿐만 아니라 오디오 데이터도 렌더링하여 포인트 클라우드 콘텐트를 출력할 수 있다. 실시예들에 따라 렌더러(10007)는 포인트 클라우드 콘텐트를 디스플레이하기 위한 디스플레이를 포함할 수 있다. 실시예들에 따라 디스플레이는 렌더러(10007)에 포함되지 않고 별도의 디바이스 또는 컴포넌트로 구현될 수 있다.
도면에 점선으로 표시된 화살표는 수신 장치(10004)에서 획득한 피드백 정보(feedback information)의 전송 경로를 나타낸다. 피드백 정보는 포인트 클라우드 컨텐트를 소비하는 사용자와의 인터랙티비를 반영하기 위한 정보로서, 사용자의 정보(예를 들면 헤드 오리엔테이션 정보), 뷰포트(Viewport) 정보 등)을 포함한다. 특히 포인트 클라우드 콘텐트가 사용자와의 상호작용이 필요한 서비스(예를 들면 자율주행 서비스 등)를 위한 콘텐트인 경우, 피드백 정보는 콘텐트 송신측(예를 들면 전송 장치(10000)) 및/또는 서비스 프로바이더에게 전달될 수 있다. 실시예들에 따라 피드백 정보는 전송 장치(10000) 뿐만 아니라 수신 장치(10004)에서도 사용될 수 있으며, 제공되지 않을 수도 있다.
실시예들에 따른 헤드 오리엔테이션 정보는 사용자의 머리 위치, 방향, 각도, 움직임 등에 대한 정보이다. 실시예들에 따른 수신 장치(10004)는 헤드 오리엔테이션 정보를 기반으로 뷰포트 정보를 계산할 수 있다. 뷰포트 정보는 사용자가 바라보고 있는 포인트 클라우드 비디오의 영역에 대한 정보이다. 시점(viewpoint)은 사용자가 포인트 클라우 비디오를 보고 있는 점으로 뷰포트 영역의 정중앙 지점을 의미할 수 있다. 즉, 뷰포트는 시점을 중심으로 한 영역으로서, 영역의 크기, 형태 등은 FOV(Field Of View) 에 의해 결정될 수 있다. 따라서 수신 장치(10004)는 헤드 오리엔테이션 정보 외에 장치가 지원하는 수직(vertical) 혹은 수평(horizontal) FOV 등을 기반으로 뷰포트 정보를 추출할 수 있다. 또한 수신 장치(10004)는 게이즈 분석 (Gaze Analysis) 등을 수행하여 사용자의 포인트 클라우드 소비 방식, 사용자가 응시하는 포인트 클라우 비디오 영역, 응시 시간 등을 확인한다. 실시예들에 따라 수신 장치(10004)는 게이즈 분석 결과를 포함하는 피드백 정보를 송신 장치(10000)로 전송할 수 있다. 실시예들에 따른 피드백 정보는 렌더링 및/또는 디스플레이 과정에서 획득될 수 있다. 실시예들에 따른 피드백 정보는 수신 장치(10004)에 포함된 하나 또는 그 이상의 센서들에 의해 확보될 수 있다. 또한 실시예들에 따라 피드백 정보는 렌더러(10007) 또는 별도의 외부 엘레멘트(또는 디바이스, 컴포넌트 등)에 의해 확보될 수 있다. 도1의 점선은 렌더러(10007)에서 확보한 피드백 정보의 전달 과정을 나타낸다. 포인트 클라우드 콘텐트 제공 시스템은 피드백 정보를 기반으로 포인트 클라우드 데이터를 처리(인코딩/디코딩)할 수 있다. 따라서 포인트 클라우드 비디오 데이터 디코더(10006)는 피드백 정보를 기반으로 디코딩 동작을 수행할 수 있다. 또한 수신 장치(10004)는 피드백 정보를 전송 장치(10000)로 전송할 수 있다. 전송 장치(10000)(또는 포인트 클라우드 비디오 데이터 인코더(10002))는 피드백 정보를 기반으로 인코딩 동작을 수행할 수 있다. 따라서 포인트 클라우드 콘텐트 제공 시스템은 모든 포인트 클라우드 데이터를 처리(인코딩/디코딩)하지 않고, 피드백 정보를 기반으로 필요한 데이터(예를 들면 사용자의 헤드 위치에 대응하는 포인트 클라우드 데이터)를 효율적으로 처리하고, 사용자에게 포인트 클라우드 콘텐트를 제공할 수 있다.
실시예들에 따라, 전송 장치(10000)는 인코더, 전송 디바이스, 전송기 등으로 호칭될 수 있으며, 수신 장치(10004)는 디코더, 수신 디바이스, 수신기 등으로 호칭될 수 있다.
실시예들에 따른 도 1 의 포인트 클라우드 콘텐트 제공 시스템에서 처리되는 (획득/인코딩/전송/디코딩/렌더링의 일련의 과정으로 처리되는) 포인트 클라우드 데이터는 포인트 클라우드 콘텐트 데이터 또는 포인트 클라우드 비디오 데이터라고 호칭할 수 있다. 실시예들에 따라 포인트 클라우드 콘텐트 데이터는 포인트 클라우드 데이터와 관련된 메타데이터 내지 시그널링 정보를 포함하는 개념으로 사용될 수 있다.
도 1에 도시된 포인트 클라우드 콘텐트 제공 시스템의 엘리먼트들은 하드웨어, 소프트웨어, 프로세서 및/또는 그것들의 결합등으로 구현될 수 있다.
도 2는 실시예들에 따른 포인트 클라우드 콘텐트 제공 동작을 나타내는 블록도이다.
도 2의 블록도는 도 1에서 설명한 포인트 클라우드 콘텐트 제공 시스템의 동작을 나타낸다. 상술한 바와 같이 포인트 클라우드 콘텐트 제공 시스템은 포인트 클라우드 컴프레션 코딩(예를 들면 G-PCC)을 기반으로 포인트 클라우드 데이터를 처리할 수 있다.
실시예들에 따른 포인트 클라우드 콘텐트 제공 시스템(예를 들면 포인트 클라우드 전송 장치(10000) 또는 포인트 클라우드 비디오 획득부(10001))은 포인트 클라우드 비디오를 획득할 수 있다(20000). 포인트 클라우드 비디오는 3차원 공간을 표현하는 좌표계에 속한 포인트 클라우드로 표현된다. 실시예들에 따른 포인트 클라우드 비디오는 Ply (Polygon File format or the Stanford Triangle format) 파일을 포함할 수 있다. 포인트 클라우드 비디오가 하나 또는 그 이상의 프레임들을 갖는 경우, 획득한 포인트 클라우드 비디오는 하나 또는 그 이상의 Ply 파일들을 포함할 수 있다. Ply 파일은 포인트의 지오메트리(Geometry) 및/또는 어트리뷰트(Attribute)와 같은 포인트 클라우드 데이터를 포함한다. 지오메트리는 포인트들의 포지션들을 포함한다. 각 포인트의 포지션은 3차원 좌표계(예를 들면 XYZ축들로 이루어진 좌표계 등)를 나타내는 파라미터들(예를 들면 X축, Y축, Z축 각각의 값)로 표현될 수 있다. 어트리뷰트는 포인트들의 어트리뷰트들(예를 들면, 각 포인트의 텍스쳐 정보, 색상(YCbCr 또는 RGB), 반사율(r), 투명도 등)을 포함한다. 하나의 포인트는 하나 또는 그 이상의 어트리뷰트들(또는 속성들)을 가진다. 예를 들어 하나의 포인트는 하나의 색상인 어트리뷰트를 가질 수도 있고, 색상 및 반사율인 두 개의 어트리뷰트들을 가질 수도 있다. 실시예들에 따라, 지오메트리는 포지션들, 지오메트리 정보, 지오메트리 데이터 등으로 호칭 가능하며, 어트리뷰트는 어트리뷰트들, 어트리뷰트 정보, 어트리뷰트 데이터 등으로 호칭할 수 있다. 또한 포인트 클라우드 콘텐트 제공 시스템(예를 들면 포인트 클라우드 전송 장치(10000) 또는 포인트 클라우드 비디오 획득부(10001))은 포인트 클라우드 비디오의 획득 과정과 관련된 정보(예를 들면 깊이 정보, 색상 정보 등)으로부터 포인트 클라우드 데이터를 확보할 수 있다.
실시예들에 따른 포인트 클라우드 콘텐트 제공 시스템(예를 들면 전송 장치(10000) 또는 포인트 클라우드 비디오 인코더(10002))은 포인트 클라우드 데이터를 인코딩할 수 있다(20001). 포인트 클라우드 콘텐트 제공 시스템은 포인트 클라우드 컴프레션 코딩을 기반으로 포인트 클라우드 데이터를 인코딩할 수 있다. 상술한 바와 같이 포인트 클라우드 데이터는 포인트의 지오메트리 및 어트리뷰트를 포함할 수 있다. 따라서 포인트 클라우드 콘텐트 제공 시스템은 지오메트리를 인코딩하는 지오메트리 인코딩을 수행하여 지오메트리 비트스트림을 출력할 수 있다. 포인트 클라우드 콘텐트 제공 시스템은 어트리뷰트를 인코딩하는 어트리뷰트 인코딩을 수행하여 어트리뷰트 비트스트림을 출력할 수 있다. 실시예들에 따라 포인트 클라우드 콘텐트 제공 시스템은 지오메트리 인코딩에 기초하여 어트리뷰트 인코딩을 수행할 수 있다. 실시예들에 따른 지오메트리 비트스트림 및 어트리뷰트 비트스트림은 멀티플렉싱되어 하나의 비트스트림으로 출력될 수 있다. 실시예들에 따른 비트스트림은 지오메트리 인코딩 및 어트리뷰트 인코딩과 관련된 시그널링 정보를 더 포함할 수 있다.
실시예들에 따른 포인트 클라우드 콘텐트 제공 시스템(예를 들면 전송 장치(10000) 또는 트랜스미터(10003))는 인코딩된 포인트 클라우드 데이터를 전송할 수 있다(20002). 도1에서 설명한 바와 같이 인코딩된 포인트 클라우드 데이터는 지오메트리 비트스트림, 어트리뷰트 비트스트림으로 표현될 수 있다. 또한 인코딩된 포인트 클라우드 데이터는 포인트 클라우드 데이터의 인코딩과 관련된 시그널링 정보(예를 들면 지오메트리 인코딩 및 어트리뷰트 인코딩과 관련된 시그널링 정보)과 함께 비트스트림의 형태로 전송될 수 있다. 또한 포인트 클라우드 콘텐트 제공 시스템은 인코딩된 포인트 클라우드 데이터를 전송하는 비트스트림을 인캡슐레이션 하여 파일 또는 세그먼트의 형태로 전송할 수 있다.
실시예들에 따른 포인트 클라우드 콘텐트 제공 시스템(예를 들면 수신 장치(10004) 또는 리시버(10005))은 인코딩된 포인트 클라우드 데이터를 포함하는 비트스트림을 수신할 수 있다. 또한 포인트 클라우드 콘텐트 제공 시스템(예를 들면 수신 장치(10004) 또는 리시버(10005))은 비트스트림을 디멀티플렉싱할 수 있다.
포인트 클라우드 콘텐트 제공 시스템(예를 들면 수신 장치(10004) 또는 포인트 클라우드 비디오 디코더(10005))은 비트스트림으로 전송되는 인코딩된 포인트 클라우드 데이터(예를 들면 지오메트리 비트스트림, 어트리뷰트 비트스트림)을 디코딩할 수 있다. 포인트 클라우드 콘텐트 제공 시스템(예를 들면 수신 장치(10004) 또는 포인트 클라우드 비디오 디코더(10005))은 비트스트림에 포함된 포인트 클라우드 비디오 데이터의 인코딩과 관련된 시그널링 정보를 기반으로 포인트 클라우드 비디오 데이터를 디코딩할 수 있다. 포인트 클라우드 콘텐트 제공 시스템(예를 들면 수신 장치(10004) 또는 포인트 클라우드 비디오 디코더(10005))은 지오메트리 비트스트림을 디코딩하여 포인트들의 포지션들(지오메트리)을 복원할 수 있다. 포인트 클라우드 콘텐트 제공 시스템은 복원한 지오메트리를 기반으로 어트리뷰트 비트스트림을 디코딩하여 포인트들의 어트리뷰트들을 복원할 수 있다. 포인트 클라우드 콘텐트 제공 시스템(예를 들면 수신 장치(10004) 또는 포인트 클라우드 비디오 디코더(10005))은 복원된 지오메트리에 따른 포지션들 및 디코딩된 어트리뷰트를 기반으로 포인트 클라우드 비디오를 복원할 수 있다.
실시예들에 따른 포인트 클라우드 콘텐트 제공 시스템(예를 들면 수신 장치(10004) 또는 렌더러(10007))은 디코딩된 포인트 클라우드 데이터를 렌더링할 수 있다(20004). 포인트 클라우드 콘텐트 제공 시스템(예를 들면 수신 장치(10004) 또는 렌더러(10007))은 디코딩 과정을 통해 디코딩된 지오메트리 및 어트리뷰트들을 다양한 렌더링 방식에 따라 렌더링 방식에 따라 렌더링 할 수 있다. 포인트 클라우드 콘텐트의 포인트들은 일정 두께를 갖는 정점, 해당 정점 위치를 중앙으로 하는 특정 최소 크기를 갖는 정육면체, 또는 정점 위치를 중앙으로 하는 원 등으로 렌더링 될 수도 있다. 렌더링된 포인트 클라우드 콘텐트의 전부 또는 일부 영역은 디스플레이 (예를 들면 VR/AR 디스플레이, 일반 디스플레이 등)을 통해 사용자에게 제공된다.
실시예들에 따른 포인트 클라우드 콘텐트 제공 시스템(예를 들면 수신 장치(10004))는 피드백 정보를 확보할 수 있다(20005). 포인트 클라우드 콘텐트 제공 시스템은 피드백 정보를 기반으로 포인트 클라우드 데이터를 인코딩 및/또는 디코딩할 수 있다. 실시예들에 따른 피드백 정보 및 포인트 클라우드 콘텐트 제공 시스템의 동작은 도 1에서 설명한 피드백 정보 및 동작과 동일하므로 구체적인 설명은 생략한다.
도 3은 실시예들에 따른 포인트 클라우드 비디오 캡쳐 과정의 예시를 나타낸다.
도 3은 도 1 내지 도 2에서 설명한 포인트 클라우드 콘텐트 제공 시스템의 포인트 클라우드 비디오 캡쳐 과정의 예시를 나타낸다.
포인트 클라우드 콘텐트는 다양한 3차원 공간(예를 들면 현실 환경을 나타내는 3차원 공간, 가상 환경을 나타내는3차원 공간 등)에 위치한 오브젝트(object) 및/또는 환경을 나타내는 포인트 클라우드 비디오(이미지들 및/또는 영상들)을 포함한다. 따라서 실시예들에 따른 포인트 클라우드 콘텐트 제공 시스템은 포인트 클라우드 콘텐트를 생성하기 위하여 하나 또는 그 이상의 카메라(camera)들(예를 들면, 깊이 정보를 확보할 수 있는 적외선 카메라, 깊이 정보에 대응되는 색상 정보를 추출 할 수 있는 RGB 카메라 등), 프로젝터(예를 들면 깊이 정보를 확보하기 위한 적외선 패턴 프로젝터 등), 라이다(LiDAR)등을 사용하여 포인트 클라우드 비디오를 캡쳐할 수 있다. 실시예들에 따른 포인트 클라우드 콘텐트 제공 시스템은 깊이 정보로부터 3차원 공간상의 포인트들로 구성된 지오메트리의 형태를 추출하고, 색상정보로부터 각 포인트의 어트리뷰트를 추출하여 포인트 클라우드 데이터를 확보할 수 있다. 실시예들에 따른 이미지 및/또는 영상은 인워드-페이싱(inward-facing) 방식 및 아웃워드-페이싱(outward-facing) 방식 중 적어도 어느 하나 이상을 기반으로 캡쳐될 수 있다.
도3의 왼쪽은 인워드-페이싱 방식을 나타낸다. 인워드-페이싱 방식은 중심 오브젝트를 둘러싸고 위치한 하나 또는 그 이상의 카메라들(또는 카메라 센서들)이 중심 오브젝트를 캡쳐하는 방식을 의미한다. 인워드-페이싱 방식은 핵심 객체에 대한 360도 이미지를 사용자에게 제공하는 포인트 클라우드 콘텐트(예를 들면 사용자에게 객체(예-캐릭터, 선수, 물건, 배우 등 핵심이 되는 객체)의 360도 이미지를 제공하는 VR/AR 콘텐트)를 생성하기 위해 사용될 수 있다.
도3의 오른쪽은 아웃워드-페이싱 방식을 나타낸다. 아웃워드-페이싱 방식은 중심 오브젝트를 둘러싸고 위치한 하나 또는 그 이상의 카메라들(또는 카메라 센서들)이 중심 오브젝트가 아닌 중심 오브젝트의 환경을 캡쳐하는 방식을 의미한다. 아웃워드-페이싱 방식은 사용자의 시점에서 나타나는 주변 환경을 제공하기 위한 포인트 클라우드 콘텐트(예를 들면자율 주행 차량의 사용자에게 제공될 수 있는 외부 환경을 나타내는 콘텐트)를 생성하기 위해 사용될 수 있다.
도면에 도시된 바와 같이, 포인트 클라우드 콘텐트는 하나 또는 그 이상의 카메라들의 캡쳐 동작을 기반으로 생성될 수 있다. 이 경우 각 카메라의 좌표계가 다를 수 있으므로 포인트 클라우드 콘텐트 제공 시스템은 캡쳐 동작 이전에 글로벌 공간 좌표계(global coordinate system)을 설정하기 위하여 하나 또는 그 이상의 카메라들의 캘리브레이션을 수행할 수 있다. 또한 포인트 클라우드 콘텐트 제공 시스템은 상술한 캡쳐 방식으로 캡쳐된 이미지 및/또는 영상과 임의의 이미지 및/또는 영상을 합성하여 포인트 클라우드 콘텐트를 생성할 수 있다. 또한 포인트 클라우드 콘텐트 제공 시스템은 가상 공간을 나타내는 포인트 클라우드 콘텐트를 생성하는 경우 도3에서 설명한 캡쳐 동작을 수행하지 않을 수 있다. 실시예들에 따른 포인트 클라우드 콘텐트 제공 시스템은 캡쳐한 이미지 및/또는 영상에 대해 후처리를 수행할 수 있다. 즉, 포인트 클라우드 콘텐트 제공 시스템은 원하지 않는 영역(예를 들면 배경)을 제거하거나, 캡쳐한 이미지들 및/또는 영상들이 연결된 공간을 인식하고, 구명(spatial hole)이 있는 경우 이를 메우는 동작을 수행할 수 있다.
또한 포인트 클라우드 콘텐트 제공 시스템은 각 카메라로부터 확보한 포인트 클라우드 비디오의 포인트들에 대하여 좌표계 변환을 수행하여 하나의 포인트 클라우드 콘텐트를 생성할 수 있다. 포인트 클라우드 콘텐트 제공 시스템은 각 카메라의 위치 좌표를 기준으로 포인트들의 좌표계 변환을 수행할 수 있다. 이에 따라, 포인트 클라우드 콘텐트 제공 시스템은 하나의 넓은 범위를 나타내는 콘텐트를 생성할 수도 있고, 포인트들의 밀도가 높은 포인트 클라우드 콘텐트를 생성할 수 있다.
도 4는 실시예들에 따른 포인트 클라우드 인코더(Point Cloud Encoder)의 예시를 나타낸다.
도 4는 도 1의 포인트 클라우드 비디오 인코더(10002)의 예시를 나타낸다. 포인트 클라우드 인코더는 네트워크의 상황 혹은 애플리케이션 등에 따라 포인트 클라우드 콘텐트의 질(예를 들어 무손실-lossless, 손실-lossy, near-lossless)을 조절하기 위하여 포인트 클라우드 데이터(예를 들면 포인트들의 포지션들 및/또는 어트리뷰트들)을 재구성하고 인코딩 동작을 수행한다. 포인트 클라우드 콘텐트의 전체 사이즈가 큰 경우(예를 들어 30 fps의 경우 60 Gbps인 포인트 클라우드 콘텐트) 포인트 클라우드 콘텐트 제공 시스템은 해당 콘텐트를 리얼 타임 스트리밍하지 못할 수 있다. 따라서 포인트 클라우드 콘텐트 제공 시스템은 네트워크 환경등에 맞춰 제공하기 위하여 최대 타깃 비트율(bitrate)을 기반으로 포인트 클라우드 콘텐트를 재구성할 수 있다.
도 1 내지 도2 에서 설명한 바와 같이 포인트 클라우드 인코더는 지오메트리 인코딩 및 어트리뷰트 인코딩을 수행할 수 있다. 지오메트리 인코딩은 어트리뷰트 인코딩보다 먼저 수행된다.
실시예들에 따른 포인트 클라우드 인코더는 좌표계 변환부(Transformation Coordinates, 40000), 양자화부(Quantize and Remove Points (Voxelize), 40001), 옥트리 분석부(Analyze Octree, 40002), 서페이스 어프록시메이션 분석부(Analyze Surface Approximation, 40003), 아리스메틱 인코더(Arithmetic Encode, 40004), 지오메트리 리컨스트럭션부(Reconstruct Geometry, 40005), 컬러 변환부(Transform Colors, 40006), 어트리뷰트 변환부(Transfer Attributes, 40007), RAHT 변환부(40008), LOD생성부(Generated LOD, 40009), 리프팅 변환부(Lifting)(40010), 계수 양자화부(Quantize Coefficients, 40011) 및/또는 아리스메틱 인코더(Arithmetic Encode, 40012)를 포함한다.
좌표계 변환부(40000), 양자화부(40001), 옥트리 분석부(40002), 서페이스 어프록시메이션 분석부(40003), 아리스메틱 인코더(40004), 및 지오메트리 리컨스트럭션부(40005)는 지오메트리 인코딩을 수행할 수 있다. 실시예들에 따른 지오메트리 인코딩은 옥트리 지오메트리 코딩, 다이렉트 코딩(direct coding), 트라이숩 지오메트리 인코딩(trisoup geometry encoding) 및 엔트로피 인코딩을 포함할 수 있다. 다이렉트 코딩 및 트라이숩 지오메트리 인코딩은 선택적으로 또는 조합으로 적용된다. 또한 지오메트리 인코딩은 위의 예시에 국한되지 않는다.
도면에 도시된 바와 같이, 실시예들에 따른 좌표계 변환부(40000)는 포지션들을 수신하여 좌표계(coordinate)로 변환한다. 예를 들어, 포지션들은 3차원 공간 (예를 들면XYZ 좌표계로 표현되는 3차원 공간 등)의 위치 정보로 변환될 수 있다. 실시예들에 따른 3차원 공간의 위치 정보는 지오메트리 정보로 지칭될 수 있다.
실시예들에 따른 양자화부(40001)는 지오메트리를 양자화한다. 예를 들어, 양자화부(40001)는 전체 포인트들의 최소 위치 값(예를 들면 X축, Y축, Z축 에 대하여 각축상의 최소 값)을 기반으로 포인트들을 양자화 할 수 있다. 양자화부(40001)는 최소 위치 값과 각 포인트의 위치 값의 차이에 기 설정된 양자 스케일(quatization scale) 값을 곱한 뒤, 내림 또는 올림을 수행하여 가장 가까운 정수 값을 찾는 양자화 동작을 수행한다. 따라서 하나 또는 그 이상의 포인트들은 동일한 양자화된 포지션 (또는 포지션 값)을 가질 수 있다. 실시예들에 따른 양자화부(40001)는 양자화된 포인트들을 재구성하기 위해 양자화된 포지션들을 기반으로 복셀화(voxelization)를 수행한다. 2차원 이미지/비디오 정보를 포함하는 최소 단위는 픽셀(pixel)과 같이, 실시예들에 따른 포인트 클라우드 콘텐트(또는 3차원 포인트 클라우드 비디오)의 포인트들은 하나 또는 그 이상의 복셀(voxel)들에 포함될 수 있다. 복셀은 볼륨(Volume)과 픽셀(Pixel)의 조합어로서, 3차원 공간을 표현하는 축들(예를 들면 X축, Y축, Z축)을 기반으로 3차원 공간을 유닛(unit=1.0) 단위로 나누었을 때 발생하는 3차원 큐빅 공간을 의미한다. 양자화부(40001)는 3차원 공간의 포인트들의 그룹들을 복셀들로 매칭할 수 있다. 실시예들에 따라 하나의 복셀은 하나의 포인트만 포함할 수 있다. 실시예들에 따라 하나의 복셀은 하나 또는 그 이상의 포인트들을 포함할 수 있다. 또한 하나의 복셀을 하나의 포인트로 표현하기 위하여, 하나의 복셀에 포함된 하나 또는 그 이상의 포인트들의 포지션들을 기반으로 해당 복셀의 중앙점(ceter)의 포지션을 설정할 수 있다. 이 경우 하나의 복셀에 포함된 모든 포지션들의 어트리뷰트들은 통합되어(combined) 해당 복셀에 할당될(assigned)수 있다.
실시예들에 따른 옥트리 분석부(40002)는 복셀을 옥트리(octree) 구조로 나타내기 위한 옥트리 지오메트리 코딩(또는 옥트리 코딩)을 수행한다. 옥트리 구조는 팔진 트리 구조에 기반하여 복셀에 매칭된 포인트들을 표현한다.
실시예들에 따른 서페이스 어프록시메이션 분석부(40003)는 옥트리를 분석하고, 근사화할 수 있다. 실시예들에 따른 옥트리 분석 및 근사화는 효율적으로 옥트리 및 복셀화를 제공하기 위해서 다수의 포인트들을 포함하는 영역에 대해 복셀화하기 위해 분석하는 과정이다.
실시예들에 따른 아리스메틱 인코더(40004)는 옥트리 및/또는 근사화된 옥트리를 엔트로피 인코딩한다. 예를 들어, 인코딩 방식은 아리스메틱(Arithmetic) 인코딩 방법을 포함한다. 인코딩의 결과로 지오메트리 비트스트림이 생성된다.
컬러 변환부(40006), 어트리뷰트 변환부(40007), RAHT 변환부(40008), LOD생성부(40009), 리프팅 변환부(40010), 계수 양자화부(40011) 및/또는 아리스메틱 인코더(40012)는 어트리뷰트 인코딩을 수행한다. 상술한 바와 같이 하나의 포인트는 하나 또는 그 이상의 어트리뷰트들을 가질 수 있다. 실시예들에 따른 어트리뷰트 인코딩은 하나의 포인트가 갖는 어트리뷰트들에 대해 동일하게 적용된다. 다만, 하나의 어트리뷰트(예를 들면 색상)이 하나 또는 그 이상의 요소들을 포함하는 경우, 각 요소마다 독립적인 어트리뷰트 인코딩이 적용된다. 실시예들에 따른 어트리뷰트 인코딩은 컬러 변환 코딩, 어트리뷰트 변환 코딩, RAHT(Region Adaptive Hierarchial Transform) 코딩, 예측 변환(Interpolaration-based hierarchical nearest-neighbour prediction-Prediction Transform) 코딩 및 리프팅 변환 (interpolation-based hierarchical nearest-neighbour prediction with an update/lifting step (Lifting Transform)) 코딩을 포함할 수 있다. 포인트 클라우드 콘텐트에 따라 상술한 RAHT 코딩, 예측 변환 코딩 및 리프팅 변환 코딩은 선택적으로 사용되거나, 하나 또는 그 이상의 코딩들의 조합이 사용될 수 있다. 또한 실시예들에 따른 어트리뷰트 인코딩은 상술한 예시에 국한되는 것은 아니다.
실시예들에 따른 컬러 변환부(40006)는 어트리뷰트들에 포함된 컬러 값(또는 텍스쳐)을 변환하는 컬러 변환 코딩을 수행한다. 예를 들어, 컬러 변환부(40006)는 색상 정보의 포맷을 변환(예를 들어 RGB에서 YCbCr로 변환)할 수 있다. 실시예들에 따른 컬러 변환부(40006)의 동작은 어트리뷰트들에 포함된 컬러값에 따라 옵셔널(optional)하게 적용될 수 있다.
실시예들에 따른 지오메트리 리컨스트럭션부(40005)는 옥트리 및/또는 근사화된 옥트리를 재구성(디컴프레션)한다. 지오메트리 리컨스트럭션부(40005)는 포인트들의 분포를 분석한 결과에 기반하여 옥트리/복셀을 재구성한다. 재구성된 옥트리/복셀은 재구성된 지오메트리(또는 복원된 지오메트리)로 호칭될 수 있다.
실시예들에 따른 어트리뷰트 변환부(40007)는 지오메트리 인코딩이 수행되지 않은 포지션들 및/또는 재구성된 지오메트리를 기반으로 어트리뷰트들을 변환하는 어트리뷰트 변환을 수행한다. 상술한 바와 같이 어트리뷰트들은 지오메트리에 종속되므로, 어트리뷰트 변환부(40007)는 재구성된 지오메트리 정보를 기반으로 어트리뷰트들을 변환할 수 있다. 예를 들어, 어트리뷰트 변환부(40007)는 복셀에 포함된 포인트의 포지션값을 기반으로 그 포지션의 포인트가 가지는 어트리뷰트를 변환할 수 있다. 상술한 바와 같이 하나의 복셀에 포함된 하나 또는 그 이상의 포인트들의 포지션들을 기반으로 해당 복셀의 중앙점의 포지션이 설정된 경우, 어트리뷰트 변환부(40007)는 하나 또는 그 이상의 포인트들의 어트리뷰트들을 변환한다. 트라이숩 지오메트리 인코딩이 수행된 경우, 어트리뷰트 변환부(40007)는 트라이숩 지오메트리 인코딩을 기반으로 어트리뷰트들을 변환할 수 있다.
어트리뷰트 변환부(40007)는 각 복셀의 중앙점의 포지션(또는 포지션 값)으로부터 특정 위치/반경 내에 이웃하고 있는 포인트들의 어트리뷰트들 또는 어트리뷰트 값들(예를 들면 각 포인트의 색상, 또는 반사율 등)의 평균값을 계산하여 어트리뷰트 변환을 수행할 수 있다. 어트리뷰트 변환부(40007)는 평균값 계산시 중앙점으로부터 각 포인트까지의 거리에 따른 가중치를 적용할 수 있다. 따라서 각 복셀은 포지션과 계산된 어트리뷰트(또는 어트리뷰트 값)을 갖게 된다.
어트리뷰트 변환부(40007)는 K-D 트리 또는 몰톤 코드를 기반으로 각 복셀의 중앙점의 포지션으로부터 특정 위치/반경 내에 존재하는 이웃 포인트들을 탐색할 수 있다. K-D 트리는 이진 탐색 트리(binary search tree)로 빠르게 최단 이웃점 탐색(Nearest Neighbor Search-NNS)이 가능하도록 point들을 위치 기반으로 관리할 수 있는 자료 구조를 지원한다. 몰튼 코드는 모든 포인트들의 3차원 포지션을 나타내는 좌표값(예를 들면 (x, y, z))을 비트값으로 나타내고, 비트들을 믹싱하여 생성된다. 예를 들어 포인트의 포지션을 나타내는 좌표값이 (5, 9, 1)일 경우 좌표값의 비트 값은 (0101, 1001, 0001)이다. 비트 값을z, y, x 순서로 비트 인덱스에 맞춰 믹싱하면 010001000111이다. 이 값을 10진수로 나타내면 1095이 된다. 즉, 좌표값이 (5, 9, 1)인 포인트의 몰톤 코드 값은 1095이다. 어트리뷰트 변환부(40007)는 몰튼 코드 값을 기준으로 포인트들을 정렬하고depth-first traversal 과정을 통해 최단 이웃점 탐색(NNS)을 할 수 있다. 어트리뷰트 변환 동작 이후, 어트리뷰트 코딩을 위한 다른 변환 과정에서도 최단 이웃점 탐색(NNS)이 필요한 경우, K-D 트리 또는 몰톤 코드가 활용된다.
도면에 도시된 바와 같이 변환된 어트리뷰트들은 RAHT 변환부(40008) 및/또는 LOD 생성부(40009)로 입력된다.
실시예들에 따른 RAHT 변환부(40008)는 재구성된 지오메트리 정보에 기반하여 어트리뷰트 정보를 예측하는 RAHT코딩을 수행한다. 예를 들어, RAHT 변환부(40008)는 옥트리의 하위 레벨에 있는 노드와 연관된 어트리뷰트 정보에 기반하여 옥트리의 상위 레벨에 있는 노드의 어트리뷰트 정보를 예측할 수 있다.
실시예들에 따른 LOD생성부(40009)는 예측 변환 코딩을 수행하기 위하여LOD(Level of Detail)를 생성한다. 실시예들에 따른 LOD는 포인트 클라우드 콘텐트의 디테일을 나타내는 정도로서, LOD 값이 작을 수록 포인트 클라우드 콘텐트의 디테일이 떨어지고, LOD 값이 클 수록 포인트 클라우드 콘텐트의 디테일이 높음을 나타낸다. 포인트들을 LOD에 따라 분류될 수 있다.
실시예들에 따른 리프팅 변환부(40010)는 포인트 클라우드의 어트리뷰트들을 가중치에 기반하여 변환하는 리프팅 변환 코딩을 수행한다. 상술한 바와 같이 리프팅 변환 코딩은 선택적으로 적용될 수 있다.
실시예들에 따른 계수 양자화부(40011)은 어트리뷰트 코딩된 어트리뷰트들을 계수에 기반하여 양자화한다.
실시예들에 따른 아리스메틱 인코더(40012)는 양자화된 어트리뷰트들을 아리스메틱 코딩 에 기반하여 인코딩한다.
도 4의 포인트 클라우드 인코더의 엘레멘트들은 도면에 도시되지 않았으나 포인트 클라우드 제공 장치에 포함된 하나 또는 그 이상의 메모리들과 통신가능하도록 설정된 하나 또는 그 이상의 프로세서들 또는 집적 회로들(integrated circuits)을 포함하는 하드웨어, 소프트웨어, 펌웨어 또는 이들의 조합으로 구현될 수 있다. 하나 또는 그 이상의 프로세서들은 상술한 도 4의 포인트 클라우드 인코더의 엘레멘트들의 동작들 및/또는 기능들 중 적어도 어느 하나 이상을 수행할 수 있다. 또한 하나 또는 그 이상의 프로세서들은 도 4의 포인트 클라우드 인코더의 엘레멘트들의 동작들 및/또는 기능들을 수행하기 위한 소프트웨어 프로그램들 및/또는 인스트럭션들의 세트를 동작하거나 실행할 수 있다. 실시예들에 따른 하나 또는 그 이상의 메모리들은 하이 스피드 랜덤 억세스 메모리를 포함할 수도 있고, 비휘발성 메모리(예를 들면 하나 또는 그 이상의 마그네틱 디스크 저장 디바이스들, 플래쉬 메모리 디바이스들, 또는 다른 비휘발성 솔리드 스테이트 메모리 디바이스들(Solid-state memory devices)등)를 포함할 수 있다.
도 5 는 실시예들에 따른 복셀의 예시를 나타낸다.
도 5는 X축, Y축, Z축의 3가지 축으로 구성된 좌표계로 표현되는 3차원 공간상에 위치한 복셀을 나타낸다. 도 4에서 설명한 바와 같이 포인트 클라우드 인코더(예를 들면 양자화부(40001) 등)은 복셀화를 수행할 수 있다. 복셀은 3차원 공간을 표현하는 축들(예를 들면 X축, Y축, Z축)을 기반으로 3차원 공간을 유닛(unit=1.0) 단위로 나누었을 때 발생하는 3차원 큐빅 공간을 의미한다. 도 5는 두 개의 극점들(0,0,0) 및 (2 d, 2 d, 2 d) 으로 정의되는 바운딩 박스(cubical axis-aligned bounding box)를 재귀적으로 분할(reculsive subdividing)하는 옥트리 구조를 통해 생성된 복셀의 예시를 나타낸다. 하나의 복셀은 적어도 하나 이상의 포인트를 포함한다. 복셀은 복셀군(voxel group)과의 포지션 관계로부터 공간 좌표를 추정 할 수 있다. 상술한 바와 같이 복셀은 2차원 이미지/영상의 픽셀과 마찬가지로 어트리뷰트(색상 또는 반사율 등)을 가진다. 복셀에 대한 구체적인 설명은 도 4에서 설명한 바와 동일하므로 생략한다.
도 6은 실시예들에 따른 옥트리 및 오큐판시 코드 (occupancy code)의 예시를 나타낸다.
도 1 내지 도 4에서 설명한 바와 같이 포인트 클라우드 콘텐트 제공 시스템(포인트 클라우드 비디오 인코더(10002)) 또는 포인트 클라우드 인코더(예를 들면 옥트리 분석부(40002))는 복셀의 영역 및/또는 포지션을 효율적으로 관리하기 위하여 옥트리 구조 기반의 옥트리 지오메트리 코딩(또는 옥트리 코딩)을 수행한다.
도 6의 상단은 옥트리 구조를 나타낸다. 실시예들에 따른 포인트 클라우드 콘텐트의 3차원 공간은 좌표계의 축들(예를 들면 X축, Y축, Z축)로 표현된다. 옥트리 구조는 두 개의 극점들(0,0,0) 및 (2 d, 2 d, 2 d) 으로 정의되는 바운딩 박스(cubical axis-aligned bounding box)를 재귀적으로 분할(reculsive subdividing)하여 생성된다. 2d는 포인트 클라우드 콘텐트(또는 포인트 클라우드 비디오)의 전체 포인트들을 감싸는 가장 작은 바운딩 박스를 구성하는 값으로 설정될 수 있다. d는 옥트리의 깊이(depth)를 나타낸다. d값은 다음의 식에 따라 결정된다. 하기 식에서 (x int n, y int n, z int n)는 양자화된 포인트들의 포지션들(또는 포지션 값들)을 나타낸다.
Figure PCTKR2020008571-appb-img-000001
도 6의 상단의 중간에 도시된 바와 같이, 분할에 따라 전체 3차원 공간은 8개의 공간들로 분할될 수 있다. 분할된 각 공간은 6개의 면들을 갖는 큐브로 표현된다. 도 6 상단의 오른쪽에 도시된 바와 같이 8개의 공간들 각각은 다시 좌표계의 축들(예를 들면 X축, Y축, Z축)을 기반으로 분할된다. 따라서 각 공간은 다시 8개의 작은 공간들로 분할된다. 분할된 작은 공간 역시 6개의 면들을 갖는 큐브로 표현된다. 이와 같은 분할 방식은 옥트리의 리프 노드(leaf node)가 복셀이 될 때까지 적용된다.
도 6의 하단은 옥트리의 오큐판시 코드를 나타낸다. 옥트리의 오큐판시 코드는 하나의 공간이 분할되어 발생되는 8개의 분할된 공간들 각각이 적어도 하나의 포인트를 포함하는지 여부를 나타내기 위해 생성된다. 따라서 하나의 오큐판시 코드는 8개의 자식 노드(child node)들로 표현된다. 각 자식 노드는 분할된 공간의 오큐판시를 나타내며, 자식 노드는 1비트의 값을 갖는다. 따라서 오큐판시 코드는 8 비트 코드로 표현된다. 즉, 자식 노드에 대응하는 공간에 적어도 하나의 포인트가 포함되어 있으면 해당 노드는 1값을 갖는다. 자식 노드에 대응하는 공간에 포인트가 포함되어 있지 않으면 (empty), 해당 노드는 0값을 갖는다. 도 6에 도시된 오큐판시 코드는 00100001이므로 8개의 자식 노드 중 3번째 자식 노드 및 8번째 자식 노드에 대응하는 공간들은 각각 적어도 하나의 포인트를 포함함을 나타낸다. 도면에 도시된 바와 같이 3번째 자식 노드 및 8번째 자식 노드는 각각 8개의 자식 노드를 가지며, 각 자식 노드는 8비트의 오큐판시 코드로 표현된다. 도면은 3번째 자식 노드의 오큐판시 코드가 10000111이고, 8번째 자식 노드의 오큐판시 코드가 01001111임을 나타낸다. 실시예들에 따른 포인트 클라우드 인코더(예를 들면 아리스메틱 인코더(40004))는 오큐판시 코드를 엔트로피 인코딩할 수 있다. 또한 압축 효율을 높이기 위해 포인트 클라우드 인코더는 오큐판시 코드를 인트라/인터 코딩할 수 있다. 실시예들에 따른 수신 장치(예를 들면 수신 장치(10004) 또는 포인트 클라우드 비디오 디코더(10006))는 오큐판시 코드를 기반으로 옥트리를 재구성한다.
실시예들에 따른 포인트 클라우드 인코더(예를 들면 도 4의 포인트 클라우드 인코더, 또는 옥트리 분석부(40002))는 포인트들의 포지션들을 저장하기 위해 복셀화 및 옥트리 코딩을 수행할 수 있다. 하지만 3차원 공간 내 포인트들이 언제나 고르게 분포하는 것은 아니므로, 포인트들이 많이 존재하지 않는 특정 영역이 존재할 수 있다. 따라서 3차원 공간 전체에 대해 복셀화를 수행하는 것은 비효율 적이다. 예를 들어 특정 영역에 포인트가 거의 존재하지 않는다면, 해당 영역까지 복셀화를 수행할 필요가 없다.
따라서 실시예들에 따른 포인트 클라우드 인코더는 상술한 특정 영역(또는 옥트리의 리프 노드를 제외한 노드)에 대해서는 복셀화를 수행하지 않고, 특정 영역에 포함된 포인트들의 포지션을 직접 코딩하는 다이렉트 코딩(Direct coding)을 수행할 수 있다. 실시예들에 따른 다이렉트 코딩 포인트의 좌표들은 다이렉트 코딩 모드(Direct Coding Mode, DCM)으로 호칭된다. 또한 실시예들에 따른 포인트 클라우드 인코더는 표면 모델(surface model)을 기반으로 특정 영역(또는 노드)내의 포인트들의 포지션들을 복셀 기반으로 재구성하는 트라이숩 지오메트리 인코딩(Trisoup geometry encoding)을 수행할 수 있다. 트라이숩 지오메트리 인코딩은 오브젝트의 표현을 삼각형 메쉬(triangle mesh)의 시리즈로 표현하는 지오메트리 인코딩이다. 따라서 포인트 클라우드 디코더는 메쉬 표면으로부터 포인트 클라우드를 생성할 수 있다. 실시예들에 따른 다이렉트 코딩 및 트라이숩 지오메트리 인코딩은 선택적으로 수행될 수 있다. 또한 실시예들에 따른 다이렉트 코딩 및 트라이숩 지오메트리 인코딩은 옥트리 지오메트리 코딩(또는 옥트리 코딩)과 결합되어 수행될 수 있다.
다이렉트 코딩(Direct coding)을 수행하기 위해서는 다이렉트 코딩을 적용하기 위한 직접 모드(direct mode) 사용 옵션이 활성화 되어 있어야 하며, 다이렉트 코딩을 적용할 노드는 리프 노드가 아니고, 특정 노드 내에 한계치(threshold) 이하의 포인트들이 존재해야 한다. 또한 다이텍트 코딩의 대상이 되는 전채 포인트들의 개수는 기설정된 한계값을 넘어서는 안된다. 위의 조건이 만족되면, 실시예들에 따른 포인트 클라우드 인코더(또는 아리스메틱 인코더(40004))는 포인트들의 포지션들(또는 포지션 값들)을 엔트로피 코딩할 수 있다.
실시예들에 따른 포인트 클라우드 인코더(예를 들면 서페이스 어프록시메이션 분석부(40003))는 옥트리의 특정 레벨(레벨은 옥트리의 깊이 d보다는 작은 경우)을 정하고, 그 레벨부터는 표면 모델을 사용하여 노드 영역내의 포인트의 포지션을 복셀 기반으로 재구성하는 트라이숩 지오메트리 인코딩을 수행할 수 있다(트라이숩 모드). 실시예들에 따른 포인트 클라우드 인코더는 트라이숩 지오메트리 인코딩을 적용할 레벨을 지정할 수 있다. 예를 들어, 지정된 레벨이 옥트리의 깊이와 같으면 포인트 클라우드 인코더는 트라이숩 모드로 동작하지 않는다. 즉, 실시예들에 따른 포인트 클라우드 인코더는 지정된 레벨이 옥트리의 깊이값 보다 작은 경우에만 트라이숩 모드로 동작할 수 있다. 실시예들에 따른 지정된 레벨의 노드들의 3차원 정육면체 영역을 블록(block)이라 호칭한다. 하나의 블록은 하나 또는 그 이상의 복셀들을 포함할 수 있다. 블록 또는 복셀은 브릭(brick)에 대응될 수도 있다. 각 블록 내에서 지오메트리는 표면(surface)으로 표현된다. 실시예들에 따른 표면은 최대 한번 블록의 각 엣지(edge, 모서리)와 교차할 수 있다.
하나의 블록은 12개의 엣지들을 가지므로, 하나의 블록 내 적어도 12개의 교차점들이 존재한다. 각 교차점은 버텍스(vertex, 정점 또는 꼭지점)라 호칭된다. 엣지를 따라 존재하는 버텍스은 해당 엣지를 공유하는 모든 블록들 중 그 엣지에 인접한 적어도 하나의 오큐파이드 복셀(occupied voxel)이 있는 경우 감지된다. 실시예들에 따른 오큐파이드 복셀은 포인트를 포함하는 복셀을 의미한다. 엣지를 따라 검출된 버텍스의 포지션은 해당 엣지를 공유하는 모든 블록들 중 해당 엣지에 인접한 모든 복셀들의 엣지에 따른 평균 포지션(the average position along the edge of all voxels)이다.
버텍스가 검출되면 실시예들에 따른 포인트 클라우드 인코더는 엣지의 시작점(x, y, z), 엣지의 방향벡터(Δx, Δy, Δz), 버텍스 위치 값 (엣지 내의 상대적 위치 값)들을 엔트로피코딩할 수 있다. 트라이숩 지오메트리 인코딩이 적용된 경우, 실시예들에 따른 포인트 클라우드 인코더(예를 들면 지오메트리 리컨스트럭션부(40005))는 삼각형 재구성(triangle reconstruction), 업-샘플링(up-sampling), 복셀화 과정을 수행하여 복원된 지오메트리(재구성된 지오메트리)를 생성할 수 있다.
블록의 엣지에 위치한 버텍스들은 블록을 통과하는 표면(surface)를 결정한다. 실시예들에 따른 표면은 비평면 다각형이다. 삼각형 재구성 과정은 엣지의 시작점, 엣지의 방향 벡터와 버텍스의 위치값을 기반으로 삼각형으로 나타내는 표면을 재구성한다. 삼각형 재구성 과정은 다음과 같다. ①각 버텍스들의 중심(centroid)값을 계산하고, ②각 버텍스값에서 중심 값을 뺀 값들에 ③자승을 수행하고 그 값을 모두 더한 값을 구한다.
Figure PCTKR2020008571-appb-img-000002
더해진 값의 최소값을 구하고, 최소값이 있는 축에 따라서 프로젝션 (Projection, 투영) 과정을 수행한다. 예를 들어 x 요소(element)가 최소인 경우, 각 버텍스를 블록의 중심을 기준으로 x축으로 프로젝션 시키고, (y, z) 평면으로 프로젝션 시킨다. (y, z)평면으로 프로젝션 시키면 나오는 값이 (ai, bi)라면 atan2(bi, ai)를 통해 θ값을 구하고, θ값을 기준으로 버텍스들(vertices)을 정렬한다. 하기의 표는 버텍스들의 개수에 따라 삼각형을 생성하기 위한 버텍스들의 조합을 나타낸다. 버텍스들은 1부터 n까지의 순서로 정렬된다. 하기 표는4개의 버텍스들에 대하여, 버텍스들의 조합에 따라 두 개의 삼각형들이 구성될 수 있음을 나타낸다. 첫번째 삼각형은 정렬된 버텍스들 중 1, 2, 3번째 버텍스들로 구성되고, 두번째 삼각형은 정렬된 버텍스들 중 3, 4, 1번째 버텍스들로 구성될 수 있다. .
표. Triangles formed from vertices ordered 1
n Triangles
3 (1,2,3)
4 (1,2,3), (3,4,1)
5 (1,2,3), (3,4,5), (5,1,3)
6 (1,2,3), (3,4,5), (5,6,1), (1,3,5)
7 (1,2,3), (3,4,5), (5,6,7), (7,1,3), (3,5,7)
8 (1,2,3), (3,4,5), (5,6,7), (7,8,1), (1,3,5), (5,7,1)
9 (1,2,3), (3,4,5), (5,6,7), (7,8,9), (9,1,3), (3,5,7), (7,9,3)
10 (1,2,3), (3,4,5), (5,6,7), (7,8,9), (9,10,1), (1,3,5), (5,7,9), (9,1,5)
11 (1,2,3), (3,4,5), (5,6,7), (7,8,9), (9,10,11), (11,1,3), (3,5,7), (7,9,11), (11,3,7)
12 (1,2,3), (3,4,5), (5,6,7), (7,8,9), (9,10,11), (11,12,1), (1,3,5), (5,7,9), (9,11,1), (1,5,9)
업샘플링 과정은 삼각형의 엣지를 따라서 중간에 점들을 추가하여 복셀화 하기 위해서 수행된다. 업샘플링 요소 값(upsampling factor)과 블록의 너비를 기준으로 추가 점들을 생성한다. 추가점은 리파인드 버텍스(refined vertice)라고 호칭된다. 실시예들에 따른 포인트 클라우드 인코더는 리파인드 버텍스들을 복셀화할 수 있다. 또한 포인트 클라우드 인코더는 복셀화 된 포지션(또는 포지션 값)을 기반으로 어트리뷰트 인코딩을 수행할 수 있다.
도 7은 실시예들에 따른 이웃 노드 패턴의 예시를 나타낸다.
포인트 클라우드 비디오의 압축 효율을 증가시키기 위하여 실시예들에 따른 포인트 클라우드 인코더는 콘텍스트 어탭티브 아리스메틱 (context adaptive arithmetic) 코딩을 기반으로 엔트로피 코딩을 수행할 수 있다.
도 1 내지 도 6에서 설명한 바와 같이 포인트 클라우드 콘텐트 제공 시스템 또는 포인트 클라우드 인코더(예를 들면 포인트 클라우드 비디오 인코더(10002), 도 4의 포인트 클라우드 인코더 또는 아리스메틱 인코더(40004))는 오큐판시 코드를 곧바로 엔트로피 코딩할 수 있다. 또한 포인트 클라우드 콘텐트 제공 시스템 또는 포인트 클라우드 인코더는 현재 노드의 오큐판시 코드와 이웃 노드들의 오큐판시를 기반으로 엔트로피 인코딩(인트라 인코딩)을 수행하거나, 이전 프레임의 오큐판시 코드를 기반으로 엔트로피 인코딩(인터 인코딩)을 수행할 수 있다. 실시예들에 따른 프레임은 동일한 시간에 생성된 포인트 클라우드 비디오의 집합을 의미한다. 실시예들에 따른 인트라 인코딩/인터 인코딩의 압축 효율은 참조하는 이웃 노드들의 개수에 따라 달라질 수 있다. 비트가 커지면 복잡해지지만 한쪽으로 치우치게 만들어서 압축 효율이 높아질 수 있다. 예를 들어 3-bit context를 가지면, 2의 3승인 = 8가지 방법으로 코딩 해야 한다. 나누어 코딩을 하는 부분은 구현의 복잡도에 영향을 준다. 따라서 압축의 효율과 복잡도의 적정 수준을 맞출 필요가 있다.
도7은 이웃 노드들의 오큐판시를 기반으로 오큐판시 패턴을 구하는 과정을 나타낸다. 실시예들에 따른 포인트 클라우드 인코더는 옥트리의 각 노드의 이웃 노드들의 오큐판시(occupancy)를 판단하고 이웃 노드 패턴(neighbor pattern) 값을 구한다. 이웃 노드 패턴은 해당 노드의 오큐판시 패턴을 추론하기 위해 사용된다. 도7의 왼쪽은 노드에 대응하는 큐브(가운데 위치한 큐브) 및 해당 큐브와 적어도 하나의 면을 공유하는 6개의 큐브들(이웃 노드들)을 나타낸다. 도면에 도시된 노드들은 같은 뎁스(깊이)의 노드들이다. 도면에 도시된 숫자는 6개의 노드들 각각과 연관된 가중치들(1, 2, 4, 8, 16, 32, 등)을 나타낸다. 각 가중치는 이웃 노드들의 위치에 따라 순차적으로 부여된다.
도 7의 오른쪽은 이웃 노드 패턴 값을 나타낸다. 이웃 노드 패턴 값은 오큐파이드 이웃 노드(포인트를 갖는 이웃 노드)의 가중치가 곱해진 값들의 합이다. 따라서 이웃 노드 패턴 값은 0에서 63까지의 값을 갖는다. 이웃 노드 패턴 값이 0 인 경우, 해당 노드의 이웃 노드 중 포인트를 갖는 노드(오큐파이드 노드)가 없음을 나타낸다. 이웃 노드 패턴 값이 63인 경우, 이웃 노드들이 전부 오큐파이드 노드들임을 나타낸다. 도면에 도시된 바와 같이 가중치1, 2, 4, 8가 부여된 이웃 노드들은 오큐파이드 노드들이므로, 이웃 노드 패턴 값은 1, 2, 4, 8을 더한 값인 15이다. 포인트 클라우드 인코더는 이웃 노드 패턴 값에 따라 코딩을 수행할 수 있다(예를 들어 이웃 노드 패턴 값이 63인 경우, 64가지의 코딩을 수행). 실시예들에 따라 포인트 클라우드 인코더는 이웃 노드 패턴 값을 변경 (예를 들면 64를 10 또는 6으로 변경하는 테이블을 기반으로) 하여 코딩의 복잡도를 줄일 수 있다.
도 8은 실시예들에 따른 LOD 별 포인트 구성의 예시를 나타낸다.
도 1 내지 도 7에서 설명한 바와 같이, 어트리뷰트 인코딩이 수행되기 전 인코딩된 지오메트리는 재구성(디컴프레션) 된다. 다이렉트 코딩이 적용된 경우, 지오메트리 재구성 동작은 다이렉트 코딩된 포인트들의 배치를 변경하는 것을 포함할 수 있다(예를 들면 다이렉트 코딩된 포인트들을 포인트 클라우드 데이터의 앞쪽에 배치). 트라이숩 지오메트리 인코딩이 적용된 경우, 지오메트리 재구성 과정은 삼각형 재구성, 업샘플링, 복셀화 과정을 어트리뷰트는 지오메트리에 종속되므로, 어트리뷰트 인코딩은 재구성된 지오메트리를 기반으로 수행된다.
포인트 클라우드 인코더(예를 들면 LOD 생성부(40009))는 포인트들을 LOD별로 분류(reorganization)할 수 있다. 도면은 LOD에 대응하는 포인트 클라우드 콘텐트를 나타낸다. 도면의 왼쪽은 오리지널 포인트 클라우드 콘텐트를 나타낸다. 도면의 왼쪽에서 두번째 그림은 가장 낮은 LOD의 포인트들의 분포를 나타내며, 도면의 가장 오른쪽 그림은 가장 높은 LOD의 포인트들의 분포를 나타낸다. 즉, 가장 낮은 LOD의 포인트들은 드문드문(sparse) 분포하며, 가장 높은 LOD의 포인트들은 촘촘히 분포한다. 즉, 도면 하단에 표시된 화살표 방향에 따라 LOD가 증가할수록 포인트들 간의 간격(또는 거리)는 더 짧아진다.
도 9는 실시예들에 따른 LOD 별 포인트 구성의 예시를 나타낸다.
도 1 내지 도 8에서 설명한 바와 같이 포인트 클라우드 콘텐트 제공 시스템, 또는 포인트 클라우드 인코더(예를 들면 포인트 클라우드 비디오 인코더(10002), 도 4의 포인트 클라우드 인코더, 또는 LOD 생성부(40009))는 LOD를 생성할 수 있다. LOD는 포인트들을 설정된 LOD 거리 값(또는 유클리이디언 디스턴스(Euclidean Distance)의 세트)에 따라 리파인먼트 레벨들(refinement levels)의 세트로 재정열(reorganize)하여 생성된다. LOD 생성 과정은 포인트 클라우드 인코더뿐만 아니라 포인트 클라우드 디코더에서도 수행된다.
도 9의 상단은 3차원 공간에 분포된 포인트 클라우드 콘텐트의 포인트들의 예시(P0내지 P9)를 나타낸다. 도 9의 오리지널 오더(Original order)는 LOD 생성전 포인트들 P0내지 P9의 순서를 나타낸다. 도 9의 LOD 기반 오더 (LOD based order)는 LOD 생성에 따른 포인트들의 순서를 나타낸다. 포인트들은 LOD별 재정열된다. 또한 높은 LOD는 낮은 LOD에 속한 포인트들을 포함한다. 도 9에 도시된 바와 같이 LOD0는 P0, P5, P4 및 P2를 포함한다. LOD1은 LOD0의 포인트들과 P1, P6 및 P3를 포함한다. LOD2는 LOD0의 포인트들, LOD1의 포인트들 및 P9, P8 및 P7을 포함한다.
도 4에서 설명한 바와 같이 실시예들에 따른 포인트 클라우드 인코더는 예측 변환 코딩, 리프팅 변환 코딩 및 RAHT 변환 코딩을 선택적으로 또는 조합하여 수행할 수 있다.
실시예들에 따른 포인트 클라우드 인코더는 포인트들에 대한 예측기(predictor)를 생성하여 각 포인트의 예측 어트리뷰트(또는 예측 어트리뷰트값)을 설정하기 위한 예측 변환 코딩을 수행할 수 있다. 즉, N개의 포인트들에 대하여 N개의 예측기들이 생성될 수 있다. 실시예들에 따른 예측기는 각 포인트의 LOD 값과 LOD별 설정된 거리 내에 존재하는 이웃 포인트들에 대한 인덱싱 정보 및 이웃 포인트들까지의 거리 값을 기반으로 가중치(=1/거리) 값을 계산할 수 있다.
실시예들에 따른 예측 어트리뷰트(또는 어트리뷰트값)은 각 포인트의 예측기에 설정된 이웃 포인트들의 어트리뷰트들(또는 어트리뷰트 값들, 예를 들면 색상, 반사율 등)에 각 이웃 포인트까지의 거리를 기반으로 계산된 가중치(또는 가중치값)을 곱한 값의 평균값으로 설정된다. 실시예들에 따른 포인트 클라우드 인코더(예를 들면 계수 양자화부(40011)는 각 포인트의 어트리뷰트(어트리뷰트 값)에서 예측 어트리뷰트(어트리뷰트값)을 뺀 잔여값들(residuals, 잔여 어트리뷰트, 잔여 어트리뷰트값, 어트리뷰트 예측 잔여값 등으로 호칭할 수 있다)을 양자화(quatization) 및 역양자화(inverse quantization)할 수 있다. 양자화 과정은 다음의 표에 나타난 바와 같다.
Attribute prediction residuals quantization pseudo code
int PCCQuantization(int value, int quantStep) {
if( value >=0) {
return floor(value / quantStep + 1.0 / 3.0);
} else {
return -floor(-value / quantStep + 1.0 / 3.0);
}
}
Attribute prediction residuals inverse quantization pseudo code
int PCCInverseQuantization(int value, int quantStep) {
if( quantStep ==0) {
return value;
} else {
return value * quantStep;
}
}
실시예들에 따른 포인트 클라우드 인코더(예를 들면 아리스메틱 인코더(40012))는 각 포인트의 예측기에 이웃한 포인트들이 있는 경우, 상술한 바와 같이 양자화 및 역양자화된 잔여값을 엔트로피 코딩 할 수 있다. 실시예들에 따른 포인트 클라우드 인코더(예를 들면 아리스메틱 인코더(40012))는 각 포인트의 예측기에 이웃한 포인트들이 없으면 상술한 과정을 수행하지 않고 해당 포인트의 어트리뷰트들을 엔트로피 코딩할 수 있다. 실시예들에 따른 포인트 클라우드 인코더 (예를 들면 리프팅 변환부(40010))는 각 포인트의 예측기를 생성하고, 예측기에 계산된 LOD를 설정 및 이웃 포인트들을 등록하고, 이웃 포인트들까지의 거리에 따른 가중치를 설정하여 리프팅 변환 코딩을 수행할 수 있다. 실시예들에 따른 리프팅 변환 코딩은 상술한 예측 변환 코딩과 유사하나, 어트리뷰트값에 가중치를 누적 적용한다는 점에서 차이가 있다. 실시예들에 따른 어트리뷰트값에 가중치를 누적 적용하는 과정은 다음과 같다.
1) 각 포인트의 가중치 값을 저장하는 배열 QW(QuantizationWieght)를 생성한다. QW의 모든 요소들의 초기값은 1.0이다. 예측기에 등록된 이웃 노드의 예측기 인덱스의 QW 값에 현재 포인트의 예측기의 가중치를 곱한 값을 더한다.
2) 리프트 예측 과정: 예측된 어트리뷰트 값을 계산하기 위하여 포인트의 어트리뷰트 값에 가중치를 곱한 값을 기존 어트리뷰트값에서 뺀다.
3) 업데이트웨이트(updateweight) 및 업데이트(update)라는 임시 배열들을 생성하고 임시 배열들을 0으로 초기화한다.
4) 모든 예측기에 대해서 계산된 가중치에 예측기 인덱스에 해당하는 QW에 저장된 가중치를 추가로 곱해서 산출된 가중치를 업데이트웨이트 배열에 이웃 노드의 인덱스로 누적으로 합산한다. 업데이트 배열에는 이웃 노드의 인덱스의 어트리뷰트 값에 산출된 가중치를 곱한 값을 누적 합산한다.
5) 리프트 업데이트 과정: 모든 예측기에 대해서 업데이트 배열의 어트리뷰트 값을 예측기 인덱스의 업데이트웨이트 배열의 가중치 값으로 나누고, 나눈 값에 다시 기존 어트리뷰트 값을 더한다.
6) 모든 예측기에 대해서, 리프트 업데이트 과정을 통해 업데이트된 어트리뷰트 값에 리프트 예측 과정을 통해 업데이트 된(QW에 저장된) 가중치를 추가로 곱하여 예측 어트리뷰트 값을 산출한다. 실시예들에 따른 포인트 클라우드 인코더(예를 들면 계수 양자화부(40011))는 예측 어트리뷰트 값을 양자화한다. 또한 포인트 클라우드 인코더(예를 들면 아리스메틱 인코더(40012))는 양자화된 어트리뷰트 값을 엔트로피 코딩한다.
실시예들에 따른 포인트 클라우드 인코더(예를 들면 RAHT 변환부(40008))는 옥트리의 하위 레벨에 있는 노드와 연관된 어트리뷰트를 사용하여 상위 레벨의 노드들의 어트리뷰트를 에측하는 RAHT 변환 코딩을 수행할 수 있다. RAHT 변환 코딩은 옥트리 백워드 스캔을 통한 어트리뷰트 인트라 코딩의 예시이다. 실시예들에 따른 포인트 클라우드 인코더는 복셀에서 전체 영역으로 스캔하고, 각 스텝에서 복셀을 더 큰 블록으로 합치면서 루트 노드까지의 병합 과정을 반복수행한다. 실시예들에 따른 병합 과정은 오큐파이드 노드에 대해서만 수행된다. 엠티 노드(empty node)에 대해서는 병합 과정이 수행되지 않으며, 엠티 노드의 바로 상위 노드에 대해 병합 과정이 수행된다.
하기의 식은 RAHT 변환 행렬을 나타낸다.
Figure PCTKR2020008571-appb-img-000003
는 레벨 l에서의 복셀들의 평균 어트리뷰트 값을 나타낸다.
Figure PCTKR2020008571-appb-img-000004
Figure PCTKR2020008571-appb-img-000005
Figure PCTKR2020008571-appb-img-000006
로부터 계산될 수 있다.
Figure PCTKR2020008571-appb-img-000007
Figure PCTKR2020008571-appb-img-000008
의 가중치는
Figure PCTKR2020008571-appb-img-000009
Figure PCTKR2020008571-appb-img-000010
이다.
Figure PCTKR2020008571-appb-img-000011
Figure PCTKR2020008571-appb-img-000012
는 로-패스(low-pass) 값으로, 다음 상위 레벨에서의 병합 과정에서 사용된다.
Figure PCTKR2020008571-appb-img-000013
은 하이패스 계수(high-pass coefficients)이며, 각 스텝에서의 하이패스 계수들은 양자화되어 엔트로피 코딩 된다(예를 들면 아리스메틱 인코더(400012)의 인코딩). 가중치는
Figure PCTKR2020008571-appb-img-000014
로 계산된다. 루트 노드는 마지막
Figure PCTKR2020008571-appb-img-000015
Figure PCTKR2020008571-appb-img-000016
을 통해서 다음과 같이 생성된다.,
Figure PCTKR2020008571-appb-img-000017
gDC값 또한 하이패스 계수와 같이 양자화되어 엔트로피 코딩된다.
도 10은 실시예들에 따른 포인트 클라우드 디코더(Point Cloud Decoder)의 예시를 나타낸다.
도 10에 도시된 포인트 클라우드 디코더는 도 1에서 설명한 포인트 클라우드 비디오 디코더(10006) 예시로서, 도 1에서 설명한 포인트 클라우드 비디오 디코더(10006)의 동작 등과 동일 또는 유사한 동작을 수행할 수 있다. 도면이 도시된 바와 같이 포인트 클라우드 디코더는 하나 또는 그 이상의 비트스트림(bitstream)들에 포함된 지오메트리 비트스트림(geometry bitstream) 및 어트리뷰트 비트스트림(attribute bitstream)을 수신할 수 있다. 포인트 클라우드 디코더는 지오메트리 디코더(geometry decoder)및 어트리뷰트 디코더(attribute decoder)를 포함한다. 지오메트리 디코더는 지오메트리 비트스트림에 대해 지오메트리 디코딩을 수행하여 디코딩된 지오메트리(decoded geometry)를 출력한다. 어트리뷰트 디코더는 디코딩된 지오메트리 및 어트리뷰트 비트스트림을 기반으로 어트리뷰트 디코딩을 수행하여 디코딩된 어트리뷰트들(decoded attributes)을 출력한다. 디코딩된 지오메트리 및 디코딩된 어트리뷰트들은 포인트 클라우드 콘텐트를 복원(decoded point cloud)하는데 사용된다.
도 11은 실시예들에 따른 포인트 클라우드 디코더(Point Cloud Decoder)의 예시를 나타낸다.
도 11에 도시된 포인트 클라우드 디코더는 도 10에서 설명한 포인트 클라우드 디코더의 예시로서, 도 1 내지 도 9에서 설명한 포인트 클라우드 인코더의 인코딩 동작의 역과정인 디코딩 동작을 수행할 수 있다.
도 1 및 도 10에서 설명한 바와 같이 포인트 클라우드 디코더는 지오메트리 디코딩 및 어트리뷰트 디코딩을 수행할 수 있다. 지오메트리 디코딩은 어트리뷰트 디코딩보다 먼저 수행된다.
실시예들에 따른 포인트 클라우드 디코더는 아리스메틱 디코더(arithmetic decode, 11000), 옥트리 합성부(synthesize octree, 11001), 서페이스 오프록시메이션 합성부(synthesize surface approximation, 11002), 지오메트리 리컨스트럭션부(reconstruct geometry, 11003), 좌표계 역변환부(inverse transform coordinates, 11004), 아리스메틱 디코더(arithmetic decode, 11005), 역양자화부(inverse quantize, 11006), RAHT변환부(11007), LOD생성부(generate LOD, 11008), 인버스 리프팅부(Inverse lifting, 11009), 및/또는 컬러 역변환부(inverse transform colors, 11010)를 포함한다.
아리스메틱 디코더(11000), 옥트리 합성부(11001), 서페이스 오프록시메이션 합성부(11002), 지오메트리 리컨스럭션부(11003), 좌표계 역변환부(11004)는 지오메트리 디코딩을 수행할 수 있다. 실시예들에 따른 지오메트리 디코딩은 다이렉트 코딩(direct coding) 및 트라이숩 지오메트리 디코딩(trisoup geometry decoding)을 포함할 수 있다. 다이렉트 코딩 및 트라이숩 지오메트리 디코딩은 선택적으로 적용된다. 또한 지오메트리 디코딩은 위의 예시에 국한되지 않으며, 도 1 내지 도 9에서 설명한 지오메트리 인코딩의 역과정으로 수행된다.
실시예들에 따른 아리스메틱 디코더(11000)는 수신한 지오메트리 비트스트림을 아리스메틱 코딩을 기반으로 디코딩한다. 아리스메틱 디코더(11000)의 동작은 아리스메틱 인코더(40004)의 역과정에 대응한다.
실시예들에 따른 옥트리 합성부(11001)는 디코딩된 지오메트리 비트스트림으로부터 (또는 디코딩 결과 확보된 지오메트리에 관한 정보)로부터 오큐판시 코드를 획득하여 옥트리를 생성할 수 있다. 오큐판시 코드에 대한 구체적인 설명은 도 1 내지 도 9에서 설명한 바와 같다.
실시예들에 따른 서페이스 오프록시메이션 합성부(11002)는 트라이숩 지오메트리 인코딩이 적용된 경우, 디코딩된 지오메트리 및/또는 생성된 옥트리에 기반하여 서페이스를 합성할 수 있다.
실시예들에 따른 지오메트리 리컨스트럭션부(11003)는 서페이스 및 또는 디코딩된 지오메트리에 기반하여 지오메트리를 재생성할 수 있다. 도 1 내지 도 9에서 설명한 바와 같이, 다이렉트 코딩 및 트라이숩 지오메트리 인코딩은 선택적으로 적용된다. 따라서 지오메트리 리컨스트럭션부(11003)는 다이렉트 코딩이 적용된 포인트들의 포지션 정보들을 직접 가져와서 추가한다. 또한, 트라이숩 지오메트리 인코딩이 적용된 경우, 지오메트리 리컨스트럭션부(11003)는 지오메트리 리컨스트럭션부(40005)의 재구성 동작, 예를 들면 삼각형 재구성, 업-샘플링, 복셀화 동작을 수행하여 지오메트리를 복원할 수 있다. 구체적인 내용은 도 6에서 설명한 바와 동일하므로 생략한다. 복원된 지오메트리는 어트리뷰트들을 포함하지 않는 포인트 클라우드 픽쳐 또는 프레임을 포함할 수 있다.
실시예들에 따른 좌표계 역변환부(11004)는 복원된 지오메트리를 기반으로 좌표계를 변환하여 포인트들의 포지션들을 획득할 수 있다.
아리스메틱 디코더(11005), 역양자화부(11006), RAHT 변환부(11007), LOD생성부(11008), 인버스 리프팅부(11009), 및/또는 컬러 역변환부(11010)는 도 10에서 설명한 어트리뷰트 디코딩을 수행할 수 있다. 실시예들에 따른 어트리뷰트 디코딩은 RAHT(Region Adaptive Hierarchial Transform) 디코딩, 예측 변환(Interpolaration-based hierarchical nearest-neighbour prediction-Prediction Transform) 디코딩 및 리프팅 변환 (interpolation-based hierarchical nearest-neighbour prediction with an update/lifting step (Lifting Transform)) 디코딩을 포함할 수 있다. 상술한 3가지의 디코딩들은 선택적으로 사용되거나, 하나 또는 그 이상의 디코딩들의 조합이 사용될 수 있다. 또한 실시예들에 따른 어트리뷰트 디코딩은 상술한 예시에 국한되는 것은 아니다.
실시예들에 따른 아리스메틱 디코더(11005)는 어트리뷰트 비트스트림을 아리스메틱 코딩으로 디코딩한다.
실시예들에 따른 역양자화부(11006)는 디코딩된 어트리뷰트 비트스트림 또는 디코딩 결과 확보한 어트리뷰트에 대한 정보를 역양자화(inverse quantization)하고 역양자화된 어트리뷰트들(또는 어트리뷰트 값들)을 출력한다. 역양자화는 포인트 클라우드 인코더의 어트리뷰트 인코딩에 기반하여 선택적으로 적용될 수 있다.
실시예들에 따라 RAHT 변환부(11007), LOD생성부(11008) 및/또는 인버스 리프팅부(11009)는 재구성된 지오메트리 및 역양자화된 어트리뷰트들을 처리할 수 있다. 상술한 바와 같이 RAHT 변환부(11007), LOD생성부(11008) 및/또는 인버스 리프팅부(11009)는 포인트 클라우드 인코더의 인코딩에 따라 그에 대응하는 디코딩 동작을 선택적으로 수행할 수 있다.
실시예들에 따른 컬러 역변환부(11010)는 디코딩된 어트리뷰트들에 포함된 컬러 값(또는 텍스쳐)을 역변환하기 위한 역변환 코딩을 수행한다. 컬러 역변환부(11010)의 동작은 포인트 클라우드 인코더의 컬러 변환부(40006)의 동작에 기반하여 선택적으로 수행될 수 있다.
도 11의 포인트 클라우드 디코더의 엘레멘트들은 도면에 도시되지 않았으나 포인트 클라우드 제공 장치에 포함된 하나 또는 그 이상의 메모리들과 통신가능하도록 설정된 하나 또는 그 이상의 프로세서들 또는 집적 회로들(integrated circuits)을 포함하는 하드웨어, 소프트웨어, 펌웨어 또는 이들의 조합으로 구현될 수 있다. 하나 또는 그 이상의 프로세서들은 상술한 도 11의 포인트 클라우드 디코더의 엘레멘트들의 동작들 및/또는 기능들 중 적어도 어느 하나 이상을 수행할 수 있다. 또한 하나 또는 그 이상의 프로세서들은 도11의 포인트 클라우드 디코더의 엘레멘트들의 동작들 및/또는 기능들을 수행하기 위한 소프트웨어 프로그램들 및/또는 인스트럭션들의 세트를 동작하거나 실행할 수 있다.
도 12는 실시예들에 따른 전송 장치의 예시이다.
도 12에 도시된 전송 장치는 도 1의 전송장치(10000) (또는 도 4의 포인트 클라우드 인코더)의 예시이다. 도 12에 도시된 전송 장치는 도 1 내지 도 9에서 설명한 포인트 클라우드 인코더의 동작들 및 인코딩 방법들과 동일 또는 유사한 동작들 및 방법들 중 적어도 어느 하나 이상을 수행할 수 있다. 실시예들에 따른 전송 장치는 데이터 입력부(12000), 양자화 처리부(12001), 복셀화 처리부(12002), 옥트리 오큐판시 코드 (Occupancy code) 생성부(12003), 표면 모델 처리부(12004), 인트라/인터 코딩 처리부(12005), 아리스메틱 (Arithmetic) 코더(12006), 메타데이터 처리부(12007), 색상 변환 처리부(12008), 어트리뷰트 변환 처리부(또는 속성 변환 처리부)(12009), 예측/리프팅/RAHT 변환 처리부(12010), 아리스메틱 (Arithmetic) 코더(12011) 및/또는 전송 처리부(12012)를 포함할 수 있다.
실시예들에 따른 데이터 입력부(12000)는 포인트 클라우드 데이터를 수신 또는 획득한다. 데이터 입력부(12000)는 포인트 클라우드 비디오 획득부(10001)의 동작 및/또는 획득 방법(또는 도2에서 설명한 획득과정(20000))과 동일 또는 유사한 동작 및/또는 획득 방법을 수행할 수 있다.
데이터 입력부(12000), 양자화 처리부(12001), 복셀화 처리부(12002), 옥트리 오큐판시 코드 (Occupancy code) 생성부(12003), 표면 모델 처리부(12004), 인트라/인터 코딩 처리부(12005), Arithmetic 코더(12006)는 지오메트리 인코딩을 수행한다. 실시예들에 따른 지오메트리 인코딩은 도 1 내지 도 9에서 설명한 지오메트리 인코딩과 동일 또는 유사하므로 구체적인 설명은 생략한다.
실시예들에 따른 양자화 처리부(12001)는 지오메트리(예를 들면 포인트들의 위치값, 또는 포지션값)을 양자화한다. 양자화 처리부(12001)의 동작 및/또는 양자화는 도 4에서 설명한 양자화부(40001)의 동작 및/또는 양자화와 동일 또는 유사하다. 구체적인 설명은 도 1 내지 도 9에서 설명한 바와 동일하다.
실시예들에 따른 복셀화 처리부(12002)는 양자화된 포인트들의 포지션 값을 복셀화한다. 복셀화 처리부(120002)는 도 4에서 설명한 양자화부(40001)의 동작 및/또는 복셀화 과정과 동일 또는 유사한 동작 및/또는 과정을 수행할 수 있다. 구체적인 설명은 도 1 내지 도 9에서 설명한 바와 동일하다.
실시예들에 따른 옥트리 오큐판시 코드 생성부(12003)는 복셀화된 포인트들의 포지션들을 옥트리 구조를 기반으로 옥트리 코딩을 수행한다. 옥트리 오큐판시 코드 생성부(12003)는 오큐판시 코드를 생성할 수 있다. 옥트리 오큐판시 코드 생성부(12003)는 도 4 및 도 6에서 설명한 포인트 클라우드 인코더 (또는 옥트리 분석부(40002))의 동작 및/또는 방법과 동일 또는 유사한 동작 및/또는 방법을 수행할 수 있다. 구체적인 설명은 도 1 내지 도 9에서 설명한 바와 동일하다.
실시예들에 따른 표면 모델 처리부(12004)는 표면 모델(surface model)을 기반으로 특정 영역(또는 노드)내의 포인트들의 포지션들을 복셀 기반으로 재구성하는 트라이숩 지오메트리 인코딩을 수행할 수 있다. 포면 모델 처리부(12004)는 도 4 에서 설명한 포인트 클라우드 인코더(예를 들면 서페이스 어프록시메이션 분석부(40003))의 동작 및/또는 방법과 동일 또는 유사한 동작 및/또는 방법을 수행할 수 있다. 구체적인 설명은 도 1 내지 도 9에서 설명한 바와 동일하다.
실시예들에 따른 인트라/인터 코딩 처리부(12005)는 포인트 클라우드 데이터를 인트라/인터 코딩할 수 있다. 인트라/인터 코딩 처리부(12005)는 도 7에서 설명한 인트라/인터 코딩과 동일 또는 유사한 코딩을 수행할 수 있다. 구체적인 설명은 도 7에서 설명한 바와 동일하다. 실시예들에 따라 인트라/인터 코딩 처리부(12005)는 아리스메틱 코더(12006)에 포함될 수 있다.
실시예들에 따른 아리스메틱 코더(12006)는 포인트 클라우드 데이터의 옥트리 및/또는 근사화된 옥트리를 엔트로피 인코딩한다. 예를 들어, 인코딩 방식은 아리스메틱(Arithmetic) 인코딩 방법을 포함한다. . 아리스메틱 코더(12006)는 아리스메틱 인코더(40004)의 동작 및/또는 방법과 동일 또는 유사한 동작 및/또는 방법을 수행한다.
실시예들에 따른 메타데이터 처리부(12007)는 포인트 클라우드 데이터에 관한 메타데이터, 예를 들어 설정 값 등을 처리하여 지오메트리 인코딩 및/또는 어트리뷰트 인코딩 등 필요한 처리 과정에 제공한다. 또한 실시예들에 따른 메타데이터 처리부(12007)는 지오메트리 인코딩 및/또는 어트리뷰트 인코딩과 관련된 시그널링 정보를 생성 및/또는 처리할 수 있다. 실시예들에 따른 시그널링 정보는 지오메트리 인코딩 및/또는 어트리뷰트 인코딩과 별도로 인코딩처리될 수 있다. 또한 실시예들에 따른 시그널링 정보는 인터리빙 될 수도 있다.
색상 변환 처리부(12008), 어트리뷰트 변환 처리부(12009), 예측/리프팅/RAHT 변환 처리부(12010), 아리스메틱 (Arithmetic) 코더(12011)는 어트리뷰트 인코딩을 수행한다. 실시예들에 따른 어트리뷰트 인코딩은 도 1 내지 도 9에서 설명한 어트리뷰트 인코딩과 동일 또는 유사하므로 구체적인 설명은 생략한다.
실시예들에 따른 색상 변환 처리부(12008)는 어트리뷰트들에 포함된 색상값을 변환하는 색상 변환 코딩을 수행한다. 색상 변환 처리부(12008)는 재구성된 지오메트리를 기반으로 색상 변환 코딩을 수행할 수 있다. 재구성된 지오메트리에 대한 설명은 도 1 내지 도 9에서 설명한 바와 동일하다. 또한 도 4에서 설명한 컬러 변환부(40006)의 동작 및/또는 방법과 동일 또는 유사한 동작 및/또는 방법을 수행한다. 구체적인 설명은 생략한다.
실시예들에 따른 어트리뷰트 변환 처리부(12009)는 지오메트리 인코딩이 수행되지 않은 포지션들 및/또는 재구성된 지오메트리를 기반으로 어트리뷰트들을 변환하는 어트리뷰트 변환을 수행한다. 어트리뷰트 변환 처리부(12009)는 도 4에 설명한 어트리뷰트 변환부(40007)의 동작 및/또는 방법과 동일 또는 유사한 동작 및/또는 방법을 수행한다. 구체적인 설명은 생략한다. 실시예들에 따른 예측/리프팅/RAHT 변환 처리부(12010)는 변환된 어트리뷰트들을 RAHT 코딩, 예측 변환 코딩 및 리프팅 변환 코딩 중 어느 하나 또는 조합하여 코딩할 수 있다. 예측/리프팅/RAHT 변환 처리부(12010)는 도 4에서 설명한 RAHT 변환부(40008), LOD 생성부(40009) 및 리프팅 변환부(40010)의 동작들과 동일 또는 유사한 동작들 중 적어도 하나 이상을 수행한다. 또한 예측 변환 코딩, 리프팅 변환 코딩 및 RAHT 변환 코딩에 대한 설명은 도 1 내지 도 9에서 설명한 바와 동일하므로 구체적인 설명은 생략한다.
실시예들에 따른 아리스메틱 코더(12011)는 코딩된 어트리뷰트들을 아리스메틱 코딩에 기반하여 인코딩할 수 있다. 아리스메틱 코더(12011)는 아리스메틱 인코더(400012)의 동작 및/또는 방법과 동일 또는 유사한 동작 및/또는 방법을 수행한다.
실시예들에 따른 전송 처리부(12012)는 인코딩된 지오메트리 및/또는 인코딩된 어트리뷰트, 메타 데이터 정보를 포함하는 각 비트스트림을 전송하거나, 인코딩된 지오메트리 및/또는 인코딩된 어트리뷰트, 메타 데이터 정보를 하나의 비트스트림으로 구성하여 전송할 수 있다. 실시예들에 따른 인코딩된 지오메트리 및/또는 인코딩된 어트리뷰트, 메타 데이터 정보가 하나의 비트스트림으로 구성되는 경우, 비트스트림은 하나 또는 그 이상의 서브 비트스트림들을 포함할 수 있다. 실시예들에 따른 비트스트림은 시퀀스 레벨의 시그널링을 위한 SPS (Sequence Parameter Set), 지오메트리 정보 코딩의 시그널링을 위한 GPS(Geometry Parameter Set), 어트리뷰트 정보 코딩의 시그널링을 위한 APS(Attribute Parameter Set), 타일 레벨의 시그널링을 위한 TPS (Tile Parameter Set)를 포함하는 시그널링 정보 및 슬라이스 데이터를 포함할 수 있다. 슬라이스 데이터는 하나 또는 그 이상의 슬라이스들에 대한 정보를 포함할 수 있다. 실시예들에 따른 하나의 슬라이스는 하나의 지오메트리 비트스트림(Geom0 0) 및 하나 또는 그 이상의 어트리뷰트 비트스트림들(Attr0 0, Attr1 0)을 포함할 수 있다. 실시예들에 따른 TPS는 하나 또는 그 이상의 타일들에 대하여 각 타일에 관한 정보(예를 들면 bounding box의 좌표값 정보 및 높이/크기 정보 등)을 포함할 수 있다. 지오메트리 비트스트림은 헤더와 페이로드를 포함할 수 있다. 실시예들에 따른 지오메트리 비트스트림의 헤더는 GPS에 포함된 파라미터 세트의 식별 정보(geom_ parameter_set_id), 타일 식별자(geom_tile_id), 슬라이스 식별자(geom_slice_id) 및 페이로드에 포함된 데이터에 관한 정보 등을 포함할 수 있다. 상술한 바와 같이 실시예들에 따른 메타데이터 처리부(12007)는 시그널링 정보를 생성 및/또는 처리하여 전송 처리부(12012)로 전송할 수 있다. 실시예들에 따라, 지오메트리 인코딩을 수행하는 엘레멘트들 및 어트리뷰트 인코딩을 수행하는 엘레멘트들은 점선 처리된 바와 같이 상호 데이터/정보를 공유할 수 있다. 실시예들에 따른 전송 처리부(12012)는 트랜스미터(10003)의 동작 및/또는 전송 방법과 동일 또는 유사한 동작 및/또는 전송 방법을 수행할 수 있다. 구체적인 설명은 도 1 내지 도 2에서 설명한 바와 동일하므로 생략한다.
도 13은 실시예들에 따른 수신 장치의 예시이다.
도 13에 도시된 수신 장치는 도 1의 수신장치(10004) (또는 도 10 및 도 11의 포인트 클라우드 디코더)의 예시이다. 도 13에 도시된 수신 장치는 도 1 내지 도 11에서 설명한 포인트 클라우드 디코더의 동작들 및 디코딩 방법들과 동일 또는 유사한 동작들 및 방법들 중 적어도 어느 하나 이상을 수행할 수 있다.
실시예들에 따른 수신 장치는 수신부(13000), 수신 처리부(13001), 아리스메틱 (arithmetic) 디코더(13002), 오큐판시 코드 (Occupancy code) 기반 옥트리 재구성 처리부(13003), 표면 모델 처리부(삼각형 재구성, 업-샘플링, 복셀화)(13004), 인버스(inverse) 양자화 처리부(13005), 메타데이터 파서(13006), 아리스메틱 (arithmetic) 디코더(13007), 인버스(inverse)양자화 처리부(13008), 예측/리프팅/RAHT 역변환 처리부(13009), 색상 역변환 처리부(13010) 및/또는 렌더러(13011)를 포함할 수 있다. 실시예들에 따른 디코딩의 각 구성요소는 실시예들에 따른 인코딩의 구성요소의 역과정을 수행할 수 있다.
실시예들에 따른 수신부(13000)는 포인트 클라우드 데이터를 수신한다. 수신부(13000)는 도 1의 리시버(10005)의 동작 및/또는 수신 방법과 동일 또는 유사한 동작 및/또는 수신 방법을 수행할 수 있다. 구체적인 설명은 생략한다.
실시예들에 따른 수신 처리부(13001)는 수신한 데이터로부터 지오메트리 비트스트림 및/또는 어트리뷰트 비트스트림을 획득할 수 있다. 수신 처리부(13001)는 수신부(13000)에 포함될 수 있다.
아리스메틱 디코더(13002), 오큐판시 코드 기반 옥트리 재구성 처리부(13003), 표면 모델 처리부(13004) 및 인버스 양자화 처리부(13005)는 지오메트리 디코딩을 수행할 수 있다. 실시예들에 따른 지오메트리 디코딩은 도 1 내지 도 10에서 설명한 지오메트리 디코딩과 동일 또는 유사하므로 구체적인 설명은 생략한다.
*202실시예들에 따른 아리스메틱 디코더(13002)는 지오메트리 비트스트림을 아리스메틱 코딩을 기반으로 디코딩할 수 있다. 아리스메틱 디코더(13002)는 아리스메틱 디코더(11000)의 동작 및/또는 코딩과 동일 또는 유사한 동작 및/또는 코딩을 수행한다.
실시예들에 따른 오큐판시 코드 기반 옥트리 재구성 처리부(13003)는 디코딩된 지오메트리 비트스트림으로부터 (또는 디코딩 결과 확보된 지오메트리에 관한 정보)로부터 오큐판시 코드를 획득하여 옥트리를 재구성할 수 있다. 오큐판시 코드 기반 옥트리 재구성 처리부(13003)는 옥트리 합성부(11001)의 동작 및/또는 옥트리 생성 방법과 동일 또는 유사한 동작 및/또는 방법을 수행한다. 실시예들에 따른 표면 모델 처리부(13004)는 트라이숩 지오메트리 인코딩이 적용된 경우, 표면 모델 방식에 기반하여 트라이숩 지오메트리 디코딩 및 이와 관련된 지오메트리 리컨스트럭션(예를 들면 삼각형 재구성, 업-샘플링, 복셀화)을 수행할 수 있다. 표면 모델 처리부(13004)는 서페이스 오프록시메이션 합성부(11002) 및/또는 지오메트리 리컨스트럭션부(11003)의 동작과 동일 또는 유사한 동작을 수행한다.
실시예들에 따른 인버스 양자화 처리부(13005)는 디코딩된 지오메트리를 인버스 양자화할 수 있다.
실시예들에 따른 메타데이터 파서(13006)는 수신한 포인트 클라우드 데이터에 포함된 메타데이터, 예를 들어 설정 값 등을 파싱할 수 있다. 메타데이터 파서(13006)는 메타데이터를 지오메트리 디코딩 및/또는 어트리뷰트 디코딩에 전달할 수 있다. 메타데이터에 대한 구체적인 설명은 도 12에서 설명한 바와 동일하므로 생략한다.
아리스메틱 디코더(13007), 인버스 양자화 처리부(13008), 예측/리프팅/RAHT 역변환 처리부(13009) 및 색상 역변환 처리부(13010)는 어트리뷰트 디코딩을 수행한다. 어트리뷰트 디코딩는 도 1 내지 도 10에서 설명한 어트리뷰트 디코딩과 동일 또는 유사하므로 구체적인 설명은 생략한다.
실시예들에 따른 아리스메틱 디코더(13007)는 어트리뷰트 비트스트림을 아리스메틱 코딩으로 디코딩할 수 있다. 아리스메틱 디코더(13007)는 재구성된 지오메트리를 기반으로 어트리뷰트 비트스트림의 디코딩을 수행할 수 있다. 아리스메틱 디코더(13007)는 아리스메틱 디코더(11005)의 동작 및/또는 코딩과 동일 또는 유사한 동작 및/또는 코딩을 수행한다.
실시예들에 따른 인버스 양자화 처리부(13008)는 디코딩된 어트리뷰트 비트스트림을 인버스 양자화할 수 있다. 인버스 양자화 처리부(13008)는 역양자화부(11006)의 동작 및/또는 역양자화 방법과 동일 또는 유사한 동작 및/또는 방법을 수행한다.
실시예들에 따른 예측/리프팅/RAHT 역변환 처리부(13009)는 재구성된 지오메트리 및 역양자화된 어트리뷰트들을 처리할 수 있다. 예측/리프팅/RAHT 역변환 처리부(13009)는 RAHT 변환부(11007), LOD생성부(11008) 및/또는 인버스 리프팅부(11009)의 동작들 및/또는 디코딩들과 동일 또는 유사한 동작들 및/또는 디코딩들 중 적어도 어느 하나 이상을 수행한다. 실시예들에 따른 색상 역변환 처리부(13010)는 디코딩된 어트리뷰트들에 포함된 컬러 값(또는 텍스쳐)을 역변환하기 위한 역변환 코딩을 수행한다. 색상 역변환 처리부(13010)는 컬러 역변환부(11010)의 동작 및/또는 역변환 코딩과 동일 또는 유사한 동작 및/또는 역변환 코딩을 수행한다. 실시예들에 따른 렌더러(13011)는 포인트 클라우드 데이터를 렌더링할 수 있다.
도 14는 실시예들에 따른 G-PCC 기반 포인트 클라우드 콘텐트 스트리밍을 위한 아키텍쳐를 나타낸다.
도 14의 상단은 도 1 내지 도 13에서 설명한 전송 장치(예를 들면 전송 장치(10000), 도 12의 전송 장치 등)가 포인트 클라우드 콘텐트를 처리 및 전송하는 과정을 나타낸다.
도 1 내지 도 13에서 설명한 바와 같이 전송 장치는 포인트 클라우드 콘텐트의 오디오(Ba)를 획득하고(Audio Acquisition), 획득한 오디오를 인코딩(Audio encoding)하여 오디오 비트스트림(Ea)들을 출력할 수 있다. 또한 전송 장치는 포인트 클라우드 콘텐트의 포인트 클라우드(Bv)(또는 포인트 클라우드 비디오)를 확보하고(Point Acqusition), 확보한 포인트 클라우드에 대하여 포인트 클라우드 인코딩(Point cloud encoding)을 수행하여 포인트 클라우드 비디오 비트스트림(Eb)들을 출력할 수 있다. 전송 장치의 포인트 클라우드 인코딩은 도 1 내지 도 13에서 설명한 포인트 클라우드 인코딩(예를 들면 도 4의 포인트 클라우드 인코더의 인코딩 등)과 동일 또는 유사하므로 구체적인 설명은 생략한다.
전송 장치는 생성된 오디오 비트스트림들 및 비디오 비트스트림들을 파일 및/또는 세그먼트로 인캡슐레이션(File/segment encapsulation)할 수 있다. 인캡슐레이션된 파일 및/또는 세그먼트(Fs, File)은 ISOBMFF 등의 파일 포맷의 파일 또는 DASH 세그먼트를 포함할 수 있다. 실시예들에 따른 포인트 클라우드 관련 메타 데이터(metadata)는 인캡슐레이션된 파일 포맷 및/또는 세그먼트에 포함될 수 있다. 메타 데이터는 ISOBMFF 파일 포맷 상의 다양한 레벨의 박스(box)에 포함되거나 파일 내에서 별도의 트랙에 포함될 수 있다. 실시예에 따라 전송 장치는 메타데이터 자체를 별도의 파일로 인캡슐레이션할 수 있다. 실시예들에 따른 전송 장치는 인캡슐레이션 된 파일 포맷 및/또는 세그먼트를 네트워크를 통해 전송(delivery)할 수 있다. 전송 장치의 인캡슐레이션 및 전송 처리 방법은 도 1 내지 도 13에서 설명한 바 (예를 들면 트랜스미터(10003), 도 2의 전송 단계(20002) 등)와 동일하므로 구체적인 설명은 생략한다.
도 14의 하단은 도 1 내지 도 13에서 설명한 수신 장치(예를 들면 수신 장치(10004), 도 13의 수신 장치 등)가 포인트 클라우드 콘텐트를 처리 및 출력하는 과정을 나타낸다.
실시예들에 따라 수신 장치는 최종 오디오 데이터 및 최종 비디오 데이터를 출력하는 디바이스 (예를 들면 스피커(Loudspeakers), 헤드폰들(headphones), 디스플레이(Display))와 포인트 클라우드 콘텐트를 처리하는 포인트 클라우드 플레이어(Point Cloud Player)를 포함할 수 있다. 최종 데이터 출력 디바이스 및 포인트 클라우드 플레이어는 별도의 물리적인 디바이스들로 구성될 수 있다. 실시예들에 따른 포인트 클라우드 플레이어는 G-PCC(Geometry-based Point Cloud Compression) 코딩 및/또는 V-PCC(Video based Point Cloud Compression) 코딩 및/또는 차세대 코딩을 수행할 수 있다.
실시예들에 따른 수신 장치는 수신한 데이터(예를 들면 방송 신호, 네트워크를 통해 전송되는 신호 등)에 포함된 파일 및/또는 세그먼트(F',Fs')를 확보하고 디캡슐레이션(File/segment decapsulation)할 수 있다. 수신 장치의 수신 및 디캡슐레이션 방법은 도 1 내지 도 13에서 설명한 바(예를 들면 리시버(10005), 수신부(13000), 수신 처리부(13001)등)와 동일하므로 구체적인 설명은 생략한다.
실시예들에 따른 수신 장치는 파일 및/또는 세그먼트에 포함된 오디오 비트스트림(E'a) 및 비디오 비트스트림(E'v)를 확보한다. 도면에 도시된 바와 같이 수신 장치는 오디오 비트스트림에 대해 오디오 디코딩(audio decoding)을 수행하여 디코딩된 오디오 데이터(B'a)를 출력하고, 디코딩된 오디오 데이터를 렌더링(audio rendering)하여 최종 오디오 데이터(A'a)를 스피커 또는 헤드폰 등을 통해 출력한다.
또한 수신 장치는 비디오 비트스트림(E'v)에 대해 포인트 클라우드 디코딩(point cloud decoding)을 수행하여 디코딩된 비디오 데이터(B'v)를 출력한다. 실시예들에 따른 포인트 클라우드 디코딩은 도 1 내지 도 13에서 설명한 포인트 클라우드 디코딩과 동일 또는 유사하므로 (예를 들면 도11의 포인트 클라우드 디코더의 디코딩 등) 구체적인 설명은 생략한다. 수신 장치는 디코딩된 비디오 데이터를 렌더링(rendering)하여 최종 비디오 데이터를 디스플레이를 통해 출력할 수 있다.
실시예들에 따른 수신 장치는 함께 전송된 메타데이터를 기반으로 디캡슐레이션, 오디오 디코딩, 오디오 렌더링, 포인트 클라우드 디코딩 및 렌더링 동작 중 적어도 어느 하나 이상을 수행할 수 있다. 메타데이터에 대한 설명은 도 12 내지 도 13에서 설명한 바와 동일하므로 생략한다.
도면에 도시된 점선과 같이, 실시예들에 따른 수신 장치(예를 들면 포인트 클라우드 플레이어 또는 포인트 클라우드 플레어 내의 센싱/트랙킹부(sensing/tracking))는 피드백 정보(orientation, viewport)를 생성할 수 있다. 실시예들에 따른 피드백 정보는 수신 장치의 디캡슐레이션, 포인트 클라우드 디코딩 과정 및/또는 렌더링 과정에서 사용될 수도 있고, 송신 장치로 전달 될 수도 있다. 피드백 정보에 대한 설명은 도 1 내지 도 13에서 설명한 바와 동일하므로 생략한다.
도15는 실시예들에 따른 전송 장치의 예시를 나타낸다.
도 15의 전송 장치는 포인트 클라우드 콘텐트를 전송하는 장치로서, 도 1 내지 도 14에서 설명한 전송 장치(예를 들면 도 1의 전송 장치(10000), 도 4의 포인트 클라우드 인코더, 도 12의 전송 장치, 도 14의 전송 장치 등)의 예시에 해당한다. 따라서 도 15의 전송 장치는 도 1 내지 도 14에서 설명한 전송 장치의 동작과 동일 또는 유사한 동작을 수행한다.
실시예들에 따른 전송 장치는 포인트 클라우드 획득(point cloud acquisition), 포인트 클라우드 인코딩(point cloud encoding), 파일/세그먼트 인캡슐레이션(file/segement encapsulation) 및 전송(delivery) 중 적어도 하나 또는 그 이상을 수행할 수 있다.
도면에 도시된 포인트 클라우드 획득 및 전송 동작은 도 1 내지 도 14에서 설명한 바와 동일하므로 구체적인 설명은 생략한다.
도 1 내지 도 14에서 설명한 바와 같이 실시예들에 따른 전송 장치는 지오메트리 인코딩 및 어트리뷰트 인코딩을 수행할 수 있다. 실시예들에 따른 지오메트리 인코딩은 지오메트리 컴프레션(geometry compression)이라 호칭될 수 있으며 어트리뷰트 인코딩은 어트리뷰트 컴프레션(attribute compression)이라 호칭될 수 있다. 상술한 바와 같이 하나의 포인트는 하나의 지오메트리와 하나 또는 그 이상의 어트리뷰트들을 가질 수 있다. 따라서 전송 장치는 각 어트리뷰트에 대하여 어트리뷰트 인코딩을 수행한다. 도면은 전송 장치가 하나 또는 그 이상의 어트리뷰트 컴프레션들(attribute #1 compression, … attribute #N compression)을 수행한 예시를 나타낸다. 또한 실시예들에 따른 전송 장치는 추가 컴프레션(auxiliary compression)을 수행할 수 있다. 추가 컴프레션은 메타데이터(metadata)에 대해 수행된다. 메타 데이터에 대한 설명은 도 1 내지 도 14에서 설명한 바와 동일하므로 생략한다. 또한 전송 장치는 메쉬 데이터 컴프레션(Mesh data compression)을 수행할 수 있다. 실시예들에 따른 메쉬 데이터 컴프레션은 도 1 내지 도 14에서 설명한 트라이숩 지오메트리 인코딩을 포함할 수 있다.
실시예들에 따른 전송 장치는 포인트 클라우드 인코딩에 따라 출력된 비트스트림들(예를 들면 포인트 클라우드 스트림들)을 파일 및/또는 세그먼트로 인캡슐레이션 할 수 있다. 실시예들에 따라 전송 장치는 메타 데이터 외의 데이터(예를 들면 미디어 데이터)를 운반하는 미디어 트랙 인캡슐레이션(media track encapsulation)을 수행하고, 메타 데이터를 운반하는 메타데이터 트랙 인캡슐레이션(metadata tracak encapsulation)을 수행할 수 있다. 실시예들에 따라 메타데이터는 미디어 트랙으로 인캡슐레이션 될 수 있다.
도 1 내지 도 14에서 설명한 바와 같이 전송 장치는 수신 장치로부터 피드백 정보(오리엔테이션/뷰포트 메타 데이터)를 수신하고, 수신한 피드백 정보를 기반으로 포인트 클라우드 인코딩, 파일/세그먼트 인캡슐레이션 및 전송 동작 중 적어도 어느 하나 이상을 수행할 수 있다. 구체적인 설명은 도 1 내지 도 14에서 설명한 바와 동일하므로 생략한다.
도16은 실시예들에 따른 수신 장치의 예시를 나타낸다.
도 16의 수신 장치는 포인트 클라우드 콘텐트를 수신하는 장치로서, 도 1 내지 도 14에서 설명한 수신 장치(예를 들면 도 1의 수신 장치(10004), 도 11의 포인트 클라우드 디코더, 도 13의 수신 장치, 도 14의 수신 장치 등)의 예시에 해당한다. 따라서 도 16의 수신 장치는 도 1 내지 도 14에서 설명한 수신 장치의 동작과 동일 또는 유사한 동작을 수행한다. 또한 도 16의 수신 장치는 도 15의 전송 장치에서 전송한 신호 등을 받고, 도 15의 전송 장치의 동작의 역과정을 수행할 수 있다.
실시예들에 따른 수신 장치는 수신 (delivery), 파일/세그먼트 디캡슐레이션(file/segement decapsulation), 포인트 클라우드 디코딩(point cloud decoding) 및 포인트 클라우드 렌더링(point cloud rendering) 중 적어도 하나 또는 그 이상을 수행할 수 있다.
도면에 도시된 포인트 클라우드 수신 및 포인트 클라우드 렌더링 동작은 도 1 내지 도 14에서 설명한 바와 동일하므로 구체적인 설명은 생략한다.
도 1 내지 도 14에서 설명한 바와 같이 실시예들에 따른 수신 장치는 네트워크 또는 저장 장치로터 획득한 파일 및/또는 세그먼트에 대해 디캡슐레이션을 수행한다. 실시예들에 따라 수신 장치는 메타 데이터 외의 데이터(예를 들면 미디어 데이터)를 운반하는 미디어 트랙 디캡슐레이션(media track decapsulation)을 수행하고, 메타 데이터를 운반하는 메타데이터 트랙 디캡슐레이션(metadata tracak decapsulation)을 수행할 수 있다. 실시예들에 따라 메타데이터가 미디어 트랙으로 인캡슐레이션 된 경우, 메타 데이터 트랙 디캡슐레이션은 생략된다.
도 1 내지 도 14에서 설명한 바와 같이 수신 장치는 디캡슐레이션을 통해 확보한 비트스트림(예를 들면 포인트 클라우드 스트림들)에 대하여 지오메트리 디코딩 및 어트리뷰트 디코딩을 수행할 수 있다. 실시예들에 따른 지오메트리 디코딩은 지오메트리 디컴프레션(geometry decompression)이라 호칭될 수 있으며 어트리뷰트 디코딩은 어트리뷰트 디컴프레션(attribute decompression)이라 호칭될 수 있다. 상술한 바와 같이 하나의 포인트는 하나의 지오메트리와 하나 또는 그 이상의 어트리뷰트들을 가질 수 있으며 각각 인코딩된다. 따라서 수신 장치는 각 어트리뷰트에 대하여 어트리뷰트 디코딩을 수행한다. 도면은 수신 장치가 하나 또는 그 이상의 어트리뷰트 디컴프레션들(attribute #1 decompression, …ute #N decompression)을 수행한 예시를 나타낸다. 또한 실시예들에 따른 수신 장치는 추가 디컴프레션(auxiliary decompression)을 수행할 수 있다. 추가 디컴프레션은 메타데이터(metadata)에 대해 수행된다. 메타 데이터에 대한 설명은 도 1 내지 도 14에서 설명한 바와 동일하므로 생략한다. 또한 수신 장치는 메쉬 데이터 디컴프레션(Mesh data decompression)을 수행할 수 있다. 실시예들에 따른 메쉬 데이터 디컴프레션은 도 1 내지 도 14에서 설명한 트라이숩 지오메트리 디코딩을 포함할 수 있다. 실시예들에 따른 수신 장치는 포인트 클라우드 디코딩에 따라 출력된 포인트 클라우드 데이터를 렌더링 할 수 있다.
도 1 내지 도 14에서 설명한 바와 같이 수신 장치는 별도의 센싱/트랙킹 엘레멘트등을 이용하여 오리엔테이션/뷰포트 메타 데이터를 확보하고, 이를 포함하는 피드백 정보를 전송 장치(예를 들면 도 15의 전송 장치)로 전송할 수 있다. 또한 수신 장치는 피드백 정보를 기반으로 수신 동작, 파일/세그먼트 디캡슐레이션 및 포인트 클라우드 디코딩 중 적어도 어느 하나 이상을 수행할 수 있다. 구체적인 설명은 도 1 내지 도 14에서 설명한 바와 동일하므로 생략한다.
도 17은 실시예들에 따른 포인트 클라우드 데이터 송수신 방법/장치와 연동 가능한 구조의 예시를 나타낸다.
도 17의 구조는 서버(1760), 로봇(1710), 자율 주행 차량(1720), XR 장치(1730), 스마트폰(1740), 가전(1750) 및/또는 HMD(1770) 중에서 적어도 하나 이상이 클라우드 네트워크(1710)와 연결된 구성을 나타낸다. 로봇(1710), 자율 주행 차량(1720), XR 장치(1730), 스마트폰(1740) 또는 가전(1750) 등은 장치라 호칭된다. 또한, XR 장치(1730)는 실시예들에 따른 포인트 클라우드 데이터 (PCC) 장치에 대응되거나 PCC장치와 연동될 수 있다.
클라우드 네트워크(1700)는 클라우드 컴퓨팅 인프라의 일부를 구성하거나 클라우드 컴퓨팅 인프라 안에 존재하는 네트워크를 의미할 수 있다. 여기서, 클라우드 네트워크(1700)는 3G 네트워크, 4G 또는 LTE(Long Term Evolution) 네트워크 또는 5G 네트워크 등을 이용하여 구성될 수 있다.
서버(1760)는 로봇(1710), 자율 주행 차량(1720), XR 장치(1730), 스마트폰(1740), 가전(1750) 및/또는 HMD(1770) 중에서 적어도 하나 이상과 클라우드 네트워크(1700)을 통하여 연결되고, 연결된 장치들(1710 내지 1770)의 프로세싱을 적어도 일부를 도울 수 있다.
HMD (Head-Mount Display)(1770)는 실시예들에 따른 XR 디바이스 및/또는 PCC 디바이스가 구현될 수 있는 타입 중 하나를 나타낸다. 실시예들에 따른HMD 타입의 디바이스는, 커뮤니케이션 유닛, 컨트롤 유닛, 메모리 유닛, I/O 유닛, 센서 유닛, 그리고 파워 공급 유닛 등을 포함한다.
이하에서는, 상술한 기술이 적용되는 장치(1710 내지 1750)의 다양한 실시 예들을 설명한다. 여기서, 도 17에 도시된 장치(1710 내지 1750)는 상술한 실시예들에 따른 포인트 클라우드 데이터 송수신 장치와 연동/결합될 수 있다.
<PCC+XR>
XR/PCC 장치(1730)는 PCC 및/또는 XR(AR+VR) 기술이 적용되어, HMD(Head-Mount Display), 차량에 구비된 HUD(Head-Up Display), 텔레비전, 휴대폰, 스마트 폰, 컴퓨터, 웨어러블 디바이스, 가전 기기, 디지털 사이니지, 차량, 고정형 로봇이나 이동형 로봇 등으로 구현될 수도 있다.
XR/PCC 장치(1730)는 다양한 센서들을 통해 또는 외부 장치로부터 획득한 3차원 포인트 클라우드 데이터 또는 이미지 데이터를 분석하여 3차원 포인트들에 대한 위치 데이터 및 어트리뷰트 데이터를 생성함으로써 주변 공간 또는 현실 객체에 대한 정보를 획득하고, 출력할 XR 객체를 렌더링하여 출력할 수 있다. 예컨대, XR/PCC 장치(1730)는 인식된 물체에 대한 추가 정보를 포함하는 XR 객체를 해당 인식된 물체에 대응시켜 출력할 수 있다.
<PCC+자율주행+XR>
자율 주행 차량(1720)은 PCC 기술 및 XR 기술이 적용되어, 이동형 로봇, 차량, 무인 비행체 등으로 구현될 수 있다.
XR/PCC 기술이 적용된 자율 주행 차량(1720)은 XR 영상을 제공하는 수단을 구비한 자율 주행 차량이나, XR 영상 내에서의 제어/상호작용의 대상이 되는 자율 주행 차량 등을 의미할 수 있다. 특히, XR 영상 내에서의 제어/상호작용의 대상이 되는 자율 주행 차량(1720)은 XR 장치(1730)와 구분되며 서로 연동될 수 있다.
XR/PCC영상을 제공하는 수단을 구비한 자율 주행 차량(1720)은 카메라를 포함하는 센서들로부터 센서 정보를 획득하고, 획득한 센서 정보에 기초하여 생성된 XR/PCC 영상을 출력할 수 있다. 예컨대, 자율 주행 차량(1720)은 HUD를 구비하여 XR/PCC 영상을 출력함으로써, 탑승자에게 현실 객체 또는 화면 속의 객체에 대응되는 XR/PCC 객체를 제공할 수 있다.
이때, XR/PCC 객체가 HUD에 출력되는 경우에는 XR/PCC 객체의 적어도 일부가 탑승자의 시선이 향하는 실제 객체에 오버랩되도록 출력될 수 있다. 반면, XR/PCC 객체가 자율 주행 차량의 내부에 구비되는 디스플레이에 출력되는 경우에는 XR/PCC 객체의 적어도 일부가 화면 속의 객체에 오버랩되도록 출력될 수 있다. 예컨대, 자율 주행 차량(1220)은 차로, 타 차량, 신호등, 교통 표지판, 이륜차, 보행자, 건물 등과 같은 객체와 대응되는 XR/PCC 객체들을 출력할 수 있다.
실시예들에 의한 VR (Virtual Reality) 기술, AR (Augmented Reality) 기술, MR (Mixed Reality) 기술 및/또는 PCC(Point Cloud Compression)기술은, 다양한 디바이스에 적용 가능하다.
즉, VR 기술은, 현실 세계의 객체나 배경 등을 CG 영상으로만 제공하는 디스플레이 기술이다. 반면, AR 기술은, 실제 사물 영상 위에 가상으로 만들어진 CG 영상을 함께 보여 주는 기술을 의미한다. 나아가, MR 기술은, 현실세계에 가상 객체들을 섞고 결합시켜서 보여준다는 점에서 전술한 AR 기술과 유사하다. 그러나, AR 기술에서는 현실 객체와 CG 영상으로 만들어진 가상 객체의 구별이 뚜렷하고, 현실 객체를 보완하는 형태로 가상 객체를 사용하는 반면, MR 기술에서는 가상 객체가 현실 객체와 동등한 성격으로 간주된다는 점에서 AR 기술과는 구별이 된다. 보다 구체적으로 예를 들면, 전술한 MR 기술이 적용된 것이 홀로그램 서비스 이다.
다만, 최근에는 VR, AR, MR 기술을 명확히 구별하기 보다는 XR (extended Reality) 기술로 부르기도 한다. 따라서, 본 발명의 실시예들은 VR, AR, MR, XR 기술 모두에 적용 가능하다. 이러한 기술은 PCC, V-PCC, G-PCC 기술 기반 인코딩/디코딩이 적용될 수 있다.
실시예들에 따른 PCC방법/장치는 자율 주행 서비스를 제공하는 차량에 적용될 수 있다.
자율 주행 서비스를 제공하는 차량은 PCC 디바이스와 유/무선 통신이 가능하도록 연결된다.
실시예들에 따른 포인트 클라우드 데이터 (PCC) 송수신 장치는 차량과 유/무선 통신이 가능하도록 연결된 경우, 자율 주행 서비스와 함께 제공할 수 있는 AR/VR/PCC 서비스 관련 콘텐트 데이터를 수신/처리하여 차량에 전송할 수 있다. 또한 포인트 클라우드 데이터 송수신 장치 차량에 탑재된 경우, 포인트 클라우드 송수신 장치는 사용자 인터페이스 장치를 통해 입력된 사용자 입력 신호에 따라 AR/VR/PCC 서비스 관련 콘텐트 데이터를 수신/처리하여 사용자에게 제공할 수 있다. 실시예들에 따른 차량 또는 사용자 인터페이스 장치는 사용자 입력 신호를 수신할 수 있다. 실시예들에 따른 사용자 입력 신호는 자율 주행 서비스를 지시하는 신호를 포함할 수 있다.
도 18은 실시예들에 따른 포인트 클라우드 데이터 인코더를 나타낸다.
실시예들에 따른 포인트 클라우드 인코더(18000)는 포인트 클라우드 데이터(PCC 데이터, 18000a)를 수신하여 이들을 인코딩한다. 실시예들에 따른 포인트 클라우드 인코더는 기하정보 비트스트림(18000b) 및 속성 정보 비트스트림(18000c)을 출력한다. 실시예들에 따른 포인트 클라우드 인코더(18000)는 공간 분할부(18001), 기하정보 부호화부(18002) 및/또는 속성정보 부호화부(18003)를 포함할 수 있다.
공간 분할부(18001)는 포인트 클라우드 인코더는 포인트 클라우드 데이터(PCC 데이터, 18000a)를 수신하고, 포인트 클라우드 데이터를 하나 또는 그 이상의 3차원 공간으로 분할할 수 있다. 공간분할부(18001)는 포인트 클라우드 데이터를 수신하고, 포인트 클라우드 데이터를 3차원 블록으로 공간분할할 수 있다. 포인트 클라우드 데이터는 포인트(또는 포인트들)의 기하 정보 및/또는 속성 정보를 포함할 수 있다. 공간분할부(18001)는 바운딩 박스(bounding box) 및/또는 서브 바운딩 박스 등에 기반하여 포인트 클라우드 데이터(PCC 데이터)를 공간 분할할 수 있다. 실시예들에 따른 방법/장치는 분할된 단위(박스)에 기반하여 인코딩/디코딩을 수행할 수 있다.
공간 분할부(18001)는 도 1의 클라우드 에퀴지션(Point Cloud Acquisition, 10001), 도 2의 획득(20000) 동작, 도 3 내지 도 5에 따른 동작, 도 12의 데이터 입력부(12000) 동작의 일부/전부를 수행할 수 있다.
기하정보 부호화부(18002)는 실시예들에 따른 포인트 클라우드 데이터(PCC 데이터)의 지오메트리 정보를 수신하여 이들을 부호화한다. 지오메트리 정보는 포인트 클라우드 데이터에 포함된 포인트들의 위치 정보를 의미할 수 있다. 기하정보 부호화부(18002)는 지오메트리 정보를 부호화하여 기하정보 비트스트림을 출력한다. 기하정보 부호화부(18002)는 포인트들의 위치 정보를 재구성하여 복원된 기하정보(18002a)를 출력할 수 있다. 기하정보 부호화부(18002)는 복원된 기하정보를 속성정보 부호화부(18002)로 전달할 수 있다.
기하정보 부호화부(18002)는 도 1의 포인트 클라우드 비디오 인코더(Point Cloud Video Encoder, 10002), 도 2의 인코딩(20001), 도 4의 좌표계 변환부(40000), 양자화(40001), 옥트리 분석부(40002), 서페이스 어프록시메이션 분석부(40003), 아리스메틱 인코더(40004), 지오메트리 리컨스럭션부(40005), 도 12의 양자화 처리부(12001), 복셀화 처리부(12002), 옥트리 오큐펀시 코드 생성부(12003), 표면 모델 처리부(12004), 인트라/인터 코딩 처리부(12005) 및/또는 아리스메틱 코더(12006)의 동작의 일부/전부를 수행할 수 있다.
속성정보 부호화부(18003)는 실시예들에 따른 포인트 클라우드 데이터의 속성 정보를 수신하고, 기하정보 부호화부(18003)로부터 수신한 복원된 기하정보를 이용하여 속성 정보를 부호화할 수 있다. 속성정보 부호화부(18003)는 속성 정보를 부호화하여 속성 정보 비트스트림(18000c)을 출력한다. 속성정보 부호화부(18003)는 예를 들어, 실시예들에 따른 예측 변환(prediction transform), 리프팅 변환(lifting transform) 및/또는 RAHT(Region Adaptive Hierarchical Transform) 변환을 수행할 수 있다. 속성정보 부호화부(18003)는 예를 들어, 프리딕션 리프팅(prediction lifting, 또는 예측 리프팅) 변환을 수행할 수 있다. 프리딕션 리프팅 변환은 실시예들에 따른 예측 변환 및/또는 리프팅 변환의 각 세부 동작들의 일부 또는 전부를 조합한 것을 의미할 수 있다.
실시예들에 따른 포인트 클라우드 인코더는 실시예들에 따른 예측 변환(prediction transform), 리프팅 변환(lifting transform) 및/또는 RAHT(Region Adaptive Hierarchical Transform) 변환의 일부, 전부 및/또는 각각의 조합으로 인코딩을 수행할 수 있다.
속성정보 부호화부(18003)는 도 1의 포인트 클라우드 비디오 인코더(10002), 도 2의 인코딩(20001), 도 4의 컬러 변환부(40006), 속성 변환부(40007), RATH 변환부(40008), LOD생성부(40009), Lifting 변환부(40010), 계수 양자화부(40011) 및/또는 아리스메틱 인코딩부(40012)의 동작, 도 12의 색상 변환 처리부(12008), 속성 변환 처리부(12009), 예측/리프팅/RAHT 변환 처리부(12010), 아리스매틱 코더(12011)의 동작 전부/일부를 수행할 수 있다.
여기서, 복원된 기하정보(18002c)는 도 4에서 설명한 지오메트리 리컨스럭션부(Reconstruct Geometry, 40005)에 의해 재구성된 옥트리 및/또는 근사화된 옥트리를 의미할 수 있다. 복원된 기하정보는 도 6에서 설명한 오큐펀시 코드를 의미할 수 있고, 또는 옥트리 구조를 의미할 수도 있다. 복원된 기하정보는 도 12에서 설명한 옥트리 오큐펀시 코드 생성부(12003)에 의해 성성된 옥트리 오큐펀시 코드를 의미할 수도 있다.
속성정보 부호화부(18003)는, 실시예들에 따른 포인트 클라우드 데이터의 속성 정보를 인코딩할 수 있다. 여기서, 실시예들에 따른 부호화부(18003)는 실시예들에 따른 복원된 기하정보(또는 복원된 지오메트리 정보)를 이용하여 속성 정보를 부호화할 수 있다. 속성정보 부호화부(18003)은 수신된 데이터를 인코딩하여 어트리뷰트 정보(또는 속성 정보)를 포함하는 비트스트림을 생성할 수 있다.
실시예들에 따른 속성정보 부호화부(18003)는 도 4의 색상 변환부(40006), 속성 전송부(40007), RAHT 변환부(40008), LOD 생성부(40009), 리프팅부(40010), 양자화부(40011) 및/또는 아리스메틱 인코딩부(400012)를 포함할 수 있다.
포인트 클라우드 데이터는 각 포인트의 위치를 나타내는 지오메트리(geometry) 정보, 각 포인트의 속성(어트리뷰트)를 나타내는 어트리뷰트(attribute) 정보를 포함한다. 포인트 클라우드 데이터는 3차원 공간 상에 불균일하게 분포하는 분포할 수 있으므로, 이를 효율적으로 압축하기 위해 실시예들에 따른 옥트리(octree) 구조를 이용하여 압축을 수행한다. 즉, 실시예들에 따른 인코더는 옥트리(octree)를 생성하고, 생성된 옥트리를 기반으로 어트리뷰트 정보를 인코딩한다. 실시예들에 따른 어트리뷰트 정보를 인코딩하는 방법은 RAHT(region adaptive hierarchical transform), LoD(Level of Detail)를 기반으로 수행될 수 있다.
실시예들에 따른 RAHT 기반의 어트리뷰트 인코딩은 도 9에서 설명한 변환 행렬을 사용한다. 변환 행렬에 사용되는 계수는 옥트리 구조의 레벨에 따라 계산되므로 옥트리 구조에 의존적이다. 따라서 RAHT 기반의 어트리뷰트 인코딩은 옥트리 구조를 인코딩 한 뒤(즉, 지오메트리 인코딩 수행 한 뒤)에 수행될 수 있으므로 고속 처리를 요구하는 시스템에서 불필요한 지연(delay)이 발생될 수 있다.
또한, 실시예들에 따른 LoD기반의 어트리뷰트 인코딩은, 특정 포인트에서 이웃 포인트들을 탐색하기 위한 nearest neighbor search 과정을 수행한다. nearest neighbor search 과정은 정확한 이웃 포인트들을 탐색할 수 있지만, 탐색 과정에 소요되는 시간이 상대적으로 길기 때문에, 고속 처리를 요구하는 시스템에서 불필요한 지연(delay)이 발생될 수 있다.
따라서, 실시예들에 따른 인코더는 옥트리(octree)의 노드들에 포인트의 어트리뷰트 및/ 또는 포지션 정보를 매칭하여 컬러라이즈드 옥트리(colorized octree)를 생성하고, 컬러라이즈드 옥트리를 기반으로 어트리뷰트 인코딩을 수행한다. 실시예들에 따른 인코더는 컬러라이즈드 옥트리를 기반으로 적은 연산량으로 어트리뷰트 인코딩을 수행할 수 있다. 실시예들에 따른 전송 장치는 컬러라이즈드 옥트리와 관련된 시그널링 정보를 수신 장치로 전송할 수 있다. 수신 장치는 컬라라이즈드 옥트리와 관련된 시그널링 정보를 확보하고, 컬러라이즈드 옥트리를 생성할 수 있다. 실시예들에 따른 디코더는 컬러라이즈드 옥트리를 기반으로 지오메트리 디코딩과 동시에 어트리뷰트 디코딩을 수행할 수 있으므로, 포인트 클라우드 데이터를 제공하는 데에 있어서 불필요한 지연을 방지할 수 있다. 또한 실시예들에 따른 디코더는 컬러라이즈드 옥트리를 기반으로 인코딩된 어트리뷰트를 처리하므로 보다 적은 연산량으로 어트리뷰트 디코딩을 수행한다. 실시예들에 따른 수신 장치는 컬러라이즈드 옥트리를 기반으로 수신 장치의 성능(예를 들면 렌더러 성능, 출력 성능 등)에 따라 다양한 레벨의 해상도를 갖는 콘텐트를 렌더링 또는 출력할 수 있다. 실시예들에 따른 옥트리(octree)를 컬러라이제이션(colorizaion)하여 컬러라이즈드 옥트리(colorized octree)를 생성하고, 이를 전송하는 과정을 이하에서 설명하기로 한다.
도 19는 실시예들에 따른 옥트리와 컬러라이즈드 옥트리(colorized octree)를 나타낸다.
실시예들에 따른 포인트 클라우드 데이터 인코더는 실시예들에 따른 옥트리(octree)를 생성하고, 생성된 옥트리(octree)를 이용하여 컬러라이즈드 옥트리(colorized octree)를 생성할 수 있다. 도 19는 컬러라이즈드 옥트리를 생성하는 방법을 나타낸다.
컬러라이즈드 옥트리는, 옥트리 내에 포함된 하나 또는 그 이상의 노드(node)들에 어트리뷰트 정보가 포함된, 컬러라이즈드 옥트리 구조(colorized octree structure)를 의미한다. 즉, 컬러라이즈드 옥트리는 옥트리 구조를 이용함으로써 포인트들의 위치 정보를 나타냄과 동시에, 해당 위치에 매칭되는 어트리뷰트 정보를 동시에 포함하고 있는 구조를 의미할 수 있다.
도 19(A)는 실시예들에 따른 옥트리 구조(octree structure)를 나타낸다. 옥트리 구조는 포인트들의 위치 정보를 나타내는 데이터 구조를 의미한다. 옥트리 구조는 도 5 내지 도 6에서 설명한 옥트리(octree)를 의미한다.
옥트리 구조(octree structure)는 하나 또는 그 이상의 노드(node)들로 이루어진 k-진 트리로 구성된다. 옥트리 구조(octree structure)는 도 5 내지 도 6에서 설명한 바와 같이 3차원 공간 상의 포인트들의 점유 여부를 0과 1을 이용하여 나타낸다. 옥트리 구조는 하나의 루트 노드(root node, 19000a)를 포함한다. 루트 노드(root node, 19000a)는 8개의 자식 노드(child node, 19000b-1 내지 19000b-2)를 포함한다. 자식 노드는 3차원 공간 내에서 포인트들의 점유 여부로 0의 값을 가지거나 1의 값을 가진다. 8개의 자식 노드는 레벨이 1인 노드들로 호칭될 수 있다. 8개의 자식 노드 중 일부는 하위 자식 노드를 더 포함할 수 있다.
옥트리 구조(octree structure)는 최하위 레벨(level)의 노드, 즉 하나 또는 그 이상의 리프 노드(leaf node, 19000c-1 내지 19000c-2)를 포함한다. 리프 노드는 더 이상 분할이 되지 않는 3차원 공간(즉, 복셀)에 대응된다.
도 19(A)에 도시된 옥트리 구조는 도 18의 기하정보 부호화부(18002)에서 생성될 수 있고, 도 11의 지오메트리 재구성부(11003)에서 생성될 수 있다. 도 19(A)에서 도시된 옥트리 구조는 3차원 공간 상의 포인트들의 위치 정보만 포함한다. 옥트리 구조 내의 리프 노드들은 복셀(voxel) 단위 내의 공간 내 포인트가 존재하는지 여부만을 0과 1을 이용하여 나타낸다.
도 19(B)는 옥트리 구조의 리프 노드에 어트리뷰트 정보를 매칭한 것을 나타낸다. 옥트리 구조 내의 리프 노드들은 복셀(voxel) 단위 내의 공간 내 포인트가 존재하는지 여부만을 나타내기 때문에, 실시예들에 따른 인코더는 리프 노드에 대응하는 복셀 단위 내 공간에 대응하는 어트리뷰트 정보를 매칭할 수 있다.
예를 들어, 도 19(A)의 리프 노드(19000c-1)는 해당 복셀 내에 포인트가 없으므로 실시예들에 따른 인코더는 해당 리프 노드에 어트리뷰트 정보를 매칭할 필요가 없다(19001-1). 그러나 도 19(A)의 다른 리프 노드(19000c-2)는 해당 복셀 내에 하나 또는 그 이상의 포인트가 있다. 따라서, 실시예들에 따른 인코더는 해당 리프 노드에 하나 또는 그 이상의 포인트를 대변하는 어트리뷰트 정보를 매칭(19001a-2)할 수 있다. 리프 노드에 어트리뷰트 정보를 매칭한다고 함은, 해당 리프 노드의 값을 해당 어트리뷰트 정보에 대입하는 것으로 이해할 수 있다.
이하에서, 옥트리 구조(octree structure) 내의 하나 또는 그 이상의 노드들에 지오메트리 정보 및/또는 어트리뷰트 정보를 매칭하는 동작을 컬러라이즈(colorize)한다고 호칭할 수 있다. 즉, 옥트리 구조 내 특정 노드(리프 노드 포함)에 지오메트리 정보 및/또는 어트리뷰트 정보를 매칭하는 경우, 이를 특정 노드를 컬러라이즈(colorize)한다고 표현할 수 있다. 예를 들어, 옥트리 구조 내의 리프 노드에 지오메트리 정보 및/또는 어트리뷰트 정보를 매칭하는 경우, 이를 리프 노드를 컬러라이즈한다고 표현할 수 있다. 또한, 옥트리 노드의 루트 노드에 지오메트리 정보 및/또는 어트리뷰트 정보를 매칭할 경우, 이를 루트 노드를 컬러라이즈한다고 표현할 수 있다.
예를 들어, 해당 복셀 내에 하나의 포인트가 존재할 경우, 실시예들에 따른 인코더는 해당 포인트의 어트리뷰트 정보를 해당 복셀에 대응하는 리프 노드에 매칭할 수 있다. 예를 들어, 해당 복셀 내에 복수의 포인트가 존재할 경우, 실시예들에 따른 인코더는 복수의 포인트를 대변하는 어트리뷰트 정보(예를 들어, 평균 정보 등)를 리프 노드에 매칭할 수 있다.
도 19(C)는 리프 노드에 어트리뷰트 정보가 매칭된 옥트리(octree)를 이용하여 컬러라이즈드 옥트리(colorized octree)를 생성하는 과정을 나타낸다. 도 19(B)에서 인코더는, 리프 노드에 매칭된 어트리뷰트 정보들 중 일부 데이터가, 옥트리의 리프 노드가 아닌 노드들에 매칭한다. 예를 들어, 도 19(C)에서, 전체 포인트 클라우드 데이터에서 대변하는 어트리뷰트 정보가 C2라면, C2를 루트 노드(19002a)로 매칭할 수 있다.
실시예들에 따른 인코더는, 리프 노드가 아닌 노드들에 어트리뷰트 정보가 매칭되면, 매칭된 어트리뷰트 정보가 리프 노드 중 하나에 중복하여 포함될 수 있으므로, 중복된 정보를 가지는 리프 노드를 더 제거할 수 있다(19002b-1 및 19002b-2).
컬러라이즈드 옥트리를 생성하여 어트리뷰트 정보를 인코딩함으로써 실시예들에 따른 인코더는, 옥트리 구조를 모두 인코딩하지 않아도 어트리뷰트 인코딩을 수행할 수 있어 고속 처리를 요구하는 시스템에서 불필요한 지연(delay)이 발생되는 문제를 해결할 수 있다. 또한, 실시예들에 따른 인코더는, 옥트리 구조를 이용하여 컬러라이즈드 옥트리를 생성함으로써, 주변부 포인트를 탐색하기 위한 과정을 LoD를 이용한 어트리뷰트 코딩 방식보다 빠르게 수행할 수 있다. 따라서, 실시예들에 따른 송신단에서는 적은 연산량을 바탕으로 속성 정보를 압축할 수 있다.
또한, 실시예들에 따른 포인트 클라우드 데이터 수신 장치(또는 디코더)는 컬러라이즈드 옥트리(colorized octree)를 이용하여 디코딩함으로써, 반드시 어트리뷰트 정보를 모두 디코딩하지 않아도 어트리뷰트 정보를 디코딩할 수 있어 스케일러블(scalable)한 디코딩이 가능하다. 즉, 실시예들에 따른 컬러라이즈드 옥트리를 이용하여 하나의 압축된 bitstream을 기반으로 다양한 성능의 수신기를 지원할 수 있다. 예를 들어, 실시예들에 따른 전송 장치가 다양한 성능의 디코더를 대상으로 정보를 압축하는 경우, 각각의 디코더 성능에 맞는 독립된 압축 정보를 생성하거나 저장하는 대신 하나의 비트스트림을 통해 다양한 성능의 수신기를 지원할 수 있기 때문에 송신부 저장 공간 및 비트 효율을 높일 수 있다. 또한 전송 대역폭의 제한이 있는 경우 송신부에서 저해상도 포인트 클라우드 데이터 생성 후 전달할 수 있다.
이하에서, 컬러라이즈드 옥트리를 생성하기 위한 실시예들에 따른 인코더의 구조와 동작의 예를 구체적으로 설명하기로 한다.
도 20는 실시예들에 따른 포인트 클라우드 데이터 인코더를 나타낸다.
실시예들에 따른 포인트 클라우드 데이터 인코더(20000)는 포인트 클라우드 데이터(point cloud data)를 수신하여 인코딩한 후, 지오메트리 비트스트림(geometry bitstream) 및 어트리뷰트 비트스트림(attribute bitstream)을 출력한다. 실시예들에 따른 포인트 클라우드 데이터 인코더(20000)는 옥트리 생성부(Octree generation, 20001), 지오메트리 예측부(Geometry prediction 20002), 지오메트리 엔트로피 코딩부(Entropy coding, 20003), 옥트리 매칭부(Octree matching, 20004), 컬러라이즈드 옥트리 생성부(Colorized octree generation, 20004), 어트리뷰트 예측부(Attribute prediction, 20005), 변형 및 양자화부(Transform & Quantization, 20006) 및 어트리뷰트 엔트로피 코딩부(Entropy coding, 20007)를 포함한다.
실시예들에 따른 포인트 클라우드 데이터는 도 18의 PCC 데이터(18000a) 또는 공간 분할부(18001)에 의해 분할된 데이터를 의미할 수 있다. 포인트 클라우드 데이터는 지오메트리 데이터(geometry data) 및 어트리뷰트 데이터(attribute data)를 포함한다. 지오메트리 데이터는 포인트 클라우드 데이터의 위치 정보를 나타내는 정보이다. 어트리뷰트 데이터는 포인트 클라우드 데이터의 속성 정보를 나타내는 정보이다.
지오메트리 비트스트림(geometry bitstream)은 도 18의 기하정보 비트스트림(18000b)에 대응된다. 어트리뷰트 비트스트림(attribute bitstream)은 도 18의 속성정보 비트스트림(18000c)에 대응된다.
옥트리 생성부(20001)는 실시예들에 따른 지오메트리 데이터를 수신한다. 옥트리 생성부(20001)는 지오메트리 데이터를 이용하여, 포인터들의 위치 정보를 옥트리(octree) 구조를 생성한다. 옥트리 구조는 도 5 내지 도 6에서 설명한 옥트리 구조를 의미한다. 옥트리 생성부(20001)는 생성된 옥트리 구조를 지오메트리 예측부(19002) 및/또는 옥트리 매칭부(20004)로 전달한다. 옥트리 생성부(20001)는 도 18의 기하정보 부호화부(18002)에 포함될 수 있고, 도 11의 지오메트리 재구성부(11003)를 의미할 수 있다.
실시예들에 따른 지오메트리 예측부(20002)는 실시예들에 따른 옥트리를 이용하여 지오메트리 정보를 예측한다.
실시예들에 따르면, 송신 장치는 주변부 노드를 검출하는 방법으로, 특정 포인트로부터 일정 범위 내의 자식 노드 간의 위치 인접성에 기반하여 예측을 수행할 수 있다. 예를 들어 송신 장치 또는 수신 장치는 옥트리 구조에서 동일 부모 노드를 갖는 하위 노드들끼리 인접해있다고 가정할 수 있으며, 송신 장치 또는 수신 장치는 인접한 자식 노드들 간 예측값이 유사하다고 가정할 수 있다. 따라서, 수신 장치는 각 자식 노드에 대한 예측 어트리뷰트 값을 도출하는 것이 아니라 동일 부모 노드를 갖는 형제 노드(Sibling node)가 같은 예측 어트리뷰트 값을 갖도록 정의하여, 부모 노드의 어트리뷰트 데이터를 예측한다. 이러한 구성으로 인해 송신 및 수신 장치는 각 자식 노드를 인코딩할 때 필요한 계수의 수를 줄임으로써 코딩 효율을 증가시킬 수 있다. 또한 각 부모 노드에 대한 대표적인 값으로 작용함으로써 옥트리 구조에 매칭되는 속성을 예측할 수 있다.
Figure PCTKR2020008571-appb-img-000018
실시예들에 따르면, 송신 장치는 예측 정보를 기반으로 각 자식 노드의 속성 예측 에러(predition error)를 다음과 같이 구할 수 있다. 어트리뷰트 예측 에러는, 원본의 어트리뷰트 데이터와 예측된 어트리뷰트 데이터의 차이를 의미한다. 어트리뷰트 예측 에러(prediction error)은 목적에 따라 다른 방법 (e.g., weighted difference, weighted averaged difference, etc)를 사용할 수 있다.
Figure PCTKR2020008571-appb-img-000019
실시예들에 따른 지오메트리 엔트리피 코딩부(20003)는 실시예들에 따른 예측된 지오메트리 정보를 엔트로피 코딩(Entropy coding)하여 지오메트리 비트스트림을 출력한다.
실시예들에 따른 컬러라이즈드 옥트리 생성부(20004)는 옥트리 생성부(20001)에서 생성한 옥트리 구조와 어트리뷰트 데이터를 수신하여 실시예들에 따른 컬러라이즈드 옥트리(colorized octree)를 생성한다. 컬러라이즈드 옥트리를 생성부(20004)는 도 21에서 설명한 동작에 따라 컬러라이즈드 옥트리를 생성할 수 있다. 옥트리 생성부(20001)에서 생성한 옥트리 구조는 도 19(A)에 도시된 옥트리 구조(octree structure)를 의미할 수 있다.
컬러라이즈드 옥트리 생성부(20004)는 예를 들어, 옥트리 매칭부(20004a) 및/또는 인터-노드 중복 데이터 제거부(Inter-node duplication removal, 24000b)를 포함할 수 있다.
옥트리 매칭부(20004a)는 옥트리 구조와 어트리뷰트 데이터를 수신하여, 어트리뷰트 데이터를 옥트리 구조의 리프 노드에 매칭할 수 있다. 옥트리 매칭부(20004a)는 리프 노드에 매칭된 옥트리를 이용하여, 어트리뷰트 데이터를 리프 노드가 아닌 노드들에 어트리뷰트 데이터를 매칭할 수 있다. 예를 들어, 옥트리 매칭부(20004)는 도 19(B)에서 도시된 바와 같이, 리프 노드에 어트리뷰트 정보가 매칭된 옥트리 구조를 생성할 수 있고, 도 19(C)에서 도시된 바와 같이, 리프 노드에 어트리뷰트 정보가 매칭된 옥트리 구조를 이용하여 리프 노드가 아닌 노드들에 어트리뷰트 정보를 매칭할 수 있다. 즉, 옥트리 매칭부(20004)는 옥트리 구조의 노드들에 어트리뷰트 데이터가 매칭된, 컬러리이즈드 옥트리(colorized octree)를 생성한다.
인터-노드 중복 데이터 제거부(20004b)는 실시예들에 따른 컬러리이즈드 옥트리를 수신하여, 컬러리이즈드 옥트리 내에 포함된 중복 데이터를 제거한다. 예를 들어, 인터-노드 중복 데이터 제거부(20004b)는, 도 19(C)에서 도시된 바와 같이, 리프 노드와 리프 노드가 아닌 노드들에 중복하여 포함된 데이터가 있는 경우, 해당 중복하여 포함된 데이터를 제거할 수 있다(19002b-1). 인터-노드 중복 데이터 제거부(20004b)는 중복된 데이터가 제거된 컬러라이즈드 옥트리(colorized octree)를 생성하여 출력한다.
어트리뷰트 예측부(20005)는 실시예들에 따른 컬러라이즈드 옥트리(colorized octree)를 수신하여, 필요한 어트리뷰트 정보를 예측한다. 어트리뷰트 예측부(20005)는 잔차(residual) 또는 예측된(predicted) 어트리뷰트 정보를 뎁스 레벨(depth level)별로 생성한다.
변형 & 양자화부(20006)는 어트리뷰트 예측부(20005)에서 생성한 예측된 어트리뷰트 데이터 또는 잔차 어트리뷰트 데이터를 수신하여 이들을 변환(transform)하고 양자화(quantize)한다.
어트리뷰트 엔트로피 코딩부(20007)는, 실시예들에 따른 변환&양자화된 어트리뷰트 정보를 엔트로피 코딩(entropy coding)하여 어트리뷰트 비트스트림을 출력한다.
컬러라이즈드 옥트리를 생성하여 어트리뷰트 정보를 전송함으로써 실시예들에 따른 인코더는, 옥트리 구조를 모두 인코딩하지 않아도 어트리뷰트 인코딩을 수행할 수 있어 고속 처리를 요구하는 시스템에서 불필요한 지연(delay)이 발생되는 문제를 해결할 수 있으며, 적은 연산량을 바탕으로 속성 정보를 압축할 수 있다.
컬러라이즈드 옥트리는, 옥트리 구조를 이용함으로써 포인트들의 위치 정보를 나타냄과 동시에, 해당 위치에 매칭되는 어트리뷰트 정보를 동시에 포함하고 있는 구조이다. 또한, 컬러라이즈드 옥트리는 어트리뷰트 정보가 리프 노드에만 한정되어 분포하지 않고, 노드들에 분산되어 분포한다. 따라서, 실시예들에 따른 디코더는 컬러라이즈드 옥트리를 루트 노드로부터 리프 노드까지 순차적으로 지오메트리 정보와 어트리뷰트 정보를 순회하면서 디코더의 성능에 적응적으로 디코딩을 수행할 수 있다. 즉, 실시예들에 따른 포인트 클라우드 데이터 수신 장치(또는 디코더)는 컬러라이즈드 옥트리(colorized octree)를 수신함으로써, 반드시 어트리뷰트 정보를 모두 디코딩하지 않아도 어트리뷰트 정보를 디코딩할 수 있어 스케일러블(scalable)한 디코딩이 가능하다. 또한 컬러라이즈드 옥트리는, 디코더 성능에 맞게 어트리뷰트 정보들이 노드들에 매칭되어 있으므로 다양한 성능의 수신기를 지원할 수 있다.
실시예들에 따른 컬러라이즈드 옥트리 생성부(20004)의 동작은 이하에서 구체적으로 설명하도록 한다.
도 21은 실시예들에 따른 포인트 클라우드 데이터 송신 장치가 컬러라이즈드 옥트리를 생성하는 과정을 나타낸다.
도 21에 도시된 컬러라이즈드 옥트리를 생성하는 과정은 도 20의 컬러라이즈드 옥트리 생성부(20004)에서 수행될 수 있다.
이하에서, 옥트리 구조(octree structure) 내의 하나 또는 그 이상의 노드들에 어트리뷰트 정보를 매칭하는 동작을 컬러라이즈(colorize)한다고 호칭할 수 있다. 즉, 옥트리 구조 내 특정 노드(리프 노드 포함)에 어트리뷰트 정보를 매칭하는 경우, 이를 특정 노드를 컬러라이즈(colorize)한다고 표현할 수 있다. 예를 들어, 옥트리 구조 내의 리프 노드에 어트리뷰트 정보를 매칭하는 경우, 이를 리프 노드를 컬러라이즈한다고 표현할 수 있다. 또한, 옥트리 노드의 루트 노드에 어트리뷰트 정보를 매칭할 경우, 이를 루트 노드를 컬러라이즈한다고 표현할 수 있다.
컬러라이즈드 옥트리를 생성하는 과정은, 리프 노드 컬러라이제이션 단계(Leaf node colorization, 21000), 네이버 검출(Neighbor detection, 21001) 단계, 포인트 데이터 선택 단계(Point data selection, 21002), 옥트리 노드 컬러라이제이션 단계(Octree node colorization, 21003), 인터-노드 중복 데이터 제거 단계(Inter-node attribute duplication removal, 21004)를 포함한다.
컬러라이즈드 옥트리는 루트 노드(root node)에 어트리뷰트 데이터를 먼저 매칭한 다음, 루트 노드컬러라이즈드 옥트리를 생성하는 과정은, 리프 노드 컬러라이제이션 단계(Leaf node colorization, 21000), 네이버 검출(Neighbor detection, 21001) 단계, 포인트 데이터 선택 단계(Point data selection, 21002), 옥트리 노드 컬이터 선택 단계(21002), 옥트리 노드 컬러라이제이션 단계(21003) 및/또는 인터-노드 중복 데이터 제거 단계(21004)를 수행할 수 있다. 컬러라이즈드 옥트리를 생성하는 과정은 리프 노드가 포함된 레벨을 제외한 모든 레벨에 대하여, 레벨 별로 수행될 수 있다(21005, 21006).
리프 노드 컬러라이제이션 단계(Leaf node colorization, 21000)는, 포인트 클라우드 데이터의 어트리뷰트 데이터(attribute data)와 옥트리 구조(octree structure)를 수신하고, 옥트리 구조의 리프 노드들에 해당 어트리뷰트 데이터를 매칭한다.
네이버 검출(Neighbor detection, 21001) 단계는 포인트 클라우드 데이터의 특정 포인트의 네이버(neighbor)에 대응하는 포인트들을 검출한다. 특정 포인트의 네이버(neighbor)는 특정 포인트에서 인접한 이웃 포인트들의 집합을 의미할 수 있다. 네이버(neighbor)는 실시예들에 따른 옥트리(octree) 구조를 기반으로 정의할 수 있다. 옥트리(octree) 구조에 기반한 네이버는, 특정 포인트에 해당하는 리프 노드의 부모 노드(parent node)의 하위 노드들에 대응하는 포인트들의 집합을 의미할 수 있다. 부모 노드(parent node)는 해당하는 리프 노드로부터 일정 레벨의 상위 노드를 의미할 수 있으며, 일정 레벨은 임의로 결정될 수 있다. 네이버를 검출하는 단계의 구체적인 과정은 도 23에서 설명하기로 한다.
구체적으로 예를 들면, 인코더가 루트 노드(root node)에 어트리뷰트 데이터를 매칭하기 위해서는 루트 노드보다 하위 노드에 존재하는 리프 노드들에 대응하는 포인트들을 검출해야 한다. 따라서, 인코더는, 루트 노드(root node)에 어트리뷰트 데이터를 매칭하기 위해서는, 부모 노드(parent node)를 루트 노드(root node)로 하고, 부모 노드(루트 노드)보다 하위 레벨에 포함된 리프 노드들에 대응하는 포인트들을 검출할 수 있다.
예를 들어, 레벨 4의 특정 위치이 포함된 제 1 노드(리프 노드가 아닌 노드)에 어트리뷰트 정보를 매칭할 필요가 있다. 실시예들에 따르면, 레벨 4에 해당하는 3차원 공간 내의 포인트의 네이버(neighbor)를 검출해야 한다. 부모 노드(parent node)를 위 제 1 노드로 하고, 부모 노드(제 1 노드)보다 하위 레벨에 포함된 리프 노드들에 대응하는 포인트들을 검출할 수 있다. 이러한 방식으로 네이버(neighbor) 포인트들을 검출함으로써, 실시예들에 따른 인코더는, 포인트 클라우드 데이터의 어트리뷰트 정보의 분포를 고려한 컬러라이즈드 옥트리를 구현할 수 있다.
포인트 데이터 선택 단계(Point data selection, 21002)는 네이버 검출 단계에서 검출된 네이버에 대응하는 포인트들 중 특정 포인트(또는 특정 포인트의 어트리뷰트 정보)를 선택한다. 특정 포인트는 네이버 검출 단계(21001)에서 검출된 네이버에 대응하는 포인트들을 대표할 수 있는 포인트를 의미한다. 실시예들에 따른 인코더는 다양한 방법을 통하여 특정 포인트를 선택할 수 있다. 실시예들에 따른 인코더는 하나의 3D 공간 내에서도 여러 가지 방법으로 특정 포인트를 선택할 수 있다. 실시예들에 따른 인코더는 선택된 특정 포인트를 옥트리 구조 내의 리프 노드가 아닌 노드들(즉, 부모 노드)에 매칭할 수 있다.
예를 들어, 특정 포인트는 해당 부모 노드에 대응하는 위치에 가까운 포인트를 의미할 수 있다. 즉, 실시예들에 따른 인코더는 해당 부모 노드에 대응하는 위치로부터 가까운 포인트에 대응하는 리프 노드를 선택할 수 있다.
예를 들어, 특정 포인트는 네이버들 대응하는 포인트들의 평균 위치와 가까운 포인트를 의미할 수 있다. 즉, 실시예들에 따른 인코더는 검출된 네이버들의 평균 위치와 가까운 포인트에 대응하는 리프 노드를 선택할 수 있다.
실시예들에 따른 인코더는 선택된 특정 포인트를 옥트리 구조 내의 리프 노드가 아닌 노드들(즉, 부모 노드)에 매칭할 수 있다. 또한, 실시예들에 따른 인코더는 선택된 특정 포인트의 어트리뷰트 정보와, 네이버들에 대응하는 포인트들의 평균 어트리뷰트의 잔차(residual) 정보(e.g. point - Attr(x_n, y_n, z_n))를 부모 노드에 매칭할 수도 있다.
실시예들에 따른 인코더가 특정 포인트를 선택하는 과정은 도 24에서 상술하기로 한다.
옥트리 노드 컬러라이제이션 단계(Octree node colorization, 21003)는, 실시예들에 따른 선택된 특정 포인트를 부모 노드에 매칭한다. 선택된 특정 포인트를 부모 노드에 매칭하는 것을, 부모 노드를 컬러라이즈(colorize)한다고 호칭할 수 있다.
인터-노드 중복 데이터 제거 단계(Inter-node attribute duplication removal, 21004)는, 부모 노드에 매칭된 어트리뷰트와, 해당 어트리뷰트 정보가 존재하던 리프 노드에 중복된 데이터를 제거한다. 실시예들에 따라 검출된 네이버에 대응하는 포인트들의 어트리뷰트 정보에 기초하여 부모 노드를 매칭하면, 리프 노드와 부모 노드의 중복된 데이터가 발생할 수 있다. 실시예들에 따른 인코더는 이러한 중복 데이터를 더 제거할 수 있다.
실시예들에 따른 인터-노드 중복 데이터 제거 단계(21004)는, 각 노드들에 어트리뷰트 데이터를 매칭함과 동시에 수행될 수도 있고, 모든 노드들에 어트리뷰트 데이터가 매칭된 후에 수행될 수 있다.
실시예들에 따른 인코더는, 옥트리 구조(octree structure)에 대하여 리프 노드 컬러라이제이션 단계(21000)를 수행한 후, 네이버 검출(21001) 단계, 포인트 데이터 선택 단계(21002), 옥트리 노드 컬러라이제이션 단계(21003), 인터-노드 중복 데이터 제거 단계(21004)를 다음과 같이 수행할 수 있다.
1) 루트 노드(레벨 0에 해당하는 노드)에 대하여 상술한 21001 단계 내지 21004 단계를 수행하여, 루트 노드에 어트리뷰트 정보를 매칭한다.
2) 루트 노드의 자식 노드들(레벨 1에 해당하는 노드들) 중 오큐파이드 노드(즉, 1인 노드)에 대하여, 상술한 21001 단계 내지 21004 단계를 수행하여, 각 노드들에 어트리뷰트 정보를 매칭한다.
3) 오큐파이드 노드들의 하위 노드들에 대하여 상술한 21001 단계 내지 21004 단계를 재귀적(또는 반복적으로) 수행한다(21007). 만약, 오큐파이드 노드들의 하위 노드가 리프 노드인 경우에는 더 이상 상술한 21001 단계 내지 21004 단계를 수행하지 않는다(21006).
컬러라이즈드 옥트리를 생성하여 어트리뷰트 정보를 전송함으로써 실시예들에 따른 인코더는, 옥트리 구조를 모두 인코딩하지 않아도 어트리뷰트 인코딩을 수행할 수 있어 고속 처리를 요구하는 시스템에서 불필요한 지연(delay)이 발생되는 문제를 해결할 수 있으며, 적은 연산량을 바탕으로 속성 정보를 압축할 수 있다.
컬러라이즈드 옥트리는, 옥트리 구조를 이용함으로써 포인트들의 위치 정보를 나타냄과 동시에, 해당 위치에 매칭되는 어트리뷰트 정보를 동시에 포함하고 있는 구조이다. 또한, 컬러라이즈드 옥트리는 어트리뷰트 정보가 리프 노드에만 한정되어 분포하지 않고, 노드들에 분산되어 분포한다. 따라서, 실시예들에 따른 디코더는 컬러라이즈드 옥트리를 루트 노드로부터 리프 노드까지 순차적으로 지오메트리 정보와 어트리뷰트 정보를 순회하면서 디코더의 성능에 적응적으로 디코딩을 수행할 수 있다. 즉, 실시예들에 따른 포인트 클라우드 데이터 수신 장치(또는 디코더)는 컬러라이즈드 옥트리(colorized octree)를 수신함으로써, 반드시 어트리뷰트 정보를 모두 디코딩하지 않아도 어트리뷰트 정보를 디코딩할 수 있어 스케일러블(scalable)한 디코딩이 가능하다. 또한 컬러라이즈드 옥트리는, 디코더 성능에 맞게 어트리뷰트 정보들이 노드들에 매칭되어 있으므로 다양한 성능의 수신기를 지원할 수 있다.
도 22는 옥트리 구조의 리프 노드를 컬러라이즈(colorize)하는 동작을 나타낸다.
도 22는 도 21의 리프 노드 컬러라이제이션(leaf node colorization, 21000) 단계에서 수행되는 동작을 의미할 수 있으며, 도 20의 컬러라이즈드 옥트리 생성부(colorized octree generation, 20004) 또는 옥트리 매칭부(20004a)에서 수행될 수 있다.
도 22(A)는 실시예들에 따른 어트리뷰트 데이터(어트리뷰트 정보)의 예시를 나타낸다.
어트리뷰트 데이터는 예를 들어, 컬러 값을 포함할 수 있다. 도 22(A)에 나타난 어트리뷰트 데이터는 도 1 내지 도 17에서 설명한 어트리뷰트 정보(어트리뷰트 데이터)의 예시를 나타낸다.
c1 내지 c9는 각 포인트들의 어트리뷰트 정보를 나타낸다. Attr은 특정 위치를 가지는 포인트의 어트리뷰트 정보를 나타낸다. 즉, Attr(0, 2, 0)은 (0, 2, 0) 위치에 존재하는 포인트의 어트리뷰트 정보를 나타낸다. 따라서, c1=Attr(0, 2, 0)이라 함은, c1은 (0, 2, 0)에 위치하는 포인트의 어트리뷰트 정보를 의미한다.
도 22(A)는 3차원 공간에 분포하는 포인트들의 어트리뷰트 정보를 예시적으로 나타낸다. 3차원 공간에 9개의 포인트들이 존재하고, 각각의 어트리뷰트 정보는 도 22(A)에 나타난 바와 같다.
도 22(B)는 컬러라이즈(colorize)가 수행된 리프 노드를 포함하는 옥트리 구조(octree structure)를 나타낸다. 도 22(B)는 도 22(A)에 나타난 포인트들로 실시예들에 따른 옥트리 구조(structure)에 어트리뷰트 정보를 매칭하는 과정을 나타낸다. 예를 들어, c1에 대응하는 포인트는 (0, 2, 0)의 위치에 분포하므로, 도 22(B)에 나타난 옥트리의 22000B-1 리프 노드에 대응된다. 해당 22000B-1 리프 노드에 c1 어트리뷰트 정보를 매칭한다. 마찬가지로 c2 내지 c9도 대응되는 리프 노드에 매칭한다.
도 23은 실시예들에 따른 인코더가 실시예들에 따른 네이버(neighbor)를 검출하는 과정을 나타낸다.
도 23(A) 및 도 23(B)에 나타난 네이버를 검출하는 동작은 도 21의 네이버 검출하는 단계(21001)의 동작을 의미할 수 있다. 실시예들에 따른 인코더는, 옥트리 구조의 노드들에 어트리뷰트 정보를 매칭하기 위해 특정 포인트에 대한 네이버(neighbor) 포인트들을 검출할 수 있다. 실시예들에 따른 인코더는, 검출된 네이버 포인트들에 기초하여 어트리뷰트 정보를 선택한 후, 선택된 어트리뷰트 정보를 옥트리 구조의 노드들에 매칭할 수 있다.
실시예들에 따른 인코더는, 루트 노드부터 레벨을 증가시키면서(즉, 하위 노드로 내려가면서), 노드들에 어트리뷰트 정보를 매칭할 수 있다.
도 23(A)는, 실시예들에 따른 인코더가 루트 노드(root node)에 매칭할 어트리뷰트 정보를 도출하기 위하여, 루트 노드를 부모 노드로 하는 네이버(neighbor) 포인트들을 검출하는 과정을 나타낸다.
실시예들에 따른 인코더는, 부모 노드(루트 노드)에 대응하는 3차원 공간 내의 포인트들(23001) 중 하나(예를 들어, C1에 대응하는 포인트, 23000a)를 선택할 수 있다. 실시예들에 따른 인코더는, 선택된 포인트 이외에 동일한 부모 노드의 자식 노드로 갖는 리프 노드들을 탐색할 수 있다. 예를 들어, C1에 대응하는 포인트와 부모 노드(루트 노드)를 공유하는 하위 리프 노드들로, C2 내지 C9에 대응하는 노드들을 네이버 포인트들(23000b)로 탐색할 수 있다.
실시예들에 따른 인코더는, 선택된 네이버 포인트들(23000b)에 기초하여 어트리뷰트 정보를 선택한 후, 해당 부모 노드(루트 노드)에 매칭할 수 있다.
도 23(B)는, 실시예들에 따른 인코더가 루트 노드가 아닌 다른 노드에 매칭할 어트리뷰트 정보를 도출하기 위하여, 해당 노드를 부모 노드로 하는 네이버(neighbor) 포인트들을 검출하는 과정을 나타낸다.
실시예들에 따른 인코더는, 부모 노드에 대응하는 3차원 공간 내의 포인트들(23001) 중 하나(예를 들어, C1에 대응하는 포인트, 23001a)를 선택할 수 있다. 실시예들에 따른 인코더는, 선택된 포인트 이외에 동일한 부모 노드의 자식 노드로 갖는 리프 노드들을 탐색할 수 있다. 예를 들어, C1에 대응하는 포인트와 부모 노드를 공유하는 하위 리프 노드들로, C2 내지 C4에 대응하는 노드들을 네이버 포인트들(23000b)로 탐색할 수 있다.
실시예들에 따른 인코더는, 선택된 네이버 포인트들(23001b)에 기초하여 어트리뷰트 정보(23001a)를 선택한 후, 해당 부모 노드에 매칭할 수 있다.
도 24는 실시예들에 따른 인코더가 실시예들에 따른 네이버(neighbor)에 기초하여 부모 노드(parent node)에 어트리뷰트 정보를 매칭하기 위한 수식을 나타낸다.
도 24(A)는 실시예들에 따른 네이버 포인트들 중 부모 노드(parent node)에 어트리뷰트 정보를 매칭하기 위한 어트리뷰트 정보를 선택하는 방법의 예시를 나타낸 수식이다.
(x_n, y_n, z_n)은 실시예들에 따른 n개의 포인트들을 (x, y, z) 좌표로 나타낸 것이다. 예를 들어, 도 22에서 c1의 어트리뷰트를 갖는 포인트는 (0, 2, 0)으로, x_1=0, y_1=2 및 z_1=0으로 표현할 수 있다.
Attr(x_n, y_n, z_n)는 n개의 포인트들에 대한 어트리뷰트 정보를 나타낸 것이다. 즉, Attr (x_n, y_n, z_n)는 (x_n, y_n, z_n) 위치에 있는 포인트의 어트리뷰트 정보를 나타낸다. 다시 말해, Attr(point) 함수는 point의 어트리뷰트 정보를 반환하는 함수로 이해할 수 있다.
P_GeoCtr (x, y, z)는 실시예들에 따른 부모 노드(parent node)의 어트리뷰트 정보를 의미한다. 즉, 도 24(A)에서는 P_GeoCtr (x, y, z), 즉 부모 노드의 어트리뷰트 정보를 결정하는 과정이다.
NEIGHBOR 는 (x_n, y_n, z_n) 포인트의 네이버(neighbor)에 대응하는 포인트들의 집합을 의미할 수 있다.
f{Attr(x_n, y_n, z_n) | (x_n, y_n, z_n) ∈ NEIGHBOR}는, 특정 포인트의 네이버(neighbor)에 대응하는 포인트들을 인풋(input)으로 할 때, 해당 네이버 포인트들 중 하나인 (x_n, y_n, z_n) 포인트의 어트리뷰트 정보를 반환하는 함수를 의미한다. 즉, 네이버 포인트들에 대응하는 포인트들 중 하나의 포인트 (x_n, y_n, z_n) 포인트의 어트리뷰트 정보를 반환하는 함수이다.
f{Attr(x_n, y_n, z_n) | (x_n, y_n, z_n) ∈ NEIGHBOR}는, 24000a에 나타난 수식의 값이 최소가 되는 포인트 (x_n, y_n, z_n) 의 어트리뷰트 값을 의미한다.
s(x_n, y_n, z_n)은 실시예들에 따른 포인트들 중 부모 노드(parent node)로 선택되었는지 여부를 나타낸다. 예를 들어, 해당 노드에 대한 s(x_n, y_n, z_n)의 값이 0이면, 이 포인트는 부모 노드로 선택되어 매칭되었음을 나타낸다. 예를 들어, 해당 노드에 대한 s(x_n, y_n, z_n)의 값이 1이면, 이 포인트는 부모 노드로 선택된 적이 없음을 나타낸다.
실시예들에 따른 포인트 클라우드 데이터 인코더는, 특정 부모 노드에 어트리뷰트를 매칭하기 위하여 해당 부모 노드에 대한 네이버 포인트(neighbor point)들을 검출한 후, 네이버 포인트들의 s(x_n, y_n, z_n) 값들을 확인한다. 그 후, 실시예들에 따른 인코더는 s(x_n, y_n, z_n)의 값이 1인 포인트들 중 하나의 포인트의 어트리뷰트를 해당 부모 노드에 매칭한다. 이러한 구성으로 인해, 실시예들에 따른 인코더는 복수의 부모 노드(parent node)들에 대해 동일한 어트리뷰트 데이터를 매칭하지 않을 수 있다.
M은 실시예들에 따른 네이버 포인트(neighbor point)들의 개수를 의미할 수 있다.
[x^-, y^-, z^-]^T는 실시예들에 따른 네이버 포인트들의 평균 위치를 의미할 수 있다. 실시예들에 따른 네이버 포인트들의 평균 위치는 네이버 포인트들의 위치 정보에 기초하여 계산될 수 있다. 구체적으로, 실시예들에 따른 네이버 포인트들의 평균 위치는 네이버 포인트들의 각 위치의 합에, 네이버 포인트들의 수를 나눔으로써 계산될 수 있다. 예를 들어, 실시예들에 따른 네이버 포인트들의 평균 위치는 네이버 포인트들과 해당 네이버 포인트 각각에 적용될 웨이트 값(weight(x_n, y_n, z_n))을 곱한 갑의 합에, 네이버 포인트들의 수를 나눔으로써 계산될 수 있다(24000b).
네이버 포인트 각각에 적용될 웨이트 값(weight(x_n, y_n, z_n))은,
|| [x^-, y^-, z^-]^T - [x_n, y_n, z_n]^T ||는, 각 네이버 포인트와 네이버 포인트들의 평균 위치의 거리(예를 들어, 유클리디언 거리)를 의미할 수 있다.
네이버 포인트들 중 하나의 포인트를 선택할 때, 이미 부모 노드로 매칭된 포인트는 고려하지 않을 수 있다. 즉, 실시예들에 따른 포인트 클라우드 데이터 인코더는 || [x^-, y^-, z^-]^T - [x_n, y_n, z_n]^T ||^2에 s(x_n, y_n, z_n)를 곱함으로써, 이미 부모 노드로 매칭된 포인트는 고려하지 않을 수 있다.
정리하면, 실시예들에 따른 부모 노드(parent node)에 매칭할 어트리뷰트 값은, 24000a에 나타난 수식이 최소의 값을 갖는 포인트의 어트리뷰트 데이터를 의미할 수 있다. 즉, 실시예들에 따른 포인트 클라우드 데이터 인코더는 || [x^-, y^-, z^-]^T - [x_n, y_n, z_n]^T ||^2에 s(x_n, y_n, z_n)를 곱한 값들의 평균을 계산한 뒤, 이 값이 최솟값으로 결정되는 포인트 (x_n, y_n, z_n)을 선택한 후, 이 포인트의 어트리뷰트 정보 (Attr(x_n, y_n, z_n))을 부모 노드로 매칭할 수 있다.
도 24(B)는 실시예들에 따른 네이버 포인트들 중 부모 노드(parent node)에 어트리뷰트 정보를 매칭하기 위한 어트리뷰트 정보를 선택하는 다른 방법의 예시를 나타낸 수식이다.
실시예들에 따른 포인트 클라우드 데이터 인코더는, 네이버 포인트(neighbor point)들을 오름차순으로 정렬했을 때, 이들의 미디언(median) 값을 갖는 포인트를 선택할 수 있다. 또한, 실시예들에 따른 포인트 클라우드 데이터 인코더는, 각 네이버 포인트(neighbor point)와 이들 각각에 적용되는 웨이트(weight)를 곱한 값들을 오름차순으로 정렬했을 때, 이들의 미디언(median) 값을 갖는 포인트를 선택할 수 있다. 마찬가지로, 네이버 포인트들 중 하나의 포인트를 선택할 때, 이미 부모 노드로 매칭된 포인트는 고려하지 않을 수 있다. 즉, 실시예들에 따른 포인트 클라우드 데이터 인코더는 {weight(x_n, y_n, z_n|x, y, z) * [x_n, y_n, z_n]^T }에 s(x_n, y_n, z_n)를 곱함으로써, 이미 부모 노드로 매칭된 포인트는 고려하지 않을 수 있다.
도 24(C)는 실시예들에 따른 네이버 포인트들 중 부모 노드(parent node)에 어트리뷰트 정보를 매칭하기 위한 어트리뷰트 정보를 선택하는 다른 방법의 예시를 나타낸 수식이다.
실시예들에 따른 포인트 클라우드 데이터 인코더는, 네이버 포인트(neighbor point)들을 오름차순으로 정렬했을 때, 이들의 k번째 순서의 값을 갖는 포인트를 선택할 수 있다. 또한, 실시예들에 따른 포인트 클라우드 데이터 인코더는, 각 네이버 포인트(neighbor point)와 이들 각각에 적용되는 웨이트(weight)를 곱한 값들을 오름차순으로 정렬했을 때, 이들의 k번째 순서의 값을 갖는 포인트를 선택할 수 있다. 마찬가지로, 네이버 포인트들 중 하나의 포인트를 선택할 때, 이미 부모 노드로 매칭된 포인트는 고려하지 않을 수 있다.
도 25는 실시예들에 따른 인코더가, 어트리뷰트 정보가 매칭된 옥트리 내의 중복된 어트리뷰트(duplicate attribute)를 제거하는 동작을 나타낸다.
도 25(A)는 실시예들에 따른 어트리뷰트 정보가 각 노드들에 매칭된 트리를 나타낸다. 도 25(A)의, 어트리뷰트 정보가 매칭된 옥트리 구조를 컬러라이즈드 옥트리(colorized octree)로 호칭할 수 있다. 도 25(A)의 컬러라이즈드 옥트리는 도 21에서 리프 노드 컬러라이제이션 동작(21000), 네이버 검출 동작(21001), 포인트 데이터 선택 동작(21002) 및 옥트리 노트 컬러라이제이션 동작(21003)이 수행된 옥트리 구조를 의미할 수 있다.
중복된 어트리뷰트 데이터(duplicate attribute)란, 포인트들의 어트리뷰트 데이터가 리프 노드 이외에 다른 노드들에 중복하여 매칭된 경우, 중복하여 매칭된 어트리뷰트 데이터를 의미할 수 있다. 즉, 이러한 동작으로 인해, 재귀적 선택(recursive selection)으로 인해 동일한 정보가 더 상위 레벨에 까지 중복될 가능성이 있으며, 이는 전체 데이터의 수가 늘어남으로 인해 코딩 효율을 떨어트리는 요인이 될 수 있다. 예를 들어, 컬러라이즈드 옥트리(colorized octree)를 생성하는 과정에서 C1이 리프 노드(25000b-1)에도 존재할 수도 있고 상위 노드(25000b)에도 존재할 수 있다. 실시예들에 따른 인코더단은 두 어트리뷰트 데이터를 모두 전송할 경우 전송 효율이 떨어질 수 있다. 또한, 비트 효율을 높이면서 스케일러블한 표현(scalable representation)을 달성하기 위한 목적을 달성할 수 없다. 따라서, 위 중복된 어트리뷰트 데이터를 제거할 필요가 있다.
따라서, 실시예들에 따른 인코더는 위 중복 데이터(25000b, 25000b-1) 중 리프 노드에 해당하는 어트리뷰트 정보(25000b-1)을 제거할 수 있다. 마찬가지로, C2 어트리뷰트 정보도 루트 노드(25000a)와 리프 노드(25000a-1)에 중복하여 존재할 수 있다. 실시예들에 따르면, 루트 노드(25000a)와 리프 노드(25000a-1) 중 리프 노드의 어트리뷰트 정보를 제거할 수 있다.
마찬가지로, C5 어트리뷰트 정보도 특정 노드(25000c)와 리프 노드(25000c-1)에 중복하여 존재할 수 있다. 실시예들에 따르면, 특정 노드(25000c)와 리프 노드(25000c-1) 중 리프 노드의 어트리뷰트 정보를 제거할 수 있다.
이렇게 중복된 데이터 중 리프 노드에 어트리뷰트 데이터를 제거함으로써 실시예들에 따른 디코더는, 리프 노드까지 탐색하고 디코딩하지 않더라도 빠르게 어트리뷰트 정보를 디코딩할 수 있고, 신속하게 사용자에게 PCC 데이터를 렌더링할 수 있다.
도 26는 실시예들에 따른 인코더의 동작을 나타낸다.
도 26에 나타난 동작들은 실시예들에 따른 인코더에서 수행될 수 있다. 도 25에 나타난 동작들은 구체적으로, 도 20의 컬러라이즈드 옥트리 생성부(20004)에 의해 수행될 수 있다.
실시예들에 따른 인코더는, 포인트 클라우드 데이터를 리프 노드에 매칭하는 단계(26000), 루트 노드(root node)에 어트리뷰트 정보를 매칭하는 단계(26001), 하위 노드들로부터 리프 노드들의 상위 노드들까지(leaf - 1 level) 어트리뷰트 정보를 매칭하는 단계(26002) 및/또는 어트리뷰트 정보가 매칭된 옥트리 구조 내 중복 데이터를 제거하는 단계(26003)를 포함한다.
포인트 클라우드 데이터를 리프 노드에 매칭하는 단계(26000)는 도 22에서 설명한 동작에 의해 수행될 수 있다. 즉, 실시예들에 따른 인코더는, 어트리뷰트 데이터(Input: c1, c2, c3, c4, c5, c6, c7, c8, c9)와 실시예들에 따른 옥트리 구조(octree structure)를 수신한다. 실시예들에 따른 인코더는 수신한 어트리뷰트 데이터를 옥트리 구조의 대응하는 리프 노드들(26000a)에 매칭한다.
루트 노드(root node)에 어트리뷰트 정보를 매칭하는 단계(26001)는, 루트 노드를 부모 노드(parent node)로 하는 네이버 포인트(neighbor point)들을 검출한 후, 검출된 네이버 포인트 중 하나의 포인트의 어트리뷰트 정보를 선택한 후, 선택된 어트리뷰트 정보를 루트 노드에 매칭한다. 예를 들어, 루트 노드를 부모 노드를 하는 네이버 포인트들은 C1 내지 C9에 대응하는 포인트들이다. 실시예들에 따른 인코더는 해당 포인트들 중 C2에 대응하는 포인트를 선택할 수 있고, 인코더는 선택된 포인트의 어트리뷰트 정보를 루트 노드에 매칭할 수 있다(selected and matched : c2). 실시예들에 따른 선택된 포인트는 별도의 배열 내지 적합한 데이터 구조를 이용하여 0 또는 1로 저장할 수 있다.
하위 노드들로부터 리프 노드들의 상위 노드들까지(leaf - 1 level) 어트리뷰트 정보를 매칭하는 단계(26002)는, 위 루트 노드(root node)에 어트리뷰트 정보를 매칭하는 단계(26001)에서 수행한 동작들을 하위 노드들에 대하여 반복적 또는 재귀적으로 수행할 수 있다.
어트리뷰트 정보가 매칭된 옥트리 구조 내 중복 데이터를 제거하는 단계(26003)는, 어트리뷰트 정보가 루트 노드 내지 각 노드들에 매칭된 옥트리 구조에서, 중복되는 어트리뷰트 데이터를 제거할 수 있다. 어트리뷰트 정보가 매칭된 옥트리 구조 내 중복 데이터를 제거하는 단계(26003)는 도 25에서 설명한 동작에 따라 수행될 수 있다.
도 27은 실시예들에 따른 포인트 클라우드 데이터의 비트스트림 구조의 예시를 나타낸다.
실시예들에 따른 포인트 클라우드 데이터 송신 장치는 도 27에서 도시한 바에 따른 비트스트림 구조를 가지는 비트스트림(27000)을 전송할 수 있다. 포인트 클라우드 데이터의 비트스트림(27000)은 SPS(Sequential Parameter Set, 27001), GPS(Geometry Parameter Set, 27002), APS(Attribute Parameter Set, 27003), TPS(Tile Parameter Set, 27004) 및 하나 또는 그 이상의 슬라이스(slice)들(slice 0, slice 1 … slice n, 27005)을 포함할 수 있다. 포인트 클라우드 데이터의 비트스트림은 하나 또는 그 이상의 타일(tile)을 포함할 수 있다. 실시예들에 따른 타일(tile)은 하나 또는 그 이상의 슬라이스(slice)를 포함하는 슬라이스들의 그룹일 수 있다.
실시예들에 따른 비트스트림(27000)은 포인트 클라우드 데이터를 영역별로 나누어 처리할 수 있도록 타일, 또는 슬라이스를 제공한다. 실시예들에 따른 비트스트림(27000)의 각각의 영역은 서로 다른 중요도를 가질 수 있다. 따라서, 포인트 클라우드 데이터는 타일(Tile)로 나누어지는 경우, 각 타일별로 다른 필터(부호화 방법), 다른 필터 유닛을 적용할 수 있다. 포인트 클라우드는 슬라이스(Slice)로 나누어지는 경우, 각 슬라이스별로 다른 필터, 다른 필터 유닛을 적용할 수 있다.
실시예들에 따른 송수신 장치는 포인트 클라우드의 분할 압축 시 분할된 영역 내 속성 정보들의 선택적 전송을 위한 하이 레벨 신텍스 구조에 따라 비트스트림을 전송 및 수신할 수 있다.
실시예들에 따른 포인트 클라우드 데이터 송신 장치는, 도 27과 같은 비트스트림(27000)의 구조에 따라 포인트 클라우드 데이터를 전송함으로써, 중요도에 따라서 다른 부호화 동작을 적용할 수 있게 하고, 품질(quality)이 좋은 부호화 방법을 중요한 영역에 사용할 수 있는 방안을 제공할 수 있다. 또한 포인트 클라우드의 특성에 따른 효율적인 부호화/복호화 및 전송을 지원하고 사용자의 요구사항에 따른 속성 값을 제공할 수 있다.
실시예들에 따른 포인트 클라우드 데이터 전송 장치 및 수신 장치는, 타일(tile) 및/또는 슬라이스(slice) 단위로 독립적으로 또는 비독립적으로 부호화 및 복호화를 수행함으로써, 부호화 및 복호화 과정에서 누적되는 오류를 방지할 수 있다.
SPS(Sequence Parameter Set, 27001)는 각각의 슬라이스 세그먼트 헤더(slice segment header)내의 신텍스 엘리먼트(syntax element)에 의해 참조되는 PPS 내의 신텍스 엘리먼트의 컨텐츠에 의해 결정되는 0개 또는 그 이상의 전체 CVS들에 적용되는 신텍스 엘리먼트들을 포함하는 신텍스 스트럭쳐이다. (A syntax structure containing syntax elements that apply to zero or more entire CVSs as determined by the content of a syntax element found in the PPS referred to by a syntax element found in each slice segment header.) SPS는 실시예들에 따른 포인트 클라우드 데이터 비트스트림의 시퀀스 정보를 포함할 수 있다.
GPS(Geometry Parameter Set, 27002)은 0개 또는 그 이상의 전체 지오메트리(또는 부호화된 지오메트리)가 적용되는 신텍스 엘리먼트들(syntax elements)을 포함하는 신텍스 스트럭처(syntax structure)를 의미할 수 있다. 실시예들에 따른 GPS(27002)는 하나 또는 그 이상의 슬라이스들(27005)에 포함된 포인트 클라우드 데이터의 어트리뷰트(속성) 정보를 인코딩하는 방법에 관한 정보를 포함할 수 있다. GPS(27002)는 실시예들에 따른 어떤 SPS(27001)와 관련된 지오메트리 파라미터를 포함하는지를 나타내는 SPS 식별자 정보, 해당 GPS를 식별하는 GPS 식별자 정보를 포함할 수 있다.
APS(Attribute Parameter Set, 27003)은 0개 또는 그 이상의 전체 어트리뷰트(또는 부호화된 어트리뷰트)가 적용되는 신텍스 엘리먼트들(syntax elements)을 포함하는 신텍스 스트럭처(syntax structure)를 의미할 수 있다. 실시예들에 따른 APS(27003)는 하나 또는 그 이상의 슬라이스들(19005)에 포함된 포인트 클라우드 데이터의 어트리뷰트(속성) 정보를 인코딩하는 방법에 관한 정보를 포함할 수 있다. APS(27003)는 실시예들에 따른 어떤 SPS(27001)와 관련된 지오메트리 파라미터를 포함하는지를 나타내는 SPS 식별자 정보, 해당 APS를 식별하는 GPS 식별자 정보를 포함할 수 있다.
TPS(Tile Parameter Set, 27004)는 0개 또는 그 이상의 전체 타일들(또는 부호화된 타일들)이 적용되는 신텍스 엘리먼트들(syntax elements)을 포함하는 신텍스 스트럭처(syntax structure)를 의미할 수 있다. 타일 인벤토리는 실시예들에 따른 포인트 클라우드 데이터 비트스트림에 포함된 0개 또는 그 이상의 타일(tile)들에 관한 정보를 포함한다. 타일 인벤토리는 실시예들에 따라 TPS(Tile Parameter Set)으로 호칭될 수도 있다.
TPS(Tile Parameter Set, 27004)는 하나 또는 그 이상의 타일(tile)들을 식별하는 식별자 정보 및 하나 또는 그 이상의 타일(tile)들의 범위(즉, 타일의 바운딩 박스)를 나타내는 정보를 포함할 수 있다. 하나 또는 그 이상의 타일(tile)들의 범위(즉, 타일의 바운딩 박스)를 나타내는 정보는, 해당 타일이 나타내는 바운딩 박스의 기준이 되는 점의 좌표 정보(예를 들어, Tile(n).tile_bounding_box_xyz0) 및 해당 바운딩 박스의 폭, 높이 및 깊이에 관한 정보(예를 들어, Tile(n).tile_boudning_box_whd)를 포함할 수 있다. 복수 개의 타일이 존재하는 경우, 타일 인벤토리는(Tile Inventory, 27004)는 타일들 각각에 대한 바운딩 박스를 나타내는 정보를 포함할 수 있다. 예를 들어, 각 타일들이 타일들의 식별자 정보에 의해 0 내지 n으로 표현되는 경우, 각 타일들의 바운딩 박스를 나타내는 정보는 Tile(0).tile_bounding_box_xyz0, Tile(0).tile_bounding_box_whd, Tile(1).tile_bounding_box_xyz0, Tile(1).tile_bounding_box_whd … 등으로 표현될 수 있다.
슬라이스(slice, 27005)는 실시예들에 따른 포인트 클라우드 데이터의 송신 장치가 포인트 클라우드 데이터를 인코딩하기 위한 단위를 의미할 수 있다. 실시예들에 따른 슬라이스(27005)는 하나의 지오메트리 비트스트림(Geom00, 27005a) 및 하나 또는 그 이상의 어트리뷰트 비트스트림들(Attr00, Attr10, 27005b, 27005c)을 포함하는 단위를 의미할 수 있다.
슬라이스(slice, 27005)는 해당 슬라이스 내에 포함된 포인트 클라우드 데이터의 지오메트리 정보를 나타내는 지오메트리 슬라이스 (Geometry Slice, Geom, 27005a) 및 해당 슬라이스 내에 포함된 포인트 클라우드 데이터의 어트리뷰트 정보를 나타내는 하나 또는 그 이상의 어트리뷰트 슬라이스 (Attribute Slice, Attr, 27005b, 27005c)를 포함할 수 있다.
지오메트리 슬라이스 (Geometry Slice, Geom, 27005a)는 포인트 클라우드 데이터의 지오메트리 정보를 포함하는 지오메트리 슬라이스 데이터(Geometry Slice Data, Geom_slice_data, 19005a-2) 및 지오메트리 슬라이스 데이터에 관한 정보를 포함하는 지오메트리 슬라이스 헤더(Geometry Slice Header, Geom_slice_header, GSH, 27005a-1)를 포함한다.
지오메트리 슬라이스 헤더(27005a-1)는 해당 슬라이스 내의 지오메트리 슬라이스 데이터(27005a-2)에 관한 정보를 포함한다. 예를 들어, 지오메트리 슬라이스 헤더(27005a-1)는 어느 GPS(27002)가 해당 슬라이스의 지오메트리 정보를 나타내는지 여부를 식별하기 위한 지오메트리 파라미터 세트 식별자(geom_geom_parameter_set_id), 해당 지오메트리 슬라이스를 식별하기 위한 지오메트리 슬라이스 식별자(geom_slice_id), 해당 지오메트리 슬라이스 데이터의 박스 원점을 나타내는 지오메트리 박스 오리진 정보(geomBoxOrigin), 지오메트리 슬라이스의 로크 스케일을 나타내는 정보(geom_box_log2_scale), 해당 지오메트리 슬라이스의 포인트들의 개수와 관련된 정보(geom_num_points) 등을 포함할 수 있다.
실시예들에 따른 포인트 클라우드 데이터 비트스트림이 하나 또는 그 이상의 타일(tile)을 포함하는 경우, 실시예들에 따른 지오메트리 비트스트림의 헤더는 해당 지오메트리 비트스트림을 포함하는 타일을 식별하기 위한 정보(geom_tile_id)를 더 포함할 수 있다.
어트리뷰트 슬라이스 (Attribute Slice, Attr, 27005b)는 포인트 클라우드 데이터의 어트리뷰트 정보를 포함하는 어트리뷰트 슬라이스 데이터(Attribute Slice Data, Attr_slice_data, 27005b-2) 및 어트리뷰트 슬라이스 데이터에 관한 정보를 포함하는 어트리뷰트 슬라이스 헤더(Attribute Slice Header, Attr_slice_header, ASH, 27005b-1)를 포함한다.
실시예들에 따르면, 포인트 클라우드 인코딩에 필요한 파라미터들은 포인트 클라우드(point cloud)의 파라미터 세트(parameter set) 및 헤더(header) 정보로 새로 정의될 수 있다. 예를 들어, 속성정보 부호화를 할 때에는 attribute parameter set RBSP syntax에, 타일 기반 부호화를 할 때에는 tile_header syntax 등에 추가할 수 있다.
실시예들에 따른 포인트 클라우드 데이터 송수신 방법은 이러한 비트스트림 구조를 제공함으로써, 수신기로 하여금 포인트 클라우드 데이터의 속성 정보의 복호화 성능을 높일 수 있다.
도 28은 실시예들에 따른 APS(Attribute Parameter Set)를 나타낸다.
실시예들에 따른 포인트 클라우드 데이터 전송 장치가 송신하는 비트스트림(또는 포인트 클라우드 데이터 수신 장치가 수신하는 비트스트림)은 하나 또는 그 이상의 APS(Attribute Parameter Set)을 포함한다. 실시예들에 따른 APS는 도 27 의 APS를 의미한다.
실시예들에 따른 APS는 예를 들어, aps_attr_parameter_set_id, aps_seq_parameter_set_id, octree_full_level_present_flag, scalable_represenatation_available_flag, octree_colorization_type, matched_attribute_type, attribute_selection_type 및/또는 point_data_selection_type, point_cloud_geometry_info_present_flag를 포함할 수 있다.
aps_attr_parameter_set_id는 다른 신텍스 엘리먼트들에 의한 참조를 위한 APS의 식별자(id)를 나타낸다. 본 파라미터는 0 내지 15의 값을 가질 수 있다. (provides an identifier for the APS for reference by other syntax elements. The value of aps_attr_parameter_set_id may be in the range of 0 to 15, inclusive.)
aps_seq_parameter_set_id는 현재 액티브(active) SPS에 대한 sps_seq_parameter_set_id의 값을 나타낸다. aps_seq_parameter_set_id는 0 내지 15의 값을 가질 수 있다. (specifies the value of sps_seq_parameter_set_id for the active SPS. The value of aps_seq_parameter_set_id may be in the range of 0 to 15, inclusive.)
octree_full_level_present_flag의 값이 1인 경우 실시예들에 따른 옥트리 구조(octree structure)의 모든 레벨(full level)에 대한 데이터가 전달됨을 나타낸다. 즉, 이 파라미터의 값이 1이라는 것은, 실시예들에 따른 포인트 클라우드 데이터 송신 장치가, 지오메트리 데이터의 옥트리 구조의 모든 레벨에 대한 데이터가 비트스트림으로 전송됨을 의미한다.
octree_full_level_present_flag의 값이 0인 경우 실시예들에 따른 옥트리 구조(octree structure)의 일부 레벨(partial level)에 대한 데이터가 전달됨을 나타낸다. 즉, 이 파라미터의 값이 1이라는 것은, 실시예들에 따른 포인트 클라우드 데이터 송신 장치가, 지오메트리 데이터의 옥트리 구조의 일부 레벨 즉, 파셜 옥트리(partial octree)에 대한 데이터가 비트스트림으로 전송됨을 의미한다.
예를 들어, 실시예들에 따른 포인트 클라우드 데이터 송신 장치가, 옥트리 구조의 루트 레벨부터 리프 노드가 아닌 레벨 k의 노드들에 대한 오큐펀시 정보만 전달하는 경우, octree_full_level_present_flag의 값은 0일 수 있다. 예를 들어, 실시예들에 따른 포인트 클라우드 데이터 송신 장치가, 옥트리 구조의 루트 레벨부터 리프 노드에 해당하는 모든 노드들 대한 오큐펀시 정보를 모두 전달하는 경우, octree_full_level_present_flag의 값은 1일 수 있다.
실시예들에 따른 포인트 클라우드 데이터 수신 장치(디코더)는, octree_full_level_present_flag의 값이 1인 경우, 어트리뷰트-노드 매칭(Attribute to node matching) 및 어트리뷰트-포인트 매칭(attribute to point matching) 과정을 수행함으로써, 파셜 및/또는 풀 포인트 클라우드 데이터를 출력할 수 있다. 실시예들에 따른 포인트 클라우드 데이터 수신 장치(디코더)는, octree_full_level_present_flag의 값이 0인 경우, 어트리뷰트-노드 매칭(Attribute to node matching) 과정을 수행함으로써, 파셜 포인트 클라우드 데이터를 출력할 수 있다. 실시예들에 따른 디코더의 동작 중 어트리뷰트-노드 매칭(Attribute to node matching) 및 어트리뷰트-포인트 매칭(attribute to point matching) 동작은 이하 도 33 등에서 설명하기로 한다.
scalable_representation_available_flag는 스케일러블 디코딩(또는 스케일러블 레프리젠테이션(scalable representation)이 적용가능한지 여부를 나타낸다. 실시예들에 따른 포인트 클라우드 인코더는 스케일러블 레프리젠테이션이 가능하도록 컬러라이즈드 옥트리를 생성하고 컬러라이즈드 옥트리를 기반으로 어트리뷰트를 처리할 수 있다. scalable_representation_available_flag의 값이 1이면, scalable_representation_available_flag는 디코드된 포인트 클라우드 데이터(디코드된 어트리뷰트)가 스케일러블 레프리젠테이션이 가능한 구조(컬러라이즈드 옥트리 구조)를 가짐을 나타낸다. 따라서 수신 장치는 본 정보를 기반으로 컬러라이즈드 옥트리를 생성하여 스케일러블 레프리젠테이션을 제공할 수 있다. scalable_representation_available_flag의 값이 0이면, scalable_representation_available_flag는 디코드된 포인트 클라우드 데이터가 스케일러블 레프리젠테이션이 가능한 구조를 가지지 않음을 나타낸다.
octree_colorization_type은 컬러라이즈드 옥트리 타입 또는 컬러라이즈드 옥트리를 생성하는 방법을 나타낸다. octree_colorization_type의 값이 0 이면 컬러라이즈드 옥트리는 어트리뷰트 페어드 옥트리 생성방법에 따라 생성됨을 나타낸다. octree_colorization_type의 값이 1 이면 경우, 컬러라이즈드 옥트리는 포인트 페어드 옥트리 생성방법에 따라 생성됨을 나타낸다.
이하는 octree_colorization_type의 값이 0 경우, 즉 컬러라이즈드 옥트리가 어트리뷰트 페어드 옥트리인 경우 관련 파라미터들이다.
matched_attribute_type은 옥트리 노드에 매칭된 어트리뷰트의 타입을 나타낸다. matched_attribute_type의 값이 0인 경우, matched_attribute_type은 어트리뷰트가 추청 어트리뷰트(예를 들면 주변 노드 또는 자식 노드의 어트리뷰트들을 기반으로 추정된 어트리뷰트)임을 나타낸다. matched_attribute_type의 값이 1인 경우, matched_attribute_type은 어트리뷰트가 실제 어트리뷰트(예를 들면 자식 노드의 어트리뷰트)임을 나타낸다.
attribute_selection_type은 옥트리 노드에 어트리뷰트를 매칭하는 방법을 나타낸다. attribute_selection_type값이 0인 경우, 추정 어트리뷰트는 자식 노드들의 어트리뷰트들의 평균값에 대응한다. attribute_selection_type값이 1인 경우, 추정 어트리뷰트는 자식 노드들의 어트리뷰트들의 중간값에 대응한다. attribute_selection_type값이 2인 경우, 어트리뷰트는 고정된 순서의 자식 노드의 어트리뷰트 (예를 들면 오름 차순으로 정렬된 자식 노드들 중 첫번째 자식 노드의 어트리뷰트 또는 두번째 자식 노드의 어트리뷰트)에 대응한다.
이하는 octree_colorization_type의 값이 1 경우, 즉 컬러라이즈드 옥트리가 포인트 페어드 옥트리인 경우 관련 파라미터들이다.
point_data_selection_type 은 옥트리 노드에 매칭할 포인트 데이터를 선택하는 방법 또는 타입을 나타낸다. point_data_selection_type의 값이 0 인 경우, point_data_selection_type는 해당 노드의 자식 노드들 중 고정된 순서의 노드(예를 들면 자식 노드들을 오름차순으로 정렬한 순서(ascending order)상 첫번째 노드)의 포인트 클라우드 데이터(또는 포인트)를 선택하는 방법을 나타낸다. point_data_selection_type의 값이 1 인 경우, point_data_selection_type는 자식 노드들 중 오큐파이드 노드들의 포지션들의 평균값에 가장 가까운 포지션을 갖는 자식 노드의 포인트를 선택하는 방법을 나타낸다. point_data_selection_type의 값이 2 인 경우, point_data_selection_type는 자식 노드들 중 오큐파이드 노드들의 포지션들의 중간값에 가장 가까운 포지션을 갖는 자식 노드의 포인트를 선택하는 방법을 나타낸다.
이하는 point_data_selection_type의 값이 0 이거나 3인 경우 관련된 파라미터들이다.
point_cloud_geometry_info_present_flag는 옥트리 노드에 매칭된 포인트 데이터(또는 포인트)에 대한 지오메트리 정보를 직접 제공하는지 여부를 나타낸다. point_cloud_geometry_info_present_flag의 값이 1인 경우, 옥트리 노드에 매칭된 포인트 데이터(또는 포인트)에 대한 지오메트리 정보(예를 들면 포지션)가 함께 전송된다. point_cloud_geometry_info_present_flag의 값이0인 경우, 옥트리 노드에 매칭된 포인트 데이터(또는 포인트)에 대한 지오메트리 정보가 함께 전송된다.
도 29는 실시예들에 따른 어트리뷰트 비트스트림(attribute bitstream)을 나타낸다.
도 29의 어트리뷰트 비트스트림(29000)은 도 27의 어트리뷰트 슬라이스에 대응될 수 있다. 즉, 실시예들에 따른 어트리뷰트 비트스트림(29000)은 어트리뷰트 슬라이스 헤더(attribute slice header, 29001) 및/또는 어트리뷰트 슬라이스 데이터(attribute slice data, 29002)를 포함한다.
어트리뷰트 슬라이스 헤더(29001)는 도 27의 어트리뷰트 슬라이스 헤더를 의미한다. 어트리뷰트 슬라이스 헤더(29001)는 abh_attr_parameter_set_id, abh_attr_sps_attr_idx를 포함할 수 있다.
abh_attr_parameter_set_id는 현재 액티브 APS의 aps_attr_parameter_set_id의 값을 나타낸다. (specifies the value of the aps_attr_parameter_set_id of the active APS.)
abh_attr_sps_attr_idx는 현재 액티브 SPS 내의 어트리뷰트 세트를 나타낸다. abh_attr_sps_attr_idx의 값은 0 내지 현재 액티브 SPS의 sps_num_attribute_setsd의 값의 범위 내일 수 있다. (specifies the attribute set in the active SPS. The value of abh_attr_sps_attr_idx may be in the range of 0 to sps_num_attribute_sets in the active SPS.)
어트리뷰트 슬라이스 데이터(attribute slice data, 29002)는 실시예들에 따른 어트리뷰트 코딩 타입에 대응하여 어트리뷰트 데이터가 포함될 수 있다. attr_coding_type 정보가 0인 경우 PredictingWeight_Lifting_bitstream을 포함한다. attr_coding_type 정보가 1인 경우 RAHT_bitstream을 포함한다. attr_coding_type 정보가 2인 경우 FixedWeight_Lifting_bitstream을 포함한다.
도 30은 스케일러블 표현(scalable representation)을 위한 실시예들에 따른 포인트 클라우드 데이터 송신 장치 및 수신 장치의 동작을 나타낸다.
도 19 내지 도 26에 나타난 실시예들에 따른 인코더단의 동작은, 실시예들에 따른 포인트 클라우드 데이터 수신 장치가 스케일러블(scalable)한 레프리젠테이션(representation)을 효과적으로 수행할 수 있도록 포인트 클라우드 데이터를 인코딩하는 것을 나타낸다. 실시예들에 따른 포인트 클라우드 데이터 송신 장치는, 스케일러블한 레프리젠테이션을 제공함으로써, 수신 장치는 다양한 성능의 포인트 클라우드 데이터 콘텐츠를 제공할 수 있고, 다양한 성능의 수신 장치에서도 효과적으로 사용자에게 레프리젠테이션을 수행할 수 있다. 예를 들어, 실시예들에 따른 송신 장치는 실시예들에 따른 컬러라이즈드 옥트리(colorized octree)를 생성함으로써 다양한 성능의 디코더를 대상으로 포인트 클라우드 데이터를 압축한다. 이러한 구성은, 각각의 디코더 성능에 맞는 독립된 압축 정보를 생성하거나 저장하지 않고도, 하나의 비트스트림을 통해 다양한 성능의 수신기를 지원할 수 있기 때문에, 송신 장치의 저장 공간 및 비트 효율 측면에서도 효과적이다. 또한 전송 대역폭의 제한이 있는 경우 실시예들에 따른 송신 장치에서도 저해상도 포인트 클라우드 데이터를 생성한 후 전달할 수 있다는 장점이 있다.
실시예들에 따른 포인트 클라우드 데이터 송신 장치는, 도 19 내지 도 26에 나타난 동작을 수행하여 인코딩하는, 스케일러블 인코더(scalable encoder, 30001)를 포함한다. 스케일러블 인코더(30001)는 실시예들에 따른 컬러라이즈드 옥트리(colorized octree)를 생성하여 어트리뷰트 비트스트림을 생성한다. 즉, 스케일러블 인코더는 실시예들에 따른 지오메트리 비트스트림(geometry bitstream)과 어트리뷰트 비트스트림(attribute bitstream)을 포함하는 싱글 PCC 비트스트림(Single PCC bitstream, 30002a)를 생성한다.
스케일러블 인코더(30001)는 소스 지오메트리(Source geometry, 30000a)와 소스 어트리뷰트(Source attribute, 30000b)를 생성한다. 소스 지오메트리(30000a)는 포인트 클라우드 데이터의 포인트들의 위치 정보를 나타낸다. 소스 지오메트리(30000a)는 지오메트리 정보를 포함하는 옥트리(octree) 구조를 의미할 수 있다. 소스 어트리뷰트(30000b)는 포인트 클라우드 데이터의 포인트들의 어트리뷰트 정보를 나타낸다. 소스 지오메트리(30000b)는 어트리뷰트 정보를 포함하는 실시예들에 따른 컬러라이즈드 옥트리(colorized octree) 구조를 의미할 수 있다.
스케일러블 인코더(30001)는 즉, 옥트리 구조(octree structure)에 대응하는 지오메트리 비트스트림과 컬러라이즈드 옥트리(colorized octree)에 대응하는 어트리뷰트 비트스트림을 생성한다.
실시예들에 따른 포인트 클라우드 데이터 송신 장치 및 수신 장치는 저장부(Storage, 30002b)를 더 포함할 수 있다. 저장부(30002b)는 실시예들에 따른 지오메트리 비트스트림과 어트리뷰트 비트스트림을(또는 이들을 포함하는 싱글 PCC 비트스트림을 저장한다.
실시예들에 따른 포인트 클라우드 데이터 송신 장치는, 저장부(30002b)에 저장된 데이터를 실시예들에 따른 포인트 클라우드 데이터 수신 징치로 전송할 수 있다. 실시예들에 따른 포인트 클라우드 데이터 수신 장치는 이들을 수신하여 저장부(30002b)에 저장할 수 있다.
실시예들에 따른 포인트 클라우드 데이터 수신 장치는, 실시예들에 따른 포인트 클라우드 데이터를 포함하는 비트스트림(bitstream) 중 일부 또는 전부를 선택하는 비트스트림 선택부(Bitstream selector, 30003) 및/또는 이들을 디코딩하는 하나 또는 그 이상의 스케일러블 디코더(scalable decoder, 30004a~30004c)들을 포함할 수 있다.
비트스트림 선택부(30003)는 실시예들에 따른 수신한 비트스트림을 수신하여, 이들을 모두 디코딩할지 아니면 일부만 디코딩할지 여부를 결정할 수 있다. 실시예들에 따른 비트스트림 선택부(30003)는 수신한 비트스트림에 포함된 지오메트리 비트스트림 및 어트리뷰트 비트스트림 각각에 대하여 일부만 디코딩할지 또는 전부 디코딩할지 여부를 결정할 수 있다.
실시예들에 따른 스케일러블 디코더(scalable decoder, 30004a~30004c)는 실시예들에 따른 수신 비트스트림 중 비트스트림 선택부(30003)에 의해 선택된 비트스트림을 디코딩할 수 있다. 스케일러블 디코더(30004a~30004c)는 3가지 방식으로 디코딩을 수행할 수 있다.
첫 번째 실시예들에 따른 스케일러블 디코더(30004a)는 비트스트림 선택부(30003)로부터, 지오메트리 비트스트림의 일부와 어트리뷰트 비트스트림의 일부만 수신하여 이들을 디코딩할 수 있다. 지오메트리 비트스트림은 옥트리 구조(octree structure)에 대응된다. 따라서, 지오메트리 비트스트림의 일부(30004a-1)은 실시예들에 따른 지오메트리 데이터를 포함하는 옥트리 구조의 일부 레벨(즉, 루트 레벨부터 일부 레벨의 범위까지)만을 포함하는 데이터이다. 어트리뷰트 비트스트림은 실시예들에 따른 컬러라이즈드 옥트리 구조(octree structure)에 대응된다. 따라서, 어트리뷰트 비트스트림의 일부(30004a-2)은 실시예들에 따른 어트리뷰트 데이터를 포함하는 컬러라이즈드 옥트리 구조의 일부 레벨(즉, 루트 레벨부터 일부 레벨의 범위까지)만을 포함하는 데이터이다.
즉, 실시예들에 따른 스케일러블 디코더(30004a)는, 지오메트리 비트스트림의 일부(파셜 지오메트리 데이터, partial geometry)와 어트리뷰트 비트스트림의 일부(파셜 어트리뷰트 데이터, partial attribute)를 수신하여 디코딩할 수 있다.
두 번째 실시예들에 따른 스케일러블 디코더(30004b)는 비트스트림 선택부(30003)로부터, 지오메트리 비트스트림의 전부와 어트리뷰트 비트스트림의 일부만 수신하여 이들을 디코딩할 수 있다. 지오메트리 비트스트림은 옥트리 구조(octree structure)에 대응된다. 따라서, 지오메트리 비트스트림의 전부(30004b-1)는 실시예들에 따른 지오메트리 데이터를 포함하는 옥트리 구조의 전체 레벨을 포함하는 데이터이다. 어트리뷰트 비트스트림은 실시예들에 따른 컬러라이즈드 옥트리 구조(octree structure)에 대응된다. 따라서, 어트리뷰트 비트스트림의 일부(30004b-2)은 실시예들에 따른 어트리뷰트 데이터를 포함하는 컬러라이즈드 옥트리 구조의 일부 레벨(즉, 루트 레벨부터 일부 레벨의 범위까지)만을 포함하는 데이터이다.
즉, 실시예들에 따른 스케일러블 디코더(30004b)는, 지오메트리 비트스트림의 전부(풀 지오메트리 데이터, full geometry)와 어트리뷰트 비트스트림의 일부(파셜 어트리뷰트 데이터, partial attribute)를 수신하여 디코딩할 수 있다.
세 번째 실시예들에 따른 스케일러블 디코더(30004c)는 비트스트림 선택부(30003)로부터, 지오메트리 비트스트림의 전부와 어트리뷰트 비트스트림의 전부를 수신하여 이들을 디코딩할 수 있다. 지오메트리 비트스트림은 옥트리 구조(octree structure)에 대응된다. 따라서, 지오메트리 비트스트림의 전부(30004c-1)는 실시예들에 따른 지오메트리 데이터를 포함하는 옥트리 구조의 전체 레벨을 포함하는 데이터이다. 어트리뷰트 비트스트림은 실시예들에 따른 컬러라이즈드 옥트리 구조(octree structure)에 대응된다. 따라서, 어트리뷰트 비트스트림의 전부(30004b-2)는 실시예들에 따른 어트리뷰트 데이터를 포함하는 컬러라이즈드 옥트리 구조의 전체 레벨을 포함하는 데이터이다.
즉, 실시예들에 따른 스케일러블 디코더(30004c)는, 지오메트리 비트스트림의 전부(풀 지오메트리 데이터, full geometry)와 어트리뷰트 비트스트림의 일부(풀 어트리뷰트 데이터, full attribute)를 수신하여 디코딩할 수 있다.
실시예들에 따른 포인트 클라우드 데이터 송신 장치는, 도 27과 같은 비트스트림(27000)의 구조에 따라 포인트 클라우드 데이터를 전송함으로써, 중요도에 따라서 다른 부호화 동작을 적용할 수 있게 하고, 품질(quality)이 좋은 부호화 방법을 중요한 영역에 사용할 수 있는 방안을 제공할 수 있다. 또한 포인트 클라우드의 특성에 따른 효율적인 부호화/복호화 및 전송을 지원하고 사용자의 요구사항에 따른 속성 값을 제공할 수 있다.
실시예들에 따른 포인트 클라우드 데이터 전송 장치 및 수신 장치는, 타일(tile) 및/또는 슬라이스(slice) 단위로 독립적으로 또는 비독립적으로 부호화 및 복호화를 수행함으로써, 부호화 및 복호화 과정에서 누적되는 오류를 방지할 수 있다.
도 31은 실시예들에 따른 포인트 클라우드 데이터 디코더를 나타낸다.
실시예들에 따른 포인트 클라우드 디코더(31000)는 기하정보 복호화부(31001) 및/또는 속성정보 복호화부(31002)를 포함할 수 있다. 실시예들에 따르면, 포인트 클라우드 디코더는 PCC 복호화기, PCC 복호화부, 포인트 클라우드 복호화기, 포인트 클라우드 복호화부, PCC 디코더 등으로 호칭될 수 있다.
기하정보 복호화부(31001)는 포인트 클라우드 데이터의 기하정보 비트스트림(31000a)를 수신한다. 기하정보 복호화부(31001)는 포인트 클라우드 데이터의 기하정보 비트스트림(31000a)를 복호화(디코딩)하여 복원된 포인트 클라우드 데이터(31000c)의 어트리뷰트 정보를 출력할 수 있다. 기하정보 복호화부(31001)는 기하정보 비트스트림을 지오메트리 정보로 재구성하여 복원된 기하정보(31001)를 출력할 수 있다. 기하정보 비트스트림(31000a)는 도 18 내지 도 26의 기하정보 비트스트림, 지오메트리 비트스트림을 의미할 수 있다. 속성정보 비트스트림(31000b)는 도 18 내지 도 26의 속성정보 비트스트림, 어트리뷰트 비트스트림을 의미할 수 있다.
기하정보 복호화부(31001)는 입력 받은 기하정보 비트스트림을 복호화하여 기하정보를 복원한다. 복원된 기하정보는 속성정보 복호화부로 입력될 수 있다. 속성정보 복호화부(31002)는 입력받은 속성정보 비트스트림과 기하정보 복호화부로부터 입력 받은 복원된 기하정보를 입력 받아 속성정보를 복원한다. 복원된 기하정보는 도 11에서 설명한 지오메트리 리컨스럭션부(reconstruct geometry, 11003)에 의해 재구성된 지오메트릭을 의미할 수 있다. 복원된 기하정보는 도 13에서 설명한 오큐펀시 코드기반 옥트리 재구성 처리부(13003)에 의해 재구성된 옥트리 오큐펀시 코드를 의미할 수도 있다.
기하정보 복호화부(31001)는 실시예들에 따른 수신 장치가 수신한 기하정보 비트스트림을 수신한다. 기하정보 복호화부(31001)는 기하정보 비트스트림을 복호화할 수 있다.
기하정보 복호화부(31001)는 도 1의 포인트 클라우드 비디오 디코더의 동작, 도 2의 디코딩(20003), 도 10의 지오메트리 디코더의 동작, 도 11에서 설명한 아리스메틱 디코더(11000), 옥트리 합성부(11001), 서페이스 오프록시메이션 합성부(11002), 지오메트리 리컨스럭션부(11003) 및/또는 좌표계 역변환부(11004)의 동작 전부/일부를 수행할 수 있다.
속성정보 복호화부(31002)는 포인트 클라우드 데이터의 속성정보 비트스트림(31000b)를 수신한다. 속성정보 복호화부(31002)는 포인트 클라우드 데이터의 속성정보 비트스트림(31000b)를 복호화(디코딩)하여 복원된 포인트 클라우드 데이터(31000c)의 어트리뷰트 정보를 출력할 수 있다. 속성정보 복호화부(31002)는 기하정보 복호화부(31001)에 의해 생성된 복원된 기하정보(31001a)에 기초하여 속성정보 비트스트림을 복호화(디코딩)할 수 있다.
속성정보 복호화부(31002)는 실시예들에 따른 수신 장치가 수신한 속성정보 비트스트림을 수신한다. 속성정보 복호화부는 복원된 기하정보에 기반하여 속성정보 비트스트림의 속성정보를 복호화할 수 있다. 포인트 클라우드 데이터에 포함된 기하정보 및/또는 속성정보는 복호화되어 복원된 PCC데이터가 될 수 있다.
속성정보 복호화부(31002)는 도 1의 포인트 클라우드 비디오 디코더, 도 2의 디코딩(20003)의 동작, 도 10에서 설명한 어트리뷰트 디코더(attribute decoder)의 동작, 도 11의 역양자화부(11006), RAHT(11007), LOD생성부(11008), 인버스 리프팅부(11009), 및/또는 컬러 역변환부(11010) 동작, 도 13에서 설명한 아리스메틱 디코더(13007), 역양자화 처리부(13008), 예측/리프팅/RAHT 역변환 처리부(13009), 색상 역변환 처리부(13010) 및/또는 렌더러(13011)의 동작 일부 또는 전부를 수행할 수 있다.
도 32는 실시예들에 따른 포인트 클라우드 데이터 디코더를 나타낸다.
실시예들에 따른 포인트 클라우드 데이터 디코더(32000)는 인코딩된 포인트 클라우드 데이터(point cloud data)를 포함하는 비트스트림(bitstream)을 수신하여 디코딩한 후, 지오메트리 데이터(geometry data) 및 어트리뷰트 데이터(attribute data)을 출력한다. 실시예들에 따른 인코딩된 포인트 클라우드 데이터를 포함하는 비트스트림은, 지오메트리 데이터를 포함하는 지오메트리 비트스트림(geometry bitstream) 및/또는 어트리뷰트 데이터를 포함하는 어트리뷰트 비트스트림(attribute bitstream)을 포함한다.
실시예들에 따른 포인트 클라우드 데이터 디코더(32000)는 지오메트리 비트스트림을 디코딩하는 엔트로피 디코더(32001), 옥트리 리컨스트럭션부(32002), 어트리뷰트 비트스트림을 디코딩하는 엔트로피 디코더(32003), 역양자화부(32004), 역변환부(32005), 어트리뷰트 리컨스트럭션 & 옥트리 매칭부(32006) 및/또는 스케일러블 레프리젠테이션부(32007)를 포함한다. 실시예들에 따른 어트리뷰트 리컨스트럭션 & 옥트리 매칭부(32006)는 어트리뷰트 리컨스트럭션부(32006a), 어트리뷰트-노드 매칭부(32006b) 및/또는 옥트리-포인트 클라우드 데이터 매칭부(32006c)를 포함한다.
지오메트리 비트스트림을 디코딩하는 엔트로피 디코더(32001)는 실시예들에 따른 지오메트리 비트스트림을 수신한다. 지오메트리 비트스트림을 디코딩하는 엔트로피 디코더(32001)는 지오메트리 비트스트림을 디코딩하여 지오메트리 데이터를 출력한다.
옥트리 리컨스트럭션부(32002)는 실시예들에 따른 지오메트리 데이터를 수신하고, 이들을 이용하여 포인트 클라우드 데이터의 포인트들의 위치를 나타내는 지오메트리 데이터를 옥트리 구조(octree structure)로 변환(또는 리컨스트럭트)한다. 옥트리 리컨스트럭션부(32002)는 지오메트리 데이터에 기반한 옥트리 구조를 출력한다.
어트리뷰트 비트스트림을 디코딩하는 엔트로피 디코더(32003)는 실시예들에 따른 어트리뷰트 비트스트림(attribute bitstream)을 수신하여 이들을 디코딩한다. 어트리뷰트 비트스트림을 디코딩하는 엔트로피 디코더(32003)는 어트리뷰트 비트스트림을 디코딩하여 비-양자화된 어트리뷰트 정보를 출력한다. 비-양자화된 어트리뷰트 정보는 비-양자화된 잔차(residual) 어트리뷰트 정보 및/또는 예측(predicted) 어트리뷰트 정보를 포함한다.
역양자화부(32004)는 엔트로피 디코더(32003)에 의해 디코딩된 데이터를 수신하여 이들을 역-양자화한다. 역양자화부(32004)는 엔트로피 디코더(32003)에 의해 디코딩된 데이터를 수신하여 이들을 역-양자화하여 변환된 어트리뷰트 정보를 출력한다. 변환된 어트리뷰트 정보는 변환된 잔차(residual) 어트리뷰트 정보 및/또는 예측(predicted) 어트리뷰트 정보를 포함한다.
역변환부(32005)는 실시예들에 따른 역양자화부(32004)에 의해 역양자화된 데이터를 수신하여 이들을 역변환한다. 역변환부(32005)는 역양자화부(32004)에 의해 역양자화된 데이터를 역양자화하여 리컨스트럭티드 어트리뷰트(reconstructed attribute) 정보를 출력한다. 리컨스트럭티드 어트리뷰트 정보는 리컨스트럭티드 잔차(residual) 어트리뷰트 정보 및/또는 예측(predicted) 어트리뷰트 정보를 포함한다.
실시예들에 따른 수신 장치는 실시예들에 따른 송신 장치에서 수행하는 어트리뷰트 예측과 같이 레벨이 내려가면서 (루트 노드로부터 리프 노드로 향하는 방향으로) 어트리뷰트 데이터을 예측할 수 있다. 실시예들에 따른 예측 방법은 송신부에서 사용한 방법과 동일한 방법을 사용할 수 있다. 예를 들어, 부모 노드의 리컨스트럭션된 어트리뷰트 데이터를 부모 노들의 자식 노드에 대한 예측 값으로 사용할 수 있다. 예를 들어, 예측 값은, 네이버(neighbor)에 대한 정의에 따라 결정되는 범위를 다르게 적용할 수 있다. 예를 들면, 실시예들에 따른 부모 노드의 어트리뷰트 데이터는 실시예들에 따른 송신 장치에 의해 아래와 같이 예측될 수 있다.
Figure PCTKR2020008571-appb-img-000020
실시예들에 따른 수신 장치는 예측된 어트리뷰트 데이터를 기반으로, 각 자식 노드의 속성을 재구성하기 위해서 송신 장치에서 사용한 예측 오류 생성 방법의 역을 수행할 수 있다. 예를 들면, 실시예들에 따른 송신 장치가, 원본 어트리뷰트(source attribute)와 예측 속성(predicted attribute)의 차이(잔차)로 예측 오류(prediction error)를 생성한 경우, 수신 장치는 실시예들에 따른 수신 장치가 추정한 예측 어트리뷰트와 디코딩된 예측 오류의 값을 더함으로써 어트리뷰트 데이터를 재구성 수 있다. 실시예들에 따른 송신 장치는 어트리뷰트 에러 생성 방법에 대한 정보를 수신 장치로 전달할 수 있다. 예를 들면, 실시예들에 따른 자식 노드(또는 리프 노드들)의 어트리뷰트 데이터는 실시예들에 따른 수신 장치에 의해 아래와 같이 예측될 수 있다.
Figure PCTKR2020008571-appb-img-000021
C^l (x, y, z)는 실시예들에 따른 자식 노들의 어트리뷰트 데이터이다. g-1{ }는 는 실시예들에 따른 송신 장치가 예측을 수행하는 방법의 역을 나타낸 함수이다. p^l(x, y, z)는 실시예들에 따른 예측된 부모 노드의 어트리뷰트 데이터를 의미한다. r^l(x, y, z)는 실시예들에 따른 예측된 부모 노드의 어트리뷰트 데이터에 적용될 잔차 값(디코딩된 어트리뷰트 데이터에 포함될 수 있음)를 의미한다.
어트리뷰트 리컨스트럭션 & 옥트리 매칭부(32006)는 리컨스트럭티드 어트리뷰트 정보와 실시예들에 따른 옥트리 구조를 수신하여 컬러라이즈드 옥트리(colorized octree) 구조를 생성 및 출력한다.
스케일러블 레프리젠테이션부(32007)는 실시예들에 따른 컬러라이즈드 옥트리를 수신하고, 이들에 기초하여 스케일러블(scalable)한 레프리젠테이션(representation )을 제공한다.
도 33는 실시예들에 따른 포인트 클라우드 데이터 수신 장치가 컬러라이즈드 옥트리를 생성하는 과정을 나타낸다.
도 33에서 설명하는 동작들의 전부 또는 일부는 도 32의 실시예들에 따른 어트리뷰트 리컨스트럭션 & 옥트리 매칭부(32006) 및/또는 스케일러블 레프리젠테이션부(32007)에서 수행될 수 있다.
포인트 클라우드 데이터를 스케일러블하게 레프리젠팅(scalable representation)하기 위해
실시예들에 따른 포인트 클라우드 데이터 수신 장치는 실시예들에 따른 수신된 어트리뷰트 데이터 및 옥트리 구조(octree structure)에 기초하여 리컨스트럭티드 포인트 클라우드 데이터(reconstructed point cloud data)를 생성할 수 있다.
실시예들에 따른 포인트 클라우드 데이터 수신 장치가 포인트 클라우드 데이터를 리컨스트럭트(reconstruct)하는 동작은, 디코딩된 어트리뷰트(decoded attribute) 및 옥트리 구조(octree structure)를 수신하는 단계, 어트리뷰트를 리컨스트럭트하는 단계(33000, attribute reconstruction), 어트리뷰트-노드 매칭 단계(attribute to node matching, 33001), 위치 예측 단계(position estimation, 33003), 어트리뷰트-포인트 매칭 단계(attribute to point matching, 33004)를 포함한다.
실시예들에 따른 어트리뷰트를 리컨스트럭트하는 단계(33000), 어트리뷰트-노드 매칭 단계(33001), 위치 예측 단계(33003), 어트리뷰트-포인트 매칭 단계(33004)는 실시예들에 따른 옥트리 구조의 매 노드마다 반복적으로 수행될 수 있다.
실시예들에 따른 디코더는 옥트리 구조(octree structure)의 루트 노드로부터 시작하여 리프 노드의 이전 레벨(level)까지 스텝 다운(step down)하면서 각 레벨(level)에 포함된 노드들에 대하여 어트리뷰트를 리컨스트럭트하는 단계(33000), 어트리뷰트-노드 매칭 단계(33001), 위치 예측 단계(33003), 어트리뷰트-포인트 매칭 단계(33004)를 수행(33007)할 수 있다.
실시예들에 따른 디코더는 옥트리 구조(octree structure)의 노드들을 레벨 순서(level order)로 순회하면서 어트리뷰트를 리컨스트럭트하는 단계(33000), 어트리뷰트-노드 매칭 단계(33001), 위치 예측 단계(33003), 어트리뷰트-포인트 매칭 단계(33004)를 수행할 수 있다. 즉, 실시예들에 따른 디코더는 먼저, 루트 노드(root node)에 대하여 어트리뷰트를 리컨스트럭트하는 단계(33000), 어트리뷰트-노드 매칭 단계(33001), 위치 예측 단계(33003), 어트리뷰트-포인트 매칭 단계(33004)를 수행할 수 있다. 다음으로 실시예들에 따른 디코더는 루트 노드의 자식 노드들 즉, 레벨이 1인 노드들에 대해 어트리뷰트를 리컨스트럭트하는 단계(33000), 어트리뷰트-노드 매칭 단계(33001), 위치 예측 단계(33003), 어트리뷰트-포인트 매칭 단계(33004)를 수행할 수 있다. 실시예들에 따른 디코더가 레벨 1에 포함된 노드들에 대해 위 과정들을 수행한 경우, 실시예들에 따른 디코더는 레벨 2에 포함된 노드들에 대하여 다시 수행할 수 있다. 위와 같은 방법으로, 실시예들에 따른 디코더는 리프 노드의 이전 레벨의 노드까지 위 동작들을 수행할 수 있다(33005).
실시예들에 따른 위치 예측 단계(position estimation, 33003), 어트리뷰트-포인트 매칭 단계(attribute to point matching, 33004)은, 실시예들에 따른 수신 비트스트림 내의 시그널링 정보에 포함된 octree_full_level_present_flag 파라미터의 값에 기초하여 수행(33002)될 수 있다. 예를 들어, octree_full_level_present_flag 의 값이 1이면, 위치 예측 단계(33003), 어트리뷰트-포인트 매칭 단계(33004)가 각 노드마다 또는 전체적으로 수행될 수 있다.
디코딩된 어트리뷰트(decoded attribute) 및 옥트리 구조(octree structure)를 수신하는 단계를 설명한다. 디코딩된 어트리뷰트(decoded attribute)는 실시예들에 따른 디코더에 의해 디코딩된 어트리뷰트 정보를 의미한다. 즉, 수신한 비트스트림 내의 어트리뷰트 비트스트림이 디코딩된 데이터을 의미한다. 예를 들어, 디코딩된 어트리뷰트는 도 32의 어트리뷰트 비트스트림(attribute bitstream)이 엔트로피 디코더(32003), 역양자화부(32004) 및/또는 역변환부(32005)에 의해 디코딩, 역양자화 및/또는 역변환된 데이터를 의미한다. 또한, 옥트리 구조는 실시예들에 따른 도 32의 옥트리 재구성부(32002)에 의해 재구성된 옥트리 구조를 의미한다.
어트리뷰트-노드 매칭(32001)이란, 실시예들에 따른 포인트 클라우드 데이터 수신 장치(디코더)가 수신한 디코딩된 어트리뷰트(decoded attribute)를 옥트리 구조(octree structure)의 노드들(nodes)에 매칭하는 것을 의미한다. 예를 들어, 실시예들에 따른 디코더는 먼저 디코딩된 어트리뷰트 데이터 중 루트 노드에 대응하는 어트리뷰트 데이터를 옥트리 구조의 루트 노드(root node)에 먼저 매칭한다. 그 다음으로, 리프 노드가 아닌 하위 노드들(자식 노드들)에 대응하는 어트리뷰트 데이터를 각각 하위 노드들(자식 노드들)부터 리프 노드의 레벨에 포함된 노드들까지 매칭한다.
위치 예측 단계(33003)는, 수신한 디코딩된 어트리뷰트(decoded attribute)가 매칭되는 포인트의 실제 위치를 예측한다. 위치 예측 단계(33003)는 예를 들어, 옥트리 구조(octree structure)에서 수신한 디코딩된 어트리뷰트(decoded attribute)가 매칭되는 포인트의 실제 위치에 해당하는 리프 노드(leaf node)를 예측할 수 있다.
위치 예측 단계(33003)에서, 실시예들에 따른 포인트 클라우드 데이터 디코더가 포인트의 실제 위치 또는 실제 위치에 해당하는 리프 노드(leaf node)를 예측하는 방법은 도 35에서 자세히 기술한다.
위치 예측 단계(33003)는, 디코딩(복원)된 포인트 클라우드 데이터의 어트리뷰트에 대응되는 포인트의 실제 위치 정보를 추정할 수 있는 경우, 스케일러블 디코딩/레프리젠테이션(scalable decoding/representation)을 위해 옥트리의 모든 레벨의 노드들을 매칭하지 않고서도 포인트를 임의의 위치가 아닌 실제 포인트의 위치를 출력할 수 있다.
어트리뷰트-포인트 매칭(33004)이란, 위치 예측 단계(33003)에서 예측된 포인트의 실제 위치(또는 그에 해당하는 리프 노드)에 디코딩된 어트리뷰트(decoded attribute)를 매칭하는 것을 의미한다. 즉, 어트리뷰트-노드 매칭(attribute to node matching)에서 매칭된 어트리뷰트 데이터를 실제 위치하게 되는 포인트에 대응하는 리프 노드(leaf node)에 매칭하는 것을 의미한다.
실시예들에 따른 디코더는 도 33에서 도시된 바와 같이, 위치 예측 단계(33003) 및 어트리뷰트-포인트 매칭 단계(33004)를, 루트 노드부터 리프 노드의 상위 노드에 해당하는 노드들 각각에 대하여 별도로 수행할 수도 있다. 또한, 실시예들에 따른 디코더는 위치 예측 단계(33003) 및 어트리뷰트-포인트 매칭 단계(33004)를, 옥트리 구조에 포함된 리프 노드들을 제외한 모든 노드들에 어트리뷰트 데이터를 먼저 매칭한 후 마지막에 수행될 수도 있다.
도 34는 실시예들에 따른 포인트 클라우드 데이터 디코더가 어트리뷰트-노드 매칭(attribute to node matching)을 수행하는 동작을 나타낸다.
실시예들에 따른 포인트 클라우드 데이터의 디코더는 실시예들에 따른 컬러라이즈드 옥트리를 생성한다. 도 34에서 설명한 실시예들에 따른 동작들은 도 32의 어트리뷰트 리컨스트럭션 & 옥트리 매칭부(32006)에서 수행될 수 있다. 도 34에서 설명한 실시예들에 따른 동작들은 도 33에 설명한 실시예들에 따른 동작들 중 일부 또는 전부에 대응될 수 있다.
도 34는 실시예들에 따른 옥트리 구조(풀 지오메트리)에 포함된 오큐파이드 노드(occupied node)에 어트리뷰트 데이터를 매칭하는 과정을 도시한다.
실시예들에 따른 포인트 클라우드 데이터 디코더(또는 스케일러블 디코더, scalable decoder)는, 실시예들에 따른 컬러라이즈드 옥트리를 생성하기 위해, 어트리뷰트 비트스트림을 디코딩하여 디코딩된 어트리뷰트 데이터(decoded attribute data)를 생성하는 단계(34000), 디코딩하여 디코딩된 어트리뷰트 데이터 중 옥트리 구조(octree structure)의 루트 노드(root node)에 대응하는 어트리뷰트 데이터를 옥트리 구조의 루트 노드에 매칭하는 단계(34001), 루트 노드의 자식 노드들(child nodes)부터 리프 노드의 직전 상위 노드까지 디코딩된 어트리뷰트 데이터를 매칭하는 단계(34002) 및/또는 리프 노드에 디코딩된 어트리뷰트 데이터를 매칭하는 단계(34003)를 포함할 수 있다. 실시예들에 따른 수신 장치는 어트리뷰트 비트스트림을 디코딩하는 단계(34000)를 수행한다.
실시예들에 따른 수신 장치는 디코딩된 어트리뷰트 데이터(decoded attribute data) 중 루트 노드(root node)에 대응하는 어트리뷰트 데이터를 옥트리 구조(octree structure)의 루트 노드에 매칭(34001a)할 수 있다.
실시예들에 따른 수신 장치는 루트 노드에 어트리뷰트 데이터가 매칭되면(34001a), 디코딩된 어트리뷰트 데이터 중 매칭된 어트리뷰트 데이터를 별도로 시그널링 또는 저장할 수 있다. 예를 들어, 매칭된 어트리뷰트 데이터를 reconstructred 배열 내에 저장함으로써, c2 어트리뷰트 데이터가 이미 매칭된 디코딩된 데이터임을 나타낼 수 있다.
실시예들에 따른 수신 장치는 루트 노드에 어트리뷰트 데이터가 매칭되면(34001a), 디코딩된 어트리뷰트 데이터 중 매칭된 어트리뷰트 데이터를 제외한 나머지 어트리뷰트 데이터를 별도로 시그널링 또는 저장할 수 있다. 예를 들어, 나머지 어트리뷰트 데이터를 residuals 배열 내에 저장함으로써, c'1, c'5 어트리뷰트 데이터가 아직 매칭되지 않은 나머지 디코딩된 데이터에 관한 것임을 나타낼 수 있다.
실시예들에 따른 수신 장치는 디코딩된 어트리뷰트 데이터(decoded attribute data) 중 리프 노드(leaf node)를 제외한 나머지 노드들에 대응하는 어트리뷰트 데이터를 옥트리 구조(octree structure)의 해당 노드들에 매칭(34002a)할 수 있다.
실시예들에 따른 수신 장치는 리프 노드(leaf node)를 제외한 나머지 노드들에 어트리뷰트 데이터가 매칭되면(34002a), 디코딩된 어트리뷰트 데이터 중 매칭된 어트리뷰트 데이터를 별도로 시그널링 또는 저장할 수 있다. 예를 들어, 매칭된 어트리뷰트 데이터를 reconstructred 배열 내에 저장함으로써, c2, c1, c5 어트리뷰트 데이터가 이미 매칭된 디코딩된 데이터임을 나타낼 수 있다.
실시예들에 따른 수신 장치는 리프 노드(leaf node)를 제외한 나머지 노드들에 어트리뷰트 데이터가 매칭되면(34002a), 디코딩된 어트리뷰트 데이터 중 매칭된 어트리뷰트 데이터를 제외한 나머지 어트리뷰트 데이터를 별도로 시그널링 또는 저장할 수 있다. 예를 들어, 나머지 어트리뷰트 데이터를 residuals 배열 내에 저장함으로써, c'3, c'4, c'6, c'7, c'8, c'9 어트리뷰트 데이터가 아직 매칭되지 않은 나머지 디코딩된 데이터에 관한 것임을 나타낼 수 있다.
실시예들에 따른 수신 장치는 리프 노드(leaf node)의 레벨에 포함된 노드들에 대해서도 디코딩된 어트리뷰트 데이터를 매칭(34003)할 수 있다. 34003 단계는 도 32의 어트리뷰트-포인트 클라우드 데이터 매칭부(32006c) 및/또는 도 33의 어트리뷰트-노드 매칭(attribute to node matching, 33001)에 대응될 수 있다.
예를 들어, 수신 장치는 리프 노드의 직전 노드들까지 어트리뷰트 데이터를 매칭할 경우, 디코딩된 어트리뷰트 데이터 중 c3, c4, c6, c7, c8, c9에 해당하는 어트리뷰트 데이터가 남는다. c3, c4, c6, c7, c8, c9에 해당하는 어트리뷰트 데이터는 모두 리프 노드들에 매칭(attribute to node matching)될 수 있다.
실시예들에 따른 포인트 클라우드 데이터 수신 장치(디코더)는 도 34에 설명한 어트리뷰트-노드 매칭(attribute to node matching)을 수행한 후, 시그널링 정보(예를 들어, 실시예들에 따른 octree_full_level_present_flag 정보 등)에 기초하여 어트리뷰트-포인트 매칭(attribute-point matching)을 수행할 수 있다. 이 과정은 도 33에서 설명한 위치 예측 단계(33003) 및/또는 어트리뷰트-포인트 매칭 단계(33004)를 의미할 수 있다.
도 35은 실시예들에 따른 수신 장치가 실시예들에 따른 위치 예측(position estimation)을 수행하는 과정을 나타낸다.
도 35에 나타난 수식에 따른 동작은 도 33의 위치 예측 단계(33003, position estimation) 및/또는 어트리뷰트-포인트 매칭 단계(33004, attribute-point matching)에 대응될 수 있다. 즉, 실시예들에 따른 포인트 클라우드 데이터 수신 장치(또는 디코더)는, 도 35에 나타난 수식에 기초하여 포인트의 실제 위치 또는 옥트리 구조(octree structure)의 실제 위치에 해당하는 리프 노드(leaf node)를 예측하여, 예측된 리프 노드에 디코딩된 어트리뷰트 데이터를 매칭할 수 있다.
도 35에 나타난 수식에 따른 동작은 도 32의 옥트리-포인트 클라우드 데이터 매칭부(32006c)에서 수행될 수 있고, 도 34에 나타난 34003 단계에 대응될 수 있다.
도 35에 나타난 수식은 디코딩된 어트리뷰트 데이터를 리프 노드(leaf node)에 매칭하기 위하여 즉, 실시예들에 따른 어트리뷰트-포인트 매칭(attribute to point matching)을 수행하기 위하여 어트리뷰트 데이터에 대응하는 리프 노드(또는 그 위치)를 예측하기 위해 사용되는 수식이다.
실시예들에 따른 수신 장치는 실시예들에 따른 송신 장치에서 수행하는 어트리뷰트 예측과 같이 레벨이 내려가면서 (루트 노드로부터 리프 노드로 향하는 방향으로) 어트리뷰트 데이터을 예측할 수 있다. 실시예들에 따른 예측 방법은 송신부에서 사용한 방법과 동일한 방법을 사용할 수 있다. 예를 들어, 부모 노드의 리컨스트럭션된 어트리뷰트 데이터를 부모 노들의 자식 노드에 대한 예측 값으로 사용할 수 있다. 예를 들어, 예측 값은, 네이버(neighbor)에 대한 정의에 따라 결정되는 범위를 다르게 적용할 수 있다. 예를 들면, 실시예들에 따른 부모 노드의 어트리뷰트 데이터는 실시예들에 따른 송신 장치에 의해 아래와 같이 예측될 수 있다.
Figure PCTKR2020008571-appb-img-000022
실시예들에 따른 수신 장치는 예측된 어트리뷰트 데이터를 기반으로, 각 자식 노드의 속성을 재구성하기 위해서 송신 장치에서 사용한 예측 오류 생성 방법의 역을 수행할 수 있다. 예를 들면, 실시예들에 따른 송신 장치가, 원본 어트리뷰트(source attribute)와 예측 속성(predicted attribute)의 차이(잔차)로 예측 오류(prediction error)를 생성한 경우, 수신 장치는 실시예들에 따른 수신 장치가 추정한 예측 어트리뷰트와 디코딩된 예측 오류의 값을 더함으로써 어트리뷰트 데이터를 재구성 수 있다. 실시예들에 따른 송신 장치는 어트리뷰트 에러 생성 방법에 대한 정보를 수신 장치로 전달할 수 있다. 예를 들면, 실시예들에 따른 자식 노드(또는 리프 노드들)의 어트리뷰트 데이터는 실시예들에 따른 수신 장치에 의해 아래와 같이 예측될 수 있다.
Figure PCTKR2020008571-appb-img-000023
C^l (x, y, z)는 실시예들에 따른 자식 노들의 어트리뷰트 데이터이다. g-1{ }는 는 실시예들에 따른 송신 장치가 예측을 수행하는 방법의 역을 나타낸 함수이다. p^l(x, y, z)는 실시예들에 따른 예측된 부모 노드의 어트리뷰트 데이터를 의미한다. r^l(x, y, z)는 실시예들에 따른 예측된 부모 노드의 어트리뷰트 데이터에 적용될 잔차 값(디코딩된 어트리뷰트 데이터에 포함될 수 있음)를 의미한다.
먼저 수신 장치는 실시예들에 따른 디코딩된 어트리뷰트 데이터에 대해 어트리뷰트-노드 매칭(attribute to node matching)을 수행한다. 즉, 수신 장치는 실시예들에 따른 디코딩된 어트리뷰트 데이터를 리프 노드가 아닌 특정 노드에 매칭한다.
다음으로, 수신 장치는 매칭된 노드를 부모 노드(parent node)로 갖는 오큐파이드 리프 노드들(leaf node)들을 검출한다. 오큐파이드 리프 노드들(leaf node)들은, 매칭된 노드를 부모 노드(parent node)로 갖는 네이버 노드들(neighbor nodes)이라고 호칭할 수 있다.
P_GeoCtr (x, y, z)는 실시예들에 따른 부모 노드(parent node)의 어트리뷰트 정보를 의미한다. (x_n, y_n, z_n)은 실시예들에 따른 n개의 포인트들을 (x, y, z) 좌표로 나타낸 것이다. NEIGHBOR 는 (x_n, y_n, z_n) 포인트의 네이버(neighbor)에 대응하는 포인트들의 집합을 의미할 수 있다. Attr(x_n, y_n, z_n)는 n개의 포인트들 각각에 대한 어트리뷰트 정보를 나타낸 것이다. 즉, Attr (x_n, y_n, z_n)는 (x_n, y_n, z_n) 위치에 있는 포인트의 어트리뷰트 정보를 나타낸다. 다시 말해, Attr(point) 함수는 point의 어트리뷰트 정보를 반환하는 함수로 이해할 수 있다. f{Attr(x_n, y_n, z_n) | (x_n, y_n, z_n) ∈ NEIGHBOR}는, 특정 포인트의 네이버(neighbor)에 대응하는 포인트들을 인풋(input)으로 할 때, 해당 네이버 포인트들 중 하나인 (x_n, y_n, z_n) 포인트의 어트리뷰트 정보를 반환하는 함수를 의미한다. f{Attr(x_n, y_n, z_n) | (x_n, y_n, z_n) ∈ NEIGHBOR}는, 35000a에 나타난 수식의 값이 최소가 되는 포인트 (x_n, y_n, z_n) 의 어트리뷰트 값을 의미한다. s(x_n, y_n, z_n)은 실시예들에 따른 포인트들 중 부모 노드(parent node)로 선택되었는지 여부를 나타낸다.
예를 들어, s(x_n, y_n, z_n)은 아직 실시예들에 따른 인코더에 의해, 부모 노드로 매칭할 노드로 선택되지 않은 노드를 의미할 수 있다. 실시예들에 따른 포인트 클라우드 데이터 송신 장치 및/또는 수신 장치는, 선택된 포인트의 s() = 0으로 세팅하여 다른 노드를 매칭할 때 중복 선택되지 않도록 할 수 있다.
M은 실시예들에 따른 네이버 포인트(neighbor point)들의 개수를 의미할 수 있다. [x^-, y^-, z^-]^T는 실시예들에 따른 네이버 포인트들의 평균 위치를 의미할 수 있다. 실시예들에 따른 네이버 포인트들의 평균 위치는 도 24에 도시된 바에 의해 결정될 수 있다. || [x^-, y^-, z^-]^T - [x_n, y_n, z_n]^T ||는, 각 네이버 포인트와 네이버 포인트들의 평균 위치의 거리(예를 들어, 유클리디언 거리)를 의미할 수 있다.
정리하면, 실시예들에 따른 수신 장치는 도 35에 나타난 수식을 이용하여 디코딩된 어트리뷰트에 대응하는 포인트의 실제 위치를 예측할 수 있다. 예를 들면, 수신 장치는, 지오메트리 데이터를 이용하여, 특정 노드의 NEIGHBOR에 해당하는 (x_n, y_n, z_n)를 탐색할 수 있고, NEIGHBOR에 해당하는 포인트들의 상술한 M값, s(x_n, y_n, z_n)값, weight(x_n, y_n, z_n) 값, [x^-, y^-, z^-]^T 값 및 || [x^-, y^-, z^-]^T - [x_n, y_n, z_n]^T || 등을 계산할 수 있다. 따라서, 각 포인트들의 위치에 대하여 35000a에 해당하는 값을 계산한 뒤, 디코딩된 어트리뷰트 정보와 합치 여부를 확인함으로써, 특정 노드에 매칭하고자 하는 어트리뷰트 데이터에 대응하는 포인트의 위치를 예측할 수 있다.
도 36은 실시예들에 따른 포인트 클라우드 데이터 디코더가 컬러라이즈드 옥트리(colorized octree)를 생성하는 과정의 다른 실시예를 나타낸다.
구체적으로, 도 36은 실시예들에 따른 디코더가 어트리뷰트-노드 매칭(attribute to node matching) 및/또는 어트리뷰트-포인트 매칭(attribute to point matching)을 수행하여 파셜 레프리젠테이션(partial representation) 또는 풀 레프리젠테이션(full representation)을 위한 컬러라이즈드 옥트리를 생성하는 과정을 나타낸다.
실시예들에 따른 포인트 클라우드 데이터의 디코더는 실시예들에 따른 컬러라이즈드 옥트리를 생성한다. 도 36에서 설명한 실시예들에 따른 동작들은 도 32의 어트리뷰트 리컨스트럭션 & 옥트리 매칭부(32006) 및/또는 스케일러블 레프리젠테이션부(32007)에서 수행될 수 있다. 도 36에서 설명한 실시예들에 따른 동작들은 도 33에 설명한 실시예들에 따른 동작들 중 일부 또는 전부에 대응될 수 있다. 또한, 도 36에서 설명한 실시예들에 따른 동작들은 도 34에 설명한 동작들을 포함한다.
실시예들에 따른 포인트 클라우드 데이터 디코더(또는 스케일러블 디코더, scalable decoder)는, 실시예들에 따른 컬러라이즈드 옥트리를 생성하기 위해, 어트리뷰트 비트스트림을 디코딩하여 디코딩된 어트리뷰트 데이터(decoded attribute data)를 생성하는 단계(34000), 디코딩하여 디코딩된 어트리뷰트 데이터 중 옥트리 구조(octree structure)의 루트 노드(root node)에 대응하는 어트리뷰트 데이터를 옥트리 구조의 루트 노드에 매칭하는 단계(34001), 루트 노드의 자식 노드들(child nodes)부터 리프 노드의 직전 상위 노드까지 디코딩된 어트리뷰트 데이터를 매칭하는 단계(34002)를 수행할 수 있다. 또한, 실시예들에 따른 포인트 클라우드 데이터 디코더는 리프 노드를 매칭하는 단계(34003)를 더 포함할 수 있다.
실시예들에 따른 수신 장치는 어트리뷰트 비트스트림을 디코딩하는 단계(34000)를 수행한다. 이 단계에서 수신된 어트리뷰트 비트스트림은 도 30의 비트스트림 선택부(30003)에 의해 선택된, 일부 어트리뷰트 데이터를 포함하는 비트스트림을 의미한다. 즉, 이 단계에서 어트리뷰트 비트스트림은 파셜 어트리뷰트 정보(partial attribute)만 포함하므로, 34000b에 나타난 어트리뷰트 데이터는 포함하지 않을 수 있다.
실시예들에 따른 수신 장치는 디코딩된 어트리뷰트 데이터(decoded attribute data) 중 루트 노드(root node)에 대응하는 어트리뷰트 데이터를 옥트리 구조(octree structure)의 루트 노드에 매칭(36002a)할 수 있다. 36002a 단계는 도 32의 어트리뷰트-노드 매칭부(32006b) 및/또는 도 33의 어트리뷰트-노드 매칭(attribute to node matching, 33001)에 대응될 수 있다.
실시예들에 따른 수신 장치는 루트 노드에 어트리뷰트 데이터가 매칭되면(36002a), 도 34에서 설명한 바와 같이, 디코딩된 어트리뷰트 데이터 중 매칭된 어트리뷰트 데이터를 별도로 시그널링 또는 저장할 수 있다. 또한, 실시예들에 따른 수신 장치는 루트 노드에 어트리뷰트 데이터가 매칭되면(36002a), 도 34에서 설명한 바와 같이, 디코딩된 어트리뷰트 데이터 중 매칭된 어트리뷰트 데이터를 제외한 나머지 어트리뷰트 데이터를 별도로 시그널링 또는 저장할 수 있다.
만약 실시예들에 따른 지오메트리 비트스트림이 풀 지오메트리 정보를 포함한다면, 즉 옥트리 구조(octree structure)가 풀 지오메트리 정보에 대응한다면(예를 들어, octree_full_level_present_flag==1인 경우), 매칭하려는 어트리뷰트 데이터에 대응하는 실제 포인트의 리프 노드에 실시예들에 따른 어트리뷰트 데이터를 더 매칭(36002b)할 수 있다. 36002b 단계는 도 32의 어트리뷰트-노드 매칭부(32006c) 및/또는 도 33의 어트리뷰트-포인트 매칭(attribute to point matching, 33004)에 대응될 수 있다.
실시예들에 따른 수신 장치는 실제 포인트의 리프 노드에 어트리뷰트 데이터가 매칭되면(36002b), 실제 포인트의 리프 노드에 해당 어트리뷰트 정보가 매칭되었음을 별도로 시그널링 또는 저장할 수 있다. 예를 들어, 수신 장치는 실제 포인트의 리프 노드에 해당 어트리뷰트 정보가 매칭되었음을 matched 시그널링 정보 또는 배열에 저장할 수 있다.
실시예들에 따른 수신 장치는 디코딩된 어트리뷰트 데이터(decoded attribute data) 중 리프 노드(leaf node)를 제외한 나머지 노드들에 대응하는 어트리뷰트 데이터를 옥트리 구조(octree structure)의 해당 노드들에 매칭(36003a)할 수 있다. 36003a 단계는 도 32의 어트리뷰트-노드 매칭부(32006b) 및/또는 도 33의 어트리뷰트-노드 매칭(attribute to node matching, 33001)에 대응될 수 있다.
마찬가지로, 만약 실시예들에 따른 지오메트리 비트스트림이 풀 지오메트리 정보를 포함한다면, 즉 옥트리 구조(octree structure)가 풀 지오메트리 정보에 대응한다면(예를 들어, octree_full_level_present_flag==1인 경우), 매칭하려는 어트리뷰트 데이터에 대응하는 실제 포인트의 리프 노드에 실시예들에 따른 어트리뷰트 데이터를 더 매칭(36003b)할 수 있다. 36003b 단계는 도 32의 어트리뷰트-노드 매칭부(32006c) 및/또는 도 33의 어트리뷰트-포인트 매칭(attribute to point matching, 33004)에 대응될 수 있다.
실시예들에 따른 수신 장치는 디코딩된 어트리뷰트 데이터(decoded attribute data) 중 리프 노드에 대응하는 어트리뷰트 데이터를 옥트리 구조(octree structure)의 해당 노드들에 매칭(36004a)할 수 있다. 36004a 단계는 도 32의 어트리뷰트-노드 매칭부(32006b) 및/또는 도 33의 어트리뷰트-노드 매칭(attribute to node matching, 33001)에 대응될 수 있다.
36004a 단계에서는 리프 노드(leaf node)에 어트리뷰트 데이터가 매칭되었으므로, 매칭된 어트리뷰트 데이터에 대하여 어트리뷰트-포인트 매칭(attribute to point matching)이 수행되지 않을 수 있다.
실시예들에 따르면, 어트리뷰트-노드 매칭(attribute to node matching)이 수행되지 않은 어트리뷰트 데이터를 매칭되지 않은 오큐파이드 리프 노드에 매칭한다. 즉, 수신 장치는 어트리뷰트-노드 매칭(attribute to node matching)이 수행되지 않은 어트리뷰트 데이터에 대하여 어트리뷰트-포인트 매칭(attributre to point matching)을 수행(36004b)할 수 있다.
이하에서는, 상술한 실시예들에 따른 동작들을, 도 30에서 설명한 스케일러블 디코더와 연관지어 설명한다.
도 36에서 설명하는 동작은, 도 30에서 설명한 스케일러블 디코더(30004a-30004c)를 의미할 수 있다.
예를 들어, 도 36에서 설명하는 동작들의 일부의 조합 또는 전부는 도 30에서 설명한 첫 번째 실시예들에 따른 스케일러블 디코더(30004a), 두 번째 실시예들에 따른 스케일러블 디코더(30004b) 또는 세 번째 실시예들에 따른 스케일러블 디코더(30004c)의 동작을 의미할 수 있다.
먼저 도 30에서 설명한 첫 번째 실시예들에 따른 스케일러블 디코더(30004a)의 동작을 도 36의 동작과 연관지어 설명한다.
도 30을 참조하면, 첫 번째 실시예들에 따른 스케일러블 디코더(30004a)는 파셜 지오메트리 정보(partial geometry)와 파셜 어트리뷰트 정보(partial attribute) 정보를 수신한다. 실시예들에 따르면, 도 36에 나타난 옥트리 구조(octree structure)는 수신 포인트 클라우드 데이터의 포인트들의 위치 정보를 나타내는 옥트리 구조의 일부 레벨(level)만을 나타낸다. (즉, 파셜 지오메트리(partial geometry) 정보)
따라서, 실시예들에 따르면, 비트스트림에 포함된 시그널링 정보 내에 포함된 octree_full_level_present_flag 정보는 0일 수 있다. 따라서, 첫 번째 실시예들에 따른 스케일러블 디코더(30004b)는 octree_full_level_present_flag의 값이 0임에 대응하여, 실시예들에 따른 어트리뷰트-포인트 매칭(attribute-point matching) 동작이 수행되지 않는다. 첫 번째 실시예들에 따른 스케일러블 디코더가 수신한 실시예들에 따른 옥트리 구조(octree structure)는 일부 레벨(level)에 대한 옥트리 구조이고, 포인트의 정확한 위치 정보를 포함하지 않기 때문이다.
따라서, 실시예들에 따른 수신 장치는 낮은 레졸루션(low resolution)의 포인트 클라우드 콘텐트를 제공하기 위해 파셜 레프리젠테이션(partial representation)을 수행하는 대신, 어트리뷰트-포인트 매칭 동작을 수행하지 않음으로써 사용자에게 신속하게 포인트 클라우드 컨텐츠를 제공할 수 있다.
정리하면, 파셜 지오메트리 정보(partial geometry)와 파셜 어트리뷰트 정보(partial attribute) 정보를 수신하는 실시예들에 따른 스케일러블 디코더(30004b)는, octree_full_level_present_flag의 값이 0임에 대응하여, 옥트리 구조에 포함된 노드들에 대하여 상술한 어트리뷰트-노드 매칭(attribute to node matching)을 수행(36002a, 36003a)하여, 통신 상태가 저조한 환경에서도 사용자에게 신속하게 포인트 클라우드 컨텐츠를 제공할 수 있다.
다음으로, 도 30에서 설명한 두 번째 실시예들에 따른 스케일러블 디코더(30004b)의 동작을 도 36의 동작과 연관지어 설명한다.
도 30을 참조하면, 두 번째 실시예들에 따른 스케일러블 디코더(30004b)는 풀 지오메트리 정보(full geometry)와 파셜 어트리뷰트 정보(partial attribute) 정보를 수신한다. 실시예들에 따르면, 도 36에 나타난 옥트리 구조(octree structure)는 수신 포인트 클라우드 데이터의 포인트들의 위치 정보를 나타내는 옥트리 구조의 모든 레벨(level)을 포함한다. (즉, 풀 지오메트리(partial geometry) 정보)
따라서, 비트스트림에 포함된 시그널링 정보 내에 포함된 octree_full_level_present_flag 정보는 1일 수 있다. 따라서, 두 번째 실시예들에 따른 스케일러블 디코더(30004b)는 octree_full_level_present_flag의 값이 1임에 대응하여, 실시예들에 따른 어트리뷰트-포인트 매칭(attribute-point matching) 동작이 수행될 수 있다. 두 번째 실시예들에 따른 스케일러블 디코더가 수신한 실시예들에 따른 옥트리 구조(octree structure)는 모든 레벨(level)에 대한 옥트리 구조이고, 포인트의 정확한 위치 정보를 포함하기 때문이다.
실시예들에 따른 스케일러블 디코더는 파셜 어트리뷰트 정보(partial attribute) 정보를 수신하기 때문에, 모든 포인트들에 대하여 어트리뷰트 정보를 매칭할 수 없다. 따라서, 실시예들에 따른 두 번째 실시예들에 따른 스케일러블 디코더(30004b)는 수신한 어트리뷰트 데이터에 대응하는 포인트(노드)에 대해서만 매칭을 수행할 수 있다. 따라서, 두 번째 실시예들에 따른 스케일러블 디코더(30004b)는 수신한 어트리뷰트 데이터에 대하여만 옥트리 구조(octree structure)에 어트리뷰트-노드 매칭(attribute to node matching)을 수행(36002a, 36003a)하고, 어트리뷰트-포인트 매칭(attribute to point matching)을 수행(36002b, 36003b)할 수 있다.
따라서, 실시예들에 따른 수신 장치는, 포인트들의 위치 정보가 상대적으로 중요한 포인트 클라우드 데이터에 대하여 상대적으로 높은 레졸루션(resolution)의 포인트 클라우드 콘텐트를 제공하기 위해 파셜 레프리젠테이션(partial representation)을 수행하는 대신, 불필요한 어트리뷰트 정보에 대하여 매칭 동작을 수행하지 않게 함으로써, 사용자에게 신속하게 포인트 클라우드 컨텐츠를 제공할 수 있다.
정리하면, 풀 지오메트리 정보(full geometry)와 파셜 어트리뷰트 정보(partial attribute) 정보를 수신하는 실시예들에 따른 스케일러블 디코더(30004b)는, octree_full_level_present_flag의 값이 1임에 대응하여, 옥트리 구조에 포함된 수신한 어트리뷰트 데이터에 해당하는 노드들에 대하여 상술한 어트리뷰트-노드 매칭(attribute to node matching) 및/또는 어트리뷰트-포인트 매칭(attribute to point matching)을 수행하여, 사용자에게 적합한 포인트 클라우드 컨텐츠를 제공할 수 있다.
다음으로, 도 30에서 설명한 세 번째 실시예들에 따른 스케일러블 디코더(30004c)의 동작을 도 36의 동작과 연관지어 설명한다.
도 30을 참조하면, 세 번째 실시예들에 따른 스케일러블 디코더(30004c)는 풀 지오메트리 정보(full geometry)와 풀 어트리뷰트 정보(full attribute) 정보를 수신한다. 실시예들에 따르면, 도 36에 나타난 옥트리 구조(octree structure)는 수신 포인트 클라우드 데이터의 포인트들의 위치 정보를 나타내는 옥트리 구조의 모든 레벨(level)을 포함한다. (즉, 풀 지오메트리(partial geometry) 정보)
따라서, 실시예들에 따르면, 비트스트림에 포함된 시그널링 정보 내에 포함된 octree_full_level_present_flag 정보는 1일 수 있다. 따라서, 세 번째 실시예들에 따른 스케일러블 디코더(30004c)는 octree_full_level_present_flag의 값이 1임에 대응하여, 실시예들에 따른 어트리뷰트-포인트 매칭(attribute-point matching) 동작이 수행될 수 있다.
실시예들에 따른 스케일러블 디코더는 풀 어트리뷰트 정보(full attribute) 정보를 수신하기 때문에, 모든 포인트들에 대하여 어트리뷰트 정보를 매칭할 수 있다. 따라서, 실시예들에 따른 세 번째 실시예들에 따른 스케일러블 디코더(30004c)는 수신한 어트리뷰트 데이터에 대응하는 포인트(노드)에 대해서만 매칭을 수행할 수 있다. 따라서, 세 번째 실시예들에 따른 스케일러블 디코더(30004c)는 수신한 모든 어트리뷰트 데이터에 대하여 옥트리 구조(octree structure)에 포함된 노드들에 대하여 어트리뷰트-노드 매칭(attribute to node matching)을 수행(36002a, 36003a, 36004a)하고, 어트리뷰트-포인트 매칭(attribute to point matching)을 수행(36002b, 36003b, 36004b)할 수 있다. 즉, 세 번째 실시예들에 따른 스케일러블 디코더(30004c)는 옥트리 구조에 포함된 모든 오큐파이드 노드들에 대하여 어트리뷰트 데이터를 매칭할 수 있다.
따라서, 실시예들에 따른 수신 장치는, 포인트들의 위치와 어트리뷰트가 정확하게 현출되는 높은 레졸루션(resolution)의 포인트 클라우드 콘텐트를 제공하기 위해 풀 레프리젠테이션(full representation)을 수행하여, 수신 환경이 좋은 경우 또는 정확한 포인트 클라우드 컨텐츠가 제공될 필요가 있는 컨텐츠에 적합하다.
정리하면, 풀 지오메트리 정보(full geometry)와 풀 어트리뷰트 정보(full attribute) 정보를 수신하는 실시예들에 따른 스케일러블 디코더(30004c)는, octree_full_level_present_flag의 값이 1임에 대응하여, 옥트리 구조에 포함된 노드들에 대하여 상술한 어트리뷰트-노드 매칭(attribute to node matching) 및/또는 어트리뷰트-포인트 매칭(attribute to point matching)을 수행하여, 사용자에게 적합한 포인트 클라우드 컨텐츠를 제공할 수 있다.
도 37은 실시예들에 따른 포인트 클라우드 데이터 디코더가 스케일러블 레프리젠테이션(scalable representation)을 위해 디코딩하는 과정을 나타낸다.
도 37(A)은 실시예들에 따른 스케일러블 레프리젠테이션의 예시이다.
도 37(A)은 실시예들에 따른 포인트 클라우드 디코더(예를 들면 도 30 내지 36에서 설명한)의 스케일러블 레프리젠테이션의 예시이다. 도 37(A)의 좌측에 표시된 화살표는 지오메트리의 옥트리 구조의 뎁스가 증가하는 방향을 나타낸다. 실시예들에 따른 옥트리 구조의 최상위 노드는 최하위 뎁스 또는 처음 뎁스에 대응하고, 루트(Root)로 호칭된다. 실시예들에 따른 옥트리 구조의 최하위 노드는 최상위 뎁스 또는 마지막 뎁스에 대응하고 리프(Leaf)로 호칭된다. 실시예들에 따른 옥트리 구조의 뎁스는 루트에서 리프 방향으로 증가한다.
실시예들에 따른 포인트 클라우드 디코더는 성능에 따라 높은 레졸루션(high resolution) 포인트 클라우드 콘텐트(37004b)를 제공하기 위한 스케일러블 디코딩(37003b) 또는 낮은 레졸루션(low resolution) 포인트 클라우드 콘텐트(37004a)를 제공하기 위한 스케일러블 디코딩(37003a)을 수행한다.
높은 레졸루션 포인트 클라우드 콘텐트를 제공하기 위하여 포인트 클라우드 디코더는 옥트리 구조 전체에 대응하는 지오메트리 비트스트림(37001) 및 어트리뷰트 비트스트림(37002)을 디코딩(37003b)한다.
낮은 레졸루션 포인트 클라우드 콘텐트를 제공하기 위한 포인트 클라우드 디코더는 옥트리 구조의 특정 뎁스에 대응하는 파셜 지오메트리 비트스트림 (37001) 및 파셜 어트리뷰트 비트스트림(37002)을 디코딩(37003a)한다.
실시예들에 따른 어트리뷰트 디코딩은 지오메트리 디코딩에 기반하여 이루어진다. 따라서 포인트 클라우드 디코더가 파셜 어트리뷰트 비트스트림(1812-2)에 대응하는 어트리뷰트를 디코딩하는 경우에도, 포인트 클라우드 디코더는 지오메트리 비트스트림(37001)을 디코딩해야 한다. 즉, 37001에서 빗금 처리된 부분은 디스플레이 되지 않는 지오메트리 정보에 대응하나, 파셜 어트리뷰트 비트스트림(37002)에 대응하는 어트리뷰트를 디코딩하기 위해 전송 및 디코딩된다.
또한 실시예들에 따른 전송 장치 (예를 들면 도 1에서 설명한 전송 장치(10000) 또는 도 12에서 설명한 전송 장치) 또는 포인트 클라우드 인코더(도 1의 포인트 클라우드 비디오 인코더(10002), 도4의 포인트 클라우드 인코더, 도 12, 도 14 및 도 15에서 설명한 포인트 클라우드 인코더 등)는 옥트리 구조의 특정 뎁스에 대응하는 파셜 지오메트리 비트스트림 (37001의 상단 부분) 및 파셜 어트리뷰트 비트스트림(37002의 상단 부분)만을 전송할 수 있다. 낮은 레졸루션 포인트 클라우드 콘텐트를 제공하기 위한 포인트 클라우드 디코더는 옥트리 구조의 특정 뎁스에 대응하는 파셜 지오메트리 비트스트림(37001의 상단 부분) 및 파셜 어트리뷰트 비트스트림(37002의 상단 부분)을 디코딩(37003a)한다.
실시예들에 따른 포인트 클라우드 인코더는 지오메트리 구조에 어트리뷰트를 매칭하여 도 30 내지 도 36에서 설명한 컬러라이즈드 옥트리(colorized octree)를 생성한다. 실시예들에 따른 컬러라이즈드 옥트리는 지오메트리의 옥트리 구조를 나타내는 하나 또는 그 이상의 레벨들(또는 뎁스들)에 대하여 각 레벨의 노드와 어트리뷰트를 매칭하여 생성된다. 실시예들에 따른 포인트 클라우드 인코더는 생성된 컬러라이즈드 옥트리를 기반으로 어트리뷰트 인코딩을 수행한다. 또한 포인트 클라우드 인코더는 수신 장치에서 스케일러블 디코딩 및 스케일러블 레프리젠테이션을 수행할 수 있도록 컬러라이즈드 옥트리와 관련된 정보를 포함하는 스케일러블 레프리젠테이션 정보를 생성하고 인코드된 지오메트리 및 인코드된 어트리뷰와 함께 비트스트림을 통해 전송한다.
수신 장치는 스케일러블 레프리젠테이션 정보를 기반으로 송신 장치 또는 포인트 클라우드 인코더의 역과정으로서 컬러라이즈드 옥트리를 생성할 수 있다. 상술한 바와 같이 컬러라이즈드 옥트리는 지오메트리의 옥트리 구조에 매칭된 어트리뷰트를 나타낸다. 따라서 수신 장치는 컬러라이즈드 옥트리를 기반으로 특정 레벨을 선택하여 매칭된 어트리뷰트에 따라 저해상도의 포인트 클라우드 콘텐트를 출력 또는 렌더링할 수 있다. 특히 수신 장치는 별도의 수신 과정 또는 처리 과정 없이 수신 장치의 성능에 따른 다양한 레졸루션의 포인트 클라우드 콘텐트를 제공할 수 있다. 실시예들에 따른 전송 장치(또는 포인트 클라우드 인코더) 및 수신 장치(또는 포인트 클라우드 디코더) 모두 컬러라이즈드 옥트리를 생성할 수 있다. 실시예들에 따른 컬러라이즈드 옥트리 생성 과정 또는 방법은 옥트리 컬러라이제이션(octree colorization)이라고 호칭할 수 있다. 실시예들에 따른 포인트 클라우드 인코더는 옥트리 구조의 최상위 노드(최하위 레벨)부터 최하위 노드(최상위 레벨)에 대하여 전체 옥트리 구조에 대하여 옥트리 컬러라이제이션을 수행할 수도 있다. 또한 실시예들에 따른 포인트 클라우드 인코더는 옥트리 구조의 임의의 뎁스 구간(예를 들면 n-1 레벨부터 n레벨까지)에 대하여 옥트리 컬러라이제이션을 수행할 수 있다. 실시예들에 따른 포인트 클라우드 디코더는 상술한 스케일러블 코딩 정보를 기반으로 옥트리 컬러라이제이션을 수행할 수 있다.
도 37(B)는 실시예들에 따른 스케일러블 디코딩에 따른 지오메트리 및 어트리뷰트의 디테일을 나타낸다.
도 37(B)의 상단은 스케일러블 디코딩에 따른 지오메트리의 디테일을 나타내는 예시이다. 제 1 화살표 (37005c)은 옥트리의 상위 노드(즉, 루트 노드에 가까운 노드)부터 하위 노드 방향(즉, 리프 노드에 가까운 노드)을 나타낸다. 도면에 도시된 바와 같이 옥트리 상위 노드부터 하위 노드 방향으로 스케일러블 디코딩이 진행되면 더 많은 포인트들이 존재하므로 지오메트리의 디테일이 증가한다. 옥트리 구조의 리프 노드는 지오 메트리의 최상위 레벨 디테일에 대응한다.
도 37(B)의 하단은 스케일러블 디코딩에 따른 어트리뷰트의 디테일을 나타내는 예시이다. 제 2 화살표(37005d)는 옥트리의 상위 노드부터 하위 노드 방향을 나타낸다. 도면에 도시된 바와 같이 옥트리 상위 노드부터 하위 노드 방향으로 스케일러블 디코딩이 진행되면 어트리뷰트의 디테일이 증가한다.
도 38은 실시예들에 따른 포인트 클라우드 데이터 디코더가 스케일러블 레프리젠테이션(scalable representation)을 위해 디코딩하는 과정을 나타낸다.
구체적으로 도 38은 도 36에서 설명한, 실시예들에 따른 스케일러블 디코더(scalable decoder)가 디코딩하는 방법을 나타낸다.
<case 1>은 실시예들에 따른 스케일러블 디코더(scalable decoder)가 실시예들에 따른 풀 지오메트리(full geometry, 38001a) 정보 및 풀 어트리뷰트(full attribute, 38001b) 정보를 수신하여 스케일러블 디코딩(scalable decodeing)하는 것을 나타낸다.
<case 1>에서 설명하는 동작들은 도 36 및 도 30에서 설명하는 세 번째 실시예들에 따른 스케일러블 디코더(30004c)에서 수행될 수 있다. <case 1> 동작을 수행하는 스케일러블 디코더는, 모든 포인트들의 위치를 나타내는 옥트리 구조(octree structure)에 포함된 오큐파이드 노드들에 어트리뷰트 데이터를 매칭한 리컨스트럭티드 컬러라이즈드 옥트리(reconstructed colorized octree, 컬러라이즈드 옥트리라고도 호칭됨)를 생성한다. <case 1> 동작을 수행하는 스케일러블 디코더에서 생성한 리컨스트럭티드 컬러라이즈드 옥트리는 도 30 내지 도 37에서 설명한 어트리뷰트-노드 매칭(attribute to node matching) 및 어트리뷰트-포인트 매칭(attribute to point matching) 동작에 의해 생성될 수 있다.
스케일러블 디코더는 <case 1>에서 설명하는 동작들을 수행함으로써, 필요시 포인트 클라우드 컨텐츠를 높은 레졸루션(high resolution)으로 높은 퀄리티의 컨텐츠를 사용자에게 제공할 수 있다.
<case 2>은 실시예들에 따른 스케일러블 디코더(scalable decoder)가 실시예들에 따른 파셜 지오메트리(partial geometry, 38002a) 정보 및 파셜 어트리뷰트(partial attribute, 38002b) 정보를 수신하여 스케일러블 디코딩(scalable decodeing)하는 것을 나타낸다.
<case 2>에서 설명하는 동작들은 도 36 및 도 30에서 설명하는 첫 번째 실시예들에 따른 스케일러블 디코더(30004a)에서 수행될 수 있다. <case 2> 동작을 수행하는 스케일러블 디코더는, 포인트들의 위치를 나타내는 옥트리 구조의 일부 레벨에 대한 데이터만 포함한 옥트리 구조에 포함된 오큐파이드 노드들에 어트리뷰트 데이터를 매칭한 리컨스트럭티드 컬러라이즈드 옥트리(reconstructed colorized octree, 컬러라이즈드 옥트리라고도 호칭됨)를 생성한다. <case 2> 동작을 수행하는 스케일러블 디코더에서 생성한 리컨스트럭티드 컬러라이즈드 옥트리는 도 30 내지 도 37에서 설명한 어트리뷰트-노드 매칭(attribute to node matching) 동작에 의해 생성될 수 있다.
스케일러블 디코더는 <case 2>에서 설명하는 동작들을 수행함으로써, 포인트 클라우드 컨텐츠를 평균 수준의 레졸루션(average resolution)으로 신속하게 사용자에게 제공할 수 있다.
예를 들어 전체 octree depth = N, geometry octree depth = N-a, attribute octree depth = N-b 인 경우, S = max(a,b)이라고 정의할 때 출력 point cloud data은 S x S x S 로 스케일 다운(scale down)된 정보가 된다. 이 때, 출력되는 포인트 클라우드 데이터는 입력 data에 존재하는 실제 위치에 대한 복원 값이 아니라 스케일 다운되는 포인트 클라우드 데이터들을 묶어주는 S x S x S 크기의 cube의 중심 위치를 나타낼 수 있다.
<case 3>은 실시예들에 따른 스케일러블 디코더(scalable decoder)가 실시예들에 따른 풀 지오메트리(full geometry, 38003a) 정보 및 파셜 어트리뷰트(partial attribute, 38003b) 정보를 수신하여 스케일러블 디코딩(scalable decodeing)하는 것을 나타낸다.
<case 3>에서 설명하는 동작들은 도 36 및 도 30에서 설명하는 두 번째 실시예들에 따른 스케일러블 디코더(30004b)에서 수행될 수 있다. <case 3> 동작을 수행하는 스케일러블 디코더는, 포인트들의 위치를 나타내는 옥트리 구조의 모든 레벨에 대한 데이터만 포함한 옥트리 구조에 포함된 오큐파이드 노드들에 어트리뷰트 데이터의 일부를 매칭한 리컨스트럭티드 컬러라이즈드 옥트리(reconstructed colorized octree, 컬러라이즈드 옥트리라고도 호칭됨)를 생성한다. <case 3> 동작을 수행하는 스케일러블 디코더에서 생성한 리컨스트럭티드 컬러라이즈드 옥트리는 도 30 내지 도 37에서 설명한 어트리뷰트-노드 매칭(attribute to node matching) 및 어트리뷰트-포인트 매칭(attribute to point matching) 동작에 의해 생성될 수 있다.
스케일러블 디코더는 <case 3>에서 설명하는 동작들을 수행함으로써, 포인트들의 위치 정보가 상대적으로 중요한 포인트 클라우드 데이터에 대하여 상대적으로 높은 레졸루션(resolution)의 포인트 클라우드 콘텐트를 제공하기 위해 파셜 레프리젠테이션(partial representation)을 수행하는 대신, 불필요한 어트리뷰트 정보에 대하여 매칭 동작을 수행하지 않게 함으로써, 사용자에게 신속하게 포인트 클라우드 컨텐츠를 제공할 수 있다.
도 39는 실시예들에 따른 포인트 클라우드 데이터 송신 단계를 나타낸다.
실시예들에 따른 포인트 클라우드 데이터 송신 단계는, 포인트 클라우드 데이터를 인코딩하는 단계(39000) 및/또는 포인트 클라우드 데이터 및 포인트 클라우드 데이터에 대한 시그널링 정보를 포함하는 비트스트림을 전송하는 단계(39001)를 포함할 수 있다.
실시예들에 따른 포인트 클라우드 데이터는 포인트 클라우드 데이터의 포인트들의 위치 정보(포지션, position)를 나타내는 지오메트리 정보, 인트 클라우드 데이터의 포인트들의 속성 (어트리뷰트, attribute)들을 나타내는 어트리뷰트 정보를 포함할 수 있다.
포인트 클라우드 데이터를 인코딩하는 단계(39000)는 실시예들에 따른 포인트 클라우드에 포함된 지오메트리 정보를 인코딩하는 단계 및 실시예들에 따른 포인트 클라우드에 포함된 어트리뷰트 정보를 인코딩하는 단계를 포함한다. 포인트 클라우드 데이터를 인코딩하는 단계(39000)는 도 18 및 도 20에서 설명한 동작들, 도 19, 도 21-26에 설명한 동작들을 수행할 수 있다.
예를 들어, 어트리뷰트 정보를 인코딩하는 단계는, 지오메트리 정보의 옥트리 구조를 수신하는 단계, 옥트리 구조의 각 레벨에 하나 또는 그 이상의 어트리뷰트들을 매칭하여 컬러라이즈드 옥트리(colorized octree)를 생성하는 단계를 포함할 수 있다. 옥트리 구조는 하나 또는 그 이상의 레벨들로 표현될 수 있고, 컬러라이즈드 옥트리는 어트리뷰트 정보의 일부 또는 전부를 스케일러블 레프리젠테이션(scalable representation)할 수 있도록 어트리뷰트 정보를 인코딩하기 위해 사용될 수 있다. 실시예들에 따른 어트리뷰트 정보를 인코딩하는 단계는 컬라이즈드 옥트리에 매칭된 데이터 중 중복되는 데이터를 제거하는 단계를 더 포함할 수 있다
포인트 클라우드 데이터 및 포인트 클라우드 데이터에 대한 시그널링 정보를 포함하는 비트스트림을 전송하는 단계(39001)는, 상술한 인코딩된 포인트 클라우드 데이터를 전송한다. 실시예들에 따른 시그널링 정보는 도 27에서 설명한 정보를 포함할 수 있다. 또한, 시그널링 정보는 비트스트림이 옥트리 구조의 풀 레벨(full level)에 대한 데이터를 포함하는지 옥트리 구조의 일부 레벨(level)에 대한 데이터만 포함하는지 여부를 나타내는 정보(예를 들어, 실시예들에 따른 octree_full_level_present_flag 정보)를 포함할 수 있다.
도 40은 실시예들에 따른 포인트 클라우드 데이터 수신 단계를 나타낸다.
실시예들에 따른 포인트 클라우드 데이터 수신 단계는, 포인트 클라우드 데이터 및 시그널링 정보를 포함하는 비트스트림을 수신하는 단계(40000), 포인트 클라우드 데이터를 디코딩하는 단계(40001) 및/또는 디코딩된 포인트 클라우드 데이터를 렌더링하는 단계(40002)를 포함한다.
실시예들에 따른 비트스트림에 포함된 포인트 클라우드 데이터는 포인트 클라우드 데이트의 포인트들의 포지션을 나타내는 지오메트리 정보 및 포인트 클라우드 데이터의 포인트들의 하나 또는 그 이상의 어트리뷰트들을 나타내는 어트리뷰트 정보를 포함한다.
실시예들에 따른 시그널링 정보는 실시예들에 따른 비트스트림이 옥트리 구조의 풀 레벨(full level)에 대한 데이터를 포함하는지 옥트리 구조의 일부 레벨(level)에 대한 데이터만 포함하는지 여부를 나타내는 정보(예를 들어, 실시예들에 따른 octree_full_level_present_flag 정보)를 포함한다.
포인트 클라우드 데이터를 디코딩하는 단계(40001)는, 지오메트리 정보를 디코딩하는 단계 및 어트리뷰트 정보를 디코딩하는 단계를 포함한다. 포인트 클라우드 데이터를 디코딩하는 단계(40001)는, 포인트 클라우드 데이터를 옥트리 구조의 일부 레벨(level)에 대한 데이터만 포함하는지 여부를 나타내는 정보(예를 들어, octree_full_level_present_flag)에 기초하여 스케일러블 레프리젠테이션(scalable representation)할 수 있도록 어트리뷰트 정보를 디코딩하기 위한 컬러라이즈드 옥트리를 생성할 수 있다.
디코딩하는 단계(40001)는, 도 30 내지 도 38에서 설명한 실시예들에 따른 디코더의 동작 또는 디코딩하는 단계를 의미할 수 있다.
렌더링하는 단계(40002)는, 실시예들에 따른 디코딩된 포인트 클라우드 데이터를 렌더링한다. 실시예들에 따른 렌더링하는 단계(40002)는, 생성된 컬러라이즈드 옥트리에 기초하여 풀 레프리젠테이션(full representation) 또는 파셜 레프리젠테이션(partial represeneation)을 수행할 수 있다.
도 1 내지 도 40에서 설명한 실시예들에 따른 포인트 클라우드 데이터 처리 장치의 구성요소들은 메모리와 결합된 하나 또는 그 이상의 프로세서들을 포함하는 하드웨어, 소프트웨어, 펌웨어, 또는 이들의 결합으로 구현될 수 있다. 실시예들에 따른 디바이스의 구성요소들은 하나의 칩, 예를 들면 하나의 하드웨어 서킷으로 구현될 수 있다. 또한 실시예들에 따른 포인트 클라우드 데이터 처리 장치의 구성요소들은 각각 별도의 칩들로 구현될 수 있다. 또한 실시예들에 따른 포인트 클라우드 데이터 처리 장치의 구성요소들은 중 적어도 하나 이상은 하나 또는 그 이상의 프로그램들을 실행 할 수 있는 하나 또는 그 이상의 프로세서들로 구성될 수 있으며, 하나 또는 그 이상의 프로그램들은 도 1 내지 도 40에서 설명한 포인트 클라우드 데이터 처리 장치의 동작/방법들 중 어느 하나 또는 그 이상의 동작들을 수행시키거나, 수행하기 위한 인스트럭션들을 포함할 수 있다.
설명의 편의를 위하여 각 도면을 나누어 설명하였으나, 각 도면에 서술되어 있는 실시 예들을 병합하여 새로운 실시 예를 구현하도록 설계하는 것도 가능하다. 그리고, 통상의 기술자의 필요에 따라, 이전에 설명된 실시 예들을 실행하기 위한 프로그램이 기록되어 있는 컴퓨터에서 판독 가능한 기록 매체를 설계하는 것도 실시예들의 권리범위에 속한다. 실시예들에 따른 장치 및 방법은 상술한 바와 같이 설명된 실시 예들의 구성과 방법이 한정되게 적용될 수 있는 것이 아니라, 실시 예들은 다양한 변형이 이루어질 수 있도록 각 실시 예들의 전부 또는 일부가 선택적으로 조합되어 구성될 수도 있다. 실시예들의 바람직한 실시 예에 대하여 도시하고 설명하였지만, 실시예들은 상술한 특정의 실시 예에 한정되지 아니하며, 청구범위에서 청구하는 실시예들의 요지를 벗어남이 없이 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 다양한 변형실시가 가능한 것은 물론이고, 이러한 변형실시들은 실시예들의 기술적 사상이나 전망으로부터 개별적으로 이해돼서는 안 될 것이다.
실시예들에 따른 장치 및 방법에 대한 설명은 서로 보완하여 적용될 수 있다. 예를 들어, 실시예들에 따른 포인트 클라우드 데이터 전송 방법은 실시예들에 따른 포인트 클라우드 데이터 전송 장치 또는 포인트 클라우드 데이터 전송 장치에 포함된 구성요소들에 의해 수행될 수 있다. 또한 실시예들에 따른 포인트 클라우드 데이터 수신 방법은 실시예들에 따른 포인트 클라우드 데이터 수신 장치 또는 포인트 클라우드 데이터 수신 장치에 포함된 구성요소들에 의해 수행될 수 있다.
실시예들에 따른 장치의 다양한 구성요소들은 하드웨어, 소프트웨어, 펌웨어 또는 그것들의 조합에 의해 구성될 수 있다. 실시예들의 다양한 구성요소들은 하나의 칩, 예를 들면 하나의 하드웨어 서킷으로 구현될 수 있다 실시예들에 따라, 실시예들에 따른 구성요소들은 각각 별도의 칩들로 구현될 수 있다. 실시예들에 따라, 실시예들에 따른 장치의 구성요소들 중 적어도 하나 이상은 하나 또는 그 이상의 프로그램들을 실행 할 수 있는 하나 또는 그 이상의 프로세서들로 구성될 수 있으며, 하나 또는 그 이상의 프로그램들은 실시예들에 따른 동작/방법들 중 어느 하나 또는 그 이상의 동작/방법들을 수행시키거나, 수행시키기 위한 인스트럭션들을 포함할 수 있다. 실시예들에 따른 장치의 방법/동작들을 수행하기 위한 실행 가능한 인스트럭션들은 하나 또는 그 이상의 프로세서들에 의해 실행되기 위해 구성된 일시적이지 않은 CRM 또는 다른 컴퓨터 프로그램 제품들에 저장될 수 있거나, 하나 또는 그 이상의 프로세서들에 의해 실행되기 위해 구성된 일시적인 CRM 또는 다른 컴퓨터 프로그램 제품들에 저장될 수 있다. 또한 실시예들에 따른 메모리는 휘발성 메모리(예를 들면 RAM 등)뿐 만 아니라 비휘발성 메모리, 플래쉬 메모리, PROM등을 전부 포함하는 개념으로 사용될 수 있다. 또한, 인터넷을 통한 전송 등과 같은 캐리어 웨이브의 형태로 구현되는 것도 포함될 수 있다. 또한, 프로세서가 읽을 수 있는 기록매체는 네트워크로 연결된 컴퓨터 시스템에 분산되어, 분산방식으로 프로세서가 읽을 수 있는 코드가 저장되고 실행될 수 있다.
이 문서에서 “/”와 “,”는 “및/또는”으로 해석된다. 예를 들어, “A/B”는 “A 및/또는 B”로 해석되고, “A, B”는 “A 및/또는 B”로 해석된다. 추가적으로, “A/B/C”는 “A, B 및/또는 C 중 적어도 하나”를 의미한다. 또한, “A, B, C”도 “A, B 및/또는 C 중 적어도 하나”를 의미한다. 추가적으로, 이 문서에서 “또는”는 “및/또는”으로 해석된다. 예를 들어, “A 또는 B”은, 1) “A”만을 의미하거나, 2) “B”만을 의미하거나, 3) “A 및 B”를 의미할 수 있다. 달리 표현하면, 본 문서의 “또는”은 “추가적으로 또는 대체적으로(additionally or alternatively)”를 의미할 수 있다.
제1, 제2 등과 같은 용어는 실시예들의 다양한 구성요소들을 설명하기 위해 사용될 수 있다. 하지만 실시예들에 따른 다양한 구성요소들은 위 용어들에 의해 해석이 제한되어서는 안된다. 이러한 용어는 하나의 구성요소를 다른 구성요소와 구별하기 위해 사욛외는 것에 불과하다. 것에 불과하다. 예를 들어, 제1 사용자 인풋 시그널은 제2사용자 인풋 시그널로 지칭될 수 있다. 이와 유사하게, 제2사용자 인풋 시그널은 제1사용자 인풋시그널로 지칭될 수 있다. 이러한 용어의 사용은 다양한 실시예들의 범위 내에서 벗어나지 않는 것으로 해석되어야만 한다. 제1사용자 인풋 시그널 및 제2사용자 인풋 시그널은 모두 사용자 인풋 시그널들이지만, 문맥 상 명확하게 나타내지 않는 한 동일한 사용자 인풋 시그널들을 의미하지 않는다.
실시예들을 설명하기 위해 사용된 용어는 특정 실시예들을 설명하기 위한 목적으로 사용되고, 실시예들을 제한하기 위해서 의도되지 않는다. 실시예들의 설명 및 청구항에서 사용된 바와 같이, 문맥 상 명확하게 지칭하지 않는 한 단수는 복수를 포함하는 것으로 의도된다. 및/또는 표현은 용어 간의 모든 가능한 결합을 포함하는 의미로 사용된다. 포함한다 표현은 특징들, 수들, 단계들, 엘리먼트들, 및/또는 컴포넌트들이 존재하는 것을 설명하고, 추가적인 특징들, 수들, 단계들, 엘리먼트들, 및/또는 컴포넌트들을 포함하지 않는 것을 의미하지 않는다. 실시예들을 설명하기 위해 사용되는, ~인 경우, ~때 등의 조건 표현은 선택적인 경우로만 제한 해석되지 않는다. 특정 조건을 만족하는 때, 특정 조건에 대응하여 관련 동작을 수행하거나, 관련 정의가 해석되도록 의도되었다.
발명의 실시를 위한 최선의 형태에서 구체적으로 설명되었다.
본 발명의 사상이나 범위를 벗어나지 않고 본 발명에서 다양한 변경 및 변형이 가능함은 당업자에게 자명하다. 따라서, 본 발명은 첨부된 청구항 및 그 동등 범위 내에서 제공되는 본 발명의 변경 및 변형을 포함하는 것으로 의도된다.

Claims (20)

  1. 지오메트리(geometry) 정보 및 어트리뷰트(attribute) 정보를 포함하는 포인트 클라우드 데이터(point cloud data)를 인코딩하는 단계,
    상기 지오메트리 정보는 상기 포인트 클라우드 데이터의 포인트들의 포지션(position)들을 나타내는 정보이고,
    상기 어트리뷰트 정보는 상기 포인트 클라우드 데이터의 포인트들의 어트리뷰트들을 나타내는 정보임; 및
    상기 인코딩된 포인트 클라우드 데이터를 포함하는 비트스트림을 전송하는 단계; 를 포함하는,
    포인트 클라우드 데이터 처리 방법.
  2. 제1 항에 있어서,
    상기 포인트 클라우드 데이터를 인코딩하는 단계는:
    상기 지오메트리 정보를 인코딩하는 단계; 및
    상기 어트리뷰트 정보를 인코딩하는 단계; 를 포함하는,
    포인트 클라우드 데이터 처리 방법.
  3. 제2 항에 있어서, 상기 어트리뷰트 정보를 인코딩하는 단계는:
    상기 지오메트리 정보의 옥트리 구조를 수신하는 단계, 상기 옥트리 구조는 하나 또는 그 이상의 레벨들로 표현됨; 및
    상기 옥트리 구조의 각 레벨에 하나 또는 그 이상의 어트리뷰트들을 매칭하여 컬러라이즈드 옥트리(colorized octree)를 생성하는 단계,
    상기 컬러라이즈드 옥트리는 상기 어트리뷰트 정보의 일부 또는 전부를 스케일러블 레프리젠테이션(scalable representation)할 수 있도록 상기 어트리뷰트 정보를 인코딩하기 위해 사용됨; 를 포함하는,
    포인트 클라우드 데이터 처리 방법.
  4. 제3 항에 있어서, 상기 컬러라이즈드 옥트리는,
    하나 또는 그 이상의 어트리뷰트들을 상기 옥트리 구조의 리프 노드(leaf node)들에 매칭(matching)하고, 상기 리프 노드들에 매칭된 하나 또는 그 이상의 어트리뷰트들을 상기 리프 노드들이 아닌 노드들에 매칭함으로써 생성되는,
    포인트 클라우드 데이터 처리 방법.
  5. 제4 항에 있어서,
    상기 컬러라이즈드 옥트리는 상기 옥트리 구조의 루트 노드(root node)부터 리프 노드까지 스텝 다운(step down)하여 상기 하나 또는 그 이상의 어트리뷰트들을 상기 리프 노드들이 아닌 노드들에 매칭함으로써 생성되는,
    포인트 클라우드 데이터 처리 방법.
  6. 제3 항에 있어서,
    상기 시그널링 정보는 상기 비트스트림이 상기 옥트리 구조의 풀 레벨(full level)에 대한 데이터를 포함하는지 상기 옥트리 구조의 일부 레벨(level)에 대한 데이터만 포함하는지 여부를 나타내는 정보를 포함하는,
    포인트 클라우드 데이터 처리 방법.
  7. 제3 항에 있어서,
    상기 어트리뷰트 정보를 인코딩하는 단계는 상기 컬라이즈드 옥트리에 매칭된 데이터 중 중복되는 데이터를 제거하는 단계를 더 포함하는,
    포인트 클라우드 데이터 처리 방법.
  8. 지오메트리(geometry) 정보 및 어트리뷰트(attribute) 정보를 포함하는 포인트 클라우드 데이터(point cloud data)를 인코딩하는 인코더,
    상기 지오메트리 정보는 상기 포인트 클라우드 데이트의 포인트들의 포지션(position)들을 나타내는 정보이고,
    상기 어트리뷰트 정보는 상기 포인트 클라우드 데이터의 포인트들의 어트리뷰트들을 나타내는 정보임; 및
    상기 인코딩된 포인트 클라우드 데이터를 포함하는 비트스트림을 전송하는 전송부; 를 포함하는,
    포인트 클라우드 데이터 처리 장치.
  9. 제8 항에 있어서, 상기 인코더는,
    상기 지오메트리 정보를 인코딩하고, 상기 어트리뷰트 정보를 인코딩하는,
    포인트 클라우드 데이터 처리 장치.
  10. 제9 항에 있어서, 상기 인코더는:
    상기 지오메트리 정보의 옥트리 구조를 수신하는 단계, 상기 옥트리 구조는 하나 또는 그 이상의 레벨들로 표현됨; 및
    상기 옥트리 구조의 각 레벨에 하나 또는 그 이상의 어트리뷰트들을 매칭하여 컬러라이즈드 옥트리(colorized octree)를 생성하는 단계; 에 기초하여 상기 어트리뷰트 정보를 인코딩하고,
    상기 컬러라이즈드 옥트리는 상기 어트리뷰트 정보의 일부 또는 전부를 스케일러블 레프리젠테이션(scalable representation)할 수 있도록 상기 어트리뷰트 정보를 인코딩하기 위해 사용되는,
    포인트 클라우드 데이터 처리 장치.
  11. 제10 항에 있어서, 상기 컬러라이즈드 옥트리는,
    하나 또는 그 이상의 어트리뷰트들을 상기 옥트리 구조의 리프 노드(leaf node)들에 매칭(matching)하고, 상기 리프 노드들에 매칭된 하나 또는 그 이상의 어트리뷰트들을 상기 리프 노드들이 아닌 노드들에 매칭함으로써 생성되는,
    포인트 클라우드 데이터 처리 장치.
  12. 제11 항에 있어서,
    상기 컬러라이즈드 옥트리는 상기 옥트리 구조의 루트 노드(root node)부터 리프 노드까지 스텝 다운(step down)하여 상기 하나 또는 그 이상의 어트리뷰트들을 상기 리프 노드들이 아닌 노드들에 매칭함으로써 생성되는,
    포인트 클라우드 데이터 처리 장치.
  13. 제9 항에 있어서,
    상기 시그널링 정보는 상기 비트스트림이 상기 옥트리 구조의 풀 레벨(full level)에 대한 데이터를 포함하는지 상기 옥트리 구조의 일부 레벨(level)에 대한 데이터만 포함하는지 여부를 나타내는 정보를 포함하는,
    포인트 클라우드 데이터 처리 장치.
  14. 제10 항에 있어서,
    상기 인코더는 상기 컬라이즈드 옥트리에 매칭된 데이터 중 중복되는 데이터를 제거하는,
    포인트 클라우드 데이터 처리 장치.
  15. 포인트 클라우드 데이터를 포함하는 비트스트림을 수신하는 단계, 상기 포인트 클라우드 데이터는 지오메트리 정보 및 어트리뷰트 정보를 포함하고, 상기 지오메트리 정보는 상기 포인트 클라우드 데이트의 포인트들의 포지션을 나타내는 정보이고, 상기 어트리뷰트 정보는 상기 포인트 클라우드 데이터의 포인트들의 하나 또는 그 이상의 어트리뷰트들을 나타내는 정보임; 및
    상기 포인트 클라우드 데이터를 디코딩하는 단계; 를 포함하는,
    포인트 클라우드 데이터 처리 방법.
  16. 제15항에 있어서, 상기 포인트 클라우드 데이터를 디코딩하는 단계는,
    상기 지오메트리 정보를 디코딩하는 단계; 및
    상기 어트리뷰트 정보를 디코딩하는 단계; 를 포함하는,
    포인트 클라우드 데이터 처리 방법.
  17. 제16항에 있어서,
    상기 시그널링 정보는 상기 비트스트림이 상기 옥트리 구조의 풀 레벨(full level)에 대한 데이터를 포함하는지 상기 옥트리 구조의 일부 레벨(level)에 대한 데이터만 포함하는지 여부를 나타내는 정보를 포함하는,
    상기 어트리뷰트 정보를 디코딩하는 단계는, 상기 포인트 클라우드 데이터를 상기 정보에 기초하여 스케일러블 레프리젠테이션(scalable representation)할 수 있도록 상기 어트리뷰트 정보를 디코딩하기 위한 상기 컬러라이즈드 옥트리를 생성하는,
    포인트 클라우드 데이터 처리 방법.
  18. 포인트 클라우드 데이터를 포함하는 비트스트림을 수신하는 수신부, 상기 포인트 클라우드 데이터는 지오메트리 정보 및 어트리뷰트 정보를 포함하고, 상기 지오메트리 정보는 상기 포인트 클라우드 데이트의 포인트들의 포지션을 나타내는 정보이고, 상기 어트리뷰트 정보는 상기 포인트 클라우드 데이터의 포인트들의 하나 또는 그 이상의 어트리뷰트들을 나타내는 정보임; 및
    상기 포인트 클라우드 데이터를 디코딩하는 디코더; 를 포함하는,
    포인트 클라우드 데이터 처리 장치.
  19. 제18항에 있어서, 상기 디코더는,
    상기 지오메트리 정보를 디코딩하고, 상기 어트리뷰트 정보를 디코딩하는,
    포인트 클라우드 데이터 처리 장치.
  20. 제19항에 있어서,
    상기 시그널링 정보는 상기 비트스트림이 상기 옥트리 구조의 풀 레벨(full level)에 대한 데이터를 포함하는지 상기 옥트리 구조의 일부 레벨(level)에 대한 데이터만 포함하는지 여부를 나타내는 정보를 포함하는,
    상기 디코더는, 상기 포인트 클라우드 데이터를 상기 정보에 기초하여 스케일러블 레프리젠테이션(scalable representation)할 수 있도록 상기 어트리뷰트 정보를 디코딩하기 위한 상기 컬러라이즈드 옥트리를 생성하는,
    포인트 클라우드 데이터 처리 장치.
PCT/KR2020/008571 2019-07-01 2020-07-01 포인트 클라우드 데이터 처리 장치 및 방법 WO2021002665A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP20834989.4A EP3971832A4 (en) 2019-07-01 2020-07-01 DEVICE AND METHOD FOR PROCESSING POINT CLOUD DATA
JP2021577128A JP7440546B2 (ja) 2019-07-01 2020-07-01 ポイントクラウドデータ処理装置及び方法
CN202080048759.0A CN114051730A (zh) 2019-07-01 2020-07-01 处理点云数据的设备和方法
US17/624,071 US20220360823A1 (en) 2019-07-01 2020-07-01 Device and method for processing point cloud data

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20190078664 2019-07-01
KR10-2019-0078664 2019-07-01

Publications (1)

Publication Number Publication Date
WO2021002665A1 true WO2021002665A1 (ko) 2021-01-07

Family

ID=74100229

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/008571 WO2021002665A1 (ko) 2019-07-01 2020-07-01 포인트 클라우드 데이터 처리 장치 및 방법

Country Status (5)

Country Link
US (1) US20220360823A1 (ko)
EP (1) EP3971832A4 (ko)
JP (1) JP7440546B2 (ko)
CN (1) CN114051730A (ko)
WO (1) WO2021002665A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023024840A1 (zh) * 2021-08-24 2023-03-02 腾讯科技(深圳)有限公司 点云编解码方法、编码器、解码器及存储介质

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118042192A (zh) * 2021-03-12 2024-05-14 腾讯科技(深圳)有限公司 点云编码、解码的方法、装置及设备
WO2024065269A1 (zh) * 2022-09-28 2024-04-04 Oppo广东移动通信有限公司 点云编解码方法、装置、设备及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180087348A (ko) * 2016-01-22 2018-08-01 미쓰비시덴키 가부시키가이샤 점군을 압축하는 방법
WO2019011634A1 (en) * 2017-07-13 2019-01-17 Interdigital Vc Holdings, Inc. METHOD AND APPARATUS FOR COLOR ENCODING / DECODING OF A COLORED POINT CLOUD WHERE GEOMETRY IS REPRESENTED BY AN OCTRATED STRUCTURE
US20190080483A1 (en) * 2017-09-14 2019-03-14 Apple Inc. Point Cloud Compression
WO2019070830A1 (en) * 2017-10-06 2019-04-11 Interdigital Vc Holdings, Inc. METHOD AND APPARATUS FOR ENCODING / DECODING THE COLORS OF A POINT CLOUD REPRESENTING A 3D OBJECT

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100519780B1 (ko) * 2004-02-17 2005-10-07 삼성전자주식회사 3차원 체적 데이터 부호화/복호화 방법 및 장치
EP3293702B1 (en) * 2016-09-13 2020-04-29 Dassault Systèmes Compressing a signal that represents a physical attribute
GB2568232A (en) 2017-10-26 2019-05-15 Nokia Technologies Oy A method for volumetric video encoding and decoding
CN109214573A (zh) * 2018-09-07 2019-01-15 北京数字绿土科技有限公司 输电线路树木生长或倒伏危险点预测方法和装置
CN109257604B (zh) * 2018-11-20 2020-11-27 山东大学 一种基于tmc3点云编码器的颜色属性编码方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180087348A (ko) * 2016-01-22 2018-08-01 미쓰비시덴키 가부시키가이샤 점군을 압축하는 방법
WO2019011634A1 (en) * 2017-07-13 2019-01-17 Interdigital Vc Holdings, Inc. METHOD AND APPARATUS FOR COLOR ENCODING / DECODING OF A COLORED POINT CLOUD WHERE GEOMETRY IS REPRESENTED BY AN OCTRATED STRUCTURE
US20190080483A1 (en) * 2017-09-14 2019-03-14 Apple Inc. Point Cloud Compression
WO2019070830A1 (en) * 2017-10-06 2019-04-11 Interdigital Vc Holdings, Inc. METHOD AND APPARATUS FOR ENCODING / DECODING THE COLORS OF A POINT CLOUD REPRESENTING A 3D OBJECT

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MAMMOU, Khaled et al. G-PCC codec description v2. ISO/IEC JTC1/SC29/WG11 N1818 9. January 2019, [Retrieved on 23 September 2020], Retrieved from <URL: https://mpeg.chiariglione.org/sites/default/files/files/standards/parts/docs/w18189.zip>. See section 3.5. *
See also references of EP3971832A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023024840A1 (zh) * 2021-08-24 2023-03-02 腾讯科技(深圳)有限公司 点云编解码方法、编码器、解码器及存储介质

Also Published As

Publication number Publication date
EP3971832A4 (en) 2023-06-14
US20220360823A1 (en) 2022-11-10
JP2022538857A (ja) 2022-09-06
EP3971832A1 (en) 2022-03-23
CN114051730A (zh) 2022-02-15
JP7440546B2 (ja) 2024-02-28

Similar Documents

Publication Publication Date Title
WO2021066312A1 (ko) 포인트 클라우드 데이터 송신 장치, 포인트 클라우드 데이터 송신 방법, 포인트 클라우드 데이터 수신 장치 및 포인트 클라우드 데이터 수신 방법
WO2020190093A1 (ko) 포인트 클라우드 데이터 송신 장치, 포인트 클라우드 데이터 송신 방법, 포인트 클라우드 데이터 수신 장치 및 포인트 클라우드 데이터 수신 방법
WO2021141352A2 (ko) 포인트 클라우드 데이터 송신 장치, 포인트 클라우드 데이터 송신 방법, 포인트 클라우드 데이터 수신 장치 및 포인트 클라우드 데이터 수신 방법
WO2020189976A1 (ko) 포인트 클라우드 데이터 처리 장치 및 방법
WO2020242244A1 (ko) 포인트 클라우드 데이터 처리 방법 및 장치
WO2021210764A1 (ko) 포인트 클라우드 데이터 송신 장치, 포인트 클라우드 데이터 송신 방법, 포인트 클라우드 데이터 수신 장치 및 포인트 클라우드 데이터 수신 방법
WO2021002604A1 (ko) 포인트 클라우드 데이터 처리 방법 및 장치
WO2021049758A1 (ko) 포인트 클라우드 데이터 송신 장치, 포인트 클라우드 데이터 송신 방법, 포인트 클라우드 데이터 수신 장치 및 포인트 클라우드 데이터 수신 방법
WO2021261840A1 (ko) 포인트 클라우드 데이터 송신 장치, 포인트 클라우드 데이터 송신 방법, 포인트 클라우드 데이터 수신 장치 및 포인트 클라우드 데이터 수신 방법
WO2020197228A1 (ko) 포인트 클라우드 데이터 송신 장치, 포인트 클라우드 데이터 송신 방법, 포인트 클라우드 데이터 수신 장치 및 포인트 클라우드 데이터 수신 방법
WO2020246689A1 (ko) 포인트 클라우드 데이터 전송 장치, 포인트 클라우드 데이터 전송 방법, 포인트 클라우드 데이터 수신 장치 및 포인트 클라우드 데이터 수신 방법
WO2020256308A1 (ko) 포인트 클라우드 데이터 처리 장치 및 방법
WO2020189943A1 (ko) 포인트 클라우드 데이터 송신 장치, 포인트 클라우드 데이터 송신 방법, 포인트 클라우드 데이터 수신 장치 및 포인트 클라우드 데이터 수신 방법
WO2021045601A1 (ko) 포인트 클라우드 데이터 송신 장치, 포인트 클라우드 데이터 송신 방법, 포인트 클라우드 데이터 수신 장치 및 포인트 클라우드 데이터 수신 방법
WO2021206291A1 (ko) 포인트 클라우드 데이터 전송 장치, 전송 방법, 처리 장치 및 처리 방법
WO2021246843A1 (ko) 포인트 클라우드 데이터 송신 장치, 포인트 클라우드 데이터 송신 방법, 포인트 클라우드 데이터 수신 장치 및 포인트 클라우드 데이터 수신 방법
WO2021002558A1 (ko) 포인트 클라우드 데이터 송신 장치, 포인트 클라우드 데이터 송신 방법, 포인트 클라우드 데이터 수신 장치 및 포인트 클라우드 데이터 수신 방법.
WO2020197086A1 (ko) 포인트 클라우드 데이터 송신 장치, 포인트 클라우드 데이터 송신 방법, 포인트 클라우드 데이터 수신 장치 및 포인트 클라우드 데이터 수신 방법
WO2021002594A1 (ko) 포인트 클라우드 데이터 처리 장치 및 방법
WO2021029511A1 (ko) 포인트 클라우드 데이터 전송 장치, 포인트 클라우드 데이터 전송 방법, 포인트 클라우드 데이터 수신 장치 및 포인트 클라우드 데이터 수신 방법
WO2021002592A1 (ko) 포인트 클라우드 데이터 송신 장치, 포인트 클라우드 데이터 송신 방법, 포인트 클라우드 데이터 수신 장치 및 포인트 클라우드 데이터 수신 방법
WO2022015006A1 (ko) 포인트 클라우드 데이터 송신 장치, 포인트 클라우드 데이터 송신 방법, 포인트 클라우드 데이터 수신 장치 및 포인트 클라우드 데이터 수신 방법
WO2021141218A1 (ko) 포인트 클라우드 데이터 송신 장치, 포인트 클라우드 데이터 송신 방법, 포인트 클라우드 데이터 수신 장치 및 포인트 클라우드 데이터 수신 방법
WO2021002665A1 (ko) 포인트 클라우드 데이터 처리 장치 및 방법
WO2021045603A1 (ko) 포인트 클라우드 데이터 송신 장치, 포인트 클라우드 데이터 송신 방법, 포인트 클라우드 데이터 수신 장치 및 포인트 클라우드 데이터 수신 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20834989

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021577128

Country of ref document: JP

Kind code of ref document: A

Ref document number: 2020834989

Country of ref document: EP

Effective date: 20211217

NENP Non-entry into the national phase

Ref country code: DE