WO2022092785A1 - 이차전지 제조방법 및 이차전지 - Google Patents

이차전지 제조방법 및 이차전지 Download PDF

Info

Publication number
WO2022092785A1
WO2022092785A1 PCT/KR2021/015150 KR2021015150W WO2022092785A1 WO 2022092785 A1 WO2022092785 A1 WO 2022092785A1 KR 2021015150 W KR2021015150 W KR 2021015150W WO 2022092785 A1 WO2022092785 A1 WO 2022092785A1
Authority
WO
WIPO (PCT)
Prior art keywords
cutting
secondary battery
pouch
forming
shape
Prior art date
Application number
PCT/KR2021/015150
Other languages
English (en)
French (fr)
Inventor
권현정
김현태
박태순
Original Assignee
주식회사 엘지에너지솔루션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지에너지솔루션 filed Critical 주식회사 엘지에너지솔루션
Priority to CN202180031195.4A priority Critical patent/CN115485914A/zh
Priority to JP2023508580A priority patent/JP7475770B2/ja
Priority to EP21886779.4A priority patent/EP4131589A1/en
Priority to US17/923,416 priority patent/US20230307694A1/en
Publication of WO2022092785A1 publication Critical patent/WO2022092785A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/116Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/049Processes for forming or storing electrodes in the battery container
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/102Primary casings, jackets or wrappings of a single cell or a single battery characterised by their shape or physical structure
    • H01M50/105Pouches or flexible bags
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/116Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material
    • H01M50/124Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material having a layered structure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a secondary battery manufacturing method and secondary battery.
  • Secondary batteries unlike primary batteries, can be recharged, and have been widely researched and developed in recent years due to their small size and large capacity. As technology development and demand for mobile devices increase, the demand for secondary batteries as an energy source is rapidly increasing.
  • the secondary battery is classified into a coin-type battery, a cylindrical battery, a prismatic battery, and a pouch-type battery according to the shape of the battery case.
  • an electrode assembly mounted inside a battery case is a charging/discharging power generating element having a stacked structure of an electrode and a separator.
  • the electrode assembly is a jelly-roll type in which a separator is interposed between a sheet-type positive electrode and a negative electrode coated with an active material, and a plurality of positive and negative electrodes are sequentially stacked with a separator interposed therebetween. It can be roughly classified into a stacked type and a stacked/folding type in which the stacked unit cells are wound with a long-length separation film.
  • a pouch-type battery having a structure in which a stack/folding-type electrode assembly is embedded in a pouch-type battery case of an aluminum laminate sheet is of great interest for reasons of low manufacturing cost, small weight, easy shape deformation, etc. is being collected and its usage is gradually increasing.
  • Patent Document Korean Patent Laid-Open No. 10-2012-0067550
  • One aspect of the present invention is to provide a secondary battery manufacturing method and secondary battery capable of preventing cracks occurring in the bending section during pouch forming of a bent pouch-type battery and improving the remaining amount of aluminum is for
  • a secondary battery manufacturing method comprises: a cutting process of forming a cutting part by slit-cutting a pouch part in an arc shape; a forming process of forming a accommodating part in a bent form so that the bent electrode assembly is accommodated in a pouch after the cutting process; and an accommodating process of accommodating the electrode assembly in the accommodating part of the pouch after the forming process.
  • the secondary battery according to the embodiment of the present invention may be a secondary battery manufactured by the method for manufacturing the secondary battery according to the embodiment of the present invention.
  • an arc slit cut is performed in a section adjacent to the bent-shaped receiving part in the pouch to relieve stress generated in the bent-shaped section and cracks and can improve the aluminum residual amount.
  • FIG. 1 is a plan view illustrating a cutting process in a method for manufacturing a secondary battery according to an embodiment of the present invention.
  • FIG. 2 is a plan view illustrating a forming process in a method for manufacturing a secondary battery according to an embodiment of the present invention.
  • FIG 3 is a plan view illustrating a receiving process in a method for manufacturing a secondary battery according to an embodiment of the present invention.
  • FIG. 4 is a perspective view illustrating a sealing process in a method for manufacturing a secondary battery according to an embodiment of the present invention.
  • FIG. 5 is a plan view illustrating a first example of a cutting part formed in a pouch in a method for manufacturing a secondary battery according to an embodiment of the present invention.
  • FIG. 6 is a plan view illustrating a second example of a cutting part formed in a pouch in the method for manufacturing a secondary battery according to an embodiment of the present invention.
  • FIG. 7 is a plan view illustrating a third example of a cutting part formed in a pouch in the method for manufacturing a secondary battery according to an embodiment of the present invention.
  • FIG. 8 is a plan view showing reference marks for each part of a pouch that has undergone a cutting process and a forming process in the secondary battery manufacturing method according to an embodiment of the present invention.
  • FIG. 9 is an image illustrating a thinning ratio of the P6 portion of the pouch shown in FIG. 8 .
  • FIG. 1 is a plan view showing a cutting process in a secondary battery manufacturing method according to an embodiment of the present invention
  • FIG. 2 is a plan view showing a forming process in a secondary battery manufacturing method according to an embodiment of the present invention
  • FIG. It is a plan view showing the receiving process in the secondary battery manufacturing method according to the embodiment
  • FIG. 4 is a perspective view showing the sealing process in the secondary battery manufacturing method according to the embodiment of the present invention.
  • the secondary battery manufacturing method includes a forming process of forming an accommodating part 112 in a pouch 110 , an inner corner part 113 in the accommodating part 112 , and Manufacturing the secondary battery 100, including a cutting process of forming a cutting part 111 for cutting the adjacent pouch 110, and a receiving process of accommodating the electrode assembly 120 in the pouch 110 after the forming process can do.
  • the secondary battery manufacturing method according to the embodiment of the present invention may further include a sealing process for sealing the pouch (110).
  • a part of the pouch 110 is slit-cut in an arc shape to form a cutting part 111 .
  • the cutting part 111 may be formed in consideration of the position where the receiving part 112 to accommodate the electrode assembly 120 will be formed in a subsequent process. That is, in the cutting process, the cutting portion 111 may be formed in the portion of the pouch 110 adjacent to the inner corner portion 113 in the bent accommodating portion 112 .
  • the cutting process may form the cutting portion 111 in the form of an arc convex toward the inner corner portion 113 of the pouch 110 accommodating portion 112 .
  • the cutting process may form the cutting part 111 as an arc-shaped cutting line in a plan view.
  • FIG. 5 is a plan view showing a first example of a cutting part formed in a pouch in the method for manufacturing a secondary battery according to an embodiment of the present invention
  • FIG. 6 is a plan view showing a cutting part formed in the pouch in the secondary battery manufacturing method according to an embodiment of the present invention
  • It is a plan view showing a second example
  • FIG. 7 is a plan view showing a third example of a cutting part formed in a pouch in the method for manufacturing a secondary battery according to an embodiment of the present invention.
  • the arc-shaped cutting line of the cutting unit 111 may be formed in an arc shape of, for example, 60 to 285° (degrees).
  • the cutting process can effectively improve pouch thinning by forming the arc-shaped cutting line of the cutting unit 111 at 60 degrees or more, and forming the arc-shaped cutting line at 285 degrees or less to form the arc-shaped cutting line of the pouch 110 ), the pouch thinning effect can be realized by preventing the part from being torn or separated.
  • the arc-shaped cutting line of the cutting unit 111 may be specifically formed in, for example, an arc shape of 120 to 210 degrees.
  • the radius of the arc of the cutting part 111 may be, for example, 4 to 12 mm.
  • the cutting process forms the angle t1 of the arc-shaped cutting line of the cutting part 111 to 120 degrees as the first example, or when referring to FIG. 6, the cutting part ( 111) to form an angle t2 of the arc-shaped cutting line of 180 degrees as a second example, or to form an angle t3 of an arc-shaped cutting line of the cutting part 111 to 210 degrees when referring to FIG. 7 as a third example.
  • the cutting part ( 111) to form an angle t2 of the arc-shaped cutting line of 180 degrees as a second example or to form an angle t3 of an arc-shaped cutting line of the cutting part 111 to 210 degrees when referring to FIG. 7 as a third example.
  • the cutting part 111 may be formed to be spaced apart from the receiving part 112 by a predetermined interval. That is, the cutting process may be formed to be spaced apart from each other by a predetermined interval in consideration of the position of the receiving part 112 to be formed in the subsequent forming process.
  • the interval b between the cutting part 111 and the receiving part 112 may be formed to be 4 to 12 mm, for example.
  • the pouch 110 may include an aluminum (Al) material.
  • the pouch 110 may include an aluminum layer and a resin layer.
  • the bent shape receiving part 112 may be formed in the pouch 110 to accommodate the bent electrode assembly 120 after the cutting process.
  • the accommodating part 112 may be formed as, for example, a cup-shaped groove.
  • the accommodating part 112 may be formed in an upwardly open shape.
  • the 'bent shape' does not mean that the electrode assembly 120 and the receiving part 112 are bent by an external force, but may mean, for example, a vertically extended shape.
  • the forming process may form the receiving part 112 in a shape corresponding to the electrode assembly 120 .
  • the receiving portion 112 may be formed by pressing the pouch 110 from the top to the bottom through a punch.
  • the electrode assembly 120 may be formed in a shape bent at a right angle.
  • the electrode assembly 120 may be formed to be bent in an “L” shape.
  • the forming process may form the receiving portion 112 in a bent shape at a right angle.
  • the forming process may form the accommodating part 112 in a bent shape in an “L” shape.
  • the forming process may form the inner corner portion 113 of the pouch 110 in a shape recessed in the direction of the receiving portion 112 in a plan view.
  • the inner corner portion 113 may be formed, for example, in a shape recessed in a round shape.
  • the electrode assembly 120 is a power generating element capable of charging and discharging, and forms a structure in which electrodes and separators are assembled and alternately stacked.
  • the electrode may include an anode and a cathode.
  • the separator separates the anode and the cathode to electrically insulate them.
  • the separator is made of an insulating material and is alternately stacked with anode and cathode.
  • the separator is a multilayer film made of, for example, microporous polyethylene, polypropylene, or a combination thereof, or polyvinylidene fluoride, polyethylene oxide, polyacrylonitrile or polyvinylidene fluoride hexafluoropropylene It may be a polymer film for a solid polymer electrolyte such as a copolymer or for a gel polymer electrolyte.
  • the electrode lead 130 may be connected to the electrode assembly 120 to be electrically connected to the outside. That is, the electrode lead 130 may be connected to an electrode of the electrode assembly 120 to electrically connect the electrode to an external terminal.
  • the electrode assembly 120 may be accommodated in the receiving part 112 of the pouch 110 after the forming process.
  • the receiving process may cover the upper portion of the receiving portion 112 in which the electrode assembly 120 is accommodated. That is, the receiving part 112 formed on one side of the pouch 110 centered on the folding line F of the pouch 110 and the other side of the pouch 110 centered on the folding line F of the pouch 110 . It can be folded and covered.
  • the inner corner of the electrode assembly 120 may be formed in a shape corresponding to the inner corner portion 113 formed in a recessed shape in the pouch 110 . That is, the inner corner portion of the electrode assembly 120 may be formed in a shape corresponding to the inner corner portion 113 formed in the recessed shape of the pouch 110 .
  • the pouch 110 may be sealed by sealing the outer peripheral surface of the pouch 110 .
  • the sealing part may be formed by applying heat along the edge of the receiving part 112 of the pouch 110 and pressing it.
  • the sealing process may include a removal step of cutting and removing the remaining parts except for the receiving part 112 and the sealing part.
  • the removing step may include the cutting portion 111 of the pouch 110 to be removed.
  • the pouch 110 of the bent pouch-type battery when the pouch 110 of the bent pouch-type battery is formed, the pouch 110 is bent to the bent form.
  • the stress generated in the section (A) adjacent to the bent shape receiving section 112 is eliminated to prevent cracks, , it is possible to improve the remaining amount of aluminum.
  • the secondary battery according to the embodiment of the present invention may be a product manufactured by the secondary battery manufacturing method according to the embodiment of the present invention configured as described above.
  • a portion of the pouch 110 ′ was slit-cut in an arc shape to form a cutting portion 111 ′, and a bent receiving portion 112 was formed.
  • the cutting portion 111 ′ was formed in the portion of the pouch 110 ′ adjacent to the inner corner portion of the bent accommodating portion 112 .
  • the cutting portion 111 ′ was formed to be an arc having an angle t1 of 120 degrees.
  • the cutting part 111' was formed so that the radius R of the cutting part 111' was 8 mm, and the separation distance b between the cutting part 111' and the receiving part 112 was 8 mm.
  • FIG. 8 is a plan view showing reference marks for each part of the pouch that has undergone the cutting process and the forming process in the secondary battery manufacturing method according to an embodiment of the present invention, and FIG. It is an image showing the ratio.

Abstract

본 발명은 이차전지 제조방법 및 이차전지에 관한 것으로, 본 발명에 따른 이차전지 제조방법은 파우치 부분을 아크 형태로 슬릿(Slit) 커팅하여 커팅부를 형성시키는 커팅공정; 상기 커팅 공정을 거친 후 파우치에 절곡된 형태의 전극 조립체가 수용되도록 절곡된 형태의 수용부를 형성시키는 포밍공정; 상기 포밍공정 후에 상기 파우치의 수용부에 상기 전극 조립체를 수용시키는 수용공정을 포함하고, 상기 커팅공정은 절곡된 형태의 상기 수용부에서 내측 코너부와 인접된 파우치 부분에 상기 커팅부를 형성시킨다.

Description

이차전지 제조방법 및 이차전지
관련출원과의 상호인용
본 출원은 2020년 10월 27일자 한국특허출원 제10-2020-0140760호에 기초한 우선권의 이익을 주장하며, 해당 한국특허출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
기술분야
본 발명은 이차전지 제조방법 및 이차전지에 관한 것이다.
이차 전지는 일차 전지와는 달리 재충전이 가능하고, 또 소형 및 대용량화 가능성으로 인해 근래에 많이 연구 개발되고 있다. 모바일 기기에 대한 기술 개발과 수요가 증가함에 따라 에너지원으로서의 이차 전지의 수요가 급격하게 증가하고 있다.
이차 전지는 전지 케이스의 형상에 따라, 코인형 전지, 원통형 전지, 각형 전지, 및 파우치형 전지로 분류된다. 이차 전지에서 전지 케이스 내부에 장착되는 전극 조립체는 전극 및 분리막의 적층 구조로 이루어진 충방전이 가능한 발전소자이다.
또한, 전극 조립체는 활물질이 도포된 시트형의 양극과 음극 사이에 분리막을 개재(介在)하여 권취한 젤리 롤(Jelly-roll)형, 다수의 양극과 음극을 분리막이 개재된 상태에서 순차적으로 적층한 스택형, 및 스택형의 단위 셀들을 긴 길이의 분리 필름으로 권취한 스택/폴딩형으로 대략 분류할 수 있다.
최근에는, 스택/폴딩형 전극조립체를 알루미늄 라미네이트 시트의 파우치(Pouch)형 전지 케이스(Case)에 내장한 구조의 파우치형 전지가, 낮은 제조비, 작은 중량, 용이한 형태 변형 등을 이유로, 많은 관심을 모으고 있고 또한 그것의 사용량이 점차적으로 증가하고 있다.
L형태 파우치형 전지의 경우 파우치 포밍 시 L형태(shape) 구간에서 파우치 크랙(Crack)이 발생하고, 알루미늄(AL) 잔존량 기준을 만족 못하는 경우가 발생되어 왔다.
[선행기술문헌] (특허문헌) 한국 공개특허 제10-2012-0067550호
본 발명의 하나의 관점은 절곡된 형태의 파우치형 전지의 파우치 포밍(Forming) 시, 절곡 구간에 발생되는 크랙을 방지하고, 알루미늄 잔존량을 개선시킬 수 있는 이차전지 제조방법 및 이차전지를 제공하기 위한 것이다
본 발명의 실시예에 따른 이차전지 제조방법은 파우치 부분을 아크 형태로 슬릿(Slit) 커팅하여 커팅부를 형성시키는 커팅공정; 상기 커팅 공정을 거친 후 파우치에 절곡된 형태의 전극 조립체가 수용되도록 절곡된 형태의 수용부를 형성시키는 포밍공정; 상기 포밍공정 후에 상기 파우치의 수용부에 상기 전극 조립체를 수용시키는 수용공정을 포함하고, 상기 커팅공정은 절곡된 형태의 상기 수용부에서 내측 코너부와 인접된 파우치 부분에 상기 커팅부를 형성시킬 수 있다.
한편, 본 발명의 실시예에 따른 이차전지는, 본 발명의 실시예에 따른 이차전지 제조방법을 제조된 이차전지일 수 있다.
본 발명에 따르면, 절곡 형태 파우치형 전지의 파우치 포밍(Forming) 시, 파우치에서 절곡 형태의 수용부 인접 구간에 아크 슬릿 컷(Arc slit cut)을 실시하여 절곡 형태 구간에 발생되는 응력을 해소하여 크랙을 방지하고, 알루미늄 잔존량을 개선시킬 수 있다.
도 1은 본 발명의 실시예에 따른 이차전지 제조방법에서 커팅공정을 나타낸 평면도이다.
도 2는 본 발명의 실시예에 따른 이차전지 제조방법에서 포밍공정을 나타낸 평면도이다.
도 3은 본 발명의 실시예에 따른 이차전지 제조방법에서 수용공정을 나타낸 평면도이다.
도 4는 본 발명의 실시예에 따른 이차전지 제조방법에서 실링공정을 나타낸 사시도이다.
도 5는 본 발명의 실시예에 따른 이차전지 제조방법에서 파우치에 형성되는 커팅부의 제 1예를 나타난 평면도이다.
도 6은 본 발명의 실시예에 따른 이차전지 제조방법에서 파우치에 형성되는 커팅부의 제 2예를 나타난 평면도이다.
도 7은 본 발명의 실시예에 따른 이차전지 제조방법에서 파우치에 형성되는 커팅부의 제 3예를 나타난 평면도이다.
도 8은 본 발명의 실시예에 따른 이차전지 제조방법에서 커팅공정 및 포밍공정을 거친 파우치의 각 부분을 참조 표시한 평면도이다.
도 9는 도 8에 도시된 파우치의 P6 부분의 씨닝(Thinning) 비율(ratio)을 나타낸 이미지이다.
본 발명의 목적, 특정한 장점들 및 신규한 특징들은 첨부된 도면들과 연관되어지는 이하의 상세한 설명과 바람직한 실시예들로부터 더욱 명백해질 것이다. 본 명세서에서 각 도면의 구성요소들에 참조번호를 부가함에 있어서, 동일한 구성 요소들에 한해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 번호를 가지도록 하고 있음에 유의하여야 한다. 또한, 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. 그리고, 본 발명을 설명함에 있어서, 본 발명의 요지를 불필요하게 흐릴 수 있는 관련된 공지 기술에 대한 상세한 설명은 생략하도록 한다.
실시예에 따른 이차전지 제조방법
도 1은 본 발명의 실시예에 따른 이차전지 제조방법에서 커팅공정을 나타낸 평면도이고, 도 2는 본 발명의 실시예에 따른 이차전지 제조방법에서 포밍공정을 나타낸 평면도이며, 도 3은 본 발명의 실시예에 따른 이차전지 제조방법에서 수용공정을 나타낸 평면도이며, 도 4는 본 발명의 실시예에 따른 이차전지 제조방법에서 실링공정을 나타낸 사시도이다.
도 1 내지 도 4를 참고하면, 본 발명의 실시예에 따른 이차전지 제조방법은 파우치(110)에 수용부(112)를 형성시키는 포밍공정, 수용부(112)에서 내측 코너부(113)와 인접된 파우치(110) 부분을 커팅하는 커팅부(111)를 형성시키는 커팅공정, 및 포밍공정 후에 파우치(110)에 전극 조립체(120)를 수용시키는 수용공정을 포함하여 이차전지(100)를 제조할 수 있다. 또한, 본 발명의 실시예에 따른 이차전지 제조방법은 파우치(110)를 밀봉시키는 실링공정을 더 포함할 수 있다.
이하에서, 본 발명의 실시예인 이차전지 제조방법에 대해 보다 상세히 설명하기로 한다.
도 1 및 도 2를 참고하면, 커팅공정은 파우치(110)의 일부를 아크 형태로 슬릿(Slit) 커팅하여 커팅부(111)를 형성시킨다.
또한, 커팅공정은 이후 공정에서 전극 조립체(120)를 수용시킬 수용부(112)가 형성될 위치를 감안하여 커팅부(111)를 형성시킬 수 있다. 즉, 커팅 공정은 절곡된 형태의 수용부(112)에서 내측 코너부(113)와 인접된 파우치(110) 부분에 커팅부(111)를 형성시킬 수 있다.
아울러, 커팅공정은 파우치(110) 수용부(112)의 내측 코너부(113)를 향해 볼록한 아크(Arc) 형태로 커팅부(111)를 형성시킬 수 있다.
그리고, 커팅공정은 커팅부(111)를 평면도 상으로 아크형 커팅라인으로 형성시킬 수 있다.
도 5는 본 발명의 실시예에 따른 이차전지 제조방법에서 파우치에 형성되는 커팅부의 제 1예를 나타난 평면도이고, 도 6은 본 발명의 실시예에 따른 이차전지 제조방법에서 파우치에 형성되는 커팅부의 제 2예를 나타난 평면도이며, 도 7은 본 발명의 실시예에 따른 이차전지 제조방법에서 파우치에 형성되는 커팅부의 제 3예를 나타난 평면도이다.
한편, 도 5 내지 도 7을 참고하면, 커팅공정은 커팅부(111)의 아크형 커팅라인을 예를 들어 60~285°(도)의 원호 형태로 형성시킬 수 있다. 여기서, 커팅공정은 커팅부(111)의 아크형 커팅라인을 60도 이상으로 형성시켜 파우치 씨닝(Thinning)을 효과적으로 개선시킬 수 있고, 285도 이하로 형성시켜 아크형 커팅라인으로 절개된 파우치(110) 부분이 찢어지거나 이탈되지 않도록하여 파우치 씨닝(Thinning)을 효과가 구현되록 할 수 있다.
그리고, 커팅공정은 커팅부(111)의 아크형 커팅라인을 구체적으로 예를 들어 120~210도의 원호 형태로 형성시킬 수 있다. 이때, 커팅공정은 커팅부(111)의 원호 반지름을 예를 들어 4~12mm로 형성시킬 수 있다.
한편, 보다 구체적으로 예를 들어, 도 5를 참고할 때 커팅공정은 커팅부(111)의 아크형 커팅라인의 각도(t1)를 제1 예로 120도로 형성시키거나, 도 6을 참고할 때 커팅부(111)의 아크형 커팅라인의 각도(t2)를 제2 예로 180도로 형성시키거나, 커팅부(111)의 아크형 커팅라인의 각도(t3)를 도 7을 참고할 때 제3 예로 210도로 형성시킬 수 있다.
또한, 커팅공정은 커팅부(111)를 수용부(112)와 일정간격 이격시켜 형성시킬 수 있다. 즉, 커팅공정은 이후 포밍공정에서 형성될 수용부(112)의 위치를 감안하여 일정간격 이격되도록 형성시킬 수 있다. 이때, 커팅공정은 예를 들어 커팅부(111)와 수용부(112)의 간격(b)을 4~12mm로 형성시킬 수 있다.
한편, 파우치(110)는 알루미늄(Al) 재질을 포함할 수 있다. 이때, 예를 들어 파우치(110)는 알루미늄층 및 수지층을 포함할 수 있다.
도 2를 참고하면, 포밍(Forming)공정은 커팅 공정을 거친 후 파우치(110)에 절곡된 형태의 전극 조립체(120)가 수용되도록 절곡된 형태의 수용부(112)를 형성시킬 수 있다. 여기서, 수용부(112)는 예를 들어 컵(Cup) 형태의 홈으로 형성될 수 있다. 이때, 수용부(112)는 상부로 개방된 형태로 형성될 수 있다. 이때, '절곡된 형태'란 전극 조립체(120) 및 수용부(112)가 외력에 의해 굽혀진 것을 의미 하는 것이 아니라, 예를 들어 수직으로 연장된 형상을 의미하는 것일 수 있다.
아울러, 포밍공정은 수용부(112)를 전극 조립체(120)와 대응되는 형태로 형성시킬 수 있다.
그리고, 포밍공정은 예를 들어 펀치(Punch)를 통해 파우치(110)를 상부에서 하부로 가압하여 수용부(112)를 형성시킬 수 있다.
여기서, 전극 조립체(120)는 직각으로 절곡된 형태로 형성될 수 있다. 이때, 전극 조립체(120)는 "L"형태로 절곡된 형태로 형성될 수 있다.
또한, 포밍공정은 수용부(112)를 직각으로 절곡된 형태로 형성시킬 수 있다. 이때, 포밍공정은 수용부(112)를 “L”형태로 절곡된 형태로 형성시킬 수 있다.
그리고, 포밍공정은 파우치(110)에서 내측 코너부(113)를 평면도 상으로 수용부(112) 방향으로 만입된 형태로 형성시킬 수 있다. 여기서, 내측 코너부(113)는 예를 들어 라운드(Round) 형태로 만입된 형태로 형성될 수 있다. 이때, 이전 커팅공정에서 내측 코너부(113)와 인접된 거리에 아크 형태의 커팅부(111)를 형성시킴에 따라, 포밍공정에서 내측 코너부(113)를 만입된 형태로 형성 시 발생되는 과도한 응력을 해소하여 크랙이 발생되는 것을 효과적으로 방지할 수 있다.
한편, 전극 조립체(120)는 충방전이 가능한 발전소자로서, 전극과 분리막이 결집되어 교대로 적층된 구조를 형성한다.
전극은 양극과 음극을 포함할 수 있다. 그리고, 분리막은 양극과 음극을 분리하여 전기적으로 절연시킨다.
분리막은 절연 재질로 이루어져 양극 및 음극과 교대로 적층된다.
또한, 분리막은 예를 들어 미다공성을 가지는 폴리에칠렌, 폴리프로필렌 또는 이들의 조합에 의해 제조되는 다층 필름이나, 폴리비닐리덴 플루오라이드, 폴리에틸렌 옥사이드, 폴리아크릴로니트릴 또는 폴리비닐리덴 플루오라이드 헥사플루오로프로필렌 공중합체와 같은 고체 고분자 전해질용 또는 겔형 고분자 전해질용 고분자 필름일 수 있다.
한편, 전극 조립체(120)에 전극 리드(130)가 연결되어 외부와 전기적으로 연결될 수 있다. 즉, 전극 리드(130)는 전극 조립체(120)의 전극과 연결되어 전극을 외부 단자와 전기적으로 연결되도록 할 수 있다.
도 3을 참고하면, 수용공정은 포밍공정 후에 파우치(110)의 수용부(112)에 전극 조립체(120)를 수용시킬 수 있다.
또한, 수용공정은 전극 조립체(120)가 수용된 수용부(112)의 상부를 덮을 수 있다. 즉, 파우치(110)의 폴딩선(F)을 중심으로 파우치(110)의 일측부에 형성된 수용부(112)를 파우치(110)의 타측부를 파우치(110)의 폴딩선(F)을 중심으로 폴딩하여 덮을 수 있다.
그리고, 전극 조립체(120)의 내측 코너는 파우치(110)에서 만입된 형태로 형성된 내측 코너부(113)에 대응된 형태로 형성될 수 있다. 즉, 전극 조립체(120)의 내측 코너 부분은 파우치(110)의 만입된 형태로 형성된 내측 코너부(113)에 대응되는 형태로 만입된 형태로 형성될 수 있다.
도 4를 참고하면, 실링공정은 파우치(110)의 외주면을 실링하여 파우치(110)를 밀봉할 수 있다. 이때, 실링공정은 파우치(110)의 수용부(112)의 가장자리를 따라 열을 가하여 가압하여 실링부를 형성시킬 수 있다.
아울러, 실링공정은 수용부(112) 및 실링부를 제외한 나머지 부분을 절개하여 제거하는 제거단계를 포함할 수 있다. 이때, 제거단계는 파우치(110)의 커팅부(111)를 포함하여 제거할 수 있다.
도 1 내지 도 4를 참고하면, 상기와 같이 구성된 본 발명의 실시예에 따른 이차전지 제조방법은, 절곡 형태 파우치형 전지의 파우치(110) 포밍(Forming) 시, 파우치(110)에서 절곡 형태로 수용부(112)가 형성되는 인접 구간(A)에 아크 슬릿 컷(Arc slit cut)을 실시하여, 절곡 형태의 수용부(112) 인접 구간(A)에 발생되는 응력을 해소하여 크랙을 방지하고, 알루미늄 잔존량을 개선시킬 수 있다.
한편, 도 4를 참고하면, 본 발명의 실시예에 따른 이차전지는 상기와 같이 구성된 본 발명의 실시예에 따른 이차전지 제조방법으로 제조된 제품일 수 있다.
< 제조예 1 >
도 5를 참고하면, 파우치(110') 부분을 아크 형태로 슬릿 커팅하여 커팅부(111')를 형성시키고, 절곡된 형태의 수용부(112)를 형성시켰다. 이때, 절곡된 형태의 수용부(112)에서 내측 코너부와 인접된 파우치(110') 부분에 상기 커팅부(111')를 형성시켰다. 여기서, 커팅부(111')는 각도(t1)가 120도인 원호가 되도록 형성시켰다. 그리고, 커팅부(111')의 반지름(R)이 8mm, 커팅부(111')와 수용부(112)와의 이격거리(b)는 8mm가 되도록 커팅부(111')를 형성시켰다.
< 제조예 2 >
도 6을 참고하면, 파우치(110")의 커팅부(111'')의 각도(t2)가 180도의 원호가 되도록 형성된 것을 제외하고, 제조예 1과 동일과정을 수행하였다.
< 제조예 3 >
도 7을 참고하면, 파우치(110"')의 커팅부 커팅부(111''')의 각도(t3)가 210도의 원호가 되도록 형성된 것을 제외하고, 제조예 1과 동일과정을 수행하였다.
< 비교예 1 >
파우치에 커팅부를 직선형태로 슬릿 컷팅하여 형성시킨 것을 제외하고 제조예 1과 동일과정을 수행하였다.
< 실험예 1 >
도 8은 본 발명의 실시예에 따른 이차전지 제조방법에서 커팅공정 및 포밍공정을 거친 파우치의 각 부분을 참조 표시한 평면도이고, 도 9는 도 8에 도시된 파우치의 P6 부분의 씨닝(thinning) 비율(ratio)을 나타낸 이미지이다.
여기서, 도 8에 도시된 파우치 각 부분의 파우치 최대 씨닝(Thinning)비율의 측정을 위해 FEA simulation을 진행하여, 하기 표 1에 나타냈었다. 그리고, 도 8에 도시된 내측 코너부 P6 부분의 파우치 씨닝(Thinning)비율을 측정하여, 도 9의 이미지로 나타내었다. 이때, 도 9(a),9(b),9(c),9(d)의 순서대로 비교예 1, 제조예 1, 제조에 2, 제조예 3의 내측 코너부인 P6 부분의 파우치 씨닝(Thinning)을 나타내었다.(도 8 참조)
Round Slit Cutting Max, Thinning (%)
P1 P2 P3 P4 P5 P6
비교예 1
Straight
26.32 33.67 34.01 22.74 35.12 46.31
제조예 1 120° 26.63 33.98 34.23 22.50 35.01 45.80
제조예 2 180° 25.90 33.05 34.06 22.40 34.87 45.29
제조예 3 210° 25.99 34.30 34.72 22.84 34.50 44.46
표 1을 참고하면, 파우치의 커팅부를 직선 슬릿 커팅을 한 비교예 1 보다 아크 스릿 커팅을 한 제조예 1 내지 3에서 파우치 씨닝(Thinning) 개선 효과를 확인할 수 있다.특히, 파우치의 내측 코너부인 P6 부분에서 파우치 씨닝(Thinning)비율은, 비교예 1에서 46.31%, 제조예 1에서 45.80%, 제조예 2에서 45.29%, 제조예 3에서 44.46%를 나타낸다. 여기서, 파우치의 P4 부분에서 P6 부분으로 유입량이 증가하여 파우치 씨닝(Thinning) 값이 작아지게되어, Al 잔존량이 개선됨을 알 수 있다. 즉, 파우치의 내측 코너부인 P6 부분에서 비교에 1 보다 제조예 1 내지 3에서 약 3.5%의 파우치 씨닝(Thinning) 개선 효과를 확인할 수 있다.
이상 본 발명을 구체적인 실시예를 통하여 상세히 설명하였으나, 이는 본 발명을 구체적으로 설명하기 위한 것으로, 본 발명은 이에 한정되지 않는다. 본 발명의 기술적 사상 내에서 당해 분야의 통상의 지식을 가진 자에 의해 다양한 실시가 가능하다고 할 것이다.
또한, 발명의 구체적인 보호 범위는 첨부된 특허청구범위에 의하여 명확해질 것이다.
[부호의 설명]
100: 이차전지
110: 파우치
111, 111', 111", 111''': 커팅부
112: 수용부
113: 내측 코너부
120: 전극 조립체
130: 전극 리드

Claims (11)

  1. 파우치 부분을 아크 형태로 슬릿(Slit) 커팅하여 커팅부를 형성시키는 커팅공정;
    상기 커팅 공정을 거친 후 파우치에 절곡된 형태의 전극 조립체가 수용되도록 절곡된 형태의 수용부를 형성시키는 포밍공정;
    상기 포밍공정 후에 상기 파우치의 수용부에 상기 전극 조립체를 수용시키는 수용공정을 포함하고,
    상기 커팅공정은 절곡된 형태의 상기 수용부에서 내측 코너부와 인접된 파우치 부분에 상기 커팅부를 형성시키는 이차전지 제조방법.
  2. 청구항 1에 있어서,
    상기 전극 조립체는 직각으로 절곡된 형태로 형성되고,
    상기 포밍공정은 상기 수용부를 직각으로 절곡된 형태로 형성시키는 이차전지 제조방법.
  3. 청구항 1에 있어서,
    상기 전극 조립체는 "L"형태로 절곡된 형태로 형성되고,
    상기 포밍공정은 상기 수용부를 "L"형태로 절곡된 형태로 형성시키는 이차전지 제조방법.
  4. 청구항 1에 있어서,
    상기 포밍공정은 상기 수용부를 상기 전극 조립체와 대응되는 형태로 형성시키는 이차전지 제조방법.
  5. 청구항 1에 있어서,
    상기 커팅공정은 상기 파우치에 절곡된 형태의 상기 수용부에서 내측 코너부를 향해 볼록한 아크(Arc) 형태로 상기 커팅부를 형성시키는 이차전지 제조방법.
  6. 청구항 5에 있어서,
    상기 커팅공정은
    상기 커팅부를 평면도 상으로 아크형 커팅라인으로 형성시키는 이차전지 제조방법.
  7. 청구항 6에 있어서,
    상기 커팅공정은
    상기 커팅부의 상기 아크형 커팅라인을 60~285도의 원호 형태로 형성시키는 이차전지 제조방법.
  8. 청구항 7에 있어서,
    상기 커팅공정은
    상기 커팅부의 상기 아크형 커팅라인을 120~210도의 원호 형태로 형성시키는 이차전지 제조방법.
  9. 청구항 6에 있어서,
    상기 커팅공정은
    상기 커팅부를 상기 수용부와 일정간격 이격시켜 형성시키는 이차전지 제조방법.
  10. 청구항 1에 있어서,
    상기 포밍공정은 파우치의 내측 코너부를 평면도 상으로 수용부 방향으로 만입된 형태로 형성시키는 이차전지 제조방법.
  11. 청구항 1 내지 청구항 10에 기재된 이차전지 제조방법으로 제조된 이차전지.
PCT/KR2021/015150 2020-10-27 2021-10-27 이차전지 제조방법 및 이차전지 WO2022092785A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202180031195.4A CN115485914A (zh) 2020-10-27 2021-10-27 制造二次电池的方法和二次电池
JP2023508580A JP7475770B2 (ja) 2020-10-27 2021-10-27 二次電池の製造方法及び二次電池
EP21886779.4A EP4131589A1 (en) 2020-10-27 2021-10-27 Secondary battery manufacturing method and secondary battery
US17/923,416 US20230307694A1 (en) 2020-10-27 2021-10-27 Method for manufacturing secondary battery and secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2020-0140760 2020-10-27
KR1020200140760A KR20220056057A (ko) 2020-10-27 2020-10-27 이차전지 제조방법 및 이차전지

Publications (1)

Publication Number Publication Date
WO2022092785A1 true WO2022092785A1 (ko) 2022-05-05

Family

ID=81382802

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/015150 WO2022092785A1 (ko) 2020-10-27 2021-10-27 이차전지 제조방법 및 이차전지

Country Status (6)

Country Link
US (1) US20230307694A1 (ko)
EP (1) EP4131589A1 (ko)
JP (1) JP7475770B2 (ko)
KR (1) KR20220056057A (ko)
CN (1) CN115485914A (ko)
WO (1) WO2022092785A1 (ko)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080082799A (ko) * 2007-03-09 2008-09-12 삼성에스디아이 주식회사 이차 전지용 파우치 제조 방법 및 이차전지용 파우치
KR20120067550A (ko) 2010-12-16 2012-06-26 엘지디스플레이 주식회사 백라이트 유닛 및 그를 이용한 액정표시장치
CN204947022U (zh) * 2015-09-24 2016-01-06 长城汽车股份有限公司 电芯极耳连接装置以及电池
CN106129481A (zh) * 2016-06-29 2016-11-16 珠海光宇电池有限公司 卷绕式凹形电芯的制备方法及电芯
KR20170062877A (ko) * 2015-11-30 2017-06-08 주식회사 엘지화학 셀 케이스의 밀봉 신뢰성이 향상된 비정형 구조의 전지셀
US20180102521A1 (en) * 2015-05-07 2018-04-12 Lg Chem, Ltd. Pouch-type secondary battery including electrode lead having current limiting function

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005018990A (ja) 2003-06-23 2005-01-20 Ngk Spark Plug Co Ltd 積層型リチウムイオン二次電池
CN108885946A (zh) 2016-03-28 2018-11-23 株式会社村田制作所 蓄电设备及其制造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080082799A (ko) * 2007-03-09 2008-09-12 삼성에스디아이 주식회사 이차 전지용 파우치 제조 방법 및 이차전지용 파우치
KR20120067550A (ko) 2010-12-16 2012-06-26 엘지디스플레이 주식회사 백라이트 유닛 및 그를 이용한 액정표시장치
US20180102521A1 (en) * 2015-05-07 2018-04-12 Lg Chem, Ltd. Pouch-type secondary battery including electrode lead having current limiting function
CN204947022U (zh) * 2015-09-24 2016-01-06 长城汽车股份有限公司 电芯极耳连接装置以及电池
KR20170062877A (ko) * 2015-11-30 2017-06-08 주식회사 엘지화학 셀 케이스의 밀봉 신뢰성이 향상된 비정형 구조의 전지셀
CN106129481A (zh) * 2016-06-29 2016-11-16 珠海光宇电池有限公司 卷绕式凹形电芯的制备方法及电芯

Also Published As

Publication number Publication date
EP4131589A1 (en) 2023-02-08
CN115485914A (zh) 2022-12-16
JP7475770B2 (ja) 2024-04-30
KR20220056057A (ko) 2022-05-04
JP2023536533A (ja) 2023-08-25
US20230307694A1 (en) 2023-09-28

Similar Documents

Publication Publication Date Title
WO2019172524A1 (ko) 이차전지 제조 방법 및 이차전지용 파우치
WO2014073751A1 (ko) 단차가 형성된 전극 조립체, 상기 전극 조립체를 포함하는 이차전지, 전지팩 및 디바이스, 상기 전극 조립체 제조방법
WO2013168980A1 (ko) 비정형 구조의 전지팩
WO2020159306A1 (ko) 전극 조립체 제조방법과, 이를 통해 제조된 전극 및 이차전지
WO2014137112A1 (ko) 단차 구조를 포함하는 전지셀
WO2013180482A1 (ko) 전극탭 접합성이 우수한 전극 조립체, 이를 포함하는 전지셀, 디바이스 및 이의 제조방법
WO2018088722A1 (ko) 전극 조립체 및 그 제조방법
WO2020204407A1 (ko) 이차 전지용 전지 케이스 및 파우치 형 이차 전지
WO2018174370A1 (ko) 전극 조립체 및 그 제조방법
WO2014137120A1 (ko) 젤리롤 타입의 전극 조립체 제조방법 및 젤리롤 타입의 폴리머 이차전지 제조방법
WO2014137017A1 (ko) 라운드 코너를 포함하는 전극조립체
WO2018216859A1 (ko) 복합 구조의 전극 조립체 및 상기 전극 조립체를 갖는 리튬이온 이차전지
WO2016056764A1 (ko) 양 방향으로 권취되어 있는 전극조립체 및 이를 포함하는 리튬 이차전지
WO2015005652A1 (ko) 전극 조립체, 이를 포함하는 전지 및 디바이스
WO2021038545A1 (ko) 파우치 형 전지 케이스 및 파우치 형 이차 전지
WO2021054722A1 (ko) 파우치 형 전지 케이스 및 이를 제조하는 제조 장치, 파우치 형 이차 전지
WO2017104956A1 (ko) 전극판에 만입부가 형성되어 있는 전극조립체 및 이를 포함하는 이차전지
WO2016056776A1 (ko) 계단 구조의 전극조립체에 대응하는 형상으로 형성되어 있는 전지케이스를 포함하는 전지셀
WO2021118197A1 (ko) 전극 조립체 제조장치와, 이를 통해 제조된 전극 조립체 및 이차전지
WO2018212466A1 (ko) 전극 조립체 제조 장치 및 전극 조립체 제조방법
WO2019103392A1 (ko) 최외곽 전극의 구조 및 집전체의 재질에 의해 사용 안전성이 향상된 전극 조립체 및 상기 전극 조립체를 갖는 리튬이온 이차전지
WO2018038448A1 (ko) 전극 조립체 및 이를 포함하는 이차 전지
WO2020213855A1 (ko) 이차 전지 제조 장치 및 방법
WO2020171376A1 (ko) 단위셀 및 그 제조방법
WO2023085850A1 (ko) 전지 조립체 제조방법, 전지 조립체 및 이를 포함하는 이차 전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21886779

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021886779

Country of ref document: EP

Effective date: 20221104

ENP Entry into the national phase

Ref document number: 2023508580

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE