WO2020189943A1 - 포인트 클라우드 데이터 송신 장치, 포인트 클라우드 데이터 송신 방법, 포인트 클라우드 데이터 수신 장치 및 포인트 클라우드 데이터 수신 방법 - Google Patents

포인트 클라우드 데이터 송신 장치, 포인트 클라우드 데이터 송신 방법, 포인트 클라우드 데이터 수신 장치 및 포인트 클라우드 데이터 수신 방법 Download PDF

Info

Publication number
WO2020189943A1
WO2020189943A1 PCT/KR2020/003322 KR2020003322W WO2020189943A1 WO 2020189943 A1 WO2020189943 A1 WO 2020189943A1 KR 2020003322 W KR2020003322 W KR 2020003322W WO 2020189943 A1 WO2020189943 A1 WO 2020189943A1
Authority
WO
WIPO (PCT)
Prior art keywords
point cloud
information
attribute information
cloud data
attribute
Prior art date
Application number
PCT/KR2020/003322
Other languages
English (en)
French (fr)
Inventor
이동금
오세진
박준택
심동규
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Publication of WO2020189943A1 publication Critical patent/WO2020189943A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T9/00Image coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/103Selection of coding mode or of prediction mode
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/124Quantisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/597Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding specially adapted for multi-view video sequence encoding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/60Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/60Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding
    • H04N19/62Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding by frequency transforming in three dimensions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/60Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding
    • H04N19/625Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding using discrete cosine transform [DCT]

Definitions

  • Embodiments provide Point Cloud content to provide users with various services such as VR (Virtual Reality, Virtual Reality), AR (Augmented Reality, Augmented Reality), MR (Mixed Reality, Mixed Reality), and autonomous driving service.
  • VR Virtual Reality, Virtual Reality
  • AR Augmented Reality
  • MR Magnetic Reality, Mixed Reality
  • Embodiments may encode and decode attribute information of point cloud data.
  • a point cloud is a set of points in 3D space. There is a problem in that it is difficult to generate point cloud data because the amount of points in the 3D space is large.
  • encoding, decoding, and rendering processes are basically performed.
  • video-based point cloud compression (V-PCC) and geometry-based point cloud compression (G-PCC) technologies are used as point cloud compression technology. It can be classified as
  • lossy, lossless, and near-lossless coding are possible for both coding techniques to control the compression rate of point cloud data.
  • the technical problem according to the embodiments is to provide a point cloud data transmission apparatus, a transmission method, a point cloud data reception apparatus, and a reception method for efficiently transmitting and receiving a point cloud in order to solve the above-described problems.
  • a technical problem according to embodiments may be in encoding and decoding attribute information of point cloud data.
  • a technical problem according to embodiments is to provide a point cloud data transmission apparatus, a transmission method, a point cloud data reception apparatus, and a reception method for solving latency and encoding/decoding complexity.
  • the technical problem according to the embodiments is to provide a method for applying the effect of obscuring a sound source by an arbitrary object (or obstacle) while a user changes location when using VR content in a 6DoF environment, and provides a method for applying the effect of obstructing the sound source to the existing encoder And by adding an occlusion effect application method, it is possible to experience more realistic VR contents.
  • the technical problem according to the embodiments is to provide a method for encoding by applying a new transformation type to attribute information when compressing point cloud data with a geometry-based point cloud compression (G-PCC)-based compression method. There is.
  • G-PCC geometry-based point cloud compression
  • the technical problem according to the embodiments is that, when encoding attribute information of point cloud data, shape adaptive (SA)-DCT is applied to attribute information, or residual generated by difference between attribute information and predicted attribute information. It is to provide a method of encoding information by applying SA-DC.
  • SA shape adaptive
  • the point cloud data transmission method may include encoding the point cloud data and/or transmitting a bitstream including the point cloud data.
  • Encoding the point cloud data may include encoding geometry information of the point cloud data and/or encoding attribute information of the point cloud data based on the reconstructed geometry information.
  • Encoding attribute information includes mapping attribute information and reconstructed geometry information of point cloud data, transforming a 3D block including the mapped attribute information, and/or transformed attribute information It may include the step of quantizing.
  • Transforming the 3D block includes transforming residual attribute information generated by differentiating mapped attribute information and/or predicted attribute information, and the quantizing step includes quantizing the transformed residual attribute information.
  • the bitstream may include information indicating a prediction method related to prediction attribute information.
  • the transforming of the 3D block includes transforming data of the 3D block with respect to the first axis, and transforming the coefficient information generated by performing the transformation with respect to the first axis with respect to the second axis. And/or transforming coefficient information generated by performing transformation on the second axis with respect to the third axis.
  • the transformation for the first to third axes may be performed based on the DCT algorithm.
  • the voxel included in the 3D block includes a plurality of mapped attribute information
  • the DCT transforming of the first axis to the third axis of the 3D block includes average attribute information of the plurality of mapped attribute information to the voxel.
  • each of the plurality of mapped attribute information may be matched with a plurality of voxels.
  • the generating of the prediction attribute information includes determining a prediction mode for generating the prediction attribute information, determining whether to predict according to the prediction mode, and/or predicting according to the prediction mode and whether or not to predict. It may include performing prediction to generate attribute information.
  • prediction attribute information may be generated based on reconstructed attribute information adjacent to a point for the predicted attribute information, or prediction attribute information may be generated based on LODs of points in the point cloud data.
  • the bitstream may further include information indicating whether to generate prediction attribute information based on the LOD.
  • the transforming of the 3D block includes determining a type of transformation, determining whether or not transformation is performed, and/or transforming the 3D block based on the determined type of transformation and whether or not the determined transformation is It may include the step of performing.
  • the transformation type may be at least one of DCT, DST, SA-DCT, and RAHT.
  • the bitstream may further include information indicating whether to convert information indicating the type of the determined transformation.
  • the method for receiving point cloud data includes receiving a bitstream including point cloud data, decoding point cloud data, and/or rendering point cloud data. It may include steps.
  • the decoding of the point cloud data includes entropy decoding an attribute bitstream of the point cloud data to generate transformed quantized attribute information, mapping the transformed quantized attribute information to reconstructed geometry information
  • the method may include generating the converted information, inverse quantizing the mapped information, inverse transforming the inverse quantized information, and/or transforming an attribute characteristic based on the inverse transformed information.
  • the mapped information may include at least one of mapped attribute information and mapped residual attribute information, and when the mapped information is mapped residual attribute information, the inverse transforming step is performed based on predicted attribute information.
  • the mapped residual attribute information can be inversely transformed.
  • the inverse transforming step includes inverse transforming a 3D block including the mapped information
  • the inverse transforming step includes IDCT (Inverse DCT) transforming with respect to a first axis of the 3D block, and the first axis.
  • IDCT Inverse DCT
  • IDCT Inverse DCT
  • IDCT Inverse DCT
  • IDCT Inverse DCT
  • IDCT Inverse DCT
  • IDCT Inverse DCT
  • the bitstream includes information indicating a type of inverse transformation, information indicating whether to perform an inverse transformation, information indicating a prediction method related to prediction attribute information, and information indicating whether to generate predictive attribute information based on the LOD.
  • a point cloud data transmission method, a transmission device, a point cloud data reception method, and a reception device may provide a point cloud service with high quality.
  • the point cloud data transmission method, the transmission device, the point cloud data reception method, and the reception device may achieve various video codec methods.
  • a point cloud data transmission method, a transmission device, a point cloud data reception method, and a reception device may provide general-purpose point cloud content such as an autonomous driving service.
  • the point cloud data transmission method can efficiently and quickly encode point cloud data due to the configuration of the geometric information encoding unit and/or the attribute information encoding unit. It can provide a realistic virtual reality environment.
  • FIG. 1 shows an example of a point cloud content providing system according to embodiments.
  • FIG. 2 is a block diagram illustrating an operation of providing point cloud content according to embodiments.
  • FIG 3 shows an example of a point cloud video capture process according to embodiments.
  • FIG. 4 shows an example of a point cloud encoder according to embodiments.
  • FIG. 5 shows an example of a voxel according to embodiments.
  • FIG. 6 shows an example of an octree and an occupancy code according to embodiments.
  • FIG. 7 shows an example of a neighbor node pattern according to embodiments.
  • FIG. 10 shows an example of a point cloud decoder according to embodiments.
  • FIG. 11 shows an example of a point cloud decoder according to embodiments.
  • FIG 13 is an example of a reception device according to embodiments.
  • FIG. 14 illustrates an architecture for G-PCC-based point cloud content streaming according to embodiments.
  • 15 shows an example of a transmission device according to embodiments.
  • FIG. 16 shows an example of a receiving device according to embodiments.
  • FIG. 17 shows an example of a structure capable of interworking with a method/device for transmitting and receiving point cloud data according to embodiments.
  • FIG. 18 shows a point cloud encoder according to embodiments.
  • FIG. 19 illustrates a point cloud attribute information encoder according to embodiments.
  • FIG. 20 illustrates a point cloud attribute information encoder according to embodiments.
  • 21 shows an example of an attribute information conversion unit according to embodiments.
  • FIG. 22 illustrates an example of an operation of an attribute information conversion unit according to embodiments.
  • FIG 23 illustrates an example of an operation in which an attribute information converter according to embodiments applies 3D SA-DCT transformation.
  • FIG. 24 illustrates an example of an operation of applying a 3D SA-DCT transformation to a 3D space including a voxel including duplicated points by an attribute information conversion unit according to embodiments.
  • 25 illustrates an example of a structure and operation of an attribute information prediction unit according to embodiments.
  • 26 illustrates an example of a structure and operation of an attribute information prediction unit according to embodiments.
  • FIG. 27 shows a point cloud decoder according to embodiments.
  • FIG. 28 illustrates an attribute information decoding unit of a point cloud decoder according to embodiments.
  • 29 illustrates an attribute information decoding unit of a point cloud decoder according to embodiments.
  • FIG. 30 illustrates a structure and operation of an attribute information inverse transform unit of an attribute information decoding unit according to embodiments.
  • FIG. 31 illustrates an example of an operation in which an inverse attribute information transform unit performs an inverse transform according to an inverse 3D SA-DCT transform type according to embodiments.
  • 32 illustrates an example of a process of calculating information for restoration of each axis when the inverse attribute information transform unit performs inverse 3D SA-DCT transformation according to embodiments.
  • 33 illustrates an example of a bitstream structure of point cloud data according to embodiments.
  • 34 shows an example of signaling information related to 3D SA-DCT according to embodiments in a bitstream transmitted by a point cloud transmission apparatus according to embodiments.
  • 35 shows APS according to embodiments including signaling information related to 3D SA-DCT according to the embodiments.
  • 36 is a flowchart illustrating a method of transmitting point cloud data according to embodiments.
  • FIG. 37 is a flowchart illustrating a method of receiving point cloud data according to embodiments.
  • FIG. 1 shows an example of a point cloud content providing system according to embodiments.
  • the point cloud content providing system illustrated in FIG. 1 may include a transmission device 10000 and a reception device 10004.
  • the transmission device 10000 and the reception device 10004 are capable of wired or wireless communication to transmit and receive point cloud data.
  • the transmission device 10000 may secure, process, and transmit point cloud video (or point cloud content).
  • the transmission device 10000 is a fixed station, a base transceiver system (BTS), a network, an artificial intelligence (AI) device and/or system, a robot, an AR/VR/XR device and/or server. And the like.
  • the transmission device 10000 uses a radio access technology (eg, 5G NR (New RAT), LTE (Long Term Evolution)) to communicate with a base station and/or other wireless devices, Robots, vehicles, AR/VR/XR devices, portable devices, home appliances, Internet of Thing (IoT) devices, AI devices/servers, etc. may be included.
  • 5G NR New RAT
  • LTE Long Term Evolution
  • the transmission device 10000 includes a point cloud video acquisition unit (Point Cloud Video Acquisition, 10001), a point cloud video encoder (Point Cloud Video Encoder, 10002) and/or a transmitter (Transmitter (or Communication module), 10003). Include)
  • the point cloud video acquisition unit 10001 acquires a point cloud video through a process such as capture, synthesis, or generation.
  • the point cloud video is point cloud content expressed as a point cloud, which is a set of points located in a three-dimensional space, and may be referred to as point cloud video data.
  • a point cloud video according to embodiments may include one or more frames. One frame represents a still image/picture. Accordingly, the point cloud video may include a point cloud image/frame/picture, and may be referred to as any one of a point cloud image, a frame, and a picture.
  • the point cloud video encoder 10002 encodes the secured point cloud video data.
  • the point cloud video encoder 10002 may encode point cloud video data based on Point Cloud Compression coding.
  • Point cloud compression coding may include Geometry-based Point Cloud Compression (G-PCC) coding and/or Video based Point Cloud Compression (V-PCC) coding or next-generation coding.
  • G-PCC Geometry-based Point Cloud Compression
  • V-PCC Video based Point Cloud Compression
  • point cloud compression coding according to the embodiments is not limited to the above-described embodiments.
  • the point cloud video encoder 10002 may output a bitstream including encoded point cloud video data.
  • the bitstream may include not only the encoded point cloud video data, but also signaling information related to encoding of the point cloud video data.
  • the transmitter 10003 transmits a bitstream including encoded point cloud video data.
  • the bitstream according to the embodiments is encapsulated into a file or segment (for example, a streaming segment) and transmitted through various networks such as a broadcasting network and/or a broadband network.
  • the transmission device 10000 may include an encapsulation unit (or an encapsulation module) that performs an encapsulation operation.
  • the encapsulation unit may be included in the transmitter 10003.
  • a file or segment may be transmitted to the receiving device 10004 through a network or stored in a digital storage medium (eg, USB, SD, CD, DVD, Blu-ray, HDD, SSD, etc.).
  • the transmitter 10003 may perform wired/wireless communication with the reception device 10004 (or a receiver 10005) through a network such as 4G, 5G, or 6G.
  • the transmitter 10003 may perform necessary data processing operations according to a network system (for example, a communication network system such as 4G, 5G, or 6G).
  • the transmission device 10000 may transmit encapsulated data according to an on demand method.
  • the reception device 10004 includes a receiver 10005, a point cloud video decoder 10006, and/or a renderer 10007.
  • the receiving device 10004 uses a wireless access technology (eg, 5G NR (New RAT), LTE (Long Term Evolution)) to communicate with a base station and/or other wireless devices, a robot , Vehicles, AR/VR/XR devices, portable devices, home appliances, Internet of Thing (IoT) devices, AI devices/servers, and the like.
  • 5G NR New RAT
  • LTE Long Term Evolution
  • the receiver 10005 receives a bitstream including point cloud video data or a file/segment in which the bitstream is encapsulated from a network or a storage medium.
  • the receiver 10005 may perform necessary data processing operations according to a network system (for example, a communication network system such as 4G, 5G, or 6G).
  • the receiver 10005 may decapsulate the received file/segment and output a bitstream.
  • the receiver 10005 may include a decapsulation unit (or a decapsulation module) for performing a decapsulation operation.
  • the decapsulation unit may be implemented as an element (or component) separate from the receiver 10005.
  • the point cloud video decoder 10006 decodes a bitstream including point cloud video data.
  • the point cloud video decoder 10006 may decode the point cloud video data according to the encoding method (for example, a reverse process of the operation of the point cloud video encoder 10002). Accordingly, the point cloud video decoder 10006 may decode the point cloud video data by performing point cloud decompression coding, which is a reverse process of the point cloud compression.
  • Point cloud decompression coding includes G-PCC coding.
  • the renderer 10007 renders the decoded point cloud video data.
  • the renderer 10007 may output point cloud content by rendering audio data as well as point cloud video data.
  • the renderer 10007 may include a display for displaying point cloud content.
  • the display is not included in the renderer 10007 and may be implemented as a separate device or component.
  • the feedback information is information for reflecting an interaction ratio with a user who consumes point cloud content, and includes user information (eg, head orientation information, viewport information, etc.).
  • user information eg, head orientation information, viewport information, etc.
  • the feedback information is the content sending side (for example, the transmission device 10000) and/or a service provider.
  • the feedback information may be used not only in the transmitting device 10000 but also in the receiving device 10004, and may not be provided.
  • Head orientation information is information on a position, direction, angle, and movement of a user's head.
  • the receiving device 10004 may calculate viewport information based on the head orientation information.
  • the viewport information is information on the area of the point cloud video that the user is viewing.
  • a viewpoint is a point at which the user is watching a point cloud video, and may mean a center point of a viewport area. That is, the viewport is an area centered on a viewpoint, and the size and shape of the area may be determined by a field of view (FOV).
  • FOV field of view
  • the receiving device 10004 may extract viewport information based on a vertical or horizontal FOV supported by the device in addition to the head orientation information.
  • the receiving device 10004 performs a gaze analysis and the like to check the point cloud consumption method of the user, the point cloud video area that the user gazes, and the gaze time.
  • the receiving device 10004 may transmit feedback information including the result of gaze analysis to the transmitting device 10000.
  • Feedback information may be obtained during rendering and/or display.
  • Feedback information may be secured by one or more sensors included in the receiving device 10004.
  • the feedback information may be secured by the renderer 10007 or a separate external element (or device, component, etc.).
  • a dotted line in FIG. 1 shows a process of transmitting feedback information secured by the renderer 10007.
  • the point cloud content providing system may process (encode/decode) point cloud data based on feedback information.
  • the point cloud video data decoder 10006 may perform a decoding operation based on the feedback information.
  • the receiving device 10004 may transmit feedback information to the transmitting device 10000.
  • the transmission device 10000 (or the point cloud video data encoder 10002) may perform an encoding operation based on feedback information. Therefore, the point cloud content providing system does not process (encode/decode) all point cloud data, but efficiently processes necessary data (e.g., point cloud data corresponding to the user's head position) based on feedback information. Point cloud content can be provided to users.
  • the transmission device 10000 may be referred to as an encoder, a transmission device, a transmitter, and the like
  • the reception device 10004 may be referred to as a decoder, a reception device, a receiver, or the like.
  • Point cloud data (processed in a series of acquisition/encoding/transmission/decoding/rendering) processed in the point cloud content providing system of FIG. 1 according to embodiments may be referred to as point cloud content data or point cloud video data.
  • the point cloud content data may be used as a concept including metadata or signaling information related to the point cloud data.
  • Elements of the point cloud content providing system shown in FIG. 1 may be implemented by hardware, software, processor, and/or a combination thereof.
  • FIG. 2 is a block diagram illustrating an operation of providing point cloud content according to embodiments.
  • the block diagram of FIG. 2 shows the operation of the point cloud content providing system described in FIG. 1.
  • the point cloud content providing system may process point cloud data based on point cloud compression coding (eg, G-PCC).
  • point cloud compression coding eg, G-PCC
  • a point cloud content providing system may acquire a point cloud video (20000).
  • the point cloud video is expressed as a point cloud belonging to a coordinate system representing a three-dimensional space.
  • a point cloud video may include a Ply (Polygon File format or the Stanford Triangle format) file.
  • Ply files contain point cloud data such as the geometry and/or attributes of the point.
  • the geometry includes the positions of the points.
  • the position of each point may be expressed by parameters (eg, values of each of the X-axis, Y-axis, and Z-axis) representing a three-dimensional coordinate system (eg, a coordinate system composed of XYZ axes).
  • Attributes include attributes of points (eg, texture information of each point, color (YCbCr or RGB), reflectance (r), transparency, etc.).
  • a point has one or more attributes (or attributes).
  • one point may have an attribute of one color, or two attributes of a color and reflectance.
  • geometry may be referred to as positions, geometry information, geometry data, and the like, and attributes may be referred to as attributes, attribute information, attribute data, and the like.
  • the point cloud content providing system (for example, the point cloud transmission device 10000 or the point cloud video acquisition unit 10001) provides points from information related to the acquisition process of the point cloud video (eg, depth information, color information, etc.). Cloud data can be secured.
  • the point cloud content providing system may encode point cloud data (20001).
  • the point cloud content providing system may encode point cloud data based on point cloud compression coding.
  • the point cloud data may include the geometry and attributes of the point.
  • the point cloud content providing system may output a geometry bitstream by performing geometry encoding for encoding geometry.
  • the point cloud content providing system may output an attribute bitstream by performing attribute encoding for encoding the attribute.
  • the point cloud content providing system may perform attribute encoding based on geometry encoding.
  • the geometry bitstream and the attribute bitstream according to the embodiments may be multiplexed and output as one bitstream.
  • the bitstream according to embodiments may further include signaling information related to geometry encoding and attribute encoding.
  • the point cloud content providing system may transmit encoded point cloud data (20002).
  • the encoded point cloud data may be expressed as a geometry bitstream and an attribute bitstream.
  • the encoded point cloud data may be transmitted in the form of a bitstream together with signaling information related to encoding of the point cloud data (eg, signaling information related to geometry encoding and attribute encoding).
  • the point cloud content providing system may encapsulate the bitstream for transmitting the encoded point cloud data and transmit it in the form of a file or segment.
  • the point cloud content providing system may receive a bitstream including encoded point cloud data.
  • the point cloud content providing system may demultiplex the bitstream.
  • the point cloud content providing system can decode the encoded point cloud data (e.g., geometry bitstream, attribute bitstream) transmitted as a bitstream. have.
  • the point cloud content providing system (for example, the receiving device 10004 or the point cloud video decoder 10005) can decode the point cloud video data based on signaling information related to encoding of the point cloud video data included in the bitstream. have.
  • the point cloud content providing system (for example, the receiving device 10004 or the point cloud video decoder 10005) may restore positions (geometry) of points by decoding a geometry bitstream.
  • the point cloud content providing system may restore the attributes of points by decoding an attribute bitstream based on the restored geometry.
  • the point cloud content providing system (for example, the receiving device 10004 or the point cloud video decoder 10005) may restore the point cloud video based on the decoded attributes and positions according to the restored geometry.
  • the point cloud content providing system may render the decoded point cloud data (20004 ).
  • the point cloud content providing system may render geometry and attributes decoded through a decoding process according to a rendering method according to various rendering methods. Points of the point cloud content may be rendered as a vertex having a certain thickness, a cube having a specific minimum size centered on the vertex position, or a circle centered on the vertex position. All or part of the rendered point cloud content is provided to the user through a display (eg VR/AR display, general display, etc.).
  • a display eg VR/AR display, general display, etc.
  • the point cloud content providing system may secure feedback information (20005).
  • the point cloud content providing system may encode and/or decode point cloud data based on feedback information. Since the operation of the system for providing feedback information and point cloud content according to the embodiments is the same as the feedback information and operation described in FIG. 1, a detailed description will be omitted.
  • FIG 3 shows an example of a point cloud video capture process according to embodiments.
  • FIGS. 1 to 2 shows an example of a point cloud video capture process in the point cloud content providing system described in FIGS. 1 to 2.
  • the point cloud content is an object located in various three-dimensional spaces (for example, a three-dimensional space representing a real environment, a three-dimensional space representing a virtual environment, etc.) and/or a point cloud video (images and/or Videos). Therefore, the point cloud content providing system according to the embodiments includes one or more cameras (eg, an infrared camera capable of securing depth information, color information corresponding to the depth information) to generate the point cloud content. You can capture a point cloud video using an RGB camera that can extract the image), a projector (for example, an infrared pattern projector to secure depth information), and LiDAR.
  • cameras eg, an infrared camera capable of securing depth information, color information corresponding to the depth information
  • a projector for example, an infrared pattern projector to secure depth information
  • LiDAR LiDAR
  • the point cloud content providing system may obtain point cloud data by extracting a shape of a geometry composed of points in a 3D space from depth information, and extracting an attribute of each point from color information.
  • An image and/or an image according to the embodiments may be captured based on at least one or more of an inward-facing method and an outward-facing method.
  • the left side of Fig. 3 shows an inword-facing scheme.
  • the inword-facing method refers to a method in which one or more cameras (or camera sensors) located surrounding a central object capture a central object.
  • the in-word-facing method provides point cloud content that provides users with 360-degree images of key objects (e.g., provides users with 360-degree images of objects (e.g., key objects such as characters, players, objects, actors, etc.) VR/AR content).
  • the outward-facing method refers to a method in which one or more cameras (or camera sensors) located surrounding the central object capture the environment of the central object other than the central object.
  • the outward-pacing method may be used to generate point cloud content (for example, content representing an external environment that may be provided to a user of a self-driving vehicle) to provide an environment that appears from a user's point of view.
  • the point cloud content may be generated based on the capture operation of one or more cameras.
  • the point cloud content providing system may calibrate one or more cameras to set a global coordinate system before the capture operation.
  • the point cloud content providing system may generate point cloud content by synthesizing an image and/or image captured by the above-described capture method with an arbitrary image and/or image.
  • the point cloud content providing system may not perform the capture operation described in FIG. 3 when generating point cloud content representing a virtual space.
  • the point cloud content providing system may perform post-processing on the captured image and/or image. In other words, the point cloud content providing system removes an unwanted area (e.g., background), recognizes the space where captured images and/or images are connected, and performs an operation to fill in a spatial hole if there is. I can.
  • the point cloud content providing system may generate one point cloud content by performing coordinate system transformation on points of the point cloud video acquired from each camera.
  • the point cloud content providing system may perform a coordinate system transformation of points based on the position coordinates of each camera. Accordingly, the point cloud content providing system may generate content representing a wide range, or may generate point cloud content having a high density of points.
  • FIG. 4 shows an example of a point cloud encoder according to embodiments.
  • the point cloud encoder uses point cloud data (for example, positions and/or positions of points) to adjust the quality of the point cloud content (for example, lossless-lossless, loss-lossy, near-lossless) according to network conditions or applications. Attributes) and perform an encoding operation.
  • point cloud data for example, positions and/or positions of points
  • the quality of the point cloud content for example, lossless-lossless, loss-lossy, near-lossless
  • Attributes perform an encoding operation.
  • the point cloud content providing system may not be able to stream the content in real time. Therefore, the point cloud content providing system can reconstruct the point cloud content based on the maximum target bitrate in order to provide it according to the network environment.
  • the point cloud encoder may perform geometry encoding and attribute encoding. Geometry encoding is performed before attribute encoding.
  • Point cloud encoders include a coordinate system transform unit (Transformation Coordinates, 40000), a quantization unit (Quantize and Remove Points (Voxelize), 40001), an octree analysis unit (Analyze Octree, 40002), and a surface aproximation analysis unit ( Analyze Surface Approximation, 40003), Arithmetic Encode (40004), Reconstruct Geometry (40005), Transform Colors (40006), Transfer Attributes (40007), RAHT Transformation A unit 40008, an LOD generation unit (Generated LOD) 40009, a lifting transform unit (Lifting) 40010, a coefficient quantization unit (Quantize Coefficients, 40011), and/or an Arithmetic Encode (40012).
  • a coordinate system transform unit Transformation Coordinates, 40000
  • a quantization unit Quantization and Remove Points (Voxelize)
  • An octree analysis unit Analyze Octree, 40002
  • the coordinate system transform unit 40000, the quantization unit 40001, the octree analysis unit 40002, the surface aproximation analysis unit 40003, the arithmetic encoder 40004, and the geometry reconstruction unit 40005 perform geometry encoding. can do.
  • Geometry encoding according to embodiments may include octree geometry coding, direct coding, trisoup geometry encoding, and entropy encoding. Direct coding and trisoup geometry encoding are applied selectively or in combination. Also, geometry encoding is not limited to the above example.
  • the coordinate system conversion unit 40000 receives positions and converts them into a coordinate system.
  • positions may be converted into position information in a three-dimensional space (eg, a three-dimensional space represented by an XYZ coordinate system).
  • the location information of the 3D space according to embodiments may be referred to as geometry information.
  • the quantization unit 40001 quantizes geometry. For example, the quantization unit 40001 may quantize points based on the minimum position values of all points (eg, minimum values on each axis with respect to the X-axis, Y-axis, and Z-axis). The quantization unit 40001 multiplies the difference between the minimum position value and the position value of each point by a preset quantum scale value, and then performs a quantization operation to find the nearest integer value by performing a rounding or a rounding. Thus, one or more points may have the same quantized position (or position value). The quantization unit 40001 according to embodiments performs voxelization based on the quantized positions to reconstruct the quantized points.
  • the quantization unit 40001 performs voxelization based on the quantized positions to reconstruct the quantized points.
  • the minimum unit including the 2D image/video information is a pixel, and points of the point cloud content (or 3D point cloud video) according to the embodiments may be included in one or more voxels.
  • Voxel is a combination of volume and pixel
  • the quantization unit 40001 may match groups of points in a 3D space with voxels.
  • one voxel may include only one point.
  • one voxel may include one or more points.
  • a position of a center point (ceter) of a corresponding voxel may be set based on positions of one or more points included in one voxel.
  • attributes of all positions included in one voxel may be combined and assigned to a corresponding voxel.
  • the octree analysis unit 40002 performs octree geometry coding (or octree coding) to represent voxels in an octree structure.
  • the octree structure represents points matched to voxels based on an octal tree structure.
  • the surface aproxiation analysis unit 40003 may analyze and approximate the octree.
  • the octree analysis and approximation according to the embodiments is a process of analyzing to voxelize a region including a plurality of points in order to efficiently provide octree and voxelization.
  • the arithmetic encoder 40004 entropy encodes the octree and/or the approximated octree.
  • the encoding method includes an Arithmetic encoding method.
  • a geometry bitstream is generated.
  • Color conversion unit 40006, attribute conversion unit 40007, RAHT conversion unit 40008, LOD generation unit 40009, lifting conversion unit 40010, coefficient quantization unit 40011 and/or Arismatic encoder 40012 Performs attribute encoding.
  • one point may have one or more attributes. Attribute encoding according to embodiments is applied equally to attributes of one point. However, when one attribute (eg, color) includes one or more elements, independent attribute encoding is applied to each element.
  • Attribute encoding includes color transform coding, attribute transform coding, Region Adaptive Hierarchial Transform (RAHT) coding, Interpolaration-based hierarchical nearest-neighbor prediction-Prediction Transform coding, and interpolation-based hierarchical nearest -Neighbor prediction with an update/lifting step (Lifting Transform)) coding may be included.
  • RAHT Region Adaptive Hierarchial Transform
  • Interpolaration-based hierarchical nearest-neighbor prediction-Prediction Transform coding Interpolaration-based hierarchical nearest-neighbor prediction-Prediction Transform coding
  • interpolation-based hierarchical nearest -Neighbor prediction with an update/lifting step (Lifting Transform)) coding may be included.
  • the aforementioned RAHT coding, predictive transform coding, and lifting transform coding may be selectively used, or a combination of one or more codings may be used.
  • attribute encoding according to embodiments is not limited to the above-de
  • the color conversion unit 40006 performs color conversion coding for converting color values (or textures) included in attributes.
  • the color conversion unit 40006 may convert the format of color information (eg, convert from RGB to YCbCr).
  • the operation of the color conversion unit 40006 according to the embodiments may be selectively applied according to color values included in attributes.
  • the geometry reconstruction unit 40005 reconstructs (decompresses) an octree and/or an approximated octree.
  • the geometry reconstruction unit 40005 reconstructs an octree/voxel based on a result of analyzing the distribution of points.
  • the reconstructed octree/voxel may be referred to as reconstructed geometry (or reconstructed geometry).
  • the attribute conversion unit 40007 performs attribute conversion for converting attributes based on the reconstructed geometry and/or positions for which geometry encoding has not been performed. As described above, since attributes are dependent on geometry, the attribute conversion unit 40007 may transform the attributes based on the reconstructed geometry information. For example, the attribute conversion unit 40007 may convert an attribute of the point of the position based on the position value of the point included in the voxel. As described above, when a position of a center point of a corresponding voxel is set based on positions of one or more points included in one voxel, the attribute conversion unit 40007 converts attributes of one or more points. When tri-soup geometry encoding is performed, the attribute conversion unit 40007 may convert attributes based on trisoup geometry encoding.
  • the attribute conversion unit 40007 is an average value of attributes or attribute values (for example, the color of each point or reflectance) of points neighboring within a specific position/radius from the position (or position value) of the center point of each voxel. Attribute conversion can be performed by calculating.
  • the attribute conversion unit 40007 may apply a weight according to a distance from a central point to each point when calculating an average value. Thus, each voxel has a position and a calculated attribute (or attribute value).
  • the attribute conversion unit 40007 may search for neighboring points existing within a specific position/radius from the position of the center point of each voxel based on a K-D tree or a Molton code.
  • the K-D tree is a binary search tree and supports a data structure that can manage points based on location so that the Nearest Neighbor Search (NNS) can be quickly performed.
  • the Molton code represents a coordinate value (for example, (x, y, z)) representing a three-dimensional position of all points as a bit value, and is generated by mixing the bits. For example, if the coordinate value indicating the position of the point is (5, 9, 1), the bit value of the coordinate value is (0101, 1001, 0001).
  • the attribute conversion unit 40007 may sort points based on a Morton code value and perform a shortest neighbor search (NNS) through a depth-first traversal process. After the attribute transformation operation, when the shortest neighbor search (NNS) is required in another transformation process for attribute coding, a K-D tree or a Molton code is used.
  • NSS shortest neighbor search
  • the converted attributes are input to the RAHT conversion unit 40008 and/or the LOD generation unit 40009.
  • the RAHT conversion unit 40008 performs RAHT coding for predicting attribute information based on the reconstructed geometry information. For example, the RAHT conversion unit 40008 may predict attribute information of a node at a higher level of the octree based on attribute information associated with a node at a lower level of the octree.
  • the LOD generation unit 40009 generates a level of detail (LOD) to perform predictive transform coding.
  • LOD level of detail
  • the LOD according to the embodiments is a degree representing the detail of the point cloud content, and a smaller LOD value indicates that the detail of the point cloud content decreases, and a larger LOD value indicates that the detail of the point cloud content is high. Points can be classified according to LOD.
  • the lifting transform unit 40010 performs lifting transform coding that transforms attributes of a point cloud based on weights. As described above, the lifting transform coding can be selectively applied.
  • the coefficient quantization unit 40011 quantizes attribute-coded attributes based on coefficients.
  • Arismatic encoder 40012 encodes quantized attributes based on Arismatic coding.
  • the elements of the point cloud encoder of FIG. 4 are not shown in the drawing, but hardware including one or more processors or integrated circuits configured to communicate with one or more memories included in the point cloud providing apparatus. , Software, firmware, or a combination thereof.
  • One or more processors may perform at least one or more of the operations and/or functions of the elements of the point cloud encoder of FIG. 4 described above. Further, one or more processors may operate or execute a set of software programs and/or instructions for performing operations and/or functions of the elements of the point cloud encoder of FIG. 4.
  • One or more memories according to embodiments may include high speed random access memory, and non-volatile memory (e.g., one or more magnetic disk storage devices, flash memory devices, or other non-volatile solid state Memory devices (solid-state memory devices, etc.).
  • FIG. 5 shows an example of a voxel according to embodiments.
  • voxels located in a three-dimensional space represented by a coordinate system composed of three axes of the X-axis, Y-axis, and Z-axis.
  • a point cloud encoder eg, quantization unit 40001
  • voxel 5 is an octree structure recursively subdividing a cubical axis-aligned bounding box defined by two poles (0,0,0) and (2 d , 2 d , 2 d ) Shows an example of a voxel generated through.
  • One voxel includes at least one or more points.
  • the voxel can estimate spatial coordinates from the positional relationship with the voxel group.
  • voxels have attributes (color or reflectance, etc.) like pixels of a 2D image/video. A detailed description of the voxel is the same as that described with reference to FIG. 4 and thus is omitted.
  • FIG. 6 shows an example of an octree and an occupancy code according to embodiments.
  • a point cloud content providing system (point cloud video encoder 10002) or a point cloud encoder (for example, octree analysis unit 40002) efficiently manages the area and/or position of the voxel.
  • octree geometry coding (or octree coding) based on an octree structure is performed.
  • FIG. 6 shows an octree structure.
  • the three-dimensional space of the point cloud content according to the embodiments is expressed by axes of a coordinate system (eg, X-axis, Y-axis, Z-axis).
  • the octree structure is created by recursive subdividing of a cubical axis-aligned bounding box defined by two poles (0,0,0) and (2 d , 2 d , 2 d ). . 2d may be set to a value constituting the smallest bounding box surrounding all points of the point cloud content (or point cloud video).
  • d represents the depth of the octree.
  • the d value is determined according to the following equation. In the following equation, (x int n , y int n , z int n ) represents positions (or position values) of quantized points.
  • the entire 3D space may be divided into eight spaces according to the division.
  • Each divided space is represented by a cube with 6 faces.
  • each of the eight spaces is divided again based on the axes of the coordinate system (eg, X axis, Y axis, Z axis).
  • axes of the coordinate system e.g, X axis, Y axis, Z axis.
  • each space is further divided into eight smaller spaces.
  • the divided small space is also represented as a cube with 6 faces. This division method is applied until a leaf node of an octree becomes a voxel.
  • the lower part of FIG. 6 shows the octree's ocupancy code.
  • the octree's ocupancy code is generated to indicate whether each of the eight divided spaces generated by dividing one space includes at least one point. Therefore, one Okufanshi code is represented by 8 child nodes. Each child node represents the occupancy of the divided space, and the child node has a value of 1 bit. Therefore, the Ocufanshi code is expressed as an 8-bit code. That is, if at least one point is included in the space corresponding to the child node, the node has a value of 1. If the point is not included in the space corresponding to the child node (empty), the node has a value of 0. Since the ocupancy code shown in FIG.
  • a point cloud encoder (for example, the Arismatic encoder 40004) according to embodiments may entropy encode an ocupancy code.
  • the point cloud encoder can intra/inter code the ocupancy code.
  • the reception device (for example, the reception device 10004 or the point cloud video decoder 10006) according to the embodiments reconstructs an octree based on an ocupancy code.
  • a point cloud encoder may perform voxelization and octree coding to store positions of points.
  • points in the 3D space are not always evenly distributed, there may be a specific area where there are not many points. Therefore, it is inefficient to perform voxelization over the entire 3D space. For example, if there are almost no points in a specific area, it is not necessary to perform voxelization to the corresponding area.
  • the point cloud encoder does not perform voxelization for the above-described specific region (or nodes other than the leaf nodes of the octree), but directly codes the positions of points included in the specific region. ) Can be performed. Coordinates of a direct coding point according to embodiments are referred to as a direct coding mode (DCM).
  • the point cloud encoder according to embodiments may perform trisoup geometry encoding in which positions of points within a specific region (or node) are reconstructed based on voxels based on a surface model. Trisoup geometry encoding is a geometry encoding that expresses the representation of an object as a series of triangle meshes.
  • Direct coding and trisoup geometry encoding may be selectively performed.
  • direct coding and trisoup geometry encoding according to embodiments may be performed in combination with octree geometry coding (or octree coding).
  • the option to use direct mode to apply direct coding must be activated, and the node to which direct coding is applied is not a leaf node, but below the threshold within a specific node. There must be points of. In addition, the number of all points subject to direct coding must not exceed a preset limit.
  • the point cloud encoder (or the arithmetic encoder 40004) according to the embodiments may entropy-code the positions (or position values) of the points.
  • the point cloud encoder determines a specific level of the octree (if the level is less than the depth d of the octree), and from that level, the node Trisoup geometry encoding that reconstructs the position of a point in the region based on voxels can be performed (tri-soup mode).
  • a point cloud encoder may designate a level to which trisoup geometry encoding is applied. For example, if the specified level is equal to the depth of the octree, the point cloud encoder does not operate in the try-soup mode.
  • the point cloud encoder may operate in the try-soup mode only when the specified level is less than the depth value of the octree.
  • a three-dimensional cube area of nodes of a designated level according to the embodiments is referred to as a block.
  • One block may include one or more voxels.
  • the block or voxel may correspond to a brick.
  • the geometry is represented by a surface.
  • the surface according to embodiments may intersect each edge (edge) of the block at most once.
  • one block has 12 edges, there are at least 12 intersection points within one block. Each intersection is called a vertex (vertex, or vertex).
  • a vertex existing along an edge is detected when there is at least one occupied voxel adjacent to the edge among all blocks sharing the edge.
  • An occupied voxel refers to a voxel including a point. The position of the vertex detected along the edge is the average position along the edge of all voxels among all blocks sharing the edge.
  • the point cloud encoder When a vertex is detected, the point cloud encoder according to the embodiments entropycodes the starting point (x, y, z) of the edge, the direction vector of the edge ( ⁇ x, ⁇ y, ⁇ z), and vertex position values (relative position values within the edge). I can.
  • the point cloud encoder e.g., the geometry reconstruction unit 40005
  • the point cloud encoder performs a triangle reconstruction, up-sampling, and voxelization process. By doing so, you can create reconstructed geometry (reconstructed geometry).
  • the vertices located at the edge of the block determine the surface that passes through the block.
  • the surface according to the embodiments is a non-planar polygon.
  • the triangle reconstruction process reconstructs the surface represented by a triangle based on the starting point of the edge, the direction vector of the edge, and the position value of the vertex.
  • the triangle reconstruction process is as follows. 1 Calculate the centroid value of each vertex, 2 calculate the squared values of the values subtracted from each vertex value by subtracting the center value, and calculate the sum of all the values.
  • each vertex is projected on the x-axis based on the center of the block, and projected on the (y, z) plane.
  • the projected value on the (y, z) plane is (ai, bi)
  • is obtained through atan2(bi, ai)
  • vertices are aligned based on the ⁇ value.
  • the table below shows a combination of vertices for generating a triangle according to the number of vertices. Vertices are ordered from 1 to n.
  • the table below shows that for four vertices, two triangles may be formed according to a combination of vertices.
  • the first triangle may consist of 1st, 2nd, and 3rd vertices among the aligned vertices
  • the second triangle may consist of 3rd, 4th, and 1st vertices among the aligned vertices. .
  • the upsampling process is performed to voxelize by adding points in the middle along the edge of the triangle. Additional points are created based on the upsampling factor and the width of the block. The additional point is called a refined vertice.
  • the point cloud encoder may voxelize refined vertices. In addition, the point cloud encoder may perform attribute encoding based on the voxelized position (or position value).
  • FIG. 7 shows an example of a neighbor node pattern according to embodiments.
  • the point cloud encoder may perform entropy coding based on context adaptive arithmetic coding.
  • a point cloud content providing system or a point cloud encoder directly converts the Ocufanshi code.
  • Entropy coding is possible.
  • the point cloud content providing system or point cloud encoder performs entropy encoding (intra encoding) based on the ocupancy code of the current node and the ocupancy of neighboring nodes, or entropy encoding (inter encoding) based on the ocupancy code of the previous frame. ) Can be performed.
  • a frame according to embodiments means a set of point cloud videos generated at the same time.
  • the compression efficiency of intra-encoding/inter-encoding may vary depending on the number of referenced neighbor nodes. The larger the bit, the more complicated it is, but it can be skewed to one side, increasing the compression efficiency. For example, if you have a 3-bit context, you have to code in 8 ways. The divided coding part affects the complexity of the implementation. Therefore, it is necessary to match the appropriate level of compression efficiency and complexity.
  • a point cloud encoder determines occupancy of neighboring nodes of each node of an octree and obtains a value of a neighbor pattern.
  • the neighboring node pattern is used to infer the occupancy pattern of the corresponding node.
  • the left side of FIG. 7 shows a cube corresponding to a node (centered cube) and six cubes (neighbor nodes) that share at least one surface with the cube. Nodes shown in the figure are nodes of the same depth (depth). Numbers shown in the figure indicate weights (1, 2, 4, 8, 16, 32, etc.) associated with each of the six nodes. Each weight is sequentially assigned according to the positions of neighboring nodes.
  • the right side of FIG. 7 shows neighboring node pattern values.
  • the neighbor node pattern value is the sum of values multiplied by weights of the occupied neighbor nodes (neighbor nodes having points). Therefore, the neighbor node pattern value has a value from 0 to 63. When the neighbor node pattern value is 0, it indicates that no node (occupied node) has a point among neighboring nodes of the corresponding node. If the neighboring node pattern value is 63, it indicates that all neighboring nodes are occupied nodes. As shown in the figure, since neighboring nodes to which weights 1, 2, 4, and 8 are assigned are occupied nodes, the neighboring node pattern value is 15, which is the sum of 1, 2, 4, and 8.
  • the point cloud encoder may perform coding according to the neighboring node pattern value (for example, if the neighboring node pattern value is 63, 64 codings are performed). According to embodiments, the point cloud encoder may reduce coding complexity by changing a neighbor node pattern value (for example, based on a table changing 64 to 10 or 6).
  • the encoded geometry is reconstructed (decompressed) before attribute encoding is performed.
  • the geometry reconstruction operation may include changing the placement of the direct coded points (eg, placing the direct coded points in front of the point cloud data).
  • the geometry reconstruction process is triangular reconstruction, upsampling, voxelization, and the attribute is dependent on geometry, so the attribute encoding is performed based on the reconstructed geometry.
  • the point cloud encoder may reorganize points for each LOD.
  • the figure shows point cloud content corresponding to the LOD.
  • the left side of the figure shows the original point cloud content.
  • the second figure from the left of the figure shows the distribution of the lowest LOD points, and the rightmost figure in the figure shows the distribution of the highest LOD points. That is, the points of the lowest LOD are sparsely distributed, and the points of the highest LOD are densely distributed. That is, as the LOD increases according to the direction of the arrow indicated at the bottom of the drawing, the spacing (or distance) between points becomes shorter.
  • a point cloud content providing system or a point cloud encoder (for example, a point cloud video encoder 10002, a point cloud encoder in FIG. 4, or an LOD generator 40009) generates an LOD. can do.
  • the LOD is generated by reorganizing the points into a set of refinement levels according to a set LOD distance value (or a set of Euclidean distance).
  • the LOD generation process is performed in the point cloud decoder as well as the point cloud encoder.
  • FIG. 9 shows examples (P0 to P9) of points of point cloud content distributed in a three-dimensional space.
  • the original order of FIG. 9 represents the order of points P0 to P9 before LOD generation.
  • the LOD based order of FIG. 9 represents the order of points according to LOD generation. Points are rearranged by LOD. Also, the high LOD includes points belonging to the low LOD.
  • LOD0 includes P0, P5, P4 and P2.
  • LOD1 includes the points of LOD0 and P1, P6 and P3.
  • LOD2 includes points of LOD0, points of LOD1 and P9, P8 and P7.
  • the point cloud encoder may selectively or combine predictive transform coding, lifting transform coding, and RAHT transform coding.
  • the point cloud encoder may generate a predictor for points and perform predictive transform coding to set a predicted attribute (or predicted attribute value) of each point. That is, N predictors may be generated for N points.
  • the predicted attribute (or attribute value) is a weight calculated based on the distance to each neighboring point to the attributes (or attribute values, for example, color, reflectance, etc.) of neighboring points set in the predictor of each point. It is set as the average value multiplied by (or weight value).
  • a point cloud encoder e.g., the coefficient quantization unit 40011
  • the quantization process is as shown in the following table.
  • the point cloud encoder (for example, the arithmetic encoder 40012) according to the embodiments may entropy-code the quantized and dequantized residual values as described above when there are points adjacent to the predictors of each point.
  • the point cloud encoder according to embodiments (for example, the arithmetic encoder 40012) may entropy-code attributes of the corresponding point without performing the above-described process if there are no points adjacent to the predictor of each point.
  • the point cloud encoder (for example, the lifting transform unit 40010) according to the embodiments generates a predictor of each point, sets the calculated LOD to the predictor, registers neighboring points, and increases the distance to the neighboring points.
  • Lifting transform coding can be performed by setting weights.
  • Lifting transform coding according to embodiments is similar to the above-described predictive transform coding, but differs in that a weight is accumulated and applied to an attribute value.
  • a process of cumulatively applying a weight to an attribute value according to embodiments is as follows.
  • the weights calculated by additionally multiplying the weights calculated for all predictors by the weights stored in the QW corresponding to the predictor indexes are cumulatively added to the update weight array by the indexes of neighboring nodes.
  • the value obtained by multiplying the calculated weight by the attribute value of the index of the neighboring node is accumulated and summed.
  • the predicted attribute value is calculated by additionally multiplying the attribute value updated through the lift update process by the weight updated through the lift prediction process (stored in QW).
  • a point cloud encoder for example, the coefficient quantization unit 40011
  • the point cloud encoder for example, the Arismatic encoder 40012
  • the point cloud encoder (for example, the RAHT transform unit 40008) according to the embodiments may perform RAHT transform coding that estimates the attributes of higher-level nodes by using an attribute associated with a node at a lower level of the octree.
  • RAHT transform coding is an example of attribute intra coding through octree backward scan.
  • the point cloud encoder according to the embodiments scans from voxels to the entire area, and repeats the merging process up to the root node while merging the voxels into larger blocks in each step.
  • the merging process according to the embodiments is performed only for an occupied node.
  • the merging process is not performed for the empty node, and the merging process is performed for the node immediately above the empty node.
  • the following equation represents the RAHT transformation matrix. Denotes the average attribute value of voxels at level l. Is Wow Can be calculated from Wow Weight of and to be.
  • Is high-pass coefficients, and high-pass coefficients in each step are quantized and entropy-coded (for example, encoding of the arithmetic encoder 400012).
  • Weight is Is calculated as Root node is the last and It is created as follows:
  • the gDC value is also quantized and entropy coded like the high pass coefficient.
  • FIG. 10 shows an example of a point cloud decoder according to embodiments.
  • the point cloud decoder illustrated in FIG. 10 is an example of the point cloud video decoder 10006 described in FIG. 1, and may perform the same or similar operation as that of the point cloud video decoder 10006 described in FIG. 1.
  • the point cloud decoder may receive a geometry bitstream and an attribute bitstream included in one or more bitstreams.
  • the point cloud decoder includes a geometry decoder and an attribute decoder.
  • the geometry decoder performs geometry decoding on the geometry bitstream and outputs decoded geometry.
  • the attribute decoder outputs decoded attributes by performing attribute decoding on the basis of the decoded geometry and the attribute bitstream.
  • the decoded geometry and decoded attributes are used to reconstruct the point cloud content.
  • FIG. 11 shows an example of a point cloud decoder according to embodiments.
  • the point cloud decoder illustrated in FIG. 11 is an example of the point cloud decoder described in FIG. 10, and may perform a decoding operation that is a reverse process of the encoding operation of the point cloud encoder described in FIGS. 1 to 9.
  • the point cloud decoder may perform geometry decoding and attribute decoding. Geometry decoding is performed prior to attribute decoding.
  • the point cloud decoder includes an arithmetic decoder (11000), an octree synthesis unit (synthesize octree, 11001), a surface optimization synthesis unit (synthesize surface approximation, 11002), and a geometry reconstruction unit (reconstruct geometry). , 11003), inverse transform coordinates (11004), arithmetic decode (11005), inverse quantize (11006), RAHT transform unit (11007), LOD generator (generate LOD, 11008) ), Inverse lifting (11009), and/or inverse transform colors (11010).
  • the arithmetic decoder 11000, the octree synthesis unit 11001, the surface opoxidation synthesis unit 11002, the geometry reconstruction unit 11003, and the coordinate system inverse transform unit 11004 may perform geometry decoding.
  • Geometry decoding according to embodiments may include direct coding and trisoup geometry decoding. Direct coding and trisoup geometry decoding are optionally applied. Further, the geometry decoding is not limited to the above example, and is performed in the reverse process of the geometry encoding described in FIGS. 1 to 9.
  • the Arismatic decoder 11000 decodes the received geometry bitstream based on Arismatic coding.
  • the operation of the Arismatic decoder 11000 corresponds to the reverse process of the Arismatic encoder 40004.
  • the octree synthesizer 11001 may generate an octree by obtaining an ocupancy code from a decoded geometry bitstream (or information on a geometry obtained as a result of decoding).
  • a detailed description of the OQFancy code is as described in FIGS. 1 to 9.
  • the surface opoxidation synthesizer 11002 may synthesize a surface based on the decoded geometry and/or the generated octree.
  • the geometry reconstruction unit 11003 may regenerate the geometry based on the surface and/or the decoded geometry. 1 to 9, direct coding and trisoup geometry encoding are selectively applied. Accordingly, the geometry reconstruction unit 11003 directly imports and adds position information of points to which direct coding is applied. In addition, when trisoup geometry encoding is applied, the geometry reconstruction unit 11003 performs a reconstruction operation of the geometry reconstruction unit 40005, such as triangle reconstruction, up-sampling, and voxelization, to restore the geometry. have. Detailed contents are the same as those described in FIG.
  • the reconstructed geometry may include a point cloud picture or frame that does not include attributes.
  • the coordinate system inverse transform unit 11004 may acquire positions of points by transforming a coordinate system based on the restored geometry.
  • Arithmetic decoder 11005, inverse quantization unit 11006, RAHT conversion unit 11007, LOD generation unit 11008, inverse lifting unit 11009, and/or color inverse conversion unit 11010 are attributes described in FIG. Decoding can be performed.
  • Attribute decoding according to embodiments includes Region Adaptive Hierarchial Transform (RAHT) decoding, Interpolaration-based hierarchical nearest-neighbor prediction-Prediction Transform decoding, and interpolation-based hierarchical nearest-neighbor prediction with an update/lifting. step (Lifting Transform)) decoding may be included.
  • RAHT Region Adaptive Hierarchial Transform
  • Interpolaration-based hierarchical nearest-neighbor prediction-Prediction Transform decoding Interpolaration-based hierarchical nearest-neighbor prediction-Prediction Transform decoding
  • interpolation-based hierarchical nearest-neighbor prediction with an update/lifting step (Lifting Transform)) decoding may be included.
  • the Arismatic decoder 11005 decodes the attribute bitstream by arithmetic coding.
  • the inverse quantization unit 11006 inverse quantizes information on the decoded attribute bitstream or the attribute obtained as a result of decoding, and outputs inverse quantized attributes (or attribute values). Inverse quantization may be selectively applied based on the attribute encoding of the point cloud encoder.
  • the RAHT conversion unit 11007, the LOD generation unit 11008 and/or the inverse lifting unit 11009 may process reconstructed geometry and inverse quantized attributes. As described above, the RAHT conversion unit 11007, the LOD generation unit 11008, and/or the inverse lifting unit 11009 may selectively perform a decoding operation corresponding thereto according to the encoding of the point cloud encoder.
  • the inverse color transform unit 11010 performs inverse transform coding for inverse transforming a color value (or texture) included in the decoded attributes.
  • the operation of the color inverse transform unit 11010 may be selectively performed based on the operation of the color transform unit 40006 of the point cloud encoder.
  • elements of the point cloud decoder of FIG. 11 are not shown in the drawing, hardware including one or more processors or integrated circuits configured to communicate with one or more memories included in the point cloud providing apparatus , Software, firmware, or a combination thereof.
  • One or more processors may perform at least one or more of the operations and/or functions of the elements of the point cloud decoder of FIG. 11 described above. Further, one or more processors may operate or execute a set of software programs and/or instructions for performing operations and/or functions of elements of the point cloud decoder of FIG. 11.
  • the transmission device shown in FIG. 12 is an example of the transmission device 10000 of FIG. 1 (or a point cloud encoder of FIG. 4 ).
  • the transmission device illustrated in FIG. 12 may perform at least one or more of the same or similar operations and methods as the operations and encoding methods of the point cloud encoder described in FIGS. 1 to 9.
  • the transmission apparatus includes a data input unit 12000, a quantization processing unit 12001, a voxelization processing unit 12002, an octree occupancy code generation unit 12003, a surface model processing unit 12004, an intra/ Inter-coding processing unit (12005), Arithmetic coder (12006), metadata processing unit (12007), color conversion processing unit (12008), attribute transformation processing unit (or attribute transformation processing unit) (12009), prediction/lifting/RAHT transformation
  • a processing unit 12010, an Arithmetic coder 12011, and/or a transmission processing unit 12012 may be included.
  • the data input unit 12000 receives or acquires point cloud data.
  • the data input unit 12000 may perform the same or similar operation and/or an acquisition method to the operation and/or acquisition method of the point cloud video acquisition unit 10001 (or the acquisition process 20000 described in FIG. 2 ).
  • the coder 12006 performs geometry encoding.
  • the geometry encoding according to the embodiments is the same as or similar to the geometry encoding described in FIGS. 1 to 9, so a detailed description thereof will be omitted.
  • the quantization processing unit 12001 quantizes geometry (eg, a position value or position value of points).
  • the operation and/or quantization of the quantization processor 12001 is the same as or similar to the operation and/or quantization of the quantization unit 40001 described in FIG. 4. Detailed descriptions are the same as those described in FIGS. 1 to 9.
  • the voxelization processor 12002 voxelsizes the position values of the quantized points.
  • the voxelization processor 120002 may perform the same or similar operation and/or process as the operation and/or the voxelization process of the quantization unit 40001 described in FIG. 4. Detailed descriptions are the same as those described in FIGS. 1 to 9.
  • the octree occupancy code generation unit 12003 performs octree coding on positions of voxelized points based on an octree structure.
  • the octree ocupancy code generation unit 12003 may generate an ocupancy code.
  • the octree occupancy code generation unit 12003 may perform the same or similar operation and/or method as the operation and/or method of the point cloud encoder (or octree analysis unit 40002) described in FIGS. 4 and 6. Detailed descriptions are the same as those described in FIGS. 1 to 9.
  • the surface model processing unit 12004 may perform trisoup geometry encoding to reconstruct positions of points within a specific area (or node) based on a voxel based on a surface model.
  • the face model processing unit 12004 may perform the same or similar operation and/or method as the operation and/or method of the point cloud encoder (eg, the surface aproxiation analysis unit 40003) described in FIG. 4. Detailed descriptions are the same as those described in FIGS. 1 to 9.
  • the intra/inter coding processor 12005 may intra/inter code point cloud data.
  • the intra/inter coding processing unit 12005 may perform the same or similar coding as the intra/inter coding described in FIG. 7. The detailed description is the same as described in FIG. 7. According to embodiments, the intra/inter coding processing unit 12005 may be included in the arithmetic coder 12006.
  • the arithmetic coder 12006 entropy encodes an octree and/or an approximated octree of point cloud data.
  • the encoding method includes an Arithmetic encoding method.
  • the arithmetic coder 12006 performs the same or similar operation and/or method to the operation and/or method of the arithmetic encoder 40004.
  • the metadata processing unit 12007 processes metadata related to point cloud data, for example, a set value, and provides it to a necessary processing such as geometry encoding and/or attribute encoding.
  • the metadata processing unit 12007 may generate and/or process signaling information related to geometry encoding and/or attribute encoding. Signaling information according to embodiments may be encoded separately from geometry encoding and/or attribute encoding. In addition, signaling information according to embodiments may be interleaved.
  • the color conversion processing unit 12008, the attribute conversion processing unit 12009, the prediction/lifting/RAHT conversion processing unit 12010, and the Arithmetic coder 12011 perform attribute encoding.
  • Attribute encoding according to embodiments is the same as or similar to the attribute encoding described in FIGS. 1 to 9, and thus a detailed description thereof will be omitted.
  • the color conversion processing unit 12008 performs color conversion coding that converts color values included in attributes.
  • the color conversion processing unit 12008 may perform color conversion coding based on the reconstructed geometry. Description of the reconstructed geometry is the same as described in FIGS. 1 to 9. In addition, the same or similar operation and/or method to the operation and/or method of the color conversion unit 40006 described in FIG. 4 is performed. Detailed description will be omitted.
  • the attribute conversion processing unit 12009 performs attribute conversion for converting attributes based on the reconstructed geometry and/or positions for which geometry encoding has not been performed.
  • the attribute conversion processing unit 12009 performs the same or similar operation and/or method to the operation and/or method of the attribute conversion unit 40007 described in FIG. 4. Detailed description will be omitted.
  • the prediction/lifting/RAHT transform processing unit 12010 may code transformed attributes by using any one or a combination of RAHT coding, predictive transform coding, and lifting transform coding.
  • the prediction/lifting/RAHT conversion processing unit 12010 performs at least one of the same or similar operations as the RAHT conversion unit 40008, LOD generation unit 40009, and lifting conversion unit 40010 described in FIG. 4. do.
  • descriptions of predictive transform coding, lifting transform coding, and RAHT transform coding are the same as those described in FIGS.
  • the Arismatic coder 12011 may encode coded attributes based on Arismatic coding.
  • the Arismatic coder 12011 performs the same or similar operation and/or method to the operation and/or method of the Arismatic encoder 400012.
  • the transmission processor 12012 transmits each bitstream including the encoded geometry and/or the encoded attribute, and metadata information, or transmits the encoded geometry and/or the encoded attribute, and the metadata information in one piece. It can be configured as a bitstream and transmitted. When the encoded geometry and/or encoded attribute and metadata information according to the embodiments are configured as one bitstream, the bitstream may include one or more sub-bitstreams.
  • the bitstream according to the embodiments is a sequence parameter set (SPS) for signaling of a sequence level, a geometry parameter set (GPS) for signaling of geometry information coding, an attribute parameter set (APS) for signaling of attribute information coding, and a tile.
  • SPS sequence parameter set
  • GPS geometry parameter set
  • APS attribute parameter set
  • TPS Transaction Parameter Set
  • Slice data may include information on one or more slices.
  • One slice according to embodiments may include one geometry bitstream (Geom0 0 ) and one or more attribute bitstreams (Attr0 0 and Attr1 0 ).
  • the TPS according to the embodiments may include information about each tile (eg, coordinate value information and height/size information of a bounding box) with respect to one or more tiles.
  • the geometry bitstream may include a header and a payload.
  • the header of the geometry bitstream may include identification information of a parameter set included in GPS (geom_ parameter_set_id), a tile identifier (geom_tile_id), a slice identifier (geom_slice_id), and information about data included in the payload.
  • the metadata processing unit 12007 may generate and/or process signaling information and transmit the generated and/or processed signaling information to the transmission processing unit 12012.
  • elements that perform geometry encoding and elements that perform attribute encoding may share data/information with each other as dotted line processing.
  • the transmission processing unit 12012 according to the embodiments may perform the same or similar operation and/or transmission method as the operation and/or transmission method of the transmitter 10003. Detailed descriptions are the same as those described in FIGS. 1 to 2 and thus will be omitted.
  • FIG 13 is an example of a reception device according to embodiments.
  • the receiving device illustrated in FIG. 13 is an example of the receiving device 10004 of FIG. 1 (or the point cloud decoder of FIGS. 10 and 11 ).
  • the receiving device illustrated in FIG. 13 may perform at least one or more of the same or similar operations and methods as the operations and decoding methods of the point cloud decoder described in FIGS. 1 to 11.
  • the receiving apparatus includes a receiving unit 13000, a receiving processing unit 13001, an arithmetic decoder 13002, an octree reconstruction processing unit 13003 based on an Occupancy code, and a surface model processing unit (triangle reconstruction).
  • a receiving unit 13000 Up-sampling, voxelization) (13004), inverse quantization processing unit (13005), metadata parser (13006), arithmetic decoder (13007), inverse quantization processing unit (13008), prediction A /lifting/RAHT inverse transformation processing unit 13009, a color inverse transformation processing unit 13010, and/or a renderer 13011 may be included.
  • Each component of decoding according to the embodiments may perform a reverse process of the component of encoding according to the embodiments.
  • the receiving unit 13000 receives point cloud data.
  • the receiving unit 13000 may perform the same or similar operation and/or a receiving method as the operation and/or receiving method of the receiver 10005 of FIG. 1. Detailed description will be omitted.
  • the reception processing unit 13001 may obtain a geometry bitstream and/or an attribute bitstream from received data.
  • the reception processing unit 13001 may be included in the reception unit 13000.
  • the arithmetic decoder 13002, the ocupancy code-based octree reconstruction processing unit 13003, the surface model processing unit 13004, and the inverse quantization processing unit 13005 may perform geometry decoding. Since the geometry decoding according to the embodiments is the same as or similar to the geometry decoding described in FIGS. 1 to 10, a detailed description will be omitted.
  • the Arismatic decoder 13002 may decode a geometry bitstream based on Arismatic coding.
  • the Arismatic decoder 13002 performs the same or similar operation and/or coding as the operation and/or coding of the Arismatic decoder 11000.
  • the ocupancy code-based octree reconstruction processing unit 13003 may obtain an ocupancy code from a decoded geometry bitstream (or information on a geometry obtained as a result of decoding) to reconstruct the octree.
  • the ocupancy code-based octree reconstruction processing unit 13003 performs the same or similar operation and/or method as the operation and/or the octree generation method of the octree synthesis unit 11001.
  • the surface model processing unit 13004 decodes the trisoup geometry based on the surface model method and reconstructs the related geometry (eg, triangle reconstruction, up-sampling, voxelization). Can be done.
  • the surface model processing unit 13004 performs an operation identical or similar to that of the surface opoxidation synthesis unit 11002 and/or the geometry reconstruction unit 11003.
  • the inverse quantization processing unit 13005 may inverse quantize the decoded geometry.
  • the metadata parser 13006 may parse metadata included in the received point cloud data, for example, a setting value.
  • the metadata parser 13006 may pass metadata to geometry decoding and/or attribute decoding.
  • the detailed description of the metadata is the same as that described in FIG. 12 and thus will be omitted.
  • the arithmetic decoder 13007, the inverse quantization processing unit 13008, the prediction/lifting/RAHT inverse transformation processing unit 13009, and the color inverse transformation processing unit 13010 perform attribute decoding. Since the attribute decoding is the same as or similar to the attribute decoding described in FIGS. 1 to 10, a detailed description will be omitted.
  • the Arismatic decoder 13007 may decode the attribute bitstream through Arismatic coding.
  • the arithmetic decoder 13007 may perform decoding of the attribute bitstream based on the reconstructed geometry.
  • the Arismatic decoder 13007 performs the same or similar operation and/or coding as the operation and/or coding of the Arismatic decoder 11005.
  • the inverse quantization processing unit 13008 may inverse quantize the decoded attribute bitstream.
  • the inverse quantization processing unit 13008 performs the same or similar operation and/or method as the operation and/or the inverse quantization method of the inverse quantization unit 11006.
  • the prediction/lifting/RAHT inverse transform processing unit 13009 may process reconstructed geometry and inverse quantized attributes.
  • the prediction/lifting/RAHT inverse transform processing unit 13009 is the same or similar to the operations and/or decodings of the RAHT transform unit 11007, the LOD generator 11008 and/or the inverse lifting unit 11009, and/or At least one or more of the decodings is performed.
  • the color inverse transform processing unit 13010 according to embodiments performs inverse transform coding for inverse transforming a color value (or texture) included in the decoded attributes.
  • the color inverse transform processing unit 13010 performs the same or similar operation and/or inverse transform coding as the operation and/or inverse transform coding of the color inverse transform unit 11010.
  • the renderer 13011 may render point cloud data.
  • FIG. 14 illustrates an architecture for G-PCC-based point cloud content streaming according to embodiments.
  • FIG. 14 shows a process in which the transmission device (for example, the transmission device 10000, the transmission device of FIG. 12, etc.) described in FIGS. 1 to 13 processes and transmits the point cloud content.
  • the transmission device for example, the transmission device 10000, the transmission device of FIG. 12, etc.
  • the transmission device may obtain audio Ba of the point cloud content (Audio Acquisition), encode the acquired audio, and output audio bitstreams Ea.
  • the transmission device acquires a point cloud (Bv) (or point cloud video) of the point cloud content (Point Acqusition), performs point cloud encoding on the acquired point cloud, and performs a point cloud video bitstream ( Eb) can be output.
  • the point cloud encoding of the transmission device is the same as or similar to the point cloud encoding (for example, the encoding of the point cloud encoder of FIG. 4) described in FIGS.
  • the transmission device may encapsulate the generated audio bitstreams and video bitstreams into files and/or segments (File/segment encapsulation).
  • the encapsulated file and/or segment may include a file of a file format such as ISOBMFF or a DASH segment.
  • Point cloud-related metadata may be included in an encapsulated file format and/or segment.
  • Meta data may be included in boxes of various levels in the ISOBMFF file format or may be included in separate tracks in the file.
  • the transmission device may encapsulate the metadata itself as a separate file.
  • the transmission device according to the embodiments may deliver the encapsulated file format and/or segment through a network. Since the encapsulation and transmission processing method of the transmission device is the same as those described in FIGS. 1 to 13 (for example, the transmitter 10003, the transmission step 20002 of FIG. 2, etc.), detailed descriptions are omitted.
  • FIG. 14 shows a process of processing and outputting point cloud content by the receiving device (for example, the receiving device 10004, the receiving device of FIG. 13, etc.) described in FIGS. 1 to 13.
  • the receiving device for example, the receiving device 10004, the receiving device of FIG. 13, etc.
  • the receiving device includes a device that outputs final audio data and final video data (e.g., loudspeakers, headphones, display), and a point cloud player that processes point cloud content ( Point Cloud Player).
  • the final data output device and the point cloud player may be configured as separate physical devices.
  • the point cloud player according to the embodiments may perform Geometry-based Point Cloud Compression (G-PCC) coding and/or Video based Point Cloud Compression (V-PCC) coding and/or next-generation coding.
  • G-PCC Geometry-based Point Cloud Compression
  • V-PCC Video based Point Cloud Compression
  • the receiving device secures a file and/or segment (F', Fs') included in the received data (for example, a broadcast signal, a signal transmitted through a network, etc.) and decapsulation (File/ segment decapsulation). Since the reception and decapsulation method of the reception device is the same as that described in FIGS. 1 to 13 (for example, the receiver 10005, the reception unit 13000, the reception processing unit 13001, etc.), a detailed description is omitted.
  • the receiving device secures an audio bitstream E'a and a video bitstream E'v included in a file and/or segment. As shown in the drawing, the receiving device outputs the decoded audio data B'a by performing audio decoding on the audio bitstream, and rendering the decoded audio data to final audio data. (A'a) is output through speakers or headphones.
  • the receiving device outputs decoded video data B'v by performing point cloud decoding on the video bitstream E'v. Since the point cloud decoding according to the embodiments is the same as or similar to the point cloud decoding described in FIGS. 1 to 13 (for example, decoding of the point cloud decoder of FIG. 11 ), a detailed description will be omitted.
  • the receiving device may render the decoded video data and output the final video data through the display.
  • the receiving device may perform at least one of decapsulation, audio decoding, audio rendering, point cloud decoding, and rendering operations based on metadata transmitted together.
  • the description of the metadata is the same as that described with reference to FIGS. 12 to 13 and thus will be omitted.
  • the receiving device may generate feedback information (orientation, viewport).
  • Feedback information may be used in a decapsulation process, a point cloud decoding process and/or a rendering process of a receiving device, or may be transmitted to a transmitting device. The description of the feedback information is the same as that described with reference to FIGS. 1 to 13 and thus will be omitted.
  • 15 shows an example of a transmission device according to embodiments.
  • the transmission device of FIG. 15 is a device that transmits point cloud content, and the transmission device described in FIGS. 1 to 14 (for example, the transmission device 10000 of FIG. 1, the point cloud encoder of FIG. 4, the transmission device of FIG. 12, 14). Accordingly, the transmission device of FIG. 15 performs the same or similar operation to that of the transmission device described in FIGS. 1 to 14.
  • the transmission device may perform at least one or more of point cloud acquisition, point cloud encoding, file/segment encapsulation, and delivery. Can be done.
  • the transmission device may perform geometry encoding and attribute encoding.
  • Geometry encoding according to embodiments may be referred to as geometry compression, and attribute encoding may be referred to as attribute compression.
  • attribute compression As described above, one point may have one geometry and one or more attributes. Therefore, the transmission device performs attribute encoding for each attribute.
  • the drawing shows an example in which a transmission device has performed one or more attribute compressions (attribute #1 compression, ...attribute #N compression).
  • the transmission apparatus may perform auxiliary compression. Additional compression is performed on the metadata. Description of the meta data is the same as that described with reference to FIGS. 1 to 14 and thus will be omitted.
  • the transmission device may perform mesh data compression.
  • Mesh data compression according to embodiments may include the trisoup geometry encoding described in FIGS. 1 to 14.
  • the transmission device may encapsulate bitstreams (eg, point cloud streams) output according to point cloud encoding into files and/or segments.
  • a transmission device performs media track encapsulation for carrying data other than metadata (for example, media data), and metadata tracak for carrying meta data. encapsulation) can be performed.
  • metadata may be encapsulated as a media track.
  • the transmitting device receives feedback information (orientation/viewport metadata) from the receiving device, and based on the received feedback information, at least one of point cloud encoding, file/segment encapsulation, and transmission operations. Any one or more can be performed. Detailed descriptions are the same as those described with reference to FIGS.
  • FIG. 16 shows an example of a receiving device according to embodiments.
  • the receiving device of FIG. 16 is a device that receives point cloud content, and the receiving device described in FIGS. 1 to 14 (for example, the receiving device 10004 of FIG. 1, the point cloud decoder of FIG. 11, the receiving device of FIG. 13, 14). Accordingly, the receiving device of FIG. 16 performs the same or similar operation to that of the receiving device described in FIGS. 1 to 14. In addition, the receiving device of FIG. 16 may receive a signal transmitted from the transmitting device of FIG. 15, and may perform a reverse process of the operation of the transmitting device of FIG.
  • the receiving device may perform at least one or more of delivery, file/segement decapsulation, point cloud decoding, and point cloud rendering. Can be done.
  • the reception device performs decapsulation on a file and/or segment acquired from a network or a storage device.
  • the receiving device performs media track decapsulation carrying data other than meta data (for example, media data), and metadata track decapsulation carrying meta data. decapsulation) can be performed.
  • the metadata track decapsulation is omitted.
  • the receiving device may perform geometry decoding and attribute decoding on bitstreams (eg, point cloud streams) secured through decapsulation.
  • Geometry decoding according to embodiments may be referred to as geometry decompression, and attribute decoding may be referred to as attribute decompression.
  • a point may have one geometry and one or more attributes, and are each encoded. Therefore, the receiving device performs attribute decoding for each attribute.
  • the drawing shows an example in which the receiving device performs one or more attribute decompressions (attribute #1 decompression, ...attribute #N decompression).
  • the reception device may perform auxiliary decompression. Additional decompression is performed on the metadata.
  • the receiving device may perform mesh data decompression.
  • the mesh data decompression according to embodiments may include decoding the trisoup geometry described with reference to FIGS. 1 to 14.
  • the reception device according to the embodiments may render the output point cloud data according to the point cloud decoding.
  • the receiving device secures orientation/viewport metadata using a separate sensing/tracking element, etc., and transmits feedback information including the same to a transmission device (for example, the transmission device of FIG. 15). Can be transmitted.
  • the receiving device may perform at least one or more of a receiving operation, file/segment decapsulation, and point cloud decoding based on the feedback information. Detailed descriptions are the same as those described with reference to FIGS.
  • FIG. 17 shows an example of a structure capable of interworking with a method/device for transmitting and receiving point cloud data according to embodiments.
  • the structure of FIG. 17 includes at least one of a server 1760, a robot 1710, an autonomous vehicle 1720, an XR device 1730, a smartphone 1740, a home appliance 1750, and/or an HMD 1770.
  • a configuration connected to the cloud network 1710 is shown.
  • the robot 1710, the autonomous vehicle 1720, the XR device 1730, the smartphone 1740, the home appliance 1750, and the like are referred to as devices.
  • the XR device 1730 may correspond to a point cloud data (PCC) device according to embodiments or may be interlocked with a PCC device.
  • PCC point cloud data
  • the cloud network 1700 may constitute a part of a cloud computing infrastructure or may mean a network that exists in the cloud computing infrastructure.
  • the cloud network 1700 may be configured using a 3G network, a 4G or long term evolution (LTE) network, or a 5G network.
  • LTE long term evolution
  • the server 1760 includes at least one of a robot 1710, an autonomous vehicle 1720, an XR device 1730, a smartphone 1740, a home appliance 1750, and/or an HMD 1770, and a cloud network 1700.
  • the connected devices 1710 to 1770 may be connected through, and may help at least part of the processing of the connected devices.
  • the HMD (Head-Mount Display) 1770 represents one of types in which an XR device and/or a PCC device according to embodiments may be implemented.
  • the HMD type device according to the embodiments includes a communication unit, a control unit, a memory unit, an I/O unit, a sensor unit, and a power supply unit.
  • the devices 1710 to 1750 shown in FIG. 17 may be interlocked/coupled with the point cloud data transmission/reception apparatus according to the above-described embodiments.
  • the XR/PCC device 1730 is applied with PCC and/or XR (AR+VR) technology to provide a head-mount display (HMD), a head-up display (HUD) provided in a vehicle, a television, a mobile phone, a smart phone, It may be implemented as a computer, wearable device, home appliance, digital signage, vehicle, fixed robot or mobile robot.
  • HMD head-mount display
  • HUD head-up display
  • vehicle a television
  • mobile phone a smart phone
  • It may be implemented as a computer, wearable device, home appliance, digital signage, vehicle, fixed robot or mobile robot.
  • the XR/PCC device 1730 analyzes 3D point cloud data or image data acquired through various sensors or from an external device to generate position data and attribute data for 3D points, thereby Information can be obtained, and the XR object to be output can be rendered and output.
  • the XR/PCC device 1730 may output an XR object including additional information on the recognized object in correspondence with the recognized object.
  • the autonomous vehicle 1720 may be implemented as a mobile robot, a vehicle, or an unmanned aerial vehicle by applying PCC technology and XR technology.
  • the autonomous driving vehicle 1720 to which the XR/PCC technology is applied may refer to an autonomous driving vehicle having a means for providing an XR image, an autonomous driving vehicle that is an object of control/interaction within the XR image.
  • the autonomous vehicle 1720 which is the object of control/interaction in the XR image, is distinguished from the XR device 1730 and may be interlocked with each other.
  • the autonomous vehicle 1720 having a means for providing an XR/PCC image may acquire sensor information from sensors including a camera, and may output an XR/PCC image generated based on the acquired sensor information.
  • the autonomous vehicle 1720 may provide an XR/PCC object corresponding to a real object or an object in a screen to the occupant by outputting an XR/PCC image with a HUD.
  • the XR/PCC object when the XR/PCC object is output to the HUD, at least a part of the XR/PCC object may be output to overlap the actual object facing the occupant's gaze.
  • the XR/PCC object when the XR/PCC object is output on a display provided inside the autonomous vehicle, at least a part of the XR/PCC object may be output to overlap the object in the screen.
  • the autonomous vehicle 1220 may output XR/PCC objects corresponding to objects such as lanes, other vehicles, traffic lights, traffic signs, motorcycles, pedestrians, and buildings.
  • VR Virtual Reality
  • AR Augmented Reality
  • MR Magnetic Reality
  • PCC Point Cloud Compression
  • VR technology is a display technology that provides objects or backgrounds in the real world only as CG images.
  • AR technology refers to a technology that shows a virtually created CG image on a real object image.
  • MR technology is similar to the AR technology described above in that virtual objects are mixed and combined in the real world.
  • real objects and virtual objects made from CG images are clear, and virtual objects are used in a form that complements the real objects, whereas in MR technology, the virtual objects are regarded as having the same characteristics as the real objects. It is distinct from technology. More specifically, for example, it is a hologram service to which the aforementioned MR technology is applied.
  • VR, AR, and MR technologies are sometimes referred to as XR (extended reality) technology rather than clearly distinguishing between them. Therefore, embodiments of the present invention are applicable to all of VR, AR, MR, and XR technologies.
  • This technology can be applied to encoding/decoding based on PCC, V-PCC, and G-PCC technology.
  • the PCC method/apparatus according to the embodiments may be applied to a vehicle providing an autonomous driving service.
  • Vehicles providing autonomous driving service are connected to PCC devices to enable wired/wireless communication.
  • the vehicle receives/processes AR/VR/PCC service related content data that can be provided together with the autonomous driving service. Can be transferred to.
  • the point cloud transmission/reception device may receive/process AR/VR/PCC service related content data according to a user input signal input through the user interface device and provide it to the user.
  • the vehicle or user interface device may receive a user input signal.
  • the user input signal may include a signal indicating an autonomous driving service.
  • the method/device according to the embodiments may refer to a point cloud data transmission/reception method and/or a point cloud data transmission/reception apparatus.
  • geometry information may be referred to as geometric information
  • attribute information may be referred to as attribute information.
  • the encoder according to the embodiments may be referred to as a point cloud data encoder, a point cloud encoder, and a point cloud encoder according to the embodiments.
  • the decoder according to the embodiments may be referred to as a point cloud data decoder, a point cloud decoder, and a point cloud decoder according to the embodiments.
  • a geometry bitstream of point cloud data according to embodiments may be referred to as a geometric information bitstream, and an attribute bitstream of point cloud data according to embodiments may be referred to as an attribute bitstream.
  • FIG. 18 shows a point cloud encoder according to embodiments.
  • a point cloud encoder receives point cloud data (PCC data) and encodes them.
  • a point cloud encoder outputs a geometric information bitstream and an attribute information bitstream.
  • a point cloud encoder may include a spatial division unit 18001, a geometric information encoding unit 18002, and/or an attribute information encoding unit 18003.
  • the spatial division unit 18000 may receive point cloud data (PCC data) from a point cloud encoder, and divide the point cloud data into one or more three-dimensional spaces.
  • the spatial divider 18001 may receive point cloud data and spatially divide the point cloud data into 3D blocks.
  • the point cloud data may include geometric information and/or attribute information of a point (or points).
  • the spatial divider may spatially divide point cloud data (PCC data) based on a bounding box and/or a sub-bounding box.
  • the bounding box according to the embodiments represents a hexahedral unit that divides point cloud data or a 3D space in which points are distributed.
  • the sub-bounding box according to embodiments refers to a unit obtained by dividing the bounding box.
  • the method/apparatus according to the embodiments may perform encoding/decoding based on a divided unit (box).
  • geometric information may be referred to as geometric information.
  • attribute information may be referred to as attribute information.
  • the spatial division unit 18000 is a part of the operation of the Point Cloud Acquisition (10001) of FIG. 1, the acquisition (20000) of FIG. 2, the operation of FIGS. /Can do all.
  • the geometric information encoding unit 18001 receives geometry information of point cloud data (PCC data) according to the embodiments and encodes them.
  • the geometry information may mean location information of points included in the point cloud data.
  • the geometry information encoder 18001 encodes geometry information and outputs a geometry information bitstream.
  • the geometric information encoder 18001 may reconstruct the location information of the points and output the reconstructed geometric information.
  • the geometric information encoder 18001 may transmit the reconstructed geometric information to the attribute information encoder 18001.
  • the geometric information encoding unit 18001 includes a point cloud video encoder 10002 of FIG. 1, an encoding 20001 of FIG. 2, a coordinate system transform unit 40000 of FIG. 4, a quantization 40001, and an octree analysis unit. (40002), a surface aproximation analysis unit (40003), an arithmetic encoder (40004), a geometry reconstruction unit (40005), a quantization processing unit (12001) of FIG. 12, a voxelization processing unit (12002), an octree occupancy
  • Some/all of the operations of the code generation unit 12003, the surface model processing unit 12004, the intra/inter coding processing unit 12005, and/or the arithmetic coder 12006 may be performed.
  • the attribute information encoder 18002 may receive attribute information of the point cloud data according to the embodiments, and may encode the attribute information using the reconstructed geometric information received from the geometric information encoder 18001.
  • the attribute information encoding unit 18002 encodes attribute information and outputs an attribute information bitstream.
  • the attribute information encoder 18002 may perform, for example, prediction transform, lifting transform, and/or region adaptive hierarchical transform (RAHT) transform according to embodiments.
  • the attribute information encoding unit 18002 may, for example, perform prediction lifting (or predictive lifting) transformation.
  • the prediction lifting transformation may mean a combination of some or all of the detailed operations of the predictive transformation and/or the lifting transformation according to embodiments.
  • the point cloud encoder encodes some, all and/or a combination of prediction transform, lifting transform, and/or Region Adaptive Hierarchical Transform (RAHT) transform according to the embodiments. Can be done.
  • RAHT Region Adaptive Hierarchical Transform
  • the attribute information encoding unit 18002 includes a point cloud video encoder 10002 of FIG. 1, an encoding 20001 of FIG. 2, a color conversion unit 40006 of FIG. 4, an attribute conversion unit 40007, and a RATH conversion unit 40008. , LOD generation unit 40009, Lifting transform unit 40010, coefficient quantization unit 40011 and/or operation of Arismatic encoding unit 40012, color conversion processing unit 12008 of FIG. 12, attribute conversion processing unit 12009 , All/some operations of the prediction/lifting/RAHT conversion processor 12010 and the Arismatic coder 12011 may be performed.
  • the reconstructed geometric information may refer to an octree reconstructed by the Reconstruct Geometry 40005 described in FIG. 4 and/or an approximated octree.
  • the restored geometric information may refer to the occupancy code described in FIG. 6 or may refer to an octree structure.
  • the restored geometric information may refer to an octree occupancy code generated by the octree occupancy code generator 12003 described in FIG. 12.
  • the attribute information encoder 18002 may encode attribute information of point cloud data according to embodiments.
  • the encoder 18002 according to the embodiments may encode attribute information by using reconstructed geometric information (or reconstructed geometric information) according to the embodiments.
  • the attribute information encoder 18002 may generate a bitstream including attribute information (or attribute information) by encoding the received data.
  • the point cloud data transmission apparatus may encode attribute information by applying a new transformation type.
  • G-PCC can be divided into geometry information compression and attribute information compression.
  • a Region-Adaptive Haar (or hierarchical) Transform (RAHT) may be used to encode data distributed in space when attribute information is compressed.
  • RAHT Region-Adaptive Haar
  • coefficients generated by applying the method should be encoded as accurately as possible, and if a specific coefficient is not correctly encoded, deterioration may occur in the entire area of the reconstructed point cloud data.
  • Geometric information may include location information of each point (each point of points of PCC data).
  • geometric information is (x, y) of a two-dimensional orthogonal coordinate system or ( , ) Or (x, y, z) of a Cartesian coordinate system in three-dimensional space or ( , , z) or ( , , ) Can be expressed as a coordinate vector.
  • Attribute information is a vector representing a color of a point (each point of points in point cloud data) (eg, (R, G, B) information), a brightness value (or a luminance value) , The reflection coefficient of the lidar and/or a vector of values obtained from one or more sensors (eg, a temperature value obtained from a thermal imaging camera, etc.).
  • the spatial dividing unit 18000 may divide the input point cloud data into at least one 3D block.
  • the block may mean a tile group, a tile, a slice, or a coding unit (CU), a prediction unit (PU), or a transformation unit (TU).
  • the space dividing unit 18000 according to the embodiments may divide point cloud data into blocks having an arbitrary horizontal and vertical height.
  • the space dividing unit 18000 according to embodiments may divide point cloud data by selectively determining various positions and sizes of blocks. The partitioning may be performed based on at least one of an octree, a quadtree, a binary tree, a triple tree, and a k-d tree.
  • the point cloud data transmission method can efficiently and quickly encode point cloud data due to the configuration of the geometric information encoding unit and/or the attribute information encoding unit. It can provide a realistic virtual reality environment.
  • FIG. 19 illustrates a point cloud attribute information encoder according to embodiments.
  • the point cloud attribute information encoder of FIG. 19 may be included in the point cloud encoder according to embodiments.
  • the point cloud attribute information encoder of FIG. 19 may mean the attribute information encoder 18002 of FIG. 18.
  • the attribute information encoder of the point cloud includes an attribute characteristic converting unit 19000, a geometric information mapping unit 19001, a residual attribute information converting unit 19002, a residual attribute information quantizing unit 19003, and a residual attribute information inverse.
  • a quantization unit 19004, an inverse residual attribute information transform unit 19005, a filtering unit 19006, a memory 19007, an attribute information prediction unit 19008, and/or an attribute information entropy encoding unit 19009 may be included.
  • the attribute characteristic conversion unit 19000 converts attribute information according to embodiments according to attribute characteristics. For example, if the corresponding attribute information indicates a color space, the attribute characteristic converting unit 19000 may convert the color space of the attribute information.
  • the attribute characteristic conversion unit 19000 includes a point cloud video encoder 10002 of FIG. 1, an encoding 20001 of FIG. 2, a transform coordinating 40000 of FIG. 4, and/or quantizes and removes points (voxel Some/all operations such as the Rise operation 40001 and the quantization processing unit 12001 and the voxelization processing unit 12002 of FIG. 12 may be performed.
  • the geometric information mapping unit 19001 maps the attribute information converted by the attribute characteristic conversion unit 19000 to the restored geometric information.
  • the restored geometric information may mean geometric information reconstructed by the geometric information encoder 18001 of FIG. 18.
  • the reconstructed geometric information may be reconstructed geometric information (eg, an octree and/or an approximated octree) generated by the geometry reconstruction unit 40005 of FIG. 4.
  • the restored geometric information may be the reconstructed position value shown in FIG. 12.
  • the geometric information mapping unit may output restored geometric information, converted attribute information generated by the attribute characteristic conversion unit, and/or information related to a geometric information mapping operation.
  • the geometric information mapping unit 19001 includes a point cloud video encoder 10002 described in FIG. 1, an encoding 20001 in FIG. 2, a geometry reconstruction 40000 in FIG. 4, and/or Analyze octree analysis. 40002) can perform some/all operations.
  • the geometric information mapping unit 19001 may reconstruct the attribute information by performing mapping between the attribute information input from the attribute information conversion unit and the received restored geometric information.
  • the reconfiguration of attribute information may mean deriving an attribute value based on attribute information of one or a plurality of points based on the restored geometric information.
  • the reconstructed attribute information according to embodiments may be input to the residual attribute information conversion unit by being differentiated from the predicted attribute information generated by the attribute information prediction unit.
  • the prediction unit 19008 and/or the attribute information entropy encoding unit 19009 may each include, for example, the point cloud video encoder 10002 of FIG. 1, the encoding 20001 of FIG. 2, and the operations or blocks shown in FIG. 4. You can perform some/all of their operations.
  • the residual attribute information conversion unit 19002 may receive residual information generated by differentiating the data generated by the geometric information mapping unit and the predicted attribute information generated by the attribute information predicting unit. That is, the information received by the residual attribute information conversion unit may be residual information generated by differentiating attribute information of points and predicted attribute information of a corresponding point according to embodiments.
  • the residual attribute information conversion unit 19002 may convert a residual 3D block including residual attribute information of point cloud data according to embodiments according to a transformation type such as DCT, DST, DST, SA-DCT, RAHT, and the like.
  • the converted residual attribute information according to the embodiments may be input to the residual attribute information quantization unit.
  • the point cloud data transmission apparatus may transmit the residual attribute information to the residual attribute information quantization unit without converting the residual attribute information.
  • the device for transmitting point cloud data may perform entropy encoding in the entropy encoder and transmit it to the device for receiving point cloud data.
  • the residual attribute information quantization unit 19003 may quantize residual information converted by the residual attribute information conversion unit.
  • the residual attribute information quantization unit 19003 may transmit the converted residual information to the attribute information entropy encoding unit 19009 and the residual attribute inverse quantization unit 19004.
  • the residual attribute information quantization unit 19003 may generate transform quantized residual attribute information based on a quantization value (quantization information) from the transformed residual attribute information according to embodiments.
  • the residual attribute information inverse quantization unit 19004 may inverse quantize the residual information quantized by the residual attribute information quantization unit again. Inverse quantization may be an inverse process of the above-described quantization.
  • the residual attribute inverse quantization unit 19004 receives the input transformed quantized residual attribute information and generates transformed residual attribute information based on the quantization value.
  • the generated transform residual attribute information may be input to a residual attribute inverse transform unit.
  • the residual attribute information inverse transform unit 19005 may inverse transform the residual information inversely quantized by the residual attribute information inverse quantization unit.
  • the inverse transformation may perform an inverse process of the residual attribute information transformation unit described above.
  • the operation of converting residual information may be converted according to an inverse process of a conversion method such as DCT, DST, DST, SA-DCT, RAHT, and the like.
  • the inversely transformed residual attribute information may generate reconstructed attribute information based on, for example, a sum operation and predicted attribute information input from the attribute information predictor.
  • the apparatus for transmitting point cloud data may generate the reconstructed property information by directly adding the prediction property information without performing inverse transformation according to the embodiments.
  • the reconstructed attribute information may be received by combining the predicted attribute information input from the filtering unit 19006 and the attribute information predicting unit and the inversely transformed residual attribute information.
  • the filtering unit may perform filtering by receiving the restored attribute information.
  • the filtering unit may include a deblocking filter, an offset correction unit, an adaptive loop filter (ALF), and the like.
  • the memory 19007 may store attribute information calculated through a filtering unit.
  • the stored attribute information may be provided to the attribute information predictor when performing prediction.
  • the attribute information prediction unit 19008 predicts attribute information of points according to embodiments.
  • the attribute information predictor predicts attribute information of one or more points using attribute information stored in the memory.
  • the attribute information prediction unit outputs predicted attribute information.
  • the predicted attribute information output by the attribute information prediction unit may be used to generate residual attribute information from the attribute information output by the geometric information mapping unit.
  • the predicted attribute information may generate information input to the filtering unit through a sum operation and the residual attribute information inversely transformed by the residual attribute information inverse transform unit.
  • the attribute information predictor 19008 generates predicted attribute information based on attribute information of points in the memory.
  • the prediction information may be encoded by performing entropy encoding.
  • the attribute information entropy encoding unit 19009 may encode residual attribute information quantized by the residual attribute information quantization unit.
  • the attribute information entropy encoding unit 19009 may entropy-encode the transformed quantized residual attribute information according to embodiments.
  • Entropy coding according to embodiments may be performed based on coding methods such as Exponential Golomb, Context-Adaptive Variable Length Coding (CAVLC), and Context-Adaptive Binary Arithmetic Coding (CABAC). have.
  • encoding the point cloud data includes encoding the point cloud data, encoding geometry information of the point cloud data and/or attribute information of the point cloud data based on the restored geometry information. It may include the step of encoding.
  • the encoding of the attribute information includes mapping attribute information of the point cloud data and reconstructed geometry information, transforming a 3D block including the mapped attribute information, and the converted attribute information. It may include the step of quantizing.
  • residual attribute information generated by differentiating the mapped attribute information and the predicted attribute information may be transformed, and the quantizing step may quantize the transformed residual attribute information, and ,
  • the bitstream transmitted by the point cloud data transmission apparatus according to the embodiments may include information indicating a prediction method related to prediction attribute information.
  • the point cloud data transmission method may efficiently and quickly encode point cloud data due to the configuration of the geometric information (geometry information) encoding unit and/or the attribute information (attribute information) encoding unit according to FIG. 19.
  • the geometric information geometric information
  • attribute information attribute information
  • FIG. 20 illustrates a point cloud attribute information encoder according to embodiments.
  • the attribute information encoder of the point cloud includes an attribute characteristic conversion unit 20000, a geometric information mapping unit 20001, an attribute information conversion unit 20002, an attribute information quantization unit 20003, and/or an attribute information entropy encoding. It may include a part 20004. Each component of the point cloud attribute information encoder shown in FIG. 20 may be included in the attribute information encoder of FIG. 18.
  • the attribute characteristic conversion unit 20000 converts attribute information according to embodiments according to attribute characteristics. For example, if the attribute information indicates a color space, the attribute characteristic conversion unit 20000 may convert the color space of the attribute information. The attribute characteristic converting unit 20000 may transmit the converted color information to the geometric information mapping unit. The attribute information encoder of the point cloud according to embodiments may transmit attribute information to the geometric information mapping unit without transforming attribute characteristics.
  • the attribute characteristic conversion unit 20000 includes the point cloud video encoder 10002 of FIG. 1, the encoding 20001 of FIG. 2, the transform coordinating 40000 of FIG. 4, and/or the quantization and removal of points (voxel Some/all operations such as the Rise operation 40001 and the quantization processing unit 12001 and the voxelization processing unit 12002 of FIG. 12 may be performed.
  • the geometric information mapping unit 20001 maps the attribute information converted by the attribute characteristic conversion unit 20000 to the restored geometric information.
  • the restored geometric information may mean geometric information reconstructed by the geometric information encoder 18001 of FIG. 18.
  • the reconstructed geometric (geometry) information may be reconstructed geometric information (eg, an octree and/or an approximated octree) generated by the geometry reconstruction unit 40005 of FIG. 4.
  • the restored geometric information may be the reconstructed position value shown in FIG. 12.
  • the geometric information mapping unit 20001 reconstructs the attribute information by mapping the attribute information received from the attribute characteristic conversion unit 20000 and the restored geometric information.
  • Reconfiguring attribute information may mean deriving an attribute value based on attribute information of one or a plurality of points based on the restored geometric information.
  • the geometric information mapping unit 20001 may output reconstructed geometric information, converted attribute information generated by the attribute characteristic conversion unit, and/or information related to a geometric information mapping operation.
  • the geometric information mapping unit 20001 includes a point cloud video encoder (10002) described in FIG. 1, an encoding (20001) of FIG. 2, a geometry reconstruction 40000 of FIG. 4, and/or an analysis octree (Analyze octree). 40002) can perform some/all operations.
  • the attribute information conversion unit 20002, the attribute information quantization unit 20003, and/or the attribute information entropy encoding unit 20004 are, for example, a point cloud video encoder 10002 of FIG. 1 and an encoding 20001 of FIG. 2, respectively. , Some/all of the operations or blocks of FIG. 4 may be performed. The above-described blocks may perform some/all of the point cloud encoding operations of FIGS. 14 and 15.
  • the attribute information conversion unit 20002 converts the 3D block including the reconstructed attribute information output from the geometric information mapping unit 20001 based on a transformation type such as DCT, DST, DST, SA-DCT, RAHT, etc. can do.
  • the transformed and reconstructed attribute information according to embodiments may be transmitted to the attribute information quantization unit 20003.
  • the point cloud encoder according to embodiments may transmit the reconstructed attribute information to the attribute information quantization unit 20003 without performing an operation of the attribute information conversion unit 20002.
  • the transformation type according to the embodiments may be transmitted to a decoder by performing entropy encoding in an entropy encoder.
  • the attribute information conversion unit 20002 may receive mapped attribute information generated (or output) by data generated by the geometric information mapping unit.
  • the attribute information conversion unit may receive the mapped attribute information and convert the mapped attribute information.
  • the operation of converting the mapped attribute information may be converted according to a conversion method such as DCT, DST, DST, SA-DCT, and RAHT.
  • the attribute information converting unit may perform the operation of the residual attribute information converting unit described in FIG. 19.
  • the attribute information quantization unit 20003 can quantize attribute information converted by the attribute information conversion unit.
  • the attribute information quantization unit may transmit the converted attribute information to the attribute information entropy encoding unit.
  • the attribute information quantization unit may perform the same or similar operation as the residual attribute information quantization unit described in FIG. 19.
  • the attribute information quantization unit 20003 generates transform-quantized attribute information based on quantization information on the transformed attribute information according to embodiments.
  • the transform quantized residual attribute information may be input to the attribute information entropy encoder.
  • the attribute information entropy encoding unit 20004 may encode residual attribute information quantized by the residual attribute information quantization unit.
  • the attribute information entropy encoder may perform the same or similar operation as the residual attribute information entropy encoder described in FIG. 19.
  • Entropy encoding according to embodiments may be performed based on various encoding methods such as Exponential Golomb, Context-Adaptive Variable Length Coding (CAVLC), and Context-Adaptive Binary Arithmetic Coding (CABAC). I can.
  • FIG. 19 shows the residual attribute information generated by differentiating the geometric information mapped attribute information from the predicted attribute information to the residual attribute information converter.
  • attribute information mapped with geometric information may be input to the attribute information conversion unit as it is without generating residual attribute information through prediction. Only one attribute information encoder according to FIGS. 19 and 20 may be selectively used depending on the purpose, and may be used in parallel or in combination.
  • encoding the point cloud data may include encoding geometry information of the point cloud data and encoding attribute information of the point cloud data obtained based on the restored geometry information.
  • the encoding of the attribute information includes: mapping attribute information of the point cloud data and restored geometry information, transforming a 3D block including the mapped attribute information, and/or the transformed attribute. It may include the step of quantizing the information.
  • the point cloud data transmission method can efficiently and quickly encode point cloud data due to the configuration of the geometric information encoding unit and/or the attribute information encoding unit. It can provide a realistic virtual reality environment.
  • 21 shows an example of an attribute information conversion unit according to embodiments.
  • the apparatus for transmitting point cloud data may perform an operation of the attribute information conversion unit according to the embodiments using SA-DCT, which is one of the transformation types, to convert attribute information of G-PCC.
  • SA-DCT which is one of the transformation types
  • the SA-DCT used herein extends the existing two-dimensional concept to a three-dimensional concept, and may be referred to herein as a 3D SA-DCT.
  • FIG. 21 may show an example of the attribute information conversion unit 20002 shown and described in FIG. 20, for example.
  • the attribute information converting unit according to the embodiments may mean the residual attribute information converting unit described in FIG. 19 and/or the attribute information converting unit 20002 illustrated in FIG. 20, or may be understood as a concept including or combining them.
  • the attribute information conversion unit may include a conversion type inducing unit 21000, a conversion selection unit 21001, and/or a conversion application unit 21002.
  • the attribute information conversion unit according to embodiments may include all or part of the above-described elements, or may be configured as a combination thereof.
  • the transformation type derivation unit 21000 may determine a transformation type of attribute information (or mapped attribute information) or a transformation type of residual attribute information (or mapped residual attribute information).
  • the conversion type may include, for example, DCT, DST, SA-DCT, and RAHT conversion methods. That is, the transformation type inducing unit may determine, for example, one or more of DCT, DST, SA-DCT, and RAHT transformation.
  • the transformation type derivation unit (or transformation unit according to embodiments) may generate signaling information indicating a transformation type to be applied to one or more points. According to embodiments, the transformation type inducing unit may be selectively included.
  • the transformation type derivation unit 21000 may determine a transformation type to have a minimum distortion among transformation types according to embodiments, and the point cloud data transmission apparatus determines a transformation type to have the minimum distortion according to the embodiments. It can be signaled as a stream.
  • the point cloud data transmission apparatus may omit the transformation type derivation unit when applying the transformation type to all transformation regions equally according to an embodiment.
  • the conversion selection unit 21001 may determine whether to convert attribute information (or mapped attribute information) or residual attribute information (or mapped residual attribute information).
  • the conversion selection unit (or conversion unit according to embodiments) may generate signaling information indicating whether to convert one or more points. According to embodiments, the conversion selection unit may be selectively included.
  • the conversion availability selector 21001 may determine whether to apply a conversion to have a minimum distortion and signal the conversion as a bitstream. Depending on the embodiment, the conversion selection unit 21001 may be omitted.
  • the order of the conversion type derivation unit and/or the conversion selection unit may be reversed and may be independently performed.
  • the transformation application unit 21002 may convert attribute information (or mapped attribute information) or residual attribute information (or mapped residual attribute information).
  • the transformation application unit may transform attribute information or residual attribute information based on a transformation type such as DST, DST, SA-DCT, RAHT, or the like.
  • the transformation application unit may convert attribute information or residual attribute information based on the transformation type determined by the transformation type derivation unit.
  • the conversion application unit may convert attribute information or residual attribute information according to whether or not the conversion is determined by the conversion selection unit.
  • the transformation application unit may transform attribute information or residual attribute information based on a transformation type such as 3-D SA-DCT (or 3D SA-DCT) to be described later.
  • the conversion application unit 21002 may perform an operation according to the example described in FIGS. 22 and/or 23.
  • the transforming of the 3D block includes determining a type of transformation, determining whether or not transformation is performed, and performing transformation of the 3D block based on the determined type of transformation and whether or not there is a determined transformation. It may include the step of.
  • the step of determining whether to convert may generate signaling information indicating whether to convert.
  • the transformation type may be at least one of DCT, DST, SA-DCT, and RAHT.
  • the step of determining the type of transformation may generate signaling information indicating the determined type of transformation.
  • the point cloud data transmission method may reduce the amount of computation of the PCC transmission device by signaling by determining and signaling in advance whether or not to convert, due to the operation of the transformation type inducing unit and/or the transformation selecting unit. Accordingly, flexible encoding performance can be provided.
  • the point cloud data receiving method reduces the computational load of the PCC receiving device and the burden of memory by receiving pre-signaling of the conversion status and conversion type due to the operation of the conversion type inducing unit and/or the conversion selection unit of the transmission method And provide flexible decoding performance according to the transmission/reception environment.
  • FIG. 22 illustrates an example of an operation of an attribute information conversion unit according to embodiments.
  • the operation of the attribute information conversion unit described in FIG. 22 may be performed by the change application unit 21002 of the attribute information conversion unit described in FIG. 21. That is, the operation of the attribute information converting unit described in FIG. 22 may be performed by the residual attribute information converting unit of FIG. 19 and/or the attribute information converting unit of FIG. 20. Accordingly, the operation of the attribute information conversion unit described in FIG. 22 may be applied to the residual attribute information as in FIG. 19, may be applied to the input attribute information as in FIG. 20, or may be performed by a combination thereof. .
  • the operation described in FIG. 22 may be referred to as a SA-DCT method conversion (a similar SA-DCT method conversion), a 3-D SA-DCT method, or the like according to embodiments.
  • the shape-adaptive discrete cosine transform (SA-DCT) algorithm may be used as an extension to a hybrid DPCM/DCT coding scheme based on low complexity and common block.
  • the purpose of the SA-DCT scheme can ensure high commonality and universality together with an existing hybrid DPCM/DCT encoding standard (eg, JPEG, etc.).
  • the SA-DCT scheme may be a segmented video encoding method applicable to a wide bit rate range.
  • the SA-DCT algorithm may include a DCT algorithm.
  • the DCT algorithm may be performed on an object of any shape (eg, M X M image blocks). Images are separated adjacent to each other by M X M pels, and all blocks including an object or segment region may be encoded using an M x M DCT algorithm. Blocks including the boundary of segmented regions may be separately encoded by the SA-DCT method. SA-DCT coefficients can be quantized.
  • the SA-DCT transformation according to embodiments may represent a part of transformation performed by the transformation application unit 21002 described and illustrated in FIG. 21.
  • the SA-DCT conversion may include operations of FIGS. 22A, 22B, and 22C.
  • point cloud data may be distributed in a box representing a three-dimensional space.
  • the 3D space may be divided into a plurality of voxels. That is, according to embodiments, a point in a 3D space is called a voxel.
  • 3-D point cloud images/videos may have empty spaces without image values at all locations.
  • a point with an image value in a three-dimensional space is called an occupied voxel (occupied voxel).
  • the three-dimensional space 22000 may mean a bounding box or a block according to the above-described embodiments.
  • the three-dimensional space may contain PCC data.
  • the three-dimensional space may mean the three-dimensional space described in FIGS. 5 and 6. That is, the 3D space may include one or more voxels.
  • one or more voxels may include occupied voxels 22000a and/or empty voxels 22000b.
  • the occupied voxel (occupied voxel, 22000a) may mean a voxel including point cloud data according to embodiments.
  • An empty voxel (MT voxel, 22000b) may mean a voxel in which point cloud data does not exist.
  • FIG. 22A illustrates one surface or cross section of a 3D bounding box (or block) including voxels according to embodiments.
  • One surface or cross section of the 3D bounding box may include a plurality of voxels, and the plurality of voxels may include 0 or more occupied voxels and 0 or more empty voxels.
  • the occupied voxels may be unevenly or uniformly distributed within the cross-section (or one surface).
  • the point cloud data transmission apparatus may perform transformation based on the 3-D SA-DCT method for efficient transformation of attribute information or residual information.
  • the 3-D SA-DCT is to apply the SA-DCT according to the embodiments three times on the x-axis, y-axis, and z-axis, pushing the attribute value in one axis direction, and n-points 1-D for the corresponding axis.
  • After DCT is performed it may mean that SA-DCT is applied again to the coefficient values obtained as a result of the transformation in the other two axis directions. Therefore, due to the transformation based on the 3D SA-DCT method according to the embodiments, coefficients equal to the number of attributes before the transformation are finally obtained. If there is only one attribute or coefficient value to be converted when the attribute value or coefficient value is pushed in one axis direction, the conversion is omitted.
  • the conversion unit may first move occupied voxels (or empty voxels) in the first axis direction of a corresponding one surface or cross section. That is, the empty voxel (space) can be pushed to the first axis.
  • the first axis direction may be any one of the x-axis, y-axis, and/or z-axis in the 3D space.
  • n-point 1D DCT may be performed on attribute information in occupied voxels.
  • the conversion unit shows an operation of moving the occupied voxels from the ground in a vertical direction (or in a direction opposite to the vertical direction). Thereafter, n-points 1-dimensional DCT transformation may be performed on the moved occupied voxels.
  • FIG. 22(B) shows a surface or cross section of the 3D bounding box described above after performing the operation of FIG. 22A.
  • the converter may move the occupied voxels (or empty voxels) in the second axis direction of a corresponding one surface or a cross section. That is, the empty voxel (space) can be pushed to the second axis.
  • the second axis direction is one of an x-axis, a y-axis, and/or a z-axis in the three-dimensional space, and may mean an axis different from the first axis.
  • n-point one-dimensional DCT transformation may be performed on attribute information in occupied voxels.
  • the n-point one-dimensional DCT transformation may mean performing DCT transformation on each attribute value having a specific value on a specific axis.
  • the converter may perform DCT transformation on n attribute values corresponding to the k-th column in (B) of FIG. 22. This may be referred to as a DCT-n transform for k columns.
  • the n-point one-dimensional DCT transformation performed after moving the corresponding one occupied voxel in a specific axis direction may be omitted.
  • FIG. 22C shows one surface or cross section of the above-described 3D bounding box after performing the operation of FIG. 22B.
  • the conversion unit may move the occupied voxels (or empty voxels) in the second axis direction of the corresponding one surface or cross-section. That is, the empty voxel (space) can be pushed to the third axis.
  • the third axis direction is any one of an x-axis, a y-axis, and/or a z-axis in the three-dimensional space, and may mean an axis different from the first and second axes.
  • n-point one-dimensional DCT transformation may be performed on attribute information in occupied voxels.
  • the point cloud data transmission apparatus when encoding attribute information of point cloud data, applies Shape Adaptive (SA)-DCT to attribute information, or a residual generated by difference between attribute information and predicted attribute information.
  • SA Shape Adaptive
  • residual information or attribute information may be transformed according to the SA-DCT method, and coefficients generated by the transform may include a low frequency to a high frequency component. Therefore, even if a quantization error occurs in a high frequency coefficient, it is not possible to perform quantization in a more flexible manner than when using the existing RAHT because it does not cause a large amount of the restored data.
  • SA-DCT when SA-DCT is applied to sparse distributed attribute information, improved performance can be expected through flexible quantization compared to the case of applying the RAHT method.
  • SA-DCT When SA-DCT is applied to other attribute information (or residual information) in embodiments, geometric information (pixel or voxel position information) of the attributes of the point cloud encoder according to the embodiments must also be transmitted to the receiving device.
  • the point cloud data is compressed based on G-PCC, a separate encoding process may be performed on the geometric information of the point cloud. Accordingly, when attribute information is encoded using SA-DCT, geometric information can be used as it is without the need to encode geometric information of additional attributes.
  • the point cloud data transmission/reception method/apparatus may perform more robust quantization and encoding by transforming attribute information based on a 3D SA-DCT transformation method.
  • a 3D SA-DCT transformation method By using the transformation according to this method, it is possible to accurately encode transformation coefficients when transforming attribute information, and deterioration of the entire area of point cloud data that may occur when transformation coefficients are not correctly encoded. Can be prevented.
  • the point cloud data transmission/reception method/device converts attribute information based on the 3D SA-DCT conversion method, so that the converted coefficient can be divided into a low frequency to a high frequency component. Even if a quantization error occurs in a transform coefficient, a large error in reconstructed data can be prevented, and thus quantization can be performed in a more flexible manner.
  • FIG 23 illustrates an example of an operation in which an attribute information converter according to embodiments applies 3D SA-DCT transformation.
  • FIGS. 23(A), 23(B), 23(C), and 23(D) show the transformation of attribute values (or residual attribute values) of voxels existing in a 3D space according to 3D SA-DCT. Show.
  • Each of the four cross-sections in FIGS. 23(A), 23(B), 23(C) and 23(D) represents one surface or a cross section of a three-dimensional space.
  • the 3D SA-DCT transformation described in FIG. 23 is performed by the transformation application unit described and illustrated in FIG. 21, the residual attribute information transformation unit described and illustrated in FIG. 19, and/or the attribute information transformation unit described and illustrated in FIG. 20.
  • Can be. 23 shows an example of 3D SA-DCT transformation for points in a 3D space of 4x4x4. As with the rest of the Z-axis direction, after pushing the property value in the Z-axis direction, you can proceed with N-points 1-D DCT in the z-axis direction. According to embodiments, the conversion order of the X, Y, and Z axes may be changed. According to embodiments, although FIG. 19 and FIG.
  • the transform unit according to the embodiments may not depend on the specific encoding process described above.
  • the residual attribute information generated through the prediction process in FIG. 19 and the attribute information generated through the geometric information mapping of FIG. 20 may be performed.
  • the 3D space 23000 may be a bounding box or a block.
  • the 3D space may include one or more voxels.
  • the voxel may include an occupied voxel 23000a and an empty voxel 23000b.
  • the occupied voxel may mean an occupied voxel described in FIG. 22.
  • the empty voxel may mean an empty voxel described in FIG. 22.
  • the ocupid voxels may be uniformly or non-uniformly distributed in a three-dimensional space.
  • 23(B) shows that after the transform unit according to the embodiments moves (after pushing) the occupied voxels including attribute information in the 3D space in the x-axis direction, n-points 1-dimensional DCT in the x-axis direction The conversion has been performed. That is, the transform unit moves the occupied voxels in the x-axis direction and then performs DCT transformation on the corresponding attribute information.
  • the transform unit moves ocupid voxels including attribute information in the 3-dimensional space with respect to the y-axis direction.
  • n-points 1-dimensional DCT transformation is performed in the corresponding y-axis direction. That is, the transform unit moves the occupied voxels in the y-axis direction and then performs DCT transformation on the corresponding attribute information.
  • 23(D) shows that after the transform unit according to the embodiments moves (after pushing) the occupied voxels including attribute information in the 3D space in the z-axis direction, n-points 1D DCT in the z-axis direction.
  • the conversion has been performed. That is, the transform unit moves the occupied voxels in the z-direction and then performs DCT transformation on the corresponding attribute information.
  • the point cloud data transmission/reception method/apparatus may perform more robust quantization and encoding by transforming attribute information based on a 3D SA-DCT transformation method.
  • a 3D SA-DCT transformation method By using the transformation according to this method, it is possible to accurately encode transformation coefficients when transforming attribute information, and deterioration of the entire area of point cloud data that may occur when transformation coefficients are not correctly encoded. Can be prevented.
  • the point cloud data transmission/reception method/device converts attribute information based on the 3D SA-DCT conversion method, so that the converted coefficient can be divided into a low frequency to a high frequency component. Even if a quantization error occurs in a transform coefficient, a large error in reconstructed data can be prevented, and thus quantization can be performed in a more flexible manner.
  • FIG. 24 illustrates an example of an operation of applying a 3D SA-DCT transformation to a 3D space including a voxel including duplicated points by an attribute information conversion unit according to embodiments.
  • FIG. 24 shows that when voxels including duplicated points exist in a 3D space according to embodiments, an attribute information conversion unit (or residual attribute information conversion unit) according to the embodiments It shows performing 3D SA-DCT transformation on spatial attribute information.
  • 24 shows an example of a method of applying 3D SA-DCT to multiple-points.
  • the multi-point (or duplicated point) may mean a case in which there are two or more points in one voxel and each has an attribute value.
  • 3D SA-DCT may be performed after matching with one attribute value by averaging several attribute values, or it may be converted after ordering several attribute values as in the above example.
  • the operation described in FIG. 24 may be performed by the transformation application unit described and illustrated in FIG. 21, the residual attribute information transformation unit described and illustrated in FIG. 19, and/or the attribute information transformation unit described and illustrated in FIG. 20.
  • the operation described in FIG. 24 may mean some operations of the 3D SA-DCT conversion described in FIGS. 22 to 23.
  • the attribute information converting unit (or residual attribute information converting unit) according to embodiments may include a voxel including multi-points (duplicated points) as illustrated in FIG. 24A.
  • Duplicated points mean at least two pieces of attribute information (or points). That is, a voxel including duplicated points means a voxel having at least two points (or at least two attribute information) within one voxel.
  • the duplicated points are, for example, a voxel including two points (or attribute information) in one voxel (ie, two duplicated points, 24002), and three points in one voxel (or There may be a voxel (ie, three duplicated points, 24001) including attribute information).
  • the 3D space 24000 is a space in which one or more points are included as a target for the transformation application unit (attribute information converting unit, residual attribute information converting unit, etc.) according to the embodiments to perform transformation.
  • the three-dimensional space may mean a three-dimensional space according to the embodiments described with reference to FIGS. 22 to 23.
  • FIG. 24 shows voxels of one side or cross section of a three-dimensional space.
  • the three-dimensional space 24000 includes one or more voxels.
  • the one or more voxels include zero or more occupied voxels 24000a and/or zero or more empty voxels 24000b.
  • the occupied voxel may mean, for example, an occupied voxel described in FIGS. 22 to 23.
  • the occupied voxel may mean a voxel having two or more attribute information in the corresponding voxel. This may be referred to as a voxel including duplicated points.
  • the 3D space may include a voxel 24001 having two attribute information (ie, attribute information for three points).
  • the 3D space may include a voxel 24002 having three attribute information (ie, attribute information for two points).
  • 24B shows an example of a process of performing n-points 1-D DCT transformation for a specific axis on attribute information of a 3D space including voxels including duplicated points.
  • a plurality of attribute information of a voxel including duplicated points may be mapped to another empty voxel.
  • a voxel 24001 including three duplicated points may arrange attribute information into a corresponding voxel and two empty voxels 24011.
  • the corresponding voxel and the two empty voxels 24001 may include attribute information according to an order of attribute information in a voxel including, for example, duplicated points.
  • the voxel and the two empty voxels 24001 may allocate attribute information calculated by averaging a plurality of points, for example, to each voxel.
  • the voxel 24002 including two duplicated points is the corresponding voxel and one empty voxel (or adjacent voxel, adjacent voxel, 24012) can be distributed.
  • the corresponding voxel and one empty voxel 24012 may allocate attribute information calculated by averaging a plurality of points to each voxel, for example.
  • the point cloud data receiving apparatus may inversely transform the 3D SA-DCT coefficient including all the attribute values of the multi-points.
  • attribute information may be allocated to the multi-points after inverse transformation based on the previously decoded geometric information (occupancy map, etc.) and information such as multi-points.
  • the transforming of the 3D block includes transforming data of the 3D block with respect to the first axis, and transforming the coefficient information generated by performing the transformation with respect to the first axis with respect to the second axis. And/or transforming the coefficient information generated by performing the transformation on the second axis with respect to the third axis.
  • the converting for the first axis to the third axis may be based on the DCT algorithm.
  • the DCT conversion of the first to third axes of the 3D block includes a plurality of mapped attribute information
  • the average attribute information of may be matched with a voxel, or each of a plurality of mapped attribute information may be matched with a plurality of voxels.
  • the point cloud data transmission/reception method/apparatus according to the embodiments shown in FIGS. 22 to 24 described above can perform more robust quantization and encoding by transforming attribute information based on the 3D SA-DCT transformation method. have.
  • the transformation according to this method it is possible to accurately encode transformation coefficients when transforming attribute information, and deterioration of the entire area of point cloud data that may occur when transformation coefficients are not correctly encoded. Can be prevented.
  • the point cloud data transmission apparatus provides data for data in which it is difficult to generate an accurate conversion coefficient when converting attribute information (for example, data in which attribute information of points is sparsely divided, such as category 3). Can be prevented.
  • the point cloud data receiving apparatus may perform decoding without error on data in which attribute information of points such as category 3 is sparsely distributed. Therefore, the point cloud data receiving apparatus according to embodiments accurately provides point cloud data (eg, point cloud data related to autonomous driving) in which points are sparsely distributed or points are densely distributed only in a specific area to a user. Can provide.
  • point cloud data eg, point cloud data related to autonomous driving
  • the method/apparatus for transmitting and receiving point cloud data may enable flexible transformation and quantization in the case of including duplicated points.
  • the point cloud data receiving apparatus may inversely transform the attribute information based on the 3D SA-DCT transformation method to accurately decode transformation coefficients when transforming the attribute information. Accordingly, it is possible to prevent deterioration of the entire area of the point cloud data that may occur when a transform coefficient is not accurately encoded, and thus more robust inverse quantization and decoding can be performed.
  • the point cloud data receiving apparatus receives the data converted by the 3D SA-DCT transformation method, it is possible to receive a transform coefficient divided into a low frequency to a high frequency component, in this case, a high frequency transform coefficient ( coefficient), even if a quantization error occurs, a large error in the reconstructed data can be prevented, and thus quantization/transformation can be performed in a more flexible manner.
  • 25 illustrates an example of a structure and operation of an attribute information prediction unit according to embodiments.
  • the structure of the attribute information predictor 19008 described and illustrated in FIG. 25A may mean the structure of the attribute information predictor 19008 illustrated in FIG. 19.
  • the attribute information predicting unit according to embodiments may include a prediction mode determining unit 25000, a prediction determining unit 25001 and/or a predicting unit 25002.
  • the residual attribute information input by the residual attribute information conversion unit may be calculated by difference between attribute information and predicted attribute information.
  • the predicted attribute information is obtained through the attribute information prediction unit of FIG. 19, and the basic process is shown in FIG. 25A.
  • the prediction mode determiner 25000 may determine a method for the prediction unit 25002 according to embodiments to perform prediction.
  • the prediction method may include prediction based on LOD information and prediction based on attribute information of adjacent points (or attribute information in voxels), for example.
  • the prediction mode determiner may determine a method of predicting attribute information for a specific point or a point in a specific area (eg, bounding box, block, tile, etc.).
  • the prediction mode determination unit may include prediction method signaling information related to a method of predicting attribute information for a specific point or a point in a specific region (eg, bounding box, block, tile, etc.).
  • the prediction method signaling information may be transmitted to the receiver in the same form as a bitstream.
  • the prediction mode determiner may determine a prediction mode having a minimum distortion, and information indicating the prediction mode may be transmitted as a bitstream transmitted by the point cloud data transmission apparatus.
  • the device for receiving point cloud data may parse the bitstream and perform prediction suitable for the prediction mode.
  • the prediction mode information is not signaled in a bitstream, and may be calculated in a decoder in the same manner as an encoder.
  • the prediction mode determination unit may be omitted.
  • the prediction determination unit 25001 determines whether the PCC encoder according to the embodiments predicts attribute information on a specific point in order to generate residual information.
  • the prediction availability determiner 25001 may generate prediction availability signaling information indicating whether to predict attribute information for a specific point or a point in a specific region (eg, a bounding box, block, tile, etc.). Corresponding prediction availability signaling information may be transmitted to the receiver in the same form as a bitstream.
  • the operation of the prediction mode determination unit and the operation of the prediction determination unit may be performed according to the order shown in FIG. 25A, and vice versa. Further, the operation of the prediction mode determining unit and the operation of the prediction determining unit may be independently performed regardless of the order.
  • the prediction availability determiner 25001 may determine whether to apply prediction to have the minimum distortion, and signal a bitstream.
  • the point cloud data receiving apparatus may receive a prediction flag and parse it to determine whether to predict and perform prediction, or may omit it.
  • the predictor 25002 predicts attribute information for a specific point in order for the PCC encoder according to the embodiments to generate residual information.
  • the prediction unit may perform prediction based on the prediction mode determined by the prediction mode determiner according to embodiments. In addition, prediction may be performed based on whether or not the prediction is determined by the prediction determination unit.
  • the prediction unit 25002 may perform prediction, for example, as shown in FIG. 25B.
  • prediction may be performed using attribute values of up to 13 neighboring blocks that have already been reconstructed when they are encoded in a 3-D Z-scan order in a 3D space.
  • the prediction mode may be predicted as an average value of nearby points using an attribute value of an already reconstructed neighboring block, weighted sum prediction according to the distance of nearby points, and directional prediction.
  • three-way prediction of the x, y, and z axes, directional prediction using 13 neighboring blocks, or 13 directions may be divided by an angle to perform more detailed directional prediction.
  • FIG. 25B shows an example of a process in which a prediction unit predicts attribute information of a specific point 25010 according to embodiments.
  • the point 25010 to be predicted is predicted by the predictor based on points 25011 including the restored attribute information according to an embodiment.
  • the generating of prediction attribute information includes determining a prediction mode for generating prediction attribute information, determining whether to predict according to the prediction mode, and predicting attribute information according to the prediction mode and whether or not to predict. It may include performing prediction to generate. According to embodiments, the performing of prediction may include generating prediction property information based on restored property information adjacent to a point for prediction property information, or generating prediction property information based on LODs of points in point cloud data. I can. In performing the prediction, information indicating whether to generate prediction attribute information based on the LOD may be further generated.
  • the point cloud data transmission method may reduce the amount of computation of the PCC transmission device by pre-determining and signaling the prediction mode and/or the prediction mode due to the operation of the prediction mode determining unit and/or the prediction mode determining unit. It can provide flexible encoding performance.
  • the method of receiving point cloud data may reduce the computational amount and the burden of the memory of the PCC receiving apparatus by receiving signaling of the prediction mode and the prediction mode in advance due to the operation of the prediction mode determining unit and/or the prediction determining unit. And it can provide flexible decoding performance according to the transmission/reception environment.
  • the method of transmitting and receiving point cloud data may increase accuracy of attribute information of transmitted point cloud data by predicting a specific point based on the distances of adjacent points and/or adjacent points.
  • 26 illustrates another example of a structure of an attribute information prediction unit according to embodiments.
  • the structure of the attribute information predicting unit described and illustrated in FIG. 26 may mean the structure of the attribute information predicting unit 19008 described in FIG. 19.
  • the attribute information prediction unit according to embodiments may include an LOD generator 26000, a prediction mode determiner 26001, a prediction whether or not determiner 2602, and/or a predictor 2603.
  • the LOD generator 26000 may generate an LOD for all point cloud data.
  • the LOD generator may mean an LOD generator according to the embodiments described with reference to FIG. 4. That is, it creates a level of detail (LOD) for points.
  • LOD level of detail
  • the LOD according to the embodiments is a unit of a group that distinguishes points. Points can be classified by LOD.
  • the LOD generator may generate the LOD described in FIGS. 8 to 9 or may classify or configure points of point cloud content for each LOD.
  • the LOD generator 26000 may generate the LOD once for all point cloud data or may generate it for each prediction block.
  • the LOD level to have the minimum distortion is determined and signaled as a bitstream, or calculated in the same manner in the decoder without signaling, or the same level of LOD can be generated in all blocks. I can.
  • the LOD level to have the minimum distortion can be determined and signaled as a bitstream, or calculated in the same manner in the decoder without signaling, or LOD of the same level can be generated for all blocks. .
  • the prediction mode determiner 26001 may mean a prediction mode determiner 25000 as described and illustrated in FIG. 25.
  • the prediction determination unit 2602 may also mean the prediction determination unit 25001 described and illustrated in FIG. 25.
  • the predictor 2603 may perform prediction on attribute values of points other than the generated LOD based on attribute information (attribute values) of the generated LOD.
  • the prediction unit according to the embodiments may be generated based on a method of interpolating attribute information of the remaining points through the attribute value of the generated LOD.
  • the prediction unit according to the embodiments may perform prediction by calculating an average of points close to each of the remaining points.
  • the prediction unit may make predictions through directional prediction.
  • directional prediction may mean directional prediction described in FIG. 25.
  • the prediction unit 2603 may perform prediction on some of the points based on the generated LOD.
  • the prediction may be generated by interpolating the remaining attribute values through the generated attribute value of the LOD, or may be predicted through an average of nearby points or directional prediction.
  • the decoder may parse the optimal LOD level value, calculate and obtain it in the same manner as the encoder, or generate an LOD of a predefined level and perform prediction in the same manner as the encoder.
  • the generating of prediction attribute information includes determining a prediction mode for generating prediction attribute information, determining whether to predict according to the prediction mode, and predicting attribute information according to the prediction mode and whether or not to predict. It may include performing prediction to generate. According to embodiments, the performing of prediction may include generating prediction property information based on restored property information adjacent to a point for prediction property information, or generating prediction property information based on LODs of points in point cloud data. I can. In performing the prediction, information indicating whether to generate prediction attribute information based on the LOD may be further generated.
  • the point cloud data transmission method may reduce the amount of computation of the PCC transmission device by pre-determining and signaling the prediction mode and/or the prediction mode due to the operation of the prediction mode determining unit and/or the prediction mode determining unit. It can provide flexible encoding performance.
  • the method of receiving point cloud data may reduce the computational amount and the burden of the memory of the PCC receiving apparatus by receiving signaling of the prediction mode and the prediction mode in advance due to the operation of the prediction mode determining unit and/or the prediction determining unit. And it can provide flexible decoding performance according to the transmission/reception environment.
  • the point cloud data transmission/reception method may increase the accuracy of attribute information of the point cloud data to be transmitted by predicting a specific point based on LOD information, and increase encoding speed and efficiency.
  • FIG. 27 shows a point cloud decoder according to embodiments.
  • a point cloud decoder may include a geometric information decoding unit 27001 and/or an attribute information decoding unit 27002. According to embodiments, the point cloud decoder may be referred to as a PCC decoder, a PCC decoder, a point cloud decoder, a point cloud decoder, a PCC decoder, or the like.
  • the geometric information decoding unit 27001 includes the operation of the point cloud video decoder of Fig. 1, the decoding 20003 of Fig. 2, the operation of the geometry decoder of Fig. 10, the arithmetic decoder 11000 described in Fig. 11, and the octree synthesis unit 11001. ), the surface opoxidation synthesis unit 11002, the geometry reconstruction unit 11003, and/or the coordinate system inverse transform unit 11004 may perform all/part of the operations.
  • the attribute information decoding unit 27002 includes the point cloud video decoder of FIG. 1, the operation of the decoding 20003 of FIG. 2, the operation of the attribute decoder described in FIG. 10, the inverse quantization unit 11006 of FIG. 11, and RAHT. (11007), LOD generation unit (11008), inverse lifting unit (11009), and/or color inverse transform unit (11010) operation, the Arismatic decoder (13007) described in FIG. 13, inverse quantization processing unit (13008), prediction/lifting Some or all of the operations of the /RAHT inverse transform processing unit 13009, the color inverse transform processing unit 13010, and/or the renderer 13011 may be performed.
  • the point cloud decoder may include a geometric information decoding unit 27001 and an attribute information decoding unit 27002.
  • the geometric information decoding unit 27001 restores geometric information by decoding the received geometric information bitstream.
  • the restored geometric information may be input to the attribute information decoding unit.
  • the attribute information decoding unit 27002 receives the received attribute information bitstream and the restored geometric information received from the geometry information decoding unit and restores the attribute information.
  • the reconstructed geometric information may mean a geometry reconstructed by a geometry reconstructing unit 11003 described in FIG. 11.
  • the restored geometric information may mean an octree occupancy code reconstructed by the occupancy code-based octree reconstruction processing unit 13003 described in FIG. 13.
  • the geometry information decoding unit 27001 receives the geometry information bitstream received by the reception device according to the embodiments.
  • the geometry information decoding unit 27001 may decode a geometry information bitstream.
  • the attribute information decoding unit 27002 receives the attribute information bitstream received by the reception device according to the embodiments.
  • the attribute information decoding unit may decode attribute information of the attribute information bitstream based on the restored geometric information. Geometric information and/or attribute information included in the point cloud data may be decoded and restored PCC data.
  • a method of receiving point cloud data may include receiving a bitstream including point cloud data, decoding point cloud data, and rendering point cloud data.
  • the decoding of the point cloud data includes entropy decoding the attribute information bitstream of the point cloud data to generate transformed quantized attribute information and/or the transformed quantized attribute information to the restored geometric information.
  • Mapping may include generating the mapped information.
  • the mapped information may include at least one of mapped attribute information or mapped residual attribute information.
  • the point cloud data receiving method can efficiently and quickly decode point cloud data due to the configuration of a geometric information decoding unit and/or an attribute information decoding unit, and a small amount of data and an operation process can be used for the user. It can provide a realistic virtual reality environment.
  • FIG. 28 illustrates an attribute information decoding unit of a point cloud decoder according to embodiments.
  • FIG. 28 shows an example of the attribute information decoding unit 27002 of FIG. 27.
  • the attribute information decoding unit includes an attribute information entropy decoding unit 28000, a geometric information mapping unit 28001, a residual attribute information inverse quantization unit 28802, a residual attribute information inverse transform unit 2803, an attribute information prediction unit 2804, and a memory. It may include (28005) and/or an attribute characteristic conversion unit (28006).
  • the attribute information entropy decoding unit 28000 entropy-decodes the received attribute information bitstream and outputs transform quantized attribute information.
  • the attribute information entropy decoding unit 28000 outputs transformed quantized attribute information and transmits it to the geometric information mapping unit 28001.
  • the attribute information entropy decoder 28000 includes the operation of the point cloud video decoder 10006 of FIG. 1, the decoding 20003 of FIG. 2, the operation of the attribute decoder of FIG. 10, and the Arismatic decoding 11005 of FIG. ) And all/part of the operations of the Arismatic decoder 13007 of FIG. 13 may be performed.
  • the geometric information mapping unit 28001 maps the converted quantized attribute information received from the attribute information entropy decoding unit 28000 and the received restored geometric information.
  • the attribute information mapped to the geometric information according to the embodiments may be input to the residual attribute information inverse quantization unit 2802.
  • the geometric information mapping unit is a point cloud video decoder 10006 of Fig. 1, a decoding 20003 of Fig. 2, a geometry reconstruction 11003 of Fig. 11, an octree reconstruction processing unit 13003 of Fig. 13 and/or a surface model processing unit. All/part of the operation of (13004) can be performed.
  • the reconstructed geometric information may mean a geometry reconstructed by the geometry reconstruction unit 11003 described in FIG. 11.
  • the restored geometric information may mean an octree occupancy code reconstructed by the occupancy code-based octree reconstruction processing unit 13003 described in FIG. 13.
  • the residual attribute information inverse quantization unit 28802 inverse quantizes the received transform quantized attribute information.
  • the inverse quantized transform residual attribute information may be input to the residual attribute information inverse transform unit 28803.
  • the residual attribute information inverse quantization unit 2802 may perform the operation of the inverse quantization 11006 described in FIG. 11 and all/part of the operation of the inverse quantization unit processing unit 13008 described in FIG. 13.
  • the residual attribute information inverse quantization unit outputs the inverse quantized transformation residual attribute information and transfers the residual attribute information to the inverse transformation unit.
  • the residual attribute information inverse transform unit 28803 receives the transform residual attribute information and performs inverse transformation on the transform residual attribute information.
  • the residual attribute information inverse transform unit includes all/part of the operations of the RAHT 11007, LOD generation 11008 and/or inverse lifting 11009 described in FIG. 11, and the prediction/lifting/RAHT transform processing unit 12010 described in FIG. Can be done.
  • the residual attribute information inverse transform unit may perform an inverse transform on the residual 3D block including the received transform residual attribute information based on a transform type such as DCT, DST, DST, SADCT (or 3D SA-DCT), RAHT, and the like.
  • the operation of performing the inverse transformation based on 3D SA-DCT will be described later with reference to FIGS. 30 to 33.
  • the inversely transformed residual attribute information may be stored in the memory 2805 by adding prediction attribute information generated from the attribute information prediction unit.
  • the point cloud data decoder according to embodiments may be stored in a memory by adding prediction attribute information without performing
  • the attribute information predictor 28004 predicts and generates attribute information for a specific point or points based on attribute information included in the received bitstream.
  • the prediction information can be obtained by performing entropy decoding.
  • the attribute information predictor may perform prediction in the same or similar manner as the operation of the attribute information predictor of the point cloud data transmission apparatus according to the embodiments.
  • the attribute information predictor 28004 generates predicted attribute information based on attribute information of points in the memory.
  • the prediction information can be obtained by performing entropy decoding.
  • the attribute information predictor may perform prediction based on signaling information indicating a method of predicting attribute information and signaling information indicating whether to predict the attribute information.
  • Signaling information indicating a method of predicting attribute information and signaling information indicating whether to predict may be signaling information included in a received bitstream or flag information. Signaling information indicating a method of predicting attribute information and signaling information indicating whether to predict the property information will be described later with reference to FIGS. 33 to 34.
  • the memory 28005 may store attribute information of related other points in order for the attribute information predictor 28004 to predict attribute information for a specific point or points.
  • the attribute characteristic conversion unit 28006 may receive the type of attribute information and conversion information from the entropy decoding unit and perform inverse transformation of various color spaces such as RGB-YUV and RGB-YUV.
  • the attribute characteristic transform unit may perform all/part of the operation of the inverse transform colors 11010 described in FIG. 11 and the inverse color transform processing unit 13008 described in FIG. 13.
  • a method of receiving point cloud data may include receiving a bitstream including point cloud data, decoding point cloud data, and rendering point cloud data.
  • the decoding of the point cloud data includes entropy decoding the attribute information bitstream of the point cloud data to generate transformed quantized attribute information and/or the transformed quantized attribute information to the restored geometric information.
  • Mapping may include generating the mapped information.
  • the mapped information may include at least one of mapped attribute information or mapped residual attribute information.
  • decoding the point cloud data may include inverse quantizing the mapped information, inverse transforming the inverse quantized information, and transforming an attribute characteristic based on the inverse transformed information.
  • the point cloud data receiving method can efficiently and quickly decode point cloud data due to the configuration of a geometric information decoding unit and/or an attribute information decoding unit, and a small amount of data and an operation process can be used for the user. It can provide a realistic virtual reality environment.
  • 29 illustrates an attribute information decoding unit of a point cloud decoder according to embodiments.
  • FIG. 29 shows an example of the attribute information decoding unit 27002 of FIG. 27.
  • the attribute information decoding unit includes an attribute information entropy decoding unit 29000, a geometric information mapping unit 29001, an attribute information inverse quantization unit 29002, an attribute information inverse transform unit 29003, and/or an attribute characteristic conversion unit 29004. can do.
  • the attribute information entropy decoding unit 29000 entropy-decodes the attribute information bitstream and outputs transform quantized attribute information.
  • the attribute information entropy decoding unit 29000 may perform the same or similar operation as the attribute information entropy decoding unit 28000 of FIG. 28.
  • the geometric information mapping unit 29001 maps the transformed quantized attribute information received from the attribute information entropy decoding unit 29000 and the received reconstructed geometric information.
  • the attribute information mapped to the geometric information may be input to the attribute information inverse quantization unit.
  • the geometric information mapping unit may perform the same or similar operation as the geometric information mapping unit 28001 of FIG. 28.
  • the geometric information reconstructed by the geometry reconstruction unit 11003 of FIG. 11, the octree occupancy code reconstructed by the occupancy code-based octree reconstruction processing unit 13003 described in FIG. 13, or the restored geometric information of FIG. 28 Can mean
  • the attribute information inverse quantization unit 29002 performs inverse quantization on the received transformed quantized attribute information based on a quantization value.
  • the inverse quantized transform attribute information may be input to the attribute information inverse transform unit.
  • the attribute information inverse quantization unit may perform the same or similar operation as the residual attribute information inverse quantization unit 28802 of FIG. 28 on the attribute information.
  • the attribute information inverse transform unit 29003 may receive transform quantized attribute information and perform inverse transform on the transform transform quantized attribute information.
  • the attribute information inverse transform unit may perform an operation identical to or similar to the residual attribute information inverse transform unit 28803 described in FIG. 28 with respect to the attribute information.
  • the attribute information inverse transform unit 29003 performs inverse transformation based on a transform type such as DCT, DST, DST, SADCT (or 3D SA-DCT), RAHT, etc. on the 3D block of attribute information including the received transform quantized attribute information. can do.
  • the operation of performing the inverse transformation based on 3D SA-DCT will be described later with reference to FIGS. 30 to 33.
  • the attribute characteristic conversion unit 29004 may receive the type and transformation information of attribute information from the entropy decoding unit and perform inverse transformation of various color spaces such as RGB-YUV and RGB-YUV.
  • the attribute characteristic converting unit may perform an operation identical to or similar to the operation of the attribute characteristic converting unit 28006 described in FIG. 28.
  • a method of receiving point cloud data may include receiving a bitstream including point cloud data, decoding point cloud data, and rendering point cloud data.
  • the decoding of the point cloud data includes entropy decoding the attribute information bitstream of the point cloud data to generate transformed quantized attribute information and/or the transformed quantized attribute information to the restored geometric information.
  • Mapping may include generating the mapped information.
  • the mapped information may include at least one of mapped attribute information or mapped residual attribute information.
  • decoding the point cloud data may include inverse quantizing the mapped information, inverse transforming the inverse quantized information, and transforming an attribute characteristic based on the inverse transformed information.
  • the inverse transforming step may inversely transform the mapped residual attribute information based on the prediction attribute information.
  • the point cloud data receiving method can efficiently and quickly decode point cloud data due to the configuration of a geometric information decoding unit and/or an attribute information decoding unit, and a small amount of data and an operation process can be used for the user. It can provide a realistic virtual reality environment.
  • FIG. 30 illustrates a structure and operation of an attribute information inverse transform unit of an attribute information decoding unit according to embodiments.
  • the attribute information inverse transform unit of the attribute information decoding unit may include an operation of parsing geometric information (30000), an operation of parsing whether or not inverse transformation (30001), an operation of parsing or deriving an inverse transformation type (30002), and/or an operation of performing an inverse transformation ( 30003) can be performed.
  • the property information inverse transform unit of the attribute information decoding unit is a geometric information parsing unit that performs an operation of parsing geometric information (30000), an inverse transform whether or not parsing unit performs an operation of parsing whether or not inverse transformation (30001), parsing or deriving an inverse transformation type It may include an inverse transform type parsing/inducing unit that performs an operation 30002 and/or an inverse transform performing unit that performs an inverse transformation (3000).
  • the PCC receiving apparatus may receive a bitstream including point cloud data and signaling information.
  • the signaling information may include signaling information related to an operation of the attribute information decoding unit (or attribute information inverse transform unit) according to embodiments.
  • the geometric information parsing operation 30000 first receives a received bitstream according to the embodiments.
  • the geometric information parsing operation may output geometric information by parsing point cloud data included in the received bitstream.
  • the point cloud data may include location information of points included in a 3D space (bounding box, block, etc.).
  • the geometric information may include occupancy codes according to embodiments.
  • the geometric information parsing unit 30000 may parse the decoded geometric information (occupancy map, etc.).
  • the inverse transformation parsing operation 30001 may parse signaling information related to an operation of the attribute information decoding unit (or attribute information inverse transformation unit) included in the received bitstream, and determine whether to perform the inverse transformation operation according to embodiments. have.
  • the signaling information related to the operation of the attribute information inverse transform unit may include information (or flag) indicating whether the inverse transform is performed.
  • the inverse transformation parsing operation may determine whether to perform the inverse transformation operation 30003 based on information (or a flag) indicating whether or not the inverse transformation is performed.
  • the inverse transformation parsing unit 30001 may parse the inverse transformation state flag for each transform block from the bitstream, and whether to apply the inverse transformation is determined based on the flag according to embodiments. Depending on the embodiment, it is possible to always perform the inverse transform without being parsed whether or not the inverse transform is performed.
  • the inverse transform type parsing or derivation operation 30002 may parse signaling information related to the operation of the attribute information decoding unit (or attribute information inverse transform unit) included in the received bitstream, and induce or determine an inverse transformation type according to embodiments. have.
  • the type of inverse transform may include IDCT (Inverse DCT).
  • the type of inverse transform may include an inverse transform type of a transform type such as DST, DST, SADCT, RAHT, and the like.
  • the type of inverse transform may include a 3D SA-DCT inverse transform type, which will be described later.
  • the inverse transform type parsing or deriving unit 30002 may parse the inverse transform type of each transform block or all attribute values from the bitstream to determine the type of the inverse transform, or may determine the inverse transform type by deriving the inverse transform type in the same way as the encoder through the parsed geometry information. . If the inverse transform type is set to one, the corresponding step can be omitted in the decoder.
  • Inverse DCT may mean an inverse transform operation of DCT transform according to the embodiments described with reference to FIGS. 18 to 27. That is, the IDCT (Inverse DCT) operation may be an inverse process of DCT conversion according to embodiments.
  • the received bitstream may include signaling information (or flag) indicating an inverse transform type.
  • the signaling information indicating the inverse transformation type may be in the form of a flag or may include a value in the form of an identifier by designating an identifier for each type.
  • the order of the geometric information parsing operation 30000, the inverse transform parsing operation 30001, and the inverse transform type parsing or derivation operation 30002 may be as shown in FIG. 30, but the order may be reversed.
  • the geometric information parsing operation 30000, the inverse transformation parsing operation 30001, and the inverse transformation type parsing or derivation operation 30002 may be performed independently of each other.
  • the inverse transform performing operation 30003 may perform inverse transform on the geometric information parsed by the geometric information parsing operation.
  • the inverse transform performing operation may be performed based on the inverse transform whether or not (30001) determined by the above-described inverse transform parsing operation and the inverse transform type determined by the inverse transform type parsing or induction operation (30002).
  • the inverse transform arithmetic operation 30003 may perform inverse transform on attribute information or may perform inverse transform on residual attribute information according to embodiments.
  • the inverse transform performing unit 30003 is a step of applying an inverse transform for each transform block to an inverse transform type parsed from a bitstream or derived from a decoder.
  • the decoding process is divided into Figs. 28 and 29, but the corresponding inverse transform unit does not depend on a specific decoding process. That is, in the attribute information inverse transform unit and the inverse transform performing step, information restored through the residual attribute information inverse quantization unit of FIG. 28 or the attribute demagnetization unit of FIG. 29 may be performed.
  • a method of receiving point cloud data may include receiving a bitstream including point cloud data, decoding point cloud data, and rendering point cloud data.
  • the decoding of the point cloud data includes entropy decoding the attribute information bitstream of the point cloud data to generate transformed quantized attribute information and/or the transformed quantized attribute information to the restored geometric information.
  • Mapping may include generating the mapped information.
  • the mapped information may include at least one of mapped attribute information or mapped residual attribute information.
  • decoding the point cloud data may include inverse quantizing the mapped information, inverse transforming the inverse quantized information, and transforming an attribute characteristic based on the inverse transformed information.
  • the point cloud data transmission method may reduce the amount of computation of the PCC transmission device by signaling by determining and signaling in advance whether or not to convert, due to the operation of the transformation type inducing unit and/or the transformation selecting unit. Accordingly, flexible encoding performance can be provided.
  • the method of receiving point cloud data includes a geometric information parsing operation, an inverse transformation parsing operation, and/or an inverse transformation type parsing or derivation operation. It is possible to reduce the burden of the user and provide flexible decoding performance according to the transmission/reception environment.
  • FIG. 31 illustrates an example of an operation in which an inverse attribute information transform unit performs an inverse transform according to an inverse 3D SA-DCT transform type according to embodiments.
  • FIG. 31 shows an example of an inverse transform operation performed by an attribute information inverse transform unit.
  • the 3D SA-DCT inverse transform operation performed by FIG. 31 may be performed in steps 31000 to 31007.
  • the operation according to FIG. 31 may be an example of an inverse transformation performing operation 30003 of the inverse attribute information transformation unit described in FIG. 30.
  • the operation according to FIG. 31 shows an example of the operation of the attribute information inverse transform unit of FIG. 29.
  • FIG. 31 The detailed drawings shown in each step of FIG. 31 show one side or cross-sections of a three-dimensional space (a bounding box or drawing).
  • the 3D space illustrated in FIG. 31 is also an example of a 4x4x4 3D space, but may not necessarily have a 4x4x4 size.
  • the method of showing the three-dimensional space in FIG. 31 is the same as the method shown in FIGS. 22 to 24.
  • One surface or cross section 31000a of the 3D space represents a cross section of the first axis of the bounding box or block.
  • the 3D space may include a plurality of voxels.
  • the 3D space may include zero or more occupied voxels 31000b and/or zero or more empty voxels 31000c. Empty voxels and occupied voxels are as described in FIGS. 22 to 24.
  • the process of performing the inverse transformation may be as follows.
  • the restored geometric information is computed in the x-axis direction and the civil geometric information is again in the y-axis (31000).
  • Inverse transform is performed on the transform coefficient (or residual transform coefficient) parsed from the bitstream in the Z-axis (31000).
  • the inverse transformed transform coefficient is calculated and restored to the same position as the non-geometric information 3 (31001).
  • the transform coefficient (or residual transform coefficient) restored to the same position as the geometric information 3 is inverse transformed back to the Y-axis (31002).
  • the inverse transformed transform coefficient is restored to the same position as the calculated geometric information 2 (31003).
  • the transformation coefficient restored to the same position as the geometric information 2 is inversely transformed back to the X-axis (31004).
  • the inverse transformed transform coefficient is restored to the same position as the restored geometric information 1 (31005).
  • the duplicated position information may be parsed and inverse transformation and position restoration may be performed in the same manner.
  • the attribute information inverse transform unit may perform n-points 1-dimensional IDCT (Inverse DCT) transform in the third axis direction.
  • the attribute information inverse transform unit receives the reconstructed geometric information, and converts the received reconstructed geometric information in the direction of the first axis in the 3D space and the geometric information (information for restoration of the second axis), and Civil geometric information (information for restoration of the third axis) can be calculated from the geometric information back to the second axis.
  • the attribute information inverse transform unit can restore the position of the attribute information with respect to the third axis.
  • the first axis, the second axis, and/or the third axis may be one of an x axis, a y axis and/or a z axis.
  • the attribute bitstream including attribute information to perform inverse transformation is data transformed by a transmitter operation.
  • the attribute bitstream includes information converted by FIGS. 22 to 24. Therefore, for example, in order to restore the position of the attribute information with respect to the z-axis, the civil geometric information (that is, information for the restoration of the z-axis) in the y-axis direction from the restored geometric information in the x-axis direction. Can be used. Accordingly, in step 31000, civil geometric information (ie, information for restoring the z-axis) is first calculated in the y-axis direction with respect to the civil geometric information in the x-axis direction from the restored geometric information.
  • the reconstructed geometric information may mean a geometry reconstructed by a geometry reconstructing unit 11003 described in FIG. 11.
  • the restored geometric information may mean an octree occupancy code reconstructed by the occupancy code-based octree reconstruction processing unit 13003 described in FIG. 13.
  • the attribute information inverse transform unit is based on the civil geometric information in the second axis direction (that is, information for restoration of the third axis) with respect to the civil geometric information in the first axis direction from the restored geometric information, Rearrange the information. That is, the order of the third axis of occupied voxels in the 3D space may be rearranged or restored.
  • the first axis may be an x-axis
  • the second axis may be a y-axis
  • the third axis may be a z-axis.
  • an operation 31000 of performing n-points 1-dimensional Inverse DCT (IDCT) transformation in the direction of the third axis and an operation 31001 of restoring a position with respect to the third axis may be reversed.
  • IDCT Inverse DCT
  • inverse transformation and position restoration may be performed based on position information of the duplicated points.
  • the location information of the duplicated points may be included in a reception bitstream received by the PCC reception apparatus according to the embodiments.
  • the attribute information inverse transform unit may perform n-points 1-dimensional IDCT (Inverse DCT) transformation in the second axis direction on the attribute information whose third axis position is restored by step 31001.
  • IDCT Inverse DCT
  • the attribute information inverse transform unit converts the restored geometric information in the direction of the first axis in the 3D space based on the private geometric information (that is, information for restoration of the second axis) to the position of the second axis.
  • the back can be restored.
  • the first axis may be an x-axis
  • the second axis may be a y-axis
  • the third axis may be a z-axis.
  • ICT Inverse DCT
  • the attribute information inverse transform unit may perform n-points 1-dimensional IDCT (Inverse DCT) transformation in the first axis direction on the attribute information whose second axis position is restored by step 31003.
  • IDCT Inverse DCT
  • the attribute information inverse transform unit may restore the position of the attribute information with respect to the first axis based on the restoration.
  • the first axis may be an x-axis and the second axis may be a y-axis.
  • step 3104 the order of performing n-points 1-dimensional IDCT (Inverse DCT) transformation in the direction of the first axis (step 3104) and restoring the position of the first axis (step 31005) may be reversed.
  • IDCT Inverse DCT
  • Inverse DCT may mean an inverse transform operation of DCT transform according to the embodiments described with reference to FIGS. 18 to 27. That is, the IDCT (Inverse DCT) operation may be an inverse process of DCT conversion according to embodiments.
  • the attribute information inverse transform unit may output the restored attribute information.
  • the restored attribute information represents attribute information before conversion by the conversion operation according to FIGS. 22 to 24.
  • the attribute information restored by the attribute information inverse transform unit may be original attribute information or may mean residual attribute information.
  • the inverse transforming step includes inverse transforming a 3D block including the mapped information
  • the inverse transforming step includes IDCT (Inverse DCT) transforming with respect to the first axis of the 3D block, with respect to the first axis IDCT (Inverse DCT) transforming the coefficient information generated by performing IDCT (Inverse DCT) transformation with respect to the second axis and/or IDCT (Inverse DCT) transforming with respect to the second axis to subtract the generated coefficient information.
  • IDCT Inverse DCT
  • the step of performing IDCT (Inverse DCT) conversion for 3 axes may be performed.
  • the method/apparatus for transmitting and receiving point cloud data may perform more robust quantization and encoding by transforming attribute information based on a 3D SA-DCT transformation or an Inverse DCT (IDCT) transformation method.
  • IDCT Inverse DCT
  • Point cloud data transmission/reception method/device converts attribute information based on a 3D SA-DCT transformation method or an IDCT (Inverse DCT) method, so that the transformed transformation coefficient is divided into a low frequency to a high frequency component.
  • IDCT Inverse DCT
  • the point cloud data transmission/reception method/device converts attribute information based on a 3D SA-DCT transformation method or an IDCT (Inverse DCT) method to encode geometry information of additional attributes when encoding attribute information.
  • a 3D SA-DCT transformation method or an IDCT (Inverse DCT) method to encode geometry information of additional attributes when encoding attribute information.
  • IDCT Inverse DCT
  • the method/apparatus for transmitting and receiving point cloud data enables flexible transformation and quantization in the case of including duplicated points.
  • 32 illustrates an example of a process of calculating information for restoration of each axis when the inverse attribute information transform unit performs inverse 3D SA-DCT transformation according to embodiments.
  • the 3D SA-DCT inverse transformation may be performed based on the reconstructed occupancy map.
  • the restored geometric information 32000 is calculated in the x-axis direction as the civil geometric information 32001 and the restored geometric information in the y-axis direction, respectively (32002).
  • the (residual) transform coefficient parsed from the bitstream is inversely transformed along the Z axis.
  • the inverse transformed transform coefficient is calculated and restored to the same position as the non-geometric information 3.
  • the (residual) transformation coefficient restored to the same position as the geometric information 3 is inversely transformed back to the Y axis.
  • the inverse transformed transform coefficient is calculated and restored to the same position as the non-geometric information 2.
  • the transform coefficient restored to the same position as the geometric information 2 is inverse transformed back to the X-axis.
  • the inverse transformed transform coefficient is restored to the same position as the restored geometric information 1.
  • position information of the duplicated points may be parsed and inverse transform and position restoration may be performed in the same manner.
  • FIG. 32 shows information 32000 for restoration of the first axis, information 32001 for restoration of the second axis, and information 32002 for restoration of the third axis described in FIG. 31.
  • Information for restoration of the first axis, information for restoration of the second axis, and information for restoration of the third axis are information necessary for the attribute information inverse transform unit according to embodiments to restore the position of the attribute information with respect to each axis.
  • the first axis, the second axis, and the third axis may be any one of an x axis, a y axis, and a z axis, respectively.
  • the information 32000 for restoration of the first axis of FIG. 32 may be generated (or calculated) in steps 31005 and/or 31006 of FIG. 31.
  • the information 32001 for restoration of the second axis of FIG. 32 may be generated (or calculated) in steps 31003 and/or 31004 of FIG. 31.
  • the information 32002 for restoration of the third axis of FIG. 32 may be generated (or calculated) in steps 31000, 31001 and/or 31002 of FIG. 31.
  • the information 32000 for restoration of the first axis means restored geometric information according to embodiments.
  • the attribute information inverse transform unit performs the inverse transformation and restoration of the first axis, using the information for restoration of the first axis.
  • the position of attribute information can be rearranged or restored based on the axis.
  • the restored geometric information may mean the restored geometric information described in FIG. 31.
  • the restored geometric information may mean reconstructed geometric information (eg, occupancy codes) parsed by the geometric information parsing operation described and illustrated in FIG. 30.
  • the restored geometric information may mean the restored geometric information described in FIGS. 28 to 29.
  • the information for restoration of the second axis 32001 indicates information calculated by moving the occupied voxels in the direction of the first axis of the restored geometric information according to embodiments.
  • the attribute information inverse transform unit uses the information for restoration on the second axis to determine the attribute based on the second axis. The location of information can be rearranged or restored.
  • Information for restoring the second axis is information calculated by moving the occupied voxels in the direction of the first axis and then moving the occupied voxels in the direction of the second axis according to the restored geometric information according to the embodiments.
  • the attribute information inverse transform unit may rearrange or restore the position of the attribute information based on the third axis by using information for restoration of the third axis. I can.
  • the operation according to FIG. 32 may represent a part of the inverse transform operation 30003 of the inverse attribute information transform unit described in FIG. 30.
  • the operation according to FIG. 32 may represent a part of the operation of the attribute information inverse transform unit of FIG. 29.
  • a method of receiving point cloud data may include receiving a bitstream including point cloud data, decoding point cloud data, and rendering point cloud data.
  • the decoding of the point cloud data includes entropy decoding the attribute information bitstream of the point cloud data to generate transformed quantized attribute information and/or the transformed quantized attribute information to the restored geometric information.
  • Mapping may include generating the mapped information.
  • the mapped information may include at least one of mapped attribute information or mapped residual attribute information.
  • decoding the point cloud data may include inverse quantizing the mapped information, inverse transforming the inverse quantized information, and transforming an attribute characteristic based on the inverse transformed information.
  • the inverse transforming step may inversely transform the mapped residual attribute information based on the prediction attribute information.
  • the inverse transforming step includes inverse transforming a 3D block including the mapped information
  • the inverse transforming step includes IDCT (Inverse DCT) transforming with respect to the first axis of the 3D block, with respect to the first axis IDCT (Inverse DCT) transforming the coefficient information generated by performing IDCT (Inverse DCT) transformation with respect to the second axis and/or DCT transforming the second axis with respect to the third axis.
  • IDCT Inverse DCT
  • the point cloud data transmission/reception method/device converts attribute information based on 3D SA-DCT transformation and its inverse transformation method, so that when encoding attribute information, it is not necessary to encode geometry information of additional attributes, and Information can be used as it is, and coding efficiency can be improved.
  • the method/apparatus for transmitting and receiving point cloud data enables flexible transformation and quantization in the case of including duplicated points.
  • the point cloud data receiving apparatus inversely transforms attribute information based on the 3D SA-DCT transformation method and the inverse transformation thereof, so that a transformation coefficient is accurately transformed when attribute information is transformed. ) Can be decrypted. Accordingly, it is possible to prevent deterioration of the entire area of the point cloud data that may occur when a transform coefficient is not accurately encoded, and thus more robust inverse quantization and decoding can be performed.
  • the point cloud data receiving apparatus Since the point cloud data receiving apparatus according to the embodiments shown in FIGS. 31 and/or 32 receives data converted by the 3D SA-DCT transformation method, it receives a transform coefficient divided into a high frequency component from a low frequency. In this case, even if a quantization error occurs in a high frequency transform coefficient, a large error in the reconstructed data can be prevented, so that quantization/transformation can be performed in a more flexible manner.
  • the point cloud data transmission apparatus may prevent an error that may occur in a process of encoding data having points densely distributed in a specific area by generating and transmitting information on duplicated points.
  • a point cloud data receiving apparatus provides a real point cloud environment to users by accurately decoding data in which points are densely distributed in a specific area by receiving information on duplicated points. can do.
  • the point cloud data receiving apparatus accurately provides point cloud data (eg, point cloud data related to autonomous driving) in which points are sparsely distributed or points are densely distributed only in a specific area to a user. Can provide.
  • point cloud data eg, point cloud data related to autonomous driving
  • 33 illustrates an example of a bitstream structure of point cloud data according to embodiments.
  • the point cloud data transmission apparatus may transmit a bitstream 33000 having a bitstream structure as illustrated in FIG. 33.
  • the bitstream 33000 of the point cloud data includes SPS (Sequential Parameter Set, 33001), GPS (Geometry Parameter Set, 33002), APS (Attribute Parameter Set, 33003), Tile Inventory (33004), and one or more It may include slices (33005).
  • the bitstream 33000 of the point cloud data may include one or more tiles.
  • a tile according to embodiments may be a group of slices including one or more slices.
  • SPS Sequence Parameter Set, 33001
  • SPS Sequence Parameter Set, 33001
  • SPS Sequence Parameter Set, 33001
  • SPS is applied to zero or more total CVSs determined by the contents of the syntax element in the PPS referenced by the syntax element in each slice segment header. It is a syntax structure that includes syntax elements that are used. (A syntax structure containing syntax elements that apply to zero or more entire CVSs as determined by the content of a syntax element found in the PPS referred to by a syntax element found in each slice segment header.)
  • SPS is a point according to embodiments It may include sequence information of the cloud data bitstream.
  • the GPS may mean a syntax structure including syntax elements to which zero or more entire geometries (or encoded geometries) are applied.
  • the GPS 3302 may include information on a method of encoding attribute (attribute) information of point cloud data included in one or more slices 3305.
  • the GPS 3302 may include SPS identifier information indicating which geometry parameter associated with the SPS 33001 is included, and GPS identifier information for identifying the corresponding GPS.
  • An Attribute Parameter Set (APS) 33003 may mean a syntax structure including syntax elements to which zero or more all attributes (or encoded attributes) are applied.
  • the APS 33003 according to the embodiments may include information on a method of encoding attribute (attribute) information of point cloud data included in one or more slices 33005.
  • the APS 33003 may include SPS identifier information indicating which geometry parameter related to the SPS 33001 according to embodiments, and GPS identifier information for identifying the corresponding APS.
  • the tile inventory 33004 may mean a syntax structure including syntax elements to which zero or more total tiles (or encoded tiles) are applied.
  • the tile inventory includes information on zero or more tiles included in the point cloud data bitstream according to embodiments.
  • the tile inventory may be referred to as a tile parameter set (TPS) according to embodiments.
  • the tile inventory may include identifier information identifying one or more tiles and information indicating a range of one or more tiles (ie, a bounding box of a tile). .
  • Information indicating a range of one or more tiles is coordinate information of a point that is a reference of a bounding box represented by a corresponding tile (eg, Tile(n).tile_bounding_box_xyz0) and Information about the width, height, and depth of the corresponding bounding box (eg, Tile(n).tile_boudning_box_whd) may be included.
  • the tile inventory 33004 may include information indicating a bounding box for each of the tiles. For example, when each tile is represented by 0 to n by the identifier information of the tiles, the information indicating the bounding box of each tile is Tile(0).tile_bounding_box_xyz0, Tile(0).tile_bounding_box_whd, Tile(1).tile_bounding_box_xyz0 , Tile(1).tile_bounding_box_whd... It can be expressed as such.
  • a slice 33005 may mean a unit for encoding point cloud data by a device for transmitting point cloud data according to embodiments.
  • a slice 33005 according to embodiments may mean a unit including one geometry bitstream Geom00 and one or more attribute bitstreams Attr00 and Attr10.
  • a slice (slice, 33005) is a geometry slice (Geometry, 33005a) representing geometry information of point cloud data included in the slice, and one or more attribute slices representing attribute information of point cloud data included in the slice. (Attribute Slice, Attr, 33005b) may be included.
  • the geometry slice (Geometry Slice, Geom, 33005a) includes geometry slice data (Geometry Slice Data, Geom_slice_data, 33005d) including geometry information of point cloud data, and a geometry slice header including information about the geometry slice data. Geom_slice_header, GSH, 33005c).
  • the geometry slice header 3305c includes information about the geometry slice data 3305d in the slice.
  • the geometry slice header 3305c includes a geometry parameter set identifier (geom_geom_parameter_set_id) for identifying which GPS 3302 represents the geometry information of a corresponding slice, and a geometry slice identifier (geom_slice_id) for identifying the geometry slice.
  • geometry box origin information indicating the box origin of the corresponding geometry slice data
  • information indicating the lock scale of the geometry slice (geom_box_log2_scale)
  • information related to the number of points of the corresponding geometry slice (geom_num_points), etc.
  • the header of the geometry bitstream according to the embodiments is information for identifying a tile including the geometry bitstream (geom_tile_id ) May be further included.
  • the attribute slice (Attribute Slice, Attr, 33005a) includes attribute slice data (Attr_slice_data) including attribute information of point cloud data, and an attribute slice header (Attribute Slice Header, Attr_slice_header) including information about attribute slice data.
  • attribute slice data Attr, 33005a
  • attribute slice header Attr_slice_header
  • parameters necessary for encoding a point cloud may be newly defined as parameter set and header information of a point cloud.
  • attribute parameter set RBSP syntax can be added when encoding attribute information
  • tile_header syntax can be added when tile-based encoding is performed. That is, it means that parameters defined in FIG. 24 may be signaled as shown in FIG. 25 in the following set and tile/slice units.
  • the above-described parameters according to the embodiments shown in FIG. 33 may be signaled in units of tiles or in units of slices to be described later.
  • the above-described parameters according to embodiments may be signaled in a sequential parameter set (SPS), a geometry parameter set (GPS), an attribute parameter set (APS), or a tile inventory.
  • SPS sequential parameter set
  • GPS geometry parameter set
  • APS attribute parameter set
  • tile inventory a tile inventory.
  • parameters shown in FIG. 33 are Attribute Parameter Set (APS) including information on attribute information of each slice. ) Can be included within.
  • APS Attribute Parameter Set
  • parameters shown in FIG. 33 according to embodiments may be included in a geometry slice header (gsh).
  • parameters shown in FIG. 33 are TPS (Attribute Parameter Set) including information on attribute information of each slice. ) Within (or tile inventory).
  • the SA-DCT function may receive each point cloud data from a bitstream.
  • it when the corresponding method is applied in attribute information encoding, it may be R, G, B, Reflectance, etc., and when geometric information encoding is performed, coordinate information such as x, y, and z may be used.
  • the PCC transmission/reception method provides such a bitstream structure, so that the receiver can improve the decoding performance of attribute information of point cloud data.
  • the receiver can improve the decoding performance of attribute information of point cloud data.
  • cognitive inverse transformation performance can be improved at the output terminal of the decoder.
  • 34 shows an example of signaling information related to 3D SA-DCT according to embodiments in a bitstream transmitted by a point cloud transmission apparatus according to embodiments.
  • the signaling information related to the 3D SA-DCT according to the embodiments shown in FIG. 34 may be transmitted by the point cloud data transmission apparatus according to the embodiments.
  • the signaling information related to the 3D SA-DCT according to the embodiments is the SPS 33001, GPS 3302, APS 33003, TPS 33004, one or more slices 33005 or one Or it may be included in more tiles.
  • 34 may be a syntax in which SA-DCT is added to syntaxes defined for PCC encoding in the MPEG standard.
  • the signaling information (or flags) described and illustrated in FIG. 34 may include signaling information indicating a method of predicting attribute information described and illustrated in FIG. 28, and signaling information indicating whether to predict or not.
  • Signaling information related to 3D SA-DCT may include coding_type, pred_active_flag, LOD_based_pred_flag, or pred_type.
  • coding_type indicates whether the point cloud data transmission apparatus (eg, point cloud data encoder) according to the embodiments performs encoding using SA-DCT (or 3D SA-DCT). For example, when coding_type is 1, it may indicate that the point cloud data transmission device (eg, a point cloud data encoder) has used SA-DCT.
  • coding_type may be signaling information (or flag) indicating a conversion method according to embodiments. That is, coding_type represents a method in which the PCC transmission device according to the embodiments converts attribute information. In other words, coding_type represents an inverse transform method when the PCC receiving apparatus according to the embodiments inverse transforms the transformed attribute information. coding_type may be signaling information indicating a method for predicting attribute information described and illustrated in FIG. 28 or signaling information indicating whether to predict or not.
  • the coding_type may be information indicating that the corresponding 3D space (a partial region, block, etc. of the bounding box) has been transformed by a transformation type such as DCT, DST, DST, SADCT, RAHT, and the like. Therefore, for example, if coding_type is 1, it may indicate that the SA-DCT method (or the 3D SA-DCT method described in the specification has been converted). coding_type may be a flag.
  • the coding_type information may be generated by the conversion type derivation unit 21000 and/or the conversion selection unit 21001 described in FIG. 21 in the PCC transmission apparatus according to the embodiments.
  • coding_type information may be parsed and output by the inverse transform type parsing or derivation 30002 and/or the inverse transform status parsing 30001 described in FIG. 30.
  • the inverse transform described in FIG. 30 may be performed based on the type indicated in coding_type or whether the inverse transform is performed.
  • pred_active_flag is The point cloud data transmission apparatus according to the embodiments (or the attribute encoder according to the embodiments) Decide whether to use prediction. For example, when pred_active_flag is 1, it indicates that a prediction scheme is used. For example, a value of 0 indicates that a prediction scheme has not been used.
  • the pred_active_flag may determine, for example, whether to perform attribute information prediction for a specific point attribute or a specific region.
  • pred_active_flag may be a flag or a form of signaling information.
  • the pred_active_flag may be signaling information indicating a method for predicting attribute information described and illustrated in FIG. 28.
  • the pred_active_flag may be generated by the prediction mode determination unit 25000 and/or the prediction availability determination unit 25001 described and illustrated in FIG. 25 in the PCC transmission apparatus according to the embodiments. Also, the pred_active_flag may be generated by the prediction mode determination unit 26000 and/or the prediction availability determination unit 26001 described and illustrated in FIG. 26 in the PCC transmission apparatus according to the embodiments. That is, pred_active_flag may include information on whether to predict attribute information for a specific point or points and/or a prediction mode.
  • the PCC receiving apparatus may determine whether to predict attribute information for a specific point or points based on pred_active_flag. For example, when pred_active_flag is 1, attribute information may be predicted for a specific point or specific points by the attribute information predictor 28040 according to FIG. 28. In addition, for example, when pred_active_flag is 0, prediction may not be performed on a specific point or specific points, and in this case, attribute information may be extracted by the operation described with reference to FIG. 29.
  • LOD_based_pred_flag is the point cloud data transmission apparatus (eg, attribute information encoder) according to the embodiments It is determined whether to perform LOD-based prediction. For example, when LOD_based_pred_flag is 1, it indicates that prediction was performed based on the attribute information of the LOD. For example, when LOD_based_pred_flag is 0, it indicates that prediction was performed based on adjacent attribute information.
  • the LOD_based_pred_flag may be generated by the prediction determination units 25001 and 26002 and/or the prediction mode determination units 25000 and 26001 shown in FIGS. 25 and 26 of the PCC transmission apparatus.
  • LOD_based_pred_flag indicates whether attribute information is predicted based on LOD as shown in FIG. 26.
  • LOD_based_pred_flag may be signaling information indicating a method for predicting attribute information described and illustrated in FIG. 28.
  • the PCC receiving apparatus may determine whether to perform prediction based on the LOD of a specific point or attribute information of points based on the LOD_based_pred_flag. For example, when the LOD_based_pred_flag is 1, the PCC receiving apparatus may predict the attribute information of a specific point or points by the attribute information predictor shown in FIG. 28. In this case, prediction may be performed based on LOD information of points in the corresponding 3D space. When LOD_based_pred_flag is 0, it indicates that prediction can be performed according to another method. For example, when LOD_based_pred_flag is 0, the attribute information predictor of FIG. 28 may perform prediction through adjacent attribute values.
  • the pred_type indicates a method of prediction when the point cloud data transmission apparatus (eg, an attribute information encoder) according to embodiments encodes attribute information according to a prediction method. For example, when pred_type is 0, it indicates that the attribute information encoder performs prediction based on average information of attribute information of a point adjacent from a specific point. When pred_type is 1, it indicates that the attribute information encoder performs prediction by calculating a weighted sum according to the distance of attribute information of a point adjacent from a specific point. When pred_type is 2, it indicates that the attribute information encoder calculates a difference between attribute information of an adjacent point and adjacent frames from a specific point to perform prediction.
  • the pred_type determines a prediction method for performing prediction when the PCC transmission device performs prediction based on the LOD. For example, if the corresponding value is 0, an average of selected adjacent attribute information may be calculated and predicted. In addition, for example, if the corresponding value is 1, the weighted sum according to the distance to the selected adjacent attribute information may be calculated and predicted. In addition, for example, if the corresponding value is 2, the difference between the selected adjacent attribute information and adjacent frames may be calculated and predicted (this method may be referred to as an inter-prediction or inter prediction method). Values of adjacent attribute information selected here may be determined as described in FIG. 25B.
  • the pred_type may be signaling information indicating a method for predicting attribute information described and illustrated in FIG. 28.
  • pred_type coding type 0 Average One Weighted sum 2 Inter prediction
  • a detailed method of prediction based on LOD may be determined based on pred_type.
  • the above-described parameters according to the embodiments shown in FIG. 34 may be signaled in units of tiles to be described later or in units of slices to be described later.
  • the above-described parameters according to embodiments may be signaled in a sequential parameter set (SPS), a geometry parameter set (GPS), and an attribute parameter set (APS).
  • SPS sequential parameter set
  • GPS geometry parameter set
  • APS attribute parameter set
  • parameters shown in FIG. 33 are Attribute Parameter Set (APS) including information on attribute information of each slice. ) Can be included within.
  • APS Attribute Parameter Set
  • parameters shown in FIG. 33 are TPS (Attribute Parameter Set) including information on attribute information of each slice. ) Within (or tile inventory).
  • decoding the point cloud data may include inverse quantizing the mapped information, inverse transforming the inverse quantized information, and transforming an attribute characteristic based on the inverse transformed information.
  • the signaling information includes information indicating a type of inverse transformation, information indicating whether to perform an inverse transformation, information indicating a prediction method related to prediction attribute information, and information indicating whether to generate prediction attribute information based on the LOD.
  • the PCC transmission/reception method provides such a bitstream structure, so that the receiver can improve the decoding performance of attribute information of point cloud data.
  • the receiver can improve the decoding performance of attribute information of point cloud data.
  • cognitive inverse transformation performance can be improved at the output terminal of the decoder.
  • 35 shows APS according to embodiments including signaling information related to 3D SA-DCT according to the embodiments.
  • the APS may be an APS (Attribute Parameter Set, 33003) shown in FIG. 33.
  • the APS is an APS identifier (eg, aps_attr_parameter_set_id) for identifying a corresponding APS, and for indicating which SPS the corresponding APS is related to. It may include an SPS identifier (eg, aps_seq_parameter_set_id).
  • the point cloud data transmission apparatus may transmit values of SA-DCT.
  • the APS according to the embodiments may include information (eg, attr_coding_type) indicating a method of encoding attribute information.
  • Attr_coding_type according to embodiments may be coding_type of FIG. 34.
  • the coding_type according to the embodiments may indicate an encoding method as shown in [Table 3] below.
  • coding_type coding type 0 Predicting Weight Lifting One Region Adaptive Hierarchical Transform (RAHT) 2 Fix Weight Lifting 3 SA-DCT
  • the APS according to the embodiments is related to the prediction weight lifting. It may include signaling information (eg, num_pred_nearest_neighbours, quant_step_size, etc.). If the coding_type according to the embodiments indicates the RAHT method, the APS according to the embodiments may include signaling information related to the prediction RAHT method (eg, raht_depth, raht_binarylevel_threshold, etc.).
  • the APS includes signaling information related to the prediction RAHT method (eg, raht_depth, raht_binarylevel_threshold, etc.) can do.
  • APS according to embodiments is a prediction 3D It may include signaling information related to the SA-DCT method.
  • Signaling information related to the 3D SA-DCT method according to embodiments may include parameters shown in FIG. 34.
  • Signaling information related to the 3D SA-DCT method may include information indicating whether a variable DCT order is used (eg, variable_SADCT_order_flag). For example, when variable_SADCT_order_flag is 1, it indicates that a DCT of a different order can be used for vectors constituting a block in which the corresponding SA-DCT is to be performed. If variable_SADCT_order_flag is 0, it indicates that DCT of the same order is used for all blocks.
  • Values of the fourth dotted line box 35003 of FIG. 35 indicate quantization coefficients for points derived by encoding attribute information by the point cloud data transmission apparatus according to the embodiments using the 3D SA-DCT method.
  • the APS may further include information (or flags) described below.
  • aps_attr_parameter_set_id may represent the identifier of the APS referenced by other syntax elements.
  • the value of the information may be 0 to 15.
  • aps_seq_parameter_set_id represents the value of sps_seq_parameter_set_id for active SPS.
  • the value of the information may be 0 to 15.
  • num_pred_nearest_neighbours represents the maximum number of near-list neighbors in the case of using prediction or the case of using lifting.
  • the value of umberOfNearestNeighboursInPrediction may range from 1 to xx.
  • max_num_direct_predictors represents the maximum number of predictors used in direct prediction.
  • the value of the information may be 0 to num_pred_nearest_neighbours.
  • Corresponding information may be determined in the decoding process as follows.
  • MaxNumPredictors max_num_direct_predicots + 1
  • quant_step_size represents the quantization step size for the first component of the attribute.
  • Corresponding information may have a value of 1 to xx.
  • quant_step_size_chroma represents the quantization step size for the chroma component of the attribute when the attribute is color.
  • Corresponding information may have a value of 1 to xx.
  • num_detail_levels_minus1 represents the number of levels of detail (LOD) of attribute coding.
  • samplingDistance2[ idx] represents the square of the sampling distance for idx.
  • raht_depth represents the number of levels of detail (LOD) for the RAHT method.
  • raht_binarylevel_threshold represents the level of detail (LOD) for cutting out the RAHT coefficient.
  • 36 is a flowchart illustrating a method of transmitting point cloud data according to embodiments.
  • the point cloud data transmission method includes obtaining point cloud data (36000), encoding the obtained point cloud data (36001), and/or encoding the encoded point cloud data. It may include the step of transmitting (36002).
  • the point cloud data transmission apparatus may acquire point cloud data.
  • the step of acquiring point cloud data may be referred to as point cloud video acquisition.
  • Step 36000 is the point cloud acquisition 10001 described in FIG. 1, the acquisition unit 20000 of FIG. 2, the reception unit 13000 and/or the reception processing unit 13001 of FIG. 13, and the audio acquisition of FIG. 14. And/or it may be performed in a point cloud acquisition (Point Cloud Acquisition).
  • encoding the acquired point cloud data includes encoding (encoding) geometric information of the point cloud data and/or encoding (encoding) attribute information of the point cloud data according to embodiments. It may include.
  • a geometric information bitstream and reconstructed geometric information may be generated.
  • the restored geometric information may be used in the step of encoding attribute information of the point cloud data.
  • Encoding the attribute information may generate an attribute information bitstream.
  • the step of encoding the attribute information may be performed based on the reconstructed geometric information.
  • Encoding attribute information according to embodiments may perform all or part of the series of operations described in FIGS. 18 to 34.
  • Encoding the attribute information includes all or part of the devices described in FIGS. 18 to 34 included in the attribute information encoder (or attribute information encoder) and/or the attribute information encoder of the point cloud data transmission device according to the embodiments. Can be done by
  • the encoding of the attribute information includes mapping attribute information of point cloud data and restored geometric information, transforming a 3D block including the mapped attribute information, and quantizing the converted attribute information.
  • residual attribute information generated by differentiating the mapped attribute information and the predicted attribute information may be transformed.
  • the transformed residual attribute information may be quantized.
  • information indicating a prediction method related to the prediction attribute information eg, pred_type of FIG. 34 may be generated.
  • the transforming of the 3D block includes transforming data of the 3D block with respect to the first axis, and transforming the coefficient information generated by performing the transformation with respect to the first axis with respect to the second axis
  • the step of performing the transformation on the second axis may include converting the generated coefficient information about the third axis.
  • the step of converting the first axis to the third axis may be based on the DCT algorithm.
  • DCT transforming the first to third axes of the 3D block includes the average attribute information of the plurality of mapped attribute information.
  • each of the plurality of mapped attribute information may be matched with a plurality of voxels.
  • the generating of prediction attribute information includes determining a prediction mode for generating prediction attribute information, determining whether to predict according to the prediction mode, and predicting attribute information according to the prediction mode and whether or not to predict. It may include performing prediction to generate.
  • prediction attribute information may be generated based on reconstructed attribute information adjacent to a point for the prediction attribute information, or prediction attribute information may be generated based on LODs of points in the point cloud data.
  • information indicating whether prediction attribute information is to be generated based on the LOD (eg, LOD_based_pred_flag of FIG. 34) may be further generated.
  • the step of transforming the 3D block includes determining the type of transformation, the step of determining whether or not to transform, and the step of determining whether to transform is signaling information indicating whether or not transformation (eg, FIG. 33) generating pred_active_flag), performing transformation of the 3D block based on the determined type of transformation and whether or not the determined transformation is present.
  • the transformation type is at least one of DCT, DST, SA-DCT, and RAHT
  • the step of determining the type of transformation may generate signaling information (eg, coding_type in FIG. 34) indicating the determined transformation type. .
  • the apparatus for transmitting point cloud data may transmit a bitstream including encoded point cloud data and signaling information.
  • a bitstream according to embodiments may have the structure described in FIG. 33.
  • the signaling information included in the bitstream may include the signaling information (or flag) described with reference to FIGS. 18 to 34.
  • the signaling information may include, for example, information indicating whether to generate the above-described prediction attribute information, signaling information indicating whether or not transformation, and signaling information indicating a type of transformation.
  • Information indicating whether to generate prediction attribute information, signaling information indicating whether or not transformation, and signaling information indicating a type of transformation are SPS (Sequence Parameter Set), GPS (Geometry Parameter Set), and APS0 (Attribute Parameter Set 0) to APSn (Attribute Parameter Set n), it may be included in the tile inventory (Tile Inventory).
  • signaling information may be individually included in slice 0 to slice n according to the embodiments described with reference to FIG. 33.
  • Encoding point cloud data according to embodiments includes performing prediction transform, lifting transform, and/or RAHT transform. can do.
  • encoding point cloud data may include performing prediction lifting (or predictive lifting) transformation.
  • the lifting transformation may be referred to as a lifting scheme
  • the prediction transformation may be referred to as a prediction scheme, or the like.
  • FIG. 37 is a flowchart illustrating a method of receiving point cloud data according to embodiments.
  • the point cloud data receiving method includes receiving point cloud data and signaling information (37000), decoding the received point cloud data (37001), and/or a decoded point. Rendering the cloud data (37002) may be included.
  • the apparatus for receiving point cloud data may receive a bitstream including point cloud data and signaling information.
  • the signaling information may include prediction method information.
  • all or part of the point cloud data and signaling information may be received by the syntax described with reference to FIGS. 24 to 27.
  • the signaling information included in the received bitstream is information indicating the type of inverse transformation (eg, coding_type in FIG. 34), information indicating whether to perform the inverse transformation (eg, pred_active_flag in FIG. 34).
  • Information indicating a prediction method related to the prediction attribute information (eg, pred_type of FIG. 34) and information indicating whether to generate prediction attribute information based on the LOD (eg, LOD_based_pred_flag of FIG. 34) may be included.
  • Such signaling information is in a sequence parameter set (SPS), a geometry parameter set (GPS), an attribute parameter set 0 (APS0) to an attribute parameter set n (APSn), and a tile inventory according to the embodiments described in FIG. 33. Can exist. Also, such signaling information may exist individually in slice 0 to slice n according to the embodiments described with reference to FIG. 33.
  • the apparatus for receiving point cloud data may decode (decode) the received point cloud data.
  • the point cloud data receiving apparatus may include the point cloud decoder or attribute information encoder described with reference to FIGS. 27 to 32.
  • the point cloud data receiving apparatus decodes (decodes) the geometric information bitstream of the reception point cloud data and/or decodes (decodes) the attribute information bitstream of the point cloud data based on the restored geometric information.
  • the point cloud data receiving apparatus may include a geometric information decoding unit (or a geometric information decoder) and/or an attribute information decoding unit (or an attribute information decoder).
  • the decoding of the geometric information bitstream may generate reconstructed geometric information
  • the decoding of the attribute information bitstream may generate reconstructed property information.
  • the decoding of the point cloud data includes entropy decoding an attribute information bitstream of the point cloud data to generate transformed quantized attribute information, and mapped the transformed quantized attribute information to the restored geometric information.
  • the method may include generating the mapped information, inverse quantizing the mapped information, inverse transforming the inverse quantized information, and transforming an attribute characteristic based on the inverse transformed information.
  • the mapped information may include at least one of mapped attribute information or mapped residual attribute information.
  • the step of inverse transforming may inversely transform the mapped residual attribute information based on the prediction attribute information.
  • the inverse transforming step includes inverse transforming a 3D block including the mapped information, and the inverse transforming step includes DCT transforming on a first axis of the 3D block, and DCT transforming on the first axis.
  • DCT transforming the generated coefficient information with respect to the second axis and DCT transforming the generated coefficient information with respect to the third axis may be performed.
  • the apparatus for receiving point cloud data may render the decoded point cloud data.
  • Each of the above-described parts, modules or units may be software, processor, or hardware parts that execute successive processes stored in a memory (or storage unit). Each of the steps described in the above-described embodiment may be performed by processor, software, and hardware parts. Each module/block/unit described in the above-described embodiment may operate as a processor, software, or hardware. In addition, methods suggested by the embodiments may be executed as code. This code can be written to a storage medium that can be read by the processor, and thus can be read by a processor provided by the apparatus.
  • the processor-readable recording medium includes all types of recording devices that store data that can be read by the processor. Examples of recording media that can be read by the processor include ROM, RAM, CD-ROM, magnetic tape, floppy disk, optical data storage, etc., and also include those implemented in the form of carrier waves such as transmission through the Internet. . Further, the processor-readable recording medium is distributed over a computer system connected through a network, so that the processor-readable code can be stored and executed in a distributed manner.
  • A/B may mean “A and/or B.”
  • A, B may mean “A and/or B.”
  • A/B/C may mean “at least one of A, B, and/or C.”
  • A/B/C may mean “ at least one of A, B, and/or C.”
  • Various elements of the embodiments may be performed by hardware, software, firmware, or a combination thereof.
  • Various elements of the embodiments may be implemented on a single chip such as a hardware circuit.
  • the embodiments may optionally be performed on individual needles.
  • at least one of the elements of the embodiments may be executed in one or more processors including instructions for performing operations according to the embodiments.
  • first and second are used to describe various elements of the embodiments. These terms do not limit the interpretation of the elements of the embodiments. These terms are used to distinguish between one element and another.
  • a first user input signal may be referred to as a second user input signal.
  • the second user input signal may be referred to as a first user input signal.
  • Both the first user input signal and the second user input signal are user input signals, and do not mean the same user input signals unless clearly indicated in context.
  • Conditional expressions such as when, when, and when used to describe the embodiments are not limited to an optional case. When a specific condition is satisfied, it is intended to perform a related operation in response to a specific condition or to interpret the related definition.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Discrete Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Compression Or Coding Systems Of Tv Signals (AREA)

Abstract

실시예들에 따른 포인트 클라우드 데이터 송신 방법은 포인트 클라우드 데이터를 인코딩하는 단계 및 포인트 클라우드 데이터를 포함하는 비트스트림을 전송하는 단계; 를 포함할 수 있다. 실시예들에 따른 포인트 클라우드 데이터 수신 방법은 포인트 클라우드 데이터를 포함하는 비트스트림을 수신하는 단계, 포인트 클라우드 데이터를 디코딩하는 단계 및 포인트 클라우드 데이터를 렌더링하는 단계를 포함할 수 있다.

Description

포인트 클라우드 데이터 송신 장치, 포인트 클라우드 데이터 송신 방법, 포인트 클라우드 데이터 수신 장치 및 포인트 클라우드 데이터 수신 방법
실시예들은 사용자에게 VR (Virtual Reality, 가상현실), AR (Augmented Reality, 증강현실), MR (Mixed Reality, 혼합현실), 및 자율 주행 서비스 등의 다양한 서비스를 제공하기 위하여 Point Cloud 콘텐츠를 제공하는 방안을 제공한다. 실시예들은 포인트 클라우드 데이터의 속성 정보를 부호화 및 복호화할 수 있다.
포인트 클라우드는 3D공간 상의 포인트들의 집합이다. 3D공간 상의 포인트들의 양이 많아서 포인트 클라우드 데이터를 생성하기 어려운 문제점이 있다.
포인트 클라우드의 데이터를 전송하고 수신하기 위해서 많은 처리량이 요구되는 문제점이 있다.
실시예들에 따르면, 일반적으로 취득된 포인트 클라우드 데이터(point cloud data)를 효과적으로 제공하기 위해서는 기본적으로 부호화, 복호화 및 렌더링 과정으로 진행된다. 현재 MPEG 표준에서는 포인트 클라우드(point cloud)압축 기술로 비디오-기반 포인트 클라우드 압축(video-based point cloud compression, V-PCC)과 지오메트리 기반 포인트 클라우드 압축(geometry-based point cloud compression, G-PCC) 기술로 구분될 수 있다. 또한, 포인트(point cloud) 데이터의 압축률을 조절할 수 있도록 두 부호화 기술 모두 손실(lossy), 무손실(lossless), 근-무손실(near-lossless)부호화가 가능하다.
실시예들에 따른 기술적 과제는, 전술한 문제점 등을 해결하기 위해서, 포인트 클라우드를 효율적으로 송수신하기 위한 포인트 클라우드 데이터 전송 장치, 전송 방법, 포인트 클라우드 데이터 수신 장치 및 수신 방법을 제공하는데 있다. 실시예들에 따른 기술적 과제는, 포인트 클라우드 데이터의 속성 정보 부호화 및 복호화하는데 있을 수 있다.
실시예들에 따른 기술적 과제는, 지연시간(latency) 및 인코딩/디코딩 복잡도를 해결하기 위한 포인트 클라우드 데이터 전송 장치, 전송 방법, 포인트 클라우드 데이터 수신 장치 및 수신 방법을 제공하는데 있다.
실시예들에 따른 기술적 과제는, 6DoF 환경에서 VR 컨텐츠 이용 시 사용자가 위치를 변경하면서 임의의 사물(혹은 장애물)에 의해 음원이 가려지는 효과를 적용해줄 수 있는 방법을 제공하고 기존 부호화기에 obstacle 정보 및 occlusion effect 적용 방법을 추가하여, 더욱 현실감 있는 VR 컨텐츠를 경험할 수 있게 하는데 있다.
실시예들에 따른 기술적 과제는, 본 발명은 geometry-based point cloud compression(G-PCC)기반의 압축 방법으로 point cloud 데이터를 압축할 때 attribute 정보에 대해 새로운 변환 유형을 적용하여 부호화하는 방법을 제공하는데 있다.
실시예들에 따른 기술적 과제는, point cloud 데이터의 attribute 정보를 부호화할 때, attribute 정보들에 대해서 Shape Adaptive (SA)-DCT 적용하던가, attribute 정보와 예측된 attribute 정보가 차분되어서 발생한 잔차(residual) 정보들에 대해서 SA-DC를 적용하여 부호화하는 방법을 제공하는데 있다.
다만, 전술한 기술적 과제만으로 제한되는 것은 아니고, 본 문서 전체 내용에 기초하여 당업자가 유추할 수 있는 다른 기술적 과제로 실시예들의 권리범위가 확장될 수 있다.
상술한 기술적 과제를 달성하기 위하여, 실시예들에 따른 포인트 클라우드 데이터 송신 방법은 포인트 클라우드 데이터를 인코딩하는 단계 및/또는 포인트 클라우드 데이터를 포함하는 비트스트림을 전송하는 단계를 포함할 수 있다.
실시예들에 따른 포인트 클라우드 데이터를 인코딩하는 단계는, 포인트 클라우드 데이터의 지오메트리 정보를 인코딩하는 단계 및/또는 복원된 지오메트리 정보에 기초하여 포인트 클라우드 데이터의 어트리뷰트 정보를 인코딩하는 단계를 포함할 수 있다.
실시예들에 따른 어트리뷰트 정보를 인코딩하는 단계는, 포인트 클라우드 데이터의 어트리뷰트 정보 및 복원된 지오메트리 정보를 맵핑하는 단계, 맵핑된 어트리뷰트 정보를 포함하는 3차원 블록을 변환하는 단계 및/또는 변환된 어트리뷰트 정보를 양자화하는 단계를 포함할 수 있다.
상기 3차원 블록을 변환하는 단계는, 맵핑된 어트리뷰트 정보 및/또는 예측 어트리뷰트 정보를 차분하여 생성된 잔차 어트리뷰트 정보를 변환하는 단계를 포함하고, 양자화하는 단계는 변환된 잔차 어트리뷰트 정보를 양자화하는 단계를 포함하고, 비트스트림은 예측 어트리뷰트 정보와 관련된 예측 방식을 나타내는 정보를 포함할 수 있다.
실시예들에 따르면, 3차원 블록을 변환하는 단계는, 3차원 블록의 데이터들을 제 1 축에 대하여 변환하는 단계, 제 1 축에 대하여 변환이 수행되어 생성된 계수 정보를 제 2 축에 대하여 변환하는 단계, 및/또는 제 2 축에 대하여 변환이 수행되어 생성된 계수 정보를 제 3 축에 대하여 변환하는 단계를 포함할 수 있다. 또한 제 1 축 내지 제 3 축에 대한 변환은 DCT 알고리즘에 기초하여 수행될 수 있다. 3차원 블록 내에 포함된 복셀이 복수의 맵핑된 어트리뷰트 정보를 포함하는 경우, 3차원 블록의 제 1 축 내지 제 3 축에 대하여 DCT 변환하는 단계는 복수의 맵핑된 어트리뷰트 정보의 평균 어트리뷰트 정보를 복셀에 매칭하거나, 복수의 맵핑된 어트리뷰트 정보 각각을 복수의 복셀에 매칭할 수 있다.
실시예들에 따르면, 예측 어트리뷰트 정보를 생성하는 단계는, 예측 어트리뷰트 정보를 생성하기 위한 예측 모드를 결정하는 단계, 예측 모드에 따라 예측 여부를 결정하는 단계 및/또는 예측 모드 및 예측 여부에 따라 예측 어트리뷰트 정보를 생성하기 위하여 예측을 수행하는 단계를 포함할 수 있다. 예측을 수행하는 단계는, 예측 어트리뷰트 정보에 대한 포인트와 인접한 복원된 어트리뷰트 정보에 기초하여 예측 어트리뷰트 정보를 생성하거나, 포인트 클라우드 데이터 내의 포인트들의 LOD에 기초하여 예측 어트리뷰트 정보를 생성할 수 있다. 실시예들에 따르면, 비트스트림은 LOD 기초하여 예측 어트리뷰트 정보를 생성할지 여부를 나타내는 정보를 더 포함할 수 있다.
실시예들에 따르면, 3차원 블록을 변환하는 단계는, 변환의 유형을 결정하는 단계, 변환의 여부를 결정하는 단계 및/또는 결정된 변환의 유형 및 결정된 변환의 여부에 기초하여 3차원 블록의 변환을 수행하는 단계를 포함할 수 있다. 여기서, 변환 유형은 DCT, DST, SA-DCT 및 RAHT 중 적어도 하나일 수 있다. 실시예들에 따르면, 비트스트림은 결정된 변환의 유형을 나타내는 정보 변환의 여부를 나타내는 정보를 더 포함할 수 있다.
상술한 기술적 과제를 달성하기 위하여, 실시예들에 따른 포인트 클라우드 데이터 수신 방법은, 포인트 클라우드 데이터를 포함하는 비트스트림을 수신하는 단계, 포인트 클라우드 데이터를 디코딩하는 단계 및/또는 포인트 클라우드 데이터를 렌더링하는 단계를 포함할 수 있다.
실시예들에 따르면, 포인트 클라우드 데이터를 디코딩하는 단계는, 포인트 클라우드 데이터의 어트리뷰트 비트스트림을 엔트로피 복호화하여 변환양자화된 어트리뷰트 정보를 생성하는 단계, 변환양자화된 어트리뷰트 정보를 복원된 지오메트리 정보에 맵핑하여 맵핑된 정보를 생성하는 단계, 맵핑된 정보를 역양자화하는 단계, 역양자화된 정보를 역변환하는 단계 및/또는 역변환된 정보에 기초하여 어트리뷰트 특성을 변환하는 단계를 포함할 수 있다.
실시예들에 따르면, 맵핑된 정보는 맵핑된 어트리뷰트 정보 및 맵핑된 잔차 어트리뷰트 정보 중 적어도 하나를 포함할 수 있고, 맵핑된 정보가 맵핑된 잔차 어트리뷰트 정보인 경우, 역변환하는 단계는 예측 어트리뷰트 정보에 기초하여 맵핑된 잔차 어트리뷰트 정보를 역변환할 수 있다.
실시예들에 따르면, 역변환하는 단계는 맵핑된 정보를 포함하는 3차원 블록을 역변환하고, 역변환하는 단계는, 3차원 블록의 제 1 축에 대하여 IDCT (Inverse DCT) 변환하는 단계, 제 1 축에 대하여 IDCT (Inverse DCT) 변환이 수행되어 생성된 계수 정보를 제 2 축에 대하여 IDCT (Inverse DCT) 변환하는 단계 및/또는 제 2 축에 대하여 IDCT (Inverse DCT) 변환이 수행되어 생성된 계수 정보를 제 3 축에 대하여 IDCT (Inverse DCT) 변환하는 단계를 포함할 수 있다.
실시예들에 따르면, 비트스트림은 역변환의 유형을 나타내는 정보, 역변환의 수행할지 여부를 나타내는 정보, 예측 어트리뷰트 정보와 관련된 예측 방식을 나타내는 정보 및 LOD 기초하여 예측 어트리뷰트 정보를 생성할지 여부를 나타내는 정보를 포함할 수 있다.
실시예들에 따른 포인트 클라우드 데이터 송신 방법, 송신 장치, 포인트 클라우드 데이터 수신 방법, 수신 장치는 퀄리티 있는 포인트 클라우드 서비스를 제공할 수 있다.
실시예들에 따른 포인트 클라우드 데이터 송신 방법, 송신 장치, 포인트 클라우드 데이터 수신 방법, 수신 장치는 다양한 비디오 코덱 방식을 달성할 수 있다.
실시예들에 따른 포인트 클라우드 데이터 송신 방법, 송신 장치, 포인트 클라우드 데이터 수신 방법, 수신 장치는 자율주행 서비스 등 범용적인 포인트 클라우드 콘텐츠를 제공할 수 있다.
실시예들에 따른 포인트 클라우드 데이터 전송 방법은, 기하 정보 부호화부 및/또는 속성 정보 부호화부의 구성으로 인해 포인트 클라우드 데이터를 효율적이고 신속하게 부호화할 수 있고, 적은 양의 데이터와 연산 과정으로도 사용자에게 실제와 같은 가상현실 환경을 제공할 수 있다.
도면은 실시예들을 더욱 이해하기 위해서 포함되며, 도면은 실시예들에 관련된 설명과 함께 실시예들을 나타낸다. 이하에서 설명하는 다양한 실시예들의 보다 나은 이해를 위하여, 하기 도면들에 걸쳐 유사한 참조 번호들이 대응하는 부분들을 포함하는 다음의 도면들과 관련하여 이하의 실시예들의 설명을 반드시 참조해야 한다.
도1은 실시예들에 따른 포인트 클라우드콘텐츠 제공 시스템의 예시를 나타낸다.
도 2는 실시예들에 따른 포인트 클라우드 콘텐트 제공 동작을 나타내는 블록도이다.
도 3은 실시예들에 따른 포인트 클라우드 비디오 캡쳐 과정의 예시를 나타낸다.
도 4는 실시예들에 따른 포인트 클라우드 인코더(Point Cloud Encoder)의 예시를 나타낸다.
도 5 는 실시예들에 따른 복셀의 예시를 나타낸다.
도 6은 실시예들에 따른 옥트리 및 오큐판시 코드 (occupancy code)의 예시를 나타낸다.
도 7은 실시예들에 따른 이웃 노드 패턴의 예시를 나타낸다.
도 8은 실시예들에 따른 LOD 별 포인트 구성의 예시를 나타낸다.
도 9는 실시예들에 따른 LOD 별 포인트 구성의 예시를 나타낸다.
도 10은 실시예들에 따른 포인트 클라우드 디코더(Point Cloud Decoder)의 예시를 나타낸다.
도 11은 실시예들에 따른 포인트 클라우드 디코더(Point Cloud Decoder)의 예시를 나타낸다.
도 12는 실시예들에 따른 전송 장치의 예시이다.
도 13은 실시예들에 따른 수신 장치의 예시이다.
도 14는 실시예들에 따른 G-PCC 기반 포인트 클라우드 콘텐트 스트리밍을 위한 아키텍쳐를 나타낸다.
도15는 실시예들에 따른 전송 장치의 예시를 나타낸다.
도16은 실시예들에 따른 수신 장치의 예시를 나타낸다.
도 17은 실시예들에 따른 포인트 클라우드 데이터 송수신 방법/장치와 연동 가능한 구조의 예시를 나타낸다.
도 18은 실시예들에 따른 포인트 클라우드 인코더를 나타낸다.
도 19는 실시예들에 따른 포인트 클라우드의 속성 정보 부호화기를 나타낸다.
도 20는 실시예들에 따른 포인트 클라우드의 속성 정보 부호화기를 나타낸다.
도 21은 실시예들에 따른 속성 정보 변환부의 예를 나타낸다.
도 22는 실시예들에 따른 속성 정보 변환부의 동작의 예를 나타낸다.
도 23은 실시예들에 따른 속성 정보 변환부가 3D SA-DCT 변환을 적용하는 동작의 예시를 나타낸다.
도 24는 실시예들에 따른 속성 정보 변환부가 듀플리케이티드 포인트들(duplicated points)을 포함하는 복셀을 포함하는 3차원 공간에 대하여 3D SA-DCT 변환을 적용하는 동작의 예시를 나타낸다.
도 25는 실시예들에 따른 속성정보 예측부의 구조 및 동작의 예시를 나타낸다.
도 26는 실시예들에 따른 속성정보 예측부의 구조 및 동작의 예시를 나타낸다.
도 27은 실시예들에 따른 포인트 클라우드 디코더를 나타낸다.
도 28은 실시예들에 따른 포인트 클라우드 디코더의 속성 정보 복호화부를 나타낸다.
도 29는 실시예들에 따른 포인트 클라우드 디코더의 속성 정보 복호화부를 나타낸다.
도 30은 실시예들에 따른 속성 정보 복호화부의 속성 정보 역변환부의 구조 및 동작을 나타낸다.
도 31은 실시예들에 따른 속성 정보 역변환부가 3D SA-DCT 역변환 유형에 따라 역변환을 수행하는 동작의 예시를 나타낸다.
도 32은 실시예들에 따른 속성 정보 역변환부가 3D SA-DCT 역변환하는 경우, 각 축의 복원을 위한 정보를 계산하는 과정의 예시를 나타낸다.
도 33은 실시예들에 따른 포인트 클라우드 데이터의 비트스트림 구조의 예시를 나타낸다.
도 34은 실시예들에 따른 포인트 클라우드 전송 장치가 전송하는 비트스트림 내 실시예들에 따른 3차원 SA-DCT와 관련된 시그널링 정보의 예시를 나타낸다.
도 35는 실시예들에 따른 3차원 SA-DCT와 관련된 시그널링 정보를 포함하는 실시예들에 따른 APS를 나타낸다.
도 36는 실시예들에 따른 포인트 클라우드 데이터 전송 방법을 나타내는 흐름도이다.
도 37는 실시예들에 따른 포인트 클라우드 데이터 수신 방법을 나타내는 흐름도이다.
실시예들의 바람직한 실시예에 대해 구체적으로 설명하며, 그 예는 첨부된 도면에 나타낸다. 첨부된 도면을 참조한 아래의 상세한 설명은 실시예들의 실시예에 따라 구현될 수 있는 실시예만을 나타내기보다는 실시예들의 바람직한 실시예를 설명하기 위한 것이다. 다음의 상세한 설명은 실시예들에 대한 철저한 이해를 제공하기 위해 세부 사항을 포함한다. 그러나 실시예들이 이러한 세부 사항 없이 실행될 수 있다는 것은 당업자에게 자명하다.
실시예들에서 사용되는 대부분의 용어는 해당 분야에서 널리 사용되는 일반적인 것들에서 선택되지만, 일부 용어는 출원인에 의해 임의로 선택되며 그 의미는 필요에 따라 다음 설명에서 자세히 서술한다. 따라서 실시예들은 용어의 단순한 명칭이나 의미가 아닌 용어의 의도된 의미에 근거하여 이해되어야 한다.
도 1은 실시예들에 따른 포인트 클라우드 콘텐츠 제공 시스템의 예시를 나타낸다.
도 1에 도시된 포인트 클라우드 콘텐트 제공 시스템은 전송 장치(transmission device)(10000) 및 수신 장치(reception device)(10004)를 포함할 수 있다. 전송 장치(10000) 및 수신 장치(10004)는 포인트 클라우드 데이터를 송수신하기 위해 유무선 통신 가능하다.
. 실시예들에 따른 전송 장치(10000)는 포인트 클라우드 비디오(또는 포인트 클라우드 콘텐트)를 확보하고 처리하여 전송할 수 있다. 실시예들에 따라, 전송 장치(10000)는 고정국(fixed station), BTS(base transceiver system), 네트워크, AI(Ariticial Intelligence) 기기 및/또는 시스템, 로봇, AR/VR/XR 기기 및/또는 서버 등을 포함할 수 있다. 또한 실시예들에 따라 전송 장치(10000)는 무선 접속 기술(예, 5G NR(New RAT), LTE(Long Term Evolution))을 이용하여, 기지국 및/또는 다른 무선 기기와 통신을 수행하는 기기, 로봇, 차량, AR/VR/XR 기기, 휴대기기, 가전, IoT(Internet of Thing)기기, AI 기기/서버 등을 포함할 수 있다.
실시예들에 따른 전송 장치(10000)는 포인트 클라우드 비디오 획득부(Point Cloud Video Acquisition, 10001), 포인트 클라우드 비디오 인코더(Point Cloud Video Encoder, 10002) 및/또는 트랜스미터(Transmitter (or Communication module), 10003)를 포함한다
실시예들에 따른 포인트 클라우드 비디오 획득부(10001)는 캡쳐, 합성 또는 생성 등의 처리 과정을 통해 포인트 클라우드 비디오를 획득한다. 포인트 클라우드 비디오는 3차원 공간에 위치한 포인트들의 집합인 포인트 클라우드로 표현되는 포인트 클라우드 콘텐트로서, 포인트 클라우드 비디오 데이터 등으로 호칭될 수 있다. 실시예들에 따른 포인트 클라우드 비디오는 하나 또는 그 이상의 프레임들을 포함할 수 있다. 하나의 프레임은 정지 영상/픽쳐를 나타낸다. 따라서 포인트 클라우드 비디오는 포인트 클라우드 영상/프레임/픽처를 포함할 수 있으며, 포인트 클라우드 영상, 프레임 및 픽처 중 어느 하나로 호칭될 수 있다.
실시예들에 따른 포인트 클라우드 비디오 인코더(10002)는 확보된 포인트 클라우드 비디오 데이터를 인코딩한다. 포인트 클라우드 비디오 인코더(10002)는 포인트 클라우드 컴프레션(Point Cloud Compression) 코딩을 기반으로 포인트 클라우드 비디오 데이터를 인코딩할 수 있다. 실시예들에 따른 포인트 클라우드 컴프레션 코딩은 G-PCC(Geometry-based Point Cloud Compression) 코딩 및/또는 V-PCC(Video based Point Cloud Compression) 코딩 또는 차세대 코딩을 포함할 수 있다. 또한 실시예들에 따른 포인트 클라우드 컴프레션 코딩은 상술한 실시예에 국한되는 것은 아니다. 포인트 클라우드 비디오 인코더(10002)는 인코딩된 포인트 클라우드 비디오 데이터를 포함하는 비트스트림을 출력할 수 있다. 비트스트림은 인코딩된 포인트 클라우드 비디오 데이터 뿐만 아니라, 포인트 클라우드 비디오 데이터의 인코딩과 관련된 시그널링 정보를 포함할 수 있다.
실시예들에 따른 트랜스미터(10003)는 인코딩된 포인트 클라우드 비디오 데이터를 포함하는 비트스트림을 전송한다. 실시예들에 따른 비트스트림은 파일 또는 세그먼트(예를 들면 스트리밍 세그먼트) 등으로 인캡슐레이션되어 방송망 및/또는 브로드밴드 망등의 다양한 네트워크를 통해 전송된다. 도면에 도시되지 않았으나, 전송 장치(10000)는 인캡슐레이션 동작을 수행하는 인캡슐레이션부(또는 인캡슐레이션 모듈)을 포함할 수 있다. 또한 실시예들에 따라 인캡슐레이션부는 트랜스미터(10003)에 포함될 수 있다. 실시예들에 따라 파일 또는 세그먼트는 네트워크를 통해 수신 장치(10004)로 전송되거나, 디지털 저장매체(예를 들면 USB, SD, CD, DVD, 블루레이, HDD, SSD 등)에 저장될 수 있다. 실시예들에 따른 트랜스미터(10003)는 수신 장치(10004) (또는 리시버(Receiver, 10005))와 4G, 5G, 6G 등의 네트워크를 통해 유/무선 통신 가능하다. 또한 트랜스미터(10003)는 네트워크 시스템(예를 들면 4G, 5G, 6G 등의 통신 네트워크 시스템)에 따라 필요한 데이터 처리 동작을 수행할 수 있다. 또한 전송 장치(10000)는 온 디맨드(On Demand) 방식에 따라 인캡슐레이션된 데이터를 전송할 수도 있다.
실시예들에 따른 수신 장치(10004)는 리시버(Receiver, 10005), 포인트 클라우드 비디오 디코더(Point Cloud Decoder, 10006) 및/또는 렌더러(Renderer, 10007)를 포함한다. 실시예들에 따라 수신 장치(10004)는 무선 접속 기술(예, 5G NR(New RAT), LTE(Long Term Evolution))을 이용하여, 기지국 및/또는 다른 무선 기기와 통신을 수행하는 기기, 로봇, 차량, AR/VR/XR 기기, 휴대기기, 가전, IoT(Internet of Thing)기기, AI 기기/서버 등을 포함할 수 있다.
실시예들에 따른 리시버(10005)는 포인트 클라우드 비디오 데이터를 포함하는 비트스트림 또는 비트스트림이 인캡슐레이션된 파일/세그먼트 등을 네트워크 또는 저장매체로부터 수신한다. 리시버(10005)는 네트워크 시스템(예를 들면 4G, 5G, 6G 등의 통신 네트워크 시스템)에 따라 필요한 데이터 처리 동작을 수행할 수 있다. 실시예들에 따른 리시버(10005)는 수신한 파일/세그먼트를 디캡슐레이션하여 비트스트림을 출력할수 있다. 또한 실시예들에 따라 리시버(10005)는 디캡슐레이션 동작을 수행하기 위한 디캡슐레이션부(또는 디캡슐레이션 모듈)을 포함할 수 있다. 또한 디캡슐레이션부는 리시버(10005)와 별개의 엘레멘트(또는 컴포넌트)로 구현될 수 있다.
포인트 클라우드 비디오 디코더(10006)는 포인트 클라우드 비디오 데이터를 포함하는 비트스트림을 디코딩한다. 포인트 클라우드 비디오 디코더(10006)는 포인트 클라우드 비디오 데이터가 인코딩된 방식에 따라 디코딩할 수 있다(예를 들면 포인트 클라우드 비디오 인코더(10002)의 동작의 역과정). 따라서 포인트 클라우드 비디오 디코더(10006)는 포인트 클라우드 컴프레션의 역과정인 포인트 클라우드 디컴프레션 코딩을 수행하여 포인트 클라우드 비디오 데이터를 디코딩할 수 있다. 포인트 클라우드 디컴프레션 코딩은 G-PCC 코딩을 포함한다.
렌더러(10007)는 디코딩된 포인트 클라우드 비디오 데이터를 렌더링한다. 렌더러(10007)는 포인트 클라우드 비디오 데이터 뿐만 아니라 오디오 데이터도 렌더링하여 포인트 클라우드 콘텐트를 출력할 수 있다. 실시예들에 따라 렌더러(10007)는 포인트 클라우드 콘텐트를 디스플레이하기 위한 디스플레이를 포함할 수 있다. 실시예들에 따라 디스플레이는 렌더러(10007)에 포함되지 않고 별도의 디바이스 또는 컴포넌트로 구현될 수 있다.
도면에 점선으로 표시된 화살표는 수신 장치(10004)에서 획득한 피드백 정보(feedback information)의 전송 경로를 나타낸다. 피드백 정보는 포인트 클라우드 컨텐트를 소비하는 사용자와의 인터랙티비를 반영하기 위한 정보로서, 사용자의 정보(예를 들면 헤드 오리엔테이션 정보), 뷰포트(Viewport) 정보 등)을 포함한다. 특히 포인트 클라우드 콘텐트가 사용자와의 상호작용이 필요한 서비스(예를 들면 자율주행 서비스 등)를 위한 콘텐트인 경우, 피드백 정보는 콘텐트 송신측(예를 들면 전송 장치(10000)) 및/또는 서비스 프로바이더에게 전달될 수 있다. 실시예들에 따라 피드백 정보는 전송 장치(10000) 뿐만 아니라 수신 장치(10004)에서도 사용될 수 있으며, 제공되지 않을 수도 있다.
실시예들에 따른 헤드 오리엔테이션 정보는 사용자의 머리 위치, 방향, 각도, 움직임 등에 대한 정보이다. 실시예들에 따른 수신 장치(10004)는 헤드 오리엔테이션 정보를 기반으로 뷰포트 정보를 계산할 수 있다. 뷰포트 정보는 사용자가 바라보고 있는 포인트 클라우드 비디오의 영역에 대한 정보이다. 시점(viewpoint)은 사용자가 포인트 클라우 비디오를 보고 있는 점으로 뷰포트 영역의 정중앙 지점을 의미할 수 있다. 즉, 뷰포트는 시점을 중심으로 한 영역으로서, 영역의 크기, 형태 등은 FOV(Field Of View) 에 의해 결정될 수 있다. 따라서 수신 장치(10004)는 헤드 오리엔테이션 정보 외에 장치가 지원하는 수직(vertical) 혹은 수평(horizontal) FOV 등을 기반으로 뷰포트 정보를 추출할 수 있다. 또한 수신 장치(10004)는 게이즈 분석 (Gaze Analysis) 등을 수행하여 사용자의 포인트 클라우드 소비 방식, 사용자가 응시하는 포인트 클라우 비디오 영역, 응시 시간 등을 확인한다. 실시예들에 따라 수신 장치(10004)는 게이즈 분석 결과를 포함하는 피드백 정보를 송신 장치(10000)로 전송할 수 있다. 실시예들에 따른 피드백 정보는 렌더링 및/또는 디스플레이 과정에서 획득될 수 있다. 실시예들에 따른 피드백 정보는 수신 장치(10004)에 포함된 하나 또는 그 이상의 센서들에 의해 확보될 수 있다. 또한 실시예들에 따라 피드백 정보는 렌더러(10007) 또는 별도의 외부 엘레멘트(또는 디바이스, 컴포넌트 등)에 의해 확보될 수 있다. 도1의 점선은 렌더러(10007)에서 확보한 피드백 정보의 전달 과정을 나타낸다. 포인트 클라우드 콘텐트 제공 시스템은 피드백 정보를 기반으로 포인트 클라우드 데이터를 처리(인코딩/디코딩)할 수 있다. 따라서 포인트 클라우드 비디오 데이터 디코더(10006)는 피드백 정보를 기반으로 디코딩 동작을 수행할 수 있다. 또한 수신 장치(10004)는 피드백 정보를 전송 장치(10000)로 전송할 수 있다. 전송 장치(10000)(또는 포인트 클라우드 비디오 데이터 인코더(10002))는 피드백 정보를 기반으로 인코딩 동작을 수행할 수 있다. 따라서 포인트 클라우드 콘텐트 제공 시스템은 모든 포인트 클라우드 데이터를 처리(인코딩/디코딩)하지 않고, 피드백 정보를 기반으로 필요한 데이터(예를 들면 사용자의 헤드 위치에 대응하는 포인트 클라우드 데이터)를 효율적으로 처리하고, 사용자에게 포인트 클라우드 콘텐트를 제공할 수 있다.
실시예들에 따라, 전송 장치(10000)는 인코더, 전송 디바이스, 전송기 등으로 호칭될 수 있으며, 수신 장치(10004)는 디코더, 수신 디바이스, 수신기 등으로 호칭될 수 있다.
실시예들에 따른 도 1 의 포인트 클라우드 콘텐트 제공 시스템에서 처리되는 (획득/인코딩/전송/디코딩/렌더링의 일련의 과정으로 처리되는) 포인트 클라우드 데이터는 포인트 클라우드 콘텐트 데이터 또는 포인트 클라우드 비디오 데이터라고 호칭할 수 있다. 실시예들에 따라 포인트 클라우드 콘텐트 데이터는 포인트 클라우드 데이터와 관련된 메타데이터 내지 시그널링 정보를 포함하는 개념으로 사용될 수 있다.
도 1에 도시된 포인트 클라우드 콘텐트 제공 시스템의 엘리먼트들은 하드웨어, 소프트웨어, 프로세서 및/또는 그것들의 결합등으로 구현될 수 있다.
도 2는 실시예들에 따른 포인트 클라우드 콘텐트 제공 동작을 나타내는 블록도이다.
도 2의 블록도는 도 1에서 설명한 포인트 클라우드 콘텐트 제공 시스템의 동작을 나타낸다. 상술한 바와 같이 포인트 클라우드 콘텐트 제공 시스템은 포인트 클라우드 컴프레션 코딩(예를 들면 G-PCC)을 기반으로 포인트 클라우드 데이터를 처리할 수 있다.
실시예들에 따른 포인트 클라우드 콘텐트 제공 시스템(예를 들면 포인트 클라우드 전송 장치(10000) 또는 포인트 클라우드 비디오 획득부(10001))은 포인트 클라우드 비디오를 획득할 수 있다(20000). 포인트 클라우드 비디오는 3차원 공간을 표현하는 좌표계에 속한 포인트 클라우드로 표현된다. 실시예들에 따른 포인트 클라우드 비디오는 Ply (Polygon File format or the Stanford Triangle format) 파일을 포함할 수 있다. 포인트 클라우드 비디오가 하나 또는 그 이상의 프레임들을 갖는 경우, 획득한 포인트 클라우드 비디오는 하나 또는 그 이상의 Ply 파일들을 포함할 수 있다. Ply 파일은 포인트의 지오메트리(Geometry) 및/또는 어트리뷰트(Attribute)와 같은 포인트 클라우드 데이터를 포함한다. 지오메트리는 포인트들의 포지션들을 포함한다. 각 포인트의 포지션은 3차원 좌표계(예를 들면 XYZ축들로 이루어진 좌표계 등)를 나타내는 파라미터들(예를 들면 X축, Y축, Z축 각각의 값)로 표현될 수 있다. 어트리뷰트는 포인트들의 어트리뷰트들(예를 들면, 각 포인트의 텍스쳐 정보, 색상(YCbCr 또는 RGB), 반사율(r), 투명도 등)을 포함한다. 하나의 포인트는 하나 또는 그 이상의 어트리뷰트들(또는 속성들)을 가진다. 예를 들어 하나의 포인트는 하나의 색상인 어트리뷰트를 가질 수도 있고, 색상 및 반사율인 두 개의 어트리뷰트들을 가질 수도 있다. 실시예들에 따라, 지오메트리는 포지션들, 지오메트리 정보, 지오메트리 데이터 등으로 호칭 가능하며, 어트리뷰트는 어트리뷰트들, 어트리뷰트 정보, 어트리뷰트 데이터 등으로 호칭할 수 있다. 또한 포인트 클라우드 콘텐트 제공 시스템(예를 들면 포인트 클라우드 전송 장치(10000) 또는 포인트 클라우드 비디오 획득부(10001))은 포인트 클라우드 비디오의 획득 과정과 관련된 정보(예를 들면 깊이 정보, 색상 정보 등)으로부터 포인트 클라우드 데이터를 확보할 수 있다.
실시예들에 따른 포인트 클라우드 콘텐트 제공 시스템(예를 들면 전송 장치(10000) 또는 포인트 클라우드 비디오 인코더(10002))은 포인트 클라우드 데이터를 인코딩할 수 있다(20001). 포인트 클라우드 콘텐트 제공 시스템은 포인트 클라우드 컴프레션 코딩을 기반으로 포인트 클라우드 데이터를 인코딩할 수 있다. 상술한 바와 같이 포인트 클라우드 데이터는 포인트의 지오메트리 및 어트리뷰트를 포함할 수 있다. 따라서 포인트 클라우드 콘텐트 제공 시스템은 지오메트리를 인코딩하는 지오메트리 인코딩을 수행하여 지오메트리 비트스트림을 출력할 수 있다. 포인트 클라우드 콘텐트 제공 시스템은 어트리뷰트를 인코딩하는 어트리뷰트 인코딩을 수행하여 어트리뷰트 비트스트림을 출력할 수 있다. 실시예들에 따라 포인트 클라우드 콘텐트 제공 시스템은 지오메트리 인코딩에 기초하여 어트리뷰트 인코딩을 수행할 수 있다. 실시예들에 따른 지오메트리 비트스트림 및 어트리뷰트 비트스트림은 멀티플렉싱되어 하나의 비트스트림으로 출력될 수 있다. 실시예들에 따른 비트스트림은 지오메트리 인코딩 및 어트리뷰트 인코딩과 관련된 시그널링 정보를 더 포함할 수 있다.
실시예들에 따른 포인트 클라우드 콘텐트 제공 시스템(예를 들면 전송 장치(10000) 또는 트랜스미터(10003))는 인코딩된 포인트 클라우드 데이터를 전송할 수 있다(20002). 도1에서 설명한 바와 같이 인코딩된 포인트 클라우드 데이터는 지오메트리 비트스트림, 어트리뷰트 비트스트림으로 표현될 수 있다. 또한 인코딩된 포인트 클라우드 데이터는 포인트 클라우드 데이터의 인코딩과 관련된 시그널링 정보(예를 들면 지오메트리 인코딩 및 어트리뷰트 인코딩과 관련된 시그널링 정보)과 함께 비트스트림의 형태로 전송될 수 있다. 또한 포인트 클라우드 콘텐트 제공 시스템은 인코딩된 포인트 클라우드 데이터를 전송하는 비트스트림을 인캡슐레이션 하여 파일 또는 세그먼트의 형태로 전송할 수 있다.
실시예들에 따른 포인트 클라우드 콘텐트 제공 시스템(예를 들면 수신 장치(10004) 또는 리시버(10005))은 인코딩된 포인트 클라우드 데이터를 포함하는 비트스트림을 수신할 수 있다. 또한 포인트 클라우드 콘텐트 제공 시스템(예를 들면 수신 장치(10004) 또는 리시버(10005))은 비트스트림을 디멀티플렉싱할 수 있다.
포인트 클라우드 콘텐트 제공 시스템(예를 들면 수신 장치(10004) 또는 포인트 클라우드 비디오 디코더(10005))은 비트스트림으로 전송되는 인코딩된 포인트 클라우드 데이터(예를 들면 지오메트리 비트스트림, 어트리뷰트 비트스트림)을 디코딩할 수 있다. 포인트 클라우드 콘텐트 제공 시스템(예를 들면 수신 장치(10004) 또는 포인트 클라우드 비디오 디코더(10005))은 비트스트림에 포함된 포인트 클라우드 비디오 데이터의 인코딩과 관련된 시그널링 정보를 기반으로 포인트 클라우드 비디오 데이터를 디코딩할 수 있다. 포인트 클라우드 콘텐트 제공 시스템(예를 들면 수신 장치(10004) 또는 포인트 클라우드 비디오 디코더(10005))은 지오메트리 비트스트림을 디코딩하여 포인트들의 포지션들(지오메트리)을 복원할 수 있다. 포인트 클라우드 콘텐트 제공 시스템은 복원한 지오메트리를 기반으로 어트리뷰트 비트스트림을 디코딩하여 포인트들의 어트리뷰트들을 복원할 수 있다. 포인트 클라우드 콘텐트 제공 시스템(예를 들면 수신 장치(10004) 또는 포인트 클라우드 비디오 디코더(10005))은 복원된 지오메트리에 따른 포지션들 및 디코딩된 어트리뷰트를 기반으로 포인트 클라우드 비디오를 복원할 수 있다.
실시예들에 따른 포인트 클라우드 콘텐트 제공 시스템(예를 들면 수신 장치(10004) 또는 렌더러(10007))은 디코딩된 포인트 클라우드 데이터를 렌더링할 수 있다(20004). 포인트 클라우드 콘텐트 제공 시스템(예를 들면 수신 장치(10004) 또는 렌더러(10007))은 디코딩 과정을 통해 디코딩된 지오메트리 및 어트리뷰트들을 다양한 렌더링 방식에 따라 렌더링 방식에 따라 렌더링 할 수 있다. 포인트 클라우드 콘텐트의 포인트들은 일정 두께를 갖는 정점, 해당 정점 위치를 중앙으로 하는 특정 최소 크기를 갖는 정육면체, 또는 정점 위치를 중앙으로 하는 원 등으로 렌더링 될 수도 있다. 렌더링된 포인트 클라우드 콘텐트의 전부 또는 일부 영역은 디스플레이 (예를 들면 VR/AR 디스플레이, 일반 디스플레이 등)을 통해 사용자에게 제공된다.
실시예들에 따른 포인트 클라우드 콘텐트 제공 시스템(예를 들면 수신 장치(10004))는 피드백 정보를 확보할 수 있다(20005). 포인트 클라우드 콘텐트 제공 시스템은 피드백 정보를 기반으로 포인트 클라우드 데이터를 인코딩 및/또는 디코딩할 수 있다. 실시예들에 따른 피드백 정보 및 포인트 클라우드 콘텐트 제공 시스템의 동작은 도 1에서 설명한 피드백 정보 및 동작과 동일하므로 구체적인 설명은 생략한다.
도 3은 실시예들에 따른 포인트 클라우드 비디오 캡쳐 과정의 예시를 나타낸다.
도 3은 도 1 내지 도 2에서 설명한 포인트 클라우드 콘텐트 제공 시스템의 포인트 클라우드 비디오 캡쳐 과정의 예시를 나타낸다.
포인트 클라우드 콘텐트는 다양한 3차원 공간(예를 들면 현실 환경을 나타내는 3차원 공간, 가상 환경을 나타내는3차원 공간 등)에 위치한 오브젝트(object) 및/또는 환경을 나타내는 포인트 클라우드 비디오(이미지들 및/또는 영상들)을 포함한다. 따라서 실시예들에 따른 포인트 클라우드 콘텐트 제공 시스템은 포인트 클라우드 콘텐트를 생성하기 위하여 하나 또는 그 이상의 카메라(camera)들(예를 들면, 깊이 정보를 확보할 수 있는 적외선 카메라, 깊이 정보에 대응되는 색상 정보를 추출 할 수 있는 RGB 카메라 등), 프로젝터(예를 들면 깊이 정보를 확보하기 위한 적외선 패턴 프로젝터 등), 라이다(LiDAR)등을 사용하여 포인트 클라우드 비디오를 캡쳐할 수 있다. 실시예들에 따른 포인트 클라우드 콘텐트 제공 시스템은 깊이 정보로부터 3차원 공간상의 포인트들로 구성된 지오메트리의 형태를 추출하고, 색상정보로부터 각 포인트의 어트리뷰트를 추출하여 포인트 클라우드 데이터를 확보할 수 있다. 실시예들에 따른 이미지 및/또는 영상은 인워드-페이싱(inward-facing) 방식 및 아웃워드-페이싱(outward-facing) 방식 중 적어도 어느 하나 이상을 기반으로 캡쳐될 수 있다.
도3의 왼쪽은 인워드-페이싱 방식을 나타낸다. 인워드-페이싱 방식은 중심 오브젝트를 둘러싸고 위치한 하나 또는 그 이상의 카메라들(또는 카메라 센서들)이 중심 오브젝트를 캡쳐하는 방식을 의미한다. 인워드-페이싱 방식은 핵심 객체에 대한 360도 이미지를 사용자에게 제공하는 포인트 클라우드 콘텐트(예를 들면 사용자에게 객체(예-캐릭터, 선수, 물건, 배우 등 핵심이 되는 객체)의 360도 이미지를 제공하는 VR/AR 콘텐트)를 생성하기 위해 사용될 수 있다.
도3의 오른쪽은 아웃워드-페이싱 방식을 나타낸다. 아웃워드-페이싱 방식은 중심 오브젝트를 둘러싸고 위치한 하나 또는 그 이상의 카메라들(또는 카메라 센서들)이 중심 오브젝트가 아닌 중심 오브젝트의 환경을 캡쳐하는 방식을 의미한다. 아웃워드-페이싱 방식은 사용자의 시점에서 나타나는 주변 환경을 제공하기 위한 포인트 클라우드 콘텐트(예를 들면자율 주행 차량의 사용자에게 제공될 수 있는 외부 환경을 나타내는 콘텐트)를 생성하기 위해 사용될 수 있다.
도면에 도시된 바와 같이, 포인트 클라우드 콘텐트는 하나 또는 그 이상의 카메라들의 캡쳐 동작을 기반으로 생성될 수 있다. 이 경우 각 카메라의 좌표계가 다를 수 있으므로 포인트 클라우드 콘텐트 제공 시스템은 캡쳐 동작 이전에 글로벌 공간 좌표계(global coordinate system)을 설정하기 위하여 하나 또는 그 이상의 카메라들의 캘리브레이션을 수행할 수 있다. 또한 포인트 클라우드 콘텐트 제공 시스템은 상술한 캡쳐 방식으로 캡쳐된 이미지 및/또는 영상과 임의의 이미지 및/또는 영상을 합성하여 포인트 클라우드 콘텐트를 생성할 수 있다. 또한 포인트 클라우드 콘텐트 제공 시스템은 가상 공간을 나타내는 포인트 클라우드 콘텐트를 생성하는 경우 도3에서 설명한 캡쳐 동작을 수행하지 않을 수 있다. 실시예들에 따른 포인트 클라우드 콘텐트 제공 시스템은 캡쳐한 이미지 및/또는 영상에 대해 후처리를 수행할 수 있다. 즉, 포인트 클라우드 콘텐트 제공 시스템은 원하지 않는 영역(예를 들면 배경)을 제거하거나, 캡쳐한 이미지들 및/또는 영상들이 연결된 공간을 인식하고, 구명(spatial hole)이 있는 경우 이를 메우는 동작을 수행할 수 있다.
또한 포인트 클라우드 콘텐트 제공 시스템은 각 카메라로부터 확보한 포인트 클라우드 비디오의 포인트들에 대하여 좌표계 변환을 수행하여 하나의 포인트 클라우드 콘텐트를 생성할 수 있다. 포인트 클라우드 콘텐트 제공 시스템은 각 카메라의 위치 좌표를 기준으로 포인트들의 좌표계 변환을 수행할 수 있다. 이에 따라, 포인트 클라우드 콘텐트 제공 시스템은 하나의 넓은 범위를 나타내는 콘텐트를 생성할 수도 있고, 포인트들의 밀도가 높은 포인트 클라우드 콘텐트를 생성할 수 있다.
도 4는 실시예들에 따른 포인트 클라우드 인코더(Point Cloud Encoder)의 예시를 나타낸다.
도 4는 도 1의 포인트 클라우드 비디오 인코더(10002)의 예시를 나타낸다. 포인트 클라우드 인코더는 네트워크의 상황 혹은 애플리케이션 등에 따라 포인트 클라우드 콘텐트의 질(예를 들어 무손실-lossless, 손실-lossy, near-lossless)을 조절하기 위하여 포인트 클라우드 데이터(예를 들면 포인트들의 포지션들 및/또는 어트리뷰트들)을 재구성하고 인코딩 동작을 수행한다. 포인트 클라우드 콘텐트의 전체 사이즈가 큰 경우(예를 들어 30 fps의 경우 60 Gbps인 포인트 클라우드 콘텐트) 포인트 클라우드 콘텐트 제공 시스템은 해당 콘텐트를 리얼 타임 스트리밍하지 못할 수 있다. 따라서 포인트 클라우드 콘텐트 제공 시스템은 네트워크 환경등에 맞춰 제공하기 위하여 최대 타깃 비트율(bitrate)을 기반으로 포인트 클라우드 콘텐트를 재구성할 수 있다.
도 1 내지 도2 에서 설명한 바와 같이 포인트 클라우드 인코더는 지오메트리 인코딩 및 어트리뷰트 인코딩을 수행할 수 있다. 지오메트리 인코딩은 어트리뷰트 인코딩보다 먼저 수행된다.
실시예들에 따른 포인트 클라우드 인코더는 좌표계 변환부(Transformation Coordinates, 40000), 양자화부(Quantize and Remove Points (Voxelize), 40001), 옥트리 분석부(Analyze Octree, 40002), 서페이스 어프록시메이션 분석부(Analyze Surface Approximation, 40003), 아리스메틱 인코더(Arithmetic Encode, 40004), 지오메트리 리컨스트럭션부(Reconstruct Geometry, 40005), 컬러 변환부(Transform Colors, 40006), 어트리뷰트 변환부(Transfer Attributes, 40007), RAHT 변환부(40008), LOD생성부(Generated LOD, 40009), 리프팅 변환부(Lifting)(40010), 계수 양자화부(Quantize Coefficients, 40011) 및/또는 아리스메틱 인코더(Arithmetic Encode, 40012)를 포함한다.
좌표계 변환부(40000), 양자화부(40001), 옥트리 분석부(40002), 서페이스 어프록시메이션 분석부(40003), 아리스메틱 인코더(40004), 및 지오메트리 리컨스트럭션부(40005)는 지오메트리 인코딩을 수행할 수 있다. 실시예들에 따른 지오메트리 인코딩은 옥트리 지오메트리 코딩, 다이렉트 코딩(direct coding), 트라이숩 지오메트리 인코딩(trisoup geometry encoding) 및 엔트로피 인코딩을 포함할 수 있다. 다이렉트 코딩 및 트라이숩 지오메트리 인코딩은 선택적으로 또는 조합으로 적용된다. 또한 지오메트리 인코딩은 위의 예시에 국한되지 않는다.
도면에 도시된 바와 같이, 실시예들에 따른 좌표계 변환부(40000)는 포지션들을 수신하여 좌표계(coordinate)로 변환한다. 예를 들어, 포지션들은 3차원 공간 (예를 들면XYZ 좌표계로 표현되는 3차원 공간 등)의 위치 정보로 변환될 수 있다. 실시예들에 따른 3차원 공간의 위치 정보는 지오메트리 정보로 지칭될 수 있다.
실시예들에 따른 양자화부(40001)는 지오메트리를 양자화한다. 예를 들어, 양자화부(40001)는 전체 포인트들의 최소 위치 값(예를 들면 X축, Y축, Z축 에 대하여 각축상의 최소 값)을 기반으로 포인트들을 양자화 할 수 있다. 양자화부(40001)는 최소 위치 값과 각 포인트의 위치 값의 차이에 기 설정된 양자 스케일(quatization scale) 값을 곱한 뒤, 내림 또는 올림을 수행하여 가장 가까운 정수 값을 찾는 양자화 동작을 수행한다. 따라서 하나 또는 그 이상의 포인트들은 동일한 양자화된 포지션 (또는 포지션 값)을 가질 수 있다. 실시예들에 따른 양자화부(40001)는 양자화된 포인트들을 재구성하기 위해 양자화된 포지션들을 기반으로 복셀화(voxelization)를 수행한다. 2차원 이미지/비디오 정보를 포함하는 최소 단위는 픽셀(pixel)과 같이, 실시예들에 따른 포인트 클라우드 콘텐트(또는 3차원 포인트 클라우드 비디오)의 포인트들은 하나 또는 그 이상의 복셀(voxel)들에 포함될 수 있다. 복셀은 볼륨(Volume)과 픽셀(Pixel)의 조합어로서, 3차원 공간을 표현하는 축들(예를 들면 X축, Y축, Z축)을 기반으로 3차원 공간을 유닛(unit=1.0) 단위로 나누었을 때 발생하는 3차원 큐빅 공간을 의미한다. 양자화부(40001)는 3차원 공간의 포인트들의 그룹들을 복셀들로 매칭할 수 있다. 실시예들에 따라 하나의 복셀은 하나의 포인트만 포함할 수 있다. 실시예들에 따라 하나의 복셀은 하나 또는 그 이상의 포인트들을 포함할 수 있다. 또한 하나의 복셀을 하나의 포인트로 표현하기 위하여, 하나의 복셀에 포함된 하나 또는 그 이상의 포인트들의 포지션들을 기반으로 해당 복셀의 중앙점(ceter)의 포지션을 설정할 수 있다. 이 경우 하나의 복셀에 포함된 모든 포지션들의 어트리뷰트들은 통합되어(combined) 해당 복셀에 할당될(assigned)수 있다.
실시예들에 따른 옥트리 분석부(40002)는 복셀을 옥트리(octree) 구조로 나타내기 위한 옥트리 지오메트리 코딩(또는 옥트리 코딩)을 수행한다. 옥트리 구조는 팔진 트리 구조에 기반하여 복셀에 매칭된 포인트들을 표현한다.
실시예들에 따른 서페이스 어프록시메이션 분석부(40003)는 옥트리를 분석하고, 근사화할 수 있다. 실시예들에 따른 옥트리 분석 및 근사화는 효율적으로 옥트리 및 복셀화를 제공하기 위해서 다수의 포인트들을 포함하는 영역에 대해 복셀화하기 위해 분석하는 과정이다.
실시예들에 따른 아리스메틱 인코더(40004)는 옥트리 및/또는 근사화된 옥트리를 엔트로피 인코딩한다. 예를 들어, 인코딩 방식은 아리스메틱(Arithmetic) 인코딩 방법을 포함한다. 인코딩의 결과로 지오메트리 비트스트림이 생성된다.
컬러 변환부(40006), 어트리뷰트 변환부(40007), RAHT 변환부(40008), LOD생성부(40009), 리프팅 변환부(40010), 계수 양자화부(40011) 및/또는 아리스메틱 인코더(40012)는 어트리뷰트 인코딩을 수행한다. 상술한 바와 같이 하나의 포인트는 하나 또는 그 이상의 어트리뷰트들을 가질 수 있다. 실시예들에 따른 어트리뷰트 인코딩은 하나의 포인트가 갖는 어트리뷰트들에 대해 동일하게 적용된다. 다만, 하나의 어트리뷰트(예를 들면 색상)이 하나 또는 그 이상의 요소들을 포함하는 경우, 각 요소마다 독립적인 어트리뷰트 인코딩이 적용된다. 실시예들에 따른 어트리뷰트 인코딩은 컬러 변환 코딩, 어트리뷰트 변환 코딩, RAHT(Region Adaptive Hierarchial Transform) 코딩, 예측 변환(Interpolaration-based hierarchical nearest-neighbour prediction-Prediction Transform) 코딩 및 리프팅 변환 (interpolation-based hierarchical nearest-neighbour prediction with an update/lifting step (Lifting Transform)) 코딩을 포함할 수 있다. 포인트 클라우드 콘텐트에 따라 상술한 RAHT 코딩, 예측 변환 코딩 및 리프팅 변환 코딩은 선택적으로 사용되거나, 하나 또는 그 이상의 코딩들의 조합이 사용될 수 있다. 또한 실시예들에 따른 어트리뷰트 인코딩은 상술한 예시에 국한되는 것은 아니다.
실시예들에 따른 컬러 변환부(40006)는 어트리뷰트들에 포함된 컬러 값(또는 텍스쳐)을 변환하는 컬러 변환 코딩을 수행한다. 예를 들어, 컬러 변환부(40006)는 색상 정보의 포맷을 변환(예를 들어 RGB에서 YCbCr로 변환)할 수 있다. 실시예들에 따른 컬러 변환부(40006)의 동작은 어트리뷰트들에 포함된 컬러값에 따라 옵셔널(optional)하게 적용될 수 있다.
실시예들에 따른 지오메트리 리컨스트럭션부(40005)는 옥트리 및/또는 근사화된 옥트리를 재구성(디컴프레션)한다. 지오메트리 리컨스트럭션부(40005)는 포인트들의 분포를 분석한 결과에 기반하여 옥트리/복셀을 재구성한다. 재구성된 옥트리/복셀은 재구성된 지오메트리(또는 복원된 지오메트리)로 호칭될 수 있다.
실시예들에 따른 어트리뷰트 변환부(40007)는 지오메트리 인코딩이 수행되지 않은 포지션들 및/또는 재구성된 지오메트리를 기반으로 어트리뷰트들을 변환하는 어트리뷰트 변환을 수행한다. 상술한 바와 같이 어트리뷰트들은 지오메트리에 종속되므로, 어트리뷰트 변환부(40007)는 재구성된 지오메트리 정보를 기반으로 어트리뷰트들을 변환할 수 있다. 예를 들어, 어트리뷰트 변환부(40007)는 복셀에 포함된 포인트의 포지션값을 기반으로 그 포지션의 포인트가 가지는 어트리뷰트를 변환할 수 있다. 상술한 바와 같이 하나의 복셀에 포함된 하나 또는 그 이상의 포인트들의 포지션들을 기반으로 해당 복셀의 중앙점의 포지션이 설정된 경우, 어트리뷰트 변환부(40007)는 하나 또는 그 이상의 포인트들의 어트리뷰트들을 변환한다. 트라이숩 지오메트리 인코딩이 수행된 경우, 어트리뷰트 변환부(40007)는 트라이숩 지오메트리 인코딩을 기반으로 어트리뷰트들을 변환할 수 있다.
어트리뷰트 변환부(40007)는 각 복셀의 중앙점의 포지션(또는 포지션 값)으로부터 특정 위치/반경 내에 이웃하고 있는 포인트들의 어트리뷰트들 또는 어트리뷰트 값들(예를 들면 각 포인트의 색상, 또는 반사율 등)의 평균값을 계산하여 어트리뷰트 변환을 수행할 수 있다. 어트리뷰트 변환부(40007)는 평균값 계산시 중앙점으로부터 각 포인트까지의 거리에 따른 가중치를 적용할 수 있다. 따라서 각 복셀은 포지션과 계산된 어트리뷰트(또는 어트리뷰트 값)을 갖게 된다.
어트리뷰트 변환부(40007)는 K-D 트리 또는 몰톤 코드를 기반으로 각 복셀의 중앙점의 포지션으로부터 특정 위치/반경 내에 존재하는 이웃 포인트들을 탐색할 수 있다. K-D 트리는 이진 탐색 트리(binary search tree)로 빠르게 최단 이웃점 탐색(Nearest Neighbor Search-NNS)이 가능하도록 point들을 위치 기반으로 관리할 수 있는 자료 구조를 지원한다. 몰튼 코드는 모든 포인트들의 3차원 포지션을 나타내는 좌표값(예를 들면 (x, y, z))을 비트값으로 나타내고, 비트들을 믹싱하여 생성된다. 예를 들어 포인트의 포지션을 나타내는 좌표값이 (5, 9, 1)일 경우 좌표값의 비트 값은 (0101, 1001, 0001)이다. 비트 값을z, y, x 순서로 비트 인덱스에 맞춰 믹싱하면 010001000111이다. 이 값을 10진수로 나타내면 1095이 된다. 즉, 좌표값이 (5, 9, 1)인 포인트의 몰톤 코드 값은 1095이다. 어트리뷰트 변환부(40007)는 몰튼 코드 값을 기준으로 포인트들을 정렬하고depth-first traversal 과정을 통해 최단 이웃점 탐색(NNS)을 할 수 있다. 어트리뷰트 변환 동작 이후, 어트리뷰트 코딩을 위한 다른 변환 과정에서도 최단 이웃점 탐색(NNS)이 필요한 경우, K-D 트리 또는 몰톤 코드가 활용된다.
도면에 도시된 바와 같이 변환된 어트리뷰트들은 RAHT 변환부(40008) 및/또는 LOD 생성부(40009)로 입력된다.
실시예들에 따른 RAHT 변환부(40008)는 재구성된 지오메트리 정보에 기반하여 어트리뷰트 정보를 예측하는 RAHT코딩을 수행한다. 예를 들어, RAHT 변환부(40008)는 옥트리의 하위 레벨에 있는 노드와 연관된 어트리뷰트 정보에 기반하여 옥트리의 상위 레벨에 있는 노드의 어트리뷰트 정보를 예측할 수 있다.
실시예들에 따른 LOD생성부(40009)는 예측 변환 코딩을 수행하기 위하여LOD(Level of Detail)를 생성한다. 실시예들에 따른 LOD는 포인트 클라우드 콘텐트의 디테일을 나타내는 정도로서, LOD 값이 작을 수록 포인트 클라우드 콘텐트의 디테일이 떨어지고, LOD 값이 클 수록 포인트 클라우드 콘텐트의 디테일이 높음을 나타낸다. 포인트들을 LOD에 따라 분류될 수 있다.
실시예들에 따른 리프팅 변환부(40010)는 포인트 클라우드의 어트리뷰트들을 가중치에 기반하여 변환하는 리프팅 변환 코딩을 수행한다. 상술한 바와 같이 리프팅 변환 코딩은 선택적으로 적용될 수 있다.
실시예들에 따른 계수 양자화부(40011)은 어트리뷰트 코딩된 어트리뷰트들을 계수에 기반하여 양자화한다.
실시예들에 따른 아리스메틱 인코더(40012)는 양자화된 어트리뷰트들을 아리스메틱 코딩 에 기반하여 인코딩한다.
도 4의 포인트 클라우드 인코더의 엘레멘트들은 도면에 도시되지 않았으나 포인트 클라우드 제공 장치에 포함된 하나 또는 그 이상의 메모리들과 통신가능하도록 설정된 하나 또는 그 이상의 프로세서들 또는 집적 회로들(integrated circuits)을 포함하는 하드웨어, 소프트웨어, 펌웨어 또는 이들의 조합으로 구현될 수 있다. 하나 또는 그 이상의 프로세서들은 상술한 도 4의 포인트 클라우드 인코더의 엘레멘트들의 동작들 및/또는 기능들 중 적어도 어느 하나 이상을 수행할 수 있다. 또한 하나 또는 그 이상의 프로세서들은 도 4의 포인트 클라우드 인코더의 엘레멘트들의 동작들 및/또는 기능들을 수행하기 위한 소프트웨어 프로그램들 및/또는 인스트럭션들의 세트를 동작하거나 실행할 수 있다. 실시예들에 따른 하나 또는 그 이상의 메모리들은 하이 스피드 랜덤 억세스 메모리를 포함할 수도 있고, 비휘발성 메모리(예를 들면 하나 또는 그 이상의 마그네틱 디스크 저장 디바이스들, 플래쉬 메모리 디바이스들, 또는 다른 비휘발성 솔리드 스테이트 메모리 디바이스들(Solid-state memory devices)등)를 포함할 수 있다.
도 5 는 실시예들에 따른 복셀의 예시를 나타낸다.
도 5는 X축, Y축, Z축의 3가지 축으로 구성된 좌표계로 표현되는 3차원 공간상에 위치한 복셀을 나타낸다. 도 4에서 설명한 바와 같이 포인트 클라우드 인코더(예를 들면 양자화부(40001) 등)은 복셀화를 수행할 수 있다. 복셀은 3차원 공간을 표현하는 축들(예를 들면 X축, Y축, Z축)을 기반으로 3차원 공간을 유닛(unit=1.0) 단위로 나누었을 때 발생하는 3차원 큐빅 공간을 의미한다. 도 5는 두 개의 극점들(0,0,0) 및 (2 d, 2 d, 2 d) 으로 정의되는 바운딩 박스(cubical axis-aligned bounding box)를 재귀적으로 분할(reculsive subdividing)하는 옥트리 구조를 통해 생성된 복셀의 예시를 나타낸다. 하나의 복셀은 적어도 하나 이상의 포인트를 포함한다. 복셀은 복셀군(voxel group)과의 포지션 관계로부터 공간 좌표를 추정 할 수 있다. 상술한 바와 같이 복셀은 2차원 이미지/영상의 픽셀과 마찬가지로 어트리뷰트(색상 또는 반사율 등)을 가진다. 복셀에 대한 구체적인 설명은 도 4에서 설명한 바와 동일하므로 생략한다.
도 6은 실시예들에 따른 옥트리 및 오큐판시 코드 (occupancy code)의 예시를 나타낸다.
도 1 내지 도 4에서 설명한 바와 같이 포인트 클라우드 콘텐트 제공 시스템(포인트 클라우드 비디오 인코더(10002)) 또는 포인트 클라우드 인코더(예를 들면 옥트리 분석부(40002))는 복셀의 영역 및/또는 포지션을 효율적으로 관리하기 위하여 옥트리 구조 기반의 옥트리 지오메트리 코딩(또는 옥트리 코딩)을 수행한다.
도 6의 상단은 옥트리 구조를 나타낸다. 실시예들에 따른 포인트 클라우드 콘텐트의 3차원 공간은 좌표계의 축들(예를 들면 X축, Y축, Z축)로 표현된다. 옥트리 구조는 두 개의 극점들(0,0,0) 및 (2 d, 2 d, 2 d) 으로 정의되는 바운딩 박스(cubical axis-aligned bounding box)를 재귀적으로 분할(reculsive subdividing)하여 생성된다. 2d는 포인트 클라우드 콘텐트(또는 포인트 클라우드 비디오)의 전체 포인트들을 감싸는 가장 작은 바운딩 박스를 구성하는 값으로 설정될 수 있다. d는 옥트리의 깊이(depth)를 나타낸다. d값은 다음의 식에 따라 결정된다. 하기 식에서 (x int n, y int n, z int n)는 양자화된 포인트들의 포지션들(또는 포지션 값들)을 나타낸다.
Figure PCTKR2020003322-appb-img-000001
도 6의 상단의 중간에 도시된 바와 같이, 분할에 따라 전체 3차원 공간은 8개의 공간들로 분할될 수 있다. 분할된 각 공간은 6개의 면들을 갖는 큐브로 표현된다. 도 6 상단의 오른쪽에 도시된 바와 같이 8개의 공간들 각각은 다시 좌표계의 축들(예를 들면 X축, Y축, Z축)을 기반으로 분할된다. 따라서 각 공간은 다시 8개의 작은 공간들로 분할된다. 분할된 작은 공간 역시 6개의 면들을 갖는 큐브로 표현된다. 이와 같은 분할 방식은 옥트리의 리프 노드(leaf node)가 복셀이 될 때까지 적용된다.
도 6의 하단은 옥트리의 오큐판시 코드를 나타낸다. 옥트리의 오큐판시 코드는 하나의 공간이 분할되어 발생되는 8개의 분할된 공간들 각각이 적어도 하나의 포인트를 포함하는지 여부를 나타내기 위해 생성된다. 따라서 하나의 오큐판시 코드는 8개의 자식 노드(child node)들로 표현된다. 각 자식 노드는 분할된 공간의 오큐판시를 나타내며, 자식 노드는 1비트의 값을 갖는다. 따라서 오큐판시 코드는 8 비트 코드로 표현된다. 즉, 자식 노드에 대응하는 공간에 적어도 하나의 포인트가 포함되어 있으면 해당 노드는 1값을 갖는다. 자식 노드에 대응하는 공간에 포인트가 포함되어 있지 않으면 (empty), 해당 노드는 0값을 갖는다. 도 6에 도시된 오큐판시 코드는 00100001이므로 8개의 자식 노드 중 3번째 자식 노드 및 8번째 자식 노드에 대응하는 공간들은 각각 적어도 하나의 포인트를 포함함을 나타낸다. 도면에 도시된 바와 같이 3번째 자식 노드 및 8번째 자식 노드는 각각 8개의 자식 노드를 가지며, 각 자식 노드는 8비트의 오큐판시 코드로 표현된다. 도면은 3번째 자식 노드의 오큐판시 코드가 10000111이고, 8번째 자식 노드의 오큐판시 코드가 01001111임을 나타낸다. 실시예들에 따른 포인트 클라우드 인코더(예를 들면 아리스메틱 인코더(40004))는 오큐판시 코드를 엔트로피 인코딩할 수 있다. 또한 압축 효율을 높이기 위해 포인트 클라우드 인코더는 오큐판시 코드를 인트라/인터 코딩할 수 있다. 실시예들에 따른 수신 장치(예를 들면 수신 장치(10004) 또는 포인트 클라우드 비디오 디코더(10006))는 오큐판시 코드를 기반으로 옥트리를 재구성한다.
실시예들에 따른 포인트 클라우드 인코더(예를 들면 도 4의 포인트 클라우드 인코더, 또는 옥트리 분석부(40002))는 포인트들의 포지션들을 저장하기 위해 복셀화 및 옥트리 코딩을 수행할 수 있다. 하지만 3차원 공간 내 포인트들이 언제나 고르게 분포하는 것은 아니므로, 포인트들이 많이 존재하지 않는 특정 영역이 존재할 수 있다. 따라서 3차원 공간 전체에 대해 복셀화를 수행하는 것은 비효율 적이다. 예를 들어 특정 영역에 포인트가 거의 존재하지 않는다면, 해당 영역까지 복셀화를 수행할 필요가 없다.
따라서 실시예들에 따른 포인트 클라우드 인코더는 상술한 특정 영역(또는 옥트리의 리프 노드를 제외한 노드)에 대해서는 복셀화를 수행하지 않고, 특정 영역에 포함된 포인트들의 포지션을 직접 코딩하는 다이렉트 코딩(Direct coding)을 수행할 수 있다. 실시예들에 따른 다이렉트 코딩 포인트의 좌표들은 다이렉트 코딩 모드(Direct Coding Mode, DCM)으로 호칭된다. 또한 실시예들에 따른 포인트 클라우드 인코더는 표면 모델(surface model)을 기반으로 특정 영역(또는 노드)내의 포인트들의 포지션들을 복셀 기반으로 재구성하는 트라이숩 지오메트리 인코딩(Trisoup geometry encoding)을 수행할 수 있다. 트라이숩 지오메트리 인코딩은 오브젝트의 표현을 삼각형 메쉬(triangle mesh)의 시리즈로 표현하는 지오메트리 인코딩이다. 따라서 포인트 클라우드 디코더는 메쉬 표면으로부터 포인트 클라우드를 생성할 수 있다. 실시예들에 따른 다이렉트 코딩 및 트라이숩 지오메트리 인코딩은 선택적으로 수행될 수 있다. 또한 실시예들에 따른 다이렉트 코딩 및 트라이숩 지오메트리 인코딩은 옥트리 지오메트리 코딩(또는 옥트리 코딩)과 결합되어 수행될 수 있다.
다이렉트 코딩(Direct coding)을 수행하기 위해서는 다이렉트 코딩을 적용하기 위한 직접 모드(direct mode) 사용 옵션이 활성화 되어 있어야 하며, 다이렉트 코딩을 적용할 노드는 리프 노드가 아니고, 특정 노드 내에 한계치(threshold) 이하의 포인트들이 존재해야 한다. 또한 다이텍트 코딩의 대상이 되는 전채 포인트들의 개수는 기설정된 한계값을 넘어서는 안된다. 위의 조건이 만족되면, 실시예들에 따른 포인트 클라우드 인코더(또는 아리스메틱 인코더(40004))는 포인트들의 포지션들(또는 포지션 값들)을 엔트로피 코딩할 수 있다.
실시예들에 따른 포인트 클라우드 인코더(예를 들면 서페이스 어프록시메이션 분석부(40003))는 옥트리의 특정 레벨(레벨은 옥트리의 깊이 d보다는 작은 경우)을 정하고, 그 레벨부터는 표면 모델을 사용하여 노드 영역내의 포인트의 포지션을 복셀 기반으로 재구성하는 트라이숩 지오메트리 인코딩을 수행할 수 있다(트라이숩 모드). 실시예들에 따른 포인트 클라우드 인코더는 트라이숩 지오메트리 인코딩을 적용할 레벨을 지정할 수 있다. 예를 들어, 지정된 레벨이 옥트리의 깊이와 같으면 포인트 클라우드 인코더는 트라이숩 모드로 동작하지 않는다. 즉, 실시예들에 따른 포인트 클라우드 인코더는 지정된 레벨이 옥트리의 깊이값 보다 작은 경우에만 트라이숩 모드로 동작할 수 있다. 실시예들에 따른 지정된 레벨의 노드들의 3차원 정육면체 영역을 블록(block)이라 호칭한다. 하나의 블록은 하나 또는 그 이상의 복셀들을 포함할 수 있다. 블록 또는 복셀은 브릭(brick)에 대응될 수도 있다. 각 블록 내에서 지오메트리는 표면(surface)으로 표현된다. 실시예들에 따른 표면은 최대 한번 블록의 각 엣지(edge, 모서리)와 교차할 수 있다.
하나의 블록은 12개의 엣지들을 가지므로, 하나의 블록 내 적어도 12개의 교차점들이 존재한다. 각 교차점은 버텍스(vertex, 정점 또는 꼭지점)라 호칭된다. 엣지를 따라 존재하는 버텍스은 해당 엣지를 공유하는 모든 블록들 중 그 엣지에 인접한 적어도 하나의 오큐파이드 복셀(occupied voxel)이 있는 경우 감지된다. 실시예들에 따른 오큐파이드 복셀은 포인트를 포함하는 복셀을 의미한다. 엣지를 따라 검출된 버텍스의 포지션은 해당 엣지를 공유하는 모든 블록들 중 해당 엣지에 인접한 모든 복셀들의 엣지에 따른 평균 포지션(the average position along the edge of all voxels)이다.
버텍스가 검출되면 실시예들에 따른 포인트 클라우드 인코더는 엣지의 시작점(x, y, z), 엣지의 방향벡터(Δx, Δy, Δz), 버텍스 위치 값 (엣지 내의 상대적 위치 값)들을 엔트로피코딩할 수 있다. 트라이숩 지오메트리 인코딩이 적용된 경우, 실시예들에 따른 포인트 클라우드 인코더(예를 들면 지오메트리 리컨스트럭션부(40005))는 삼각형 재구성(triangle reconstruction), 업-샘플링(up-sampling), 복셀화 과정을 수행하여 복원된 지오메트리(재구성된 지오메트리)를 생성할 수 있다.
블록의 엣지에 위치한 버텍스들은 블록을 통과하는 표면(surface)를 결정한다. 실시예들에 따른 표면은 비평면 다각형이다. 삼각형 재구성 과정은 엣지의 시작점, 엣지의 방향 벡터와 버텍스의 위치값을 기반으로 삼각형으로 나타내는 표면을 재구성한다. 삼각형 재구성 과정은 다음과 같다. ①각 버텍스들의 중심(centroid)값을 계산하고, ②각 버텍스값에서 중심 값을 뺀 값들에 ③자승을 수행하고 그 값을 모두 더한 값을 구한다.
Figure PCTKR2020003322-appb-img-000002
더해진 값의 최소값을 구하고, 최소값이 있는 축에 따라서 프로젝션 (Projection, 투영) 과정을 수행한다. 예를 들어 x 요소(element)가 최소인 경우, 각 버텍스를 블록의 중심을 기준으로 x축으로 프로젝션 시키고, (y, z) 평면으로 프로젝션 시킨다. (y, z)평면으로 프로젝션 시키면 나오는 값이 (ai, bi)라면 atan2(bi, ai)를 통해 θ값을 구하고, θ값을 기준으로 버텍스들(vertices)을 정렬한다. 하기의 표는 버텍스들의 개수에 따라 삼각형을 생성하기 위한 버텍스들의 조합을 나타낸다. 버텍스들은 1부터 n까지의 순서로 정렬된다. 하기 표는4개의 버텍스들에 대하여, 버텍스들의 조합에 따라 두 개의 삼각형들이 구성될 수 있음을 나타낸다. 첫번째 삼각형은 정렬된 버텍스들 중 1, 2, 3번째 버텍스들로 구성되고, 두번째 삼각형은 정렬된 버텍스들 중 3, 4, 1번째 버텍스들로 구성될 수 있다. .
표. Triangles formed from vertices ordered 1,...,n
n Triangles
3 (1,2,3)
4 (1,2,3), (3,4,1)
5 (1,2,3), (3,4,5), (5,1,3)
6 (1,2,3), (3,4,5), (5,6,1), (1,3,5)
7 (1,2,3), (3,4,5), (5,6,7), (7,1,3), (3,5,7)
8 (1,2,3), (3,4,5), (5,6,7), (7,8,1), (1,3,5), (5,7,1)
9 (1,2,3), (3,4,5), (5,6,7), (7,8,9), (9,1,3), (3,5,7), (7,9,3)
10 (1,2,3), (3,4,5), (5,6,7), (7,8,9), (9,10,1), (1,3,5), (5,7,9), (9,1,5)
11 (1,2,3), (3,4,5), (5,6,7), (7,8,9), (9,10,11), (11,1,3), (3,5,7), (7,9,11), (11,3,7)
12 (1,2,3), (3,4,5), (5,6,7), (7,8,9), (9,10,11), (11,12,1), (1,3,5), (5,7,9), (9,11,1), (1,5,9)
업샘플링 과정은 삼각형의 엣지를 따라서 중간에 점들을 추가하여 복셀화 하기 위해서 수행된다. 업샘플링 요소 값(upsampling factor)과 블록의 너비를 기준으로 추가 점들을 생성한다. 추가점은 리파인드 버텍스(refined vertice)라고 호칭된다. 실시예들에 따른 포인트 클라우드 인코더는 리파인드 버텍스들을 복셀화할 수 있다. 또한 포인트 클라우드 인코더는 복셀화 된 포지션(또는 포지션 값)을 기반으로 어트리뷰트 인코딩을 수행할 수 있다.
도 7은 실시예들에 따른 이웃 노드 패턴의 예시를 나타낸다.
포인트 클라우드 비디오의 압축 효율을 증가시키기 위하여 실시예들에 따른 포인트 클라우드 인코더는 콘텍스트 어탭티브 아리스메틱 (context adaptive arithmetic) 코딩을 기반으로 엔트로피 코딩을 수행할 수 있다.
도 1 내지 도 6에서 설명한 바와 같이 포인트 클라우드 콘텐트 제공 시스템 또는 포인트 클라우드 인코더(예를 들면 포인트 클라우드 비디오 인코더(10002), 도 4의 포인트 클라우드 인코더 또는 아리스메틱 인코더(40004))는 오큐판시 코드를 곧바로 엔트로피 코딩할 수 있다. 또한 포인트 클라우드 콘텐트 제공 시스템 또는 포인트 클라우드 인코더는 현재 노드의 오큐판시 코드와 이웃 노드들의 오큐판시를 기반으로 엔트로피 인코딩(인트라 인코딩)을 수행하거나, 이전 프레임의 오큐판시 코드를 기반으로 엔트로피 인코딩(인터 인코딩)을 수행할 수 있다. 실시예들에 따른 프레임은 동일한 시간에 생성된 포인트 클라우드 비디오의 집합을 의미한다. 실시예들에 따른 인트라 인코딩/인터 인코딩의 압축 효율은 참조하는 이웃 노드들의 개수에 따라 달라질 수 있다. 비트가 커지면 복잡해지지만 한쪽으로 치우치게 만들어서 압축 효율이 높아질 수 있다. 예를 들어 3-bit context를 가지면, 2의 3승인 = 8가지 방법으로 코딩 해야 한다. 나누어 코딩을 하는 부분은 구현의 복잡도에 영향을 준다. 따라서 압축의 효율과 복잡도의 적정 수준을 맞출 필요가 있다.
도7은 이웃 노드들의 오큐판시를 기반으로 오큐판시 패턴을 구하는 과정을 나타낸다. 실시예들에 따른 포인트 클라우드 인코더는 옥트리의 각 노드의 이웃 노드들의 오큐판시(occupancy)를 판단하고 이웃 노드 패턴(neighbor pattern) 값을 구한다. 이웃 노드 패턴은 해당 노드의 오큐판시 패턴을 추론하기 위해 사용된다. 도7의 왼쪽은 노드에 대응하는 큐브(가운데 위치한 큐브) 및 해당 큐브와 적어도 하나의 면을 공유하는 6개의 큐브들(이웃 노드들)을 나타낸다. 도면에 도시된 노드들은 같은 뎁스(깊이)의 노드들이다. 도면에 도시된 숫자는 6개의 노드들 각각과 연관된 가중치들(1, 2, 4, 8, 16, 32, 등)을 나타낸다. 각 가중치는 이웃 노드들의 위치에 따라 순차적으로 부여된다.
도 7의 오른쪽은 이웃 노드 패턴 값을 나타낸다. 이웃 노드 패턴 값은 오큐파이드 이웃 노드(포인트를 갖는 이웃 노드)의 가중치가 곱해진 값들의 합이다. 따라서 이웃 노드 패턴 값은 0에서 63까지의 값을 갖는다. 이웃 노드 패턴 값이 0 인 경우, 해당 노드의 이웃 노드 중 포인트를 갖는 노드(오큐파이드 노드)가 없음을 나타낸다. 이웃 노드 패턴 값이 63인 경우, 이웃 노드들이 전부 오큐파이드 노드들임을 나타낸다. 도면에 도시된 바와 같이 가중치1, 2, 4, 8가 부여된 이웃 노드들은 오큐파이드 노드들이므로, 이웃 노드 패턴 값은 1, 2, 4, 8을 더한 값인 15이다. 포인트 클라우드 인코더는 이웃 노드 패턴 값에 따라 코딩을 수행할 수 있다(예를 들어 이웃 노드 패턴 값이 63인 경우, 64가지의 코딩을 수행). 실시예들에 따라 포인트 클라우드 인코더는 이웃 노드 패턴 값을 변경 (예를 들면 64를 10 또는 6으로 변경하는 테이블을 기반으로) 하여 코딩의 복잡도를 줄일 수 있다.
도 8은 실시예들에 따른 LOD 별 포인트 구성의 예시를 나타낸다.
도 1 내지 도 7에서 설명한 바와 같이, 어트리뷰트 인코딩이 수행되기 전 인코딩된 지오메트리는 재구성(디컴프레션) 된다. 다이렉트 코딩이 적용된 경우, 지오메트리 재구성 동작은 다이렉트 코딩된 포인트들의 배치를 변경하는 것을 포함할 수 있다(예를 들면 다이렉트 코딩된 포인트들을 포인트 클라우드 데이터의 앞쪽에 배치). 트라이숩 지오메트리 인코딩이 적용된 경우, 지오메트리 재구성 과정은 삼각형 재구성, 업샘플링, 복셀화 과정을 어트리뷰트는 지오메트리에 종속되므로, 어트리뷰트 인코딩은 재구성된 지오메트리를 기반으로 수행된다.
포인트 클라우드 인코더(예를 들면 LOD 생성부(40009))는 포인트들을 LOD별로 분류(reorganization)할 수 있다. 도면은 LOD에 대응하는 포인트 클라우드 콘텐트를 나타낸다. 도면의 왼쪽은 오리지널 포인트 클라우드 콘텐트를 나타낸다. 도면의 왼쪽에서 두번째 그림은 가장 낮은 LOD의 포인트들의 분포를 나타내며, 도면의 가장 오른쪽 그림은 가장 높은 LOD의 포인트들의 분포를 나타낸다. 즉, 가장 낮은 LOD의 포인트들은 드문드문(sparse) 분포하며, 가장 높은 LOD의 포인트들은 촘촘히 분포한다. 즉, 도면 하단에 표시된 화살표 방향에 따라 LOD가 증가할수록 포인트들 간의 간격(또는 거리)는 더 짧아진다.
도 9는 실시예들에 따른 LOD 별 포인트 구성의 예시를 나타낸다.
도 1 내지 도 8에서 설명한 바와 같이 포인트 클라우드 콘텐트 제공 시스템, 또는 포인트 클라우드 인코더(예를 들면 포인트 클라우드 비디오 인코더(10002), 도 4의 포인트 클라우드 인코더, 또는 LOD 생성부(40009))는 LOD를 생성할 수 있다. LOD는 포인트들을 설정된 LOD 거리 값(또는 유클리이디언 디스턴스(Euclidean Distance)의 세트)에 따라 리파인먼트 레벨들(refinement levels)의 세트로 재정열(reorganize)하여 생성된다. LOD 생성 과정은 포인트 클라우드 인코더뿐만 아니라 포인트 클라우드 디코더에서도 수행된다.
도 9의 상단은 3차원 공간에 분포된 포인트 클라우드 콘텐트의 포인트들의 예시(P0내지 P9)를 나타낸다. 도 9의 오리지널 오더(Original order)는 LOD 생성전 포인트들 P0내지 P9의 순서를 나타낸다. 도 9의 LOD 기반 오더 (LOD based order)는 LOD 생성에 따른 포인트들의 순서를 나타낸다. 포인트들은 LOD별 재정열된다. 또한 높은 LOD는 낮은 LOD에 속한 포인트들을 포함한다. 도 9에 도시된 바와 같이 LOD0는 P0, P5, P4 및 P2를 포함한다. LOD1은 LOD0의 포인트들과 P1, P6 및 P3를 포함한다. LOD2는 LOD0의 포인트들, LOD1의 포인트들 및 P9, P8 및 P7을 포함한다.
도 4에서 설명한 바와 같이 실시예들에 따른 포인트 클라우드 인코더는 예측 변환 코딩, 리프팅 변환 코딩 및 RAHT 변환 코딩을 선택적으로 또는 조합하여 수행할 수 있다.
실시예들에 따른 포인트 클라우드 인코더는 포인트들에 대한 예측기(predictor)를 생성하여 각 포인트의 예측 어트리뷰트(또는 예측 어트리뷰트값)을 설정하기 위한 예측 변환 코딩을 수행할 수 있다. 즉, N개의 포인트들에 대하여 N개의 예측기들이 생성될 수 있다. 실시예들에 따른 예측기는 각 포인트의 LOD 값과 LOD별 설정된 거리 내에 존재하는 이웃 포인트들에 대한 인덱싱 정보 및 이웃 포인트들까지의 거리 값을 기반으로 가중치(=1/거리) 값을 계산하할 수 있다.
실시예들에 따른 예측 어트리뷰트(또는 어트리뷰트값)은 각 포인트의 예측기에 설정된 이웃 포인트들의 어트리뷰트들(또는 어트리뷰트 값들, 예를 들면 색상, 반사율 등)에 각 이웃 포인트까지의 거리를 기반으로 계산된 가중치(또는 가중치값)을 곱한 값의 평균값으로 설정된다. 실시예들에 따른 포인트 클라우드 인코더(예를 들면 계수 양자화부(40011)는 각 포인트의 어트리뷰트(어트리뷰트 값)에서 예측 어트리뷰트(어트리뷰트값)을 뺀 잔여값들(residuals, 잔여 어트리뷰트, 잔여 어트리뷰트값, 어트리뷰트 예측 잔여값 등으로 호칭할 수 있다)을 양자화(quatization) 및 역양자화(inverse quantization)할 수 있다. 양자화 과정은 다음의 표에 나타난 바와 같다.
Attribute prediction residuals quantization pseudo code
int PCCQuantization(int value, int quantStep) {
if( value >=0) {
return floor(value / quantStep + 1.0 / 3.0);
} else {
return -floor(-value / quantStep + 1.0 / 3.0);
}
}
Attribute prediction residuals inverse quantization pseudo code
int PCCInverseQuantization(int value, int quantStep) {
if( quantStep ==0) {
return value;
} else {
return value * quantStep;
}
}
실시예들에 따른 포인트 클라우드 인코더(예를 들면 아리스메틱 인코더(40012))는 각 포인트의 예측기에 이웃한 포인트들이 있는 경우, 상술한 바와 같이 양자화 및 역양자화된 잔여값을 엔트로피 코딩 할 수 있다. 실시예들에 따른 포인트 클라우드 인코더(예를 들면 아리스메틱 인코더(40012))는 각 포인트의 예측기에 이웃한 포인트들이 없으면 상술한 과정을 수행하지 않고 해당 포인트의 어트리뷰트들을 엔트로피 코딩할 수 있다.
실시예들에 따른 포인트 클라우드 인코더 (예를 들면 리프팅 변환부(40010))는 각 포인트의 예측기를 생성하고, 예측기에 계산된 LOD를 설정 및 이웃 포인트들을 등록하고, 이웃 포인트들까지의 거리에 따른 가중치를 설정하여 리프팅 변환 코딩을 수행할 수 있다. 실시예들에 따른 리프팅 변환 코딩은 상술한 예측 변환 코딩과 유사하나, 어트리뷰트값에 가중치를 누적 적용한다는 점에서 차이가 있다. 실시예들에 따른 어트리뷰트값에 가중치를 누적 적용하는 과정은 다음과 같다.
1) 각 포인트의 가중치 값을 저장하는 배열 QW(QuantizationWieght)를 생성한다. QW의 모든 요소들의 초기값은 1.0이다. 예측기에 등록된 이웃 노드의 예측기 인덱스의 QW 값에 현재 포인트의 예측기의 가중치를 곱한 값을 더한다.
2) 리프트 예측 과정: 예측된 어트리뷰트 값을 계산하기 위하여 포인트의 어트리뷰트 값에 가중치를 곱한 값을 기존 어트리뷰트값에서 뺀다.
3) 업데이트웨이트(updateweight) 및 업데이트(update)라는 임시 배열들을 생성하고 임시 배열들을 0으로 초기화한다.
4) 모든 예측기에 대해서 계산된 가중치에 예측기 인덱스에 해당하는 QW에 저장된 가중치를 추가로 곱해서 산출된 가중치를 업데이트웨이트 배열에 이웃 노드의 인덱스로 누적으로 합산한다. 업데이트 배열에는 이웃 노드의 인덱스의 어트리뷰트 값에 산출된 가중치를 곱한 값을 누적 합산한다.
5) 리프트 업데이트 과정: 모든 예측기에 대해서 업데이트 배열의 어트리뷰트 값을 예측기 인덱스의 업데이트웨이트 배열의 가중치 값으로 나누고, 나눈 값에 다시 기존 어트리뷰트 값을 더한다.
6) 모든 예측기에 대해서, 리프트 업데이트 과정을 통해 업데이트된 어트리뷰트 값에 리프트 예측 과정을 통해 업데이트 된(QW에 저장된) 가중치를 추가로 곱하여 예측 어트리뷰트 값을 산출한다. 실시예들에 따른 포인트 클라우드 인코더(예를 들면 계수 양자화부(40011))는 예측 어트리뷰트 값을 양자화한다. 또한 포인트 클라우드 인코더(예를 들면 아리스메틱 인코더(40012))는 양자화된 어트리뷰트 값을 엔트로피 코딩한다.
실시예들에 따른 포인트 클라우드 인코더(예를 들면 RAHT 변환부(40008))는 옥트리의 하위 레벨에 있는 노드와 연관된 어트리뷰트를 사용하여 상위 레벨의 노드들의 어트리뷰트를 에측하는 RAHT 변환 코딩을 수행할 수 있다. RAHT 변환 코딩은 옥트리 백워드 스캔을 통한 어트리뷰트 인트라 코딩의 예시이다. 실시예들에 따른 포인트 클라우드 인코더는 복셀에서 전체 영역으로 스캔하고, 각 스텝에서 복셀을 더 큰 블록으로 합치면서 루트 노드까지의 병합 과정을 반복수행한다. 실시예들에 따른 병합 과정은 오큐파이드 노드에 대해서만 수행된다. 엠티 노드(empty node)에 대해서는 병합 과정이 수행되지 않으며, 엠티 노드의 바로 상위 노드에 대해 병합 과정이 수행된다.
하기의 식은 RAHT 변환 행렬을 나타낸다.
Figure PCTKR2020003322-appb-img-000003
는 레벨 l에서의 복셀들의 평균 어트리뷰트 값을 나타낸다.
Figure PCTKR2020003322-appb-img-000004
Figure PCTKR2020003322-appb-img-000005
Figure PCTKR2020003322-appb-img-000006
로부터 계산될 수 있다.
Figure PCTKR2020003322-appb-img-000007
Figure PCTKR2020003322-appb-img-000008
의 가중치를
Figure PCTKR2020003322-appb-img-000009
Figure PCTKR2020003322-appb-img-000010
이다.
Figure PCTKR2020003322-appb-img-000011
Figure PCTKR2020003322-appb-img-000012
는 로-패스(low-pass) 값으로, 다음 상위 레벨에서의 병합 과정에서 사용된다.
Figure PCTKR2020003322-appb-img-000013
은 하이패스 계수(high-pass coefficients)이며, 각 스텝에서의 하이패스 계수들은 양자화되어 엔트로피 코딩 된다(예를 들면 아리스메틱 인코더(400012)의 인코딩). 가중치는
Figure PCTKR2020003322-appb-img-000014
로 계산된다. 루트 노드는 마지막
Figure PCTKR2020003322-appb-img-000015
Figure PCTKR2020003322-appb-img-000016
을 통해서 다음과 같이 생성된다.,
Figure PCTKR2020003322-appb-img-000017
gDC값 또한 하이패스 계수와 같이 양자화되어 엔트로피 코딩된다.
도 10은 실시예들에 따른 포인트 클라우드 디코더(Point Cloud Decoder)의 예시를 나타낸다.
도 10에 도시된 포인트 클라우드 디코더는 도 1에서 설명한 포인트 클라우드 비디오 디코더(10006) 예시로서, 도 1에서 설명한 포인트 클라우드 비디오 디코더(10006)의 동작 등과 동일 또는 유사한 동작을 수행할 수 있다. 도면이 도시된 바와 같이 포인트 클라우드 디코더는 하나 또는 그 이상의 비트스트림(bitstream)들에 포함된 지오메트리 비트스트림(geometry bitstream) 및 어트리뷰트 비트스트림(attribute bitstream)을 수신할 수 있다. 포인트 클라우드 디코더는 지오메트리 디코더(geometry decoder)및 어트리뷰트 디코더(attribute decoder)를 포함한다. 지오메트리 디코더는 지오메트리 비트스트림에 대해 지오메트리 디코딩을 수행하여 디코딩된 지오메트리(decoded geometry)를 출력한다. 어트리뷰트 디코더는 디코딩된 지오메트리 및 어트리뷰트 비트스트림을 기반으로 어트리뷰트 디코딩을 수행하여 디코딩된 어트리뷰트들(decoded attributes)을 출력한다. 디코딩된 지오메트리 및 디코딩된 어트리뷰트들은 포인트 클라우드 콘텐트를 복원(decoded point cloud)하는데 사용된다.
도 11은 실시예들에 따른 포인트 클라우드 디코더(Point Cloud Decoder)의 예시를 나타낸다.
도 11에 도시된 포인트 클라우드 디코더는 도 10에서 설명한 포인트 클라우드 디코더의 예시로서, 도 1 내지 도 9에서 설명한 포인트 클라우드 인코더의 인코딩 동작의 역과정인 디코딩 동작을 수행할 수 있다.
도 1 및 도 10에서 설명한 바와 같이 포인트 클라우드 디코더는 지오메트리 디코딩 및 어트리뷰트 디코딩을 수행할 수 있다. 지오메트리 디코딩은 어트리뷰트 디코딩보다 먼저 수행된다.
실시예들에 따른 포인트 클라우드 디코더는 아리스메틱 디코더(arithmetic decode, 11000), 옥트리 합성부(synthesize octree, 11001), 서페이스 오프록시메이션 합성부(synthesize surface approximation, 11002), 지오메트리 리컨스트럭션부(reconstruct geometry, 11003), 좌표계 역변환부(inverse transform coordinates, 11004), 아리스메틱 디코더(arithmetic decode, 11005), 역양자화부(inverse quantize, 11006), RAHT변환부(11007), LOD생성부(generate LOD, 11008), 인버스 리프팅부(Inverse lifting, 11009), 및/또는 컬러 역변환부(inverse transform colors, 11010)를 포함한다.
아리스메틱 디코더(11000), 옥트리 합성부(11001), 서페이스 오프록시메이션 합성부(11002), 지오메트리 리컨스럭션부(11003), 좌표계 역변환부(11004)는 지오메트리 디코딩을 수행할 수 있다. 실시예들에 따른 지오메트리 디코딩은 다이렉트 코딩(direct coding) 및 트라이숩 지오메트리 디코딩(trisoup geometry decoding)을 포함할 수 있다. 다이렉트 코딩 및 트라이숩 지오메트리 디코딩은 선택적으로 적용된다. 또한 지오메트리 디코딩은 위의 예시에 국한되지 않으며, 도 1 내지 도 9에서 설명한 지오메트리 인코딩의 역과정으로 수행된다.
실시예들에 따른 아리스메틱 디코더(11000)는 수신한 지오메트리 비트스트림을 아리스메틱 코딩을 기반으로 디코딩한다. 아리스메틱 디코더(11000)의 동작은 아리스메틱 인코더(40004)의 역과정에 대응한다.
실시예들에 따른 옥트리 합성부(11001)는 디코딩된 지오메트리 비트스트림으로부터 (또는 디코딩 결과 확보된 지오메트리에 관한 정보)로부터 오큐판시 코드를 획득하여 옥트리를 생성할 수 있다. 오큐판시 코드에 대한 구체적인 설명은 도 1 내지 도 9에서 설명한 바와 같다.
실시예들에 따른 서페이스 오프록시메이션 합성부(11002)는 트라이숩 지오메트리 인코딩이 적용된 경우, 디코딩된 지오메트리 및/또는 생성된 옥트리에 기반하여 서페이스를 합성할 수 있다.
실시예들에 따른 지오메트리 리컨스트럭션부(11003)는 서페이스 및 또는 디코딩된 지오메트리에 기반하여 지오메트리를 재생성할 수 있다. 도 1 내지 도 9에서 설명한 바와 같이, 다이렉트 코딩 및 트라이숩 지오메트리 인코딩은 선택적으로 적용된다. 따라서 지오메트리 리컨스트럭션부(11003)는 다이렉트 코딩이 적용된 포인트들의 포지션 정보들을 직접 가져와서 추가한다. 또한, 트라이숩 지오메트리 인코딩이 적용된 경우, 지오메트리 리컨스트럭션부(11003)는 지오메트리 리컨스트럭션부(40005)의 재구성 동작, 예를 들면 삼각형 재구성, 업-샘플링, 복셀화 동작을 수행하여 지오메트리를 복원할 수 있다. 구체적인 내용은 도 6에서 설명한 바와 동일하므로 생략한다. 복원된 지오메트리는 어트리뷰트들을 포함하지 않는 포인트 클라우드 픽쳐 또는 프레임을 포함할 수 있다.
실시예들에 따른 좌표계 역변환부(11004)는 복원된 지오메트리를 기반으로 좌표계를 변환하여 포인트들의 포지션들을 획득할 수 있다.
아리스메틱 디코더(11005), 역양자화부(11006), RAHT 변환부(11007), LOD생성부(11008), 인버스 리프팅부(11009), 및/또는 컬러 역변환부(11010)는 도 10에서 설명한 어트리뷰트 디코딩을 수행할 수 있다. 실시예들에 따른 어트리뷰트 디코딩은 RAHT(Region Adaptive Hierarchial Transform) 디코딩, 예측 변환(Interpolaration-based hierarchical nearest-neighbour prediction-Prediction Transform) 디코딩 및 리프팅 변환 (interpolation-based hierarchical nearest-neighbour prediction with an update/lifting step (Lifting Transform)) 디코딩을 포함할 수 있다. 상술한 3가지의 디코딩들은 선택적으로 사용되거나, 하나 또는 그 이상의 디코딩들의 조합이 사용될 수 있다. 또한 실시예들에 따른 어트리뷰트 디코딩은 상술한 예시에 국한되는 것은 아니다.
실시예들에 따른 아리스메틱 디코더(11005)는 어트리뷰트 비트스트림을 아리스메틱 코딩으로 디코딩한다.
실시예들에 따른 역양자화부(11006)는 디코딩된 어트리뷰트 비트스트림 또는 디코딩 결과 확보한 어트리뷰트에 대한 정보를 역양자화(inverse quantization)하고 역양자화된 어트리뷰트들(또는 어트리뷰트 값들)을 출력한다. 역양자화는 포인트 클라우드 인코더의 어트리뷰트 인코딩에 기반하여 선택적으로 적용될 수 있다.
실시예들에 따라 RAHT 변환부(11007), LOD생성부(11008) 및/또는 인버스 리프팅부(11009)는 재구성된 지오메트리 및 역양자화된 어트리뷰트들을 처리할 수 있다. 상술한 바와 같이 RAHT 변환부(11007), LOD생성부(11008) 및/또는 인버스 리프팅부(11009)는 포인트 클라우드 인코더의 인코딩에 따라 그에 대응하는 디코딩 동작을 선택적으로 수행할 수 있다.
실시예들에 따른 컬러 역변환부(11010)는 디코딩된 어트리뷰트들에 포함된 컬러 값(또는 텍스쳐)을 역변환하기 위한 역변환 코딩을 수행한다. 컬러 역변환부(11010)의 동작은 포인트 클라우드 인코더의 컬러 변환부(40006)의 동작에 기반하여 선택적으로 수행될 수 있다.
도 11의 포인트 클라우드 디코더의 엘레멘트들은 도면에 도시되지 않았으나 포인트 클라우드 제공 장치에 포함된 하나 또는 그 이상의 메모리들과 통신가능하도록 설정된 하나 또는 그 이상의 프로세서들 또는 집적 회로들(integrated circuits)을 포함하는 하드웨어, 소프트웨어, 펌웨어 또는 이들의 조합으로 구현될 수 있다. 하나 또는 그 이상의 프로세서들은 상술한 도 11의 포인트 클라우드 디코더의 엘레멘트들의 동작들 및/또는 기능들 중 적어도 어느 하나 이상을 수행할 수 있다. 또한 하나 또는 그 이상의 프로세서들은 도11의 포인트 클라우드 디코더의 엘레멘트들의 동작들 및/또는 기능들을 수행하기 위한 소프트웨어 프로그램들 및/또는 인스트럭션들의 세트를 동작하거나 실행할 수 있다.
도 12는 실시예들에 따른 전송 장치의 예시이다.
도 12에 도시된 전송 장치는 도 1의 전송장치(10000) (또는 도 4의 포인트 클라우드 인코더)의 예시이다. 도 12에 도시된 전송 장치는 도 1 내지 도 9에서 설명한 포인트 클라우드 인코더의 동작들 및 인코딩 방법들과 동일 또는 유사한 동작들 및 방법들 중 적어도 어느 하나 이상을 수행할 수 있다. 실시예들에 따른 전송 장치는 데이터 입력부(12000), 양자화 처리부(12001), 복셀화 처리부(12002), 옥트리 오큐판시 코드 (Occupancy code) 생성부(12003), 표면 모델 처리부(12004), 인트라/인터 코딩 처리부(12005), 아리스메틱 (Arithmetic) 코더(12006), 메타데이터 처리부(12007), 색상 변환 처리부(12008), 어트리뷰트 변환 처리부(또는 속성 변환 처리부)(12009), 예측/리프팅/RAHT 변환 처리부(12010), 아리스메틱 (Arithmetic) 코더(12011) 및/또는 전송 처리부(12012)를 포함할 수 있다.
실시예들에 따른 데이터 입력부(12000)는 포인트 클라우드 데이터를 수신 또는 획득한다. 데이터 입력부(12000)는 포인트 클라우드 비디오 획득부(10001)의 동작 및/또는 획득 방법(또는 도2에서 설명한 획득과정(20000))과 동일 또는 유사한 동작 및/또는 획득 방법을 수행할 수 있다.
데이터 입력부(12000), 양자화 처리부(12001), 복셀화 처리부(12002), 옥트리 오큐판시 코드 (Occupancy code) 생성부(12003), 표면 모델 처리부(12004), 인트라/인터 코딩 처리부(12005), Arithmetic 코더(12006)는 지오메트리 인코딩을 수행한다. 실시예들에 따른 지오메트리 인코딩은 도 1 내지 도 9에서 설명한 지오메트리 인코딩과 동일 또는 유사하므로 구체적인 설명은 생략한다.
실시예들에 따른 양자화 처리부(12001)는 지오메트리(예를 들면 포인트들의 위치값, 또는 포지션값)을 양자화한다. 양자화 처리부(12001)의 동작 및/또는 양자화는 도 4에서 설명한 양자화부(40001)의 동작 및/또는 양자화와 동일 또는 유사하다. 구체적인 설명은 도 1 내지 도 9에서 설명한 바와 동일하다.
실시예들에 따른 복셀화 처리부(12002)는 양자화된 포인트들의 포지션 값을 복셀화한다. 복셀화 처리부(120002)는 도 4에서 설명한 양자화부(40001)의 동작 및/또는 복셀화 과정과 동일 또는 유사한 동작 및/또는 과정을 수행할 수 있다. 구체적인 설명은 도 1 내지 도 9에서 설명한 바와 동일하다.
실시예들에 따른 옥트리 오큐판시 코드 생성부(12003)는 복셀화된 포인트들의 포지션들을 옥트리 구조를 기반으로 옥트리 코딩을 수행한다. 옥트리 오큐판시 코드 생성부(12003)는 오큐판시 코드를 생성할 수 있다. 옥트리 오큐판시 코드 생성부(12003)는 도 4 및 도 6에서 설명한 포인트 클라우드 인코더 (또는 옥트리 분석부(40002))의 동작 및/또는 방법과 동일 또는 유사한 동작 및/또는 방법을 수행할 수 있다. 구체적인 설명은 도 1 내지 도 9에서 설명한 바와 동일하다.
실시예들에 따른 표면 모델 처리부(12004)는 표면 모델(surface model)을 기반으로 특정 영역(또는 노드)내의 포인트들의 포지션들을 복셀 기반으로 재구성하는 트라이숩 지오메트리 인코딩을 수행할 수 있다. 포면 모델 처리부(12004)는 도 4 에서 설명한 포인트 클라우드 인코더(예를 들면 서페이스 어프록시메이션 분석부(40003))의 동작 및/또는 방법과 동일 또는 유사한 동작 및/또는 방법을 수행할 수 있다. 구체적인 설명은 도 1 내지 도 9에서 설명한 바와 동일하다.
실시예들에 따른 인트라/인터 코딩 처리부(12005)는 포인트 클라우드 데이터를 인트라/인터 코딩할 수 있다. 인트라/인터 코딩 처리부(12005)는 도 7에서 설명한 인트라/인터 코딩과 동일 또는 유사한 코딩을 수행할 수 있다. 구체적인 설명은 도 7에서 설명한 바와 동일하다. 실시예들에 따라 인트라/인터 코딩 처리부(12005)는 아리스메틱 코더(12006)에 포함될 수 있다.
실시예들에 따른 아리스메틱 코더(12006)는 포인트 클라우드 데이터의 옥트리 및/또는 근사화된 옥트리를 엔트로피 인코딩한다. 예를 들어, 인코딩 방식은 아리스메틱(Arithmetic) 인코딩 방법을 포함한다. . 아리스메틱 코더(12006)는 아리스메틱 인코더(40004)의 동작 및/또는 방법과 동일 또는 유사한 동작 및/또는 방법을 수행한다.
실시예들에 따른 메타데이터 처리부(12007)는 포인트 클라우드 데이터에 관한 메타데이터, 예를 들어 설정 값 등을 처리하여 지오메트리 인코딩 및/또는 어트리뷰트 인코딩 등 필요한 처리 과정에 제공한다. 또한 실시예들에 따른 메타데이터 처리부(12007)는 지오메트리 인코딩 및/또는 어트리뷰트 인코딩과 관련된 시그널링 정보를 생성 및/또는 처리할 수 있다. 실시예들에 따른 시그널링 정보는 지오메트리 인코딩 및/또는 어트리뷰트 인코딩과 별도로 인코딩처리될 수 있다. 또한 실시예들에 따른 시그널링 정보는 인터리빙 될 수도 있다.
색상 변환 처리부(12008), 어트리뷰트 변환 처리부(12009), 예측/리프팅/RAHT 변환 처리부(12010), 아리스메틱 (Arithmetic) 코더(12011)는 어트리뷰트 인코딩을 수행한다. 실시예들에 따른 어트리뷰트 인코딩은 도 1 내지 도 9에서 설명한 어트리뷰트 인코딩과 동일 또는 유사하므로 구체적인 설명은 생략한다.
실시예들에 따른 색상 변환 처리부(12008)는 어트리뷰트들에 포함된 색상값을 변환하는 색상 변환 코딩을 수행한다. 색상 변환 처리부(12008)는 재구성된 지오메트리를 기반으로 색상 변환 코딩을 수행할 수 있다. 재구성된 지오메트리에 대한 설명은 도 1 내지 도 9에서 설명한 바와 동일하다. 또한 도 4에서 설명한 컬러 변환부(40006)의 동작 및/또는 방법과 동일 또는 유사한 동작 및/또는 방법을 수행한다. 구체적인 설명은 생략한다.
실시예들에 따른 어트리뷰트 변환 처리부(12009)는 지오메트리 인코딩이 수행되지 않은 포지션들 및/또는 재구성된 지오메트리를 기반으로 어트리뷰트들을 변환하는 어트리뷰트 변환을 수행한다. 어트리뷰트 변환 처리부(12009)는 도 4에 설명한 어트리뷰트 변환부(40007)의 동작 및/또는 방법과 동일 또는 유사한 동작 및/또는 방법을 수행한다. 구체적인 설명은 생략한다. 실시예들에 따른 예측/리프팅/RAHT 변환 처리부(12010)는 변환된 어트리뷰트들을 RAHT 코딩, 예측 변환 코딩 및 리프팅 변환 코딩 중 어느 하나 또는 조합하여 코딩할 수 있다. 예측/리프팅/RAHT 변환 처리부(12010)는 도 4에서 설명한 RAHT 변환부(40008), LOD 생성부(40009) 및 리프팅 변환부(40010)의 동작들과 동일 또는 유사한 동작들 중 적어도 하나 이상을 수행한다. 또한 예측 변환 코딩, 리프팅 변환 코딩 및 RAHT 변환 코딩에 대한 설명은 도 1 내지 도 9에서 설명한 바와 동일하므로 구체적인 설명은 생략한다.
실시예들에 따른 아리스메틱 코더(12011)는 코딩된 어트리뷰트들을 아리스메틱 코딩에 기반하여 인코딩할 수 있다. 아리스메틱 코더(12011)는 아리스메틱 인코더(400012)의 동작 및/또는 방법과 동일 또는 유사한 동작 및/또는 방법을 수행한다.
실시예들에 따른 전송 처리부(12012)는 인코딩된 지오메트리 및/또는 인코딩된 어트리뷰트, 메타 데이터 정보를 포함하는 각 비트스트림을 전송하거나, 인코딩된 지오메트리 및/또는 인코딩된 어트리뷰트, 메타 데이터 정보를 하나의 비트스트림으로 구성하여 전송할 수 있다. 실시예들에 따른 인코딩된 지오메트리 및/또는 인코딩된 어트리뷰트, 메타 데이터 정보가 하나의 비트스트림으로 구성되는 경우, 비트스트림은 하나 또는 그 이상의 서브 비트스트림들을 포함할 수 있다. 실시예들에 따른 비트스트림은 시퀀스 레벨의 시그널링을 위한 SPS (Sequence Parameter Set), 지오메트리 정보 코딩의 시그널링을 위한 GPS(Geometry Parameter Set), 어트리뷰트 정보 코딩의 시그널링을 위한 APS(Attribute Parameter Set), 타일 레벨의 시그널링을 위한 TPS (Tile Parameter Set)를 포함하는 시그널링 정보 및 슬라이스 데이터를 포함할 수 있다. 슬라이스 데이터는 하나 또는 그 이상의 슬라이스들에 대한 정보를 포함할 수 있다. 실시예들에 따른 하나의 슬라이스는 하나의 지오메트리 비트스트림(Geom0 0) 및 하나 또는 그 이상의 어트리뷰트 비트스트림들(Attr0 0, Attr1 0)을 포함할 수 있다. 실시예들에 따른 TPS는 하나 또는 그 이상의 타일들에 대하여 각 타일에 관한 정보(예를 들면 bounding box의 좌표값 정보 및 높이/크기 정보 등)을 포함할 수 있다. 지오메트리 비트스트림은 헤더와 페이로드를 포함할 수 있다. 실시예들에 따른 지오메트리 비트스트림의 헤더는 GPS에 포함된 파라미터 세트의 식별 정보(geom_ parameter_set_id), 타일 식별자(geom_tile_id), 슬라이스 식별자(geom_slice_id) 및 페이로드에 포함된 데이터에 관한 정보 등을 포함할 수 있다. 상술한 바와 같이 실시예들에 따른 메타데이터 처리부(12007)는 시그널링 정보를 생성 및/또는 처리하여 전송 처리부(12012)로 전송할 수 있다. 실시예들에 따라, 지오메트리 인코딩을 수행하는 엘레멘트들 및 어트리뷰트 인코딩을 수행하는 엘레멘트들은 점선 처리된 바와 같이 상호 데이터/정보를 공유할 수 있다. 실시예들에 따른 전송 처리부(12012)는 트랜스미터(10003)의 동작 및/또는 전송 방법과 동일 또는 유사한 동작 및/또는 전송 방법을 수행할 수 있다. 구체적인 설명은 도 1 내지 도 2에서 설명한 바와 동일하므로 생략한다.
도 13은 실시예들에 따른 수신 장치의 예시이다.
도 13에 도시된 수신 장치는 도 1의 수신장치(10004) (또는 도 10 및 도 11의 포인트 클라우드 디코더)의 예시이다. 도 13에 도시된 수신 장치는 도 1 내지 도 11에서 설명한 포인트 클라우드 디코더의 동작들 및 디코딩 방법들과 동일 또는 유사한 동작들 및 방법들 중 적어도 어느 하나 이상을 수행할 수 있다.
실시예들에 따른 수신 장치는 수신부(13000), 수신 처리부(13001), 아리스메틱 (arithmetic) 디코더(13002), 오큐판시 코드 (Occupancy code) 기반 옥트리 재구성 처리부(13003), 표면 모델 처리부(삼각형 재구성, 업-샘플링, 복셀화)(13004), 인버스(inverse) 양자화 처리부(13005), 메타데이터 파서(13006), 아리스메틱 (arithmetic) 디코더(13007), 인버스(inverse)양자화 처리부(13008), 예측/리프팅/RAHT 역변환 처리부(13009), 색상 역변환 처리부(13010) 및/또는 렌더러(13011)를 포함할 수 있다. 실시예들에 따른 디코딩의 각 구성요소는 실시예들에 따른 인코딩의 구성요소의 역과정을 수행할 수 있다.
실시예들에 따른 수신부(13000)는 포인트 클라우드 데이터를 수신한다. 수신부(13000)는 도 1의 리시버(10005)의 동작 및/또는 수신 방법과 동일 또는 유사한 동작 및/또는 수신 방법을 수행할 수 있다. 구체적인 설명은 생략한다.
실시예들에 따른 수신 처리부(13001)는 수신한 데이터로부터 지오메트리 비트스트림 및/또는 어트리뷰트 비트스트림을 획득할 수 있다. 수신 처리부(13001)는 수신부(13000)에 포함될 수 있다.
아리스메틱 디코더(13002), 오큐판시 코드 기반 옥트리 재구성 처리부(13003), 표면 모델 처리부(13004) 및 인버스 양자화 처리부(13005)는 지오메트리 디코딩을 수행할 수 있다. 실시예들에 따른 지오메트리 디코딩은 도 1 내지 도 10에서 설명한 지오메트리 디코딩과 동일 또는 유사하므로 구체적인 설명은 생략한다.
실시예들에 따른 아리스메틱 디코더(13002)는 지오메트리 비트스트림을 아리스메틱 코딩을 기반으로 디코딩할 수 있다. 아리스메틱 디코더(13002)는 아리스메틱 디코더(11000)의 동작 및/또는 코딩과 동일 또는 유사한 동작 및/또는 코딩을 수행한다.
실시예들에 따른 오큐판시 코드 기반 옥트리 재구성 처리부(13003)는 디코딩된 지오메트리 비트스트림으로부터 (또는 디코딩 결과 확보된 지오메트리에 관한 정보)로부터 오큐판시 코드를 획득하여 옥트리를 재구성할 수 있다. 오큐판시 코드 기반 옥트리 재구성 처리부(13003)는 옥트리 합성부(11001)의 동작 및/또는 옥트리 생성 방법과 동일 또는 유사한 동작 및/또는 방법을 수행한다. 실시예들에 따른 표면 모델 처리부(13004)는 트라이숩 지오메트리 인코딩이 적용된 경우, 표면 모델 방식에 기반하여 트라이숩 지오메트리 디코딩 및 이와 관련된 지오메트리 리컨스트럭션(예를 들면 삼각형 재구성, 업-샘플링, 복셀화)을 수행할 수 있다. 표면 모델 처리부(13004)는 서페이스 오프록시메이션 합성부(11002) 및/또는 지오메트리 리컨스트럭션부(11003)의 동작과 동일 또는 유사한 동작을 수행한다.
실시예들에 따른 인버스 양자화 처리부(13005)는 디코딩된 지오메트리를 인버스 양자화할 수 있다.
실시예들에 따른 메타데이터 파서(13006)는 수신한 포인트 클라우드 데이터에 포함된 메타데이터, 예를 들어 설정 값 등을 파싱할 수 있다. 메타데이터 파서(13006)는 메타데이터를 지오메트리 디코딩 및/또는 어트리뷰트 디코딩에 전달할 수 있다. 메타데이터에 대한 구체적인 설명은 도 12에서 설명한 바와 동일하므로 생략한다.
아리스메틱 디코더(13007), 인버스 양자화 처리부(13008), 예측/리프팅/RAHT 역변환 처리부(13009) 및 색상 역변환 처리부(13010)는 어트리뷰트 디코딩을 수행한다. 어트리뷰트 디코딩는 도 1 내지 도 10에서 설명한 어트리뷰트 디코딩과 동일 또는 유사하므로 구체적인 설명은 생략한다.
실시예들에 따른 아리스메틱 디코더(13007)는 어트리뷰트 비트스트림을 아리스메틱 코딩으로 디코딩할 수 있다. 아리스메틱 디코더(13007)는 재구성된 지오메트리를 기반으로 어트리뷰트 비트스트림의 디코딩을 수행할 수 있다. 아리스메틱 디코더(13007)는 아리스메틱 디코더(11005)의 동작 및/또는 코딩과 동일 또는 유사한 동작 및/또는 코딩을 수행한다.
실시예들에 따른 인버스 양자화 처리부(13008)는 디코딩된 어트리뷰트 비트스트림을 인버스 양자화할 수 있다. 인버스 양자화 처리부(13008)는 역양자화부(11006)의 동작 및/또는 역양자화 방법과 동일 또는 유사한 동작 및/또는 방법을 수행한다.
실시예들에 따른 예측/리프팅/RAHT 역변환 처리부(13009)는 재구성된 지오메트리 및 역양자화된 어트리뷰트들을 처리할 수 있다. 예측/리프팅/RAHT 역변환 처리부(13009)는 RAHT 변환부(11007), LOD생성부(11008) 및/또는 인버스 리프팅부(11009)의 동작들 및/또는 디코딩들과 동일 또는 유사한 동작들 및/또는 디코딩들 중 적어도 어느 하나 이상을 수행한다. 실시예들에 따른 색상 역변환 처리부(13010)는 디코딩된 어트리뷰트들에 포함된 컬러 값(또는 텍스쳐)을 역변환하기 위한 역변환 코딩을 수행한다. 색상 역변환 처리부(13010)는 컬러 역변환부(11010)의 동작 및/또는 역변환 코딩과 동일 또는 유사한 동작 및/또는 역변환 코딩을 수행한다. 실시예들에 따른 렌더러(13011)는 포인트 클라우드 데이터를 렌더링할 수 있다.
도 14는 실시예들에 따른 G-PCC 기반 포인트 클라우드 콘텐트 스트리밍을 위한 아키텍쳐를 나타낸다.
도 14의 상단은 도 1 내지 도 13에서 설명한 전송 장치(예를 들면 전송 장치(10000), 도 12의 전송 장치 등)가 포인트 클라우드 콘텐트를 처리 및 전송하는 과정을 나타낸다.
도 1 내지 도 13에서 설명한 바와 같이 전송 장치는 포인트 클라우드 콘텐트의 오디오(Ba)를 획득하고(Audio Acquisition), 획득한 오디오를 인코딩(Audio encoding)하여 오디오 비트스트림(Ea)들을 출력할 수 있다. 또한 전송 장치는 포인트 클라우드 콘텐트의 포인트 클라우드(Bv)(또는 포인트 클라우드 비디오)를 확보하고(Point Acqusition), 확보한 포인트 클라우드에 대하여 포인트 클라우드 인코딩(Point cloud encoding)을 수행하여 포인트 클라우드 비디오 비트스트림(Eb)들을 출력할 수 있다. 전송 장치의 포인트 클라우드 인코딩은 도 1 내지 도 13에서 설명한 포인트 클라우드 인코딩(예를 들면 도 4의 포인트 클라우드 인코더의 인코딩 등)과 동일 또는 유사하므로 구체적인 설명은 생략한다.
전송 장치는 생성된 오디오 비트스트림들 및 비디오 비트스트림들을 파일 및/또는 세그먼트로 인캡슐레이션(File/segment encapsulation)할 수 있다. 인캡슐레이션된 파일 및/또는 세그먼트(Fs, File)은 ISOBMFF 등의 파일 포맷의 파일 또는 DASH 세그먼트를 포함할 수 있다. 실시예들에 따른 포인트 클라우드 관련 메타 데이터(metadata)는 인캡슐레이션된 파일 포맷 및/또는 세그먼트에 포함될 수 있다. 메타 데이터는 ISOBMFF 파일 포맷 상의 다양한 레벨의 박스(box)에 포함되거나 파일 내에서 별도의 트랙에 포함될 수 있다. 실시예에 따라 전송 장치는 메타데이터 자체를 별도의 파일로 인캡슐레이션할 수 있다. 실시예들에 따른 전송 장치는 인캡슐레이션 된 파일 포맷 및/또는 세그먼트를 네트워크를 통해 전송(delivery)할 수 있다. 전송 장치의 인캡슐레이션 및 전송 처리 방법은 도 1 내지 도 13에서 설명한 바 (예를 들면 트랜스미터(10003), 도 2의 전송 단계(20002) 등)와 동일하므로 구체적인 설명은 생략한다.
도 14의 하단은 도 1 내지 도 13에서 설명한 수신 장치(예를 들면 수신 장치(10004), 도 13의 수신 장치 등)가 포인트 클라우드 콘텐트를 처리 및 출력하는 과정을 나타낸다.
실시예들에 따라 수신 장치는 최종 오디오 데이터 및 최종 비디오 데이터를 출력하는 디바이스 (예를 들면 스피커(Loudspeakers), 헤드폰들(headphones), 디스플레이(Display))와 포인트 클라우드 콘텐트를 처리하는 포인트 클라우드 플레이어(Point Cloud Player)를 포함할 수 있다. 최종 데이터 출력 디바이스 및 포인트 클라우드 플레이어는 별도의 물리적인 디바이스들로 구성될 수 있다. 실시예들에 따른 포인트 클라우드 플레이어는 G-PCC(Geometry-based Point Cloud Compression) 코딩 및/또는 V-PCC(Video based Point Cloud Compression) 코딩 및/또는 차세대 코딩을 수행할 수 있다.
실시예들에 따른 수신 장치는 수신한 데이터(예를 들면 방송 신호, 네트워크를 통해 전송되는 신호 등)에 포함된 파일 및/또는 세그먼트(F',Fs')를 확보하고 디캡슐레이션(File/segment decapsulation)할 수 있다. 수신 장치의 수신 및 디캡슐레이션 방법은 도 1 내지 도 13에서 설명한 바(예를 들면 리시버(10005), 수신부(13000), 수신 처리부(13001)등)와 동일하므로 구체적인 설명은 생략한다.
실시예들에 따른 수신 장치는 파일 및/또는 세그먼트에 포함된 오디오 비트스트림(E'a) 및 비디오 비트스트림(E'v)를 확보한다. 도면에 도시된 바와 같이 수신 장치는 오디오 비트스트림에 대해 오디오 디코딩(audio decoding)을 수행하여 디코딩된 오디오 데이터(B'a)를 출력하고, 디코딩된 오디오 데이터를 렌더링(audio rendering)하여 최종 오디오 데이터(A'a)를 스피커 또는 헤드폰 등을 통해 출력한다.
또한 수신 장치는 비디오 비트스트림(E'v)에 대해 포인트 클라우드 디코딩(point cloud decoding)을 수행하여 디코딩된 비디오 데이터(B'v)를 출력한다. 실시예들에 따른 포인트 클라우드 디코딩은 도 1 내지 도 13에서 설명한 포인트 클라우드 디코딩과 동일 또는 유사하므로 (예를 들면 도11의 포인트 클라우드 디코더의 디코딩 등) 구체적인 설명은 생략한다. 수신 장치는 디코딩된 비디오 데이터를 렌더링(rendering)하여 최종 비디오 데이터를 디스플레이를 통해 출력할 수 있다.
실시예들에 따른 수신 장치는 함께 전송된 메타데이터를 기반으로 디캡슐레이션, 오디오 디코딩, 오디오 렌더링, 포인트 클라우드 디코딩 및 렌더링 동작 중 적어도 어느 하나 이상을 수행할 수 있다. 메타데이터에 대한 설명은 도 12 내지 도 13에서 설명한 바와 동일하므로 생략한다.
도면에 도시된 점선과 같이, 실시예들에 따른 수신 장치(예를 들면 포인트 클라우드 플레이어 또는 포인트 클라우드 플레어 내의 센싱/트랙킹부(sensing/tracking))는 피드백 정보(orientation, viewport)를 생성할 수 있다. 실시예들에 따른 피드백 정보는 수신 장치의 디캡슐레이션, 포인트 클라우드 디코딩 과정 및/또는 렌더링 과정에서 사용될 수도 있고, 송신 장치로 전달 될 수도 있다. 피드백 정보에 대한 설명은 도 1 내지 도 13에서 설명한 바와 동일하므로 생략한다.
도15는 실시예들에 따른 전송 장치의 예시를 나타낸다.
도 15의 전송 장치는 포인트 클라우드 콘텐트를 전송하는 장치로서, 도 1 내지 도 14에서 설명한 전송 장치(예를 들면 도 1의 전송 장치(10000), 도 4의 포인트 클라우드 인코더, 도 12의 전송 장치, 도 14의 전송 장치 등)의 예시에 해당한다. 따라서 도 15의 전송 장치는 도 1 내지 도 14에서 설명한 전송 장치의 동작과 동일 또는 유사한 동작을 수행한다.
실시예들에 따른 전송 장치는 포인트 클라우드 획득(point cloud acquisition), 포인트 클라우드 인코딩(point cloud encoding), 파일/세그먼트 인캡슐레이션(file/segement encapsulation) 및 전송(delivery) 중 적어도 하나 또는 그 이상을 수행할 수 있다.
도면에 도시된 포인트 클라우드 획득 및 전송 동작은 도 1 내지 도 14에서 설명한 바와 동일하므로 구체적인 설명은 생략한다.
도 1 내지 도 14에서 설명한 바와 같이 실시예들에 따른 전송 장치는 지오메트리 인코딩 및 어트리뷰트 인코딩을 수행할 수 있다. 실시예들에 따른 지오메트리 인코딩은 지오메트리 컴프레션(geometry compression)이라 호칭될 수 있으며 어트리뷰트 인코딩은 어트리뷰트 컴프레션(attribute compression)이라 호칭될 수 있다. 상술한 바와 같이 하나의 포인트는 하나의 지오메트리와 하나 또는 그 이상의 어트리뷰트들을 가질 수 있다. 따라서 전송 장치는 각 어트리뷰트에 대하여 어트리뷰트 인코딩을 수행한다. 도면은 전송 장치가 하나 또는 그 이상의 어트리뷰트 컴프레션들(attribute #1 compression, …attribute #N compression)을 수행한 예시를 나타낸다. 또한 실시예들에 따른 전송 장치는 추가 컴프레션(auxiliary compression)을 수행할 수 있다. 추가 컴프레션은 메타데이터(metadata)에 대해 수행된다. 메타 데이터에 대한 설명은 도 1 내지 도 14에서 설명한 바와 동일하므로 생략한다. 또한 전송 장치는 메쉬 데이터 컴프레션(Mesh data compression)을 수행할 수 있다. 실시예들에 따른 메쉬 데이터 컴프레션은 도 1 내지 도 14에서 설명한 트라이숩 지오메트리 인코딩을 포함할 수 있다.
실시예들에 따른 전송 장치는 포인트 클라우드 인코딩에 따라 출력된 비트스트림들(예를 들면 포인트 클라우드 스트림들)을 파일 및/또는 세그먼트로 인캡슐레이션 할 수 있다. 실시예들에 따라 전송 장치는 메타 데이터 외의 데이터(예를 들면 미디어 데이터)를 운반하는 미디어 트랙 인캡슐레이션(media track encapsulation)을 수행하고, 메타 데이터를 운반하는 메타데이터 트랙 인캡슐레이션(metadata tracak encapsulation)을 수행할 수 있다. 실시예들에 따라 메타데이터는 미디어 트랙으로 인캡슐레이션 될 수 있다.
도 1 내지 도 14에서 설명한 바와 같이 전송 장치는 수신 장치로부터 피드백 정보(오리엔테이션/뷰포트 메타 데이터)를 수신하고, 수신한 피드백 정보를 기반으로 포인트 클라우드 인코딩, 파일/세그먼트 인캡슐레이션 및 전송 동작 중 적어도 어느 하나 이상을 수행할 수 있다. 구체적인 설명은 도 1 내지 도 14에서 설명한 바와 동일하므로 생략한다.
도16은 실시예들에 따른 수신 장치의 예시를 나타낸다.
도 16의 수신 장치는 포인트 클라우드 콘텐트를 수신하는 장치로서, 도 1 내지 도 14에서 설명한 수신 장치(예를 들면 도 1의 수신 장치(10004), 도 11의 포인트 클라우드 디코더, 도 13의 수신 장치, 도 14의 수신 장치 등)의 예시에 해당한다. 따라서 도 16의 수신 장치는 도 1 내지 도 14에서 설명한 수신 장치의 동작과 동일 또는 유사한 동작을 수행한다. 또한 도 16의 수신 장치는 도 15의 전송 장치에서 전송한 신호 등을 받고, 도 15의 전송 장치의 동작의 역과정을 수행할 수 있다.
실시예들에 따른 수신 장치는 수신 (delivery), 파일/세그먼트 디캡슐레이션(file/segement decapsulation), 포인트 클라우드 디코딩(point cloud decoding) 및 포인트 클라우드 렌더링(point cloud rendering) 중 적어도 하나 또는 그 이상을 수행할 수 있다.
도면에 도시된 포인트 클라우드 수신 및 포인트 클라우드 렌더링 동작은 도 1 내지 도 14에서 설명한 바와 동일하므로 구체적인 설명은 생략한다.
도 1 내지 도 14에서 설명한 바와 같이 실시예들에 따른 수신 장치는 네트워크 또는 저장 장치로터 획득한 파일 및/또는 세그먼트에 대해 디캡슐레이션을 수행한다. 실시예들에 따라 수신 장치는 메타 데이터 외의 데이터(예를 들면 미디어 데이터)를 운반하는 미디어 트랙 디캡슐레이션(media track decapsulation)을 수행하고, 메타 데이터를 운반하는 메타데이터 트랙 디캡슐레이션(metadata tracak decapsulation)을 수행할 수 있다. 실시예들에 따라 메타데이터가 미디어 트랙으로 인캡슐레이션 된 경우, 메타 데이터 트랙 디캡슐레이션은 생략된다.
도 1 내지 도 14에서 설명한 바와 같이 수신 장치는 디캡슐레이션을 통해 확보한 비트스트림(예를 들면 포인트 클라우드 스트림들)에 대하여 지오메트리 디코딩 및 어트리뷰트 디코딩을 수행할 수 있다. 실시예들에 따른 지오메트리 디코딩은 지오메트리 디컴프레션(geometry decompression)이라 호칭될 수 있으며 어트리뷰트 디코딩은 어트리뷰트 디컴프레션(attribute decompression)이라 호칭될 수 있다. 상술한 바와 같이 하나의 포인트는 하나의 지오메트리와 하나 또는 그 이상의 어트리뷰트들을 가질 수 있으며 각각 인코딩된다. 따라서 수신 장치는 각 어트리뷰트에 대하여 어트리뷰트 디코딩을 수행한다. 도면은 수신 장치가 하나 또는 그 이상의 어트리뷰트 디컴프레션들(attribute #1 decompression, …attribute #N decompression)을 수행한 예시를 나타낸다. 또한 실시예들에 따른 수신 장치는 추가 디컴프레션(auxiliary decompression)을 수행할 수 있다. 추가 디컴프레션은 메타데이터(metadata)에 대해 수행된다. 메타 데이터에 대한 설명은 도 1 내지 도 14에서 설명한 바와 동일하므로 생략한다. 또한 수신 장치는 메쉬 데이터 디컴프레션(Mesh data decompression)을 수행할 수 있다. 실시예들에 따른 메쉬 데이터 디컴프레션은 도 1 내지 도 14에서 설명한 트라이숩 지오메트리 디코딩을 포함할 수 있다. 실시예들에 따른 수신 장치는 포인트 클라우드 디코딩에 따라 출력된 포인트 클라우드 데이터를 렌더링 할 수 있다.
도 1 내지 도 14에서 설명한 바와 같이 수신 장치는 별도의 센싱/트랙킹 엘레멘트등을 이용하여 오리엔테이션/뷰포트 메타 데이터를 확보하고, 이를 포함하는 피드백 정보를 전송 장치(예를 들면 도 15의 전송 장치)로 전송할 수 있다. 또한 수신 장치는 피드백 정보를 기반으로 수신 동작, 파일/세그먼트 디캡슐레이션 및 포인트 클라우드 디코딩 중 적어도 어느 하나 이상을 수행할 수 있다. 구체적인 설명은 도 1 내지 도 14에서 설명한 바와 동일하므로 생략한다.
도 17은 실시예들에 따른 포인트 클라우드 데이터 송수신 방법/장치와 연동 가능한 구조의 예시를 나타낸다.
도 17의 구조는 서버(1760), 로봇(1710), 자율 주행 차량(1720), XR 장치(1730), 스마트폰(1740), 가전(1750) 및/또는 HMD(1770) 중에서 적어도 하나 이상이 클라우드 네트워크(1710)와 연결된 구성을 나타낸다. 로봇(1710), 자율 주행 차량(1720), XR 장치(1730), 스마트폰(1740) 또는 가전(1750) 등은 장치라 호칭된다. 또한, XR 장치(1730)는 실시예들에 따른 포인트 클라우드 데이터 (PCC) 장치에 대응되거나 PCC장치와 연동될 수 있다.
클라우드 네트워크(1700)는 클라우드 컴퓨팅 인프라의 일부를 구성하거나 클라우드 컴퓨팅 인프라 안에 존재하는 네트워크를 의미할 수 있다. 여기서, 클라우드 네트워크(1700)는 3G 네트워크, 4G 또는 LTE(Long Term Evolution) 네트워크 또는 5G 네트워크 등을 이용하여 구성될 수 있다.
서버(1760)는 로봇(1710), 자율 주행 차량(1720), XR 장치(1730), 스마트폰(1740), 가전(1750) 및/또는 HMD(1770) 중에서 적어도 하나 이상과 클라우드 네트워크(1700)을 통하여 연결되고, 연결된 장치들(1710 내지 1770)의 프로세싱을 적어도 일부를 도울 수 있다.
HMD (Head-Mount Display)(1770)는 실시예들에 따른 XR 디바이스 및/또는 PCC 디바이스가 구현될 수 있는 타입 중 하나를 나타낸다. 실시예들에 따른HMD 타입의 디바이스는, 커뮤니케이션 유닛, 컨트롤 유닛, 메모리 유닛, I/O 유닛, 센서 유닛, 그리고 파워 공급 유닛 등을 포함한다.
이하에서는, 상술한 기술이 적용되는 장치(1710 내지 1750)의 다양한 실시 예들을 설명한다. 여기서, 도 17에 도시된 장치(1710 내지 1750)는 상술한 실시예들에 따른 포인트 클라우드 데이터 송수신 장치와 연동/결합될 수 있다.
<PCC+XR>
XR/PCC 장치(1730)는 PCC 및/또는 XR(AR+VR) 기술이 적용되어, HMD(Head-Mount Display), 차량에 구비된 HUD(Head-Up Display), 텔레비전, 휴대폰, 스마트 폰, 컴퓨터, 웨어러블 디바이스, 가전 기기, 디지털 사이니지, 차량, 고정형 로봇이나 이동형 로봇 등으로 구현될 수도 있다.
XR/PCC 장치(1730)는 다양한 센서들을 통해 또는 외부 장치로부터 획득한 3차원 포인트 클라우드 데이터 또는 이미지 데이터를 분석하여 3차원 포인트들에 대한 위치 데이터 및 어트리뷰트 데이터를 생성함으로써 주변 공간 또는 현실 객체에 대한 정보를 획득하고, 출력할 XR 객체를 렌더링하여 출력할 수 있다. 예컨대, XR/PCC 장치(1730)는 인식된 물체에 대한 추가 정보를 포함하는 XR 객체를 해당 인식된 물체에 대응시켜 출력할 수 있다.
<PCC+자율주행+XR>
자율 주행 차량(1720)은 PCC 기술 및 XR 기술이 적용되어, 이동형 로봇, 차량, 무인 비행체 등으로 구현될 수 있다.
XR/PCC 기술이 적용된 자율 주행 차량(1720)은 XR 영상을 제공하는 수단을 구비한 자율 주행 차량이나, XR 영상 내에서의 제어/상호작용의 대상이 되는 자율 주행 차량 등을 의미할 수 있다. 특히, XR 영상 내에서의 제어/상호작용의 대상이 되는 자율 주행 차량(1720)은 XR 장치(1730)와 구분되며 서로 연동될 수 있다.
XR/PCC영상을 제공하는 수단을 구비한 자율 주행 차량(1720)은 카메라를 포함하는 센서들로부터 센서 정보를 획득하고, 획득한 센서 정보에 기초하여 생성된 XR/PCC 영상을 출력할 수 있다. 예컨대, 자율 주행 차량(1720)은 HUD를 구비하여 XR/PCC 영상을 출력함으로써, 탑승자에게 현실 객체 또는 화면 속의 객체에 대응되는 XR/PCC 객체를 제공할 수 있다.
이때, XR/PCC 객체가 HUD에 출력되는 경우에는 XR/PCC 객체의 적어도 일부가 탑승자의 시선이 향하는 실제 객체에 오버랩되도록 출력될 수 있다. 반면, XR/PCC 객체가 자율 주행 차량의 내부에 구비되는 디스플레이에 출력되는 경우에는 XR/PCC 객체의 적어도 일부가 화면 속의 객체에 오버랩되도록 출력될 수 있다. 예컨대, 자율 주행 차량(1220)은 차로, 타 차량, 신호등, 교통 표지판, 이륜차, 보행자, 건물 등과 같은 객체와 대응되는 XR/PCC 객체들을 출력할 수 있다.
실시예들에 의한 VR (Virtual Reality) 기술, AR (Augmented Reality) 기술, MR (Mixed Reality) 기술 및/또는 PCC(Point Cloud Compression)기술은, 다양한 디바이스에 적용 가능하다.
즉, VR 기술은, 현실 세계의 객체나 배경 등을 CG 영상으로만 제공하는 디스플레이 기술이다. 반면, AR 기술은, 실제 사물 영상 위에 가상으로 만들어진 CG 영상을 함께 보여 주는 기술을 의미한다. 나아가, MR 기술은, 현실세계에 가상 객체들을 섞고 결합시켜서 보여준다는 점에서 전술한 AR 기술과 유사하다. 그러나, AR 기술에서는 현실 객체와 CG 영상으로 만들어진 가상 객체의 구별이 뚜렷하고, 현실 객체를 보완하는 형태로 가상 객체를 사용하는 반면, MR 기술에서는 가상 객체가 현실 객체와 동등한 성격으로 간주된다는 점에서 AR 기술과는 구별이 된다. 보다 구체적으로 예를 들면, 전술한 MR 기술이 적용된 것이 홀로그램 서비스 이다.
다만, 최근에는 VR, AR, MR 기술을 명확히 구별하기 보다는 XR (extended Reality) 기술로 부르기도 한다. 따라서, 본 발명의 실시예들은 VR, AR, MR, XR 기술 모두에 적용 가능하다. 이러한 기술은 PCC, V-PCC, G-PCC 기술 기반 인코딩/디코딩이 적용될 수 있다.
실시예들에 따른 PCC방법/장치는 자율 주행 서비스를 제공하는 차량에 적용될 수 있다.
자율 주행 서비스를 제공하는 차량은 PCC 디바이스와 유/무선 통신이 가능하도록 연결된다.
실시예들에 따른 포인트 클라우드 데이터 (PCC) 송수신 장치는 차량과 유/무선 통신이 가능하도록 연결된 경우, 자율 주행 서비스와 함께 제공할 수 있는 AR/VR/PCC 서비스 관련 콘텐트 데이터를 수신/처리하여 차량에 전송할 수 있다. 또한 포인트 클라우드 데이터 송수신 장치 차량에 탑재된 경우, 포인트 클라우드 송수신 장치는 사용자 인터페이스 장치를 통해 입력된 사용자 입력 신호에 따라 AR/VR/PCC 서비스 관련 콘텐트 데이터를 수신/처리하여 사용자에게 제공할 수 있다. 실시예들에 따른 차량 또는 사용자 인터페이스 장치는 사용자 입력 신호를 수신할 수 있다. 실시예들에 따른 사용자 입력 신호는 자율 주행 서비스를 지시하는 신호를 포함할 수 있다.
실시예들에 따른 방법/장치는 포인트 클라우드 데이터 송수신 방법 및/또는 포인트 클라우드 데이터 송수신 장치를 지칭할 수 있다. 실시예들에 따라, 지오메트리 정보는 기하 정보로, 어트리뷰트 정보는 속성 정보로 지칭될 수 있다.
실시예들에 따른 인코더는 실시예들에 따른 포인트 클라우드 데이터 인코더, 포인트 클라우드 인코더, 포인트 클라우드 부호화기 등으로 호칭될 수 있다. 실시예들에 따른 디코더는 실시예들에 따른 포인트 클라우드 데이터 디코더, 포인트 클라우드 디코더, 포인트 클라우드 복호화기 등으로 호칭될 수 있다.
실시예들에 따른 포인트 클라우드 데이터의 지오메트리 비트스트림은 기하정보 비트스트림으로, 실시예들에 따른 포인트 클라우드 데이터의 어트리뷰트 비트스트림은 속성 비트스트림으로 호칭될 수 있다.
도 18은 실시예들에 따른 포인트 클라우드 인코더를 나타낸다.
실시예들에 따른 포인트 클라우드 인코더는 포인트 클라우드 데이터(PCC 데이터)를 수신하여 이들을 인코딩한다. 실시예들에 따른 포인트 클라우드 인코더는 기하정보 비트스트림 및 속성 정보 비트스트림을 출력한다. 실시예들에 따른 포인트 클라우드 인코더는 공간 분할부(18001), 기하정보 부호화부(18002) 및/또는 속성정보 부호화부(18003)를 포함할 수 있다.
공간 분할부(18000)는 포인트 클라우드 인코더는 포인트 클라우드 데이터(PCC 데이터)를 수신하고, 포인트 클라우드 데이터를 하나 또는 그 이상의 3차원 공간으로 분할할 수 있다. 공간분할부(18001)는 포인트 클라우드 데이터를 수신하고, 포인트 클라우드 데이터를 3차원 블록으로 공간분할할 수 있다. 포인트 클라우드 데이터는 포인트(또는 포인트들)의 기하 정보 및/또는 속성 정보를 포함할 수 있다. 공간분할부는 바운딩 박스(bounding box) 및/또는 서브 바운딩 박스 등에 기반하여 포인트 클라우드 데이터(PCC 데이터)를 공간 분할할 수 있다.
실시예들에 따른 바운딩 박스는 포인트 클라우드 데이터 또는 포인트들이 분포된 3D공간을 분할하는 육면체 단위를 나타낸다. 또한, 실시예들에 따른 서브 바운딩 박스란, 바운딩 박스를 분할한 단위를 의미한다.
실시예들에 따른 방법/장치는 분할된 단위(박스)에 기반하여 인코딩/디코딩을 수행할 수 있다.
실시예들에 따르면, 기하 정보는 지오메트리 정보로 호칭될 수도 있다. 실시예들에 따르면 속성 정보는 어트리뷰트 정보로 호칭될 수도 있다.
공간 분할부(18000)는 도 1의 클라우드 에퀴지션(Point Cloud Acquisition, 10001), 도 2의 획득(20000) 동작, 도 3 내지 도 5에 따른 동작, 도 12의 데이터 입력부(12000) 동작의 일부/전부를 수행할 수 있다.
기하정보 부호화부(18001)는 실시예들에 따른 포인트 클라우드 데이터(PCC 데이터)의 지오메트리 정보를 수신하여 이들을 부호화한다. 지오메트리 정보는 포인트 클라우드 데이터에 포함된 포인트들의 위치 정보를 의미할 수 있다. 기하정보 부호화부(18001)는 지오메트리 정보를 부호화하여 기하정보 비트스트림을 출력한다. 기하정보 부호화부(18001)는 포인트들의 위치 정보를 재구성하여 복원된 기하정보를 출력할 수 있다. 기하정보 부호화부(18001)는 복원된 기하정보를 속성정보 부호화부(18001)로 전달할 수 있다.
기하정보 부호화부(18001)는 도 1의 포인트 클라우드 비디오 인코더(Point Cloud Video Encoder, 10002), 도 2의 인코딩(20001), 도 4의 좌표계 변환부(40000), 양자화(40001), 옥트리 분석부(40002), 서페이스 어프록시메이션 분석부(40003), 아리스메틱 인코더(40004), 지오메트리 리컨스럭션부(40005), 도 12의 양자화 처리부(12001), 복셀화 처리부(12002), 옥트리 오큐펀시 코드 생성부(12003), 표면 모델 처리부(12004), 인트라/인터 코딩 처리부(12005) 및/또는 아리스메틱 코더(12006)의 동작의 일부/전부를 수행할 수 있다.
속성정보 부호화부(18002)는 실시예들에 따른 포인트 클라우드 데이터의 속성 정보를 수신하고, 기하정보 부호화부(18001)로부터 수신한 복원된 기하정보를 이용하여 속성 정보를 부호화할 수 있다. 속성정보 부호화부(18002)는 속성 정보를 부호화하여 속성 정보 비트스트림을 출력한다. 속성정보 부호화부(18002)는 예를 들어, 실시예들에 따른 예측 변환(prediction transform), 리프팅 변환(lifting transform) 및/또는 RAHT(Region Adaptive Hierarchical Transform) 변환을 수행할 수 있다. 속성정보 부호화부(18002)는 예를 들어, 프리딕션 리프팅(prediction lifting, 또는 예측 리프팅) 변환을 수행할 수 있다. 프리딕션 리프팅 변환은 실시예들에 따른 예측 변환 및/또는 리프팅 변환의 각 세부 동작들의 일부 또는 전부를 조합한 것을 의미할 수 있다.
실시예들에 따른 포인트 클라우드 인코더는 실시예들에 따른 예측 변환(prediction transform), 리프팅 변환(lifting transform) 및/또는 RAHT(Region Adaptive Hierarchical Transform) 변환의 일부, 전부 및/또는 각각의 조합으로 인코딩을 수행할 수 있다.
속성정보 부호화부(18002)는 도 1의 포인트 클라우드 비디오 인코더(10002), 도 2의 인코딩(20001), 도 4의 컬러 변환부(40006), 속성 변환부(40007), RATH 변환부(40008), LOD생성부(40009), Lifting 변환부(40010), 계수 양자화부(40011) 및/또는 아리스메틱 인코딩부(40012)의 동작, 도 12의 색상 변환 처리부(12008), 속성 변환 처리부(12009), 예측/리프팅/RAHT 변환 처리부(12010), 아리스매틱 코더(12011)의 동작 전부/일부를 수행할 수 있다.
여기서, 복원된 기하정보는 도 4에서 설명한 지오메트리 리컨스럭션부(Reconstruct Geometry, 40005)에 의해 재구성된 옥트리 및/또는 근사화된 옥트리를 의미할 수 있다. 복원된 기하정보는 도 6에서 설명한 오큐펀시 코드를 의미할 수 있고, 또는 옥트리 구조를 의미할 수도 있다. 복원된 기하정보는 도 12에서 설명한 옥트리 오큐펀시 코드 생성부(12003)에 의해 성성된 옥트리 오큐펀시 코드를 의미할 수도 있다.
속성정보 부호화부(18002)는, 실시예들에 따른 포인트 클라우드 데이터의 속성 정보를 인코딩할 수 있다. 여기서, 실시예들에 따른 부호화부(18002)는 실시예들에 따른 복원된 기하정보(또는 복원된 지오메트리 정보)를 이용하여 속성 정보를 부호화할 수 있다. 속성정보 부호화부(18002)은 수신된 데이터를 인코딩하여 어트리뷰트 정보(또는 속성 정보)를 포함하는 비트스트림을 생성할 수 있다.
실시예들에 따르면, 포인트 클라우드 데이터 전송 장치는 geometry-based point cloud compression(G-PCC)기반의 압축 방법으로 point cloud 데이터를 압축할 때 attribute 정보에 대해 새로운 변환 유형을 적용하여 부호화할 수 있다. 실시예들에 따르면, G-PCC는 geometry 정보 압축과 attribute 정보 압축으로 나뉠 수 있다. 실시예들에 따르면, attribute 정보 압축시 공간 상에 분산되어 있는 데이터를 부호화하기 위해 Region-Adaptive Haar (or hierarchical) Transform (RAHT) 을 이용할 수 있다. 하지만, 해당 방법이 적용되어 생성된 coefficient들은 가능한 정확히 부호화되어야 하고, 만약 특정 coefficient가 정확히 부호화되지 않을 경우, 복원된 point cloud 데이터의 전체 영역에 대해서 열화가 발생할 수 있다.
실시예들에 따른 기하정보(지오메트리 정보)는 각 포인트(PCC 데이터의 포인트들의 각 포인트)의 위치 정보를 포함할 수 있다. 예를 들어, 실시예들에 따른 기하정보는 각 포인트의 위치 정보에 대하여, 2차원 직교 좌표계의 (x, y) 또는 원통 좌표계의 (
Figure PCTKR2020003322-appb-img-000018
,
Figure PCTKR2020003322-appb-img-000019
) 또는 3차원 공간에서의 직교 좌표계의 (x, y, z) 또는 원통 좌표계의 (
Figure PCTKR2020003322-appb-img-000020
,
Figure PCTKR2020003322-appb-img-000021
, z) 또는 구면 좌표계의 (
Figure PCTKR2020003322-appb-img-000022
,
Figure PCTKR2020003322-appb-img-000023
,
Figure PCTKR2020003322-appb-img-000024
) 좌표 벡터로 표현될 수 있다.
실시예들에 따른 속성정보(어트리뷰트 정보)는 포인트(포인트 클라우드 데이터의 포인트들의 각 포인트)의 색을 나타내는 벡터(예를 들어, (R,G,B) 정보), 밝기 값(또는 루미넌스 값), 라이다의 반사계수 및/또는 하나 또는 다수개의 센서로부터 획득한 값의 벡터(예를 들어, 열화상 카메라로부터 얻은 온도 값 등)일 수 있다.
실시예들에 따른 공간 분할부(18000)는 입력된 포인트 클라우드 데이터를 적어도 하나의 3차원 블록으로 분할할 수 있다. 이때, 블록은 타일 그룹(Tile Group) 또는 타일(Tile) 또는 슬라이스(Slice) 또는 부호화 단위(CU), 예측 단위(PU) 또는 변환 단위(TU)를 의미할 수 있다. 실시예들에 따른 공간 분할부(18000)는 임의의 가로 세로 높이의 블록단위로 포인트 클라우드 데이터를 분할할 수 있다. 실시예들에 따른 공간 분할부(18000)는 블록의 다양한 위치 및 크기를 선택적으로 결정하여 포인트 클라우드 데이터를 분할할 수 있다. 분할은 옥트리(Octree), 쿼드 트리(Quadtree), 바이너리 트리(Biniary tree), 트리플 트리(Triple tree), k-d 트리 중 적어도 하나에 기반하여 수행될 수 있다.
실시예들에 따른 포인트 클라우드 데이터 전송 방법은, 기하 정보 부호화부 및/또는 속성 정보 부호화부의 구성으로 인해 포인트 클라우드 데이터를 효율적이고 신속하게 부호화할 수 있고, 적은 양의 데이터와 연산 과정으로도 사용자에게 실제와 같은 가상현실 환경을 제공할 수 있다.
도 19는 실시예들에 따른 포인트 클라우드의 속성 정보 부호화기를 나타낸다.
도 19의 포인트 클라우드 속성 정보 부호화기는 실시예들에 따른 포인트 클라우드 인코더에 포함될 수 있다. 예를 들어, 도 19의 포인트 클라우드 속성 정보 부호화기는 도 18의 속성정보 부호화부(18002)를 의미할 수 있다.
실시예들에 따른 포인트 클라우드의 속성 정보 부호화기는 속성특성 변환부(19000), 기하정보 맵핑부(19001), 잔차속성정보 변환부(19002), 잔차속성정보 양자화부(19003), 잔차속성정보 역양자화부(19004), 잔차속성정보 역변환부(19005), 필터링부(19006), 메모리(19007), 속성정보 예측부(19008) 및/또는 속성정보 엔트로피 부호화부(19009)를 포함할 수 있다.
속성특성 변환부(19000)는, 실시예들에 따른 속성 정보를 속성 특성에 따라 변환한다. 예를 들어, 해당 속성 정보가 색공간을 나타낸다면 속성특성 변환부(19000)는, 속성 정보의 색공간을 변환할 수 있다. 속성특성 변환부(19000)는 도 1의 포인트 클라우드 비디오 인코더(10002), 도 2의 인코딩(20001), 도 4의 트랜스폼 코오디네이츠(40000) 및/또는 퀀타이즈 및 포인트들의 제거(복셀라이즈, 40001)의 동작, 도 12의 양자화 처리부(12001), 복셀화 처리부(12002) 등의 동작 일부/전부를 수행할 수 있다.
기하정보 맵핑부(19001)는 속성특성 변환부(19000)에 의해 변환된 속성 정보를 복원된 기하정보와 맵핑한다. 복원된 기하정보는 도 18의 기하정보 부호화부(18001)에 의해 재구성된 기하정보를 의미할 수 있다. 복원된 기하 정보는 도 4의 지오메트리 재구성부(40005)에 의해 생성된 재구성된 기하정보(예를 들어, 옥트리 및/또는 근사화된 옥트리)일 수 있다. 복원된 기하 정보는 도 12에서 도시한 재구성된 위치값일 수 있다. 기하정보 맵핑부는 복원된 기하정보, 속성특성 변환부에 의해 생성된 변환된 속성 정보 및/또는 기하정보 맵핑 동작과 관련된 정보를 출력할 수 있다. 기하정보 맵핑부(19001)는 도 1에서 설명한 포인트 클라우드 비디오 인코더(Point Cloud Video Encoder, 10002), 도 2의 인코딩(20001), 도 4의 지오메트리 재구성(40000) 및/또는 옥트리 분석(Analyze octree, 40002) 등의 동작 일부/전부를 수행할 수 있다.
기하정보 맵핑부(19001)는 속성정보 변환부로부터 입력 받은 속성 정보와 입력 받은 복원된 기하정보를 맵핑을 수행하여 속성 정보를 재구성할 수 있다. 실시예들에 따르면, 속성정보 재구성은 복원된 기하정보를 기준으로 하나 또는 다수개의 포인트의 속성정보를 기초로 속성 값을 유도하는 것을 의미할 수 있다. 실시예들에 따른 재구성된 속성정보는 속성정보 예측부에서 생성된 예측된 속성정보와 차분하여 잔차속성정보 변환부로 입력될 수 있다.
잔차속성정보 변환부(19002), 잔차속성정보 양자화부(19003), 잔차속성정보 역양자화부(19004), 잔차속성정보 역변환부(19005), 필터링부(19006), 메모리(19007), 속성정보 예측부(19008) 및/또는 속성정보 엔트로피 부호화부(19009)는 각각 예를 들어, 도 1의 포인트 클라우드 비디오 인코더(10002), 도 2의 인코딩(20001), 도 4에서 도시한 동작들 또는 블록들의 동작 일부/전부를 수행할 수 있다.
잔차속성정보 변환부(19002)는 기하정보 맵핑부에 의해 생성된 데이터와 속성정보 예측부에 의해 생성된 예측 속성정보를 차분함으로써 생성된 잔차 정보를 수신할 수 있다. 즉 잔차속성정보 변환부가 수신하는 정보는, 실시예들에 따른 포인트들의 속성 정보와 해당 포인트의 예측 속성정보를 차분함으로써 생성되는 잔차 정보일 수 있다.
잔차속성정보 변환부(19002)는 실시예들에 따른 포인트 클라우드 데이터의 잔차속성정보를 포함한 잔차 3차원 블록을 DCT, DST, DST, SA-DCT, RAHT 등과 같은 변환 타입에 따라 변환할 수 있다. 실시예들에 따른 변환된 잔차속성정보는 잔차속성정보 양자화부로 입력될 수 있다. 실시예들에 따르면, 포인트 클라우드 데이터 송신 장치는 잔차속성정보를 변환하지 않고 잔차속성정보 양자화부로 잔차속성정보를 전송할 수 있다. 실시예들에 따르면, 포인트 클라우드 데이터 송신 장치는 엔트로피 부호화부에서 엔트로피 부호화를 수행하여 포인트 클라욷 데이터 수신 장치로 전송할 수 있다.
잔차속성정보 양자화부(19003)는, 잔차속성정보 변환부에 의해 변환된 잔차 정보를 양자화할 수 있다. 잔차속성정보 양자화부(19003)는 변환된 잔차 정보를 속성정보 엔트로피 부호화부(19009)와 잔차속성 역양자화부(19004)에 전송할 수 있다. 잔차속성정보 양자화부(19003)는 실시예들에 따른 변환된 잔차속성정보를 양자화 값(양자화 정보)에 기초하여 변환양자화된 잔차속성정보를 생성할 수 있다.
잔차속성정보 역양자화부(19004)는, 잔차속성정보 양자화부에 의해 양자화된 잔차 정보를 다시 역양자화할 수 있다. 역양자화는 상술한 양자화의 역과정일 수 있다. 잔차속성 역양자화부(19004)는 입력받은 변환양자화된 잔차속성정보를 수신하여 양자화 값을 기초로 변환 잔차속성정보를 생성한다. 생성된 변환 잔차속성정보는 잔차속성 역변환부로 입력될 수 있다.
잔차속성정보 역변환부(19005)는, 잔차속성정보 역양자화부에 의해 역양자화된 잔차 정보를 다시 역변환할 수 있다. 역변환은 상술한 잔차속성정보 변환부의 역과정을 수행할 수 있다. 예를 들어, 잔차 정보를 변환하는 동작은 DCT, DST, DST, SA-DCT, RAHT 등과 같은 변환 방법의 역과정에 따라 변환될 수 있다. 역변환된 잔차속성 정보는 예를 들어, 속성정보 예측부로 부터 입력받은 예측 속성정보와 합 연산에 기초하여 복원된 속성정보를 생성할 수 있다. 실시예들에 따르면, 포인트 클라우드 데이터 송신 장치는 실시예들에 따른 역변환를 하지 않고 바로 예측 속성정보와 합하여 복원된 속성정보를 생성할 수도 있다.
필터링부(19006), 속성정보 예측부로부터 입력 받은 예측 속성정보와 역변환된 잔차속성 정보를 합하여 복원된 속성정보를 수신할 수 있다. 필터링부는 복원된 속성정보를 수신하여 필터링을 수행할 수 있다. 필터링부는 디블록킹 필터, 오프셋 보정부, ALF(Adaptive Loop Filter) 등을 포함할 수 있다.
메모리(19007)는, 필터링부를 통해 산출된 속성정보를 저장할 수 있다. 저장된 속성정보는 예측을 수행 시 속성정보 예측부에 제공될 수 있다.
속성정보 예측부(19008)는, 실시예들에 따른 포인트들의 속성 정보를 예측한다. 속성 정보 예측부는 메모리에 저장된 속성 정보를 이용하여 하나 또는 그 이상의 포인트들의 속성 정보를 예측한다. 속성 정보 예측부는 예측 속성정보를 출력한다. 속성 정보 예측부가 출력한 예측 속성정보는 기하정보 맵핑부가 출력한 속성 정보로부터 잔차 속성정보를 생성하기 위해 사용될 수 있다. 또한, 예측 속성정보는 잔차속성정보 역변환부에 의해 역변환된 잔차속성정보와 합 연산 등을 통해 필터링부에 입력되는 정보를 생성할 수 있다. 속성정보 예측부(19008)는 메모리의 포인트들의 속성정보를 기초로 예측 속성정보를 생성한다. 예측 정보는 엔트로피 부호화를 수행하여 예측 정보를 부호화 할 수 있다.
속성정보 엔트로피 부호화부(19009)는, 잔차속성정보 양자화부에 의해 양자화된 잔차속성정보를 부호화할 수 있다. 속성정보 엔트로피 부호화부(19009)는 실시예들에 따른 변환양자화된 잔차속성정보를 엔트로피 부호화할 수 있다. 실시예들에 따른 엔트로피 부호화는 예를 들어, 지수 골롬(Exponential Golomb), CAVLC(Context-Adaptive Variable Length Coding), CABAC(Context-Adaptive Binary Arithmetic Coding)과 같은 부호화 방법에 기초하여 부호화를 수행할 수 있다.
실시예들에 따르면, 포인트 클라우드 데이터를 인코딩하는 단계는, 포인트 클라우드 데이터를 인코딩하는 단계는, 포인트 클라우드 데이터의 지오메트리 정보를 인코딩하는 단계 및/또는 복원된 지오메트리 정보에 기초하여 포인트 클라우드 데이터의 어트리뷰트 정보를 인코딩하는 단계를 포함할 수 있다. 실시예들에 따르면, 어트리뷰트 정보를 인코딩하는 단계는, 포인트 클라우드 데이터의 어트리뷰트 정보 및 복원된 지오메트리 정보를 맵핑하는 단계, 맵핑된 어트리뷰트 정보를 포함하는 3차원 블록을 변환하는 단계 및 변환된 어트리뷰트 정보를 양자화하는 단계를 포함할 수 있다. 실시예들에 따른 3차원 블록을 변환하는 단계는, 맵핑된 어트리뷰트 정보 및 예측 어트리뷰트 정보를 차분하여 생성된 잔차 어트리뷰트 정보를 변환할 수 있고, 양자화하는 단계는 변환된 잔차 어트리뷰트 정보를 양자화할 수 있고, 실시예들에 따른 포인트 클라우드 데이터 송신 장치가 전송하는 비트스트림은 예측 어트리뷰트 정보와 관련된 예측 방식을 나타내는 정보를 포함할 수 있다.
실시예들에 따른 포인트 클라우드 데이터 전송 방법은, 도 19에 따른 기하 정보(지오메트리 정보) 부호화부 및/또는 속성 정보(어트리뷰트 정보) 부호화부의 구성으로 인해 포인트 클라우드 데이터를 효율적이고 신속하게 부호화할 수 있고, 적은 양의 데이터와 연산 과정으로도 사용자에게 실제와 같은 가상현실 환경을 제공할 수 있다.
도 20은 실시예들에 따른 포인트 클라우드의 속성 정보 부호화기를 나타낸다.
실시예들에 따른 포인트 클라우드의 속성 정보 부호화기는 속성특성 변환부(20000), 기하정보 맵핑부(20001), 속성정보 변환부(20002), 속성정보 양자화부(20003) 및/또는 속성정보 엔트로피 부호화부(20004)를 포함할 수 있다. 도 20에 나타난 포인트 클라우드 속성 정보 부호화기의 각 구성들은 도 18의 속성 정보 부호화부 내에 포함될 수 있다.
속성특성 변환부(20000)는, 실시예들에 따른 속성 정보를 속성 특성에 따라 변환한다. 예를 들어, 해당 속성 정보가 색공간을 나타낸다면 속성특성 변환부(20000)는, 속성 정보의 색공간을 변환할 수 있다. 속성특성 변환부(20000)는 변환된 색상정보를 기하정보 맵핑부로 전송할 수 있다. 실시예들에 따른 포인트 클라우드의 속성 정보 부호화기는 속성특성을 변환하지 않고 속성 정보를 기하정보 맵핑부로 전송할 수 있다.
속성특성 변환부(20000)는 도 1의 포인트 클라우드 비디오 인코더(10002), 도 2의 인코딩(20001), 도 4의 트랜스폼 코오디네이츠(40000) 및/또는 퀀타이즈 및 포인트들의 제거(복셀라이즈, 40001)의 동작, 도 12의 양자화 처리부(12001), 복셀화 처리부(12002) 등의 동작 일부/전부를 수행할 수 있다.
기하정보 맵핑부(20001)는 속성특성 변환부(20000)에 의해 변환된 속성 정보를 복원된 기하정보와 맵핑한다. 복원된 기하정보는 도 18의 기하정보 부호화부(18001)에 의해 재구성된 기하정보를 의미할 수 있다. 복원된 기하(지오메트리) 정보는 도 4의 지오메트리 재구성부(40005)에 의해 생성된 재구성된 기하정보(예를 들어, 옥트리 및/또는 근사화된 옥트리)일 수 있다. 복원된 기하 정보는 도 12에서 도시한 재구성된 위치값일 수 있다.
기하정보 맵핑부(20001)는 속성특성 변환부(20000)로부터 수신한 속성정보와 복원된 기하정보를 맵핑을 수행하여 속성 정보를 재구성한다. 실시예들에 따른 속성정보 재구성은 복원된 기하정보를 기준으로 하나 또는 복수개의 포인트의 속성정보를 기초로 속성 값을 유도하는 것을 의미할 수 있다.
기하정보 맵핑부(20001)는 복원된 기하정보, 속성특성 변환부에 의해 생성된 변환된 속성 정보 및/또는 기하정보 맵핑 동작과 관련된 정보를 출력할 수 있다. 기하정보 맵핑부(20001)는 도 1에서 설명한 포인트 클라우드 비디오 인코더(Point Cloud Video Encoder, 10002), 도 2의 인코딩(20001), 도 4의 지오메트리 재구성(40000) 및/또는 옥트리 분석(Analyze octree, 40002) 등의 동작 일부/전부를 수행할 수 있다.
속성정보 변환부(20002), 속성정보 양자화부(20003) 및/또는 속성정보 엔트로피 부호화부(20004)는 각각 예를 들어, 도 1의 포인트 클라우드 비디오 인코더(10002), 도 2의 인코딩(20001), 도 4의 동작들 또는 블록들 동작의 일부/전부를 수행할 수 있다. 상술한 블록들은 도 14 및 도 15의 포인트 클라우드 인코딩의 동작 일부/전부를 수행할 수 있다.
속성정보 변환부(20002)는 기하정보 맵핑부(20001)에서 출력한 재구성된 속성정보를 포함한 3차원 블록을 DCT, DST, DST, SA-DCT, RAHT 등과 같은 변환 타입에 기초하여 속성 정보를 변환할 수 있다. 실시예들에 따른 변환된 재구성된 속성정보는 속성정보 양자화부(20003)로 전송될 수 있다. 실시예들에 따른 포인트 클라우드 부호화기는 속성정보 변환부(20002)의 동작을 수행하지 않고 재구성된 속성 정보를 속성정보 양자화부(20003)로 전송할 수 있다. 실시예들에 따른 변환 타입은 엔트로피 부호화부에서 엔트로피 부호화를 수행하여 복호화기로 전송 할 수 있다.
실시예들에 따른 속성정보 변환부(20002)의 구체적인 동작은 도20 내지 도23 에서 설명한다.
속성정보 변환부(20002)는, 기하정보 맵핑부에 의해 생성된 데이터에 의해 생성된(또는 출력된) 맵핑된 속성 정보를 수신할 수 있다. 속성정보 변환부는 맵핑된 속성 정보를 수신하고 해당 맵핑된 속성 정보를 변환할 수 있다. 여기서, 맵핑된 속성 정보를 변환하는 동작은 DCT, DST, DST, SA-DCT, RAHT 등과 같은 변환 방법에 따라 변환될 수 있다. 속성정보 변환부는 도 19에서 설명한 잔차속성정보 변환부의 동작을 수행할 수 있다.
속성정보 양자화부(20003)는, 속성정보 변환부에 의해 변환된 속성 정보를 양자화할 수 있다. 속성정보 양자화부는 변환된 속성 정보를 속성정보 엔트로피 부호화부에 전송할 수 있다. 속성정보 양자화부는 도 19에서 설명한 잔차속성정보 양자화부와 동일하거나 유사한 동작을 수행할 수 있다. 속성정보 양자화부(20003)는 실시예들에 따른 변환된 속성정보를 양자화 정보에 기초하여 변환양자화된 속성정보를 생성한다. 변환양자화된 잔차속성정보는 속성정보 엔트로피 부호화부로 입력될 수 있다.
속성정보 엔트로피 부호화부(20004)는, 잔차속성정보 양자화부에 의해 양자화된 잔차속성정보를 부호화할 수 있다. 속성정보 엔트로피 부호화부는 도 19에서 설명한 잔차속성정보 엔트로피 부호화부와 동일하거나 유사한 동작을 수행할 수 있다. 실시예들에 따른 엔트로피 부호화는 예를 들어, 지수 골롬(Exponential Golomb), CAVLC(Context-Adaptive Variable Length Coding), CABAC(Context-Adaptive Binary Arithmetic Coding)과 같은 다양한 부호화 방법에 기초하여 부호화를 수행할 수 있다.
도 20에 따른 속성 정보 부호화기를 도 19에 따른 속성 정보 부호화기와 비교하면, 도 19는 기하정보 맵핑된 속성 정보가 예측된 속성 정보와 차분되어서 생성된 잔차속성 정보를 잔차 속성정보 변환부로 입력될 수 있다. 도 20은 기하정보 맵핑된 속성 정보가 예측을 통한 잔차속성 정보 생성과정 없이 그대로 속성정보변환부로 입력될 수 있다. 도 19와 도 20에 따른 속성 정보 부호화기는 목적에 따라서 하나만 선택적으로 사용될 수도 있으며, 병행 또는 조합하여 사용될 수 있다.
실시예들에 따르면, 포인트 클라우드 데이터를 인코딩하는 단계는, 포인트 클라우드 데이터의 지오메트리 정보를 인코딩하는 단계 및 복원된 지오메트리 정보에 기초하여 획득한 포인트 클라우드 데이터의 속성 정보를 인코딩하는 단계를 포함할 수 있다. 실시예들에 따르면, 속성 정보를 인코딩하는 단계는, 포인트 클라우드 데이터의 속성 정보 및 복원된 지오메트리 정보를 맵핑하는 단계, 맵핑된 속성 정보를 포함하는 3차원 블록을 변환하는 단계 및/또는 변환된 속성 정보를 양자화하는 단계를 포함할 수 있다.
실시예들에 따른 포인트 클라우드 데이터 전송 방법은, 기하 정보 부호화부 및/또는 속성 정보 부호화부의 구성으로 인해 포인트 클라우드 데이터를 효율적이고 신속하게 부호화할 수 있고, 적은 양의 데이터와 연산 과정으로도 사용자에게 실제와 같은 가상현실 환경을 제공할 수 있다.
도 21은 실시예들에 따른 속성 정보 변환부의 예를 나타낸다.
도 21은 실시예들에 따른 속성정보 변환부의 동작 과정을 나타낸다. 도 21은 도 19의 잔차속성정보 변환부(19002)의 구조의 예시를 나타낸다. 실시예들에 따르면, 포인트 클라우드 데이터 송신 장치는 G-PCC의 속성정보를 변환하는데 변환 유형 중 한 가지 방법인 SA-DCT를 실시예들에 따른 속성정보 변환부의 동작을 수행할 수 있다. 여기서 사용된 SA-DCT는 기존 2차원의 개념을 3차원 개념으로 확장하여, 여기서는 3D SA-DCT라고 명명할 수 있다.
도 21은 예를 들어 도 20에서 도시 및 설명한 속성정보 변환부(20002)의 일 예를 나타낸 것일 수 있다. 또는, 실시예들에 따른 속성 정보 변환부는 도 19에서 설명한 잔차속성정보 변환부 및/또는 도 20에서 설명한 속성 정보 변환부(20002)를 의미하거나 이들을 포함 또는 조합한 개념으로 이해할 수 있다.
실시예들에 따른 속성 정보 변환부는 변환 유형 유도부(21000), 변환 여부 선택부(21001) 및/또는 변환 적용부(21002)를 포함할 수 있다. 실시예들에 따른 속성 정보 변환부는 상술한 구성요소의 전부 또는 일부를 포함하거나 이들의 조합으로 구성될 수 있다.
변환 유형 유도부(21000)는, 속성정보(또는 맵핑된 속성 정보)의 변환 유형 또는 잔차 속성정보(또는 맵핑된 잔차 속성 정보)의 변환 유형을 결정할 수 있다. 여기서, 변환 유형은 예를 들어 DCT, DST, SA-DCT, RAHT 변환 방법을 포함할 수 있다. 즉, 변환 유형 유도부는 예를 들어 DCT, DST, SA-DCT, RAHT 변환 중 하나 또는 그 이상을 결정할 수 있다. 변환 유형 유도부(또는 실시예들에 따른 변환부)는 하나 또는 그 이상의 포인트들에 적용될 변환 유형을 나타내는 시그널링 정보를 생성할 수 있다. 실시예들에 따라 변환 유형 유도부는 선택적으로 포함될 수 있다.
변환 유형 유도부(21000)는 실시예들에 따른 변환 유형 중 최소 왜곡(distortion)을 갖도록 하는 변환 유형을 결정할 수 있고, 포인트 클라우드 데이터 송신 장치는 최소 왜곡을 갖도록 하는 변환 유형을 실시예들에 따른 비트스트림으로 시그널링할 수 있다. 포인트 클라우드 데이터 송신 장치는 실시예에 따라 변환 유형을 모든 변환 영역에 동일하게 적용하는 경우에는 변환 유형 유도부를 생략할 수 있다.
변환 여부 선택부(21001)는, 속성정보(또는 맵핑된 속성 정보) 또는 잔차속성정보(또는 맵핑된 잔차 속성 정보)를 변환할지 여부를 결정할 수 있다. 변환 여부 선택부(또는 실시예들에 따른 변환부)는 하나 또는 그 이상의 포인트들에 대하여 변환 여부를 나타내는 시그널링 정보를 생성할 수 있다. 실시예들에 따라 변환 여부 선택부는 선택적으로 포함될 수 있다. 변환 여부 선택부(21001)는 최소 왜곡 (distortion)을 갖도록 하는 변환 적용 여부를 결정하여 비트스트림으로 시그널링할 수 있다. 실시예에 따라 변환 여부 선택부(21001)는 생략될 수 있다.
변환 유형 유도부 및/또는 변환 여부 선택부는 그 순서가 뒤바뀔 수도 있으며, 독립적으로 각각 수행될 수도 있다.
변환 적용부(21002)는, 속성정보(또는 맵핑된 속성 정보) 또는 잔차속성정보(또는 맵핑된 잔차 속성 정보)를 변환할 수 있다. 변환 적용부는 예를 들어, DST, DST, SA-DCT, RAHT 등과 같은 변환 타입에 기초하여 속성 정보 또는 잔차속성정보를 변환할 수 있다. 변환 적용부는 변환 유형 유도부에서 결정된 변환 유형에 기초하여 속성 정보 또는 잔차속성정보를 변환할 수 있다. 변환 적용부는 변환 여부 선택부에 의해 결정된 변환 여부에 따라 속성 정보 또는 잔차속성정보를 변환할 수 있다. 변환 적용부는 예를 들어, 후술할 3-D SA-DCT (또는 3D SA-DCT)등과 같은 변환 타입에 기초하여 속성 정보 또는 잔차속성정보를 변환할 수 있다. 변환 적용부(21002)는 도 22 및/또는 도 23에서 설명한 예에 따른 동작을 수행할 수 있다.
실시예들에 따르면, 3차원 블록을 변환하는 단계는, 변환의 유형을 결정하는 단계, 변환의 여부를 결정하는 단계 및 결정된 변환의 유형 및 결정된 변환의 여부에 기초하여 3차원 블록의 변환을 수행하는 단계를 포함할 수 있다. 여기서, 변환 여부를 결정하는 단계는 변환의 여부를 나타내는 시그널링 정보를 생성할 수 있다. 여기서, 변환 유형은 DCT, DST, SA-DCT 및 RAHT 중 적어도 하나일 수 있다. 변환의 유형을 결정하는 단계는 결정된 변환의 유형을 나타내는 시그널링 정보를 생성할 수 있다.
실시예들에 따른 포인트 클라우드 데이터 전송 방법은, 변환 유형 유도부 및/또는 변환 여부 선택부의 동작으로 인해, 변환 여부 및 변환 유형을 미리 결정하여 시그널링함으로써 PCC 송신 장치의 연산량을 감소시킬 수 있고 송수신 환경에 따라 유연한 인코딩 성능을 제공할 수 있다.
실시예들에 따른 포인트 클라우드 데이터 수신 방법은, 송신 방법의 변환 유형 유도부 및/또는 변환 여부 선택부의 동작으로 인해, 변환 여부 및 변환 유형을 미리 시그널링 받음으로써PCC 수신 장치의 연산량 및 메모리의 부담을 감소시킬 수 있고 송수신 환경에 따라 유연한 복호화 성능을 제공할 수 있다.
도 22는 실시예들에 따른 속성 정보 변환부의 동작의 예를 나타낸다.
도 22에서 설명한 속성 정보 변환부의 동작은 도 21에서 설명한 속성 정보 변환부의 변화 적용부(21002)에서 수행될 수 있다. 즉, 도 22에서 설명한 속성 정보 변환부의 동작은 도 19의 잔차속성정보 변환부 및/또는 도 20의 속성 정보 변환부에서 수행될 수 있다. 따라서, 도 22에서 설명하는 속성 정보 변환부의 동작은 도 19에서와 같이 잔차속성정보에 대하여 적용될 수도 있고, 도 20에서와 같이 입력된 속성 정보에 대하여 적용될 수도 있고, 이들의 조합으로 수행될 수도 있다. 도 22에서 설명한 동작은 실시예들에 따라 SA-DCT 방식의 변환(유사 SA-DCT 방식의 변환), 3-D SA-DCT방식 등으로 호칭될 수도 있다.
실시예들에 따른 SA-DCT (shape-adaptive Discrete Cosine Transform) 알고리즘은 낮은 복잡도와 공통 블록-기반의 하이브리드 DPCM/DCT 코딩 스킴에 대한 확장으로 사용될 수 있다. SA-DCT 방식의 목적은 실재하는 하이브리드 DPCM/DCT 인코딩 표준(예를 들어, JPEG 등)과 함께 높은 공통성 및 보편성을 보장할 수 있다. SA-DCT 방식은 넓은 비트 레이트의 범위에 적용될 수 있는 세그멘팅된 비디오의 인코딩 방법일 수 있다.
SA-DCT알고리즘은 DCT 알고리즘을 포함할 수 있다. DCT 알고리즘은 임의의 모양의 오브젝트(예를 들어, M X M 이미지 블록들)에 대하여 수행될 수 있다. 이미지들은 M X M 펠스(pels)로 서로 인접하여 구분되어 있고, 오브젝트 또는 세그멘트 영역(segment region)을 포함하는 전체 블록들은 M x M DCT 알고리즘을 이용하여 인코딩될 수 있다. 세그멘트된 영역들의 바운더리(boundary)를 포함하는 블록들은 SA-DCT 방법에 의하여 별도로 인코딩될 수 있다. SA-DCT 계수들은 양자화될 수 있다.
도 22는 실시예들에 따른 SA-DCT 변환의 예시를 나타낸 것이다. 실시예들에 따른 SA-DCT 변환은 도 21에서 설명 및 도시한 변환 적용부(21002)에서 수행되는 변환의 일부를 나타낼 수 있다. 실시예들에 따르면 SA-DCT 변환은 도 22의 (A), 도 22의 (B) 및 도 22의 (C) 동작을 포함할 수 있다.
실시예들에 따르면, 상술한 바와 같이 포인트 클라우드 데이터는 3차원 공간을 나타내는 박스 내에 분포할 수 있다. 실시예들에 따르면 3차원 공간은 복수 개의 복셀들로 구분될 수 있다. 즉, 실시예들에 따르면 3차원 공간상에서의 점을 복셀이라 한다. 2-D 영상과 달리 3-D 포인트 클라우드 이미지 / 비디오는 모든 위치에 영상 값이 있지 않고 비어 있는 공간이 있을 수 있다. 3차원 공간상에서 영상 값이 있는 점을 오큐파이드 복셀(occupied voxel, 점유된 복셀)이라 칭한다.
3차원 공간(22000)은 상술한 실시예들에 따른 바운딩 박스를 의미할 수도 있고, 블록을 의미할 수도 있다. 3차원 공간은 PCC 데이터를 포함할 수 있다. 3차원 공간은 도 5 및 도 6에서 설명한 3차원 공간을 의미할 수 있다. 즉, 3차원 공간은 하나 또는 그 이상의 복셀(voxel)을 포함할 수 있다. 여기서 하나 또는 그 이상의 복셀은 점유된 복셀(22000a) 및/또는 빈 복셀(22000b)를 포함할 수 있다.
점유된 복셀(오큐파이드 복셀, 22000a)은 실시예들에 따른 포인트 클라우드 데이터가 포함된 복셀을 의미할 수 있다. 빈 복셀(엠티 복셀, 22000b)은 포인트 클라우드 데이터가 존재하지 않는 복셀을 의미할 수 있다.
도 22의 (A)는 실시예들에 따른 복셀들이 포함된 3차원 바운딩 박스(또는 블록)의 일면 또는 단면을 나타낸 것이다. 3차원 바운딩 박스의 일면 또는 단면은 복수 개의 복셀들을 포함하고, 복수 개의 복셀들은 0개 또는 그 이상의 오큐파이드 복셀 및 0개 또는 그 이상의 빈 복셀을 포함할 수 있다. 이 때, 오큐파이드 복셀은 해당 단면(또는 일면) 내에서 불균일 또는 균일하게 분포할 수 있다.
실시예들에 따른 포인트 클라우드 데이터 전송 장치는 속성 정보 또는 잔차 정보의 효율적인 변환을 위해 3-D SA-DCT방법에 기초하여 변환을 수행할 수 있다. 3-D SA-DCT는 실시예들에 따른 SA-DCT를 x축, y축, z축으로 각각 3번 적용하는 것으로 속성 값을 한쪽 축 방향으로 밀고, 해당 축에 대한 n-points 1-D DCT를 수행한 뒤, 변환의 결과로 얻어진 계수값을 다시 나머지 두 축 방향으로 각각 SA-DCT를 적용하는 것을 의미할 수 있다. 따라서, 실시예들에 따른 3D SA-DCT 방볍에 기초한 변환으로 인해, 최종적으로 변환전의 속성 개수와 동일한 계수들이 얻어진다. 한쪽 축 방향으로 속성 값이나 계수 값을 밀었을 때 변환할 속성 혹은 계수 값이 한 개인 경우 변환을 생략한다.
실시예들에 따른 변환부는, 먼저 해당 일면 또는 단면의 제 1 축 방향으로 오큐파이드 복셀들(또는 빈 복셀들)을 이동시킬 수 있다. 즉, 빈 복셀(공간)을 제 1 축으로 밀 수 있다. 여기서, 제 1 축 방향은 3차원 공간 상의 x축, y축 및/또는 z축 중 어느 하나일 수 있다. 그 후, 해당 제 1 축을 기준으로, 오큐파이드 복셀들 내의 속성 정보들에 대하여 n-point 1차원 DCT를 수행할 수 있다.
예를 들어, 도 22의 (A)에서는 변환부가 오큐파이드 복셀들을 지면으로부터 연직 방향(또는 연직 방향의 반대 방향)으로 이동시키는 동작을 나타낸 것이다. 그 후, 이동된 오큐파이드 복셀들에 대하여 n-points 1차원 DCT 변환을 수행할 수 있다.
도 22의 (B)는 상술한 3차원 바운딩 박스의 일면 또는 단면이 도 22의 (A)의 동작을 수행한 후를 나타낸 것이다. 변환부는 도 22의 (A)에 따른 동작을 수행한 후, 해당 일면 또는 단면의 제 2 축 방향으로 오큐파이드 복셀들(또는 빈 복셀들)을 이동시킬 수 있다. 즉, 빈 복셀(공간)을 제 2 축으로 밀 수 있다. 여기서, 제 2 축 방향은 3차원 공간 상의 x축, y축 및/또는 z축 중 어느 하나로, 제 1 축과 다른 축을 의미할 수 있다. 그 후, 해당 제 2 축을 기준으로, 오큐파이드 복셀들 내의 속성 정보들에 대하여 n-point 1차원 DCT변환을 수행할 수 있다.
실시예들에 따르면, n-point 1차원 DCT 변환은, 특정 축의 특정 값을 갖는 속성 값들에 대하여 각각 DCT 변환을 수행하는 것을 의미할 수 있다. 예를 들어, 변환부는 도 22의 (B)에서 k번째 열에 해당하는 n 개의 속성 값들에 대하여 DCT 변환을 수행할 수 있다. 이를 k열에 대한 DCT-n 변환이라고 호칭할 수 있다.
실시예들에 따르면, 만약 특정 축의 특정 값에 대하여 하나의 오큐파이드 복셀만 포함할 경우, 해당 하나의 오큐파이드 복셀은 특정 축 방향으로 이동시킨 후 수행하는 n-point 1차원 DCT 변환을 생략할 수 있다.
도 22의 (C)는 상술한 3차원 바운딩 박스의 일면 또는 단면이 도 22의 (B)의 동작을 수행한 후를 나타낸 것이다. 변환부는 도 22의 (B)에 따른 동작을 수행한 후, 해당 일면 또는 단면의 제 2 축 방향으로 오큐파이드 복셀들(또는 빈 복셀들)을 이동시킬 수 있다. 즉, 빈 복셀(공간)을 제 3 축으로 밀 수 있다. 여기서, 제 3 축 방향은 3차원 공간 상의 x축, y축 및/또는 z축 중 어느 하나로, 제 1 축 및 제 2 축과 다른 축을 의미할 수 있다. 그 후, 해당 제 3 축을 기준으로, 오큐파이드 복셀들 내의 속성 정보들에 대하여 n-point 1차원 DCT변환을 수행할 수 있다.
실시예들에 따르면, 포인트 클라우드 데이터 전송 장치는 포인트 클라우드 데이터의 속성 정보를 부호화할 때, 속성 정보들에 대해서 Shape Adaptive (SA)-DCT 적용하거나, 속성 정보와 예측된 속성 정보가 차분되어서 발생한 잔차(residual) 정보들에 대해서 SA-DCT를 적용하여 부호화할 수 있다. 실시예들에 따르면, 잔차 정보들 또는 속성 정보들은 SA-DCT방법에 따라 변환될 수 있고, 변환되어 생성된 계수(coefficient)들은 저주파부터 고주파 성분을 포함할 수 있다. 따라서, 고주파 계수에서 양자화 오차가 발생하더라도 복원된 데이터에 큰 발생하지 않기 때문에 기존 RAHT를 이용했을 때 보다 더욱 유연한 방식으로 양자화를 수행할 수 있다.
실시예들에 따르면, 희소(sparse)하게 분포된 속성 정보에 대해서 SA-DCT를 적용하는 경우, RAHT 방법을 적용했을 경우 대비 유연한 양자화를 통해 향상된 성능을 기대할 수 있다. 실시예들에 다른 속성 정보(또는 잔차 정보)에 대해 SA-DCT를 적용할 경우, 실시예들에 따른 포인트 클라우드 인코더의 속성들의 기하학 정보(pixel 혹은 voxel의 위치 정보)도 함께 수신 장치에 전달해야 하지만, 포인트 클라우드 데이터를 G-PCC 기반으로 압축할 경우 포인트 클라우드의 기하정보에 대해서는 별도로 부호화 과정이 수행될 수 있다. 따라서, SA-DCT를 이용하여 속성 정보를 부호화할 경우에는 추가적인 속성들의 기하학 정보를 부호화할 필요없이, 기하정보를 그대로 활용할 수 있다.
실시예들에 따른 포인트 클라우드 데이터 송수신 방법/장치는 3차원 SA-DCT 변환 방법에 기초하여 속성 정보를 변환함으로써, 더욱 robust한 양자화 및 부호화를 수행할 수 있다. 이러한 방법에 따른 변환을 사용함으로써 속성 정보를 변환 시 정확히 변환 계수(coefficient)들을 부호화할 수 있고, 변환 계수(coefficient)가 정확히 부호화되지 않을 경우, 발생할 수 있는 포인트 클라우드 데이터의 전체 영역에 대한 열화를 방지할 수 있다.
실시예들에 따른 포인트 클라우드 데이터 송수신 방법/장치는 3차원 SA-DCT 변환 방법에 기초하여 속성 정보를 변환함으로써, 변환된 변환 계수(coefficient)이 저주파부터 고주파 성분으로 구분될 수 있고, 이 경우 고주파 변환 계수(coefficient)에서 양자화 오차가 발생하더라도 복원된 데이터에의 큰 오차를 방지할 수 있어 더욱 유연한 방식으로 양자화를 수행할 수 있다.
도 23은 실시예들에 따른 속성 정보 변환부가 3D SA-DCT 변환을 적용하는 동작의 예시를 나타낸다.
도 23은 실시예들에 따른 속성 정보 변환부(또는 변환부)의 동작을 나타낸다. 도 23(A), 도 23(B), 도 23(C) 및 도 23(D)는 3차원 공간 내에 존재하는 복셀들의 속성 값(또는 잔차 속성값)들을 3D SA-DCT에 따라 변환하는 것을 나타낸다. 도 23(A), 도 23(B), 도 23(C) 및 도 23(D) 내의 각각의 4 개의 단면은 3차원 공간의 일면 또는 단면을 나타낸다.
도 23에서 설명하는 3D SA-DCT 변환은 도 21에서 설명 및 도시한 변환 적용부, 도 19에서 설명 및 도시한 잔차속성정보 변환부 및/또는 도 20에서 설명 및 도시한 속성정보 변환부에서 수행될 수 있다. 도 23은 4x4x4의 3차원 공간 내 포인트들에 대해서 3D SA-DCT변환 한 예시를 나타낸다. Z축방향도 나머지와 마찬가지로 Z축 방향으로 속성값을 민 뒤, z축방향 N-points 1-D DCT를 진행할 수 있다. 실시예들에 따라 X, Y, Z축의 변환 순서는 바뀔 수 있다. 실시예들에 따르면, 도 19와 도 20은 부호화의 다양성을 위해 부화화 과정을 나눠서 도시하였지만, 실시예들에 따른 변환부는 상술한 특정 부호화 과정에 의존하지 않을 수 있다. 속성정보 변환부 및 변환 적용부 단계에서는 도 19에서 예측 과정을 통해 생성된 잔차속성정보 및 도 20의 기하정보 맵핑을 통해서 생성된 속성정보들에 대해서 수행될 수 있다.
도 23(A)는 실시예들에 따른 변환 전 속성 정보(또는 변환 전 잔차 속성정보)를 포함하는 3차원 공간의 단면들을 나타낸다. 3차원 공간(23000)은 바운딩 박스일 수도 있고 블록일 수도 있다. 3차원 공간은 하나 또는 그 이상의 복셀들을 포함할 수 있다. 복셀은 오큐파이드 복셀(23000a) 및 엠티 복셀(23000b)를 포함할 수 있다. 오큐파이드 복셀은 도 22에서 설명한 점유된 복셀을 의미할 수 있다. 엠티 복셀은 도 22에서 설명한 빈 복셀을 의미할 수 있다. 오큐파이드 복셀은 3차원 공간 내에서 균일하게 또는 불균일하게 분포할 수 있다.
도 23(B)는 실시예들에 따른 변환부가 3차원 공간 내 속성 정보들을 포함하는 오큐파이드 복셀들을 x축 방향에 대하여 이동시킨 후(민 후), 해당 x축 방향으로 n-points 1차원 DCT 변환을 수행한 것이다. 즉, 변환부는 오큐파이드 복셀을 x축 방향으로 오큐파이드 복셀들을 이동시킨 후, 해당 속성 정보들에 대하여 DCT 변환을 수행한다.
도 23(C)는 y축 방향에 대하여 n-points 1차원 DCT 변환을 수행한 후, 실시예들에 따른 변환부가 3차원 공간 내 속성 정보들을 포함하는 오큐파이드 복셀들을 y축 방향에 대하여 이동시킨 후(민 후), 해당 y축 방향으로 n-points 1차원 DCT 변환을 수행한 것이다. 즉, 변환부는 오큐파이드 복셀을 y축 방향으로 오큐파이드 복셀들을 이동시킨 후, 해당 속성 정보들에 대하여 DCT 변환을 수행한다.
도 23(D)는 실시예들에 따른 변환부가 3차원 공간 내 속성 정보들을 포함하는 오큐파이드 복셀들을 z축 방향에 대하여 이동시킨 후(민 후), 해당 z축 방향으로 n-points 1차원 DCT 변환을 수행한 것이다. 즉, 변환부는 오큐파이드 복셀을 z측 방향으로 오큐파이드 복셀들을 이동시킨 후, 해당 속성 정보들에 대하여 DCT 변환을 수행한다.
실시예들에 따른 포인트 클라우드 데이터 송수신 방법/장치는 3차원 SA-DCT 변환 방법에 기초하여 속성 정보를 변환함으로써, 더욱 robust한 양자화 및 부호화를 수행할 수 있다. 이러한 방법에 따른 변환을 사용함으로써 속성 정보를 변환 시 정확히 변환 계수(coefficient)들을 부호화할 수 있고, 변환 계수(coefficient)가 정확히 부호화되지 않을 경우, 발생할 수 있는 포인트 클라우드 데이터의 전체 영역에 대한 열화를 방지할 수 있다.
실시예들에 따른 포인트 클라우드 데이터 송수신 방법/장치는 3차원 SA-DCT 변환 방법에 기초하여 속성 정보를 변환함으로써, 변환된 변환 계수(coefficient)이 저주파부터 고주파 성분으로 구분될 수 있고, 이 경우 고주파 변환 계수(coefficient)에서 양자화 오차가 발생하더라도 복원된 데이터에의 큰 오차를 방지할 수 있어 더욱 유연한 방식으로 양자화를 수행할 수 있다.
도 24는 실시예들에 따른 속성 정보 변환부가 듀플리케이티드 포인트들(duplicated points)을 포함하는 복셀을 포함하는 3차원 공간에 대하여 3D SA-DCT 변환을 적용하는 동작의 예시를 나타낸다.
도 24는 복수-포인트들(duplicated points)이 포함된 복셀이 실시예들에 따른 3차원 공간에 존재하는 경우, 실시예들에 따른 속성 정보 변환부(또는 잔차 속성 정보 변환부)가 해당 3차원 공간의 속성 정보에 대하여 3D SA-DCT 변환을 수행하는 것을 나타낸 것이다. 도 24는 복수-포인트들에 대해서 3D SA-DCT를 적용하는 방안에 대한 예시를 나타낸다. 복수-포인트(또는 듀플리케이티드 포인트)란, 하나의 복셀에 2개 이상의 점이 있어 각각의 속성값을 갖는 경우를 의미할 수 있다. 복수-포인트들인 경우, 여러 개의 속성 값을 평균하여 하나의 속성값으로 매칭한 후 3D SA-DCT를 수행하거나, 위의 예와 같이 여러 속성값들을 순서에 맞게 나열한 뒤 변환할 수 있다.
도 24에서 설명하는 동작은 도 21에서 설명 및 도시한 변환 적용부, 도 19에서 설명 및 도시한 잔차속성정보 변환부 및/또는 도 20에서 설명 및 도시한 속성정보 변환부에서 수행될 수 있다. 도 24에서 설명하는 동작은 도 22 내지 도 23에서 설명한 3D SA-DCT 변환의 일부 동작을 의미할 수 있다.
실시예들에 따른 속성 정보 변환부 (또는 잔차 속성 정보 변환부)는 도 24(A)에서 도시된 바와 같이 복수-포인트들(듀플리케이티드 포인트들)를 포함하는 복셀을 포함할 수 있다.
듀플리케이티드 포인트들이란, 적어도 두 개의 속성 정보(또는 포인트)를 의미한다. 즉, 듀플리케이티드 포인트들을 포함하는 복셀이란, 하나의 복셀 내에 적어도 두 개의 포인트들(또는 적어도 두 개의 속성 정보)를 가지는 복셀을 의미한다. 듀플리케이티드 포인트들은, 예를 들어 하나의 복셀에 2개의 포인트들(또는 속성 정보)가 포함된 복셀(즉, 2개의 듀플리케이티드 포인트들, 24002), 하나의 복셀에 3개의 포인트들(또는 속성 정보)이 포함된 복셀(즉, 3개의 듀플리케이티드 포인트들, 24001)이 있을 수 있다.
실시예들에 따른 3차원 공간(24000)은 실시예들에 따른 변환 적용부(속성 정보 변환부, 잔차 속성 정보 변환부 등)가 변환을 수행하는 대상으로, 하나 또는 그 이상의 포인트들이 포함된 공간을 의미한다. 3차원 공간은 도 22 내지 도 23에서 설명한 실시예들에 따른 3차원 공간을 의미할 수 있다.
도 24의 (A)는 3차원 공간의 일면 또는 단면의 복셀들을 나타낸다. 3차원 공간(24000)은 하나 또는 그 이상의 복셀들을 포함한다. 하나 또는 그 이상의 복셀들은 0개 또는 그 이상의 오큐파이드 복셀(24000a) 및/또는 0개 또는 그 이상의 빈 복셀(24000b)를 포함한다. 오큐파이드 복셀은 예를 들어, 도 22 내지 도 23에서 설명한 오큐파이드 복셀을 의미할 수 있다. 여기서, 오큐파이드 복셀은 해당 복셀에 2개 이상의 속성 정보를 갖는 복셀을 의미할 수도 있다. 이를 듀플리케이티드 포인트들을 포함하는 복셀이라고 호칭할 수 있다. 즉, 3차원 공간은 2개의 속성 정보를 갖는(즉, 3개의 포인트들에 대한 속성 정보) 복셀(24001)을 포함할 수 있다. 또한, 3차원 공간은 3개의 속성 정보를 갖는(즉, 2개의 포인트들에 대한 속성 정보) 복셀(24002)을 포함할 수 있다.
도 24의 (B)는 듀플리케이티드 포인트들을 포함하는 복셀을 포함하는 3차원 공간의 속성 정보들을 특정 축에 대하여 n-points 1차원 DCT 변환을 수행하는 과정의 예시를 나타낸다. 실시예들에 따르면, 듀플리케이티드 포인트들을 포함하는 복셀의 복수의 속성 정보는 다른 빈 복셀로 매핑할 수 있다. 예를 들어, 도 24의 (B)에서 도시된 바와 같이, 3개의 듀플리케이티드 포인트들을 포함하는 복셀(24001)은 해당 복셀과 두 빈 복셀(24011)로 속성 정보를 배열할 수 있다.
여기서, 해당 복셀과 두 빈 복셀(24001)은 예를 들어, 듀플리케이티드 포인트들을 포함하는 복셀 내의 속성 정보의 순서에 맞게 속성 정보들을 포함할 수 있다. 또는 해당 복셀과 두 빈 복셀(24001)은 예를 들어, 복수의 포인트들을 평균하여 산출된 속성 정보를 각 복셀들에게 배당할 수 있다.
마찬가지로, 2개의 듀플리케이티드 포인트들을 포함하는 복셀(24002)는 특정 축에 대하여 n-points 1-D DCT 변환을 수행하는 경우, 해당 복셀과 해당 축과 연관된 하나의 빈 복셀(또는 인접하는 복셀, 24012)에 속성 정보를 분배할 수 있다. 또는 해당 복셀과 하나의 빈 복셀(24012)은 예를 들어, 복수의 포인트들을 평균하여 산출된 속성 정보를 각 복셀들에게 배당할 수 있다.
실시예들에 따르면, 복수-포인트들의 속성값을 모두 사용하여 변환한 경우 실시예들에 따른 포인트 클라우드 데이터 수신 장치에서는 복수-포인트들의 모든 속성값들을 포함한 3D SA-DCT 계수를 역변환할 수 있다. 역변환시 미리 복호화된 기하정보(오큐펀시 맵 등)와 복수-포인트들라는 정보에 기초하여 역변환 후 복수-포인트들에 속성정보를 할당할 수 있다.
실시예들에 따르면, 3차원 블록을 변환하는 단계는, 3차원 블록의 데이터들을 제 1 축에 대하여 변환하는 단계, 제 1 축에 대하여 변환이 수행되어 생성된 계수 정보를 제 2 축에 대하여 변환하는 단계 및/또는 제 2 축에 대하여 변환이 수행되어 생성된 계수 정보를 제 3 축에 대하여 변환하는 단계를 포함할 수 있다. 실시예들에 따르면, 제 1 축 내지 제 3 축에 대하여 변환하는 단계는 DCT 알고리즘에 기초할 수 있다. 실시예들에 따르면, 3차원 블록 내에 포함된 복셀이 복수의 맵핑된 속성 정보를 포함하는 경우, 3차원 블록의 제 1 축 내지 제 3 축에 대하여 DCT 변환하는 단계는, 복수의 맵핑된 속성 정보의 평균 속성 정보를 복셀에 매칭하거나, 복수의 맵핑된 속성 정보 각각을 복수의 복셀에 매칭할 수 있다.
이상 상술한 도22내지 도24에 도시된 실시예들에 따른 포인트 클라우드 데이터 송수신 방법/장치는 3차원 SA-DCT 변환 방법에 기초하여 속성 정보를 변환함으로써, 더욱 robust한 양자화 및 부호화를 수행할 수 있다. 이러한 방법에 따른 변환을 사용함으로써 속성 정보를 변환 시 정확히 변환 계수(coefficient)들을 부호화할 수 있고, 변환 계수(coefficient)가 정확히 부호화되지 않을 경우, 발생할 수 있는 포인트 클라우드 데이터의 전체 영역에 대한 열화를 방지할 수 있다. 따라서, 실시예들에 따른 포인트 클라우드 데이터 송신 장치는, 속성 정보 변환 시 정확한 변환 계수가 생성되기 어려운 데이터(예를 들어, 카테고리 3과 같이 포인트들의 속성 정보가 희소하게 분호되어 있는 데이터)에 대하여 데이터의 손실을 방지할 수 있다. 따라서 실시예들에 따른 포인트 클라우드 데이터 수신 장치는, 카테고리 3과 같은 포인트들의 속성 정보가 희소하게 분포되어 있는 데이터에 대하여 오류 없이 복호화를 수행할 수 있다. 따라서 실시예들에 따른 포인트 클라우드 데이터 수신 장치는, 포인트들이 희소하게 분포하거나 포인트들이 특정 지역에만 밀하게 분포되어 있는 포인트 클라우드 데이터(예를 들어, 자율주행과 관련된 포인트 클라우드 데이터 등)를 정확하게 사용자에게 제공할 수 있다.
실시예들에 따른 포인트 클라우드 데이터 송수신 방법/장치는 3차원 SA-DCT 변환 방법에 기초하여 속성 정보를 변환함으로써, 변환된 변환 계수(coefficient)이 저주파부터 고주파 성분으로 구분될 수 있고, 이 경우 고주파 변환 계수(coefficient)에서 양자화 오차가 발생하더라도 복원된 데이터에의 큰 오차를 방지할 수 있어 더욱 유연한 방식으로 양자화/변환을 수행할 수 있다. 따라서, 실시예들에 따른 포인트 클라우드 데이터 수신 장치는, SA-DCT 변환 방법에 기초하여 변환된 속성 정보를 역변환함으로써 유연한 방식으로 양자화를 역변환할 수 있다.
실시예들에 따른 포인트 클라우드 데이터 송수신 방법/장치는 3차원 SA-DCT 변환 방법에 기초하여 속성 정보를 변환함으로써, 속성 정보를 부호화할 때 추가적인 속성들의 지오메트리 정보를 부호화할 필요가 없고 지오메트리 정보를 그대로 활용할 수 있어, 부호화의 효율성을 높일 수 있다. 따라서 실시예들에 따른 포인트 클라우드 데이터 수신 장치는, SA-DCT 변환에 의해 생성된 양자화 계수만을 이용하여 카테고리 3과 같은 데이터에 대하여 효율적으로 역변환을 수행할 수 있다.
실시예들에 따른 포인트 클라우드 데이터 송수신 방법/장치는 듀플리케이티드 포인트들을 포함하는 경우에 대하여 유연한 변환 및 양자화를 가능하게 할 수 있다.
따라서, 실시예들에 따른 포인트 클라우드 데이터 수신 장치는 3차원 SA-DCT 변환 방법에 기초하여 속성 정보를 역변환함으로써, 속성 정보를 변환 시 정확히 변환 계수(coefficient)들을 복호화할 수 있다. 따라서, 변환 계수(coefficient)가 정확히 부호화되지 않을 경우 발생할 수 있는 포인트 클라우드 데이터의 전체 영역에 대한 열화를 방지할 수 있어 더욱 robust한 역양자화 및 복호화를 수행할 수 있다.
실시예들에 따른 포인트 클라우드 데이터 수신 장치는 3차원 SA-DCT 변환 방법으로 변환된 데이터를 수신하므로, 저주파부터 고주파 성분으로 구분된 변환 계수(coefficient)를 수신할 수 있고, 이 경우 고주파 변환 계수(coefficient)에서 양자화 오차가 발생하더라도 복원된 데이터에의 큰 오차를 방지할 수 있어 더욱 유연한 방식으로 양자화/변환을 수행할 수 있다.
도 25는 실시예들에 따른 속성정보 예측부의 구조 및 동작의 예시를 나타낸다.
도 25의 (A)는 실시예들에 따른 속성 정보 예측부의 구조의 예시를 나타낸다. 도 25의 (A)에서 설명 및 도시하는 속성 정보 예측부의 구조는 도 19에서 설명한 속성 정보 예측부(19008)의 구조를 의미할 수 있다. 실시예들에 따른 속성 정보 예측부는 예측모드 결정부(25000), 예측여부 결정부(25001) 및/또는 예측부(25002)를 포함할 수 있다.
도 19에서 잔차 속성 정보 변환부의 입력되는 잔차 속성 정보는 속성 정보와 예측된 속성 정보가 차분되어서 계산될 수 있다. 예측된 속성 정보는 도 19의 속성 정보 예측부를 통해서 얻어지는데, 기본 과정은 도 25의 (A)에 나타내었다.
예측모드 결정부(25000)는 실시예들에 따른 예측부(25002)가 예측을 수행하는 방법을 결정할 수 있다. 예측하는 방법은, 예를 들어 LOD정보에 기초한 예측, 인접한 포인트들의 속성 정보(또는 복셀들 내의 속성 정보)에 기초한 예측을 포함할 수 있다. 예측모드 결정부는 특정 포인트 또는 특정 영역(예를 들어, 바운딩 박스, 블록, 타일 등)에서의 포인트에 대하여 속성 정보를 예측하는 방법을 결정할 수 있다. 예측모드 결정부는 특정 포인트 또는 특정 영역(예를 들어, 바운딩 박스, 블록, 타일 등)에서의 포인트에 대하여 속성 정보를 예측하는 방법과 관련된 예측 방법 시그널링 정보를 포함할 수 있다. 해당 예측 방법 시그널링 정보는 비트스트림과 같은 형태로 수신기로 전송될 수 있다.
실시예들에 따른 예측 모드 결정부는 최소 왜곡(distortion)을 갖는 예측 모드를 결정할 수 있고, 예측 모드를 나타내는 정보는 포인트 클라우드 데이터 전송 장치가 전송하는 비트스트림으로 전송될 수 있다. 예측 모드가 비트스트림으로 시그널링 된 경우, 실시예들에 따른 포인트 클라우드 데이터 수신 장치 이를 비트스트림을 파싱하고, 예측 모드에 맞는 예측(prediction)을 수행할 수 있다. 실시예에 따라 예측모드 정보는 비트스트림으로 시그널링되지 않고, 복호화기에서 부호화기와 동일한 방법으로 계산될 수 있다. 실시예에 따라 예측모드 결정부는 생략될 수 있다.
예측여부 결정부(25001)는 실시예들에 따른 PCC 부호화기가 잔차 정보를 생성하기 위하여 특정 포인트에 대한 속성 정보를 예측(prediction)할지 여부를 결정한다. 예측여부 결정부(25001)는 특정 포인트 또는 특정 영역(예를 들어, 바운딩 박스, 블록, 타일 등)에서의 포인트에 대하여 속성 정보를 예측할지 여부를 나타내는 예측 여부 시그널링 정보를 생성할 수 있다. 해당 예측 여부 시그널링 정보는 비트스트림과 같은 형태로 수신기로 전송될 수 있다.
실시예들에 따르면, 예측모드 결정부의 동작 및 예측여부 결정부의 동작은 도 25의 (A)에서 도시한 순서에 따라 수행될 수 있으며, 반대로도 수행될 수 있다. 또한, 예측모드 결정부의 동작 및 예측여부 결정부의 동작은 순서에 관계없이 독립적으로 수행될 수도 있다.
예측여부 결정부(25001)는 최소 왜곡을 갖도록 하는 예측 적용 여부를 판단하여 비트스트림으로 시그널링 할 수 있다. 실시예들에 따른 포인트 클라우드 데이터 수신 장치는 예측 여부 플래그를 수신하고 이를 파싱하여 예측 여부를 판단하여 예측을 수행하거나, 이를 생략할 수도 있다.
예측부(25002)는 실시예들에 따른 PCC 부호화기가 잔차 정보를 생성하기 위하여 특정 포인트에 대한 속성 정보를 예측(prediction)한다. 예측부는 실시예들에 따른 예측 모드 결정부에 의해 결정된 예측 모드에 기초하여 예측(prediction)을 수행할 수 있다. 또한, 예측여부 결정부에 의해 결정된 예측 여부에 기초하여 예측(prediction)을 예측을 수행할 수 있다. 예측부(25002)는 예를 들어, 도 25의 (B)에서 도시한 바와 같이 예측을 수행할 수 있다.
실시예들에 따르면 3차원 공간에서 3-D Z-스캔 순서로 부호화되었을 때 최대 13개의 주변블록의 이미 복원된 속성값을 통해 예측을 수행할 수 있다. (도 25의 (B) 참조) 실시 예에 따라 예측모드는 이미 복원된 주변블록의 속성값을 이용해 가까운 점들의 평균값으로 예측, 가까운 점들의 거리에 따른 가중 합 예측, 방향성 예측 등이 사용될 수 있다. 실시예에 따라 x, y, z축의 3방향 예측 혹은 13개의 주변 블록을 이용한 방향성 예측 혹은 13개의 방향을 각도로 나누어 더 세밀한 방향성 예측이 이루어 질 수 있다.
도 25의 (B)는 실시예들에 따른 예측부가 특정 포인트(25010)의 속성 정보를 예측하는 과정의 예를 나타낸다. 예측하고자 하는 포인트(25010)는 예측부에 의해, 실시예에 따라 복원된 속성 정보를 포함하는 포인트들(25011)에 기초하여 예측된다.
실시예들에 따르면, 예측 속성 정보를 생성하는 단계는, 예측 속성 정보를 생성하기 위한 예측 모드를 결정하는 단계, 예측 모드에 따라 예측 여부를 결정하는 단계 및 예측 모드 및 예측 여부에 따라 예측 속성 정보를 생성하기 위하여 예측을 수행하는 단계를 포함할 수 있다. 실시예들에 따르면 예측을 수행하는 단계는, 예측 속성 정보에 대한 포인트와 인접한 복원된 속성 정보에 기초하여 예측 속성 정보를 생성하거나, 포인트 클라우드 데이터 내의 포인트들의 LOD에 기초하여 예측 속성 정보를 생성할 수 있다. 예측을 수행하는 단계는, LOD 기초하여 예측 속성 정보를 생성할지 여부를 나타내는 정보를 더 생성할 수 있다.
실시예들에 따른 포인트 클라우드 데이터 전송 방법은, 예측모드 결정부 및/또는 예측여부 결정부의 동작으로 인해, 예측 여부 및 예측 모드를 미리 결정하여 시그널링함으로써 PCC 송신 장치의 연산량을 감소시킬 수 있고 송수신 환경에 따라 유연한 인코딩 성능을 제공할 수 있다.
실시예들에 따른 포인트 클라우드 데이터 수신 방법은, 예측모드 결정부 및/또는 예측여부 결정부의 동작으로 인해, 예측 여부 및 예측 모드를 미리 시그널링 받음으로써PCC 수신 장치의 연산량 및 메모리의 부담을 감소시킬 수 있고 송수신 환경에 따라 유연한 복호화 성능을 제공할 수 있다.
실시예들에 따른 포인트 클라우드 데이터 송수신 방법은 인접한 포인트들 및/또는 인접한 포인트들의 거리 등에 기초하여 특정 포인트를 예측함으로써 송신하는 포인트 클라우드 데이터의 속성 정보의 정확성을 높일 수 있다.
도 26는 실시예들에 따른 속성정보 예측부의 구조의 다른 예시를 나타낸다.
도 26은 실시예들에 따른 속성 정보 예측부의 구조를 나타낸다. 도 26에서 설명 및 도시하는 속성 정보 예측부의 구조는 도 19에서 설명한 속성 정보 예측부(19008)의 구조를 의미할 수 있다. 실시예들에 따른 속성 정보 예측부는 LOD 생성부(26000), 예측모드 결정부(26001), 예측여부 결정부(26002) 및/또는 예측부(26003)를 포함할 수 있다.
LOD 생성부(26000)는, 전체 포인트 클라우드 데이터에 대해 LOD를 생성할 수 있다. LOD 생성부는 도 4에서 설명한 실시예들에 따른 LOD 생성부를 의미할 수 있다. 즉, 포인트들에 대한 LOD(Level of Detail)을 생성한다. 실시예들에 따른 LOD는 포인트들을 구별하는 그룹의 유닛이다. 포인트들은 LOD 별로 분류될 수 있다. LOD 생성부는 도 8 내지 도 9에서 설명한 LOD를 생성하거나 LOD 별로 포인트 클라우드 콘텐츠의 포인트들을 분류 또는 구성할 수 있다.
LOD생성부(26000)는 LOD 생성을 전체 포인트 클라우드 데이터에 대해 1회 수행하거나, 예측 블록마다 생성할 수 있다. 전체 포인트 클라우드 데이터에 대해 LOD생성을 할 경우 최소 왜곡(distortion)을 갖도록 하는 LOD 레벨을 결정하여 비트스트림으로 시그널링 하거나 시그널링 없이 복호화기에서 동일한 방식으로 계산하거나, 모든 블록에 동일한 레벨의 LOD를 생성할 수 있다. 예측 블록마다 LOD가 생성될 경우, 최소 왜곡(distortion)을 갖도록 하는 LOD 레벨을 결정하여 비트스트림으로 시그널링 하거나 시그널링 없이 복호화기에서 동일한 방식으로 계산하거나, 모든 블록에 동일한 level의 LOD를 생성할 수 있다.
예측 모드 결정부(26001)는 도 25에서 설명 및 도시한 바에 따른 예측 모드 결정부(25000)를 의미할 수도 있다.
예측 여부 결정부(26002)는 도 25에서 설명 및 도시한 예측 여부 결정부(25001)를 의미할 수도 있다.
예측부(26003)는 생성한 LOD이외의 나머지 포인트들의 속성값을, 생성한 LOD의 속성 정보(속성 값) 에 기초하여 예측을 수행할 수 있다. 예를 들면, 실시예들에 따른 예측부는 생성된 LOD의 속성값을 통해 나머지 포인트들의 속성 정보를 보간하는 방식에 기초하여 생성할 수 있다. 또한, 실시예들에 따른 예측부는 나머지 포인트들 각각에 대하여 가까운 포인트들의 평균을 냄으로써 예측을 수행할 수 있다. 또한, 예측부는 방향성 예측을 통해 예측할 수 있다. 실시예들에 따르면, 방향성 예측은 도 25에서 설명한 방향성 예측을 의미할 수 있다.
예측부(26003)는 생성한 LOD에 기초하여 포인트들의 중 일부의 포인트들에 대하여 예측(prediction)을 수행할 수 있다. 예측은 생성된 LOD의 속성값을 통해 나머지 속성값을 보간하여 생성하거나, 가까운 점들을 평균 내거나, 방향성 예측을 통해 예측할 수 있다. 복호화기는 최적의 LOD level값을 파싱받거나 혹은 부호화기와 동일한 방법으로 계산하여 구하거나, 혹은 사전에 정의된 level의 LOD를 생성하여 부호화기와 동일한 방법으로 예측을 수행할 수 있다.
실시예들에 따르면, 예측 속성 정보를 생성하는 단계는, 예측 속성 정보를 생성하기 위한 예측 모드를 결정하는 단계, 예측 모드에 따라 예측 여부를 결정하는 단계 및 예측 모드 및 예측 여부에 따라 예측 속성 정보를 생성하기 위하여 예측을 수행하는 단계를 포함할 수 있다. 실시예들에 따르면 예측을 수행하는 단계는, 예측 속성 정보에 대한 포인트와 인접한 복원된 속성 정보에 기초하여 예측 속성 정보를 생성하거나, 포인트 클라우드 데이터 내의 포인트들의 LOD에 기초하여 예측 속성 정보를 생성할 수 있다. 예측을 수행하는 단계는, LOD 기초하여 예측 속성 정보를 생성할지 여부를 나타내는 정보를 더 생성할 수 있다.
실시예들에 따른 포인트 클라우드 데이터 전송 방법은, 예측모드 결정부 및/또는 예측여부 결정부의 동작으로 인해, 예측 여부 및 예측 모드를 미리 결정하여 시그널링함으로써 PCC 송신 장치의 연산량을 감소시킬 수 있고 송수신 환경에 따라 유연한 인코딩 성능을 제공할 수 있다.
실시예들에 따른 포인트 클라우드 데이터 수신 방법은, 예측모드 결정부 및/또는 예측여부 결정부의 동작으로 인해, 예측 여부 및 예측 모드를 미리 시그널링 받음으로써PCC 수신 장치의 연산량 및 메모리의 부담을 감소시킬 수 있고 송수신 환경에 따라 유연한 복호화 성능을 제공할 수 있다.
실시예들에 따른 포인트 클라우드 데이터 송수신 방법은 LOD 정보에 기초하여 특정 포인트를 예측함으로써 송신하는 포인트 클라우드 데이터의 속성 정보의 정확성을 높임과 동시에 부호화의 속도 및 효율을 높일 수 있다.
도 27은 실시예들에 따른 포인트 클라우드 디코더를 나타낸다.
실시예들에 따른 포인트 클라우드 디코더는 기하정보 복호화부(27001) 및/또는 속성정보 복호화부(27002)를 포함할 수 있다. 실시예들에 따르면, 포인트 클라우드 디코더는 PCC 복호화기, PCC 복호화부, 포인트 클라우드 복호화기, 포인트 클라우드 복호화부, PCC 디코더 등으로 호칭될 수 있다.
기하정보 복호화부(27001)는 도 1의 포인트 클라우드 비디오 디코더의 동작, 도 2의 디코딩(20003), 도 10의 지오메트리 디코더의 동작, 도 11에서 설명한 아리스메틱 디코더(11000), 옥트리 합성부(11001), 서페이스 오프록시메이션 합성부(11002), 지오메트리 리컨스럭션부(11003) 및/또는 좌표계 역변환부(11004)의 동작 전부/일부를 수행할 수 있다.
속성정보 복호화부(27002)는 도 1의 포인트 클라우드 비디오 디코더, 도 2의 디코딩(20003)의 동작, 도 10에서 설명한 어트리뷰트 디코더(attribute decoder)의 동작, 도 11의 역양자화부(11006), RAHT(11007), LOD생성부(11008), 인버스 리프팅부(11009), 및/또는 컬러 역변환부(11010) 동작, 도 13에서 설명한 아리스메틱 디코더(13007), 역양자화 처리부(13008), 예측/리프팅/RAHT 역변환 처리부(13009), 색상 역변환 처리부(13010) 및/또는 렌더러(13011)의 동작 일부 또는 전부를 수행할 수 있다.
실시예들에 따른 포인트 클라우드 복호화기는 기하정보 복호화부(27001), 속성정보 복호화부(27002)를 포함할 수 있다.
기하정보 복호화부(27001)는 입력 받은 기하정보 비트스트림을 복호화하여 기하정보를 복원한다. 복원된 기하정보는 속성정보 복호화부로 입력 될 수 있다. 속성정보 복호화부(27002)는 입력받은 속성정보 비트스트림과 기하정보 복호화부로부터 입력 받은 복원된 기하정보를 입력 받아 속성정보를 복원한다. 복원된 기하정보는 도 11에서 설명한 지오메트리 리컨스럭션부(reconstruct geometry, 11003)에 의해 재구성된 지오메트릭을 의미할 수 있다. 복원된 기하정보는 도 13에서 설명한 오큐펀시 코드기반 옥트리 재구성 처리부(13003)에 의해 재구성된 옥트리 오큐펀시 코드를 의미할 수도 있다.
기하정보 복호화부(27001)는 실시예들에 따른 수신 장치가 수신한 기하정보 비트스트림을 수신한다. 기하정보 복호화부(27001)는 기하정보 비트스트림을 복호화할 수 있다.
속성정보 복호화부(27002)는 실시예들에 따른 수신 장치가 수신한 속성정보 비트스트림을 수신한다. 속성정보 복호화부는 복원된 기하정보에 기반하여 속성정보 비트스트림의 속성정보를 복호화할 수 있다. 포인트 클라우드 데이터에 포함된 기하정보 및/또는 속성정보는 복호화되어 복원된 PCC데이터가 될 수 있다.
실시예들에 따른 포인트 클라우드 데이터 수신 방법은, 포인트 클라우드 데이터를 포함하는 비트스트림을 수신하는 단계, 포인트 클라우드 데이터를 디코딩하는 단계 및 포인트 클라우드 데이터를 렌더링하는 단계를 포함할 수 있다.
실시예들에 따르면, 포인트 클라우드 데이터를 디코딩하는 단계는, 포인트 클라우드 데이터의 속성 정보 비트스트림을 엔트로피 복호화하여 변환양자화된 속성정보를 생성하는 단계 및/또는 변환양자화된 속성정보를 복원된 기하정보에 맵핑하여 맵핑된 정보를 생성하는 단계를 포함할 수 있다. 여기서, 맵핑된 정보는 맵핑된 속성정보이거나 맵핑된 잔차 속성정보 중 적어도 하나를 포함할 수 있다.
실시예들에 따른 포인트 클라우드 데이터 수신 방법은, 기하 정보 복호화부 및/또는 속성 정보 복호화부의 구성으로 인해 포인트 클라우드 데이터를 효율적이고 신속하게 복호화할 수 있고, 적은 양의 데이터와 연산 과정으로도 사용자에게 실제와 같은 가상현실 환경을 제공할 수 있다.
도 28은 실시예들에 따른 포인트 클라우드 디코더의 속성 정보 복호화부를 나타낸다.
도 28에서 설명 및 도시한 구성들의 전부 또는 일부의 조합은 도 27에서 설명한 속성 정보 복호화부에 포함될 수 있다. 즉, 도 28은 도 27의 속성 정보 복호화부(27002)의 일 예를 나타낸다.
속성 정보 복호화부는, 속성정보 엔트로피 복호화부(28000), 기하정보 맵핑부(28001), 잔차 속성정보 역양자화부(28002), 잔차 속성정보 역변환부(28003), 속성정보 예측부(28004), 메모리(28005) 및/또는 속성특성 변환부(28006)를 포함할 수 있다.
속성정보 엔트로피 복호화부(28000)는 입력 받은 속성 정보 비트스트림을 엔트로피 복호화 하여 변환 양자화된 속성정보를 출력한다. 속성정보 엔트로피 복호화부(28000)는 변환양자화된 속성 정보를 출력하여 기하정보 맵핑부(28001)로 전달한다. 속성정보 엔트로피 복호화부(28000)는 도 1의 포인트 클라우드 비디오 디코더(10006), 도 2의 디코딩(20003)의 동작, 도 10의 어트리뷰트 디코더(attribute decoder)의 동작, 도 11의 아리스매틱 디코딩(11005)의 동작, 도 13의 아리스매틱 디코더(13007)의 동작 전부/일부를 수행할 수 있다.
기하정보 맵핑부(28001)는 속성정보 엔트로피 복호화부(28000)로부터 입력 받은 변환양자화된 속성정보와 입력 받은 복원된 기하정보를 맵핑한다. 실시예들에 따른 기하정보에 맵핑된 속성정보는 잔차 속성정보 역양자화부(28002)로 입력될 수 있다. 기하정보 맵핑부는 도 1의 포인트 클라우드 비디오 디코더(10006), 도 2의 디코딩(20003), 도 11의 지오메트리 리컨스트럭트(11003), 도 13의 옥트리 재구성 처리부(13003) 및/또는 표면모델 처리부(13004)의 동작 전부/일부를 수행할 수 있다. 복원된 기하정보는 도 11에서 설명한 지오메트리 리컨스럭션부(11003)에 의해 재구성된 지오메트릭을 의미할 수 있다. 복원된 기하정보는 도 13에서 설명한 오큐펀시 코드기반 옥트리 재구성 처리부(13003)에 의해 재구성된 옥트리 오큐펀시 코드를 의미할 수 있다.
잔차 속성정보 역양자화부(28002)는 입력 받은 변환 양자화된 속성정보를 역양자화한다. 역양자화된 변환 잔차속성정보는 잔차 속성정보 역변환부(28003)로 입력될 수 있다. 잔차 속성정보 역양자화부(28002)는 도 11에서 설명한 역양자화(11006)의 동작, 도 13에서 설명한 역양자화부 처리부(13008)의 동작 전부/일부를 수행할 수 있다. 잔차 속성정보 역양자화부는 역양자화된 변환 잔차속성정보를 출력하여 잔차 속성정보 역변환부로 전달한다.
잔차 속성정보 역변환부(28003)는 변환 잔차속성정보를 수신하여 변환 잔차속성정보에 대하여 역변환을 수행한다. 잔차 속성정보 역변환부는 도 11에서 설명한 RAHT(11007), LOD생성(11008) 및/또는 인버스 리프팅(11009)의 동작, 도 13에서 설명한 예측/리프팅/RAHT 변환 처리부(12010)의 동작 전부/일부를 수행할 수 있다. 잔차 속성정보 역변환부는 수신한 변환 잔차속성정보를 포함한 잔차 3차원 블록을 DCT, DST, DST, SADCT(또는 3D SA-DCT), RAHT 등과 같은 변환 타입에 기초하여 역변환을 수행할 수 있다. 3D SA-DCT에 기초한 역변환을 수행하는 동작은 도 30 내지 도 33에서 후술한다. 실시예들에 따른 역변환된 잔차속성정보는 속성정보 예측 부로부터 생성된 예측 속성정보와 합하여 메모리(28005)에 저장될 수 있다. 실시예들에 따른 포인트 클라우드 데이터 디코더는 역변환을 수행하지 않고 예측 속성정보와 합하여 메모리에 저장될 수 있다.
속성정보 예측부(28004)는 특정 포인트 또는 포인트들에 대하여, 수신 비트스트림에 포함된 속성 정보 등에 기초하여 속성정보를 예측 및 생성한다. 예측 정보는 엔트로피 복호화를 수행하여 얻을 수 있다. 속성 정보 예측부는 실시예들에 따른 포인트 클라우드 데이터 전송 장치의 속성 정보 예측부에 따른 동작과 동일하거나 유사한 방법으로 예측을 수행할 수 있다. 속성정보 예측부(28004)는 메모리의 포인트들의 속성정보를 기초로 예측 속성정보를 생성한다. 예측 정보는 엔트로피 복호화를 수행하여 얻을 수 있다.
실시예들에 따르면, 속성 정보 예측부는 속성 정보 예측 방법을 나타내는 시그널링 정보, 예측 여부를 나타내는 시그널링 정보에 기초하여 예측을 수행할 수 있다. 속성 정보 예측 방법을 나타내는 시그널링 정보, 예측 여부를 나타내는 시그널링 정보는 수신 비트스트림에 포함된 시그널링 정보일 수도 있고, 플래그 정보일 수도 있다. 속성 정보 예측 방법을 나타내는 시그널링 정보, 예측 여부를 나타내는 시그널링 정보는 도 33 내지 도 34에서 후술한다.
메모리(28005)는 속성정보 예측부(28004)가 특정 포인트 또는 포인트들에 대하여 속성 정보를 예측하기 위하여 관련된 다른 포인트들의 속성 정보를 저장할 수 있다.
속성특성 변환부(28006)는 엔트로피 복호화부로부터 속성 정보의 유형과 변환 정보를 제공받아 RGB-YUV, RGB-YUV등 다양한 색공간 역변환할 수 있다. 속성특성 변환부는 도 11에서 설명한 인버스 트랜스폼 컬러스(Inverse transform colors, 11010)의 동작, 도 13에서 설명한 색상 역변환 처리부(13008)의 동작 전부/일부를 수행할 수 있다.
실시예들에 따른 포인트 클라우드 데이터 수신 방법은, 포인트 클라우드 데이터를 포함하는 비트스트림을 수신하는 단계, 포인트 클라우드 데이터를 디코딩하는 단계 및 포인트 클라우드 데이터를 렌더링하는 단계를 포함할 수 있다.
실시예들에 따르면, 포인트 클라우드 데이터를 디코딩하는 단계는, 포인트 클라우드 데이터의 속성 정보 비트스트림을 엔트로피 복호화하여 변환양자화된 속성정보를 생성하는 단계 및/또는 변환양자화된 속성정보를 복원된 기하정보에 맵핑하여 맵핑된 정보를 생성하는 단계를 포함할 수 있다. 여기서, 맵핑된 정보는 맵핑된 속성정보이거나 맵핑된 잔차 속성정보 중 적어도 하나를 포함할 수 있다.
실시예들에 따르면, 포인트 클라우드 데이터를 디코딩하는 단계는, 맵핑된 정보를 역양자화하는 단계, 역양자화된 정보를 역변환하는 단계 및 역변환된 정보에 기초하여 속성 특성을 변환하는 단계를 포함할 수 있다.
실시예들에 따른 포인트 클라우드 데이터 수신 방법은, 기하 정보 복호화부 및/또는 속성 정보 복호화부의 구성으로 인해 포인트 클라우드 데이터를 효율적이고 신속하게 복호화할 수 있고, 적은 양의 데이터와 연산 과정으로도 사용자에게 실제와 같은 가상현실 환경을 제공할 수 있다.
도 29는 실시예들에 따른 포인트 클라우드 디코더의 속성 정보 복호화부를 나타낸다.
도 29에서 설명 및 도시한 구성들의 전부 또는 일부의 조합은 도 27에서 설명한 속성 정보 복호화부에 포함될 수 있다. 즉, 도 29는 도 27의 속성 정보 복호화부(27002)의 일 예를 나타낸다.
속성 정보 복호화부는, 속성정보 엔트로피 복호화부(29000), 기하정보 맵핑부(29001), 속성정보 역양자화부(29002), 속성정보 역변환부(29003) 및/또는 속성특성 변환부(29004)를 포함할 수 있다.
속성정보 엔트로피 복호화부(29000)는 속성 정보 비트스트림을 엔트로피 복호화 하여 변환 양자화된 속성정보를 출력한다. 속성정보 엔트로비 복호화부(29000)는 도 28의 속성정보 엔트로비 복호화부(28000)와 동일하거나 유사한 동작을 수행할 수 있다.
기하정보 맵핑부(29001)는 속성정보 엔트로피 복호화부(29000)로부터 수신한 변환 양자화된 속성정보와 수신한 복원된 기하정보를 맵핑한다. 기하정보에 맵핑된 속성정보는 속성정보 역양자화부로 입력될 수 있다. 기하정보 맵핑부는 도 28의 기하정보 맵핑부(28001)와 동일하거나 유사한 동작을 수행할 수 있다. 도 11의 지오메트리 리컨스럭션부(11003)에 의해 재구성된 기하정보, 도 13에서 설명한 오큐펀시 코드기반 옥트리 재구성 처리부(13003)에 의해 재구성된 옥트리 오큐펀시 코드 또는 도 28의 복원된 기하정보를 의미할 수 있다.
속성정보 역양자화부(29002)는 입력 받은 변환양자화된 속성정보를 양자화 값을 기초로 역양자화를 수행한다. 역양자화된 변환 속성정보는 속성정보 역변환부로 입력될 수 있다. 속성정보 역양자화부는, 속성 정보에 대하여 도 28의 잔차 속성정보 역양자화부 (28002)와 동일하거나 유사한 동작을 수행할 수 있다.
속성정보 역변환부(29003)는 변환양자화된 속성정보를 수신하고 변환 변환양자화된 속성정보에 대하여 역변환을 수행할 수 있다. 속성정보 역변환부는, 속성 정보에 대하여 도 28에서 설명한 잔차 속성정보 역변환부(28003)와 동일하거나 유사한 동작을 수행할 수 있다. 속성정보 역변환부(29003)는 수신한 변환양자화된 속성정보를 포함한 속성 정보의 3차원 블록을 DCT, DST, DST, SADCT(또는 3D SA-DCT), RAHT 등과 같은 변환 타입에 기초하여 역변환을 수행할 수 있다. 3D SA-DCT에 기초한 역변환을 수행하는 동작은 도 30 내지 도 33에서 후술한다.
속성특성 변환부(29004)는 엔트로피 복호화부로부터 속성 정보의 유형과 변환 정보를 제공받아 RGB-YUV, RGB-YUV등 다양한 색공간 역변환할 수 있다. 속성특성 변환부는 예를 들어 도 28에서 설명한 속성특성 변환부(28006)의 동작과 동일 또는 유사한 동작을 수행할 수 있다.
실시예들에 따른 포인트 클라우드 데이터 수신 방법은, 포인트 클라우드 데이터를 포함하는 비트스트림을 수신하는 단계, 포인트 클라우드 데이터를 디코딩하는 단계 및 포인트 클라우드 데이터를 렌더링하는 단계를 포함할 수 있다.
실시예들에 따르면, 포인트 클라우드 데이터를 디코딩하는 단계는, 포인트 클라우드 데이터의 속성 정보 비트스트림을 엔트로피 복호화하여 변환양자화된 속성정보를 생성하는 단계 및/또는 변환양자화된 속성정보를 복원된 기하정보에 맵핑하여 맵핑된 정보를 생성하는 단계를 포함할 수 있다. 여기서, 맵핑된 정보는 맵핑된 속성정보이거나 맵핑된 잔차 속성정보 중 적어도 하나를 포함할 수 있다.
실시예들에 따르면, 포인트 클라우드 데이터를 디코딩하는 단계는, 맵핑된 정보를 역양자화하는 단계, 역양자화된 정보를 역변환하는 단계 및 역변환된 정보에 기초하여 속성 특성을 변환하는 단계를 포함할 수 있다.
실시예들에 따르면, 맵핑된 정보가 맵핑된 잔차 속성정보인 경우, 역변환하는 단계는 예측 속성 정보에 기초하여 맵핑된 잔차 속성정보를 역변환할 수 있다.
실시예들에 따른 포인트 클라우드 데이터 수신 방법은, 기하 정보 복호화부 및/또는 속성 정보 복호화부의 구성으로 인해 포인트 클라우드 데이터를 효율적이고 신속하게 복호화할 수 있고, 적은 양의 데이터와 연산 과정으로도 사용자에게 실제와 같은 가상현실 환경을 제공할 수 있다.
도 30은 실시예들에 따른 속성 정보 복호화부의 속성 정보 역변환부의 구조 및 동작을 나타낸다.
실시예들에 따른 속성 정보 복호화부의 속성 정보 역변환부는, 기하 정보 파싱하는 동작(30000), 역변환여부 파싱하는 동작(30001), 역변환유형 파싱 혹은 유도하는 동작(30002) 및/또는 역변환 수행하는 동작(30003)을 수행할 수 있다.
실시예들에 따른 속성 정보 복호화부의 속성 정보 역변환부는 기하정보 파싱하는 동작을 수행(30000)하는 기하정보 파싱부, 역변환여부 파싱하는 동작(30001)을 수행하는 역변환여부 파싱부, 역변환유형 파싱 혹은 유도하는 동작(30002)을 수행하는 역변환유형 파싱/유도부 및/또는 역변환을 수행(3000)하는 역변환 수행부를 포함할 수 있다.
실시예들에 따른 PCC 수신 장치는 포인트 클라우드 데이터 및 시그널링 정보를 포함하는 비트스트림을 수신할 수 있다. 여기서 시그널링 정보는 실시예들에 따른 속성 정보 복호화부(또는 속성 정보 역변환부)의 동작과 관련된 시그널링 정보를 포함할 수 있다.
기하정보 파싱 동작(30000)은, 먼저 실시예들에 따른 수신 비트스트림을 수신한다. 기하정보 파싱 동작은 수신 비트스트림에 포함된 포인트 클라우드 데이터를 파싱(parsing)하여, 기하정보를 출력할 수 있다. 포인트 클라우드 데이터는 3차원 공간(바운딩 박스, 블록 등)에 포함된 포인트들의 위치 정보를 포함할 수 있다. 예를 들어, 기하정보는 실시예들에 따른 오큐펀시 코드(occupancy code)들을 포함할 수 있다. 기하정보 파싱(30000)부는 복호화된 기하정보(occupancy map등)을 파싱할 수 있다.
역변환여부 파싱 동작(30001)은, 수신 비트스트림에 포함된 속성 정보 복호화부(또는 속성 정보 역변환부)의 동작과 관련된 시그널링 정보를 파싱하고, 실시예들에 따른 역변환 동작을 수행할지 여부를 결정할 수 있다. 속성 정보 역변환부의 동작과 관련된 시그널링 정보는 역변환 여부를 나타내는 정보(또는 플래그)를 포함할 수 있다. 역변환여부 파싱 동작은 역변환 여부를 나타내는 정보(또는 플래그)에 기초하여 역변환 수행 동작(30003)의 여부를 결정할 수 있다. 역변환여부 파싱(30001)부는 비트스트림으로부터 변환블록별로 역변환여부 플래그를 파싱할 수 있고, 실시예들에 따른 플래그에 의해 역변환 적용 여부가 결정된다. 실시예에 따라 역변환여부를 파싱 받지 않고 항상 역변환을 수행할 수 있다.
역변환유형 파싱 혹은 유도 동작(30002)은, 수신 비트스트림에 포함된 속성 정보 복호화부(또는 속성 정보 역변환부)의 동작과 관련된 시그널링 정보를 파싱하고, 실시예들에 따른 역변환 유형을 유도 또는 결정할 수 있다. 역변환의 유형은 IDCT (Inverse DCT)를 포함할 수 있다. 역변환의 유형은 DST, DST, SADCT, RAHT 등과 같은 변환 타입의 역변환 유형을 포함할 수 있다. 또한, 역변환의 유형은 후술할 3D SA-DCT 역변환 유형을 포함할 수 있다. 역변환유형 파싱 혹은 유도(30002)부는 비트스트림으로부터 변환 블록 별 혹은 전체 속성값의 역변환유형을 파싱받아 역변환의 종류를 결정하거나 파싱받은 기하정보를 통해 부호화기와 동일한 방법으로 역변환 유형을 유도하여 결정할 수 있다. 역변환 유형이 하나로 정해진 경우 해당 단계는 복호화기에서 생략할 수 있다.
실시예들에 따른 IDCT (Inverse DCT)는 도 18 내지 도 27에서 설명한 실시예들에 따른 DCT 변환의 역변환 동작을 의미할 수 있다. 즉, IDCT (Inverse DCT) 동작은 실시예들에 따른 DCT 변환의 역과정일 수 있다.
수신 비트스트림은 역변환 유형을 나타내는 시그널링 정보(또는 플래그)를 포함할 수 있다. 역변환 유형을 나타내는 시그널링 정보는 플래그 형태일 수도 있고, 유형별로 식별자를 지정하여 식별자 형태의 값을 포함할 수도 있다.
기하정보 파싱 동작(30000), 역변환여부 파싱 동작(30001) 및 역변환유형 파싱 혹은 유도 동작(30002)의 순서는 도 30에서 도시된 바와 같을 수도 있지만, 그 순서가 뒤바뀔 수도 있다. 혹은 기하정보 파싱 동작(30000), 역변환여부 파싱 동작(30001) 및 역변환유형 파싱 혹은 유도 동작(30002)은 서로 독립적으로 수행될 수도 있다.
역변환 수행 동작(30003)은, 기하정보 파싱 동작에 의해 파싱된 기하 정보에 대하여 역변환을 수행할 수 있다. 역변환 수행 동작은 상술한 역변환여부 파싱 동작에 의해 결정된 역변환 여부(30001) 및 역변환유형 파싱 혹은 유도 동작(30002)에 의해 결정된 역변환 유형에 기초하여 수행될 수 있다. 역변환 수형 동작(30003)은 도 31 내지 도 32에서 도시된 바와 같이 속성 정보에 대하여 역변환을 수행할 수도 있고, 실시예들에 따른 잔차 속성정보에 대하여 역변환을 수행할 수 있다. 역변환 수행(30003)부는 비트스트림으로부터 파싱받거나 복호화기에서 유도한 역변환 유형을 변환블록별로 역변환을 적용하는 단계이다. 복호화의 다양성을 위해 복화화 과정을 도 28과 도 29로 나눠서 도시하였지만, 해당 역변환부는 특정 복호화 과정에 의존하지 않는다. 즉, 속성정보 역변환부 및 역변환 수행 단계에서는 도 28의 잔차속성정보 역양자화부 혹은 도 29의 속성 역자화부를 통해서 복원된 정보들에 대해서 수행될 수 있다.
실시예들에 따른 포인트 클라우드 데이터 수신 방법은, 포인트 클라우드 데이터를 포함하는 비트스트림을 수신하는 단계, 포인트 클라우드 데이터를 디코딩하는 단계 및 포인트 클라우드 데이터를 렌더링하는 단계를 포함할 수 있다.
실시예들에 따르면, 포인트 클라우드 데이터를 디코딩하는 단계는, 포인트 클라우드 데이터의 속성 정보 비트스트림을 엔트로피 복호화하여 변환양자화된 속성정보를 생성하는 단계 및/또는 변환양자화된 속성정보를 복원된 기하정보에 맵핑하여 맵핑된 정보를 생성하는 단계를 포함할 수 있다. 여기서, 맵핑된 정보는 맵핑된 속성정보이거나 맵핑된 잔차 속성정보 중 적어도 하나를 포함할 수 있다.
실시예들에 따르면, 포인트 클라우드 데이터를 디코딩하는 단계는, 맵핑된 정보를 역양자화하는 단계, 역양자화된 정보를 역변환하는 단계 및 역변환된 정보에 기초하여 속성 특성을 변환하는 단계를 포함할 수 있다.
실시예들에 따른 포인트 클라우드 데이터 전송 방법은, 변환 유형 유도부 및/또는 변환 여부 선택부의 동작으로 인해, 변환 여부 및 변환 유형을 미리 결정하여 시그널링함으로써 PCC 송신 장치의 연산량을 감소시킬 수 있고 송수신 환경에 따라 유연한 인코딩 성능을 제공할 수 있다.
실시예들에 따른 포인트 클라우드 데이터 수신 방법은, 기하정보 파싱 동작, 역변환여부 파싱 동작 및/또는 역변환유형 파싱 혹은 유도 동작으로 인해, 변환 여부 및 변환 유형을 미리 시그널링 받음으로써PCC 수신 장치의 연산량 및 메모리의 부담을 감소시킬 수 있고 송수신 환경에 따라 유연한 복호화 성능을 제공할 수 있다.
도 31은 실시예들에 따른 속성 정보 역변환부가 3D SA-DCT 역변환 유형에 따라 역변환을 수행하는 동작의 예시를 나타낸다.
도 31은 속성 정보 역변환부에 의해 수행되는 역변환 동작의 예시를 나타낸다. 도 31에 의해 수행되는 3D SA-DCT 역변환 동작은 31000 단계 내지 31007 단계로 수행될 수 있다. 도 31에 따른 동작은 도 30에서 설명한 속성 정보 역변환부의 역변환 수행 동작(30003)의 예시일 수 있다. 도 31에 따른 동작은 도 29의 속성 정보 역변환부의 동작의 예시를 나타낸다.
도 31의 각 단계에서 도시된 세부 도면은 3차원 공간(바운딩 박스 또는 도면)의 일면들 또는 단면들을 나타낸 것이다. 도 31에서 도시된 3차원 공간은 4x4x4 3차원 공간을 예시도 나타내었지만, 반드시 4x4x4 크기가 아닐 수 있다. 도 31에서 3차원 공간을 도시한 방법은 도 22 내지 도 24에서 도시된 방법과 동일하다.
3차원 공간의 일면 또는 단면(31000a)은 바운딩 박스 또는 블록의 제 1 축의 단면을 나타낸 것이다. 3차원 공간은 복수 개의 복셀들을 포함할 수 있다. 3차원 공간은 0개 또는 그 이상의 오큐파이드 복셀(31000b) 및/또는 0개 또는 그 이상의 빈 복셀(31000c)를 포함할 수 있다. 빈 복셀과 오큐파이드 복셀은 도 22 내지 도 24에서 설명한 바와 같다.
역변환 수행과정은 다음과 같을 수 있다. 복원된 기하정보를 x축 방향으로 민 기하정보와, 다시 y축으로 민 기하정보를 각각 계산한다(31000). 비트스트림으로부터 파싱받은 변환 계수(또는 잔차 변환 계수)를 Z축으로 역변환을 수행한다(31000). 역변환된 변환계수를 계산해논 기하정보3과 동일한 위치로 복원시킨다(31001). 기하정보3과 동일한 위치로 복원된 변환계수(또는, 잔차변환계수)를 다시 Y축으로 역변환을 수행한다(31002). 역변환된 변환계수를 계산해 놓은 기하정보2와 동일한 위치로 복원시킨다(31003). 기하정보2와 동일한 위치로 복원된 변환계수를 다시 X축으로 역변환을 수행한다(31004). 역변환된 변환계수를 복원된 기하정보1과 동일한 위치로 복원시킨다(31005). 실시예에 따라 duplicated points의 속성값 각각을 변환하는 경우 duplicated의 위치정보를 파싱 받아 동일한 방식으로 역변환 및 위치 복원을 수행할 수 있다
31000 단계와 관련하여, 속성 정보 역변환부는 제 3 축 방향으로 n-points 1차원 IDCT (Inverse DCT) 변환을 수행할 수 있다. 또한, 속성 정보 역변환부는 복원된 기하정보를 수신하고, 수신한 복원된 기하정보를 3차원 공간 상의 제 1 축 방향으로 민 기하정보(제2 축의 복원을 위한 정보)와, 제 1 축 방향으로 민 기하정보를 다시 제 2 축으로 민 기하정보(제3 축의 복원을 위한 정보)를 각각 계산할 수 있다. 이렇게 함으로써 속성 정보 역변환부는, 속성 정보를 제 3 축에 대한 위치 등을 복원할 수 있다. 여기서 제 1 축, 제 2 축 및/또는 제 3 축은 x축, y축 및/또는 z축 중 하나일 수 있다.
다시 말하면, 역변환을 수행할 속성 정보를 포함하는 속성 비트스트림은, 송신기 동작에 의해 변환된 데이터이다. 따라서, 속성 비트스트림은 도 22 내지 도 24에 의해 변환된 정보를 포함한다. 따라서 예를 들어, z축에 대하여 속성 정보의 위치를 복원하기 위해서는 복원된 기하 정보로부터 x축 방향으로 민 기하정보에 대하여 다시 y축 방향으로 민 기하정보(즉, z축의 복원을 위한 정보)를 이용할 수 있다. 따라서, 31000 단계에서는 복원된 기하 정보로부터 x축 방향으로 민 기하정보에 대하여 다시 y축 방향으로 민 기하정보(즉, z축의 복원을 위한 정보)를 먼저 계산한다.
여기서, 복원된 기하정보는 도 11에서 설명한 지오메트리 리컨스럭션부(reconstruct geometry, 11003)에 의해 재구성된 지오메트릭을 의미할 수 있다. 복원된 기하정보는 도 13에서 설명한 오큐펀시 코드기반 옥트리 재구성 처리부(13003)에 의해 재구성된 옥트리 오큐펀시 코드를 의미할 수도 있다.
31001 단계와 관련하여, 속성 정보 역변환부는 복원된 기하 정보로부터 제 1 축 방향으로 민 기하정보에 대하여 다시 제 2 축 방향으로 민 기하정보(즉, 제 3축의 복원을 위한 정보)에 기초하여, 속성 정보를 재배열한다. 즉, 3차원 공간의 오큐파이드 복셀들의 제 3 축의 순서를 재배열하거나 복원할 수 있다. 여기서 제 1축은 x축, 제 2 축은 y축, 제 3축은 z축일 수 있다.
여기서, 제 3 축 방향으로 n-points 1차원 IDCT (Inverse DCT) 변환을 수행하는 동작(31000)과 제 3축에 대한 위치 등을 복원하는 동작(31001)은 그 순서가 뒤바뀔 수 있다. 또한, 31000 단계 및 31001 단계에서 실시예에 따른 듀플리케이티드 포인트들의 속성값 각각을 변환하는 경우 듀플리케이티드 포인트들의 위치정보에 기초하여 역변환 및 위치 복원을 수행할 수 있다. 듀플리케이티드 포인트들의 위치정보는 실시예들에 따른 PCC 수신 장치가 수신하는 수신 비트스트림에 포함될 수 있다.
31002 단계와 관련하여, 속성 정보 역변환부는, 31001 단계에 의해 제 3 축 위치가 복원된 속성 정보들에 대하여, 제 2 축 방향으로 n-points 1차원 IDCT (Inverse DCT) 변환을 수행할 수 있다.
31003 단계와 관련하여, 속성 정보 역변환부는 복원된 기하정보를 3차원 공간 상의 제 1 축 방향으로 민 기하정보(즉, 제 2 축의 복원을 위한 정보)에 기초하여 속성 정보를 제 2 축에 대한 위치 등을 복원할 수 있다. 여기서 제 1축은 x축, 제 2 축은 y축, 제 3축은 z축일 수 있다.
여기서, 제 2 축 방향으로 n-points 1차원 IDCT (Inverse DCT) 변환을 수행하는 단계와 제 2 축에 대한 위치 등을 복원하는 단계는 그 순서가 뒤바뀔 수 있다.
31004 단계와 관련하여, 속성 정보 역변환부는, 31003 단계에 의해 제 2 축 위치가 복원된 속성 정보들에 대하여, 제 1 축 방향으로 n-points 1차원 IDCT (Inverse DCT) 변환을 수행할 수 있다.
31005 단계와 관련하여, 속성 정보 역변환부는 복원에 기초하여 속성 정보를 제 1 축에 대한 위치 등을 복원할 수 있다. 여기서 제 1축은 x축, 제 2 축은 y축일 수 있다.
여기서, 제 1 축 방향으로 n-points 1차원 IDCT (Inverse DCT) 변환을 수행하는 동작(31004 단계)과 제 1 축에 대한 위치 등을 복원하는 단계(31005 단계)은 그 순서가 뒤바뀔 수 있다.
실시예들에 따른 IDCT (Inverse DCT)는 도 18 내지 도 27에서 설명한 실시예들에 따른 DCT 변환의 역변환 동작을 의미할 수 있다. 즉, IDCT (Inverse DCT) 동작은 실시예들에 따른 DCT 변환의 역과정일 수 있다.
31006 단계와 관련하여, 속성 정보 역변환부는 복원된 속성 정보를 출력할 수 있다. 복원된 속성 정보는 도 22 내지 도 24에 따른 변환 동작에 의해 변환되기 전의 속성 정보를 나타낸다. 속성 정보 역변환부에 의해 복원된 속성 정보는, 원래의 속성 정보일 수도 있고, 잔차 속성 정보를 의미할 수도 있다.
실시예들에 따르면, 역변환하는 단계는 맵핑된 정보를 포함하는 3차원 블록을 역변환하고, 역변환하는 단계는 3차원 블록의 제 1 축에 대하여 IDCT (Inverse DCT) 변환하는 단계, 제 1 축에 대하여 IDCT (Inverse DCT) 변환이 수행되어 생성된 계수 정보를 제 2 축에 대하여 IDCT (Inverse DCT) 변환하는 단계 및/또는 제 2 축에 대하여 IDCT (Inverse DCT) 변환이 수행되어 생성된 계수 정보를 제 3 축에 대하여 IDCT (Inverse DCT) 변환하는 단계를 수행할 수 있다.
실시예들에 따른 포인트 클라우드 데이터 송수신 방법/장치는 3차원 SA-DCT 변환 또는 IDCT (Inverse DCT) 변환 방법에 기초하여 속성 정보를 변환함으로써, 더욱 robust한 양자화 및 부호화를 수행할 수 있다. 이러한 방법에 따른 변환을 사용함으로써 속성 정보를 변환 시 정확히 변환 계수(coefficient)들을 부호화할 수 있고, 변환 계수(coefficient)가 정확히 부호화되지 않을 경우, 발생할 수 있는 포인트 클라우드 데이터의 전체 영역에 대한 열화를 방지할 수 있다.
실시예들에 따른 포인트 클라우드 데이터 송수신 방법/장치는 3차원 SA-DCT 변환 방법 또는 IDCT (Inverse DCT) 방법에 기초하여 속성 정보를 변환함으로써, 변환된 변환 계수(coefficient)이 저주파부터 고주파 성분으로 구분될 수 있고, 이 경우 고주파 변환 계수(coefficient)에서 양자화 오차가 발생하더라도 복원된 데이터에의 큰 오차를 방지할 수 있어 더욱 유연한 방식으로 양자화/변환을 수행할 수 있다.
실시예들에 따른 포인트 클라우드 데이터 송수신 방법/장치는 3차원 SA-DCT 변환 방법 또는 IDCT (Inverse DCT) 방법에 기초하여 속성 정보를 변환함으로써, 속성 정보를 부호화할 때 추가적인 속성들의 지오메트리 정보를 부호화할 필요가 없고 지오메트리 정보를 그대로 활용할 수 있어, 부호화의 효율성을 높일 수 있다
실시예들에 따른 포인트 클라우드 데이터 송수신 방법/장치는 듀플리케이티드 포인트들을 포함하는 경우에 대하여 유연한 변환 및 양자화를 가능하게 한다.
도 32은 실시예들에 따른 속성 정보 역변환부가 3D SA-DCT 역변환하는 경우, 각 축의 복원을 위한 정보를 계산하는 과정의 예시를 나타낸다.
도 32는 4x4x4 블록의 역변환 수행과정을 나타내었다. 3D SA-DCT역변환 (IDCT (Inverse DCT))은 복원된 기하정보(occupancy map)에 기초하여 수행될 수 있다.
복원된 기하정보(32000)를 x축 방향으로 민 기하정보(32001)와, 다시 y축으로 민 기하정보를 각각 계산한다(32002). 비트스트림으로부터 파싱받은 (잔차)변환 계수를 Z축으로 역변환을 수행한다. 역변환된 변환계수를 계산해논 기하정보3과 동일한 위치로 복원시킨다. 기하정보3과 동일한 위치로 복원된 (잔차)변환계수를 다시 Y축으로 역변환을 수행한다. 역변환된 변환계수를 계산해논 기하정보2와 동일한 위치로 복원시킨다. 기하정보2와 동일한 위치로 복원된 변환계수를 다시 X축으로 역변환을 수행한다. 역변환된 변환계수를 복원된 기하정보1과 동일한 위치로 복원시킨다. 실시예에 따라 듀플리케이티드 포인트들의 속성값 각각을 변환하는 경우 듀플리케이티드 포인트들의 위치정보를 파싱 받아 동일한 방식으로 역변환 및 위치 복원을 수행할 수 있다.
도 32는 도 31에서 상술한 제1 축의 복원을 위한 정보(32000), 제2 축의 복원을 위한 정보(32001) 및 제3 축의 복원을 위한 정보(32002)를 나타낸 것이다. 제1 축의 복원을 위한 정보, 제2 축의 복원을 위한 정보 및 제3 축의 복원을 위한 정보는 실시예들에 따른 속성 정보 역변환부가 각 축에 대하여 속성 정보의 위치를 복원하기 위해서 필요한 정보이다. 실시예들에 따르면, 제 1 축, 제 2 축 및 제 3 축은 각각 x축, y축, z축 중 어느 하나일 수 있다.
실시예들에 따르면, 도 32의 제 1 축의 복원을 위한 정보(32000)는 도 31의 31005 단계 및/또는 31006 단계에서 생성(또는 계산)될 수 있다. 실시예들에 따르면, 도 32의 제 2 축의 복원을 위한 정보(32001)는 도 31의 31003 단계 및/또는 31004 단계에서 생성(또는 계산)될 수 있다. 실시예들에 따르면, 도 32의 제 3 축의 복원을 위한 정보(32002)는 도 31의 31000 단계, 31001 단계 및/또는 31002 단계에서 생성(또는 계산)될 수 있다.
제1 축의 복원을 위한 정보(32000)는 실시예들에 따른 복원된 기하정보를 의미한다. 실시예들에 따른 속성 정보 역변환부는 제 2 축 및 제 3축에 대한 역변환 및 복원을 마친 후, 제 1 축에 대한 역변환 및 복원을 수행할 때, 제 1 축의 복원을 위한 정보를 이용하여 제 1 축을 기준으로 속성 정보의 위치를 재배열 또는 복원할 수 있다.
복원된 기하정보는 도 31에서 설명한 복원된 기하정보를 의미할 수 있다. 복원된 기하정보는 도 30에서 설명 및 도시한 기하정보 파싱 동작에 의해 파싱된 복원된 기하정보(예를 들어, 오큐펀시 코드들)를 의미할 수 있다. 복원된 기하정보는 도 28 내지 도 29에서 설명한 복원된 기하정보를 의미할 수 있다.
제2 축의 복원을 위한 정보(32001)는 실시예들에 따른 복원된 기하정보를 제 1 축의 방향으로 오큐파이드 복셀들을 이동시켜 계산된 정보를 나타낸다. 실시예들에 따른 속성 정보 역변환부는 제 3축에 대한 역변환 및 복원을 마친 후, 제 2 축에 대한 역변환 및 복원을 수행할 때, 제 2 축의 복원을 위한 정보를 이용하여 제 2 축을 기준으로 속성 정보의 위치를 재배열 또는 복원할 수 있다.
제2 축의 복원을 위한 정보(32002)는 실시예들에 따른 복원된 기하정보를 제 1 축의 방향으로 오큐파이드 복셀들을 이동시킨 후, 이를 제 2 축 방향으로 다시 오큐파이드 복셀들을 이동시켜 계산된 정보를 나타낸다. 실시예들에 따른 속성 정보 역변환부는 속성 정보를 제 3 축에 대한 역변환 및 복원을 수행할 때, 제 3 축의 복원을 위한 정보를 이용하여 제3 축을 기준으로 속성 정보의 위치를 재배열 또는 복원할 수 있다.
도 32에 따른 동작은 도 30에서 설명한 속성 정보 역변환부의 역변환 수행 동작(30003)의 일부를 나타낼 수 있다. 도 32에 따른 동작은 도 29의 속성 정보 역변환부의 동작의 일부를 나타낼 수 있다.
실시예들에 따른 포인트 클라우드 데이터 수신 방법은, 포인트 클라우드 데이터를 포함하는 비트스트림을 수신하는 단계, 포인트 클라우드 데이터를 디코딩하는 단계 및 포인트 클라우드 데이터를 렌더링하는 단계를 포함할 수 있다.
실시예들에 따르면, 포인트 클라우드 데이터를 디코딩하는 단계는, 포인트 클라우드 데이터의 속성 정보 비트스트림을 엔트로피 복호화하여 변환양자화된 속성정보를 생성하는 단계 및/또는 변환양자화된 속성정보를 복원된 기하정보에 맵핑하여 맵핑된 정보를 생성하는 단계를 포함할 수 있다. 여기서, 맵핑된 정보는 맵핑된 속성정보이거나 맵핑된 잔차 속성정보 중 적어도 하나를 포함할 수 있다.
실시예들에 따르면, 포인트 클라우드 데이터를 디코딩하는 단계는, 맵핑된 정보를 역양자화하는 단계, 역양자화된 정보를 역변환하는 단계 및 역변환된 정보에 기초하여 속성 특성을 변환하는 단계를 포함할 수 있다.
실시예들에 따르면, 맵핑된 정보가 맵핑된 잔차 속성정보인 경우, 역변환하는 단계는 예측 속성 정보에 기초하여 맵핑된 잔차 속성정보를 역변환할 수 있다.
실시예들에 따르면, 역변환하는 단계는 맵핑된 정보를 포함하는 3차원 블록을 역변환하고, 역변환하는 단계는 3차원 블록의 제 1 축에 대하여 IDCT (Inverse DCT) 변환하는 단계, 제 1 축에 대하여 IDCT (Inverse DCT) 변환이 수행되어 생성된 계수 정보를 제 2 축에 대하여 IDCT (Inverse DCT) 변환하는 단계 및/또는 제 2 축에 대하여 DCT 변환이 수행되어 생성된 계수 정보를 제 3 축에 대하여 IDCT (Inverse DCT) 변환하는 단계를 수행할 수 있다.
실시예들에 따른 포인트 클라우드 데이터 송수신 방법/장치는 3차원 SA-DCT 변환 및 그 역변환 방법에 기초하여 속성 정보를 변환함으로써, 속성 정보를 부호화할 때 추가적인 속성들의 지오메트리 정보를 부호화할 필요가 없고 지오메트리 정보를 그대로 활용할 수 있어, 부호화의 효율성을 높일 수 있다
실시예들에 따른 포인트 클라우드 데이터 송수신 방법/장치는 듀플리케이티드 포인트들을 포함하는 경우에 대하여 유연한 변환 및 양자화를 가능하게 한다.
도 31 및/또는 도 32에 도시된 실시예들에 따른 포인트 클라우드 데이터 수신 장치는 3차원 SA-DCT 변환 방법 및 그 역변환에 기초하여 속성 정보를 역변환함으로써, 속성 정보를 변환 시 정확히 변환 계수(coefficient)들을 복호화할 수 있다. 따라서, 변환 계수(coefficient)가 정확히 부호화되지 않을 경우 발생할 수 있는 포인트 클라우드 데이터의 전체 영역에 대한 열화를 방지할 수 있어 더욱 robust한 역양자화 및 복호화를 수행할 수 있다.
도 31 및/또는 도 32에 도시된 실시예들에 따른 포인트 클라우드 데이터 수신 장치는 3차원 SA-DCT 변환 방법으로 변환된 데이터를 수신하므로, 저주파부터 고주파 성분으로 구분된 변환 계수(coefficient)를 수신할 수 있고, 이 경우 고주파 변환 계수(coefficient)에서 양자화 오차가 발생하더라도 복원된 데이터에의 큰 오차를 방지할 수 있어 더욱 유연한 방식으로 양자화/변환을 수행할 수 있다.
실시예들에 따른 포인트 클라우드 데이터 송신 장치는, 듀플리케이티드 포인트들에 대한 정보를 생성 및 전송함으로써 특정 영역에 밀하게 포인트들이 분포되어 있는 데이터를 부호화하는 과정에서 발생할 수 있는 오류를 방지할 수 있다. 실시예들에 따른 포인트 클라우드 데이터 수신 장치는, 듀플리케이티드 포인트들에 대한 정보를 수신함으로써, 특정 영역에 밀하게 포인트들이 분포되어 있는 데이터를 정확하게 복호화하여 사용자들에게 실제와 같은 포인트 클라우드 환경을 제공할 수 있다.
따라서 실시예들에 따른 포인트 클라우드 데이터 수신 장치는, 포인트들이 희소하게 분포하거나 포인트들이 특정 지역에만 밀하게 분포되어 있는 포인트 클라우드 데이터(예를 들어, 자율주행과 관련된 포인트 클라우드 데이터 등)를 정확하게 사용자에게 제공할 수 있다.
도 33은 실시예들에 따른 포인트 클라우드 데이터의 비트스트림 구조의 예시를 나타낸다.
실시예들에 따른 포인트 클라우드 데이터 송신 장치는 도 33에서 도시한 바에 따른 비트스트림 구조를 가지는 비트스트림(33000)을 전송할 수 있다. 포인트 클라우드 데이터의 비트스트림(33000)은 SPS(Sequential Parameter Set, 33001), GPS(Geometry Parameter Set, 33002), APS(Attribute Parameter Set, 33003), 타일 인벤토리(Tile Inventory, 33004) 및 하나 또는 그 이상의 슬라이스(slice)들(33005)을 포함할 수 있다. 포인트 클라우드 데이터의 비트스트림(33000)은 하나 또는 그 이상의 타일(tile)을 포함할 수 있다. 실시예들에 따른 타일(tile)은 하나 또는 그 이상의 슬라이스(slice)를 포함하는 슬라이스들의 그룹일 수 있다.
SPS(Sequence Parameter Set, 33001)는 각각의 슬라이스 세그먼트 헤더(slice segment header)내의 신텍스 엘리먼트(syntax element)에 의해 참조되는 PPS 내의 신텍스 엘리먼트의 컨텐츠에 의해 결정되는 0개 또는 그 이상의 전체 CVS들에 적용되는 신텍스 엘리먼트들을 포함하는 신텍스 스트럭쳐이다. (A syntax structure containing syntax elements that apply to zero or more entire CVSs as determined by the content of a syntax element found in the PPS referred to by a syntax element found in each slice segment header.) SPS는 실시예들에 따른 포인트 클라우드 데이터 비트스트림의 시퀀스 정보를 포함할 수 있다.
GPS(Geometry Parameter Set, 33002)은 0개 또는 그 이상의 전체 지오메트리(또는 부호화된 지오메트리)가 적용되는 신텍스 엘리먼트들(syntax elements)을 포함하는 신텍스 스트럭처(syntax structure)를 의미할 수 있다. 실시예들에 따른 GPS(33002)는 하나 또는 그 이상의 슬라이스들(33005)에 포함된 포인트 클라우드 데이터의 어트리뷰트(속성) 정보를 인코딩하는 방법에 관한 정보를 포함할 수 있다. GPS(33002)는 실시예들에 따른 어떤 SPS(33001)와 관련된 지오메트리 파라미터를 포함하는지를 나타내는 SPS 식별자 정보, 해당 GPS를 식별하는 GPS 식별자 정보를 포함할 수 있다.
APS(Attribute Parameter Set, 33003)은 0개 또는 그 이상의 전체 어트리뷰트(또는 부호화된 어트리뷰트)가 적용되는 신텍스 엘리먼트들(syntax elements)을 포함하는 신텍스 스트럭처(syntax structure)를 의미할 수 있다. 실시예들에 따른 APS(33003)는 하나 또는 그 이상의 슬라이스들(33005)에 포함된 포인트 클라우드 데이터의 어트리뷰트(속성) 정보를 인코딩하는 방법에 관한 정보를 포함할 수 있다. APS(33003)는 실시예들에 따른 어떤 SPS(33001)와 관련된 지오메트리 파라미터를 포함하는지를 나타내는 SPS 식별자 정보, 해당 APS를 식별하는 GPS 식별자 정보를 포함할 수 있다.
타일 인벤토리(Tile Inventory, 33004)는 0개 또는 그 이상의 전체 타일들(또는 부호화된 타일들)이 적용되는 신텍스 엘리먼트들(syntax elements)을 포함하는 신텍스 스트럭처(syntax structure)를 의미할 수 있다. 타일 인벤토리는 실시예들에 따른 포인트 클라우드 데이터 비트스트림에 포함된 0개 또는 그 이상의 타일(tile)들에 관한 정보를 포함한다. 타일 인벤토리는 실시예들에 따라 TPS(Tile Parameter Set)으로 호칭될 수도 있다.
타일 인벤토리는(Tile Inventory, 33004)는 하나 또는 그 이상의 타일(tile)들을 식별하는 식별자 정보 및 하나 또는 그 이상의 타일(tile)들의 범위(즉, 타일의 바운딩 박스)를 나타내는 정보를 포함할 수 있다. 하나 또는 그 이상의 타일(tile)들의 범위(즉, 타일의 바운딩 박스)를 나타내는 정보는, 해당 타일이 나타내는 바운딩 박스의 기준이 되는 점의 좌표 정보(예를 들어, Tile(n).tile_bounding_box_xyz0) 및 해당 바운딩 박스의 폭, 높이 및 깊이에 관한 정보(예를 들어, Tile(n).tile_boudning_box_whd)를 포함할 수 있다. 복수 개의 타일이 존재하는 경우, 타일 인벤토리는(Tile Inventory, 33004)는 타일들 각각에 대한 바운딩 박스를 나타내는 정보를 포함할 수 있다. 예를 들어, 각 타일들이 타일들의 식별자 정보에 의해 0 내지 n으로 표현되는 경우, 각 타일들의 바운딩 박스를 나타내는 정보는 Tile(0).tile_bounding_box_xyz0, Tile(0).tile_bounding_box_whd, Tile(1).tile_bounding_box_xyz0, Tile(1).tile_bounding_box_whd …등으로 표현될 수 있다.
슬라이스(slice, 33005)는 실시예들에 따른 포인트 클라우드 데이터의 송신 장치가 포인트 클라우드 데이터를 인코딩하기 위한 단위를 의미할 수 있다. 실시예들에 따른 슬라이스(33005)는 하나의 지오메트리 비트스트림(Geom00) 및 하나 또는 그 이상의 어트리뷰트 비트스트림들(Attr00, Attr10)을 포함하는 단위를 의미할 수 있다.
슬라이스(slice, 33005)는 해당 슬라이스 내에 포함된 포인트 클라우드 데이터의 지오메트리 정보를 나타내는 지오메트리 슬라이스 (Geometry Slice, Geom, 33005a) 및 해당 슬라이스 내에 포함된 포인트 클라우드 데이터의 어트리뷰트 정보를 나타내는 하나 또는 그 이상의 어트리뷰트 슬라이스 (Attribute Slice, Attr, 33005b)를 포함할 수 있다.
지오메트리 슬라이스 (Geometry Slice, Geom, 33005a)는 포인트 클라우드 데이터의 지오메트리 정보를 포함하는 지오메트리 슬라이스 데이터(Geometry Slice Data, Geom_slice_data, 33005d) 및 지오메트리 슬라이스 데이터에 관한 정보를 포함하는 지오메트리 슬라이스 헤더(Geometry Slice Header, Geom_slice_header, GSH, 33005c)를 포함한다.
지오메트리 슬라이스 헤더(33005c)는 해당 슬라이스 내의 지오메트리 슬라이스 데이터(33005d)에 관한 정보를 포함한다. 예를 들어, 지오메트리 슬라이스 헤더(33005c)는 어느 GPS(33002)가 해당 슬라이스의 지오메트리 정보를 나타내는지 여부를 식별하기 위한 지오메트리 파라미터 세트 식별자(geom_geom_parameter_set_id), 해당 지오메트리 슬라이스를 식별하기 위한 지오메트리 슬라이스 식별자(geom_slice_id), 해당 지오메트리 슬라이스 데이터의 박스 원점을 나타내는 지오메트리 박스 오리진 정보(geomBoxOrigin), 지오메트리 슬라이스의 로크 스케일을 나타내는 정보(geom_box_log2_scale), 해당 지오메트리 슬라이스의 포인트들의 개수와 관련된 정보(geom_num_points) 등을 포함할 수 있다.
실시예들에 따른 포인트 클라우드 데이터 비트스트림이 하나 또는 그 이상의 타일(tile)을 포함하는 경우, 실시예들에 따른 지오메트리 비트스트림의 헤더는 해당 지오메트리 비트스트림을 포함하는 타일을 식별하기 위한 정보(geom_tile_id)를 더 포함할 수 있다.
어트리뷰트 슬라이스 (Attribute Slice, Attr, 33005a)는 포인트 클라우드 데이터의 어트리뷰트 정보를 포함하는 어트리뷰트 슬라이스 데이터(Attribute Slice Data, Attr_slice_data) 및 어트리뷰트 슬라이스 데이터에 관한 정보를 포함하는 어트리뷰트 슬라이스 헤더(Attribute Slice Header, Attr_slice_header, ASH, 33005c)를 포함한다.
실시예들에 따르면, 포인트 클라우드 인코딩에 필요한 파라미터들은 포인트 클라우드(point cloud)의 파라미터 세트(parameter set) 및 헤더(header) 정보로 새로 정의될 수 있다. 예를 들어, 속성정보 부호화를 할 때에는 attribute parameter set RBSP syntax에, 타일 기반 부호화를 할 때에는 tile_header syntax 등에 추가할 수 있다. 즉, 도 24에서 정의된 파라미터들은 하기 세트(set) 및 타일/슬라이스(tile/slice) 단위로도 도 25와 같이 시그널링 될 수 있음을 의미한다.
실시예들에 따르면, 도 33에 나타난 실시예들에 따른 상술한 파라미터들은 타일(tile) 단위로 또는 후술할 슬라이스 (slice) 단위로 시그널링 될 수 있다. 실시예들에 따른 상술한 파라미터들은 SPS(Sequential Parameter Set), GPS(Geometry Parameter Set), APS(Attribute Parameter Set) 또는 타일 인벤토리(Tile Inventory) 내에서 시그널링될 수 있다.
예를 들어, 실시예들에 따른 포인트 클라우드 데이터가 슬라이스(slice) 단위로 전송될 경우, 실시예들에 따른 도 33에 나타난 파라미터들은 각 슬라이스의 속성 정보에 대한 정보를 포함하는 APS(Attribute Parameter Set) 내에 포함될 수 있다.
다른 예로, 실시예들에 따른 포인트 클라우드 데이터가 슬라이스(slice) 단위로 전송될 경우, 실시예들에 따른 도 33에 나타난 파라미터들은 지오메트리 슬라이스 헤더(geometry slice header, gsh) 내에 포함될 수 있다.
예를 들어, 실시예들에 따른 포인트 클라우드 데이터가 타일(tile) 단위로 전송될 경우, 실시예들에 따른 도 33에 나타난 파라미터들은 각 슬라이스의 속성 정보에 대한 정보를 포함하는 TPS(Attribute Parameter Set) 내 (또는 타일 인벤토리) 내에 포함될 수 있다.
실시예들에 따른 SA-DCT 함수는 각 포인트 클라우드 데이터를 비트스트림으로부터 수신할 수 있다. 실시예들에 따르면, 속성정보 부호화에서 해당 방법이 적용될 경우에는, R, G, B, Reflectance 등이 될 수 있고, 기하정보 부호화를 할 때에는 x, y, z와 같은 좌표 정보가 될 수 있다.
실시예들에 따른 PCC 송수신 방법은 이러한 비트스트림 구조를 제공함으로써, 수신기로 하여금 포인트 클라우드 데이터의 속성 정보의 복호화 성능을 높일 수 있다. 또한, SA-DCT 변환을 시그널링함으로써 더욱 로버스트한 양자화를 수행할 수 있고, 이에 따라 복호화기의 출력단에서 인지적인 역변환 성능 향상을 제공할 수 있다.
도 34은 실시예들에 따른 포인트 클라우드 전송 장치가 전송하는 비트스트림 내 실시예들에 따른 3차원 SA-DCT와 관련된 시그널링 정보의 예시를 나타낸다.
도 34에 나타난 실시예들에 따른 3차원 SA-DCT와 관련된 시그널링 정보는 실시예들에 따른 포인트 클라우드 데이터의 전송 장치에 의해 전송될 수 있다. 실시예들에 따른 3차원 SA-DCT와 관련된 시그널링 정보는 도 33에서 설명한 SPS(33001), GPS(33002), APS(33003), TPS(33004), 하나 또는 그 이상의 슬라이스(33005)들 또는 하나 또는 그 이상의 타일들 내에 포함될 수 있다. 도 34는 MPEG 표준에서 PCC 부호화를 위해 정의된 syntax들에 SA-DCT 를 추가한 신텍스일 수 있다.
도 34에서 설명 및 도시하는 시그널링 정보(또는 플래그)들은 도 28에서 설명 및 도시한 속성 정보 예측 방법을 나타내는 시그널링 정보, 예측 여부를 나타내는 시그널링 정보를 포함할 수 있다. 실시예들에 따른 3차원 SA-DCT와 관련된 시그널링 정보는 coding_type, pred_active_flag, LOD_based_pred_flag 또는 pred_type 등이 포함될 수 있다.
coding_type은 실시예들에 따른 포인트 클라우드 데이터 송신 장치(예를 들어, 포인트 클라우드 데이터 인코더)가 SA-DCT(또는 3차원 SA-DCT)를 이용하여 인코딩을 하였는지를 나타낸다. 예를 들어, coding_type이 1인 경우 포인트 클라우드 데이터 송신 장치(예를 들어, 포인트 클라우드 데이터 인코더)가 SA-DCT를 사용하였음을 나타낼 수 있다.
coding_type은 실시예들에 따른 변환 방법을 나타내는 시그널링 정보(또는 플래그)일 수 있다. 즉, coding_type은 실시예들에 따른 PCC 전송 장치가 속성 정보를 변환한 방법을 나타낸다. 다른 말로, coding_type은 실시예들에 따른 PCC 수신 장치가 변환된 속성 정보를 역변환하는 경우, 역변환 방법을 나타낸다. coding_type은 도 28에서 설명 및 도시한 속성 정보 예측 방법을 나타내는 시그널링 정보 또는 예측 여부를 나타내는 시그널링 정보일 수 있다.
coding_type은 예를 들어, 해당 3차원 공간(바운딩 박스의 일부 영역, 블록 등)가 DCT, DST, DST, SADCT, RAHT 등과 같은 변환 타입에 의해 변환되었음을 나타내는 정보일 수 있다. 따라서, 예를 들면, coding_type이 1이면 SA-DCT방식(또는 명세서에서 설명한 3D SA-DCT 방식으로 변환되었음을 나타낼 수 있다.) coding_type은 플래그일 수도 있다.
실시예들에 따르면, coding_type 정보는 실시예들에 따른 PCC 전송 장치에서, 도 21에서 설명한 변환 유형 유도부(21000) 및/또는 변환 여부 선택부(21001)에서 생성될 수 있다. 실시예들에 따르면, 실시예들에 따른 PCC 수신 장치에서, 도 30에서 설명한 역변환유형 파싱 혹은 유도(30002) 및/또는 역변환여부 파싱(30001) 동작에 의해 coding_type 정보를 파싱 및 출력할 수 있다. 실시예들에 따른 PCC 수신 장치에서, 도 30에서 설명한 역변환 수행은 coding_type에 나타난 유형 또는 역변환 여부에 기초하여 수행될 수 있다.
pred_active_flag 실시예들에 따른 포인트 클라우드 데이터 송신 장치가(또는 실시예들에 따른 어트리뷰트 인코더가) prediction 사용 여부를 결정한다. 예를 들어, pred_active_flag가 1인 경우 예측 방법(prediction scheme)이 사용되었음을 나타낸다. 예를 들어 0인 경우 예측 방법(prediction scheme)이 사용되지 않았음을 나타낸다.
pred_active_flag은 예를 들어, 특정 포인트의 속성 또는 특정 영역에 대하여 속성 정보 예측을 수행할지 여부를 결정할 수 있다. pred_active_flag는 플래그일 수도 있고 시그널링 정보의 형태일 수도 있다. pred_active_flag은 도 28에서 설명 및 도시한 속성 정보 예측 방법을 나타내는 시그널링 정보일 수 있다.
실시예들에 따르면, pred_active_flag는 실시예들에 따른 PCC 전송 장치에서 도 25에서 설명 및 도시한 예측모드 결정부(25000) 및/또는 예측여부 결정부(25001)에서 생성될 수 있다. 또한, pred_active_flag는 실시예들에 따른 PCC 전송 장치에서 도 26에서 설명 및 도시한 예측모드 결정부(26000) 및/또는 예측여부 결정부(26001)에서 생성될 수 있다. 즉, pred_active_flag는 특정 포인트 또는 포인트들에 대하여 속성 정보를 예측할지 여부 및/또는 예측모드에 관한 정보를 포함할 수 있다.
실시예들에 따르면, PCC 수신 장치에는 특정 포인트 또는 포인트들에 대하여 속성 정보를 예측할지 여부를 pred_active_flag에 기초하여 결정할 수 있다. 예를 들어, pred_active_flag가 1인 경우, 특정 포인트 또는 특정 포인트들에 대하여 도 28에 따른 속성 정보 예측부(28004)에 의해 속성 정보를 예측할 수 있다. 또 예를 들어, pred_active_flag가 0인 경우, 특정 포인트 또는 특정 포인트들에 대하여 예측을 수행하지 않을 수 있고, 이 경우 도 29에서 설명한 바와 같은 동작으로 속성 정보를 추출할 수 있다.
LOD_based_pred_flag는 실시예들에 따른 포인트 클라우드 데이터 송신 장치(예를 들어, 속성 정보 인코더)가 LOD 기반의 예측(prediction)을 수행하는지 여부를 결정한다. 예를 들어, LOD_based_pred_flag가 1인 경우 예측(prediction)을 LOD의 속성 정보에 기초하여 수행하였음을 나타낸다. 예를 들어 LOD_based_pred_flag가 0인 경우 예측(prediction)을 인접한 속성 정보에 기초하여 수행하였음을 나타낸다.
LOD_based_pred_flag는 PCC 전송 장치의 도 25및 도 26에서 도시한 예측여부 결정부(25001, 26002) 및/또는 예측모드 결정부(25000, 26001)에서 생성될 수 있다. LOD_based_pred_flag는 도 26에서 도시한 바와 같이 LOD에 기초하여 속성 정보를 예측하였는지 여부를 나타낸다. LOD_based_pred_flag은 도 28에서 설명 및 도시한 속성 정보 예측 방법을 나타내는 시그널링 정보일 수 있다.
PCC 수신 장치는 LOD_based_pred_flag에 기초하여 특정 포인트 또는 포인트들의 속성 정보를 LOD에 기초하여 예측을 수행할지 여부를 결정할 수 있다. 예를 들면, PCC 수신 장치는 LOD_based_pred_flag가 1인 경우 도 28에서 도시한 속성 정보 예측부에 의해 특정 포인트 또는 포인트들의 속성 정보를 예측할 수 있다. 이 때, 예측은 해당 3차원 공간 내의 포인트들의 LOD 정보에 기초하여 수행될 수 있다. LOD_based_pred_flag가 0인 경우에는 다른 방법에 따라 예측이 수행될 수 있음을 나타낸다. 예를 들어, LOD_based_pred_flag가 0인 경우에는, 도 28의 속성 정보 예측부는 인접한 attribute 값을 통해서 예측을 수행할 수 있다.
pred_type은 실시예들에 따른 포인트 클라우드 데이터 송신 장치(예를 들어, 속성 정보 인코더)가 예측(prediction) 방법에 따라 어트리뷰트 정보를 인코딩하는 경우, 그 예측(prediction)의 방식을 나타낸다. 예를 들어, pred_type이 0인 경우, 속성 정보 인코더는 특정 포인트로부터 인접한 포인트의 속성 정보들의 평균 정보에 기초하여 예측을 수행함을 나타낸다. pred_type이 1인 경우에는 속성 정보 인코더가 특정 포인트로부터 인접한 포인트의 속성 정보들의 거리에 따른 가중 합을 계산하여 예측을 수행함을 나타낸다. pred_type이 2인 경우에는 속성 정보 인코더가 특정 포인트로부터 인접한 포인트의 속성 정보와 인접한 프레임 간의 차이를 계산하여 예측을 수행함을 나타낸다.
pred_type는 PCC 전송 장치가 LOD에 기초하여 예측을 수행하는 경우, 예측을 수행하기 위한 예측(prediction) 방식을 결정한다. 예를 들어, 만약 해당 값이 0이라면, 선택된 인접한 속성 정보들의 평균을 계산하여 예측할 수 있다. 또 예를 들어, 만약 해당 값이 1이라면, 선택된 인접한 속성 정보들과의 거리에 따른 가중 합을 계산하여 예측할 수 있다. 또 예를 들어, 만약 해당 값이 2라면, 선택된 인접한 속성 정보들과 인접한 프레임(frame)간의 차이를 계산하여 예측할 수 있다(이러한 방법을 인터-프리딕션, inter prediction 방식이라고 호칭할 수 있다). 여기서 선택된 인접한 속성 정보들의 값들은 도 25의 (B)에서 설명한 바와 같이 결정될 수 있다.
pred_type은 도 28에서 설명 및 도시한 속성 정보 예측 방법을 나타내는 시그널링 정보일 수 있다.
pred_type coding type
0 Average
1 Weighted sum
2 Inter prediction
num_pred_nearest_neighbours, quant_step_size, quant_step_size_chroma, num_detail_levels_minus1, samplingDistance2: [1]에 정의된 의미와 동일함
상술한 시그널링 정보(또는 플래그)들에 기초하여 순차적으로 PCC 수신 장치의 속성 정보 예측 동작을 수행할 수 있다. 예를 들면, PCC 수신 장치는 먼저 coding_type 시그널링 정보에 기초하여 SA-DCT (또는 3D SA-DCT) 방법의 역변환을 수행할지 여부를 결정할 수 있다. 만약 SA-DCT 또는 3D SA-DCT 역변환을 수행한다면(예를 들어, coding_type==1), pred_active_flag에 기초하여 속성 정보 예측을 수행할지 여부를 결정할 수 있다. 여기서, 만약 특정 포인트 또는 포인트들에 대하여 속성 정보 예측을 수행한다면(즉, pred_active_flag==1), 해당 예측이 LOD에 기초한 예측인지 여부를 LOD_based_pred_flag 정보에 기초하여 결정할 수 있다. 또, 만약 LOD에 기초한 예측을 수행할 경우(LOD_based_pred_flag==1), LOD에 기초한 예측의 세부 방식을 pred_type에 기초하여 결정될 수 있다.
도 34에 나타난 실시예들에 따른 상술한 파라미터들은 후술할 타일(tile) 단위로 또는 후술할 슬라이스 (slice) 단위로 시그널링 될 수 있다. 예를 들어, 실시예들에 따른 상술한 파라미터들은 SPS(Sequential Parameter Set), GPS(Geometry Parameter Set), APS(Attribute Parameter Set) 내에서 시그널링될 수 있다.
예를 들어, 실시예들에 따른 포인트 클라우드 데이터가 슬라이스(slice) 단위로 전송될 경우, 실시예들에 따른 도 33에 나타난 파라미터들은 각 슬라이스의 속성 정보에 대한 정보를 포함하는 APS(Attribute Parameter Set) 내에 포함될 수 있다.
예를 들어, 실시예들에 따른 포인트 클라우드 데이터가 타일(tile) 단위로 전송될 경우, 실시예들에 따른 도 33에 나타난 파라미터들은 각 슬라이스의 속성 정보에 대한 정보를 포함하는 TPS(Attribute Parameter Set) 내 (또는 타일 인벤토리) 내에 포함될 수 있다.
실시예들에 따르면, 포인트 클라우드 데이터를 디코딩하는 단계는, 맵핑된 정보를 역양자화하는 단계, 역양자화된 정보를 역변환하는 단계 및 역변환된 정보에 기초하여 속성 특성을 변환하는 단계를 포함할 수 있다.
실시예들에 따르면, 시그널링 정보는 역변환의 유형을 나타내는 정보, 역변환의 수행할지 여부를 나타내는 정보, 예측 속성 정보와 관련된 예측 방식을 나타내는 정보 및 LOD 기초하여 예측 속성 정보를 생성할지 여부를 나타내는 정보를 포함할 수 있다.
실시예들에 따른 PCC 송수신 방법은 이러한 비트스트림 구조를 제공함으로써, 수신기로 하여금 포인트 클라우드 데이터의 속성 정보의 복호화 성능을 높일 수 있다. 또한, SA-DCT 변환을 시그널링함으로써 더욱 로버스트한 양자화를 수행할 수 있고, 이에 따라 복호화기의 출력단에서 인지적인 역변환 성능 향상을 제공할 수 있다.
도 35는 실시예들에 따른 3차원 SA-DCT와 관련된 시그널링 정보를 포함하는 실시예들에 따른 APS를 나타낸다.
도 35는 실시예들에 따른 APS(Attribute Parameter Set)의 신텍스의 예시를 나타낸다. 실시예들에 따른 APS는 도 33에서 나타난 APS(Attribute Parameter Set, 33003)일 수 있다.
도 35의 첫 번째 점선 박스 부분(35000)과 같이, 실시예들에 따른 APS는 해당 APS를 식별하기 위한 APS 식별자(예를 들어, aps_attr_parameter_set_id), 해당 APS가 어느 SPS와 관련되어 있는지를 나타내기 위한 SPS 식별자(예를 들어, aps_seq_parameter_set_id)를 포함할 수 있다. 실시예들에 따른 포인트 클라우드 데이터 전송 장치는 SA-DCT의 값(values)를 전송할 수 있다.
도 35의 첫 번째 점선 박스 부분(35000)과 같이, 실시예들에 따른 APS는 어트리뷰트 정보를 인코딩하는 방법을 나타내는 정보(예를 들어, attr_coding_type)를 포함할 수 있다. 실시예들에 따른 attr_coding_type은 도 34의 coding_type일 수 있다. 실시예들에 따른 coding_type은 아래의 [표 3]와 같이 인코딩하는 방법을 나타낼 수 있다.
coding_type coding type
0 Predicting Weight Lifting
1 Region Adaptive Hierarchical Transform (RAHT)
2 Fix Weight Lifting
3 SA-DCT
실시예들에 따른 coding_type이 프리딕션 웨이트 리프팅(prediction weight lifting) 방법을 지시하는 경우( if(attr_coding_type == 0 || attr_coding_type == 2) ), 실시예들에 따른 APS는 프리딕션 웨이트 리프팅과 관련된 시그널링 정보(예를 들어, num_pred_nearest_neighbours, quant_step_size 등)를 포함할 수 있다. 만약 실시예들에 따른 coding_type이 RAHT 방법을 지시하는 경우, 실시예들에 따른 APS는 프리딕션 RAHT 방법과 관련된 시그널링 정보(예를 들어, raht_depth, raht_binarylevel_threshold등)를 포함할 수 있다.
실시예들에 따른 coding_type이 RAHT 방법을 지시하는 경우( if(attr_coding_type == 1) ), 실시예들에 따른 APS는 프리딕션 RAHT 방법과 관련된 시그널링 정보(예를 들어, raht_depth, raht_binarylevel_threshold등)를 포함할 수 있다.
도 35의 두 번째 점선 박스 부분(35001)과 같이, 실시예들에 따른 coding_type이 3D SA-DCT 방법을 지시하는 경우( if(attr_coding_type == 3) ), 실시예들에 따른 APS는 프리딕션 3D SA-DCT 방법과 관련된 시그널링 정보를 포함할 수 있다. 실시예들에 따른 3D SA-DCT 방법과 관련된 시그널링 정보는 도 34에서 나타난 파라미터들을 포함할 수 있다.
실시예들에 따른 3D SA-DCT 방법과 관련된 시그널링 정보는 가변적인 DCT 차수의 사용 여부를 나타내는 정보(예를 들어, variable_SADCT_order_flag)를 포함할 수 있다. 예를 들어, variable_SADCT_order_flag가 1인 경우에는 해당 SA-DCT가 수행될 블록을 구성하는 벡터들에 대하여 다른 차수의 DCT가 사용될 수 있음을 나타낸다. 만약 variable_SADCT_order_flag가 0인 경우에는 모든 블록에 대해서 동일한 차수의 DCT 사용되었음을 나타낸다.
도 35의 세 번째 점선 박스(35002)는 실시예들에 따른 coding_type이 3D SA-DCT 방법을 지시하는 경우( if(attr_coding_type == 3) ), 실시예들에 따른 포인트 클라우드 데이터 송신 장치가 3D SA-DCT 방법으로 속성 정보를 인코딩하는 것을 나타낸다.
도 35의 네 번째 점선 박스(35003)의 values는 실시예들에 따른 포인트 클라우드 데이터 송신 장치가 3D SA-DCT 방법으로 속성 정보를 인코딩하여 도출된 포인트들에 대한 양자화 계수를 나타낸다.
실시예들에 따른 APS(Attribute Parameter Set)는 아래에서 설명한 정보(또는 플래그)를 더 포함할 수 있다.
aps_attr_parameter_set_id 는 다른 신텍스 엘리먼트들에 의해 참조되는 APS의 식별자를 나타낼 수 있다. 해당 정보의 값은 0내지 15일 수 있다.
aps_seq_parameter_set_id 는 액티브 SPS(active SPS)에 대한 sps_seq_parameter_set_id의 값을 나타낸다. 해당 정보의 값은 0 내지 15일 수 있다.
num_pred_nearest_neighbours 는 예측(prediction)을 사용하는 경우에서 또는 리프팅(Lifting)을 사용하는 경우에서 니어리스트 네이버(nearest neighbur)들의 최대 수를 나타낸다. umberOfNearestNeighboursInPrediction의 값은 1부터 xx까지일 수 있다.
max_num_direct_predictors 는 직접 예측(direct prediction)에서 사용되는 프리딕터의 최대 수를 나타낸다. 해당 정보의 값은 0내지 num_pred_nearest_neighbours일 수 있다. 해당 정보는 디코딩 프로세스에서 다음과 같이 결정될 수 있다.
MaxNumPredictors = max_num_direct_predicots + 1
quant_step_size 는 속성의 첫 번째 컴포넌트에 대한 양자화 스텝 사이즈를 나타낸다. 해당 정보는 1 내지 xx의 값을 가질 수 있다.
quant_step_size_chroma 는 속성이 색(colour)인 경우, 속성의 채도(chroma) 컴포넌트에 대한 양자화 스텝 사이즈를 나타낸다. 해당 정보는 1 내지 xx의 값을 가질 수 있다.
num_detail_levels_minus1 는 속성 코딩의 레벨 오브 디테일(LOD)의 수를 나타낸다.
samplingDistance2[ idx ] 는 idx에 대한 샘플링 거리의 제곱을 나타낸다.
raht_depth 는 RAHT 방법을 위한 레벨 오브 디테일(LOD)의 수를 나타낸다.
raht_binarylevel_threshold 는 RAHT 계수를 잘라내기 위한 레벨 오브 디테일(LOD)를 나타낸다.
도 36는 실시예들에 따른 포인트 클라우드 데이터 전송 방법을 나타내는 흐름도이다.
실시예들에 따른 포인트 클라우드 데이터 전송 방법(또는 전송 장치의 동작)은 포인트 클라우드 데이터를 획득하는 단계(36000), 획득한 포인트 클라우드 데이터를 인코딩하는 단계(36001) 및/또는 인코딩된 포인트 클라우드 데이터를 전송하는 단계(36002)를 포함할 수 있다.
36000단계와 관련하여, 실시예들에 따른 포인트 클라우드 데이터 전송 장치는 포인트 클라우드 데이터를 획득할 수 있다. 포인트 클라우드 데이터 전송 장치는 포인트 클라우드 데이터를 획득하는 단계는 포인트 클라우드 비디오 애퀴지션(Point Cloud Video acquisition)으로 호칭할 수도 있다. 36000단계는 도 1에서 설명한 포인트 클라우드 애퀴지션(10001), 도 2의 획득부(20000), 도 13의 수신부(13000) 및/또는 수신 처리부(13001), 도 14의 오디오 에퀴지션(Audio Acquisition) 및/또는 포인트 클라우드 에퀴지션(Point Cloud Acquisition)에서 수행될 수 있다.
36001단계와 관련하여, 획득한 포인트 클라우드 데이터를 인코딩하는 단계는 실시예들에 따른 포인트 클라우드 데이터의 기하 정보를 부호화(인코딩)하는 단계 및/또는 포인트 클라우드 데이터의 속성 정보를 부호화(인코딩)하는 단계를 포함할 수 있다.
기하 정보를 부호화하는 단계는 기하 정보 비트스트림 및 복원된(reconstructed) 기하 정보(또는 지오메트리 정보)를 생성할 수 있다. 복원된 기하 정보는 포인트 클라우드 데이터의 속성 정보를 부호화하는 단계에서 이용될 수 있다.
속성 정보를 부호화하는 단계는 속성 정보 비트스트림을 생성할 수 있다. 이 떄, 속성 정보를 부호화하는 단계는 복원된 기하 정보에 기초하여 수행될 수 있다. 실시예들에 따른 속성 정보를 부호화하는 단계는 도 18 내지 도 34에서 설명한 일련의 동작들의 전부 또는 일부를 수행할 수도 있다. 속성 정보를 부호화하는 단계는 실시예들에 따른 포인트 클라우드 데이터 전송 장치의 속성 정보 부호화부(또는 속성 정보 부호화기) 및/또는 속성 정보 부호화부에 포함된 도 18 내지 도 34에서 설명한 장치의 전부 또는 일부에 의해 수행될 수 있다.
즉, 속성 정보를 인코딩하는 단계는, 포인트 클라우드 데이터의 속성 정보 및 복원된 기하 정보를 맵핑하는 단계, 맵핑된 속성 정보를 포함하는 3차원 블록을 변환하는 단계 및 변환된 속성 정보를 양자화하는 단계를 포함할 수 있다.
실시예들에 따르면, 3차원 블록을 변환하는 단계는, 맵핑된 속성 정보 및 예측 속성 정보를 차분하여 생성된 잔차 속성 정보를 변환할 수 있다. 양자화하는 단계는 변환된 잔차 속성 정보를 양자화할 수 있다. 속성 정보 인코딩하는 단계는 예측 속성 정보와 관련된 예측 방식을 나타내는 정보(예를 들어, 도 34의 pred_type 등)를 생성할 수 있다.
실시예들에 따르면, 3차원 블록을 변환하는 단계는, 3차원 블록의 데이터들을 제 1 축에 대하여 변환하는 단계, 제 1 축에 대하여 변환이 수행되어 생성된 계수 정보를 제 2 축에 대하여 변환하는 단계, 제 2 축에 대하여 변환이 수행되어 생성된 계수 정보를 제 3 축에 대하여 변환하는 단계를 포함할 수 있다. 여기서, 제 1 축 내지 제 3 축에 대하여 변환하는 단계는 DCT 알고리즘에 기초할 수 있다. 3차원 블록 내에 포함된 복셀이 복수의 맵핑된 속성 정보를 포함하는 경우, 3차원 블록의 제 1 축 내지 제 3 축에 대하여 DCT 변환하는 단계는, 복수의 맵핑된 속성 정보의 평균 속성 정보를 복셀에 매칭하거나, 복수의 맵핑된 속성 정보 각각을 복수의 복셀에 매칭할 수 있다.
실시예들에 따르면, 예측 속성 정보를 생성하는 단계는, 예측 속성 정보를 생성하기 위한 예측 모드를 결정하는 단계, 예측 모드에 따라 예측 여부를 결정하는 단계 및 예측 모드 및 예측 여부에 따라 예측 속성 정보를 생성하기 위하여 예측을 수행하는 단계를 포함할 수 있다. 여기서, 예측을 수행하는 단계는, 예측 속성 정보에 대한 포인트와 인접한 복원된 속성 정보에 기초하여 예측 속성 정보를 생성하거나, 포인트 클라우드 데이터 내의 포인트들의 LOD에 기초하여 예측 속성 정보를 생성할 수 있다. 예측을 수행하는 단계는, LOD 기초하여 예측 속성 정보를 생성할지 여부를 나타내는 정보(예를 들어, 도 34의 LOD_based_pred_flag) 를 더 생성할 수 있다.
실시예들에 따르면, 3차원 블록을 변환하는 단계는 변환의 유형을 결정하는 단계, 변환의 여부를 결정하는 단계, 변환 여부를 결정하는 단계는 변환의 여부를 나타내는 시그널링 정보(예를 들어, 도 33의 pred_active_flag)를 생성하는 단계, 결정된 변환의 유형 및 결정된 변환의 여부에 기초하여 3차원 블록의 변환을 수행하는 단계를 포함할 수 있다. 여기서, 변환 유형은 DCT, DST, SA-DCT 및 RAHT 중 적어도 하나이고, 변환의 유형을 결정하는 단계는 결정된 변환의 유형을 나타내는 시그널링 정보(예를 들어, 도 34의 coding_type)를 생성할 수 있다.
36002단계와 관련하여, 실시예들에 따른 포인트 클라우드 데이터 전송 장치는 인코딩된 포인트 클라우드 데이터 및 시그널링 정보를 포함하는 비트스트림을 전송할 수 있다. 실시예들에 따른 비트스트림은 도 33에서 설명한 구조로 이루어질 수 있다. 여기서 비트스트림에 포함되는 시그널링 정보는 도 18 내지 도 34에서 설명한 시그널링 정보(또는 플래그)를 포함할 수 있다. 시그널링 정보는 예를 들어, 상술한 예측 속성 정보를 생성할지 여부를 나타내는 정보, 변환의 여부를 나타내는 시그널링 정보, 변환의 유형을 나타내는 시그널링 정보를 포함할 수 있다.
예측 속성 정보를 생성할지 여부를 나타내는 정보, 변환의 여부를 나타내는 시그널링 정보, 변환의 유형을 나타내는 시그널링 정보는 도 33에서 설명한 실시예들에 따른 SPS(Sequence Parameter Set), GPS(Geometry Parameter Set), APS0(Attribute Parameter Set 0) 내지 APSn (Attribute Parameter Set n), 타일 인벤토리(Tile Inventory) 내에 포함할 수 있다. 또한 이러한 시그널링 정보는 도 33에서 설명한 실시예들에 따른 슬라이스 0 내지 슬라이스 n에 개별적으로 포함할 수 있다.
실시예들에 따른 포인트 클라우드 데이터를 인코딩하는 단계(또는 포인트 클라우드 데이터의 속성 정보를 부호화하는 단계)는 예측 변환(prediction transform), 리프팅 변환(lifting transform) 및/또는 RAHT 변환을 수행하는 단계를 포함할 수 있다. 실시예들에 포인트 클라우드 데이터를 인코딩하는 단계(또는 포인트 클라우드 데이터의 속성 정보를 부호화하는 단계)는 프리딕션 리프팅(prediction lifting, 또는 예측 리프팅) 변환을 수행하는 단계를 포함할 수 있다.
리프팅 변환은 실시예들에 따라 리프팅 스킴(lifting scheme), 예측 변환은 프리딕션 스킴(prediction scheme) 등으로 호칭될 수 있다.
도 37는 실시예들에 따른 포인트 클라우드 데이터 수신 방법을 나타내는 흐름도이다.
실시예들에 따른 포인트 클라우드 데이터 수신 방법(또는 수신 장치의 동작)은 포인트 클라우드 데이터 및 시그널링 정보를 수신하는 단계(37000), 수신한 포인트 클라우드 데이터를 디코딩하는 단계(37001) 및/또는 디코딩된 포인트 클라우드 데이터를 렌더링하는 단계(37002)를 포함할 수 있다.
37000단계와 관련하여, 실시예들에 따른 포인트 클라우드 데이터 수신 장치는 포인트 클라우드 데이터 및 시그널링 정보를 포함하는 비트스트림을 수신할 수 있다. 실시예들에 따르면, 시그널링 정보는 예측 방법 정보를 포함할 수 있다. 또한, 실시예들에 따르면, 포인트 클라우드 데이터 및 시그널링 정보의 전부 또는 일부는 도 24 내지 도 27에서 설명한 신텍스(syntax)에 의해 수신될 수 있다.
실시예들에 따르면, 수신 비트스트림에 포함된 시그널링 정보는 역변환의 유형을 나타내는 정보(예를 들어, 도 34의 coding_type), 역변환의 수행할지 여부를 나타내는 정보(예를 들어, 도 34의 pred_active_flag), 예측 속성 정보와 관련된 예측 방식을 나타내는 정보(예를 들어, 도 34의 pred_type) 및 LOD 기초하여 예측 속성 정보를 생성할지 여부를 나타내는 정보(예를 들어, 도 34의 LOD_based_pred_flag)를 포함할 수 있다. 이러한 시그널링 정보는 도 33에서 설명한 실시예들에 따른 SPS(Sequence Parameter Set), GPS(Geometry Parameter Set), APS0(Attribute Parameter Set 0) 내지 APSn (Attribute Parameter Set n), 타일 인벤토리(Tile Inventory) 내에 존재할 수 있다. 또한 이러한 시그널링 정보는 도 33에서 설명한 실시예들에 따른 슬라이스 0 내지 슬라이스 n에 개별적으로 존재할 수도 있다.
37001단계와 관련하여, 실시예들에 따른 포인트 클라우드 데이터 수신 장치는 수신한 포인트 클라우드 데이터를 디코딩(복호화)할 수 있다. 실시예들에 따르면, 포인트 클라우드 데이터 수신 장치는 도 27 내지 도 32에서 설명한 포인트 클라우드 디코더 또는 속성 정보 부호화부를 포함할 수 있다.
실시예들에 따른 포인트 클라우드 데이터 수신 장치는 수신 포인트 클라우드 데이터의 기하 정보 비트스트림을 디코딩(복호화)하는 단계 및/또는 복원된 기하 정보에 기초하여 포인트 클라우드 데이터의 속성 정보 비트스트림을 디코딩(복호화)하는 단계를 수행할 수 있다. 즉, 실시예들에 따른 포인트 클라우드 데이터 수신 장치는 기하 정보 복호화부(또는 기하 정보 디코더) 및/또는 속성 정보 복호화부(또는 속성 정보 디코더)를 포함할 수 있다. 여기서, 기하 정보 비트스트림을 복호화하는 단계는 복원된 기하 정보를 생성할 수 있고, 속성 정보 비트스트림을 디코딩하는 단계는 복원된 속성 정보를 생성할 수 있다.
실시예들에 따르면, 포인트 클라우드 데이터를 디코딩하는 단계는, 포인트 클라우드 데이터의 속성 정보 비트스트림을 엔트로피 복호화하여 변환양자화된 속성정보를 생성하는 단계, 변환양자화된 속성정보를 복원된 기하정보에 맵핑하여 맵핑된 정보를 생성하는 단계, 맵핑된 정보를 역양자화하는 단계, 역양자화된 정보를 역변환하는 단계 및 역변환된 정보에 기초하여 속성 특성을 변환하는 단계를 포함할 수 있다.
여기서, 맵핑된 정보는 맵핑된 속성정보이거나 맵핑된 잔차 속성정보 중 적어도 하나를 포함할 수 있다. 여기서, 맵핑된 정보가 맵핑된 잔차 속성정보인 경우, 역변환하는 단계는 예측 속성 정보에 기초하여 맵핑된 잔차 속성정보를 역변환할 수 있다.
실시예들에 따르면, 역변환하는 단계는 맵핑된 정보를 포함하는 3차원 블록을 역변환하고, 역변환하는 단계는 3차원 블록의 제 1 축에 대하여 DCT 변환하는 단계, 제 1 축에 대하여 DCT 변환이 수행되어 생성된 계수 정보를 제 2 축에 대하여 DCT 변환하는 단계 및 제 2 축에 대하여 DCT 변환이 수행되어 생성된 계수 정보를 제 3 축에 대하여 DCT 변환하는 단계를 수행할 수 있다.
37002단계와 관련하여, 실시예들에 따른 포인트 클라우드 데이터 수신 장치는 디코딩된 포인트 클라우드 데이터를 렌더링할 수 있다.
전술한 각각의 파트, 모듈 또는 유닛은 메모리(또는 저장 유닛)에 저장된 연속된 수행과정들을 실행하는 소프트웨어, 프로세서, 하드웨어 파트일 수 있다. 전술한 실시예에 기술된 각 단계들은 프로세서, 소프트웨어, 하드웨어 파트들에 의해 수행될 수 있다. 전술한 실시예에 기술된 각 모듈/블락/유닛들은 프로세서, 소프트웨어, 하드웨어로서 동작할 수 있다. 또한, 실시예들이 제시하는 방법들은 코드로서 실행될 수 있다. 이 코드는 프로세서가 읽을 수 있는 저장매체에 쓰여질 수 있고, 따라서 장치(apparatus)가 제공하는 프로세서에 의해 읽혀질 수 있다.
설명의 편의를 위하여 각 도면을 나누어 설명하였으나, 각 도면에 서술되어 있는 실시 예들을 병합하여 새로운 실시 예를 구현하도록 설계하는 것도 가능하다. 그리고, 통상의 기술자의 필요에 따라, 이전에 설명된 실시 예들을 실행하기 위한 프로그램이 기록되어 있는 컴퓨터에서 판독 가능한 기록 매체를 설계하는 것도 실시예들의 권리범위에 속한다.
실시예들에 따른 장치 및 방법은 상술한 바와 같이 설명된 실시 예들의 구성과 방법이 한정되게 적용될 수 있는 것이 아니라, 상술한 실시 예들은 다양한 변형이 이루어질 수 있도록 각 실시 예들의 전부 또는 일부가 선택적으로 조합되어 구성될 수도 있다.
한편, 실시예들이 제안하는 방법을 네트워크 디바이스에 구비된, 프로세서가 읽을 수 있는 기록매체에, 프로세서가 읽을 수 있는 코드로서 구현하는 것이 가능하다. 프로세서가 읽을 수 있는 기록매체는 프로세서에 의해 읽혀질 수 있는 데이터가 저장되는 모든 종류의 기록장치를 포함한다. 프로세서가 읽을 수 있는 기록 매체의 예로는 ROM, RAM, CD-ROM, 자기 테이프, 플로피디스크, 광 데이터 저장장치 등이 있으며, 또한, 인터넷을 통한 전송 등과 같은 캐리어 웨이브의 형태로 구현되는 것도 포함한다. 또한, 프로세서가 읽을 수 있는 기록매체는 네트워크로 연결된 컴퓨터 시스템에 분산되어, 분산방식으로 프로세서가 읽을 수 있는 코드가 저장되고 실행될 수 있다.
또한, 이상에서는 실시예들의 바람직한 실시 예에 대하여 도시하고 설명하였지만, 실시예들은 상술한 특정의 실시 예에 한정되지 아니하며, 청구범위에서 청구하는 실시예들의 요지를 벗어남이 없이 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 다양한 변형실시가 가능한 것은 물론이고, 이러한 변형실시들은 실시예들의 기술적 사상이나 전망으로부터 개별적으로 이해돼서는 안 될 것이다.
실시예들의 사상이나 범위를 벗어나지 않고 실시예들에서 다양한 변경 및 변형이 가능함은 당업자에게 이해된다. 따라서, 실시예들은 첨부된 청구항 및 그 동등 범위 내에서 제공되는 실시예들의 변경 및 변형을 포함하는 것으로 의도된다.
본 명세서에서 장치 및 방법 발명이 모두 언급되고, 장치 및 방법 발명 모두의 설명은 서로 보완하여 적용될 수 있다.
이 문서에서 “/”와 “,”는 “및/또는”으로 해석된다. 예를 들어, “A/B”는 “A 및/또는 B”로 해석되고, “A, B”는 “A 및/또는 B”로 해석된다. 추가적으로, “A/B/C”는 “A, B 및/또는 C 중 적어도 하나”를 의미한다. 또한, “A, B, C”도 “A, B 및/또는 C 중 적어도 하나”를 의미한다. (In this document, the term “/” and “,” should be interpreted to indicate “and/or.” For instance, the expression “A/B” may mean “A and/or B.” Further, “A, B” may mean “A and/or B.” Further, “A/B/C” may mean “at least one of A, B, and/or C.” Also, “A/B/C” may mean “at least one of A, B, and/or C.”)
추가적으로, 이 문서에서 “또는”는 “및/또는”으로 해석된다. 예를 들어, “A 또는 B”은, 1) “A” 만을 의미하고, 2) “B” 만을 의미하거나, 3) “A 및 B”를 의미할 수 있다. 달리 표현하면, 본 문서의 “또는”은 “추가적으로 또는 대체적으로(additionally or alternatively)”를 의미할 수 있다. (Further, in the document, the term “or” should be interpreted to indicate “and/or.” For instance, the expression “A or B” may comprise 1) only A, 2) only B, and/or 3) both A and B. In other words, the term “or” in this document should be interpreted to indicate “additionally or alternatively.”)
실시예들의 다양한 엘리먼트들은 하드웨어, 소프트웨어, 펌웨어 또는 그것들의 조합에 의해 수행될 수 있다. 실시예들의 다양한 엘리먼트는 하드웨어 회로와 같은 싱글 칩 상에서 수행될 수 있다. 실시예들에 따라, 실시예들은 선택적으로 개별적인 침들 상에서 수행될 수 있다. 실시예들에 따라, 실시예들의 엘리먼트들 중 적어도 하나는 실시예들에 따른 동작을 수행하는 인스트럭션들을 포함하는 하나 또는 하나 이상의 프로세서 내에서 수행될 수 있다.
제1, 제2 등과 같은 용어는 실시예들의 다양한 엘리먼트들을 설명하기 위해서 사용된다. 이러한 용어는 실시예들의 엘리먼트들의 해석을 제한하지 않는다. 이러한 용어는 하나의 엘리먼트 및 다른 엘리먼트 간의 구별을 위해서 사용된다. 예를 들어, 제1 사용자 인풋 시그널은 제2사용자 인풋 시그널로 지칭될 수 있다. 이와 유사하게, 제2사용자 인풋 시그널은 제1사용자 인풋시그널로 지칭될 수 있다. 이러한 용어는 실시예들의 범위 내에서 해석될 수 있다. 제1사용자 인풋 시그널 및 제2사용자 인풋 시그널은 모두 사용자 인풋 시그널들이고, 문맥 상 명확하게 지칭하지 않는 한 같은 사용자 인풋 시그널들을 의미하지 않는다.
실시예들을 설명하기 위해 사용된 용어는 특정 실시예들을 설명하기 위한 목적으로 사용되고, 실시예들을 제한하기 위해서 의도되지 않는다. 실시예들의 설명 및 청구항에서 사용된 바와 같이, 문맥 상 명확하게 지칭하지 않는 한 단수는 복수를 포함하는 것으로 의도된다. 및/또는 표현은 용어 간의 모든 가능한 결합을 포함하는 의미로 사용된다. 포함한다 표현은 특징들, 수들, 단계들, 엘리먼트들, 및/또는 컴포넌트들이 존재하는 것을 설명하고, 추가적인 특징들, 수들, 단계들, 엘리먼트들, 및/또는 컴포넌트들을 포함하지 않는 것을 의미하지 않는다.
실시예들을 설명하기 위해 사용되는, ~인 경우, ~때 등의 조건 표현은 선택적인 경우로만 제한 해석되지 않는다. 특정 조건을 만족하는 때, 특정 조건에 대응하여 관련 동작을 수행하거나, 관련 정의가 해석되도록 의도되었다.
발명의 실시를 위한 최선의 형태에서 구체적으로 설명되었다.
본 발명의 사상이나 범위를 벗어나지 않고 본 발명에서 다양한 변경 및 변형이 가능함은 당업자에게 자명하다. 따라서, 본 발명은 첨부된 청구항 및 그 동등 범위 내에서 제공되는 본 발명의 변경 및 변형을 포함하는 것으로 의도된다.

Claims (20)

  1. 포인트 클라우드 데이터를 인코딩하는 단계; 및
    상기 포인트 클라우드 데이터를 포함하는 비트스트림을 전송하는 단계; 를 포함하는,
    포인트 클라우드 데이터 송신 방법.
  2. 제 1 항에 있어서, 상기 포인트 클라우드 데이터를 인코딩하는 단계는,
    상기 포인트 클라우드 데이터의 지오메트리 정보를 인코딩하는 단계; 및
    복원된 지오메트리 정보에 기초하여 상기 포인트 클라우드 데이터의 어트리뷰트 정보를 인코딩하는 단계; 를 포함하는,
    포인트 클라우드 데이터 송신 방법.
  3. 제 2 항에 있어서,
    상기 어트리뷰트 정보를 인코딩하는 단계는,
    상기 포인트 클라우드 데이터의 어트리뷰트 정보 및 상기 복원된 지오메트리 정보를 맵핑하는 단계;
    상기 맵핑된 어트리뷰트 정보를 포함하는 3차원 블록을 변환하는 단계; 및
    상기 변환된 어트리뷰트 정보를 양자화하는 단계; 를 포함하는,
    포인트 클라우드 데이터 송신 방법.
  4. 제 3 항에 있어서,
    상기 3차원 블록을 변환하는 단계는, 상기 맵핑된 어트리뷰트 정보 및 예측 어트리뷰트 정보를 차분하여 생성된 잔차 어트리뷰트 정보를 변환하는 단계를 포함하고,
    상기 양자화하는 단계는 상기 변환된 잔차 어트리뷰트 정보를 양자화하는 단계를 포함하고,
    상기 비트스트림은 상기 예측 어트리뷰트 정보와 관련된 예측 방식을 나타내는 정보를 포함하는,
    포인트 클라우드 데이터 송신 방법.
  5. 제 3 항에 있어서, 상기 3차원 블록을 변환하는 단계는,
    상기 3차원 블록의 데이터들을 제 1 축에 대하여 변환하는 단계;
    상기 제 1 축에 대하여 변환이 수행되어 생성된 계수 정보를 제 2 축에 대하여 변환하는 단계; 및
    상기 제 2 축에 대하여 변환이 수행되어 생성된 계수 정보를 제 3 축에 대하여 변환하는 단계; 를 포함하고,
    상기 제 1 축 내지 제 3 축에 대한 변환은 DCT 알고리즘에 기초하여 수행되고,
    상기 3차원 블록 내에 포함된 복셀이 복수의 맵핑된 어트리뷰트 정보를 포함하는 경우, 상기 3차원 블록의 제 1 축 내지 제 3 축에 대하여 DCT 변환하는 단계는,
    상기 복수의 맵핑된 어트리뷰트 정보의 평균 어트리뷰트 정보를 상기 복셀에 매칭하거나, 상기 복수의 맵핑된 어트리뷰트 정보 각각을 복수의 복셀에 매칭하는,
    포인트 클라우드 데이터 송신 방법.
  6. 제 4 항에 있어서, 상기 예측 어트리뷰트 정보를 생성하는 단계는,
    상기 예측 어트리뷰트 정보를 생성하기 위한 예측 모드를 결정하는 단계;
    상기 예측 모드에 따라 예측 여부를 결정하는 단계; 및
    상기 예측 모드 및 상기 예측 여부에 따라 상기 예측 어트리뷰트 정보를 생성하기 위하여 예측을 수행하는 단계; 를 포함하고,
    상기 예측을 수행하는 단계는, 상기 예측 어트리뷰트 정보에 대한 포인트와 인접한 복원된 어트리뷰트 정보에 기초하여 상기 예측 어트리뷰트 정보를 생성하거나, 상기 포인트 클라우드 데이터 내의 포인트들의 LOD에 기초하여 예측 어트리뷰트 정보를 생성하는 단계이고,
    상기 비트스트림은 상기 LOD 기초하여 상기 예측 어트리뷰트 정보를 생성할지 여부를 나타내는 정보를 더 포함하는,
    포인트 클라우드 데이터 송신 방법.
  7. 제 3 항에 있어서, 상기 3차원 블록을 변환하는 단계는,
    상기 변환의 유형을 결정하는 단계, 상기 변환 유형은 DCT, DST, SA-DCT 및 RAHT 중 적어도 하나임;
    상기 변환의 여부를 결정하는 단계; 및
    상기 결정된 변환의 유형 및 상기 결정된 변환의 여부에 기초하여 상기 3차원 블록의 변환을 수행하는 단계; 를 포함하고,
    상기 비트스트림은 상기 결정된 변환의 유형을 나타내는 정보 상기 변환의 여부를 나타내는 정보를 더 포함하는,
    포인트 클라우드 데이터 송신 방법.
  8. 포인트 클라우드 데이터를 포함하는 인코딩하는 인코더; 및
    상기 포인트 클라우드 데이터를 포함하는 비트스트림을 전송하는 트랜스미터; 를 포함하는,
    포인트 클라우드 데이터 송신 장치.
  9. 제 8 항에 있어서, 상기 포인트 클라우드 데이터를 인코딩하는 인코더는,
    상기 포인트 클라우드 데이터의 지오메트리 정보를 인코딩하는 지오메트리 부호화부; 및
    복원된 지오메트리 정보에 기초하여 상기 포인트 클라우드 데이터의 어트리뷰트 정보를 인코딩하는 어트리뷰트 부호화부; 를 포함하는,
    포인트 클라우드 데이터 송신 장치.
  10. 제 9항에 있어서, 상기 어트리뷰트 부호화부는,
    상기 포인트 클라우드 데이터의 어트리뷰트 정보 및 상기 복원된 지오메트리 정보를 맵핑하는 지오메트리 맵핑부;
    상기 맵핑된 어트리뷰트 정보를 포함하는 3차원 블록을 변환하는 어트리뷰트 변환부; 및
    상기 변환된 어트리뷰트 정보를 양자화하는 양자화부; 를 포함하는,
    포인트 클라우드 데이터 송신 장치.
  11. 제 10 항에 있어서,
    상기 어트리뷰트 변환부는 상기 맵핑된 어트리뷰트 정보 및 예측 어트리뷰트 정보를 차분하여 생성된 잔차 어트리뷰트 정보를 변환하고,
    상기 양자화부는 상기 변환된 잔차 어트리뷰트 정보를 양자화하고,
    상기 비트스트림은 상기 예측 어트리뷰트 정보와 관련된 예측 방식을 나타내는 정보를 포함하는,
    포인트 클라우드 데이터 송신 장치.
  12. 제 10 항에 있어서, 상기 어트리뷰트 변환부는,
    상기 3차원 블록의 데이터들을 제 1 축에 대하여 변환하고,
    상기 제 1 축에 대하여 변환이 수행되어 생성된 계수 정보를 제 2 축에 대하여 변환하고,
    상기 제 2 축에 대하여 변환이 수행되어 생성된 계수 정보를 제 3 축에 대하여 변환하고,
    상기 변환부는 DCT 알고리즘에 기초하여 상기 제 1 축 내지 제 3 축에 대하여 변환하고,
    상기 3차원 블록 내에 포함된 복셀이 복수의 맵핑된 어트리뷰트 정보를 포함하는 경우, 상기 어트리뷰트 변환부는 상기 복수의 맵핑된 어트리뷰트 정보의 평균 어트리뷰트 정보를 상기 복셀에 매칭하거나, 상기 복수의 맵핑된 어트리뷰트 정보 각각을 복수의 복셀에 매칭하는,
    포인트 클라우드 데이터 송신 장치.
  13. 제 11 항에 있어서, 상기 어트리뷰트 예측부는,
    상기 예측 어트리뷰트 정보를 생성하기 위한 예측 모드를 결정하는 예측모드 결정부;
    상기 예측 모드에 따라 예측 여부를 결정하는 예측여부 결정부; 및
    상기 예측 모드 및 상기 예측 여부에 따라 상기 예측 어트리뷰트 정보를 생성하기 위하여 예측을 수행하는 예측부; 를 포함하고,
    상기 예측부는, 상기 예측 어트리뷰트 정보에 대한 포인트와 인접한 복원된 어트리뷰트 정보에 기초하여 상기 예측 어트리뷰트 정보를 생성하거나, LOD 생성부에 의해 생성된 상기 포인트 클라우드 데이터 내의 포인트들의 LOD에 기초하여 예측 어트리뷰트 정보를 생성하고,
    상기 비트스트림은 상기 LOD 기초하여 상기 예측 어트리뷰트 정보를 생성할지 여부를 나타내는 정보를 더 포함하는,
    포인트 클라우드 데이터 송신 장치.
  14. 제 10 항에 있어서, 상기 어트리뷰트 변환부는,
    상기 변환의 유형을 결정하는 변환 유형 유도부, 상기 변환 유형은 DCT, DST, SA-DCT 및 RAHT중 하나임;
    상기 변환의 여부를 결정하는 변환 여부 선택부; 및
    상기 결정된 변환의 유형 및 상기 결정된 변환의 여부에 기초하여 상기 3차원 블록의 변환을 수행하는 변환 적용부; 를 포함하고,
    상기 비트스트림은 상기 결정된 변환의 유형을 나타내는 정보 상기 변환의 여부를 나타내는 정보를 더 포함하는,
    포인트 클라우드 데이터 송신 장치.
  15. 포인트 클라우드 데이터를 포함하는 비트스트림을 수신하는 단계;
    상기 포인트 클라우드 데이터를 디코딩하는 단계; 및
    상기 포인트 클라우드 데이터를 렌더링하는 단계; 를 포함하는,
    포인트 클라우드 데이터 수신 방법.
  16. 제 15항에 있어서, 상기 포인트 클라우드 데이터를 디코딩하는 단계는,
    상기 포인트 클라우드 데이터의 어트리뷰트 비트스트림을 엔트로피 복호화하여 변환양자화된 어트리뷰트 정보를 생성하는 단계;
    상기 변환양자화된 어트리뷰트 정보를 복원된 지오메트리 정보에 맵핑하여 맵핑된 정보를 생성하는 단계, 상기 맵핑된 정보는 맵핑된 어트리뷰트 정보 및 맵핑된 잔차 어트리뷰트 정보 중 적어도 하나를 포함함;
    상기 맵핑된 정보를 역양자화하는 단계;
    상기 역양자화된 정보를 역변환하는 단계; 및
    상기 역변환된 정보에 기초하여 어트리뷰트 특성을 변환하는 단계; 를 포함하고,
    상기 맵핑된 정보가 맵핑된 잔차 어트리뷰트 정보인 경우, 상기 역변환하는 단계는 예측 어트리뷰트 정보에 기초하여 상기 맵핑된 잔차 어트리뷰트 정보를 역변환하고,
    상기 역변환하는 단계는 상기 맵핑된 정보를 포함하는 3차원 블록을 역변환하고, 상기 역변환하는 단계는 :
    상기 3차원 블록의 제 1 축에 대하여 IDCT (Inverse DCT) 변환하는 단계;
    상기 제 1 축에 대하여 IDCT (Inverse DCT) 변환이 수행되어 생성된 계수 정보를 제 2 축에 대하여 IDCT (Inverse DCT) 변환하는 단계; 및
    상기 제 2 축에 대하여 IDCT (Inverse DCT) 변환이 수행되어 생성된 계수 정보를 제 3 축에 대하여 IDCT (Inverse DCT) 변환하는 단계; 를 포함하는,
    포인트 클라우드 데이터 수신 방법.
  17. 제 16항에 있어서,
    상기 비트스트림은 상기 역변환의 유형을 나타내는 정보, 상기 역변환의 수행할지 여부를 나타내는 정보, 상기 예측 어트리뷰트 정보와 관련된 예측 방식을 나타내는 정보 및 LOD 기초하여 상기 예측 어트리뷰트 정보를 생성할지 여부를 나타내는 정보를 포함하는,
    포인트 클라우드 데이터 수신 방법.
  18. 포인트 클라우드 데이터를 포함하는 비트스트림을 수신하는 수신부;
    상기 포인트 클라우드 데이터를 디코딩하는 디코더; 및
    상기 포인트 클라우드 데이터를 렌더링하는 렌더러; 를 포함하는,
    포인트 클라우드 데이터 수신 장치.
  19. 제 18항에 있어서, 상기 디코더는,
    상기 포인트 클라우드 데이터의 어트리뷰트 비트스트림을 엔트로피 복호화하여 변환양자화된 어트리뷰트 정보를 생성하는 어트리뷰트 엔트로피 복호화부;
    상기 변환양자화된 어트리뷰트 정보를 복원된 지오메트리 정보에 맵핑하여 맵핑된 정보를 생성하는 맵핑부, 상기 맵핑된 정보는 맵핑된 어트리뷰트 정보 및 맵핑된 잔차 어트리뷰트 정보 중 적어도 하나를 포함함;
    상기 맵핑된 정보를 역양자화하는 역양자화부;
    상기 역양자화된 정보를 역변환하는 역변환부; 및
    상기 역변환된 정보에 기초하여 어트리뷰트 특성을 변환하는 어트리뷰트 특성 변환부; 를 포함하고,
    상기 맵핑된 정보가 맵핑된 잔차 어트리뷰트 정보인 경우, 상기 역변환부는 예측 어트리뷰트 정보에 기초하여 상기 맵핑된 잔차 어트리뷰트 정보를 역변환하고,
    상기 역변환부는 상기 맵핑된 정보를 포함하는 3차원 블록을 역변환하고, 상기 역변환부는,
    상기 3차원 블록의 제 1 축에 대하여 IDCT (Inverse DCT) 변환하고, 상기 제 1 축에 대하여 IDCT (Inverse DCT) 변환이 수행되어 생성된 계수 정보를 제 2 축에 대하여 IDCT (Inverse DCT) 변환하고, 상기 제 2 축에 대하여 IDCT (Inverse DCT) 변환이 수행되어 생성된 계수 정보를 제 3 축에 대하여 IDCT (Inverse DCT) 변환하는,
    포인트 클라우드 데이터 수신 장치.
  20. 제 19항에 있어서,
    상기 비트스트림은 상기 역변환의 유형을 나타내는 정보, 상기 역변환의 수행할지 여부를 나타내는 정보, 상기 예측 어트리뷰트 정보와 관련된 예측 방식을 나타내는 정보 및 LOD 기초하여 상기 예측 어트리뷰트 정보를 생성할지 여부를 나타내는 정보를 포함하는,
    포인트 클라우드 데이터 수신 장치.
PCT/KR2020/003322 2019-03-15 2020-03-10 포인트 클라우드 데이터 송신 장치, 포인트 클라우드 데이터 송신 방법, 포인트 클라우드 데이터 수신 장치 및 포인트 클라우드 데이터 수신 방법 WO2020189943A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2019-0029752 2019-03-15
KR20190029752 2019-03-15

Publications (1)

Publication Number Publication Date
WO2020189943A1 true WO2020189943A1 (ko) 2020-09-24

Family

ID=72520379

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/003322 WO2020189943A1 (ko) 2019-03-15 2020-03-10 포인트 클라우드 데이터 송신 장치, 포인트 클라우드 데이터 송신 방법, 포인트 클라우드 데이터 수신 장치 및 포인트 클라우드 데이터 수신 방법

Country Status (1)

Country Link
WO (1) WO2020189943A1 (ko)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112565795A (zh) * 2020-12-03 2021-03-26 西安电子科技大学 一种点云几何信息编码及解码方法
CN112565734A (zh) * 2020-12-03 2021-03-26 西安电子科技大学 基于混合编码的点云属性编解码方法及装置
US20210407145A1 (en) * 2020-06-30 2021-12-30 Electronics And Telecommunications Research Institute Method of compressing occupancy map of three-dimensional point cloud
WO2022092891A1 (ko) * 2020-10-30 2022-05-05 엘지전자 주식회사 포인트 클라우드 데이터 송신 장치, 포인트 클라우드 데이터 송신 방법, 포인트 클라우드 데이터 수신 장치 및 포인트 클라우드 데이터 수신 방법
US20220191520A1 (en) * 2019-03-19 2022-06-16 Sony Group Corporation Information processing apparatus and method
WO2022166957A1 (zh) * 2021-02-08 2022-08-11 荣耀终端有限公司 点云数据的预处理方法及点云几何编解码方法、装置
WO2023003349A1 (ko) * 2021-07-20 2023-01-26 엘지전자 주식회사 포인트 클라우드 데이터 송신 장치, 포인트 클라우드 데이터 송신 방법, 포인트 클라우드 데이터 수신 장치 및 포인트 클라우드 데이터 수신 방법
WO2023025024A1 (zh) * 2021-08-23 2023-03-02 维沃移动通信有限公司 点云属性编码方法、点云属性解码方法及终端

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180087348A (ko) * 2016-01-22 2018-08-01 미쓰비시덴키 가부시키가이샤 점군을 압축하는 방법
US20190069000A1 (en) * 2017-08-30 2019-02-28 Samsung Electronics Co., Ltd. Method and apparatus of point-cloud streaming
US20190080483A1 (en) * 2017-09-14 2019-03-14 Apple Inc. Point Cloud Compression
US20190081638A1 (en) * 2017-09-14 2019-03-14 Apple Inc. Hierarchical point cloud compression

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180087348A (ko) * 2016-01-22 2018-08-01 미쓰비시덴키 가부시키가이샤 점군을 압축하는 방법
US20190069000A1 (en) * 2017-08-30 2019-02-28 Samsung Electronics Co., Ltd. Method and apparatus of point-cloud streaming
US20190080483A1 (en) * 2017-09-14 2019-03-14 Apple Inc. Point Cloud Compression
US20190081638A1 (en) * 2017-09-14 2019-03-14 Apple Inc. Hierarchical point cloud compression

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KHALED MAMMOU ET AL: "G-PCC codec description v2", ISO/IEC JTC1/SC29/WG11 N18189, 1 January 2019 (2019-01-01), XP055686871, Retrieved from the Internet <URL:https://mpeg.chiariglione.org/sites/default/files/files/standards/parts/docs/w18189.zip> [retrieved on 20200611] *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220191520A1 (en) * 2019-03-19 2022-06-16 Sony Group Corporation Information processing apparatus and method
US11943457B2 (en) * 2019-03-19 2024-03-26 Sony Group Corporation Information processing apparatus and method
US20210407145A1 (en) * 2020-06-30 2021-12-30 Electronics And Telecommunications Research Institute Method of compressing occupancy map of three-dimensional point cloud
US11954891B2 (en) * 2020-06-30 2024-04-09 Electronics And Telecommunications Research Institute Method of compressing occupancy map of three-dimensional point cloud
WO2022092891A1 (ko) * 2020-10-30 2022-05-05 엘지전자 주식회사 포인트 클라우드 데이터 송신 장치, 포인트 클라우드 데이터 송신 방법, 포인트 클라우드 데이터 수신 장치 및 포인트 클라우드 데이터 수신 방법
CN112565795A (zh) * 2020-12-03 2021-03-26 西安电子科技大学 一种点云几何信息编码及解码方法
CN112565734A (zh) * 2020-12-03 2021-03-26 西安电子科技大学 基于混合编码的点云属性编解码方法及装置
CN112565734B (zh) * 2020-12-03 2022-04-19 西安电子科技大学 基于混合编码的点云属性编解码方法及装置
CN112565795B (zh) * 2020-12-03 2022-10-04 西安电子科技大学 一种点云几何信息编码及解码方法
WO2022166957A1 (zh) * 2021-02-08 2022-08-11 荣耀终端有限公司 点云数据的预处理方法及点云几何编解码方法、装置
WO2023003349A1 (ko) * 2021-07-20 2023-01-26 엘지전자 주식회사 포인트 클라우드 데이터 송신 장치, 포인트 클라우드 데이터 송신 방법, 포인트 클라우드 데이터 수신 장치 및 포인트 클라우드 데이터 수신 방법
WO2023025024A1 (zh) * 2021-08-23 2023-03-02 维沃移动通信有限公司 点云属性编码方法、点云属性解码方法及终端

Similar Documents

Publication Publication Date Title
WO2020190075A1 (ko) 포인트 클라우드 데이터 송신 장치, 포인트 클라우드 데이터 송신 방법, 포인트 클라우드 데이터 수신 장치 및 포인트 클라우드 데이터 수신 방법
WO2021066615A1 (en) Point cloud data transmission device, point cloud data transmission method, point cloud data reception device, and point cloud data reception method
WO2020190093A1 (ko) 포인트 클라우드 데이터 송신 장치, 포인트 클라우드 데이터 송신 방법, 포인트 클라우드 데이터 수신 장치 및 포인트 클라우드 데이터 수신 방법
WO2021066312A1 (ko) 포인트 클라우드 데이터 송신 장치, 포인트 클라우드 데이터 송신 방법, 포인트 클라우드 데이터 수신 장치 및 포인트 클라우드 데이터 수신 방법
WO2020189976A1 (ko) 포인트 클라우드 데이터 처리 장치 및 방법
WO2021141346A1 (ko) 포인트 클라우드 데이터 전송 장치, 전송 방법, 처리 장치 및 처리 방법
WO2020242244A1 (ko) 포인트 클라우드 데이터 처리 방법 및 장치
WO2020189943A1 (ko) 포인트 클라우드 데이터 송신 장치, 포인트 클라우드 데이터 송신 방법, 포인트 클라우드 데이터 수신 장치 및 포인트 클라우드 데이터 수신 방법
WO2021025251A1 (ko) 포인트 클라우드 데이터 송신 장치, 포인트 클라우드 데이터 송신 방법, 포인트 클라우드 데이터 수신 장치 및 포인트 클라우드 데이터 수신 방법
WO2021002604A1 (ko) 포인트 클라우드 데이터 처리 방법 및 장치
WO2021049758A1 (ko) 포인트 클라우드 데이터 송신 장치, 포인트 클라우드 데이터 송신 방법, 포인트 클라우드 데이터 수신 장치 및 포인트 클라우드 데이터 수신 방법
WO2020197228A1 (ko) 포인트 클라우드 데이터 송신 장치, 포인트 클라우드 데이터 송신 방법, 포인트 클라우드 데이터 수신 장치 및 포인트 클라우드 데이터 수신 방법
WO2020190090A1 (ko) 포인트 클라우드 데이터 전송 장치, 포인트 클라우드 데이터 전송 방법, 포인트 클라우드 데이터 수신 장치 및 포인트 클라우드 데이터 수신 방법
WO2020197086A1 (ko) 포인트 클라우드 데이터 송신 장치, 포인트 클라우드 데이터 송신 방법, 포인트 클라우드 데이터 수신 장치 및 포인트 클라우드 데이터 수신 방법
WO2020246689A1 (ko) 포인트 클라우드 데이터 전송 장치, 포인트 클라우드 데이터 전송 방법, 포인트 클라우드 데이터 수신 장치 및 포인트 클라우드 데이터 수신 방법
WO2020256308A1 (ko) 포인트 클라우드 데이터 처리 장치 및 방법
WO2020262831A1 (ko) 포인트 클라우드 데이터 처리 장치 및 방법
WO2021206291A1 (ko) 포인트 클라우드 데이터 전송 장치, 전송 방법, 처리 장치 및 처리 방법
WO2021002594A1 (ko) 포인트 클라우드 데이터 처리 장치 및 방법
WO2021002592A1 (ko) 포인트 클라우드 데이터 송신 장치, 포인트 클라우드 데이터 송신 방법, 포인트 클라우드 데이터 수신 장치 및 포인트 클라우드 데이터 수신 방법
WO2021029511A1 (ko) 포인트 클라우드 데이터 전송 장치, 포인트 클라우드 데이터 전송 방법, 포인트 클라우드 데이터 수신 장치 및 포인트 클라우드 데이터 수신 방법
WO2021002558A1 (ko) 포인트 클라우드 데이터 송신 장치, 포인트 클라우드 데이터 송신 방법, 포인트 클라우드 데이터 수신 장치 및 포인트 클라우드 데이터 수신 방법.
WO2022015006A1 (ko) 포인트 클라우드 데이터 송신 장치, 포인트 클라우드 데이터 송신 방법, 포인트 클라우드 데이터 수신 장치 및 포인트 클라우드 데이터 수신 방법
WO2021242064A1 (ko) 포인트 클라우드 데이터 송신 장치, 포인트 클라우드 데이터 송신 방법, 포인트 클라우드 데이터 수신 장치 및 포인트 클라우드 데이터 수신 방법
WO2021215811A1 (ko) 포인트 클라우드 데이터 송신 장치, 포인트 클라우드 데이터 송신 방법, 포인트 클라우드 데이터 수신 장치 및 포인트 클라우드 데이터 수신 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20773806

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20773806

Country of ref document: EP

Kind code of ref document: A1