WO2022092647A1 - xEV 차량의 주행 인지 기반 회생제동 제어방법 - Google Patents

xEV 차량의 주행 인지 기반 회생제동 제어방법 Download PDF

Info

Publication number
WO2022092647A1
WO2022092647A1 PCT/KR2021/014321 KR2021014321W WO2022092647A1 WO 2022092647 A1 WO2022092647 A1 WO 2022092647A1 KR 2021014321 W KR2021014321 W KR 2021014321W WO 2022092647 A1 WO2022092647 A1 WO 2022092647A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
regenerative braking
value
distance
driving
Prior art date
Application number
PCT/KR2021/014321
Other languages
English (en)
French (fr)
Inventor
이진욱
조인수
Original Assignee
숭실대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 숭실대학교 산학협력단 filed Critical 숭실대학교 산학협력단
Priority to US17/801,240 priority Critical patent/US20220410899A1/en
Publication of WO2022092647A1 publication Critical patent/WO2022092647A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18109Braking
    • B60W30/18127Regenerative braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • B60L7/18Controlling the braking effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T7/00Brake-action initiating means
    • B60T7/02Brake-action initiating means for personal initiation
    • B60T7/04Brake-action initiating means for personal initiation foot actuated
    • B60T7/042Brake-action initiating means for personal initiation foot actuated by electrical means, e.g. using travel or force sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/18Conjoint control of vehicle sub-units of different type or different function including control of braking systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/18Conjoint control of vehicle sub-units of different type or different function including control of braking systems
    • B60W10/184Conjoint control of vehicle sub-units of different type or different function including control of braking systems with wheel brakes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/13Controlling the power contribution of each of the prime movers to meet required power demand in order to stay within battery power input or output limits; in order to prevent overcharging or battery depletion
    • B60W20/14Controlling the power contribution of each of the prime movers to meet required power demand in order to stay within battery power input or output limits; in order to prevent overcharging or battery depletion in conjunction with braking regeneration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/181Preparing for stopping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/02Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to ambient conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/02Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to ambient conditions
    • B60W40/06Road conditions
    • B60W40/072Curvature of the road
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/02Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to ambient conditions
    • B60W40/06Road conditions
    • B60W40/076Slope angle of the road
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/10Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to vehicle motion
    • B60W40/105Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/12Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to parameters of the vehicle itself, e.g. tyre models
    • B60W40/13Load or weight
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/08Interaction between the driver and the control system
    • B60W50/10Interpretation of driver requests or demands
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2220/00Monitoring, detecting driver behaviour; Signalling thereof; Counteracting thereof
    • B60T2220/04Pedal travel sensor, stroke sensor; Sensing brake request
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2420/00Indexing codes relating to the type of sensors based on the principle of their operation
    • B60W2420/40Photo, light or radio wave sensitive means, e.g. infrared sensors
    • B60W2420/408Radar; Laser, e.g. lidar
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/24Energy storage means
    • B60W2510/242Energy storage means for electrical energy
    • B60W2510/244Charge state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/04Vehicle stop
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2530/00Input parameters relating to vehicle conditions or values, not covered by groups B60W2510/00 or B60W2520/00
    • B60W2530/10Weight
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/12Brake pedal position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2552/00Input parameters relating to infrastructure
    • B60W2552/15Road slope, i.e. the inclination of a road segment in the longitudinal direction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2552/00Input parameters relating to infrastructure
    • B60W2552/30Road curve radius
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2552/00Input parameters relating to infrastructure
    • B60W2552/53Road markings, e.g. lane marker or crosswalk
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/40Dynamic objects, e.g. animals, windblown objects
    • B60W2554/404Characteristics
    • B60W2554/4041Position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/80Spatial relation or speed relative to objects
    • B60W2554/802Longitudinal distance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2556/00Input parameters relating to data
    • B60W2556/45External transmission of data to or from the vehicle
    • B60W2556/50External transmission of data to or from the vehicle of positioning data, e.g. GPS [Global Positioning System] data
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/90Vehicles comprising electric prime movers
    • B60Y2200/91Electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/90Vehicles comprising electric prime movers
    • B60Y2200/92Hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2300/00Purposes or special features of road vehicle drive control systems
    • B60Y2300/18Propelling the vehicle
    • B60Y2300/18008Propelling the vehicle related to particular drive situations
    • B60Y2300/18091Preparing for stopping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2300/00Purposes or special features of road vehicle drive control systems
    • B60Y2300/18Propelling the vehicle
    • B60Y2300/18008Propelling the vehicle related to particular drive situations
    • B60Y2300/18108Braking
    • B60Y2300/18125Regenerative braking
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/12Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation
    • Y04S10/126Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation the energy generation units being or involving electric vehicles [EV] or hybrid vehicles [HEV], i.e. power aggregation of EV or HEV, vehicle to grid arrangements [V2G]

Definitions

  • the present invention relates to a method for controlling regenerative braking of an xEV vehicle, and more particularly, to a driving recognition-based regenerative braking control method for an xEV vehicle that optimally adjusts the amount of regenerative braking by using detection of a front vehicle and driving position information.
  • xEV where an electric motor is used as the main power source
  • regenerative braking technology converts the vehicle's kinetic energy, which is dissipated as frictional heat during braking, into electrical energy and stores it in an electric storage device such as a battery or ultra-capacitor. It is a technology that allows to be used again as driving energy after being stored. It is operated in such a way that electric energy is generated and generated at the same time as the vehicle is decelerated by generating a load force by using an electric motor as a generator.
  • Such regenerative braking technology can improve the energy efficiency of a vehicle in a city driving environment where acceleration and deceleration are frequent, and is considered as a core technology for improving energy efficiency.
  • Patent Document 1 Korean Patent No. 10-0259898
  • the present invention is proposed to solve the above problems, and by using the detection of the front vehicle and driving location information, determining the area where the maximum regenerative braking energy recovery is possible, and maximizing the amount of recovered electric energy to charge the secondary battery. It aims to provide a method for controlling regenerative braking based on driving perception of an xEV vehicle that can be maximized.
  • a method for controlling regenerative braking based on driving perception of an xEV vehicle comprising: (a) detecting a vehicle in front when a brake signal is applied; (b) operating the regenerative braking device as much as the default regenerative braking value when a vehicle in front is not detected, and calculating a distance to the vehicle in front and a braking distance required by the driver when a vehicle in front is detected; (c) The ⁇ value obtained by subtracting the safe distance from the vehicle in front when the vehicle is finally stopped from the distance from the vehicle in front, and ⁇ obtained by subtracting the regenerative braking distance due to the basic regenerative braking setting value from the braking distance required by the driver based on the brake pedal sensor (BPS) signal comparing values; (d) operating the regenerative braking device by a default regenerative braking value when the ⁇ value is larger, and preparing to increase the maximum regenerative braking value by the ⁇ value when the
  • the distance between the detection of the front vehicle in step (a) and the vehicle ahead in step (b) may be achieved through single sensing of any one of a radar sensor and a LiDAR sensor or a combined sensing thereof.
  • step (e) may be determined through single measurement of any one of the GPS and the inertial measurement unit (IMU) or a combination measurement thereof.
  • IMU inertial measurement unit
  • the driver's required braking distance may be calculated by adding or subtracting a correction value in consideration of the weight of the vehicle from a value calculated through the brake pedal sensor (BPS).
  • the driver's required braking distance may be calculated by adding or subtracting a correction value in consideration of the driving road environment from a value calculated through the brake pedal sensor (BPS).
  • step (e) it is further determined whether the driving position of the vehicle is a curved road or a straight road, and when it is determined that the driving position is a curved road, regenerative braking may be performed by adding a correction value to the maximum regenerative braking value.
  • the detection may be performed by recognizing a surrounding vehicle when the vehicle ahead is detected.
  • the charging rate of the electric storage device is determined together with the detection of the front vehicle, and when the charging rate exceeds a set reference value, the operation of the regenerative braking device may be stopped.
  • the driving recognition-based regenerative braking control method of an xEV vehicle may additionally increase a deceleration load caused by the electric motor to increase the amount of electrical energy generated through regenerative braking.
  • the driving recognition-based regenerative braking control method of an xEV vehicle can optimally increase the amount of electrical energy generated by performing regenerative braking in consideration of various driving variables.
  • FIG. 1 is a block diagram illustrating a configuration of a regenerative braking control apparatus capable of performing a driving recognition-based regenerative braking control method of an xEV vehicle according to an embodiment of the present invention.
  • FIG. 2 is a diagram illustrating an algorithm of a driving perception-based regenerative braking control method of an xEV vehicle according to an embodiment of the present invention.
  • FIG. 3 is a diagram schematically illustrating each variable including ⁇ and ⁇ values of the algorithm of FIG. 2 .
  • FIG. 4 is a diagram illustrating an effect of a driving perception-based regenerative braking control method of an xEV vehicle according to an embodiment of the present invention.
  • a unit that processes at least one function or operation, which may be implemented as hardware or software or a combination of hardware and software.
  • the present invention relates to a method for controlling regenerative braking in an xEV vehicle using an electric motor as the main power source, and not only currently developed or commercialized xEV vehicles such as HEV, PHEV, BEV, FCEV, but also in the future It can be applied to all xEV vehicles to be developed or commercialized.
  • the xEV vehicle of the present invention may be configured to include both a sensor capable of grasping the state of the vehicle and a means capable of grasping the surrounding state of the vehicle.
  • a weight sensor for example, a weight sensor, a speed sensor, a hall sensor, a brake pedal sensor (BPS), a GPS, and an inertial measuring device to determine the state of the vehicle, that is, the weight or speed of the vehicle, the braking state, the position, the inclination, etc. (IMU), etc.
  • IMU inertial measuring device
  • Radar sensor LiDAR sensor, lane detection sensor, rain sensor, temperature sensor, humidity sensor , cameras, etc.
  • the xEV vehicle of the present invention may be linked to various systems such as a geographic information system (GIS), a navigation system, a weather information system, a traffic road information system, and the like.
  • GIS geographic information system
  • navigation system a navigation system
  • weather information system a weather information system
  • traffic road information system a traffic road information system
  • any means capable of grasping various states or surrounding conditions of the vehicle may be included, and may be linked to various systems capable of grasping the state of the vehicle or the state of the driving road.
  • FIG. 1 is a block diagram illustrating a configuration of a regenerative braking control apparatus capable of performing a driving recognition-based regenerative braking control method of an xEV vehicle according to an embodiment of the present invention.
  • the configuration of the regenerative braking control device capable of performing the driving recognition-based regenerative braking control method of an xEV vehicle of the present invention is a front vehicle that detects a vehicle in front and detects a distance from the vehicle in front.
  • the detection unit 10 the lane recognition unit 20 for recognizing a surrounding lane of the xEV vehicle, the braking position determination unit 30 for determining the braking position of the xEV vehicle, and the vehicle weight detection unit 40 for detecting the weight of the xEV vehicle ), a driving environment determination unit 50 for detecting the driving environment of the xEV vehicle, a driving position determination unit 60 for determining the driving position of the xEV vehicle, and an overcharge prevention module 70 for detecting overcharge of the battery, which is the power source of the xEV vehicle ) and the regenerative braking control unit 80 that receives information sensed, determined, and recognized from the above-described components 10 to 70 and performs regenerative braking with an optimal value.
  • FIG. 2 is a diagram illustrating an algorithm of a driving perception-based regenerative braking control method of an xEV vehicle according to an embodiment of the present invention
  • the driving recognition-based regenerative braking control method of an xEV vehicle includes (a) detecting a front vehicle when a brake signal is applied (S10), (b) a front vehicle If this is not detected, the regenerative braking system is operated as much as the default regenerative braking value, and when a vehicle in front is detected, calculating the distance to the vehicle in front and the required braking distance from the driver (S20), (c) Distance to the vehicle in front Comparing the ⁇ value obtained by subtracting the safety distance from the vehicle in front at the final stop, and the ⁇ value obtained by subtracting the regenerative braking distance due to the basic regenerative braking setting value from the braking distance required by the driver based on the brake pedal sensor (BPS) signal (S30) , (d) operating the regenerative braking device by the default regenerative braking value when the ⁇ value is larger, and preparing to increase the maximum regenerative braking value by the ⁇ value when the ⁇ value
  • step S10 of detecting the vehicle in front when the brake signal is applied may detect the presence/absence of the vehicle in front from the front vehicle detection unit 10, and the front vehicle detection unit 10 detects the vehicle in front may be performed by either single sensing of any one of the Radar sensor and the LiDAR sensor, or a combination sensing thereof.
  • forward vehicle detection may be performed by using only a radar sensor, forward vehicle detection may be performed by using only a LiDAR sensor, or forward vehicle detection may be performed by using both a radar and a LiDAR sensor.
  • the Radar sensor can directly detect the distance and speed, and it is possible to recognize a distance even in a harsh environment than the LiDAR sensor. It is most desirable to detect the vehicle by the complex sensing of
  • the LiDAR sensor can be used at a short distance and the Radar sensor can be used at a long distance.
  • step S10 when the vehicle ahead is detected, the vehicle may be detected by recognizing a surrounding lane through the lane recognition unit 20 . This is to reduce errors when the angle of view of a front vehicle detection sensor such as a radar sensor or a LiDAR sensor is out of the driving lane of the vehicle and recognizes a vehicle traveling in another lane as a vehicle in front, or when the vehicle changes lanes. can be used to recognize nearby lanes together.
  • a front vehicle detection sensor such as a radar sensor or a LiDAR sensor
  • the regenerative braking device When the presence/absence of the vehicle in front is detected through step S10 as described above, the regenerative braking device is operated as much as the default regenerative braking value through the control of the regenerative braking controller 80 according to the presence/absence of the vehicle in front through step S20 or , it is possible to calculate the distance to the vehicle in front and the braking distance required by the driver.
  • the regenerative braking control unit 80 operates the regenerative braking device by the default regenerative braking value, and when the front vehicle is not detected, the regenerative braking The control unit 80 may calculate the distance to the vehicle in front and the required braking distance for the driver to operate at the maximum regenerative braking value.
  • the calculation of the distance to the vehicle in front may be performed by single sensing or complex sensing of the above-described Radar sensor or LiDAR sensor through the front vehicle detection unit 10, but is not limited thereto, and other methods may be used.
  • the distance to the vehicle in front may be measured through the GPS of each vehicle, and the GPS may be installed separately, or a GPS installed in or linked to a navigation system of each vehicle may be used.
  • the calculation of the required braking distance may be calculated based on the brake pedal sensor BPS that is interlocked with the brake through the braking position determination unit 30 . That is, the braking position determining unit 30 may be configured to include a brake pedal sensor BPS, and the brake pedal sensor BPS calculates the required braking distance by measuring the braking force of the brake.
  • the calculation of the driver's required braking distance may be absolutely only a value calculated through only the brake pedal sensor (BPS), but the value calculated through the brake pedal sensor (BPS) is measured through the vehicle weight sensor A correction value in consideration of the weight value of the vehicle may be added or subtracted.
  • the vehicle weight sensing unit 40 may measure the weight of the vehicle, such as the weight applied to the wheels of the vehicle, etc., but considering vehicles in which an additional vehicle is mounted at the rear, such as a trailer or a camper, it is formed to be manually input. It might be To this end, the vehicle weight detection unit 40 includes an automatic weight input module 41 for automatically detecting weight in conjunction with a weight detection sensor, a pressure sensor, etc. and a manual weight input module 42 for manually inputting weight by the driver. It may consist of including.
  • the calculation of the required braking distance may be calculated by adding or subtracting a correction value in consideration of the driving road environment calculated by the driving environment determination unit 50 from a value calculated only through the brake pedal sensor BPS.
  • the braking distance required by the driver is calculated by considering the braking force and the driving road environment.
  • the driving road environment means various driving environments such as icy road, snowy road, rain road, unpaved road road, and mountain road.
  • the correction value may be added to or subtracted from the calculation of the required braking distance calculated by the braking position determination unit 30 according to the driving road environment determined by the driver's manual input and interlocked with the driver's manual input.
  • the driver's required braking distance may be more accurately calculated.
  • the calculation of the braking distance required by the driver may be made through a speed sensor, a hall sensor, etc., and the braking position determining unit 30 is based on various sensing information such as the brake pedal sensor (BPS), a speed sensor, and a hall sensor.
  • BPS brake pedal sensor
  • the braking position can be determined.
  • step S30 the regenerative braking control unit 80 calculates each from the front vehicle detection unit 10 and the braking position determination unit 30 .
  • obtained by subtracting the distance from the vehicle in front at the final stop from the distance from the vehicle in front after receiving information and ⁇ minus the regenerative braking distance due to the default regenerative braking value from the braking distance required by the driver based on the brake pedal sensor (BPS) signal
  • BPS brake pedal sensor
  • the regenerative braking control unit 80 operates the regenerative braking device by the default regenerative braking value or increases the regenerative braking distance by the ⁇ value.
  • the regenerative braking device when ⁇ and ⁇ values are compared, if ⁇ is larger, the regenerative braking device is operated as much as the default regenerative braking value, and when ⁇ is larger, the maximum regenerative braking value up to ⁇ to prepare to increase
  • step S50 the vehicle driving position is determined through the driving position determining unit 60, and in the case of downhill, the default regenerative braking value is operated, and in the case of uphill or flat ground, the maximum regenerative braking distance prepared in step S40, that is, ⁇ value
  • the regenerative braking system can be operated up to a distance of
  • the vehicle driving position determination by the driving position determining unit 60 in step S50 may be determined through single measurement of any one of the GPS and the inertial measurement unit (IMU) or a combined measurement thereof. For example, when the GPS and the inertial measurement unit (IMU) are combined, the position is measured through the GPS on an open road, and the position is measured through the inertial measurement unit (IMU) in the GPS shadow area such as a closed tunnel. can be measured.
  • IMU inertial measurement unit
  • the driving position determination of the driving position determining unit 60 in step S50 may further determine whether the driving position of the vehicle is a curved road or a straight road. This is because the curved road may be substantially longer even if the distance between the front vehicle recognized according to a straight road and the distance to the front vehicle recognized according to the curved road is recognized as the same. It is also possible to perform regenerative braking by adding
  • the curve road determination can be determined through various measurement variables such as the recognized angle with the vehicle in front, the vehicle's inclination detection through the inertial measurement unit (IMU), the location through the GPS, and the vehicle's steering angle. All other measurement parameters not included are also available.
  • IMU inertial measurement unit
  • step S50 When the regenerative braking is performed as in step S50, the operation of the regenerative braking device may be stopped in step S60 or the regenerative braking cycle may be repeatedly performed by returning to step S10.
  • step S60 when the distance to the vehicle in front becomes the same as the safe distance to the vehicle in front and the speed of the vehicle becomes 0, it is recognized that the vehicle is stopped and the operation of the regenerative braking device is stopped, If the distance to the vehicle is not equal to the safety distance value from the vehicle in front or the vehicle speed is not 0, the process may return to step S10 and repeat steps S10 to S60.
  • step S10 when a brake signal is applied through the overcharge prevention module 70, the vehicle in front is detected and the charging rate of the electric storage device of the vehicle may be first determined.
  • steps S20 to S60 are performed to prevent overcharging of the electric storage device and overcharge Fires can be prevented.
  • the amount of electrical energy generated through regenerative braking can be increased by additionally increasing the deceleration load caused by the electric motor. there is.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Power Engineering (AREA)
  • Human Computer Interaction (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

본 발명의 실시 예에 따른 xEV 차량의 주행 인지 기반 회생제동 제어방법은, 전방 차량 감지 및 주행 위치 정보를 활용하여 회생 제동량을 최적으로 조절하는 xEV 차량의 주행 인지 기반 회생제동 제어 방법에 관한 것이다.

Description

xEV 차량의 주행 인지 기반 회생제동 제어방법
본 발명은 xEV 차량의 회생제동 제어 방법에 관한 것으로, 보다 상세하게는 전방 차량 감지 및 주행 위치 정보를 활용하여 회생 제동량을 최적으로 조절하는 xEV 차량의 주행 인지 기반 회생제동 제어 방법에 관한 것이다.
최근 자동차 산업은 기존 내연기관 자동차에서 xEV(예 : HEV, PHEV, BEV, FCEV 등)로 자동차용 원동기의 패러다임이 변화하고 있다. 전기모터가 주요 동력원으로 사용되는 xEV에서 회생제동(Regenerative braking) 기술은 차량의 제동 시 마찰열로 소실되는 차량의 운동에너지를 전기에너지로 변환하여 배터리 또는 울트라 커패시터(Ultra Capacitor)와 같은 전기 저장장치에 저장한 후, 이를 구동 에너지로 다시 사용할 수 있도록 하는 기술로서, 전기모터를 발전기로 활용하여 부하력을 발생시킴으로써 차량의 감속과 동시에 전기에너지가 생성, 발전되는 방식으로 작동된다.
이러한 회생제동 기술은, 가속 및 감속이 빈번한 도심주행 환경에서 차량의 에너지 효율을 향상시킬 수 있어 에너지 효율 개선의 핵심 기술로서 꼽히고 있다.
그러나, 차량의 주행환경에는 다양한 변수가 존재하며, 특히 운전자의 운전성향 및 패턴 또한 일관적이지 않기에 보다 능동적으로 최대 회생제동 에너지를 회수하는데 어려움이 있으나, 종래 회생제동 기술은 이러한 실제 주행 상황을 고려하지 않아 보다 효율적인 회생 제동 에너지 회수가 이루어지지 않는 문제점이 있었다.
따라서, 실제 주행 상황을 고려한 회생제동 제어방식의 필요성이 요구되고 있다.
[선행기술문헌]
[특허문헌]
(특허문헌 1) 한국등록특허 제10-0259898호
본 발명은 상기의 문제점을 해결하기 위하여 제안되는 것으로, 전방 차량 감지 및 주행 위치 정보를 활용하여 최대의 회생제동 에너지 회수가 가능한 영역을 판단하여 회수되는 전기에너지의 양을 최대화해서 2차전지 충전을 극대화할 수 있는 xEV 차량의 주행 인지 기반 회생제동 제어방법을 제공하는데 목적이 있다.
상기 과제를 해결하기 위한 본 발명의 실시 예에 따른 xEV 차량의 주행 인지 기반 회생제동 제어방법은, (a) 브레이크 신호 인가 시 전방 차량을 감지하는 단계; (b) 전방 차량이 감지되지 않을 경우 기본 설정 회생제동 값만큼 회생제동장치를 작동하며, 전방 차량이 감지될 경우 전방 차량과의 거리와 운전자 요구 제동 거리를 산출하는 단계; (c) 전방 차량과의 거리에서 최종 정차 시 앞차와의 안전거리를 뺀 α 값과, 상기 브레이크 페달센서(BPS) 신호 기반 운전자 요구 제동 거리에서 기본 회생제동 설정 값으로 인한 회생제동 거리를 뺀 β값을 비교하는 단계; (d) 상기 β 값이 더 클 경우, 기본 설정 회생제동 값만큼 회생제동장치를 작동하며, 상기 α 값이 더 클 경우, α 값만큼 최대 회생제동 값을 증가시킬 준비를 하는 단계; (e) 차량 주행 위치를 판단하여 내리막일 경우 기본 설정 회생제동 값만큼 회생제동장치를 작동하며, 오르막이나 평지일 경우, 상기 (d) 단계에서 준비된 최대 회생제동 값만큼 회생제동장치를 작동하는 단계 및 (f) 전방 차량과의 거리가 안전거리 값과 동일해지고 차량의 속도가 0이 될 경우, 차량이 정지한 것으로 인식하여 회생제동장치의 작동을 정지하며, 전방 차량과의 거리가 안전거리 값과 동일하지 않거나 차량의 속도가 0이 아닐 경우, 상기 (a) 단계로 회귀하는 단계를 포함하여 구성될 수 있다.
여기서, 상기 (a) 단계의 전방 차량 감지와, 상기 (b) 단계의 전방 차량과의 거리는 Radar 센서와 LiDAR 센서 중 어느 하나의 단독 센싱 또는 이들의 복합 센싱을 통해 이루어질 수 있다.
또한, 상기 (e) 단계의 차량 주행 위치 판단은, GPS와 관성 측정장치(IMU) 중 어느 하나의 단독 측정 또는 이들의 복합 측정을 통해 판단할 수 있다.
또한, 상기 운전자 요구 제동 거리는, 상기 브레이크 페달센서(BPS)를 통해 산출되는 값에서 차량의 무게 값을 고려한 보정 값이 가감되어 산출될 수 있다.
또한, 상기 운전자 요구 제동 거리는, 상기 브레이크 페달센서(BPS)를 통해 산출되는 값에서 주행 도로의 환경을 고려한 보정 값이 가감되어 산출될 수 있다.
또한, 상기 (e) 단계에서, 차량의 주행 위치를 곡선 도로인지 직선 도로인지를 더 판단하며, 곡선 도로로 판단될 경우 상기 최대 회생제동 값에 보정 값을 더하여 회생제동을 수행할 수 있다.
또한, 상기 (a) 단계는, 전방 차량 감지 시에 주변 차로도 함께 인식하여 감지를 수행할 수 있다.
또한, 상기 (a) 단계는, 전방 차량 감지와 함께 전기 저장장치의 충전율을 판단하며, 충전율이 설정된 기준치를 초과할 경우, 회생제동장치의 작동을 정지할 수 있다.
본 발명의 실시 예에 따른 xEV 차량의 주행 인지 기반 회생제동 제어방법은, 전기모터로 인한 감속부하를 추가적으로 증대시켜 회생제동을 통한 전기에너지 발생량을 증가시킬 수 있다.
또한, 본 발명의 실시 예에 따른 xEV 차량의 주행 인지 기반 회생제동 제어방법은, 다양한 주행 변수를 고려한 회생제동을 수행하여 최적으로 전기에너지 발생량을 증가시킬 수 있다.
또한, 위에서 언급된 본 발명의 실시예에 따른 효과는 기재된 내용에만 한정되지 않고, 명세서 및 도면으로부터 예측 가능한 모든 효과를 더 포함할 수 있다.
도 1은 본 발명의 실시 예에 따른 xEV 차량의 주행 인지 기반 회생제동 제어방법을 수행할 수 있는 회생제동 제어장치의 구성을 나타낸 블록도이다.
도 2는 본 발명의 실시 예에 따른 xEV 차량의 주행 인지 기반 회생제동 제어방법의 알고리즘을 예시한 도면이다.
도 3은 도 2의 알고리즘의 α 및 β 값을 포함하는 각 변수를 설명하기 위해 개략화한 도면이다.
도 4는 본 발명의 실시 예에 따른 xEV 차량의 주행 인지 기반 회생제동 제어방법의 효과를 나타내는 도면이다.
이하, 도면을 참조한 본 발명의 설명은 특정한 실시 형태에 대해 한정되지 않으며, 다양한 변환을 가할 수 있고 여러 가지 실시예를 가질 수 있다. 또한, 이하에서 설명하는 내용은 본 발명의 사상 및 기술 범위에 포함되는 모든 변환, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.
이하의 설명에서 제1, 제2 등의 용어는 다양한 구성요소들을 설명하는데 사용되는 용어로서, 그 자체에 의미가 한정되지 아니하며, 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다.
본 명세서 전체에 걸쳐 사용되는 동일한 참조번호는 동일한 구성요소를 나타낸다.
본 발명에서 사용되는 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 또한, 이하에서 기재되는 "포함하다", "구비하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것으로 해석되어야 하며, 하나 또는 그 이상의 다른 특징들이나, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
또한, 명세서에 기재된 "쪋부", "쪋기", "모듈" 등의 용어는 적어도 하나의 기능이나 동작을 처리하는 단위를 의미하며, 이는 하드웨어나 소프트웨어 또는 하드웨어 및 소프트웨어의 결합으로 구현될 수 있다.
구체적으로 설명하기에 앞서, 본 발명은 전기모터를 주 동력원으로 하는 xEV 차량에 있어서 회생제동을 제어하는 방법에 관한 것으로, HEV, PHEV, BEV, FCEV 등 현재 개발되거나 상용화된 xEV 차량은 물론, 차후 개발되거나 상용화될 xEV 차량에 모두 적용될 수 있다.
또한, 설명되는 회생제동 제어방법을 수행하기 위해 본 발명의 xEV 차량은 차량의 상태를 파악할 수 있는 센서와 차량의 주변 상태를 파악할 수 있는 수단을 모두 포함하여 구성될 수 있다.
예컨대, 차량의 상태 즉, 차량의 무게나 속도, 제동 상태, 위치, 기울기 등을 파악하기 위해 무게 센서, 속도 감지 센서, 홀 센서, 브레이크 페달센서(BPS; Brake Pedal Sensor), GPS, 관성 측정장치(IMU) 등을 마련할 수 있고, 차량의 주변 상태 즉, 전방 차량 감지/거리 판단, 차선 파악, 도로 상황 파악 등을 위해 Radar 센서, LiDAR 센서, 차선 감지 센서, 레인 센서, 온도 센서, 습도 센서, 카메라 등의 수단을 마련할 수 있다.
또한, 설명되는 회생제동 제어방법을 수행하기 위해 본 발명의 xEV 차량은 지리정보시스템(GIS; Geographic Information System), 네비게이션 시스템, 기상 정보 시스템, 교통 도로 정보 시스템 등 다양한 시스템에 연동될 수 있다.
또한, 이외에도 설명되지 아니하였으나, 차량의 다양한 상태나 주변 상황을 파악할 수 있는 수단이라면 모두 포함될 수 있으며, 차량의 상태나 주행 도로의 상황 파악이 가능한 각종 시스템에 연동될 수 있다.
따라서, 이하에서는 설명되는 다양한 구성 중 어느 구성에 있어 특별히 한정하지 않는다면, 설명되는 구성을 수행할 수 있는 수단이나 시스템을 직접적으로 기재하지 않았어도 해당 구성을 수행할 수 있는 수단이나 시스템에 행해질 수 있는 것으로 이해되어야 한다.
이하, 첨부된 도면을 참조하여 본 발명의 실시 예에 따른 xEV 차량의 주행 인지 기반 회생제동 제어방법을 상세히 설명하기로 한다.
도 1은 본 발명의 실시 예에 따른 xEV 차량의 주행 인지 기반 회생제동 제어방법을 수행할 수 있는 회생제동 제어장치의 구성을 나타낸 블록도이다.
먼저, 도 1을 참조하면, 본 발명의 xEV 차량의 주행 인지 기반 회생제동 제어방법을 수행할 수 있는 회생제동 제어장치의 구성은, 전방의 차량을 감지하고 전방 차량과의 거리를 감지하는 전방차량 감지부(10), xEV 차량의 주변 차로를 인식하는 차로 인식부(20), xEV 차량의 제동위치를 판단하는 제동위치 판단부(30), xEV 차량의 무게를 감지하는 차량무게 감지부(40), xEV 차량의 주행환경을 감지하는 주행환경 판단부(50), xEV 차량의 주행위치를 판단하는 주행위치 판단부(60), xEV 차량의 동력원인 배터리의 과충전을 감지하는 과충전 방지 모듈(70) 및 상술한 구성(10 내지 70)들로부터 감지, 판단, 인식되는 정보들을 전달 받아 최적의 값으로 회생제동을 수행하는 회생제동 제어부(80)를 포함하여 구성될 수 있다.
도 2는 본 발명의 실시 예에 따른 xEV 차량의 주행 인지 기반 회생제동 제어방법의 알고리즘을 예시한 도면이며, 도 3은 도 2의 알고리즘의 α 및 β 값을 포함하는 각 변수를 설명하기 위해 개략화한 도면이고, 도 4는 본 발명의 실시 예에 따른 xEV 차량의 주행 인지 기반 회생제동 제어방법의 효과를 나타내는 도면이다.
도 2 내지 도 4를 참조하면, 본 발명의 실시 예에 따른 xEV 차량의 주행 인지 기반 회생제동 제어방법은, (a) 브레이크 신호 인가 시 전방 차량을 감지하는 단계(S10), (b) 전방 차량이 감지되지 않을 경우 기본 설정 회생제동 값만큼 회생제동장치를 작동하며, 전방 차량이 감지될 경우 전방 차량과의 거리와 운전자 요구 제동 거리를 산출하는 단계(S20), (c) 전방 차량과의 거리에서 최종 정차 시 앞차와의 안전거리를 뺀 α 값과, 상기 브레이크 페달센서(BPS) 신호 기반 운전자 요구 제동 거리에서 기본 회생제동 설정 값으로 인한 회생제동 거리를 뺀 β값을 비교하는 단계(S30), (d) 상기 β 값이 더 클 경우, 기본 설정 회생제동 값만큼 회생제동장치를 작동하며, 상기 α 값이 더 클 경우, α 값만큼 최대 회생제동 값을 증가시킬 준비를 하는 단계(S40), (e) 차량 주행 위치를 판단하여 내리막일 경우 기본 설정 회생제동 값만큼 회생제동장치를 작동하며, 오르막이나 평지일 경우, 상기 (d) 단계에서 준비된 최대 회생제동 값만큼 회생제동장치를 작동하는 단계(S50) 및 (f) 전방 차량과의 거리가 안전거리 값과 동일해지고 차량의 속도가 0이 될 경우, 차량이 정지한 것으로 인식하여 회생제동장치의 작동을 정지하며, 전방 차량과의 거리가 안전거리 값과 동일하지 않거나 차량의 속도가 0이 아닐 경우, 상기 (a) 단계로 회귀하는 단계(S60)를 포함하여 구성될 수 있다.
구체적으로, (a) 브레이크 신호 인가 시 전방 차량을 감지하는 S10 단계는, 전방차량 감지부(10)로부터 전방 차량의 유/무를 감지할 수 있으며, 전방차량 감지부(10)는 전방 차량의 감지를 Radar 센서와 LiDAR 센서 중 어느 하나의 단독 센싱 또는 이들의 복합 센싱으로 이루어질 수 있다.
즉, Radar 센서만을 구비하여 전방 차량 감지를 수행할 수도 있고, LiDAR 센서만을 구비하여 전방 차량 감지를 수행할 수도 있으며, Radar와 LiDAR 센서 모두 구비하여 전방 차량 감지를 수행할 수도 있는 것이다.
여기서, Radar 센서는 거리와 속도를 직접 감지할 수 있고, LiDAR 센서보다 열악한 환경에서도 원거리 인식이 가능하며, LiDAR 센서는 객체와 거리 이미지를 형성 인식이 가능한 분해능으로 얻을 수 있어, Radar 센서와 LiDAR센서의 복합 센싱으로 차량을 감지하는 것이 가장 바람직하다.
보다 구체적으로, LiDAR 센서는 근거리에서 사용하고 Radar 센서는 원거리에서 사용할 수 있는 것으로, 근거리와 원거리의 기준은 사용자나 차량 제작자의 설정에 따라 달라질 수 있다.
또한, S10 단계는 전방 차량 감지 시에 차로 인식부(20)를 통해 주변 차로도 함께 인식하여 감지를 수행할 수 있다. 이는, Radar 센서나 LiDAR 센서 등 전방 차량 감지 센서의 화각이 차량의 주행 차선을 벗어나 다른 차선의 주행 차량을 전방 차량으로 인식하거나, 차량이 차선을 바꾸는 등에 있어 오차를 줄이기 위함으로, 차선 감지 센서 등을 이용하여 주변 차로를 함께 인식할 수 있다.
상기와 같은 S10 단계를 거쳐 전방 차량의 유/무를 감지하면, S20 단계를 통해 전방 차량의 유/무에 따라 회생제동 제어부(80)의 제어를 통해 기본 설정 회생제동 값만큼 회생제동장치를 작동하거나, 전방 차량과의 거리와 운전자 요구 제동 거리를 산출할 수 있다.
보다 구체적으로, 전방차량 감지부(10)로부터 전방 차량이 설정된 거리 내에 감지될 경우 회생제동 제어부(80)는 기본 설정 회생제동 값만큼 회생제동장치를 작동하며, 전방 차량이 감지되지 않을 경우 회생제동 제어부(80)에서 최대 회생제동 값으로 작동하기 위한 전방 차량과의 거리와 운전자 요구 제동 거리를 산출할 수 있다.
여기서, 전방 차량과의 거리 산출은, 전방차량 감지부(10)를 통해 상술한 Radar 센서나 LiDAR 센서의 단독 센싱 또는 복합 센싱으로 이루어질 수 있으며, 이에 한정되지 않고 다른 방식을 이용할 수도 있다. 예컨대, 각 차량의 GPS를 통한 전방 차량과의 거리를 측정할 수도 있으며, GPS는 따로 장착하거나 각 차량의 네비게이션 시스템에 장착되거나 연동된 GPS를 이용할 수도 있다.
또한, 운전자 요구 제동 거리 산출은, 제동위치 판단부(30)를 통해 브레이크와 연동되는 브레이크 페달센서(BPS)를 기반하여 산출될 수 있다. 즉, 제동위치 판단부(30)는 브레이크 페달센서(BPS)를 포함하여 구성될 수 있으며, 브레이크 페달센서(BPS)는 브레이크의 답력을 측정하여 운전자 요구 제동 거리를 산출하게 된다.
이때, 운전자 요구 제동 거리 산출은, 브레이크 페달센서(BPS)만을 통해 산출되는 값만을 절대적으로 할 수도 있으나, 브레이크 페달센서(BPS)를 통해 산출되는 값에서 차량무게 감지부(40)를 통해 측정되는 차량의 무게 값을 고려한 보정 값이 가감되어 산출될 수도 있다.
즉, 브레이크의 답력에 차량의 무게를 고려하여 운전자 요구 제동 거리 산출이 이루어지는 것이다. 이때, 차량무게 감지부(40)는 차량의 무게를 차량의 바퀴 등에 가해지는 무게 등을 측정할 수도 있으나, 트레일러나 캠핑카 등 후방에 부가적인 차량이 장착되는 차량들을 고려하여, 수동으로 입력하게 형성될 수도 있다. 이를 위해, 차량무게 감지부(40)는 무게 감지 센서, 압력 센서 등과 연동되어 자동으로 무게를 감지하는 자동 무게 입력모듈(41) 및 운전자가 수동으로 무게를 입력하는 수동 무게 입력모듈(42)를 포함하여 구성될 수도 있다.
또한, 운전자 요구 제동 거리 산출은, 브레이크 페달센서(BPS)만을 통해 산출되는 값에서 주행환경 판단부(50)를 통해 산출된 주행 도로의 환경을 고려한 보정 값이 가감되어 산출될 수도 있다.
즉, 브레이크 답력에 주행 도로의 환경을 고려하여 운전자 요구 제동 거리 산출이 이루어지는 것이다. 여기서, 주행 도로의 환경은 빙판길, 눈길, 빗길, 비포장 도로길, 산길 등 다양한 주행 환경을 의미하는 것으로, 주행환경 판단부(50)는 레인 센서 등을 마련하거나 기상 정보 시스템, 교통 도로 정보 시스템 등과 연동되고, 운전자의 수동 입력에 의하여 판단되는 상기의 주행 도로 환경에 따라 제동위치 판단부(30)를 통해 산출되는 운전자 요구 제동 거리 산출에 보정 값을 가감할 수 있다.
예컨대, 빙판길에서는 브레이크 답력에도 더 밀려날 수 있으므로, 기존 브레이크 답력보다 적은 답력으로 보정할 수 있고, 비포장 도로길 등은 브레이크 답력에도 덜 밀려날 수 있으므로, 기존 브레이크 답력보다 많은 답력으로 보정할 수가 있다.
상기와 같은 차량의 무게 값 또는 주행 도로의 환경을 고려하면 운전자 요구 제동 거리는 보다 정확하게 산출될 수 있다.
아울러, 운전자 요구 제동 거리 산출은, 속도 감지 센서, 홀 센서 등을 통해서도 이루어질 수 있으며, 제동위치 판단부(30)는 상기 브레이크 페달센서(BPS), 속도 감지 센서, 홀 센서 등 다양한 센싱 정보를 토대로 제동위치를 판단할 수 있다.
상기와 같은 S20 단계에서 전방 차량과의 거리와 운전자 요구 제동 거리의 산출이 이루어지면, S30 단계에서 회생제동 제어부(80)는 전방차량 감지부(10)와 제동위치 판단부(30)로부터 각 산출 정보를 전달 받아 전방 차량과의 거리에서의 최종 정차 시 앞차와의 거리를 뺀 α 값과, 브레이크 페달센서(BPS) 신호 기반 운전자 요구 제동 거리에서 기본 설정 회생제동 값으로 인한 회생제동 거리를 뺀 β값을 각각 산출하여 비교할 수 있다.
여기서, α 값과 β값의 비교에 따라, S40 단계에서 회생제동 제어부(80)는 기본 설정 회생제동 값만큼 회생제동장치를 작동하거나, α 값만큼의 회생제동 거리를 증가시킬 준비를 하도록 형성될 수 있다.
보다 구체적으로, α 값과 β값을 비교하였을 시에 β값이 더 클 경우에는, 기본 설정 회생제동 값만큼 회생제동장치를 작동하며, α 값이 더 클 경우에는 α 값까지의 최대 회생제동 값을 증가시킬 준비를 하는 것이다.
이후, S50 단계에서 주행위치 판단부(60)를 통해 차량 주행 위치를 판단하여 내리막일 경우에는 기본 설정 회생제동 값만큼 작동하고, 오르막이나 평지일 경우에는 S40 단계에서 준비된 최대 회생제동 거리 즉 α 값까지의 거리까지 회생제동장치를 작동할 수 있다.
이를 통해, 본 발명의 회생제동 제어방법은 산출된 전방차량과의 제동거리 여분이 확보되고 내리막 경사로가 아닐 때, 도 3에 도시된 바와 같이 전기모터로 인한 감속부하를 추가적으로 증대시켜 회생제동을 통한 전기에너지 발생량을 증가시킬 수 있다.
한편, S50 단계에서의 주행위치 판단부(60)의 차량 주행 위치 판단은, GPS와 관성 측정장치(IMU) 중 어느 하나의 단독 측정 또는 이들의 복합 측정을 통해 판단할 수 있다. 예컨대, GPS와 관성 측정장치(IMU)를 복합 측정할 경우, 주변이 개방된 도로에서는 GPS를 통해 위치를 측정하고, 주변이 폐쇄된 터널 등의 GPS 음영지역에서는 관성 측정장치(IMU)를 통해 위치를 측정할 수 있다.
또한, S50 단계에서의 주행위치 판단부(60)의 차량 주행 위치 판단은, 차량의 주행 위치가 곡선 도로인지 직선 도로인지를 더 판단할 수도 있다. 이는 직선 도로에 따라 인식되는 전방 차량 거리와 곡선 도로에 따라 인식되는 전방 차량 거리가 동일하게 인식되어도 실질적으로 곡선 도로가 더 길 수 있기 때문으로, 곡선 도로로 판단될 경우에는 최대 회생제동 거리에 보정 값을 더하여 회생제동을 수행할 수도 있다.
여기서, 곡선 도로 판단은, 인식되는 전방 차량과의 각도, 관성 측정장치(IMU)를 통한 차량의 기울기 감지, GPS를 통한 위치, 차량의 조향각 등 다양한 측정 변수를 통해 판단할 수 있으며, 이외에도 설명되지 아니한 다른 측정 변수도 모두 이용할 수 있다.
상기 S50 단계와 같은 회생제동이 수행되면, S60 단계에서 회생제동장치의 작동을 정지하거나, 다시 S10 단계로 회귀하여 상술한 회생제동 사이클을 반복 수행할 수 있다.
보다 구체적으로 S60 단계는, 전방 차량과의 거리가, 전방 차량과의 안전 거리 값과 동일해지고 차량의 속도가 0이 될 경우, 차량이 정지한 것으로 인식하여 회생제동장치의 작동을 정지하며, 전방 차량과의 거리가 전방 차량과의 안전거리 값과 동일하지 않거나 차량의 속도가 0이 아닐 경우에는, 다시 S10 단계로 회귀하여 S10 내지 S60 단계를 반복수행할 수 있다.
아울러, 상술한 S20 단계 내지 S60 단계를 수행하기에 앞서, S10 단계에서는 과충전 방지 모듈(70)을 통한 브레이크 신호 인가 시 전방 차량의 감지와 동시에 차량의 전기 저장장치의 충전율을 먼저 판단할 수 있다.
이때, 충전율이 설정된 기준치를 초과할 경우에는, 회생제동장치의 작동을 정지하고, 충전율이 설정된 기준치를 초과하지 않을 경우에는, S20 단계 내지 S60 단계를 수행하여 전기 저장장치의 과충전을 방지하고, 과충전으로 인한 화재 등을 예방할 수 있다.
상기와 같은 본 발명의 실시 예에 따른 xEV 차량의 주행 인지 기반 회생제동 제어방법은, 도 4에 도시된 바와 같이 전기모터로 인한 감속부하를 추가적으로 증대시켜 회생제동을 통한 전기에너지 발생량을 증가시킬 수 있다.
이상으로 첨부된 도면을 참조하여 본 발명의 실시예를 설명하였으나, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고 다른 구체적인 형태로 실시할 수 있다는 것을 이해할 수 있을 것이다. 따라서 이상에서 기술한 실시예는 모든 면에서 예시적인 것이며 한정적이 아닌 것이다.
[부호의 설명]
10 : 전방차량 감지부
20 : 차로 인식부
30 : 제동위치 판단부
40 : 차량무게 감지부
41 : 자동 무게 입력모듈
42 : 수동 무게 입력모듈
50 : 주행환경 판단부
60 : 주행위치 판단부
70 : 과충전 방지 모듈
80 : 회생제동 제어부

Claims (8)

  1. (a) 브레이크 신호 인가 시 전방 차량을 감지하는 단계;
    (b) 전방 차량이 감지되지 않을 경우 기본 설정 회생제동 값만큼 회생제동장치를 작동하며, 전방 차량이 감지될 경우 전방 차량과의 거리와, 브레이크 페달센서(BPS) 신호를 통한 운전자 요구 제동 거리를 산출하는 단계;
    (c) 전방 차량과의 거리에서 최종 정차 시 앞차와의 안전거리를 뺀 α 값과, 상기 브레이크 페달센서(BPS) 신호 기반 운전자 요구 제동 거리에서 기본 회생제동 설정 값으로 인한 회생제동 거리를 뺀 β값을 비교하는 단계;
    (d) 상기 β 값이 더 클 경우, 기본 설정 회생제동 값만큼 회생제동장치를 작동하며, 상기 α 값이 더 클 경우, α 값만큼 최대 회생제동 값을 증가시킬 준비를 하는 단계;
    (e) 차량 주행 위치를 판단하여 내리막일 경우 기본 설정 회생제동 값만큼 회생제동장치를 작동하며, 오르막이나 평지일 경우, 상기 (d) 단계에서 준비된 최대 회생제동 값만큼 회생제동장치를 작동하는 단계 및
    (f) 전방 차량과의 거리가 안전거리 값과 동일해지고 차량의 속도가 0이 될 경우, 차량이 정지한 것으로 인식하여 회생제동장치의 작동을 정지하며, 전방 차량과의 거리가 안전거리 값과 동일하지 않거나 차량의 속도가 0이 아닐 경우, 상기 (a) 단계로 회귀하는 단계를 포함하는 xEV 차량의 주행 인지 기반 회생제동 제어방법.
  2. 제 1 항에 있어서,
    상기 (a) 단계의 전방 차량 감지와, 상기 (b) 단계의 전방 차량과의 거리는 Radar 센서와 LiDAR 센서 중 어느 하나의 단독 센싱 또는 이들의 복합 센싱을 통해 이루어지는 것을 특징으로 하는 xEV 차량의 주행 인지 기반 회생제동 제어방법.
  3. 제 1 항에 있어서,
    상기 (e) 단계의 차량 주행 위치 판단은, GPS와 관성 측정장치(IMU) 중 어느 하나의 단독 측정 또는 이들의 복합 측정을 통해 판단하는 것을 특징으로 하는 xEV 차량의 주행 인지 기반 회생제동 제어방법.
  4. 제 1 항에 있어서,
    상기 운전자 요구 제동 거리는,
    상기 브레이크 페달센서(BPS)를 통해 산출되는 값에서 차량의 무게 값을 고려한 보정 값이 가감되어 산출되는 것을 특징으로 하는 xEV 차량의 주행 인지 기반 회생제동 제어방법.
  5. 제 1 항에 있어서,
    상기 운전자 요구 제동 거리는,
    상기 브레이크 페달센서(BPS)를 통해 산출되는 값에서 주행 도로의 환경을 고려한 보정 값이 가감되어 산출되는 것을 특징으로 하는 xEV 차량의 주행 인지 기반 회생제동 제어방법.
  6. 제 1 항에 있어서,
    상기 (e) 단계에서,
    차량의 주행 위치를 곡선 도로인지 직선 도로인지를 더 판단하며, 곡선 도로로 판단될 경우 상기 최대 회생제동 값에 보정 값을 더하여 회생제동을 수행하는 것을 특징으로 하는 xEV 차량의 주행 인지 기반 회생제동 제어방법.
  7. 제 1 항에 있어서,
    상기 (a) 단계는,
    전방 차량 감지 시에 주변 차로도 함께 인식하여 감지를 수행하는 것을 특징으로 하는 xEV 차량의 주행 인지 기반 회생제동 제어방법.
  8. 제 1 항에 있어서,
    상기 (a) 단계는,
    전방 차량 감지와 함께 전기 저장장치의 충전율을 판단하며, 충전율이 설정된 기준치를 초과할 경우, 회생제동장치의 작동을 정지하는 것을 특징으로 하는 xEV 차량의 주행 인지 기반 회생제동 제어방법.
PCT/KR2021/014321 2020-10-27 2021-10-15 xEV 차량의 주행 인지 기반 회생제동 제어방법 WO2022092647A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/801,240 US20220410899A1 (en) 2020-10-27 2021-10-15 Regenerative braking control method of xev vehicle based on driving recognition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020200140479A KR102294158B1 (ko) 2020-10-27 2020-10-27 xEV 차량의 주행 인지 기반 회생제동 제어방법
KR10-2020-0140479 2020-10-27

Publications (1)

Publication Number Publication Date
WO2022092647A1 true WO2022092647A1 (ko) 2022-05-05

Family

ID=77495021

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/014321 WO2022092647A1 (ko) 2020-10-27 2021-10-15 xEV 차량의 주행 인지 기반 회생제동 제어방법

Country Status (3)

Country Link
US (1) US20220410899A1 (ko)
KR (1) KR102294158B1 (ko)
WO (1) WO2022092647A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115648957A (zh) * 2022-12-27 2023-01-31 小米汽车科技有限公司 车辆控制方法、装置、存储介质及芯片

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102294158B1 (ko) * 2020-10-27 2021-08-25 숭실대학교 산학협력단 xEV 차량의 주행 인지 기반 회생제동 제어방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150007626A (ko) * 2013-07-11 2015-01-21 현대다이모스(주) 하이브리드 차량의 회생제동모드 제어 장치 및 그 방법
KR101558772B1 (ko) * 2014-05-21 2015-10-07 현대자동차주식회사 친환경 자동차의 회생제동량 가변 제어 장치 및 방법
KR20180130243A (ko) * 2017-05-29 2018-12-07 주식회사 만도 하이브리드 차량의 회생제동 제어장치 및 그 방법
KR101944310B1 (ko) * 2017-10-31 2019-02-01 쌍용자동차 주식회사 사륜구동 하이브리드 자동차의 코스팅 및 회생제동 제어방법
KR102294158B1 (ko) * 2020-10-27 2021-08-25 숭실대학교 산학협력단 xEV 차량의 주행 인지 기반 회생제동 제어방법

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100259898B1 (ko) 1995-12-27 2000-06-15 류정열 회생제동량을 이용한 전기자동차의 제동방법
JP3888383B2 (ja) * 2005-08-26 2007-02-28 マツダ株式会社 車両の制動装置
JP2014016955A (ja) * 2012-07-11 2014-01-30 Nissan Motor Co Ltd 車両走行システム
JP2014204510A (ja) * 2013-04-02 2014-10-27 日産自動車株式会社 車両用制動制御装置
JP6278236B2 (ja) * 2014-01-29 2018-02-14 株式会社アドヴィックス 車両用制動装置
KR101541711B1 (ko) * 2015-03-04 2015-08-06 국방과학연구소 차량 및 그것의 제동 제어 방법
JP2017081475A (ja) * 2015-10-30 2017-05-18 トヨタ自動車株式会社 車両制御装置
KR101860627B1 (ko) * 2016-02-12 2018-05-23 주식회사 만도 차량의 회생 제동 시스템 및 이의 구동 방법
KR20170096372A (ko) * 2016-02-16 2017-08-24 엘에스산전 주식회사 전기 자동차의 회생 제동 제어부

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150007626A (ko) * 2013-07-11 2015-01-21 현대다이모스(주) 하이브리드 차량의 회생제동모드 제어 장치 및 그 방법
KR101558772B1 (ko) * 2014-05-21 2015-10-07 현대자동차주식회사 친환경 자동차의 회생제동량 가변 제어 장치 및 방법
KR20180130243A (ko) * 2017-05-29 2018-12-07 주식회사 만도 하이브리드 차량의 회생제동 제어장치 및 그 방법
KR101944310B1 (ko) * 2017-10-31 2019-02-01 쌍용자동차 주식회사 사륜구동 하이브리드 자동차의 코스팅 및 회생제동 제어방법
KR102294158B1 (ko) * 2020-10-27 2021-08-25 숭실대학교 산학협력단 xEV 차량의 주행 인지 기반 회생제동 제어방법

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115648957A (zh) * 2022-12-27 2023-01-31 小米汽车科技有限公司 车辆控制方法、装置、存储介质及芯片

Also Published As

Publication number Publication date
US20220410899A1 (en) 2022-12-29
KR102294158B1 (ko) 2021-08-25

Similar Documents

Publication Publication Date Title
WO2022092647A1 (ko) xEV 차량의 주행 인지 기반 회생제동 제어방법
EP3375679B1 (en) Braking/driving force control method and braking/driving force control device
EP2731845B1 (en) Control system, vehicle and method of controlling a vehicle
CN110083109B (zh) 一种无人车远程控制系统及其方法
CN104627180A (zh) 一种半主动巡航控制系统及其方法
CN112776804B (zh) 滑行能量回收扭矩控制方法及装置
CN204506886U (zh) 一种半主动巡航控制系统
CN110696632A (zh) 一种汽车制动回馈方法、装置及车辆
KR101628563B1 (ko) 친환경 자동차의 타행 주행 제어 방법
WO2012105754A2 (ko) 전기 오토바이의 에너지 회수 방법 및 장치
KR20210157732A (ko) 전기자동차의 디스커넥터 제어 장치 및 방법
US8688344B2 (en) Method for recuperating kinetic energy of a motor vehicle in a optimum way in terms of energy
US20210101598A1 (en) System and method for controlling and distributing regenerative braking force in autonomous vehicle in consideration of tractive resistance
WO2013168940A1 (ko) 액셀러레이터와 브레이크의 동작구간에 감응하는 클러치를 구비한 관성주행을 이용한 자동차의 연비 개선 장치 및 연비 개선 방법
CN109782187A (zh) 基于路况检测的48v dc/dc控制系统及方法
CN111645527B (zh) 电动车制动能量回收控制方法
CN105882773A (zh) 混合动力防侧翻拖挂车
KR102553848B1 (ko) 차량 및 그 제어 방법
WO2014073869A1 (ko) 커브속도 경고방법
KR20220017052A (ko) 하이브리드 차량의 속도 검출 장치 및 그 방법
KR100902941B1 (ko) 전기자동차의 최대속도 제한방법
WO2022060107A1 (ko) 전기자전거의 관성 주행 제어 회로 및 방법
WO2023075199A1 (ko) 인휠모터를 구비한 차량의 토크벡터링 제어장치 및 제어방법
CN213384143U (zh) 基于车联网智能精确控制行驶过程的电动汽车控制装置
US20230125472A1 (en) Predictive traction control system of vehicle based on road surface information and predictive traction control method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21886641

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED (15/09/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 21886641

Country of ref document: EP

Kind code of ref document: A1