WO2022092428A1 - 선박의 온실가스 배출 저감장치 및 동 장치 구비한 선박 - Google Patents

선박의 온실가스 배출 저감장치 및 동 장치 구비한 선박 Download PDF

Info

Publication number
WO2022092428A1
WO2022092428A1 PCT/KR2020/018603 KR2020018603W WO2022092428A1 WO 2022092428 A1 WO2022092428 A1 WO 2022092428A1 KR 2020018603 W KR2020018603 W KR 2020018603W WO 2022092428 A1 WO2022092428 A1 WO 2022092428A1
Authority
WO
WIPO (PCT)
Prior art keywords
absorption liquid
unit
absorption
exhaust gas
ships
Prior art date
Application number
PCT/KR2020/018603
Other languages
English (en)
French (fr)
Inventor
남병탁
Original Assignee
대우조선해양 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020200139682A external-priority patent/KR102232587B1/ko
Priority claimed from KR1020200154964A external-priority patent/KR102231473B1/ko
Application filed by 대우조선해양 주식회사 filed Critical 대우조선해양 주식회사
Priority to EP20960044.4A priority Critical patent/EP4234899A1/en
Priority to US18/031,352 priority patent/US20230372867A1/en
Priority to JP2023520522A priority patent/JP2023544055A/ja
Priority to CN202080106395.7A priority patent/CN116529466A/zh
Publication of WO2022092428A1 publication Critical patent/WO2022092428A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/96Regeneration, reactivation or recycling of reactants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0828Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents characterised by the absorbed or adsorbed substances
    • F01N3/0857Carbon oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1406Multiple stage absorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1425Regeneration of liquid absorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1431Pretreatment by other processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1456Removing acid components
    • B01D53/1475Removing carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1456Removing acid components
    • B01D53/1481Removing sulfur dioxide or sulfur trioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1493Selection of liquid materials for use as absorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/18Absorbing units; Liquid distributors therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/48Sulfur compounds
    • B01D53/50Sulfur oxides
    • B01D53/507Sulfur oxides by treating the gases with other liquids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/62Carbon oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9404Removing only nitrogen compounds
    • B01D53/9409Nitrogen oxides
    • B01D53/9413Processes characterised by a specific catalyst
    • B01D53/9418Processes characterised by a specific catalyst for removing nitrogen oxides by selective catalytic reduction [SCR] using a reducing agent in a lean exhaust gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63JAUXILIARIES ON VESSELS
    • B63J4/00Arrangements of installations for treating ballast water, waste water, sewage, sludge, or refuse, or for preventing environmental pollution not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/004Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 specially adapted for marine propulsion, i.e. for receiving simultaneously engine exhaust gases and engine cooling water
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/04Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust using liquids
    • F01N3/043Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust using liquids without contact between liquid and exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0828Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents characterised by the absorbed or adsorbed substances
    • F01N3/0842Nitrogen oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0828Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents characterised by the absorbed or adsorbed substances
    • F01N3/085Sulfur or sulfur oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/20Reductants
    • B01D2251/206Ammonium compounds
    • B01D2251/2062Ammonia
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/20Reductants
    • B01D2251/206Ammonium compounds
    • B01D2251/2067Urea
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/10Inorganic absorbents
    • B01D2252/102Ammonia
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/10Inorganic absorbents
    • B01D2252/103Water
    • B01D2252/1035Sea water
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/30Sulfur compounds
    • B01D2257/302Sulfur oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/40Nitrogen compounds
    • B01D2257/404Nitrogen oxides other than dinitrogen oxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/01Engine exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2570/00Exhaust treating apparatus eliminating, absorbing or adsorbing specific elements or compounds
    • F01N2570/10Carbon or carbon oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2590/00Exhaust or silencing apparatus adapted to particular use, e.g. for military applications, airplanes, submarines
    • F01N2590/02Exhaust or silencing apparatus adapted to particular use, e.g. for military applications, airplanes, submarines for marine vessels or naval applications
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/02Adding substances to exhaust gases the substance being ammonia or urea
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/14Arrangements for the supply of substances, e.g. conduits
    • F01N2610/1406Storage means for substances, e.g. tanks or reservoirs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G5/00Profiting from waste heat of combustion engines, not otherwise provided for
    • F02G5/02Profiting from waste heat of exhaust gases
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention comprises two or more stages of the absorption liquid regeneration unit to remove unreacted aqueous ammonium salt solution remaining in ammonia water to maintain the ammonia water concentration at a certain level, thereby increasing the recovery rate of the absorption liquid and preventing the reduction in greenhouse gas absorption performance. , it relates to a ship's greenhouse gas emission reduction device and a ship equipped with the same.
  • the present invention prevents a decrease in the concentration of the absorbent liquid by cooling the exhaust gas by a heat exchange method, and increases the recovery rate of the absorbent liquid by removing the unreacted aqueous ammonium salt solution remaining in the ammonia water by configuring the absorbent liquid regeneration unit in two or more stages, It relates to a device for reducing greenhouse gas emissions of a ship, which can prevent a decrease in gas absorption performance, and a ship equipped with the device.
  • CCS Carbon dioxide Capture and Storage
  • carbon dioxide emission regulation is regulated through IMO's EEDI, which aims to reduce more than 50% of 2008 emissions in 2050, and 40% of 2008 emissions must be reduced in 2030. , the technology to capture the emitted CO 2 is attracting attention.
  • CO 2 capture technology can be approached in various ways depending on the CO 2 generation conditions of the target process.
  • the representative technologies include absorption, adsorption, and membrane separation, among which The wet absorption method has a high technological maturity in onshore plants and is easy to treat large amounts of CO 2 , so it can be said to be the closest capture technology to the commercialization of CCS technology, and amine-based and ammonia are mainly used as absorbents.
  • CO 2 a greenhouse gas
  • absorption performance is reduced due to a change in the concentration of the absorption liquid
  • CO 2 among the exhaust gases discharged from the ship engine is absorbed as an absorbent liquid so that the amount of SO X is small or does not occur, and it is converted into a substance that does not affect the environment and is discharged
  • a technology that can be converted into useful substances and stored, and that can prevent a decrease in absorption liquid concentration due to cooling of exhaust gas by seawater and a decrease in absorption performance due to concentration change due to repeated circulation of absorption liquid. need arises.
  • the technical problem to be achieved by the spirit of the present invention is to remove the unreacted aqueous ammonium salt solution remaining in ammonia water by configuring the absorption liquid regeneration unit in two or more stages to maintain the ammonia water concentration at a certain level, thereby increasing the recovery rate of the absorption liquid, and absorbing greenhouse gas It is to provide a vessel equipped with a greenhouse gas emission reduction device and the device that can prevent this from being lowered.
  • the technical problem to be achieved by the spirit of the present invention is to prevent a decrease in the concentration of the absorbent liquid by cooling the exhaust gas by a heat exchange method, and to remove the unreacted aqueous ammonium salt solution remaining in the ammonia water by configuring the absorbent regeneration unit in two or more stages.
  • An object of the present invention is to provide an apparatus for reducing greenhouse gas emissions of ships and a ship equipped with the apparatus, which can prevent deterioration of greenhouse gas absorption performance by increasing the recovery rate of the absorption liquid.
  • a seawater supply unit for supplying seawater;
  • Absorption liquid production unit for preparing and supplying a high-concentration CO 2 absorbent liquid;
  • the exhaust gas discharged from the ship engine is cooled by reacting with the seawater supplied from the seawater supply unit, and the cooled exhaust gas and the absorption liquid from the absorption liquid production unit are reacted to convert CO 2 into an aqueous ammonium salt solution to remove CO 2 CO 2 removal unit formed, absorption tower; and a primary regeneration unit for primarily regenerating the absorption liquid by reacting the aqueous solution of ammonium salt discharged from the absorption tower with an aqueous solution of divalent metal hydroxide, and an aqueous solution of divalent metal hydroxide to the unreacted aqueous solution of ammonium salt from the primary regeneration unit.
  • a device for reducing greenhouse gas emissions of ships including;
  • the absorption liquid regeneration unit a storage tank for storing the divalent metal hydroxide aqueous solution;
  • a mixing tank for generating NH 3 (g) and carbonate by stirring the aqueous ammonium salt solution and the aqueous divalent metal hydroxide solution discharged from the absorption tower with a stirrer, and a primary for separating carbonate by sucking the solution and precipitate from the mixing tank Consisting of a filter, the primary regeneration unit; and a primary absorption liquid storage tank for storing aqueous ammonia or unreacted aqueous ammonium salt solution separated by the primary filter and reacting the aqueous solution of divalent metal hydroxide and unreacted aqueous ammonium salt solution from the storage tank;
  • a secondary regeneration unit comprising a secondary filter for separating carbonate and high-concentration ammonia water by sucking the solution and sediment from the tank, and a secondary absorption liquid storage tank for storing the high-concentration ammonia water separated by the secondary filter;
  • the storage capacity of the primary absorption liquid storage tank may be three times or more of the capacity of the absorption liquid circulating in the absorption tower and the absorption liquid regeneration unit.
  • the primary absorption liquid storage tank includes a stirrer for stirring and reacting the divalent metal hydroxide aqueous solution and the aqueous ammonia or unreacted aqueous ammonium salt solution separated by the primary filter, and a pH sensor for measuring the degree of reaction by the stirrer may include
  • the aqueous solution of divalent metal hydroxide stored in the storage tank may be Ca(OH) 2 or Mg(OH) 2 generated by reacting fresh water with CaO or MgO.
  • ammonia water or fresh water separated by the secondary filter is supplied to the secondary absorption liquid storage tank, or the surplus fresh water additionally generated by the mixing tank compared to the total circulation fresh water is stored in the fresh water tank, and 2 in the storage tank It can be recycled when generating an aqueous metal hydroxide solution.
  • the absorption tower further comprises a SOx absorption unit for dissolving and removing SOx while cooling the exhaust gas discharged from the marine engine by reacting with seawater supplied from the seawater supply unit, the CO 2 removal unit, the SOx It is cooled by reacting the removed exhaust gas with the seawater supplied from the seawater supply unit, and by reacting the cooled exhaust gas with the absorption liquid from the absorption liquid preparation unit to convert CO 2 into an aqueous ammonium salt solution to remove CO 2 .
  • a SOx absorption unit for dissolving and removing SOx while cooling the exhaust gas discharged from the marine engine by reacting with seawater supplied from the seawater supply unit, the CO 2 removal unit, the SOx It is cooled by reacting the removed exhaust gas with the seawater supplied from the seawater supply unit, and by reacting the cooled exhaust gas with the absorption liquid from the absorption liquid preparation unit to convert CO 2 into an aqueous ammonium salt solution to remove CO 2 .
  • the absorption tower further comprises a NOx absorption unit for absorbing and removing NOx of the exhaust gas discharged from the marine engine, the CO 2 removal unit, the NOx is removed from the exhaust gas supplied from the seawater supply unit seawater It reacts with and cools, and by reacting the cooled exhaust gas with the absorption liquid from the absorption liquid preparation unit, CO 2 can be converted into an aqueous ammonium salt solution to remove CO 2 .
  • a NOx absorption unit for absorbing and removing NOx of the exhaust gas discharged from the marine engine
  • the CO 2 removal unit the NOx is removed from the exhaust gas supplied from the seawater supply unit seawater It reacts with and cools, and by reacting the cooled exhaust gas with the absorption liquid from the absorption liquid preparation unit, CO 2 can be converted into an aqueous ammonium salt solution to remove CO 2 .
  • the absorption tower a NO X absorption unit for absorbing and removing NO X of the exhaust gas discharged from the marine engine, and the NO X is removed by reacting the exhaust gas with seawater supplied from the seawater supply unit to cool
  • a SO X absorption unit that dissolves and removes SO X
  • the exhaust gas from which SO X has been removed reacts with the absorption liquid from the absorption liquid preparation unit to convert CO 2 into an aqueous ammonium salt solution to remove CO 2
  • the CO 2 removal unit may be sequentially stacked.
  • the NH 3 regenerated by the absorption liquid regeneration unit is returned to the absorption tower to be converted into an absorption liquid to be reused, and the NO X absorption unit receives NH 3 regenerated by the absorption liquid regeneration unit and receives NO X as NH 3 It can absorb NO X or use urea water.
  • the seawater supply unit the seawater pump that receives seawater from the outboard through the sea chest and pumps it to the SO X absorption unit, and the amount of exhaust gas to control the injection amount of seawater supplied from the seawater pump to the SO X absorption unit It may include a seawater control valve.
  • the absorbent liquid manufacturing unit a fresh water tank for storing fresh water; a fresh water control valve for supplying fresh water from the fresh water tank; NH 3 storage for storing high pressure NH 3 ; an ammonia water tank for preparing and storing high-concentration ammonia water as an absorption liquid by injecting NH 3 supplied from the NH 3 storage to the fresh water supplied by the fresh water control valve; a pH sensor for measuring the ammonia water concentration in the ammonia water tank; and an ammonia water supply pump for supplying ammonia water from the ammonia water tank to the secondary absorption liquid storage tank.
  • It may further include an ammonia water circulation pump for circulating the ammonia water from the secondary absorption liquid storage tank to the absorption tower.
  • the SO X absorption unit a multi-stage seawater injection nozzle for spraying the seawater supplied from the seawater supply unit downwardly; and an exhaust gas inlet pipe in the form of a partition wall or an umbrella-shaped blocking plate covering the exhaust gas inlet pipe to prevent the washing water from flowing backward.
  • a porous upper plate having a flow path through which the exhaust gas passes is formed in multiple stages under the seawater injection nozzle, so that seawater and the exhaust gas can contact each other.
  • an absorption tower filled with a filler for allowing seawater and exhaust gas to contact is formed under the seawater injection nozzle, so that seawater can dissolve SO X .
  • the CO 2 removal unit may include: an ammonia water injection nozzle for downwardly injecting the absorption liquid supplied from the absorption liquid regeneration unit; A filler for converting CO 2 into NH 4 HCO 3 (aq) by contacting CO 2 with ammonia water as an absorption liquid; a cooling jacket formed in multiple stages for each section of the absorption tower filled with the filler to cool the heat generated by the CO 2 removal reaction; Water spray collecting NH 3 discharged to the outside without reacting with CO 2 ; a mist removal plate formed in a curved multi-plate shape to return ammonia water in the direction of the filler; barrier ribs formed so that ammonia water does not flow back; and an umbrella-shaped blocking plate covering the exhaust gas inlet hole surrounded by the partition wall.
  • the filler is composed of a multi-stage distillation column packing designed to have a large contact area per unit volume, and a solution redistributor may be formed between the distillation column packings.
  • the absorption tower may further include an EGE formed between the NO X absorption unit and the SO X absorption unit to exchange heat between waste heat of the marine engine and boiler water.
  • a washing water tank for storing the washing water discharged from the absorption tower, a filtering unit for adjusting turbidity to meet the overboard discharge condition of the washing water transferred to the washing water tank by a transfer pump, and injection of a neutralizer for pH control
  • a water treatment device having a unit, and a sludge storage tank for separately storing the solid waste may further include a discharge unit.
  • the present invention can provide a ship equipped with the apparatus for reducing greenhouse gas emission of the ship listed above.
  • an exhaust gas cooling unit for cooling the exhaust gas discharged from the marine engine;
  • Absorption liquid production unit for preparing and supplying a high-concentration CO 2 absorbent liquid;
  • an absorption tower formed with a CO 2 removal unit for converting CO 2 into an aqueous ammonium salt solution by reacting the exhaust gas cooled by the exhaust gas cooling unit with the absorption liquid from the absorption liquid production unit to remove CO 2 ;
  • a primary regeneration stage in which the absorption liquid is primarily regenerated by reacting the aqueous ammonium salt solution discharged from the absorption tower with an aqueous divalent metal hydroxide solution, and an aqueous divalent metal hydroxide solution is further reacted with the unreacted aqueous ammonium salt solution from the primary regeneration stage
  • the marine engine may use LNG or low-sulfur oil as a fuel.
  • a device for reducing greenhouse gas emissions from ships A device for reducing greenhouse gas emissions from ships.
  • the exhaust gas cooling unit may circulate fresh water provided from the inboard cooling system through a heat exchange pipe surrounding the exhaust gas exhaust pipe to cool the exhaust gas to a temperature of 27°C to 33°C.
  • the absorption liquid regeneration unit a storage tank for storing the divalent metal hydroxide aqueous solution;
  • a mixing tank for generating NH 3 (g) and carbonate by stirring the aqueous solution of ammonium salt discharged from the absorption tower and the aqueous solution of divalent metal hydroxide from the storage tank with a stirrer, and sucking the solution and precipitate from the mixing tank to obtain carbonate Consisting of a primary filter separating the, the primary regeneration stage; and a primary absorption liquid storage tank for storing aqueous ammonia or unreacted aqueous ammonium salt solution separated by the primary filter and reacting the aqueous solution of divalent metal hydroxide and unreacted aqueous ammonium salt solution from the storage tank;
  • the secondary regeneration stage comprising: a secondary filter for separating carbonate and high-concentration ammonia water by sucking the solution and sediment from the tank; and a secondary absorption liquid storage tank for storing the high-concentration ammonia water separated by the
  • the storage capacity of the primary absorption liquid storage tank may be three times or more of the capacity of the absorption liquid circulating the absorption tower and the absorption liquid regeneration unit along the absorption liquid circulation line.
  • the primary absorption liquid storage tank includes a stirrer for reacting the aqueous solution of divalent metal hydroxide from the storage tank with the aqueous ammonia or unreacted aqueous solution of ammonium salt separated by the primary filter, and the degree of reaction by the stirrer. It may include a pH sensor to measure.
  • the aqueous solution of divalent metal hydroxide stored in the storage tank may be Ca(OH) 2 or Mg(OH) 2 generated by reacting fresh water with CaO or MgO.
  • ammonia water or fresh water separated by the secondary filter is supplied to the secondary absorption liquid storage tank, or the surplus fresh water additionally generated by the mixing tank compared to the total circulation fresh water is stored in the fresh water tank, and 2 in the storage tank It can be recycled when generating an aqueous metal hydroxide solution.
  • the absorption tower further comprises a NO X absorption unit for absorbing and removing NO X of the exhaust gas discharged from the marine engine, the CO 2 removal unit, the NO X is removed by the exhaust gas cooling unit By reacting the cooled exhaust gas with the absorption liquid from the absorption liquid preparation unit, CO 2 may be converted into an aqueous ammonium salt solution to remove CO 2 .
  • the absorption liquid regeneration unit regenerates NH 3 and returns it to the absorption tower to be reused as an absorption liquid
  • the NO X absorption unit absorbs NO X with NH 3 supplied from the absorption liquid regeneration unit, or uses urea to obtain NO It can be removed by absorbing X.
  • the absorbent liquid manufacturing unit a fresh water tank for storing fresh water; a fresh water control valve for controlling the amount of fresh water supplied from the fresh water tank; NH 3 storage for storing high pressure NH 3 ; an ammonia water tank for preparing and storing high-concentration ammonia water as an absorption liquid by injecting NH 3 supplied from the NH 3 storage to the fresh water supplied by the fresh water control valve; a pH sensor for measuring the ammonia water concentration in the ammonia water tank; and an ammonia water supply pump for supplying ammonia water from the ammonia water tank to the secondary absorption liquid storage tank.
  • it may further include an ammonia water circulation pump for circulating the ammonia water from the secondary absorption liquid storage tank to the absorption tower.
  • the CO 2 removal unit may include: an ammonia water injection nozzle for downwardly injecting the absorption liquid supplied from the absorption liquid regeneration unit; A filler for converting CO 2 into NH 4 HCO 3 (aq) by contacting CO 2 with ammonia water as an absorption liquid; a cooling jacket formed in multiple stages for each section of the absorption tower filled with the filler to cool the heat generated by the CO 2 removal reaction; Water spray collecting NH 3 discharged to the outside without reacting with CO 2 ; a mist removal plate formed in a curved multi-plate shape to return ammonia water in the direction of the filler; barrier ribs formed so that ammonia water does not leak; and an umbrella-shaped blocking plate covering the exhaust gas inlet hole surrounded by the partition wall.
  • the filler is composed of a multi-stage distillation column packing designed to have a large contact area per unit volume, and a solution redistributor may be formed between the distillation column packings.
  • the absorption tower may further include an EGE formed between the NO X absorption unit and the exhaust gas cooling unit to exchange heat with boiler water with waste heat of the exhaust gas from the marine engine.
  • the present invention can provide a ship equipped with the apparatus for reducing greenhouse gas emission of the ship listed above.
  • the absorption liquid regeneration unit is configured in two or more stages to remove the unreacted aqueous ammonium salt solution remaining in the ammonia water to maintain the ammonia water concentration at a certain level, thereby increasing the recovery rate of the absorption liquid, and to prevent a decrease in the greenhouse gas absorption performance. can have an effect.
  • the IMO greenhouse gas emission regulation it is converted into a material that does not affect the environment and discharged or converted into a useful material and stored, and NH 3 is recycled to minimize consumption of relatively expensive NH 3 , and filter
  • the capacity size of the rear end can be reduced, and the greenhouse gas can be stored in the form of carbonate in a natural state so that it can be discharged to the sea . There is an effect that can prevent impurities from being included in the recovery of ammonia.
  • the absorption liquid regeneration unit is configured in two or more stages to remove the unreacted aqueous ammonium salt solution remaining in the ammonia water to increase the recovery rate of the absorption liquid, and to apply a pressurization system to prevent the loss of the absorption liquid due to the natural evaporation of NH 3 of the high concentration absorption liquid. There is an effect that can prevent the absorption performance from being deteriorated.
  • the IMO greenhouse gas emission regulation it is converted into a material that does not affect the environment and discharged or converted into a useful material and stored, and NH 3 is recycled to minimize consumption of relatively expensive NH 3 , and filter
  • the capacity size of the rear end can be reduced, and the greenhouse gas can be stored in the form of carbonate in a natural state so that it can be discharged to the sea . It has the effect of minimizing the amount of impurities and preventing impurities from being included in the recovery of ammonia.
  • FIG. 1 shows a schematic configuration diagram of an apparatus for reducing greenhouse gas emission of a ship according to an embodiment of the present invention.
  • FIG. 2 is a diagram showing a system circuit diagram implementing the greenhouse gas emission reduction device of the ship of FIG. 1 .
  • Figure 3 is a view showing the separation of the seawater supply of the greenhouse gas emission reduction device of the ship of Figure 2;
  • FIG. 4 is a diagram illustrating an absorbent liquid manufacturing unit and an absorbent liquid regenerating unit of the apparatus for reducing greenhouse gas emissions of the vessel of FIG. 2 separately.
  • FIG. 5 is a view showing the separation of the absorption tower of the greenhouse gas emission reduction device of the ship of FIG.
  • FIG. 6 is a view showing the SO X absorption part of the absorption tower of FIG. 5 separated.
  • FIG. 7 is a view showing the separation of the steam generating unit and the discharge unit of the greenhouse gas emission reduction apparatus of the ship of FIG. 2 .
  • FIG. 8 illustrates various fillers applied to the apparatus for reducing greenhouse gas emissions of the ship of FIG. 2 .
  • FIG. 9 illustrates an ammonia water injection nozzle applied to the apparatus for reducing greenhouse gas emission of the ship of FIG. 2 .
  • FIG. 10 shows a schematic configuration diagram of an apparatus for reducing greenhouse gas emission of a ship according to another embodiment of the present invention.
  • FIG. 11 is a diagram showing a system circuit diagram implementing the apparatus for reducing greenhouse gas emission of a ship according to another embodiment of FIG. 10 .
  • FIG. 12 is a view showing the separation of the exhaust gas cooling unit and the absorption tower of the greenhouse gas emission reduction device of the ship according to another embodiment of FIG.
  • FIG. 13 is a diagram illustrating an absorbent liquid manufacturing unit and an absorbent liquid regenerating unit of the apparatus for reducing greenhouse gas emission of a ship according to another embodiment of FIG. 11 .
  • FIG. 14 is a separate view illustrating a steam generating unit of the apparatus for reducing greenhouse gas emission of a ship according to another embodiment of FIG. 11 .
  • FIG. 15 illustrates various fillers applied to the apparatus for reducing greenhouse gas emission of a ship according to another embodiment of FIG. 11 .
  • FIG. 16 illustrates an ammonia water injection nozzle applied to the apparatus for reducing greenhouse gas emission of a ship according to another embodiment of FIG. 11 .
  • the apparatus for reducing greenhouse gas emission of a ship includes a seawater supply unit 110 for supplying seawater, an absorption liquid manufacturing unit 120 for manufacturing and supplying a high-concentration CO 2 absorption liquid, and a ship
  • the exhaust gas discharged from the engine 10 is cooled by reacting with the seawater supplied from the seawater supply unit 110, and the cooled exhaust gas and the absorption liquid from the absorption liquid production unit 120 are reacted to convert CO 2 into an aqueous ammonium salt solution.
  • the absorption tower 130 in which the CO 2 removal unit 131 for removing CO 2 is formed, reacts the aqueous ammonium salt solution discharged from the absorption tower 130 with the aqueous divalent metal hydroxide solution to primarily regenerate the absorption liquid (140) and the non-reacted aqueous solution of ammonium salt from the primary regeneration unit 140 is reacted with an aqueous solution of divalent metal hydroxide to regenerate the high-concentration absorption liquid secondarily, and circulately supply to the absorption tower 130 for reuse as an absorption liquid.
  • the main purpose is to prevent deterioration of absorption performance by increasing the recovery rate of the absorption liquid and maintaining the absorption liquid at a constant concentration by including the absorption liquid regeneration portion comprising the regeneration unit 150 .
  • the tower may be configured to include, in addition to the CO 2 removal unit, a NOx absorption unit or an SOx absorption unit, or both.
  • an SOx absorption unit capable of simultaneously performing both cooling of exhaust gas and absorption and removal by dissolution of SOx may be additionally provided.
  • the seawater supply unit 110 supplies seawater to the absorption tower 130 to lower the temperature of the exhaust gas to facilitate the absorption of CO 2 by the absorption liquid.
  • the seawater supply unit 110 sucks and receives seawater from the outboard through a sea chest (not shown) and absorbs SO X of the absorption tower 130 .
  • It may be composed of a seawater pump 111 that pumps the unit 132 and a seawater control valve 112 that adjusts the injection amount of seawater supplied to the SO X absorption unit 132 according to the amount of exhaust gas.
  • the seawater pump 111 may be separated into a suction pump for sucking seawater from the outboard and a seawater transfer pump for pumping and transferring seawater to the SO X absorption unit 132 .
  • the sea water pump 111 from a high sea chest sucking the upper sea water or a low sea chest sucking the lower sea water selectively can supply That is, when the ship is berthing, the high sea chest is used because the upper sea water is cleaner than the lower sea water, and the low sea chest can be used when the ship is sailing because the lower sea water is cleaner than the upper sea water.
  • the seawater control valve 112 may be a manually operated diaphragm valve or a solenoid type valve for controlling the flow rate of seawater, but is not limited thereto, and seawater through the seawater injection nozzle 132a according to the amount of exhaust gas. Any type of valve is applicable as long as the injection amount can be adjusted.
  • the absorption liquid preparation unit 120 reacts fresh water and NH 3 as shown in the following [Formula 1] to prepare a high concentration ammonia water (NH 4 OH(aq)), which is a high concentration CO 2 absorption liquid, and stores the secondary absorption liquid It is supplied to the absorption tower 130 via the tank 153 .
  • the absorption liquid manufacturing unit 120 includes a fresh water tank (not shown) for storing fresh water, and a fresh water control valve for supplying fresh water from the fresh water tank to the ammonia water tank 123 ( 121), NH 3 storage 122 for storing high-pressure NH 3 , and NH 3 supplied from the NH 3 storage 122 to the fresh water supplied by the fresh water control valve 121 to produce and store high-concentration ammonia water
  • the ammonia water tank 123, the pH sensor 124 for measuring the ammonia water concentration in the ammonia water tank 123, and the ammonia water supply pump 125 for supplying the high concentration ammonia water from the ammonia water tank 123 to the secondary absorption liquid storage tank 153. can be composed of
  • the concentration of ammonia water circulating in the absorption tower 130 and the absorption liquid regeneration unit is changed as the operation is repeated.
  • NH 3 is supplied to the NO X absorption unit 133 and used for NO X absorption and removal, or the absorption tower 130 .
  • NH 3 is discharged like exhaust gas through By supplying, it is possible to compensate for the lowered ammonia concentration and keep it constant at the designed ammonia water concentration.
  • high-concentration ammonia water has a higher partial pressure of NH 3 (g) compared to low-concentration ammonia water at the same temperature, so that NH 3 evaporates more easily at atmospheric pressure, resulting in an increase in loss. Therefore, in order to store high-concentration ammonia water, the solubility is high and the temperature is lowered so that the vapor pressure of NH 3 (g) is lowered, and it must be operated under a pressurized system.
  • NH 3 can be stored in a liquid state at -34 ° C. and 8.5 bar, so by using 7 bar compressed air available in the ship, the inside of the ammonia water tank 123 is maintained at a constant pressure, and 50% concentration of ammonia water is obtained. It can be stored in the ammonia water tank (123).
  • a safety valve 123a for preventing overpressure of the ammonia water tank 123 may be installed.
  • the exhaust gas discharged from the marine engine 10 reacts with the seawater supplied from the seawater supply unit 110 to cool, and CO 2 of the cooled exhaust gas and the absorption liquid production unit 120 from the A CO 2 removal unit 131 for removing CO 2 is formed by reacting ammonia water as an absorption liquid to convert CO 2 into an aqueous ammonium salt solution (NH 4 HCO 3 (aq)) as shown in the following [Formula 2].
  • the CO 2 removal unit 131 is, as shown in FIG. 3 , the ammonia water injection nozzle 131a for downwardly injecting the ammonia water supplied from the secondary absorption liquid storage tank 153, the exhaust gas CO 2 and Cooling that is formed in multiple stages for each section of the absorption tower filled with the filler 131b and the filler 131b that converts CO 2 into NH 4 HCO 3 (aq) by contacting it with ammonia water as the absorption liquid to cool the heat generated by the CO 2 absorption reaction
  • a cooling jacket (not shown), a water spray 131c that collects NH 3 discharged to the outside without reacting with CO 2 , is formed in a curved multi-plate shape and is scattered when sprayed by the ammonia water injection nozzle 131a
  • the cooling jacket is cooled to 30° C. to 50° C. where material shearing is the most smooth, and while maintaining the CO 2 absorption rate at a constant level, NH 3 can be prevented from being vaporized and lost.
  • the CO 2 removal unit 131 may be considered in various forms to operate within the allowable pressure drop of the exhaust pipe required by the engine specifications while increasing the contact area between the exhaust gas and NH 3
  • the filler (131b) is composed of a multi-stage distillation column packing designed to have a large contact area per unit volume, and a distillation column packing suitable for the absorption process as illustrated in FIG. 8 in consideration of the contact area per unit area and the pressure drop and overflow rate of gas can be selected, and as illustrated in FIG. 9 , the ammonia water injection nozzle 131a may be configured in a ladder pipe form (a) or a spray form (b).
  • ammonia water passes downward through the filler 131b and the exhaust gas passes upward through the filler 131b and comes into contact, so that a solution redistributor (not shown) may be formed between the distillation column packings to prevent a channeling phenomenon.
  • mist removal plate (131d) is to be discharged (drain) in the direction of the filler (131b) by its own weight so that the scattered ammonia water is adhered to the curved multi-plate so that the droplets (droplets) become large.
  • the absorption tower 130 may additionally include an SOx absorption unit 132 . may be
  • the SOx absorption unit 132 reacts the exhaust gas discharged from the marine engine 10 with the seawater supplied from the seawater supply unit 110 to dissolve and remove SOx while cooling, and the CO 2 removal unit 131 is the SOx is cooled by reacting the removed exhaust gas with the seawater supplied from the seawater supply unit 110, and the cooled exhaust gas and the absorption liquid from the absorption liquid production unit 120 are reacted to convert CO 2 into an aqueous ammonium salt solution to absorb CO 2 can be removed
  • the SOx absorption unit 132 is a section in primary contact with seawater, and as shown in FIGS. 3 and 6 , by spraying the seawater supplied from the seawater supply unit 110 downward to dissolve SOx and chute
  • an umbrella-type blocking that covers the bulkhead-type exhaust gas inlet pipe 132b or the exhaust gas inlet pipe 132b to prevent backflow of washing water It may include a plate 132c.
  • the temperature of the exhaust gas through the seawater injection nozzle (132a) or a separate cooling jacket (not shown) can be cooled to 27°C to 33°C, preferably around 30°C, required by the CO 2 removal unit 131 .
  • the porous upper plate 132d in which the flow path through which the exhaust gas is formed is formed in the lower part of the seawater injection nozzle 132a is formed in multiple stages, so that the seawater and the exhaust gas smoothly
  • an absorption tower 132e filled with a filler for contacting seawater and exhaust gas is formed under the seawater injection nozzle 132a, respectively, so that seawater is SO X It can also be made to dissolve.
  • a compound that forms alkali ions for example, a basic chemical of NaOH or MgO, is introduced into the seawater supplied to the SOx absorption unit 132. It can be configured as a closed loop system. .
  • the closed-loop system entails additional basic chemical consumption, but has the advantage of a small amount of circulating seawater, and the open-loop system that discharges dissolved SO X by spraying only seawater to the outboard consumes additional basic chemical Since there are no and simple advantages, in order to maximize these advantages, a hybrid system that combines an open circuit and a closed circuit may be configured.
  • SO X is first removed through the SO X absorbing unit 132 and then CO 2 is subsequently removed through the CO 2 removing unit 131 , so that the solubility of SO X is large, so that the compound such as Na 2 SO 3 is first used. It is possible to improve the solubility of CO 2 and the removal efficiency of CO 2 by solving the problem that it is difficult to remove CO 2 until all the dissolution of SO X is achieved.
  • the washing water that absorbs SO X by the SO X absorption unit 132 and drains to the discharge unit 170 includes SO 3 ⁇ , SO 4 2 ⁇ , chute, NaSO 3 , NaSO 4 , MgCO 3 , MgSO 4 and Other ionic compounds are also included.
  • the absorption tower 130 further includes a NOx absorption unit 133 that absorbs and removes NOx of the exhaust gas discharged from the marine engine 10, and removes the NOx from the exhaust gas. It is cooled by reacting with the seawater supplied from the seawater supply unit 110 and the cooled exhaust gas and the absorption liquid from the absorption liquid production unit 120 are reacted to convert CO 2 into an aqueous ammonium salt solution to remove CO 2 .
  • the absorption tower 130 is a NO X absorption unit 133 that absorbs and removes NO X of the exhaust gas discharged from the marine engine 10, and the NO X is removed by reacting the exhaust gas with seawater to cool the SO
  • the SO X absorption unit 132 that dissolves and removes X , and the exhaust gas from which SO X is removed and the ammonia water supplied from the absorption liquid production unit 120 react to convert CO 2 into NH 4 HCO 3 (aq) to CO
  • the CO 2 removal unit 131 for removing 2 is stacked in a vertical direction, and NO X and SO X and CO 2 are sequentially absorbed and removed.
  • the CO 2 removal unit 131 reacts the exhaust gas from which NO X and SO X have been previously removed and ammonia water to remove it first, so that a side reaction due to NO X and SO X does not occur during the CO 2 removal process, thereby generating impurities can be minimized, so that NH 4 HCO 3 with less impurities can be obtained in the subsequent process.
  • the absorption tower 130 is configured to include a CO 2 removal unit 131 , a SO X absorption unit 132 , an NO X absorption unit 133 , and an EGE 134 to be described later, each of which is configured as an individual module. It may be modularized and combined configuration, may be configured to be integrated in the form of a single tower, and the absorption tower 130 itself may be configured to be grouped into a single tower or a plurality of towers.
  • the NO X absorption unit 133 is a Selective Catalyst Reactor (SCR), and as shown in FIG. 5 , the first NH 3 injection nozzle ( Direct supply of NH 3 to 133b), or supply the urea water (UREA) of the urea water storage tank (133c) to the second NH 3 injection nozzle (133e) through the urea water supply pump (133d) when NH 3 is insufficient It can be substituted to compensate for the shortfall.
  • SCR Selective Catalyst Reactor
  • the absorption tower 130 is formed between the NO X absorption unit 133 and the SO X absorption unit 132 to exchange heat with the waste heat of the marine engine 10 and boiler water (EGE (Exhaust Gas Economizer) 134 ) may further include.
  • EGE Exhaust Gas Economizer
  • the absorption liquid regeneration unit regenerates NH 3 and returns it to the absorption tower 130 to reuse it as a CO 2 absorption liquid, and to store the CO 2 in the form of CaCO 3 (s) or MgCO 3 (s) or to discharge it overboard, or NO It may be supplied to the X absorption unit 133 to absorb NO X as NH 3 .
  • the absorption liquid regeneration unit reacts the ammonium salt aqueous solution discharged from the absorption tower 130 with the divalent metal hydroxide aqueous solution to primarily regenerate the absorbent solution, and the non-reacted from the primary regeneration unit 140 .
  • It consists of a secondary regeneration unit 150 that reacts an aqueous solution of divalent metal hydroxide with an aqueous solution of an ammonium salt to regenerate a high-concentration absorbent solution and circulates and supplies it to the absorption tower 130 for reuse as an absorbent, increasing the recovery rate of the absorbent to a certain concentration.
  • NH 3 is supplied to the NO X absorption unit 133 and used for NO X absorption and removal, or NH 3 is discharged as exhaust gas through the absorption tower 130, so that ammonia water It is possible to effectively prevent the decrease in the absorption performance due to the lowering of the concentration.
  • the absorption liquid regeneration unit stirs the ammonium salt aqueous solution and the divalent metal hydroxide aqueous solution discharged from the storage tank 141 for storing the divalent metal hydroxide aqueous solution and the absorption tower with a stirrer to obtain the following A primary filter 143 for separating carbonate and ammonia water (or fresh water) by sucking the solution and precipitate from the mixing tank 142 and the mixing tank 142 for generating NH 3 (g) and carbonate as shown in [Formula 3] ), the primary regeneration unit 140, and the aqueous ammonia solution separated by the primary filter 143 and the non-reacted aqueous solution of ammonium salt remaining without reacting with the aqueous solution of divalent metal hydroxide, and a storage tank 141
  • the storage capacity of the primary absorption liquid storage tank 151 is designed to be three times or more of the capacity of the absorption liquid circulating in the absorption tower 130 and the absorption liquid regeneration unit, and has a relatively large capacity compared to the capacity of the circulating absorption liquid, so that the primary absorption liquid storage tank
  • the reaction time can be sufficiently secured to convert the unreacted aqueous ammonium salt solution into carbonate.
  • the aqueous solution of divalent metal hydroxide in the mixing tank 142 is changed frequently while passing through the filter due to the effects of reaction rate, ammonia evaporation, etc., and when the production of carbonate is not completed, a significant amount of unreacted aqueous ammonium salt solution remains in ammonia water. Since the absorption rate can be lowered, the large-capacity primary absorption liquid storage tank 151 is designed to react for a sufficient time, and the secondary filter 152 is passed again to increase the recovery rate of the ammonia water to increase the ammonia water concentration as an effective absorption liquid. It can be maintained at a certain level where it can perform.
  • ammonia gas generated in the mixing tank 142 may be supplied to the CO 2 removal unit 131 of the absorption tower 130 or may be supplied to the NOx absorption unit 133 .
  • the primary absorption liquid storage tank 151 includes an agitator 151a that stirs and reacts an aqueous divalent metal hydroxide aqueous solution and an unreacted aqueous ammonium salt solution, and a pH sensor 151b that measures the degree of reaction by the agitator 151a. ) may be included.
  • the aqueous solution of divalent metal hydroxide stored in the storage tank 141 may be Ca(OH) 2 or Mg(OH) 2 generated by reacting fresh water with CaO or MgO.
  • the concentration of the ammonia water circulating in the ammonia water circulation line (A) is low, the generation of (NH 4 ) 2 CO 3 of [Formula 2] is reduced and the CO 2 emission increases, and when the concentration is high, excessive CO 2 Because the carbonate production increases more than necessary due to absorption, the concentration of ammonia water must be kept constant so that the CO 2 absorption performance of the absorption tower 130 can be continued. In order to implement this, it may be designed to adjust the concentration of ammonia water to 12% by mass, but is not limited thereto and may be changed according to the conditions of use.
  • carbonates (CaCO 3 (s), MgCO 3 (s)) separated by the primary filter 143 and the secondary filter 152 are transferred to a slurry state or to a dryer (not shown). It may be provided with a separate storage tank (not shown) for storing in a solidified solid state, or may be discharged overboard.
  • a membrane filter suitable for sediment separation by high-pressure fluid transport may be applied as an example of the primary filter 143 and the secondary filter 152 .
  • ammonia water circulation pump 154 may be configured as a centrifugal pump type pump so that a large amount of ammonia water circulates the ammonia water circulation line (A).
  • the ammonia water or fresh water separated by the primary filter 143 and the secondary filter 152 is supplied to the secondary absorption liquid storage tank 153, or a surplus additionally generated by the mixing tank 142 compared to the total circulation fresh water
  • Fresh water can be saved by storing fresh water in a fresh water tank (not shown) and recycling it when generating a divalent metal hydroxide aqueous solution in the storage tank 141 .
  • the steam generator 160 receives a mixture of steam and saturated water that has been heat-exchanged through the EGE 134 to receive a steam drum (not shown).
  • the auxiliary boiler 161 for separating steam and supplying it to the steam consuming place
  • the boiler water circulating water pump 162 for circulating and supplying boiler water from the auxiliary boiler 161 to the EGE 134, and consumption from the steam consuming place
  • a cascade tank 163 for recovering condensed water that is condensed and phase-changed after being condensed
  • a supply pump 164 and a control valve for controlling and supplying the amount of boiler water from the cascade tank 163 to the auxiliary boiler 161 Consist of (165), it generates and supplies the steam required for the heating equipment in the ship.
  • the amount of heat that can be provided from the exhaust gas is high, so the amount of steam required in the ship can be sufficiently produced through the EGE 134, but if not, the auxiliary boiler 161 itself
  • the fuel can also be burned to produce the required steam.
  • the discharge unit 170 is, as shown in FIG. 7 , a washing water tank 171 that stores the washing water discharged from the absorption tower 130 , and a transfer pump 172 from the washing water tank 171 to the A water treatment device 173 having a filtering unit that adjusts turbidity to meet the overboard discharge condition of the washing water transported by the vehicle and a neutralizer injection unit for pH adjustment, and a sludge storage tank for separating and storing solid discharges such as chute ( 174), the washing water that passes through the water treatment device 173 and meets the overboard discharge condition is discharged overboard, and the solid discharge such as a chute that does not meet the overboard discharge condition is separately stored in the sludge storage tank 174 can be kept
  • NaOH may be exemplified as a neutralizing agent for satisfying the overboard discharge condition, but it is possible to neutralize these acidic or basic properties, respectively, as needed, assuming that the material discharged from the absorption tower 130 is acidic or basic.
  • a neutralizing agent may be selected and used.
  • the ship according to another embodiment of the present invention it is possible to provide a ship equipped with the apparatus for reducing greenhouse gas emission of the ship mentioned above.
  • the absorption liquid regeneration unit is configured in two or more stages to remove the unreacted aqueous ammonium salt solution remaining in the ammonia water to maintain the ammonia water concentration at a certain level, and the recovery rate of the absorption liquid Substances that do not affect the environment to increase energy consumption, prevent deterioration of greenhouse gas absorption performance, prevent absorption liquid loss due to natural evaporation of high concentration absorption liquid by applying a pressurization system, and meet IMO greenhouse gas emission regulations It is converted to to separate discharge or converted into a useful material and stored, and by regenerating NH 3 , consumption of relatively expensive NH 3 can be minimized, the capacity size of the rear end of the filter can be reduced, and greenhouse gas in the form of carbonate present in its natural state It can be stored as a solution to enable discharge to the sea, and to minimize the loss of NH 3 by removing side reactions due to the remaining SO X during NH 3 regeneration, and to prevent impurities from being
  • the apparatus for reducing greenhouse gas emission of a ship includes an exhaust gas cooling unit 110 ′ for cooling the exhaust gas discharged from the ship engine 10 ′, high concentration CO 2
  • the absorbent liquid production unit 120' which manufactures an absorbent liquid and supplies it to the absorption tower 130', reacts the exhaust gas cooled by the exhaust gas cooling unit 110' and the absorbent liquid from the absorbent liquid production unit 120' to create a greenhouse Divalent metal hydroxide is formed in the absorption tower 130', and the ammonium salt aqueous solution discharged from the absorption tower 130' is formed with a CO 2 removal unit 131' for converting CO 2 of the gas into an aqueous ammonium salt solution to remove CO 2
  • the first regeneration stage 140' which primarily regenerates the absorbent liquid by reaction with the aqueous solution, and the non-reacted aqueous ammonium salt solution from the primary regeneration stage 140' is additionally reacted with an aqueous divalent metal hydroxide solution to
  • the NO X absorption unit, the exhaust gas cooling unit, and the CO 2 removal unit are sequentially stacked on the absorption tower.
  • the present invention is not limited thereto, and as described above, whether the NO x absorbing unit and/or the SOx absorbing unit is provided may be determined according to the type of the marine engine and fuel.
  • the exhaust gas cooling unit 110 ′ cools the exhaust gas discharged from the marine engine 10 ′ to lower the temperature of the exhaust gas to facilitate the absorption of CO 2 by the greenhouse gas absorbing liquid.
  • the exhaust gas cooling unit 110 ′ may cool the exhaust gas discharged from the marine engine 10 ′ by a heat exchange method of fresh water, specifically, the exhaust gas exhaust pipe through which the exhaust gas flows.
  • the temperature of 27 °C to 33 °C required by the CO 2 removal unit 131 ' by circulating fresh water provided from the in-board cooling system 20 ' through the enclosing heat exchange pipe 111 ' and exchanging the exhaust gas with the fresh water. can be cooled with
  • the concentration of the absorption liquid is lowered due to the input of fresh water, and the greenhouse gas absorption performance is reduced. It is possible to prevent a decrease in the concentration of the absorption liquid by cooling, thereby preventing a decrease in the greenhouse gas absorption performance.
  • the exhaust gas cooling unit 110 ′ has been illustrated to be cooled by a heat exchange method through fresh water, but in addition, various cooling media and cooling methods may be applied.
  • the absorption liquid manufacturing unit 120 ⁇ prepares a high-concentration CO 2 absorption liquid and supplies it to the absorption tower 130 ⁇ , as shown in the following [Formula 4], fresh water and NH 3 react with high - concentration ammonia water ( NH 4 OH(aq)) is produced and the absorption liquid circulation line A ⁇ (see FIG. 10) passes through the secondary absorption liquid storage tank 153 ⁇ , and the CO 2 removal unit 131 ⁇ of the absorption tower 130 ⁇ ) supplied with
  • the absorbent liquid manufacturing unit 120 ′ controls the supply amount of fresh water from a fresh water tank (not shown) for storing fresh water and the fresh water tank to the ammonia water tank 123 ′.
  • NH 3 supplied from the NH 3 reservoir (122 ⁇ ) to the fresh water supplied by the fresh water control valve (121 ⁇ ), the NH 3 reservoir (122 ⁇ ) that stores the high-pressure NH 3 , and the fresh water control valve (121 ⁇ )
  • Ammonia water tank 123' for producing and storing high-concentration ammonia water by spraying, a pH sensor 124' for measuring and monitoring the ammonia water concentration in the ammonia water tank 123', and secondary absorption liquid storage from the ammonia water tank 123'
  • It may be composed of an ammonia water supply pump 125' for supplying high-concentration ammonia water to the tank 153'.
  • the ammonia water circulating in the absorption tower 130' and the absorption liquid regeneration unit along the absorption liquid circulation line ( A ⁇ ) changes in concentration while repeating the operation .
  • the absorption liquid production unit 120 ′ converts the high concentration ammonia water into the absorption liquid circulation line ( A ⁇ , see FIG. 10), to compensate for the lowered ammonia concentration and to maintain a constant ammonia water concentration designed with a preset absorption performance.
  • high-concentration ammonia water has a higher partial pressure of NH 3 (g) compared to low-concentration ammonia water at the same temperature, so that NH 3 evaporates more easily at atmospheric pressure, resulting in an increase in loss. Therefore, without loss, in order to store high-concentration ammonia water, the solubility of NH 3 (g) is high and the temperature is lowered so that the vapor pressure is low, and it must be operated under a pressurized system.
  • compressed air of a certain pressure is injected into the upper part of the ammonia water in the ammonia water tank 123', and the pressure in the ammonia water tank 123' is maintained at a high state, so that the ammonia water
  • the concentration of can be kept constant at a high concentration, for example, 50%wt of NH 3 .
  • NH 3 can be stored in a liquid state at -34°C and 8.5bar, so using 7bar compressed air available on board, the inside of the ammonia water tank 123 ⁇ is maintained at a constant pressure, and ammonia water with a concentration of 50% is maintained. can be stored in the ammonia water tank (123').
  • a safety valve (123a') for preventing overpressure of the ammonia water tank (123') may be installed.
  • the exhaust gas cooled by the exhaust gas cooling unit 110 ′ and ammonia water, which is initially supplied from the absorption liquid production unit 120 ′ and circulates along the absorption liquid circulation line A′, are supplied.
  • CO 2 is converted into an aqueous ammonium salt solution (NH 4 HCO 3 (aq)) to form a CO 2 removal unit 131 ⁇ that removes CO 2 .
  • the CO 2 removal unit 131 ′ sprays the ammonia water supplied from the secondary absorption liquid storage tank 153 ′ downward toward the filler 131b ′.
  • a filler (131b ⁇ ) that converts CO 2 into NH 4 HCO 3 (aq) by contacting CO 2 of exhaust gas with ammonia water as an absorption liquid
  • a filler (131b ⁇ ) is formed in multiple stages for each section of the absorption tower filled
  • a cooling jacket (not shown) that cools the heat generated by the CO 2 absorption reaction
  • a water spray (131c ⁇ ) that collects NH 3 discharged into the atmosphere without reacting with CO 2 , and a curved multi-plate shape
  • the ammonia water that has passed through the mist removal plate 131d ⁇ , the filler 131b ⁇ which returns the ammonia water scattered when sprayed by the ammonia water injection nozzle 131a ⁇ to the filling material 131b ⁇ , leaks, and the NO X absorption
  • the cooling jacket is cooled to 30° C. to 50° C. where mass transfer is the most smooth, and while maintaining the CO 2 absorption rate at a certain level, NH 3 can be prevented from being vaporized and lost.
  • the CO 2 removal unit 131 ′ may take various forms to operate within the allowable pressure drop of the exhaust pipe required by engine specifications while increasing the contact area between the exhaust gas and NH 3 , for example,
  • the filler (131b ⁇ ) is composed of a multi-stage distillation column packing designed to have a large contact area per unit volume, and in consideration of the contact area per unit area and the pressure drop and overflow rate of the gas, distillation suitable for the absorption process as illustrated in FIG. 15 Column packing may be selected, and as illustrated in FIG. 16 , the ammonia water injection nozzle 131a ′ may be configured in a ladder pipe type (a) or a spray type (b).
  • ammonia water passes downward through the filler (131b '), and the exhaust gas passes upward through the filler (131b ') and comes into contact with each other to prevent a channeling phenomenon caused by a solution redistributor (not shown) distilling may be formed between the column packings.
  • mist removing plate (131d') is to be discharged (drain) in the direction of the filler (131b') by its own weight so that the scattered ammonia water is adhered to the curved multi-plate so that the droplets become large.
  • the ship engine 10 ′ is premised on using LNG or low-sulfur oil as a fuel.
  • SO X may be included in the exhaust gas, so the absorption tower 130 ′ may include a SO X absorption unit.
  • the SO X absorber reacts the exhaust gas discharged from the marine engine 10 ′ with seawater to dissolve and remove SO X while cooling
  • the CO 2 remover 131 ′ is the SO X
  • CO 2 may be converted into an aqueous ammonium salt solution to absorb and remove CO 2 .
  • the absorption tower 130 ′ further includes a NO X absorption unit 132 ′ for absorbing and removing NO X of the exhaust gas discharged from the marine engine 10 ′, and the NO X
  • the exhaust gas from which has been removed is cooled by the exhaust gas cooling unit 110 ′, and the cooled exhaust gas and the absorption liquid from the absorption liquid production unit 120 ′ are reacted to convert CO 2 into an aqueous ammonium salt solution to remove CO 2 .
  • the absorption tower 130 ′ includes a NO X absorber 132 ′ that absorbs and removes NO X of the exhaust gas discharged from the ship engine 10 ′, and the exhaust gas and absorbent liquid from which NO X is removed and cooled.
  • a CO 2 removal unit 131 ′ for removing CO 2 by reacting the ammonia water supplied from the unit 120 ′ to convert CO 2 into NH 4 HCO 3 (aq) is stacked, so that NO X and CO from the exhaust gas 2 can be sequentially absorbed and removed.
  • the CO 2 removal unit 131 ′ reacts the ammonia water with the exhaust gas from which NO X has been removed by the NO X absorption unit 132 ′, so that a side reaction due to NO X does not occur during the CO 2 removal process. Since generation can be minimized, NH 4 HCO 3 with less impurities can be obtained in the subsequent process.
  • the absorption tower 130 ′ is configured to include a CO 2 removal unit 131 ′, a NO X absorption unit 132 ′, and an EGE 133 ′ to be described later, each of which is composed of individual modules and is modularized and combined. It may be configured, it may be configured to be integrated in the form of a single tower, and the absorption tower 130 ′ itself may be configured to be grouped into a single tower or a plurality of towers.
  • the NO X absorbing unit 132 ′ is a Selective Catalyst Reactor (SCR), and as shown in FIG. 12 , the NH through the blower 132a ′ or the compressor from the primary regeneration stage 140 ′ of the absorption liquid regenerating unit.
  • NO X can be absorbed by directly supplying NH 3 regenerated to the 3 injection nozzle (132b ⁇ ), and when the NH 3 supplied to the NH 3 injection nozzle (132b ⁇ ) is insufficient, the urea water storage tank (132c ⁇ )
  • the urea water (UREA) may be supplied to the urea water injection nozzle (132e') through the urea water supply pump (132d') to compensate for the loss or deficiency.
  • the absorption tower 130 ′ is formed between the NO X absorption unit 132 ′ and the exhaust gas cooling unit 110 ′ to exchange the waste heat of the exhaust gas from the marine engine 10 ′ with boiler water.
  • Exhaust Gas Economizer (133') may be further included.
  • the absorption liquid regeneration unit regenerates NH 3 and returns it to the absorption tower 130 ⁇ to be reused as a CO 2 absorption liquid, and to store the CO 2 in the form of CaCO 3 (s) or MgCO 3 (s) or to discharge it overboard, Regenerated NH 3 may be supplied to the NO X absorption unit 132 ′ to absorb NO X.
  • the absorption liquid regeneration unit reacts the ammonium salt aqueous solution discharged after absorbing CO 2 from the absorption tower 130 ′ with the divalent metal hydroxide aqueous solution to primarily regenerate the absorption liquid 140 ′, and the primary regeneration stage Secondary regeneration stage (150') that additionally reacts the aqueous solution of divalent metal hydroxide with the unreacted aqueous solution of ammonium salt from (140') to regenerate the high-concentration absorbent solution and circulate it to the absorption tower (130') to reuse it as an absorbent solution
  • the absorption liquid regeneration unit reacts the ammonium salt aqueous solution discharged after absorbing CO 2 from the absorption tower 130 ′ with the divalent metal hydroxide aqueous solution to primarily regenerate the absorption liquid 140 ′
  • Secondary regeneration stage (150') that additionally reacts the aqueous solution of divalent metal hydroxide with the unreacted aqueous solution of ammonium salt from (140') to regenerate the high-concentration
  • the absorption liquid regeneration unit as shown in FIG. 13 , a storage tank 141 ′ for storing an aqueous divalent metal hydroxide solution, an aqueous ammonium salt solution discharged from the absorption tower 130 ′ and a storage tank 141 ′.
  • a stirring the divalent metal hydroxide aqueous solution with a stirrer as shown in the following [Formula 6]
  • the solution and precipitate are sucked from the mixing tank 142 ⁇ and the mixing tank 142 ⁇ to generate NH 3 (g) and carbonate.
  • a primary regeneration stage 140 ′ consisting of a primary filter 143 ′ for separating carbonate and aqueous ammonia (or fresh water), and aqueous ammonia and divalent metal hydroxide aqueous solution separated by the primary filter 143 ′;
  • a primary absorption liquid storage tank 151 ′ for storing the unreacted aqueous ammonium salt solution remaining unreacted and reacting the divalent metal hydroxide aqueous solution and the unreacted aqueous ammonium salt solution from the storage tank 141 ′, and the primary absorption liquid storage
  • a secondary filter 152' and a secondary filter 152' designed to separate carbonate and high-concentration ammonia water by sucking the solution and sediment from the tank 151' and corresponding to the capacity of the primary absorbent storage tank 151'.
  • Ammonia water is pumped from the secondary absorption liquid storage tank 153 ⁇ for storing the high concentration ammonia water separated by the It may be composed of a secondary regeneration stage 150 ′, which is composed of a circulating ammonia water circulation pump 154 ′.
  • the storage capacity of the primary absorption liquid storage tank 151' is designed to be three times or more of the capacity of the absorption liquid circulating in the absorption tower 130' and the absorption liquid regeneration unit along the absorption liquid circulation line (A'), so that it is relative to the capacity of the circulating absorbent liquid.
  • ammonia water is additionally generated through the re-reaction in the primary absorption liquid storage tank 151 ′ of the unreacted aqueous ammonium salt solution remaining in the ammonia water to maintain the ammonia water concentration at a certain level.
  • the aqueous solution of divalent metal hydroxide in the mixing tank 142 ′ is changed frequently while passing through the filter due to the effects of reaction rate and ammonia evaporation, and when the production of carbonate is not completed, a significant amount of unreacted aqueous solution of ammonium salt remains in ammonia water.
  • the CO 2 absorption rate can be lowered, so a large-capacity primary absorption liquid storage tank 151 ′ is designed to react for a sufficient time and passes through the secondary filter 152 ′ again, thereby increasing the ammonia water recovery rate to increase the ammonia water recovery rate.
  • the concentration can be maintained at a level that can function as an effective absorbent liquid.
  • NH 3 (g) generated in the mixing tank 142 ′ is supplied to the CO 2 removal unit 131 ′ of the absorption tower 130 ′ to remove CO 2 or to the NOx absorption unit 132 ′. It can be supplied to remove NO X .
  • the primary absorption liquid storage tank 151' is an agitator (151a') that stirs and reacts an aqueous solution of divalent metal hydroxide and an aqueous solution of unreacted ammonium salt, and a pH measuring the degree of reaction by the agitator (151a') It may include a sensor 151b'.
  • the divalent metal hydroxide aqueous solution stored in the storage tank 141 ′ may be Ca(OH) 2 or Mg(OH) 2 generated by reacting fresh water with CaO or MgO, respectively.
  • carbonate (CaCO 3 (s), MgCO 3 (s)) that is separated by the primary filter 143 ' and the secondary filter 152 ' and can be discharged to the sea in a slurry state, or a dryer ( It may be provided with a separate storage tank (not shown) to be transported to and stored in a solidified solid state (not shown), or may be discharged overboard without storage.
  • a membrane filter suitable for sediment separation by high-pressure fluid transfer may be applied as an example of the primary filter 143 ′ and the secondary filter 152 ′.
  • ammonia water circulation pump 154 ′ may be configured as a centrifugal pump type pump so that a large amount of ammonia water circulates through the absorption liquid circulation line A′.
  • the ammonia water or fresh water separated by the primary filter 143 ′ and the secondary filter 152 ′ is supplied to the secondary absorption liquid storage tank 153 ′, or by the mixing tank 142 ′ compared to the total circulation fresh water.
  • Fresh water can be saved by storing the additionally generated surplus fresh water in a fresh water tank (not shown) so that it is recycled when the divalent metal hydroxide aqueous solution is generated in the storage tank 141 ′.
  • the steam generating unit 160 ′ receives a mixture of steam and saturated water heat-exchanged through the EGE 133 ′ to receive a steam drum (not shown).
  • the auxiliary boiler (161') that separates the steam by the city) and supplies it to the steam consuming place, and the boiler water circulation water pump (162') that circulates and supplies boiler water from the auxiliary boiler (161') to the EGE (133'); , a cascade tank (163') that recovers condensed water that is condensed and changed in phase after being consumed from a steam consumer, and supplied by controlling the amount of boiler water from the cascade tank (163') to the auxiliary boiler (161') It is composed of a supply pump (164') and a control valve (165') to generate and supply steam required for heating equipment in the ship.
  • the amount of heat that can be provided from the exhaust gas is high, so that the required amount of steam in the ship can be sufficiently produced through the EGE (133'), but if not, the auxiliary boiler 161 ⁇ ) It can also burn its own fuel to produce the necessary steam.
  • the ship according to another embodiment of the present invention it is possible to provide a ship equipped with the above-mentioned device for reducing greenhouse gas emission of the ship.
  • the exhaust gas is cooled by the heat exchange method to prevent the decrease in the concentration of the absorbent liquid, and the absorbent liquid due to the natural evaporation of NH 3 of the high concentration absorbent liquid by applying a pressurization system Loss is prevented, and the absorption liquid regeneration unit is configured in two or more stages to remove the unreacted aqueous ammonium salt solution remaining in the ammonia water to maintain the ammonia water concentration at a certain level, thereby increasing the recovery rate of the absorption liquid, and to prevent a decrease in the greenhouse gas absorption performance
  • it is converted into a material that does not affect the environment and is discharged or converted into a useful material and stored, and the consumption of relatively expensive NH 3 is minimized by regenerating NH 3
  • the capacity size of the rear end can be reduced, the greenhouse gas can be stored in the form of carbonate in a natural state so that it can be discharged to the sea, and the side

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Biomedical Technology (AREA)
  • Toxicology (AREA)
  • Ocean & Marine Engineering (AREA)
  • Sustainable Development (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Treating Waste Gases (AREA)
  • Gas Separation By Absorption (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

본 발명은, 해수를 공급하는 해수 공급부(110), 고농도 CO2 흡수액을 제조하여 공급하는 흡수액 제조부(120), 선박 엔진(10)으로부터 배출되는 배기가스를 해수 공급부(110)로부터 공급된 해수와 반응시켜 냉각하고, 냉각된 배기가스와 흡수액 제조부(120)로부터의 흡수액을 반응시켜 CO2를 암모늄염 수용액으로 전환하여 CO2를 제거하는 CO2 제거부(131)가 형성된, 흡수타워(130), 흡수타워(130)로부터 배출된 암모늄염 수용액을 2가 금속수산화물 수용액과 반응시켜 흡수액을 1차로 재생하는 1차 재생부(140)와, 1차 재생부(140)로부터의 미반응 암모늄염 수용액에 2가 금속수산화물 수용액을 반응시켜 고농도 흡수액을 2차로 재생하고 흡수타워(130)로 순환 공급하여 흡수액으로 재사용하도록 하는 2차 재생부(150)로 이루어진, 흡수액 재생부를 포함하여, 흡수액의 회수율을 높여 일정 농도로 유지하여서 흡수성능 저하를 방지할 수 있는, 선박의 온실가스 배출 저감장치를 개시한다.

Description

선박의 온실가스 배출 저감장치 및 동 장치 구비한 선박
본 발명은 흡수액 재생부를 2단 이상으로 구성하여 암모니아수에 잔존하는 미반응 암모늄염 수용액을 제거하여 암모니아수 농도를 일정 수준으로 유지하여서, 흡수액의 회수율을 높이고, 온실가스 흡수성능이 저하되는 것을 방지할 수 있는, 선박의 온실가스 배출 저감장치 및 동 장치 구비한 선박에 관한 것이다.
또한, 본 발명은, 열교환방식에 의해 배기가스를 냉각하여 흡수액의 농도 저하를 방지하고, 흡수액 재생부를 2단 이상으로 구성하여 암모니아수에 잔존하는 미반응 암모늄염 수용액을 제거하여 흡수액의 회수율을 높여서, 온실가스 흡수성능이 저하되는 것을 방지할 수 있는, 선박의 온실가스 배출 저감장치 및 동 장치 구비한 선박에 관한 것이다.
최근, 무분별한 화석연료 사용에 따른 온실가스 배출의 영향으로 지구 온난화 현상과 이와 연계된 환경 재해들이 발생하고 있다.
이에, 대표적 온실가스인 이산화탄소를 방출하지 않고 포집하여 저장하는데 관련된 일련의 기술들을 CCS(Carbon dioxide Capture and Storage) 기술이라 하여 최근 매우 큰 주목을 받고 있는데, CCS 기술 중에서 화학 흡수법(chemical absorption)은 대규모 처리가 가능하다는 측면에서 그 중에서 가장 많이 상용화된 기술이다.
또한, 이산화탄소 배출 규제는 IMO의 EEDI를 통해 규제하는데, 2050년에는 2008년 배출량의 50% 이상의 절감을 목표로 하고 있고, 2030년에도 2008년 배출량의 40%를 절감해야 하므로 CO2를 배출하지 않거나, 배출된 CO2를 포집하는 기술이 주목을 받고 있다.
참고로, 이산화탄소를 직접적으로 포집 및 저장하는 CCS 기술 중 CO2 포집 기술은 대상 공정의 CO2 발생 조건에 따라 다양하게 접근할 수가 있는데, 현재 대표적인 기술은 흡수법과 흡착법과 막분리법이 있으며, 이 중 습식흡수법은 육상플랜트에 있어서 기술적 성숙도가 높고, CO2의 대량처리가 용이하여 CCS 기술의 상용화에 가장 근접한 포집 기술이라 할 수 있고 흡수제로는 아민 계열과 암모니아를 주로 사용한다.
한편, 앞서 언급한 이산화탄소의 배출을 절감, 또는 생성된 이산화탄소를 포집하는 기술은 현재 선박에서는 상용화된 사례가 없는 실정이고, 수소나 암모니아를 연료로 사용하는 방법도 현재는 개발 중이며 상업화 수준의 단계에 이르지 못한 실정이다.
또한, 선박 엔진으로부터 배출되는 배출가스 중 온실가스인 CO2를 흡수액으로 흡수하여 환경에 영향을 주지 않는 물질로 전환하여 배출하거나, 유용한 물질로 전환하여 저장하고, 흡수액의 농도변화로 인한 흡수성능 저하를 방지할 수 있는, 기술을 선박에 적용할 필요성이 제기된다.
또한, SOX의 발생량이 적거나 발생하지 않도록 LNG 또는 저유황유를 연료로 사용하는 선박에 대해 선박 엔진으로부터 배출되는 배출가스 중 CO2를 흡수액으로 흡수하여 환경에 영향을 주지 않는 물질로 전환하여 배출하거나, 유용한 물질로 전환하여 저장하고, 해수에 의한 배기가스 냉각에 따른 흡수액 농도 저하를 방지하고 흡수액의 반복된 순환에 따른 농도변화로 인한 흡수성능 저하를 방지할 수 있는, 기술을 선박에 적용할 필요성이 제기된다.
본 발명의 사상이 이루고자 하는 기술적 과제는, 흡수액 재생부를 2단 이상으로 구성하여 암모니아수에 잔존하는 미반응 암모늄염 수용액을 제거하여 암모니아수 농도를 일정 수준으로 유지하여서, 흡수액의 회수율을 높이고, 온실가스 흡수성능이 저하되는 것을 방지할 수 있는, 선박의 온실가스 배출 저감장치 및 동 장치 구비한 선박을 제공하는 데 있다.
또한, 본 발명의 사상이 이루고자 하는 기술적 과제는, 열교환방식에 의해 배기가스를 냉각하여 흡수액의 농도 저하를 방지하고, 흡수액 재생부를 2단 이상으로 구성하여 암모니아수에 잔존하는 미반응 암모늄염 수용액을 제거하여 흡수액의 회수율을 높여서, 온실가스 흡수성능이 저하되는 것을 방지할 수 있는, 선박의 온실가스 배출 저감장치 및 동 장치 구비한 선박을 제공하는 데 있다.
전술한 목적을 달성하고자, 본 발명은, 해수를 공급하는 해수 공급부; 고농도 CO2 흡수액을 제조하여 공급하는 흡수액 제조부; 선박 엔진으로부터 배출되는 배기가스를 상기 해수 공급부로부터 공급된 해수와 반응시켜 냉각하고, 상기 냉각된 배기가스와 상기 흡수액 제조부로부터의 흡수액을 반응시켜 CO2를 암모늄염 수용액으로 전환하여 CO2를 제거하는 CO2 제거부가 형성된, 흡수타워; 및 상기 흡수타워로부터 배출된 암모늄염 수용액을 2가 금속수산화물 수용액과 반응시켜 흡수액을 1차로 재생하는 1차 재생부와, 상기 1차 재생부로부터의 미반응 암모늄염 수용액에 2가 금속수산화물 수용액을 추가 반응시켜 고농도 흡수액을 2차로 재생하고 상기 흡수타워로 순환 공급하여 흡수액으로 재사용하도록 하는 2차 재생부로 이루어진, 흡수액 재생부;를 포함하는, 선박의 온실가스 배출 저감장치를 제공한다.
또한, 상기 흡수액 재생부는, 상기 2가 금속수산화물 수용액을 저장하는 저장탱크; 상기 흡수타워로부터 배출된 암모늄염 수용액과 2가 금속수산화물 수용액을 교반기에 의해 교반하여 NH3(g)와 탄산염을 생성하는 혼합탱크와, 상기 혼합탱크로부터 용액 및 침전물을 흡입하여 탄산염을 분리하는 1차 필터로 구성되는, 상기 1차 재생부; 및 상기 1차 필터에 의해 분리된 암모니아수 또는 미반응 암모늄염 수용액을 저장하고, 상기 저장탱크로부터의 2가 금속수산화물 수용액과 미반응 암모늄염 수용액을 재반응시키는 1차 흡수액 저장탱크와, 상기 1차 흡수액 저장탱크로부터 용액 및 침전물을 흡입하여 탄산염과 고농도 암모니아수를 분리하는 2차 필터와, 상기 2차 필터에 의해 분리되는 고농도 암모니아수를 저장하는 2차 흡수액 저장탱크로 구성되는, 2차 재생부;를 포함할 수 있다.
또한, 상기 1차 흡수액 저장탱크의 저장용량은 상기 흡수타워와 상기 흡수액 재생부를 순환하는 흡수액 용량의 3배 이상일 수 있다.
또한, 상기 1차 흡수액 저장탱크는 상기 2가 금속수산화물 수용액과, 상기 1차 필터에 의해 분리된 암모니아수 또는 미반응 암모늄염 수용액을 교반하여 반응시키는 교반기와, 상기 교반기에 의한 반응 정도를 계측하는 pH센서를 포함할 수 있다.
또한, 상기 저장탱크에 저장된 2가 금속수산화물 수용액은 청수와, CaO 또는 MgO를 반응시켜 생성된 Ca(OH)2 또는 Mg(OH)2일 수 있다.
또한, 상기 2차 필터에 의해 분리된 암모니아수 또는 청수를 상기 2차 흡수액 저장탱크로 공급하거나, 총순환 청수 대비 상기 혼합탱크에 의해 추가 생성된 잉여 청수를 청수탱크에 저장하여 상기 저장탱크에서의 2가 금속수산화물 수용액 생성시 재활용할 수 있다.
또한, 상기 흡수타워는, 상기 선박 엔진으로부터 배출되는 배기가스를 상기 해수 공급부로부터 공급된 해수와 반응시켜 냉각하면서 SOx를 용해시켜 제거하는 SOx 흡수부를 더 포함하고, 상기 CO2 제거부는, 상기 SOx가 제거된 배기가스와 상기 해수 공급부로부터 공급된 해수와 반응시켜 냉각하고, 상기 냉각된 배기가스와 상기 흡수액 제조부로부터의 흡수액을 반응시켜 CO2를 암모늄염 수용액으로 전환하여 CO2를 제거할 수 있다.
또한, 상기 흡수타워는, 상기 선박 엔진으로부터 배출되는 배기가스의 NOx를 흡수하여 제거하는 NOx 흡수부를 더 포함하고, 상기 CO2 제거부는, 상기 NOx가 제거된 배기가스를 상기 해수 공급부로부터 공급된 해수와 반응시켜 냉각하고 상기 냉각된 배기가스와 상기 흡수액 제조부로부터의 흡수액을 반응시켜 CO2를 암모늄염 수용액으로 전환하여 CO2를 제거할 수 있다.
또한, 상기 흡수타워는, 상기 선박 엔진으로부터 배출되는 배기가스의 NOX를 흡수하여 제거하는 NOX 흡수부와, 상기 NOX가 제거된 배기가스를 상기 해수 공급부로부터 공급된 해수와 반응시켜 냉각하면서 SOX를 용해시켜 제거하는 SOX 흡수부와, 상기 SOX가 제거된 배기가스와 상기 흡수액 제조부로부터의 흡수액을 반응시켜 CO2를 암모늄염 수용액으로 전환하여 CO2를 제거하는 상기 CO2 제거부가 순차적으로 적층 형성될 수 있다.
또한, 상기 흡수액 재생부에 의해 재생된 NH3를 상기 흡수타워로 회귀시켜 흡수액으로 전환시켜 재사용하도록 하고, 상기 NOX 흡수부는 상기 흡수액 재생부에 의해 재생된 NH3를 공급받아 NH3로 NOX를 흡수하거나, 요소수를 사용하여 NOX를 흡수할 수 있다.
또한, 상기 해수 공급부는, 선외로부터 씨체스트를 통해 해수를 공급받아 상기 SOX 흡수부로 펌핑하는 해수펌프와, 배기가스의 양에 따라 상기 해수펌프로부터 상기 SOX 흡수부로 공급되는 해수의 분사량을 조절하는 해수조절밸브;를 포함할 수 있다.
또한, 상기 흡수액 제조부는, 청수를 저장하는 청수탱크; 상기 청수탱크로부터 청수를 공급하는 청수조절밸브; 고압의 NH3를 저장하는 NH3저장소; 상기 청수조절밸브에 의해 공급되는 청수에 상기 NH3저장소로부터 공급되는 NH3를 분사하여 흡수액인 고농도 암모니아수를 제조하여 저장하는 암모니아수탱크; 상기 암모니아수탱크 내의 암모니아수 농도를 측정하는 pH센서; 및 상기 암모니아수탱크로부터 상기 2차 흡수액 저장탱크로 암모니아수를 공급하는 암모니아수 공급펌프;를 포함할 수 있다.
상기 2차 흡수액 저장탱크로부터 상기 흡수타워로 암모니아수를 순환시키는 암모니아수 순환펌프를 더 포함할 수 있다. .
또한, 상기 SOX 흡수부는, 상기 해수 공급부로부터 공급되는 해수를 하방으로 분사하는 다단의 해수 분사노즐; 및 세정수가 역류하지 않도록 하는, 격벽 형태의 배기가스 유입관 또는 상기 배기가스 유입관을 커버하는 우산형태의 차단판;을 포함할 수 있다.
또한, 상기 해수 분사노즐 하부에, 배기가스가 통과하는 유로가 형성된 다공성 상판이 다단으로 각각 형성되어, 해수와 배기가스가 접촉할 수 있다.
또한, 상기 해수 분사노즐 하부에, 해수와 배기가스가 접촉하도록 하는 충진재가 채워진 흡수탑이 형성되어, 해수가 SOX를 용해시킬 수 있다.
또한, 상기 CO2 제거부는, 상기 흡수액 재생부로부터 공급되는 흡수액을 하방으로 분사하는 암모니아수 분사노즐; CO2와 흡수액인 암모니아수와 접촉시켜 CO2를 NH4HCO3(aq)로 전환시키는 충진재; 상기 충진재가 채워진 흡수탑의 구간마다 다단으로 형성되어 CO2제거반응으로 인한 발열을 냉각하는 쿨링재킷; CO2와 반응하지 않고 외부로 배출되는 NH3를 포집하는 워터 스프레이; 굴곡진 다판 형태로 형성되어 암모니아수를 상기 충진재 방향으로 회귀시키는 미스트 제거판; 암모니아수가 역류하지 않도록 형성된 격벽; 및 상기 격벽으로 둘러싸인 배기가스 유입홀을 커버하는 우산형태의 차단판;을 포함할 수 있다.
또한, 상기 충진재는 단위 부피당 접촉면적이 크도록 설계된 다단의 증류 칼럼 패킹으로 구성되고, 상기 증류 칼럼 패킹 사이에 용액 재분배기가 형성될 수 있다.
또한, 상기 흡수타워는, 상기 NOX 흡수부와 상기 SOX 흡수부 사이에 형성되어 상기 선박 엔진의 폐열과 보일러수를 열교환시키는 EGE를 더 포함할 수 있다.
또한, 상기 흡수타워로부터 배출되는 세정수를 저장하는 세정수탱크, 상기 세정수탱크로 이송펌프에 의해 이송된 세정수의 선외배출조건을 충족하도록 탁도를 조절하는 필터링유닛과 pH조절을 위한 중화제 주입유닛을 구비하는 수처리장치, 및 고형의 배출물을 분리 저장하는 슬러지저장탱크로 구성되는, 배출부를 더 포함할 수 있다.
한편, 본 발명은 앞서 열거한 선박의 온실가스 배출 저감장치를 구비한 선박을 제공할 수 있다.
전술한 다른 목적을 달성하고자, 본 발명은, 선박 엔진으로부터 배출되는 배기가스를 냉각하는 배기가스 냉각부; 고농도 CO2 흡수액을 제조하여 공급하는 흡수액 제조부; 상기 배기가스 냉각부에 의해 냉각된 배기가스와 상기 흡수액 제조부로부터의 흡수액을 반응시켜 CO2를 암모늄염 수용액으로 전환하여 CO2를 제거하는 CO2 제거부가 형성된, 흡수타워; 및 상기 흡수타워로부터 배출된 암모늄염 수용액을 2가 금속수산화물 수용액과 반응시켜 흡수액을 1차로 재생하는 1차 재생단과, 상기 1차 재생단으로부터의 미반응 암모늄염 수용액에 2가 금속수산화물 수용액을 추가 반응시켜 고농도 흡수액을 2차로 재생하고 상기 흡수타워로 순환 공급하여 흡수액으로 재사용하도록 하는 2차 재생단으로 이루어진, 흡수액 재생부;를 포함하는, 선박의 온실가스 배출 저감장치를 제공한다.
또한, 상기 선박 엔진은 LNG 또는 저유황유를 연료로 사용할 수 있다.
선박의 온실가스 배출 저감장치.
또한, 상기 배기가스 냉각부는, 배기가스 배출관을 감싸는 열교환 배관으로 선내 냉각시스템으로부터 제공되는 청수를 순환시켜 배기가스를 27℃ 내지 33℃의 온도로 냉각할 수 있다.
또한, 상기 흡수액 재생부는, 상기 2가 금속수산화물 수용액을 저장하는 저장탱크; 상기 흡수타워로부터 배출된 암모늄염 수용액과 상기 저장탱크로부터의 2가 금속수산화물 수용액을 교반기에 의해 교반하여 NH3(g)와 탄산염을 생성하는 혼합탱크와, 상기 혼합탱크로부터 용액 및 침전물을 흡입하여 탄산염을 분리하는 1차 필터로 구성되는, 상기 1차 재생단; 및 상기 1차 필터에 의해 분리된 암모니아수 또는 미반응 암모늄염 수용액을 저장하고, 상기 저장탱크로부터의 2가 금속수산화물 수용액과 미반응 암모늄염 수용액을 재반응시키는 1차 흡수액 저장탱크와, 상기 1차 흡수액 저장탱크로부터 용액 및 침전물을 흡입하여 탄산염과 고농도 암모니아수를 분리하는 2차 필터와, 상기 2차 필터에 의해 분리되는 고농도 암모니아수를 저장하는 2차 흡수액 저장탱크로 구성되는, 상기 2차 재생단;을 포함할 수 있다.
또한, 상기 1차 흡수액 저장탱크의 저장용량은, 흡수액 순환라인을 따라 상기 흡수타워와 상기 흡수액 재생부를 순환하는 흡수액 용량의 3배 이상일 수 있다.
또한, 상기 1차 흡수액 저장탱크는 상기 저장탱크로부터의 2가 금속수산화물 수용액과, 상기 1차 필터에 의해 분리된 암모니아수 또는 미반응 암모늄염 수용액을 교반하여 반응시키는 교반기와, 상기 교반기에 의한 반응 정도를 계측하는 pH센서를 포함할 수 있다.
또한, 상기 저장탱크에 저장된 2가 금속수산화물 수용액은, 청수와, CaO 또는 MgO를 반응시켜 생성된 Ca(OH)2 또는 Mg(OH)2일 수 있다.
또한, 상기 2차 필터에 의해 분리된 암모니아수 또는 청수를 상기 2차 흡수액 저장탱크로 공급하거나, 총순환 청수 대비 상기 혼합탱크에 의해 추가 생성된 잉여 청수를 청수탱크에 저장하여 상기 저장탱크에서의 2가 금속수산화물 수용액 생성시 재활용할 수 있다.
또한, 상기 흡수타워는, 상기 선박 엔진으로부터 배출되는 배기가스의 NOX를 흡수하여 제거하는 NOX 흡수부를 더 포함하고, 상기 CO2 제거부는, 상기 NOX가 제거되고 상기 배기가스 냉각부에 의해 냉각된 배기가스와 상기 흡수액 제조부로부터의 흡수액을 반응시켜 CO2를 암모늄염 수용액으로 전환하여 CO2를 제거할 수 있다.
또한, 상기 흡수액 재생부는 NH3를 재생하여서 상기 흡수타워로 회귀시켜 흡수액으로 재사용하도록 하고, 상기 NOX 흡수부는 상기 흡수액 재생부로부터 공급되는 NH3로 NOX를 흡수하거나, 요소수를 사용하여 NOX를 흡수하여 제거할 수 있다.
또한, 상기 흡수액 제조부는, 청수를 저장하는 청수탱크; 상기 청수탱크로부터의 청수 공급량을 조절하는 청수조절밸브; 고압의 NH3를 저장하는 NH3저장소; 상기 청수조절밸브에 의해 공급되는 청수에 상기 NH3저장소로부터 공급되는 NH3를 분사하여 흡수액인 고농도 암모니아수를 제조하여 저장하는 암모니아수탱크; 상기 암모니아수탱크 내의 암모니아수 농도를 측정하는 pH센서; 및 상기 암모니아수탱크로부터 상기 2차 흡수액 저장탱크로 암모니아수를 공급하는 암모니아수 공급펌프;를 포함할 수 있다.
또한, 상기 2차 흡수액 저장탱크로부터 상기 흡수타워로 암모니아수를 순환시키는 암모니아수 순환펌프를 더 포함할 수 있다.
또한, 상기 CO2 제거부는, 상기 흡수액 재생부로부터 공급되는 흡수액을 하방으로 분사하는 암모니아수 분사노즐; CO2와 흡수액인 암모니아수와 접촉시켜 CO2를 NH4HCO3(aq)로 전환시키는 충진재; 상기 충진재가 채워진 흡수탑의 구간마다 다단으로 형성되어 CO2제거반응으로 인한 발열을 냉각하는 쿨링재킷; CO2와 반응하지 않고 외부로 배출되는 NH3를 포집하는 워터 스프레이; 굴곡진 다판 형태로 형성되어 암모니아수를 상기 충진재 방향으로 회귀시키는 미스트 제거판; 암모니아수가 누액되지 않도록 형성된 격벽; 및 상기 격벽으로 둘러싸인 배기가스 유입홀을 커버하는 우산형태의 차단판;을 포함할 수 있다.
또한, 상기 충진재는 단위 부피당 접촉면적이 크도록 설계된 다단의 증류 칼럼 패킹으로 구성되고, 상기 증류 칼럼 패킹 사이에 용액 재분배기가 형성될 수 있다.
또한, 상기 흡수타워는, 상기 NOX 흡수부와 상기 배기가스 냉각부 사이에 형성되어 상기 선박 엔진으로부터의 배기가스의 폐열과 보일러수를 열교환시키는 EGE를 더 포함할 수 있다.
한편, 본 발명은 앞서 열거한 선박의 온실가스 배출 저감장치를 구비한 선박을 제공할 수 있다.
본 발명에 의하면, 흡수액 재생부를 2단 이상으로 구성하여 암모니아수에 잔존하는 미반응 암모늄염 수용액을 제거하여 암모니아수 농도를 일정 수준으로 유지하여서, 흡수액의 회수율을 높이고, 온실가스 흡수성능이 저하되는 것을 방지할 수 있는 효과가 있다.
또한, 가압시스템을 적용하여 고농도 흡수액의 자연증발로 인한 흡수액 손실을 방지할 수 있는 효과가 있다.
더 나아가, IMO 온실가스 배출규제를 충족시키도록 환경에 영향을 주지 않는 물질로 전환하여 분리 배출하거나 유용한 물질로 전환하여 저장하며, NH3를 재생하여 비교적 고가의 NH3의 소모를 최소화하고, 필터 후단부의 용량 크기를 줄일 수 있고, 온실가스를 자연상태로 존재하는 탄산염 형태로 저장하여 해상배출이 가능하도록 하고, NH3 재생시 잔존하는 SOX로 인한 부반응을 제거하여 NH3의 손실을 최소화하고 암모니아 회수시 불순물이 포함되지 않도록 할 수 있는 효과가 있다.
또한, 본 발명에 의하면, 열교환방식에 의해 배기가스를 냉각하여 흡수액의 농도 저하를 방지하여서, 온실가스 흡수성능이 저하되는 것을 방지할 수 있는 효과가 있다.
또한, 흡수액 재생부를 2단 이상으로 구성하여 암모니아수에 잔존하는 미반응 암모늄염 수용액을 제거하여 흡수액의 회수율을 높이고, 가압시스템을 적용하여 고농도 흡수액의 NH3 자연증발로 인한 흡수액 손실을 방지하여서, 온실가스 흡수성능이 저하되는 것을 방지할 수 있는 효과가 있다.
더 나아가, IMO 온실가스 배출규제를 충족시키도록 환경에 영향을 주지 않는 물질로 전환하여 분리 배출하거나 유용한 물질로 전환하여 저장하며, NH3를 재생하여 비교적 고가의 NH3의 소모를 최소화하고, 필터 후단부의 용량 크기를 줄일 수 있고, 온실가스를 자연상태로 존재하는 탄산염 형태로 저장하여 해상배출이 가능하도록 하고, NH3 재생시 잔존하는 NOX 또는 SOX로 인한 부반응을 제거하여 NH3의 손실을 최소화하고 암모니아 회수시 불순물이 포함되지 않도록 할 수 있는 효과가 있다.
도 1은 본 발명의 실시예에 의한 선박의 온실가스 배출 저감장치의 개략적인 구성도를 도시한 것이다.
도 2는 도 1의 선박의 온실가스 배출 저감장치를 구현한 시스템 회로도를 도시한 것이다.
도 3은 도 2의 선박의 온실가스 배출 저감장치의 해수 공급부를 분리 도시한 것이다.
도 4는 도 2의 선박의 온실가스 배출 저감장치의 흡수액 제조부와 흡수액 재생부를 분리 도시한 것이다.
도 5는 도 2의 선박의 온실가스 배출 저감장치의 흡수타워를 분리 도시한 것이다.
도 6은 도 5의 흡수타워의 SOX 흡수부를 분리 도시한 것이다.
도 7은 도 2의 선박의 온실가스 배출 저감장치의 증기 생성부 및 배출부를 분리 도시한 것이다.
도 8은 도 2의 선박의 온실가스 배출 저감장치에 적용되는 다양한 충진재를 예시한 것이다.
도 9는 도 2의 선박의 온실가스 배출 저감장치에 적용되는 암모니아수 분사노즐을 예시한 것이다.
도 10은 본 발명의 다른 실시예에 의한 선박의 온실가스 배출 저감장치의 개략적인 구성도를 도시한 것이다.
도 11은 도 10의 다른 실시예에 의한 선박의 온실가스 배출 저감장치를 구현한 시스템 회로도를 도시한 것이다.
도 12는 도 11의 다른 실시예에 의한 선박의 온실가스 배출 저감장치의 배기가스 냉각부와 흡수타워를 분리 도시한 것이다.
도 13은 도 11의 다른 실시예에 의한 선박의 온실가스 배출 저감장치의 흡수액 제조부와 흡수액 재생부를 분리 도시한 것이다.
도 14는 도 11의 다른 실시예에 의한 선박의 온실가스 배출 저감장치의 증기 생성부를 분리 도시한 것이다.
도 15는 도 11의 다른 실시예에 의한 선박의 온실가스 배출 저감장치에 적용되는 다양한 충진재를 예시한 것이다.
도 16은 도 11의 다른 실시예에 의한 선박의 온실가스 배출 저감장치에 적용되는 암모니아수 분사노즐을 예시한 것이다.
이하, 첨부한 도면을 참고로 하여 본 발명의 실시예에 대하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다.
도 1을 참조하면, 본 발명의 일 실시예에 따른 선박의 온실가스 배출 저감장치는, 해수를 공급하는 해수 공급부(110), 고농도 CO2 흡수액을 제조하여 공급하는 흡수액 제조부(120), 선박 엔진(10)으로부터 배출되는 배기가스를 해수 공급부(110)로부터 공급된 해수와 반응시켜 냉각하고, 냉각된 배기가스와 흡수액 제조부(120)로부터의 흡수액을 반응시켜 CO2를 암모늄염 수용액으로 전환하여 CO2를 제거하는 CO2 제거부(131)가 형성된, 흡수타워(130), 흡수타워(130)로부터 배출된 암모늄염 수용액을 2가 금속수산화물 수용액과 반응시켜 흡수액을 1차로 재생하는 1차 재생부(140)와, 1차 재생부(140)로부터의 미반응 암모늄염 수용액에 2가 금속수산화물 수용액을 반응시켜 고농도 흡수액을 2차로 재생하고 흡수타워(130)로 순환 공급하여 흡수액으로 재사용하도록 하는 2차 재생부(150)로 이루어진, 흡수액 재생부를 포함하여, 흡수액의 회수율을 높여 일정 농도로 유지하여서 흡수성능 저하를 방지하는 것을 요지로 한다.
여기서, 주엔진 또는 발전용엔진으로 사용되는 선박 엔진의 종류 및 사양(저압엔진 또는 고압엔진), 선박 엔진에 공급되는 연료의 종류(HFO, MDO, LNG, MGO, LSMGO, 암모니아 등)에 따라 흡수타워는, CO2 제거부 이외에, NOx 흡수부 또는 SOx 흡수부를 선택적으로 포함하거나, 모두 포함하도록 구성될 수 있다.
특히, 선박 엔진의 연료로 저유황유(LSMGO)를 사용하는 경우에, 배기가스의 냉각과 SOx의 용해에 의한 흡수제거를 동시에 수행할 수 있는 SOx 흡수부를 추가로 구비할 수 있다.
이하에서는 흡수타워에 NOx 흡수부, SOx 흡수부, CO2 제거부가 순차적으로 적층 형성된 실시예를 기술하나, 이에 한정되는 것은 아니며, 전술한 바와 같이 NOx 흡수부 및/또는 SOx 흡수부는 선박 엔진과 연료의 종류에 따라 구비여부를 결정할 수 있다.
이하, 도 1 내지 도 9를 참조하여, 전술한 선박의 온실가스 배출 저감장치의 구성을 구체적으로 상술하면 다음과 같다.
우선, 해수 공급부(110)는 해수를 흡수타워(130)로 공급하여 배기가스의 온도를 낮춰 흡수액에 의한 CO2 흡수를 원활하게 한다.
구체적으로, 해수 공급부(110)는, 도 2 및 도 3에 도시된 바와 같이, 선외로부터 씨체스트(sea chest)(미도시)를 통해 해수를 흡입하여 공급받아 흡수타워(130)의 SOX 흡수부(132)로 펌핑하는 해수펌프(111)와, 배기가스의 양에 따라 SOX 흡수부(132)로 공급되는 해수의 분사량을 조절하는 해수조절밸브(112)로 구성될 수 있다. 여기서, 해수펌프(111)는 선외로부터 해수를 흡입하는 흡인펌프(suction pump)와 해수를 SOX 흡수부(132)로 펌핑하여 이송하는 해수이송펌프로 분리 구성될 수도 있다.
참고로, 선박의 접안시 또는 항해시에 따라, 수심에 따라 상부의 해수를 흡입하는 하이(high) 씨체스트 또는 하부의 해수를 흡입하는 로우(low) 씨체스트로부터 해수펌프(111)로 선택적으로 공급할 수 있다. 즉, 선박의 접안시에는 하부의 해수보다는 상부의 해수가 깨끗하므로 하이 씨체스트를 사용하고, 선박의 항해시에는 상부의 해수보다는 하부의 해수가 깨끗하므로 로우 씨체스트를 사용할 수 있다.
여기서, 해수조절밸브(112)는 해수의 유량을 조절하는 수동조작형 다이아프램 밸브 또는 솔레노이드 타입 밸브일 수 있으나, 이에 한정되는 것은 아니며, 배기가스의 양에 따라 해수 분사노즐(132a)을 통한 해수 분사량을 조절할 수 있는 것이라면, 어떠한 형태의 밸브라도 적용 가능하다.
다음, 흡수액 제조부(120)는 다음의 [화학식 1]과 같이 청수(fresh water)와 NH3를 반응시켜 고농도 CO2 흡수액인 고농도 암모니아수(NH4OH(aq))를 제조하여 2차 흡수액 저장탱크(153)를 거쳐 흡수타워(130)로 공급한다.
Figure PCTKR2020018603-appb-C000001
구체적으로, 도 2 및 도 4에 도시된 바와 같이, 흡수액 제조부(120)는, 청수를 저장하는 청수탱크(미도시), 청수탱크로부터 청수를 암모니아수탱크(123)로 공급하는 청수조절밸브(121), 고압의 NH3를 저장하는 NH3저장소(122), 청수조절밸브(121)에 의해 공급되는 청수에 NH3저장소(122)로부터 공급되는 NH3를 분사하여 고농도 암모니아수를 제조하여 저장하는 암모니아수탱크(123), 암모니아수탱크(123) 내의 암모니아수 농도를 측정하는 pH센서(124), 및 암모니아수탱크(123)로부터 2차 흡수액 저장탱크(153)로 고농도 암모니아수를 공급하는 암모니아수 공급펌프(125)로 구성될 수 있다.
흡수타워(130)와 흡수액 재생부를 순환하는 암모니아수는 운전을 거듭하면서 농도가 변하게 되는데, 예컨대, NOX 흡수부(133)로 NH3가 공급되어 NOX 흡수제거에 사용되거나, 흡수타워(130)를 통과하여 배기가스와 같이 NH3가 배출되어서, 암모니아수의 농도가 낮아지게 되고, 농도가 낮아지는 경우에, 흡수액 제조부(120)는 고농도의 암모니아수를 암모니아수 순환라인(A, 도 1 참조)에 공급하여, 낮아진 암모니아수 농도를 보상하여 설계된 암모니아수 농도로 일정하게 유지하도록 할 수 있다.
한편, 고농도 암모니아수는 동일 온도에서 저농도 암모니아수에 대비하여 NH3(g)의 분압(partial pressure)이 높아서, 대기압 상태에서는 NH3가 상대적으로 증발이 더 잘 일어나 손실이 증가한다. 이에, 고농도 암모니아수를 저장하기 위해서는 용해도가 높고 NH3(g)의 증기압이 낮아지도록 온도를 낮추고 가압 시스템 하에서 운전해야 한다.
즉, NH3(g)가 대기 중으로 증발 손실되는 현상을 방지하기 위해 암모니아수탱크(123) 내에 일정압력의 압축공기를 주입하여서, 암모니아수탱크(123) 내의 압력을 높은 상태로 유지하여 NH3의 증발손실을 방지할 수 있다.
예를 들면, NH3는 -34℃, 8.5bar에서 액체 상태로 저장이 가능하므로 선내에서 가용한 7bar 압축공기를 사용하여 암모니아수탱크(123) 내부를 일정압력으로 유지하여서, 50% 농도의 암모니아수를 암모니아수탱크(123)에 저장할 수 있다.
또한, 암모니아수탱크(123)의 과압방지를 위한 안전밸브(safety valve)(123a)가 설치될 수 있다.
다음, 흡수타워(130)에는 선박 엔진(10)으로부터 배출되는 배기가스를 해수 공급부(110)로부터 공급된 해수와 반응시켜 냉각하고, 냉각된 배기가스의 CO2와 흡수액 제조부(120)로부터의 흡수액인 암모니아수를 반응시켜 다음의 [화학식 2]와 같이 CO2를 암모늄염 수용액(NH4HCO3(aq))으로 전환하여 CO2를 제거하는 CO2 제거부(131)가 형성된다.
Figure PCTKR2020018603-appb-C000002
구체적으로, CO2 제거부(131)는, 도 3에 도시된 바와 같이, 2차 흡수액 저장탱크(153)로부터 공급되는 암모니아수를 하방으로 분사하는 암모니아수 분사노즐(131a), 배기가스의 CO2와 흡수액인 암모니아수와 접촉시켜 CO2를 NH4HCO3(aq)로 전환시키는 충진재(131b), 충진재(131b)가 채워진 흡수탑의 구간마다 다단으로 형성되어 CO2흡수반응으로 인한 발열을 냉각하는 쿨링재킷(cooling jacket)(미도시), CO2와 반응하지 않고 외부로 배출되는 NH3를 포집하는 워터 스프레이(131c), 굴곡진 다판 형태로 형성되어 암모니아수 분사노즐(131a)에 의한 분사시 비산되는 암모니아수를 충진재(131b) 방향으로 회귀시키는 미스트 제거판(131d), 충진재(131b)를 통과한 암모니아수가 SOX 흡수부(132)로 역류하지 않도록 형성된 격벽(131e), 및 격벽(131e)으로 둘러싸인 배기가스 유입홀을 커버하는 우산형태의 차단판(131f)으로 구성될 수 있다.
여기서, 쿨링재킷은 물질전단이 가장 원활한 30℃ 내지 50℃로 냉각하여 CO2흡수율을 일정수준으로 유지하면서 NH3가 기화되어 소실되지 않도록 할 수 있다.
한편, CO2 제거부(131)는 배기가스와 NH3와의 접촉면적을 늘리면서도 엔진 스펙에서 요구되는 배기관의 허용 압력강하(pressure drop) 내에서 운전되도록 다양한 형태가 고려될 수 있는데, 예컨대, 충진재(131b)는 단위 부피당 접촉면적이 크도록 설계된 다단의 증류 칼럼 패킹으로 구성되고, 단위면적당 접촉면적과 기체의 압력강하와 범람속도를 고려하여 도 8에 예시된 바와 같은 흡수공정에 적합한 증류 칼럼 패킹을 선정할 수 있고, 도 9에 예시된 바와 같이 암모니아수 분사노즐(131a)은 래더 파이프(ladder pipe) 형태(a) 또는 스프레이 형태(b)로 구성될 수 있다.
또한, 암모니아수는 충진재(131b)를 하향 통과하고 배기가스는 충진재(131b)를 상향 통과하여 접촉하게 되어 채널링 현상을 방지하기 위한 증류 칼럼 패킹 사이에 용액 재분배기(미도시)가 형성될 수 있다.
또한, 미스트 제거판(131d)은 비산된 암모니아수가 굴곡진 다판에 점착되어 액적(droplet)이 커지도록 하여 자중에 의해 충진재(131b) 방향으로 배액되도록(drain) 한다.
한편, LNG를 연료로 사용하는 경우에 SOx의 발생량이 없을 수 있으나, 선박 엔진(10)이 저유황유를 연료로 사용하는 경우에 흡수타워(130)는 SOx 흡수부(132)를 추가로 구비할 수도 있다.
즉, SOx 흡수부(132)는 선박 엔진(10)으로부터 배출되는 배기가스를 해수 공급부(110)로부터 공급된 해수와 반응시켜 냉각하면서 SOx를 용해시켜 제거하고, CO2 제거부(131)는 SOx가 제거된 배기가스와 해수 공급부(110)로부터 공급된 해수와 반응시켜 냉각하고, 냉각된 배기가스와 흡수액 제조부(120)로부터의 흡수액을 반응시켜 CO2를 암모늄염 수용액으로 전환하여 CO2를 흡수 제거할 수 있다.
구체적으로, SOx 흡수부(132)는 해수와 1차로 접촉하는 섹션으로서, 도 3 및 도 6에 도시된 바와 같이, 해수 공급부(110)로부터 공급되는 해수를 하방으로 분사하여 SOX를 용해시키고 슈트(soot)의 분진을 제거하는 다단의 해수 분사노즐(132a), 및 세정수가 역류하지 않도록 하는, 격벽 형태의 배기가스 유입관(132b) 또는 배기가스 유입관(132b)을 커버하는 우산형태의 차단판(132c)을 포함할 수 있다.
한편, 해수 분사노즐(132a) 또는 별도의 쿨링재킷(미도시)을 통해 배기가스의 온도를 CO2 제거부(131)에서 요구되는 27℃ 내지 33℃, 바람직하게는, 30℃ 전후로 냉각할 수 있는데, 도 6의 (a)에 도시된 바와 같이, 해수 분사노즐(132a) 하부에, 배기가스가 통과하는 유로가 형성된 다공성 상판(132d)이 다단으로 각각 형성되어, 해수와 배기가스가 원활하게 접촉하도록 하거나, 도 6의 (b)에 도시된 바와 같이, 해수 분사노즐(132a) 하부에, 해수와 배기가스가 접촉하도록 하는 충진재가 채워진 흡수탑(132e)이 각각 형성되어, 해수가 SOX를 용해시키도록 할 수도 있다.
한편, SOX의 용해도를 보다 높이기 위해 알칼리 이온을 형성하는 화합물, 예컨대 NaOH 또는 MgO의 염기성 약품을 SOx 흡수부(132)로 공급되는 해수에 투입하는 폐회로 시스템(closed loop system)으로 구성할 수 있다.
참고로, 폐회로 시스템은 추가적인 염기성 약품 소모를 수반하지만 순환하는 해수의 양이 적은 장점이 있고, 해수만을 분사하여 용해된 SOX를 선외로 배출하는 개회로 시스템(open loop system)은 추가 염기성 약품 소모가 없고 간소한 장점이 있어서, 이러한 장점을 극대화하고자 개회로 및 폐회로를 결합한 하이브리드 시스템으로 구성할 수도 있다.
이에, SOX 흡수부(132)를 통해 SOX를 먼저 제거한 후에 후속하여 CO2 제거부(131)를 통해 CO2를 제거하도록 하여서, SOX의 용해도가 커서 Na2SO3 등의 화합물로 먼저 변하여 SOX의 용해가 모두 이루어지기 전까지는 CO2의 제거가 어려운 문제점을 해결하여서 CO2의 용해도 및 CO2의 제거 효율성을 향상시킬 수 있다.
여기서, SOX 흡수부(132)에 의해 SOX를 흡수하여 배출부(170)로 배액되는 세정수에는 SO3 -, SO4 2-, 슈트, NaSO3, NaSO4, MgCO3, MgSO4 및 이외의 이온 화합물이 함께 포함되어 있다.
한편, 앞서 언급한 바와 같이, 흡수타워(130)는, 선박 엔진(10)으로부터 배출되는 배기가스의 NOx를 흡수하여 제거하는 NOx 흡수부(133)를 더 포함하고, NOx가 제거된 배기가스를 해수 공급부(110)로부터 공급된 해수와 반응시켜 냉각하고 냉각된 배기가스와 흡수액 제조부(120)로부터의 흡수액을 반응시켜 CO2를 암모늄염 수용액으로 전환하여 CO2를 제거할 수 있다.
즉, 흡수타워(130)는 선박 엔진(10)으로부터 배출되는 배기가스의 NOX를 흡수하여 제거하는 NOX 흡수부(133)와, NOX가 제거된 배기가스를 해수와 반응시켜 냉각하면서 SOX를 용해시켜 제거하는 SOX 흡수부(132)와, SOX가 제거된 배기가스와 흡수액 제조부(120)로부터 공급된 암모니아수를 반응시켜 CO2를 NH4HCO3(aq)로 전환하여 CO2를 제거하는 CO2 제거부(131)가 수직방향으로 적층 형성되어서, NOX와 SOX와 CO2를 순차적으로 흡수하여 제거한다.
이에 따라, CO2 제거부(131)는 앞서 NOX와 SOX가 제거된 배기가스와 암모니아수를 반응시켜 먼저 제거하여서, CO2 제거 공정 중에 NOX와 SOX으로 인한 부반응이 발생하지 않아 불순물 발생을 최소화할 수 있어 후속 공정에서 불순물이 적은 NH4HCO3를 얻을 수 있다.
여기서, 흡수타워(130)는, CO2 제거부(131)와 SOX 흡수부(132)와 NOX 흡수부(133)와 후술하는 EGE(134)를 포함하여 구성되되, 각각 개별 모듈로 구성되어 모듈화되어 결합 구성될 수도 있고, 단일의 타워 형태로 통합되어 구성될 수도 있고, 흡수타워(130) 자체는 단일 타워 또는 복수의 타워로 그룹핑되어 구성될 수도 있다.
구체적으로, NOX 흡수부(133)는 SCR(Selective Catalyst Reactor)로서, 도 5에 도시된 바와 같이, 1차 재생부(140)로부터 블로워(133a) 또는 압축기를 통해 제1 NH3 분사노즐(133b)로 NH3를 직접 공급하거나, NH3의 부족시에는 요소수저장탱크(133c)의 요소수(UREA)를 요소수 공급펌프(133d)를 통해 제2 NH3 분사노즐(133e)로 공급받아 부족분을 보상하도록 대체할 수도 있다.
한편, 요소수를 분해하면 NH3와 CO2가 발생하므로, NH3를 직접 공급하여 CO2 발생량을 줄이는 것이 바람직할 수 있다.
또한, 흡수타워(130)는, NOX 흡수부(133)와 SOX 흡수부(132) 사이에 형성되어 선박 엔진(10)의 폐열과 보일러수를 열교환시키는 EGE(Exhaust Gas Economizer)(134)를 더 포함할 수 있다.
다음, 흡수액 재생부는 NH3를 재생하여서 흡수타워(130)로 회귀시켜 CO2 흡수액으로 재사용하도록 하고, CO2를 CaCO3(s) 또는 MgCO3(s) 형태로 저장하거나 선외 배출하도록 하거나, NOX 흡수부(133)로 공급하여 NH3로 NOX를 흡수하도록 할 수 있다.
즉, 흡수액 재생부는 흡수타워(130)로부터 배출된 암모늄염 수용액을 2가 금속수산화물 수용액과 반응시켜 흡수액을 1차로 재생하는 1차 재생부(140)와, 1차 재생부(140)로부터의 미반응 암모늄염 수용액에 2가 금속수산화물 수용액을 반응시켜 고농도 흡수액을 2차로 재생하고 흡수타워(130)로 순환 공급하여 흡수액으로 재사용하도록 하는 2차 재생부(150)로 이루어져, 흡수액의 회수율을 높여 일정 농도로 유지하여서, 앞서 언급한 바와 동일하게, NOX 흡수부(133)로 NH3가 공급되어 NOX 흡수제거에 사용되거나, 흡수타워(130)를 통과하여 배기가스와 같이 NH3가 배출되어서, 암모니아수의 농도가 낮아지게 되어 흡수성능이 저하되는 것을 효과적으로 방지할 수 있다.
구체적으로, 흡수액 재생부는, 도 4에 도시된 바와 같이, 2가 금속수산화물 수용액을 저장하는 저장탱크(141), 흡수타워로부터 배출된 암모늄염 수용액과 2가 금속수산화물 수용액을 교반기에 의해 교반하여 다음의 [화학식 3]와 같이 NH3(g)와 탄산염을 생성하는 혼합탱크(142)와, 혼합탱크(142)로부터 용액 및 침전물을 흡입하여 탄산염과 암모니아수(또는 청수)를 분리하는 1차 필터(143)로 구성되는, 1차 재생부(140), 및 1차 필터(143)에 의해 분리된 암모니아수 및 2가 금속수산화물 수용액과 반응하지 않고 잔존하는 미반응 암모늄염 수용액을 저장하고, 저장탱크(141)로부터의 2가 금속수산화물 수용액과 미반응 암모늄염 수용액을 재반응시키는 1차 흡수액 저장탱크(151)와, 1차 흡수액 저장탱크(151)로부터 용액 및 침전물을 흡입하여 탄산염과 고농도 암모니아수를 분리하고 1차 흡수액 저장탱크(151)의 용량에 상응하여 설계된 2차 필터(152)와, 2차 필터(152)에 의해 분리되는 고농도 암모니아수를 저장하는 2차 흡수액 저장탱크(153)와, 2차 흡수액 저장탱크(153)로부터 CO2 제거부(131)로 암모니아수를 펌핑하여 순환시키는 암모니아수 순환펌프(154)로 구성되는, 2차 재생부(150)로 이루어질 수 있다.
Figure PCTKR2020018603-appb-C000003
여기서, 1차 흡수액 저장탱크(151)의 저장용량은 흡수타워(130)와 흡수액 재생부를 순환하는 흡수액 용량의 3배 이상으로 설계되어 순환 흡수액 용량 대비 상대적으로 큰 용량을 가져서, 1차 흡수액 저장탱크(151) 내의 미반응 암모늄염 수용액의 체류시간을 늘려 반응시간을 충분히 확보하여, 미반응 암모늄염 수용액을 탄산염으로 전환하도록 할 수 있다.
이에 따라, 암모니아수에 잔존하는 미반응 암모늄염 수용액을 제거하여 암모니아수 농도를 일정 수준으로 유지하도록 할 수 있다.
즉, 혼합탱크(142)에서 2가 금속수산화물 수용액은 반응속도, 암모니아 증발 등의 영향으로 필터를 거치는 동안 수시로 변하게 되고, 탄산염의 생성이 완료되지 않을 경우에는 암모니아수에 미반응 암모늄염 수용액이 상당량 잔존하여 흡수율을 저하시킬 수 있으므로, 대용량의 1차 흡수액 저장탱크(151)를 설계하여 충분한 시간동안 반응하도록 하고 2차 필터(152)를 다시 통과하도록 하여 암모니아수 회수율을 높여 암모니아수 농도를 유효한 흡수액으로의 기능을 발휘할 수 있는 일정 수준으로 유지할 수 있다.
또한, 혼합탱크(142)에서 발생하는 암모니아 가스는 흡수타워(130)의 CO2 제거부(131)로 공급되거나 또는 NOx 흡수부(133)로 공급될 수 있다.
한편, 1차 흡수액 저장탱크(151)는 2가 금속수산화물 수용액과 미반응 암모늄염 수용액을 교반하여 반응시키는 교반기(agitator)(151a)와, 교반기(151a)에 의한 반응 정도를 계측하는 pH센서(151b)를 포함할 수 있다.
또한, 저장탱크(141)에 저장된 2가 금속수산화물 수용액은 청수와, CaO 또는 MgO를 반응시켜 생성된 Ca(OH)2 또는 Mg(OH)2일 수 있다.
또한, 암모니아수 순환라인(A)을 순환하는 암모니아수의 농도가 낮을 경우에는 앞선 [화학식 2]의 (NH4)2CO3의 생성이 줄어 CO2 배출량이 증가하게 되고, 농도가 높을 경우에는 과다한 CO2 흡수로 인해 탄산염 생산량이 필요 이상으로 증가하게 되므로, 암모니아수의 농도를 일정하게 유지하여 흡수타워(130)의 CO2 흡수성능이 지속되도록 하여야 한다. 이를 구현하기 위해, 암모니아수의 농도를 질량기준 12%로 조절하도록 설계할 수 있으나, 이에 한정되지 않고 사용조건에 따라 변경될 수 있다.
또한, 1차 필터(143)와 2차 필터(152)에 의해 분리된 탄산염(CaCO3(s), MgCO3(s))을 슬러리 상태로, 또는 건조기(dryer)(미도시)로 이송되어 고형화된 고체 상태로, 저장하는 별도의 저장탱크(미도시)를 구비할 수도 있고, 선외로 배출할 수도 있다. 여기서, 1차 필터(143)와 2차 필터(152)의 일례로서, 고압 유체 이송에 의한 침전물 분리에 적합한 멤브레인 필터가 적용될 수 있다.
또한, 암모니아수 순환펌프(154)는 대량의 암모니아수가 암모니아수 순환라인(A)을 순환하도록 원심펌프 타입의 펌프로 구성될 수 있다.
한편, 1차 필터(143)와 2차 필터(152)에 의해 분리된 암모니아수 또는 청수를 2차 흡수액 저장탱크(153)으로 공급하거나, 총순환 청수 대비 혼합탱크(142)에 의해 추가 생성된 잉여 청수를 청수탱크(미도시)에 저장하여 저장탱크(141)에서의 2가 금속수산화물 수용액 생성시 재활용하도록 하여 청수를 절감할 수도 있다.
이를 통해, 비교적 저렴한 금속산화물(CaO 또는 MgO) 또는 2가 금속수산화물 수용액(Ca(OH)2 또는 Mg(OH)2)만을 투입하여 물의 추가 투입이 필요 없으며, 암모니아수의 농도 감소가 없고, 1차 필터(143)와 2차 필터(152)의 용량 크기를 줄일 수 있고, NH3 재생비용을 줄일 수 있다. 즉, 이론적으로는 금속산화물만 소모하고, NH3와 청수를 재사용하도록 하여, CO2 제거비용을 상당히 절감할 수 있다.
다음, 증기 생성부(160)는, 도 7에 도시된 바와 같이, EGE(134)를 통과하여 열교환된 증기(steam)와 포화수 형태의 혼합물을 공급받아 스팀드럼(steam drum)(미도시)에 의해 증기를 분리하여 증기 소모처로 공급하는 보조보일러(161)와, 보조보일러(161)로부터 EGE(134)로 보일러수를 순환 공급하는 보일러수 순환수펌프(162)와, 증기 소모처로부터 소모된 후 응축되어 상이 바뀐 응축수를 회수하는 케스케이드탱크(cascade tank)(163)와, 케스케이드탱크(163)로부터 보조보일러(161)로 보일러수의 양을 조절하여 공급하는 공급펌프(164) 및 조절밸브(165)로 구성되어서, 선내의 가열장비에 필요한 증기를 생성하여 공급한다.
여기서, 선박 엔진(10)의 부하가 클 경우에는 배기가스로부터 제공받을 수 있는 열량이 높아 선내 필요한 증기의 양을 EGE(134)를 통해 충분히 생산할 수 있지만, 그렇지 못한 경우에는 보조보일러(161) 자체에 연료를 연소시켜 필요한 증기를 생산할 수도 있다.
다음, 배출부(170)는, 도 7에 도시된 바와 같이, 흡수타워(130)로부터 배출되는 세정수를 저장하는 세정수탱크(171), 세정수탱크(171)로부터 이송펌프(172)에 의해 이송된 세정수의 선외배출조건을 충족하도록 탁도를 조절하는 필터링유닛과 pH조절을 위한 중화제 주입유닛을 구비하는 수처리장치(173), 및 슈트 등의 고형의 배출물을 분리 저장하는 슬러지저장탱크(174)로 구성되어서, 수처리장치(173)를 통과하여 선외배출조건을 충족하는 세정수는 선외배출하고, 선외배출조건을 충족하지 못하는 슈트 등의 고형의 배출물은 별도로 슬러지저장탱크(174)에 저장 보관할 수 있다.
한편, 선외배출조건을 충족하기 위한 중화제로 NaOH를 예로 들 수 있으나, 흡수타워(130)로부터 배출되는 물질이 산성 또는 염기성인 경우를 모두 상정하여 필요에 따라 이들 산성 또는 염기성을 각각 중화시킬 수 있는 중화제가 선택되어 사용될 수 있다.
한편, 본 발명의 다른 실시예에 따른 선박은, 앞서 언급한 선박의 온실가스 배출 저감장치를 구비한 선박을 제공할 수 있다.
따라서, 전술한 바와 같은 선박의 온실가스 배출 저감장치의 구성에 의해서, 흡수액 재생부를 2단 이상으로 구성하여 암모니아수에 잔존하는 미반응 암모늄염 수용액을 제거하여 암모니아수 농도를 일정 수준으로 유지하여서, 흡수액의 회수율을 높이고, 온실가스 흡수성능이 저하되는 것을 방지할 수 있고, 가압시스템을 적용하여 고농도 흡수액의 자연증발로 인한 흡수액 손실을 방지하고, IMO 온실가스 배출규제를 충족시키도록 환경에 영향을 주지 않는 물질로 전환하여 분리 배출하거나 유용한 물질로 전환하여 저장하며, NH3를 재생하여 비교적 고가의 NH3의 소모를 최소화하고, 필터 후단부의 용량 크기를 줄일 수 있고, 온실가스를 자연상태로 존재하는 탄산염 형태로 저장하여 해상배출이 가능하도록 하고, NH3 재생시 잔존하는 SOX로 인한 부반응을 제거하여 NH3의 손실을 최소화하고 암모니아 회수시 불순물이 포함되지 않도록 할 수 있다.
도 10을 참조하면, 본 발명의 또 다른 실시예에 의한 선박의 온실가스 배출 저감장치는, 선박 엔진(10`)으로부터 배출되는 배기가스를 냉각하는 배기가스 냉각부(110`), 고농도 CO2 흡수액을 제조하여 흡수타워(130`)로 공급하는 흡수액 제조부(120`), 배기가스 냉각부(110`)에 의해 냉각된 배기가스와 흡수액 제조부(120`)로부터의 흡수액을 반응시켜 온실가스의 CO2를 암모늄염 수용액으로 전환하여 CO2를 제거하는 CO2 제거부(131`)가 형성된, 흡수타워(130`), 및 흡수타워(130`)로부터 배출된 암모늄염 수용액을 2가 금속수산화물 수용액과 반응시켜 흡수액을 1차로 재생하는 1차 재생단(140`)과, 1차 재생단(140`)으로부터의 미반응 암모늄염 수용액에 2가 금속수산화물 수용액을 추가 반응시켜 고농도 흡수액을 2차로 재생하고 흡수타워(130`)로 순환 공급하여 흡수액으로 재사용하도록 하는 2차 재생단(150`)으로 이루어진, 흡수액 재생부를 포함하여, 열교환방식에 의해 배기가스를 냉각하여 흡수액의 농도 저하를 방지하고, 흡수액 재생부를 2단 이상으로 구성하여 암모니아수에 잔존하는 미반응 암모늄염 수용액을 제거하여 흡수액의 회수율을 높여서, 온실가스 흡수성능이 저하되는 것을 방지하도록 하는 것을 요지로 한다.
여기서, 주엔진 또는 발전용엔진으로 사용되는 선박 엔진(10`)의 종류 및 사양(저압엔진 또는 고압엔진)과, 선박 엔진(10`)에 공급되는 연료의 종류(HFO, MDO, LNG, MGO, LSMGO(Low Sulphur Marine Gas Oil;선박용 저유황유), 암모니아 등)에 따라 흡수타워는, CO2 제거부 이외에, NOX 흡수부 또는 SOX 흡수부를 선택적으로 포함하거나, 모두 포함하도록 구성될 수 있다. 특히, 선박 엔진(10`)의 연료로 LNG를 사용하는 경우에 SOX의 발생량이 없어 별도로 SOX 흡수부를 구비할 필요가 없으나, 저유황유를 사용하는 경우에는 미량의 SOX가 발생할 수 있으므로 배기가스의 냉각과 SOX의 용해에 의한 흡수를 동시에 수행할 수 있는 SOX 흡수부를 추가로 구비할 수도 있다.
이하에서는 선박 엔진(10`)의 연료로 LNG를 사용하거나 저유황유를 사용하는 경우에 있어 흡수타워에 NOX 흡수부, 배기가스 냉각부, CO2 제거부가 순차적으로 적층 형성된 실시예를 기술하나, 이에 한정되는 것은 아니며, 전술한 바와 같이 NOX 흡수부 및/또는 SOx 흡수부는 선박 엔진과 연료의 종류에 따라 구비여부를 결정할 수 있다.
우선, 배기가스 냉각부(110`)는 선박 엔진(10`)으로부터 배출되는 배기가스를 냉각하여 배기가스의 온도를 낮춰서 온실가스 흡수액에 의한 CO2 흡수를 원활하게 한다.
예컨대, 배기가스 냉각부(110`)는, 선박 엔진(10`)으로부터 배출되는 배기가스를 청수(fresh water)의 열교환방식으로 냉각할 수 있으며, 구체적으로는 배기가스가 유동하는 배기가스 배출관을 감싸는 열교환 배관(111`)으로 선내 냉각시스템(20`)으로부터 제공되는 청수를 순환시켜 청수와의 열교환방식에 의해 배기가스를 CO2 제거부(131`)에서 요구하는 27℃ 내지 33℃의 온도로 냉각할 수 있다.
즉, 청수에 의해 배기가스를 직접 냉각하는 수냉방식은 청수의 투입으로 인해 흡수액의 농도가 낮아져 온실가스 흡수성능이 저하되는데, 이를 개선하여, 청수와의 직접적인 접촉없이, 열교환방식에 의해 배기가스를 냉각하여 흡수액의 농도가 낮아지는 것을 방지하여 온실가스 흡수성능이 저하되는 것을 방지할 수 있다.
한편, 배기가스 냉각부(110`)는 청수를 통한 열교환방식에 의해 냉각하는 것을 예시하였으나, 이외에 다양한 냉각매체 및 냉각방법이 적용될 수도 있다.
다음, 흡수액 제조부(120`)는 고농도 CO2 흡수액을 제조하여 흡수타워(130`)로 공급하는데, 다음의 [화학식 4]과 같이 청수와 NH3를 반응시켜 고농도 CO2 흡수액인 고농도 암모니아수(NH4OH(aq))를 제조하여 흡수액 순환라인(A`)(도 10 참조)을 따라 2차 흡수액 저장탱크(153`)를 거쳐 흡수타워(130`)의 CO2 제거부(131`)로 공급한다.
Figure PCTKR2020018603-appb-C000004
구체적으로, 도 11 및 도 13에 도시된 바와 같이, 흡수액 제조부(120`)는, 청수를 저장하는 청수탱크(미도시), 청수탱크로부터 청수의 공급량을 조절하여 암모니아수탱크(123`)로 공급하는 청수조절밸브(121`), 고압의 NH3를 저장하는 NH3저장소(122`), 청수조절밸브(121`)에 의해 공급되는 청수에 NH3저장소(122`)로부터 공급되는 NH3를 분사하여 고농도 암모니아수를 제조하여 저장하는 암모니아수탱크(123`), 암모니아수탱크(123`) 내의 암모니아수 농도를 측정하여 모니터링하는 pH센서(124`), 및 암모니아수탱크(123`)로부터 2차 흡수액 저장탱크(153`)로 고농도 암모니아수를 공급하는 암모니아수 공급펌프(125`)로 구성될 수 있다.
흡수액 순환라인(A`)을 따라 흡수타워(130`)와 흡수액 재생부를 순환하는 암모니아수는 운전을 반복하면서 농도가 변하게 되는데, 예컨대, NOX 흡수부(132`)로 NH3가 공급되어 NOX 흡수제거에 사용되거나, 흡수타워(130`)를 통과하여 배기가스와 같이 NH3가 배출되어서, 암모니아수의 농도가 낮아지는 경우에, 흡수액 제조부(120`)는 고농도의 암모니아수를 흡수액 순환라인(A`, 도 10 참조)에 공급하여서, 낮아진 암모니아수 농도를 보상하여 미리 설정된 흡수성능으로 설계된 암모니아수 농도로 일정하게 유지하도록 할 수 있다.
한편, 고농도 암모니아수는 동일 온도에서 저농도 암모니아수에 대비하여 NH3(g)의 분압(partial pressure)이 높아서, 대기압 상태에서는 NH3가 상대적으로 증발이 더 잘 일어나 손실이 증가한다. 이에, 손실없이, 고농도 암모니아수를 저장하기 위해서는 NH3(g)의 용해도가 높고 증기압이 낮아지도록 온도를 낮추고 가압 시스템 하에서 운전해야 한다.
즉, NH3(g)가 증발 손실되는 현상을 방지하기 위해 암모니아수탱크(123`) 내 암모니아수 상부에 일정압력의 압축공기를 주입하여서, 암모니아수탱크(123`) 내의 압력을 높은 상태로 유지하여 암모니아수의 농도를 고농도, 예컨대 50%wt의 NH3로 일정하게 유지하도록 할 수 있다.
예를 들면, NH3는 -34℃, 8.5bar에서 액체 상태로 저장이 가능하므로 선내에서 가용한 7bar 압축공기를 사용하여 암모니아수탱크(123`) 내부를 일정압력으로 유지하여서, 50% 농도의 암모니아수를 암모니아수탱크(123`)에 저장하도록 할 수 있다.
또한, 암모니아수탱크(123`)의 과압방지를 위한 안전밸브(safety valve)(123a`)가 설치될 수 있다.
다음, 흡수타워(130`)에는 배기가스 냉각부(110`)에 의해 냉각된 배기가스와 흡수액 제조부(120`)로부터 초기 공급되어 흡수액 순환라인(A`)을 따라 순환하는 흡수액인 암모니아수를 반응시켜 다음의 [화학식 5]와 같이 CO2를 암모늄염 수용액(NH4HCO3(aq))으로 전환하여 CO2를 제거하는 CO2 제거부(131`)가 형성된다.
Figure PCTKR2020018603-appb-C000005
구체적으로, CO2 제거부(131`)는, 도 12에 도시된 바와 같이, 2차 흡수액 저장탱크(153`)로부터 공급되는 암모니아수를 충진재(131b`)를 향해 하방으로 분사하는 암모니아수 분사노즐(131a`), 배기가스의 CO2와 흡수액인 암모니아수와 접촉시켜서 CO2를 NH4HCO3(aq)로 전환시키는 충진재(131b`), 충진재(131b`)가 채워진 흡수탑의 구간마다 다단으로 형성되어 CO2흡수반응으로 인한 발열을 냉각하는 쿨링재킷(cooling jacket)(미도시), CO2와 반응하지 않고 대기중으로 배출되는 NH3를 포집하는 워터 스프레이(131c`), 굴곡진 다판 형태로 형성되어 암모니아수 분사노즐(131a`)에 의한 분사시 비산되는 암모니아수를 충진재(131b`) 방향으로 회귀시키는 미스트 제거판(131d`), 충진재(131b`)를 통과한 암모니아수가 누액되어 NOX 흡수부(132`) 방향으로 역류하지 않도록 형성된 격벽(131e`), 및 격벽(131e`)으로 둘러싸인 배기가스 유입홀의 상단을 커버하는 우산형태의 차단판(131f`)으로 구성될 수 있다.
여기서, 쿨링재킷은 물질전달이 가장 원활한 30℃ 내지 50℃로 냉각하여 CO2흡수율을 일정 수준으로 유지하면서 NH3가 기화되어 소실되지 않도록 할 수 있다.
한편, CO2 제거부(131`)는 배기가스와 NH3와의 접촉면적을 늘리면서도 엔진 스펙에서 요구되는 배기관의 허용 압력강하(pressure drop) 내에서 운전되도록 다양한 형태가 고려될 수 있는데, 예컨대, 충진재(131b`)는 단위 부피당 접촉면적이 크도록 설계된 다단의 증류 칼럼 패킹으로 구성되고, 단위면적당 접촉면적과 기체의 압력강하와 범람속도를 고려하여 도 15에 예시된 바와 같이 흡수공정에 적합한 증류 칼럼 패킹을 선정할 수 있고, 도 16에 예시된 바와 같이 암모니아수 분사노즐(131a`)은 래더 파이프(ladder pipe) 형태(a) 또는 스프레이(spray) 형태(b)로 구성될 수 있다.
또한, 암모니아수는 충진재(131b`)를 하향 통과하고, 배기가스는 충진재(131b`)를 상향 통과하여 상호 접촉하게 되어 발생되는 채널링(channeling) 현상을 방지하기 위한 용액 재분배기(미도시)가 증류 칼럼 패킹 사이에 형성될 수 있다.
또한, 미스트 제거판(131d`)은 비산된 암모니아수가 굴곡진 다판에 점착되어 액적(droplet)이 커지도록 하여 자중에 의해 충진재(131b`) 방향으로 배액되도록(drain) 한다.
한편, 앞서 언급한 바와 같이, 선박 엔진(10`)은 LNG 또는 저유황유를 연료로 사용하는 것을 전제로 하는데, LNG를 연료로 사용하는 경우에 SOX의 발생량이 없을 수 있으나, 선박 엔진(10`)이 저유황유를 연료로 사용하는 경우에는 배기가스에 SOX가 포함될 수 있어 흡수타워(130`)는 SOX 흡수부를 구비할 수도 있다.
예컨대, 별도로 도시되지는 않았으나, SOX 흡수부는 선박 엔진(10`)으로부터 배출되는 배기가스를 해수와 반응시켜 냉각하면서 SOX를 용해시켜 제거하고, CO2 제거부(131`)는 SOX가 제거되고 냉각된 배기가스와 흡수액 제조부(120`)로부터의 흡수액을 반응시켜 CO2를 암모늄염 수용액으로 전환하여 CO2를 흡수 제거할 수도 있다.
또한, 앞서 언급한 바와 같이, 흡수타워(130`)는, 선박 엔진(10`)으로부터 배출되는 배기가스의 NOX를 흡수하여 제거하는 NOX 흡수부(132`)를 더 포함하고, NOX가 제거된 배기가스를 배기가스 냉각부(110`)에 의해 냉각하고, 냉각된 배기가스와 흡수액 제조부(120`)로부터의 흡수액을 반응시켜 CO2를 암모늄염 수용액으로 전환하여 CO2를 제거할 수 있다.
즉, 흡수타워(130`)는 선박 엔진(10`)으로부터 배출되는 배기가스의 NOX를 흡수하여 제거하는 NOX 흡수부(132`)와, NOX가 제거되고 냉각된 배기가스와 흡수액 제조부(120`)로부터 공급된 암모니아수를 반응시켜 CO2를 NH4HCO3(aq)로 전환하여 CO2를 제거하는 CO2 제거부(131`)가 적층 형성되어서, 배기가스로부터 NOX와 CO2를 순차적으로 흡수하여 제거할 수 있다.
이에, CO2 제거부(131`)는 앞서 NOX 흡수부(132`)에 의해 NOX가 제거된 배기가스와 암모니아수를 반응시켜서, CO2 제거 공정 중에 NOX로 인한 부반응이 발생하지 않아 불순물 발생을 최소화할 수 있어 후속 공정에서 불순물이 적은 NH4HCO3를 얻을 수 있다.
여기서, 흡수타워(130`)는, CO2 제거부(131`)와 NOX 흡수부(132`)와 후술하는 EGE(133`)를 포함하여 구성되되, 각각 개별 모듈로 구성되어 모듈화되어 결합 구성될 수도 있고, 단일의 타워 형태로 통합되어 구성될 수도 있고, 흡수타워(130`) 자체는 단일 타워 또는 복수의 타워로 그룹핑되어 구성될 수도 있다.
구체적으로, NOX 흡수부(132`)는 SCR(Selective Catalyst Reactor)로서, 도 12에 도시된 바와 같이, 흡수액 재생부의 1차 재생단(140`)으로부터 블로워(132a`) 또는 압축기를 통해 NH3 분사노즐(132b`)로 재생된 NH3를 직접 공급하여 NOX를 흡수할 수 있고, NH3 분사노즐(132b`)로 공급되는 NH3의 부족시에는 요소수저장탱크(132c`)의 요소수(UREA)를 요소수 공급펌프(132d`)를 통해 요소수 분사노즐(132e`)로 공급받아 손실분 또는 부족분을 보상하도록 할 수도 있다.
한편, 요소수를 분해하면 NH3와 CO2가 발생하므로, NH3를 직접 공급하여 CO2 발생량을 줄이는 것이 바람직할 수 있다.
또한, 흡수타워(130`)는, NOX 흡수부(132`)와 배기가스 냉각부(110`) 사이에 형성되어 선박 엔진(10`)으로부터의 배기가스의 폐열과 보일러수를 열교환시키는 EGE(Exhaust Gas Economizer)(133`)를 더 포함할 수 있다.
다음, 흡수액 재생부는 NH3를 재생하여서 흡수타워(130`)로 회귀시켜 CO2 흡수액으로 재사용하도록 하고, CO2를 CaCO3(s) 또는 MgCO3(s) 형태로 저장하거나 선외 배출하도록 하거나, 재생된 NH3를 NOX 흡수부(132`)로 공급하여 NOX를 흡수하도록 할 수 있다.
즉, 흡수액 재생부는, 흡수타워(130`)로부터 CO2 흡수 후 배출된 암모늄염 수용액을 2가 금속수산화물 수용액과 반응시켜 흡수액을 1차로 재생하는 1차 재생단(140`)과, 1차 재생단(140`)으로부터의 미반응 암모늄염 수용액에 2가 금속수산화물 수용액을 추가 반응시켜 고농도 흡수액을 2차로 재생하고 흡수타워(130`)로 순환 공급하여 흡수액으로 재사용하도록 하는 2차 재생단(150`)으로 이루어져, 흡수액의 회수율을 높여 일정 농도로 유지하여 흡수성능이 저하되는 것을 효과적으로 방지할 수 있다.
구체적으로, 흡수액 재생부는, 도 13에 도시된 바와 같이, 2가 금속수산화물 수용액을 저장하는 저장탱크(141`), 흡수타워(130`)로부터 배출된 암모늄염 수용액과 저장탱크(141`)로부터의 2가 금속수산화물 수용액을 교반기에 의해 교반하여 다음의 [화학식 6]와 같이 NH3(g)와 탄산염을 생성하는 혼합탱크(142`)와, 혼합탱크(142`)로부터 용액 및 침전물을 흡입하여 탄산염과 암모니아수(또는 청수)를 분리하는 1차 필터(143`)로 구성되는, 1차 재생단(140`), 및 1차 필터(143`)에 의해 분리된 암모니아수 및 2가 금속수산화물 수용액과 반응하지 않고 잔존하는 미반응 암모늄염 수용액을 저장하고, 저장탱크(141`)로부터의 2가 금속수산화물 수용액과 미반응 암모늄염 수용액을 재반응시키는 1차 흡수액 저장탱크(151`)와, 1차 흡수액 저장탱크(151`)로부터 용액 및 침전물을 흡입하여 탄산염과 고농도 암모니아수를 분리하고 1차 흡수액 저장탱크(151`)의 용량에 상응하여 설계된 2차 필터(152`)와, 2차 필터(152`)에 의해 분리되는 고농도 암모니아수를 저장하는 2차 흡수액 저장탱크(153`)와, 2차 흡수액 저장탱크(153`)로부터 흡수타워(130`)의 CO2 제거부(131`)로 암모니아수를 펌핑하여 순환시키는 암모니아수 순환펌프(154`)로 구성되는, 2차 재생단(150`)로 이루어질 수 있다.
Figure PCTKR2020018603-appb-C000006
여기서, 1차 흡수액 저장탱크(151`)의 저장용량은 흡수타워(130`)와 흡수액 재생부를 흡수액 순환라인(A`)을 따라 순환하는 흡수액 용량의 3배 이상으로 설계되어 순환 흡수액 용량 대비 상대적으로 큰 용량을 가져서, 1차 흡수액 저장탱크(151`) 내의 미반응 암모늄염 수용액의 체류시간을 늘려 반응시간을 충분히 확보하여서, 미반응 암모늄염 수용액을 가능한 한 탄산염으로 전환하도록 할 수 있다.
이에 따라, 암모니아수에 잔존하는 미반응 암모늄염 수용액의 1차 흡수액 저장탱크(151`)에서의 재반응을 통해 암모니아수를 추가로 생성하여 암모니아수 농도를 일정 수준으로 유지하도록 할 수 있다.
즉, 혼합탱크(142`)에서 2가 금속수산화물 수용액은 반응속도, 암모니아 증발 등의 영향으로 필터를 거치는 동안 수시로 변하게 되고, 탄산염의 생성이 완료되지 않을 경우에는 암모니아수에 미반응 암모늄염 수용액이 상당량 잔존하여 결과적으로 CO2 흡수율을 저하시킬 수 있으므로, 대용량의 1차 흡수액 저장탱크(151`)를 설계하여 충분한 시간동안 반응하도록 하고 2차 필터(152`)를 다시 통과하도록 하여서, 암모니아수 회수율을 높여 암모니아수 농도를 유효한 흡수액으로의 기능을 발휘할 수 있는 일정 수준으로 유지하도록 할 수 있다.
또한, 혼합탱크(142`)에서 발생하는 NH3(g)는 흡수타워(130`)의 CO2 제거부(131`)로 공급되어 CO2를 제거하도록 하거나, NOx 흡수부(132`)로 공급되어 NOX를 제거하도록 할 수 있다.
한편, 1차 흡수액 저장탱크(151`)는 2가 금속수산화물 수용액과 미반응 암모늄염 수용액을 교반하여 반응시키는 교반기(agitator)(151a`)와, 교반기(151a`)에 의한 반응 정도를 계측하는 pH센서(151b`)를 포함할 수 있다.
또한, 저장탱크(141`)에 저장된 2가 금속수산화물 수용액은 청수와, CaO 또는 MgO를 각각 반응시켜 생성된 Ca(OH)2 또는 Mg(OH)2일 수 있다.
또한, 흡수액 순환라인(A`)을 순환하는 암모니아수의 농도가 낮을 경우에는 앞선 [화학식 5]의 (NH4)2CO3의 생성이 줄어 CO2 배출량이 증가하게 되고, 암모니아수의 농도가 높을 경우에는 과다한 CO2 흡수로 인해 탄산염 생산량이 필요 이상으로 증가하게 되므로, 암모니아수의 농도를 적정 수준 내에서 일정하게 유지하여 흡수타워(130`)의 CO2 흡수성능이 저하되지 않도록 하여야 한다. 이를 구현하기 위해, 암모니아수의 농도를 질량기준 12%로 조절하도록 설계할 수 있으나, 이에 한정되지 않고 사용조건에 따라 변경될 수 있다.
또한, 1차 필터(143`)와 2차 필터(152`)에 의해 분리되어 해상배출이 가능한 탄산염(CaCO3(s), MgCO3(s))을 슬러리 상태로, 또는 건조기(dryer)(미도시)로 이송되어 고형화된 고체 상태로, 저장하는 별도의 저장탱크(미도시)를 구비할 수도 있고, 저장하지 않고 선외로 배출할 수도 있다. 여기서, 1차 필터(143`)와 2차 필터(152`)의 일례로서, 고압 유체 이송에 의한 침전물 분리에 적합한 멤브레인 필터가 적용될 수 있다.
또한, 암모니아수 순환펌프(154`)는 대량의 암모니아수가 흡수액 순환라인(A`)을 순환하도록 원심펌프 타입의 펌프로 구성될 수 있다.
한편, 1차 필터(143`)와 2차 필터(152`)에 의해 분리된 암모니아수 또는 청수를 2차 흡수액 저장탱크(153`)으로 공급하거나, 총순환 청수 대비 혼합탱크(142`)에 의해 추가 생성된 잉여 청수를 청수탱크(미도시)에 저장하여 저장탱크(141`)에서의 2가 금속수산화물 수용액 생성시 재활용하도록 하여 청수를 절감할 수도 있다.
이를 통해, 비교적 저렴한 금속산화물(CaO 또는 MgO) 또는 2가 금속수산화물 수용액(Ca(OH)2 또는 Mg(OH)2)만을 투입하여서, 물의 추가 투입이 필요 없으며, 암모니아수의 농도 감소가 없고, 1차 필터(143`)와 2차 필터(152`)의 용량 크기를 줄일 수 있고, NH3 재생비용을 줄일 수 있다. 즉, 이론적으로는 금속산화물만 소모하고, NH3와 청수를 재사용하도록 하여, CO2 제거비용을 상당히 절감할 수 있다.
다음, 증기 생성부(160`)는, 도 14에 도시된 바와 같이, EGE(133`)를 통과하여 열교환된 증기(steam)와 포화수 형태의 혼합물을 공급받아 스팀드럼(steam drum)(미도시)에 의해 증기를 분리하여 증기 소모처로 공급하는 보조보일러(161`)와, 보조보일러(161`)로부터 EGE(133`)로 보일러수를 순환 공급하는 보일러수 순환수펌프(162`)와, 증기 소모처로부터 소모된 후 응축되어 상이 바뀐 응축수를 회수하는 케스케이드탱크(cascade tank)(163`)와, 케스케이드탱크(163`)로부터 보조보일러(161`)로 보일러수의 양을 조절하여 공급하는 공급펌프(164`) 및 조절밸브(165`)로 구성되어서, 선내의 가열장비에 필요한 증기를 생성하여 공급한다.
여기서, 선박 엔진(10`)의 부하가 클 경우에는 배기가스로부터 제공받을 수 있는 열량이 높아 선내 필요한 증기의 양을 EGE(133`)를 통해 충분히 생산할 수 있지만, 그렇지 못한 경우에는 보조보일러(161`) 자체에 연료를 연소시켜 필요한 증기를 생산할 수도 있다.
한편, 본 발명의 또 다른 실시예에 따른 선박은, 앞서 언급한 선박의 온실가스 배출 저감장치를 구비한 선박을 제공할 수 있다.
따라서, 전술한 바와 같은 선박의 온실가스 배출 저감장치의 구성에 의해서, 열교환방식에 의해 배기가스를 냉각하여 흡수액의 농도 저하를 방지하고, 가압시스템을 적용하여 고농도 흡수액의 NH3 자연증발로 인한 흡수액 손실을 방지하고, 흡수액 재생부를 2단 이상으로 구성하여 암모니아수에 잔존하는 미반응 암모늄염 수용액을 제거하여 암모니아수 농도를 일정 수준으로 유지하여서, 흡수액의 회수율을 높이고, 온실가스 흡수성능이 저하되는 것을 방지할 수 있고, IMO 온실가스 배출규제를 충족시키도록 환경에 영향을 주지 않는 물질로 전환하여 분리 배출하거나 유용한 물질로 전환하여 저장하며, NH3를 재생하여 비교적 고가의 NH3의 소모를 최소화하고, 필터 후단부의 용량 크기를 줄일 수 있고, 온실가스를 자연상태로 존재하는 탄산염 형태로 저장하여 해상배출이 가능하도록 하고, NH3 재생시 잔존하는 NOX 또는 SOX로 인한 부반응을 제거하여 NH3의 손실을 최소화하고 암모니아 회수시 불순물이 포함되지 않도록 할 수 있다.
이상, 본 발명을 도면에 도시된 실시예를 참조하여 설명하였다. 그러나, 본 발명은 이에 한정되지 않고 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 본 발명과 균등한 범위에 속하는 다양한 변형예 또는 다른 실시예가 가능하다. 따라서, 본 발명의 진정한 보호범위는 이어지는 특허청구범위에 의해 정해져야 할 것이다.

Claims (37)

  1. 해수를 공급하는 해수 공급부;
    고농도 CO2 흡수액을 제조하여 공급하는 흡수액 제조부;
    선박 엔진으로부터 배출되는 배기가스를 상기 해수 공급부로부터 공급된 해수와 반응시켜 냉각하고, 상기 냉각된 배기가스와 상기 흡수액 제조부로부터의 흡수액을 반응시켜 CO2를 암모늄염 수용액으로 전환하여 CO2를 제거하는 CO2 제거부가 형성된, 흡수타워; 및
    상기 흡수타워로부터 배출된 암모늄염 수용액을 2가 금속수산화물 수용액과 반응시켜 흡수액을 1차로 재생하는 1차 재생부와, 상기 1차 재생부로부터의 미반응 암모늄염 수용액에 2가 금속수산화물 수용액을 추가 반응시켜 고농도 흡수액을 2차로 재생하고 상기 흡수타워로 순환 공급하여 흡수액으로 재사용하도록 하는 2차 재생부로 이루어진, 흡수액 재생부;를 포함하는,
    선박의 온실가스 배출 저감장치.
  2. 제 1 항에 있어서,
    상기 흡수액 재생부는,
    상기 2가 금속수산화물 수용액을 저장하는 저장탱크;
    상기 흡수타워로부터 배출된 암모늄염 수용액과 2가 금속수산화물 수용액을 교반기에 의해 교반하여 NH3(g)와 탄산염을 생성하는 혼합탱크와, 상기 혼합탱크로부터 용액 및 침전물을 흡입하여 탄산염을 분리하는 1차 필터로 구성되는, 상기 1차 재생부; 및
    상기 1차 필터에 의해 분리된 암모니아수 또는 미반응 암모늄염 수용액을 저장하고, 상기 저장탱크로부터의 2가 금속수산화물 수용액과 미반응 암모늄염 수용액을 재반응시키는 1차 흡수액 저장탱크와, 상기 1차 흡수액 저장탱크로부터 용액 및 침전물을 흡입하여 탄산염과 고농도 암모니아수를 분리하는 2차 필터와, 상기 2차 필터에 의해 분리되는 고농도 암모니아수를 저장하는 2차 흡수액 저장탱크로 구성되는, 2차 재생부;를 포함하는 것을 특징으로 하는,
    선박의 온실가스 배출 저감장치.
  3. 제 2 항에 있어서,
    상기 1차 흡수액 저장탱크의 저장용량은 상기 흡수타워와 상기 흡수액 재생부를 순환하는 흡수액 용량의 3배 이상인 것을 특징으로 하는,
    선박의 온실가스 배출 저감장치.
  4. 제 2 항에 있어서,
    상기 1차 흡수액 저장탱크는 상기 2가 금속수산화물 수용액과, 상기 1차 필터에 의해 분리된 암모니아수 또는 미반응 암모늄염 수용액을 교반하여 반응시키는 교반기와, 상기 교반기에 의한 반응 정도를 계측하는 pH센서를 포함하는 것을 특징으로 하는,
    선박의 온실가스 배출 저감장치.
  5. 제 2 항에 있어서,
    상기 저장탱크에 저장된 2가 금속수산화물 수용액은 청수와, CaO 또는 MgO를 반응시켜 생성된 Ca(OH)2 또는 Mg(OH)2인 것을 특징으로 하는,
    선박의 온실가스 배출 저감장치.
  6. 제 2 항에 있어서,
    상기 2차 필터에 의해 분리된 암모니아수 또는 청수를 상기 2차 흡수액 저장탱크로 공급하거나, 총순환 청수 대비 상기 혼합탱크에 의해 추가 생성된 잉여 청수를 청수탱크에 저장하여 상기 저장탱크에서의 2가 금속수산화물 수용액 생성시 재활용하는 것을 특징으로 하는,
    선박의 온실가스 배출 저감장치.
  7. 제 1 항에 있어서,
    상기 흡수타워는, 상기 선박 엔진으로부터 배출되는 배기가스를 상기 해수 공급부로부터 공급된 해수와 반응시켜 냉각하면서 SOx를 용해시켜 제거하는 SOx 흡수부를 더 포함하고,
    상기 CO2 제거부는, 상기 SOx가 제거된 배기가스와 상기 해수 공급부로부터 공급된 해수와 반응시켜 냉각하고, 상기 냉각된 배기가스와 상기 흡수액 제조부로부터의 흡수액을 반응시켜 CO2를 암모늄염 수용액으로 전환하여 CO2를 제거하는 것을 특징으로 하는,
    선박의 온실가스 배출 저감장치.
  8. 제 1 항에 있어서,
    상기 흡수타워는, 상기 선박 엔진으로부터 배출되는 배기가스의 NOx를 흡수하여 제거하는 NOx 흡수부를 더 포함하고,
    상기 CO2 제거부는, 상기 NOx가 제거된 배기가스를 상기 해수 공급부로부터 공급된 해수와 반응시켜 냉각하고 상기 냉각된 배기가스와 상기 흡수액 제조부로부터의 흡수액을 반응시켜 CO2를 암모늄염 수용액으로 전환하여 CO2를 제거하는 것을 특징으로 하는,
    선박의 온실가스 배출 저감장치.
  9. 제 1 항에 있어서,
    상기 흡수타워는, 상기 선박 엔진으로부터 배출되는 배기가스의 NOX를 흡수하여 제거하는 NOX 흡수부와, 상기 NOX가 제거된 배기가스를 상기 해수 공급부로부터 공급된 해수와 반응시켜 냉각하면서 SOX를 용해시켜 제거하는 SOX 흡수부와, 상기 SOX가 제거된 배기가스와 상기 흡수액 제조부로부터의 흡수액을 반응시켜 CO2를 암모늄염 수용액으로 전환하여 CO2를 제거하는 상기 CO2 제거부가 순차적으로 적층 형성되는 것을 특징으로 하는,
    선박의 온실가스 배출 저감장치.
  10. 제 8 항 또는 제 9 항에 있어서,
    상기 흡수액 재생부에 의해 재생된 NH3를 상기 흡수타워로 회귀시켜 흡수액으로 전환시켜 재사용하도록 하고,
    상기 NOX 흡수부는 상기 흡수액 재생부에 의해 재생된 NH3를 공급받아 NH3로 NOX를 흡수하거나, 요소수를 사용하여 NOX를 흡수하는 것을 특징으로 하는,
    선박의 온실가스 배출 저감장치.
  11. 제 7 항 또는 제 9 항에 있어서,
    상기 해수 공급부는,
    선외로부터 씨체스트를 통해 해수를 공급받아 상기 SOX 흡수부로 펌핑하는 해수펌프와, 배기가스의 양에 따라 상기 해수펌프로부터 상기 SOX 흡수부로 공급되는 해수의 분사량을 조절하는 해수조절밸브;를 포함하는 것을 특징으로 하는,
    선박의 온실가스 배출 저감장치.
  12. 제 2 항에 있어서,
    상기 흡수액 제조부는,
    청수를 저장하는 청수탱크;
    상기 청수탱크로부터 청수를 공급하는 청수조절밸브;
    고압의 NH3를 저장하는 NH3저장소;
    상기 청수조절밸브에 의해 공급되는 청수에 상기 NH3저장소로부터 공급되는 NH3를 분사하여 흡수액인 고농도 암모니아수를 제조하여 저장하는 암모니아수탱크;
    상기 암모니아수탱크 내의 암모니아수 농도를 측정하는 pH센서; 및
    상기 암모니아수탱크로부터 상기 2차 흡수액 저장탱크로 암모니아수를 공급하는 암모니아수 공급펌프;를 포함하는 것을 특징으로 하는,
    선박의 온실가스 배출 저감장치.
  13. 제 12 항에 있어서,
    상기 2차 흡수액 저장탱크로부터 상기 흡수타워로 암모니아수를 순환시키는 암모니아수 순환펌프를 더 포함하는 것을 특징으로 하는,
    선박의 온실가스 배출 저감장치.
  14. 제 7 항 또는 제 9 항에 있어서,
    상기 SOX 흡수부는,
    상기 해수 공급부로부터 공급되는 해수를 하방으로 분사하는 다단의 해수 분사노즐; 및
    세정수가 역류하지 않도록 하는, 격벽 형태의 배기가스 유입관 또는 상기 배기가스 유입관을 커버하는 우산형태의 차단판;을 포함하는 것을 특징으로 하는,
    선박의 온실가스 배출 저감장치.
  15. 제 14 항에 있어서,
    상기 해수 분사노즐 하부에, 배기가스가 통과하는 유로가 형성된 다공성 상판이 다단으로 각각 형성되어, 해수와 배기가스가 접촉하도록 하는 것을 특징으로 하는,
    선박의 온실가스 배출 저감장치.
  16. 제 14 항에 있어서,
    상기 해수 분사노즐 하부에, 해수와 배기가스가 접촉하도록 하는 충진재가 채워진 흡수탑이 형성되어, 해수가 SOX를 용해시키도록 하는 것을 특징으로 하는,
    선박의 온실가스 배출 저감장치.
  17. 제 1 항에 있어서,
    상기 CO2 제거부는,
    상기 흡수액 재생부로부터 공급되는 흡수액을 하방으로 분사하는 암모니아수 분사노즐;
    CO2와 흡수액인 암모니아수와 접촉시켜 CO2를 NH4HCO3(aq)로 전환시키는 충진재;
    상기 충진재가 채워진 흡수탑의 구간마다 다단으로 형성되어 CO2제거반응으로 인한 발열을 냉각하는 쿨링재킷;
    CO2와 반응하지 않고 외부로 배출되는 NH3를 포집하는 워터 스프레이;
    굴곡진 다판 형태로 형성되어 암모니아수를 상기 충진재 방향으로 회귀시키는 미스트 제거판;
    암모니아수가 역류하지 않도록 형성된 격벽; 및
    상기 격벽으로 둘러싸인 배기가스 유입홀을 커버하는 우산형태의 차단판;을 포함하는 것을 특징으로 하는,
    선박의 온실가스 배출 저감장치.
  18. 제 17 항에 있어서,
    상기 충진재는 단위 부피당 접촉면적이 크도록 설계된 다단의 증류 칼럼 패킹으로 구성되고,
    상기 증류 칼럼 패킹 사이에 용액 재분배기가 형성되는 것을 특징으로 하는,
    선박의 온실가스 배출 저감장치.
  19. 제 9 항에 있어서,
    상기 흡수타워는,
    상기 NOX 흡수부와 상기 SOX 흡수부 사이에 형성되어 상기 선박 엔진의 폐열과 보일러수를 열교환시키는 EGE를 더 포함하는 것을 특징으로 하는,
    선박의 온실가스 배출 저감장치.
  20. 제 1 항에 있어서,
    상기 흡수타워로부터 배출되는 세정수를 저장하는 세정수탱크, 상기 세정수탱크로 이송펌프에 의해 이송된 세정수의 선외배출조건을 충족하도록 탁도를 조절하는 필터링유닛과 pH조절을 위한 중화제 주입유닛을 구비하는 수처리장치, 및 고형의 배출물을 분리 저장하는 슬러지저장탱크로 구성되는, 배출부를 더 포함하는 것을 특징으로 하는,
    선박의 온실가스 배출 저감장치.
  21. 제 1 항 내지 제 9 항 중 어느 한 항에 따른 선박의 온실가스 배출 저감장치를 구비한 선박.
  22. 선박 엔진으로부터 배출되는 배기가스를 냉각하는 배기가스 냉각부;
    고농도 CO2 흡수액을 제조하여 공급하는 흡수액 제조부;
    상기 배기가스 냉각부에 의해 냉각된 배기가스와 상기 흡수액 제조부로부터의 흡수액을 반응시켜 CO2를 암모늄염 수용액으로 전환하여 CO2를 제거하는 CO2 제거부가 형성된, 흡수타워; 및
    상기 흡수타워로부터 배출된 암모늄염 수용액을 2가 금속수산화물 수용액과 반응시켜 흡수액을 1차로 재생하는 1차 재생단과, 상기 1차 재생단으로부터의 미반응 암모늄염 수용액에 2가 금속수산화물 수용액을 추가 반응시켜 고농도 흡수액을 2차로 재생하고 상기 흡수타워로 순환 공급하여 흡수액으로 재사용하도록 하는 2차 재생단으로 이루어진, 흡수액 재생부;를 포함하는,
    선박의 온실가스 배출 저감장치.
  23. 제 22 항에 있어서,
    상기 선박 엔진은 LNG 또는 저유황유를 연료로 사용하는 것을 특징으로 하는,
    선박의 온실가스 배출 저감장치.
  24. 제 22 항에 있어서,
    상기 배기가스 냉각부는, 배기가스 배출관을 감싸는 열교환 배관으로 선내 냉각시스템으로부터 제공되는 청수를 순환시켜 배기가스를 27℃ 내지 33℃의 온도로 냉각하는 것을 특징으로 하는,
    선박의 온실가스 배출 저감장치.
  25. 제 22 항에 있어서,
    상기 흡수액 재생부는,
    상기 2가 금속수산화물 수용액을 저장하는 저장탱크;
    상기 흡수타워로부터 배출된 암모늄염 수용액과 상기 저장탱크로부터의 2가 금속수산화물 수용액을 교반기에 의해 교반하여 NH3(g)와 탄산염을 생성하는 혼합탱크와, 상기 혼합탱크로부터 용액 및 침전물을 흡입하여 탄산염을 분리하는 1차 필터로 구성되는, 상기 1차 재생단; 및
    상기 1차 필터에 의해 분리된 암모니아수 또는 미반응 암모늄염 수용액을 저장하고, 상기 저장탱크로부터의 2가 금속수산화물 수용액과 미반응 암모늄염 수용액을 재반응시키는 1차 흡수액 저장탱크와, 상기 1차 흡수액 저장탱크로부터 용액 및 침전물을 흡입하여 탄산염과 고농도 암모니아수를 분리하는 2차 필터와, 상기 2차 필터에 의해 분리되는 고농도 암모니아수를 저장하는 2차 흡수액 저장탱크로 구성되는, 상기 2차 재생단;을 포함하는 것을 특징으로 하는,
    선박의 온실가스 배출 저감장치.
  26. 제 25 항에 있어서,
    상기 1차 흡수액 저장탱크의 저장용량은, 흡수액 순환라인을 따라 상기 흡수타워와 상기 흡수액 재생부를 순환하는 흡수액 용량의 3배 이상인 것을 특징으로 하는,
    선박의 온실가스 배출 저감장치.
  27. 제 25 항에 있어서,
    상기 1차 흡수액 저장탱크는 상기 저장탱크로부터의 2가 금속수산화물 수용액과, 상기 1차 필터에 의해 분리된 암모니아수 또는 미반응 암모늄염 수용액을 교반하여 반응시키는 교반기와, 상기 교반기에 의한 반응 정도를 계측하는 pH센서를 포함하는 것을 특징으로 하는,
    선박의 온실가스 배출 저감장치.
  28. 제 25 항에 있어서,
    상기 저장탱크에 저장된 2가 금속수산화물 수용액은, 청수와, CaO 또는 MgO를 반응시켜 생성된 Ca(OH)2 또는 Mg(OH)2인 것을 특징으로 하는,
    선박의 온실가스 배출 저감장치.
  29. 제 25 항에 있어서,
    상기 2차 필터에 의해 분리된 암모니아수 또는 청수를 상기 2차 흡수액 저장탱크로 공급하거나, 총순환 청수 대비 상기 혼합탱크에 의해 추가 생성된 잉여 청수를 청수탱크에 저장하여 상기 저장탱크에서의 2가 금속수산화물 수용액 생성시 재활용하는 것을 특징으로 하는,
    선박의 온실가스 배출 저감장치.
  30. 제 22 항에 있어서,
    상기 흡수타워는, 상기 선박 엔진으로부터 배출되는 배기가스의 NOX를 흡수하여 제거하는 NOX 흡수부를 더 포함하고,
    상기 CO2 제거부는, 상기 NOX가 제거되고 상기 배기가스 냉각부에 의해 냉각된 배기가스와 상기 흡수액 제조부로부터의 흡수액을 반응시켜 CO2를 암모늄염 수용액으로 전환하여 CO2를 제거하는 것을 특징으로 하는,
    선박의 온실가스 배출 저감장치.
  31. 제 30 항에 있어서,
    상기 흡수액 재생부는 NH3를 재생하여서 상기 흡수타워로 회귀시켜 흡수액으로 재사용하도록 하고,
    상기 NOX 흡수부는 상기 흡수액 재생부로부터 공급되는 NH3로 NOX를 흡수하거나, 요소수를 사용하여 NOX를 흡수하여 제거하는 것을 특징으로 하는,
    선박의 온실가스 배출 저감장치.
  32. 제 25 항에 있어서,
    상기 흡수액 제조부는,
    청수를 저장하는 청수탱크;
    상기 청수탱크로부터의 청수 공급량을 조절하는 청수조절밸브;
    고압의 NH3를 저장하는 NH3저장소;
    상기 청수조절밸브에 의해 공급되는 청수에 상기 NH3저장소로부터 공급되는 NH3를 분사하여 흡수액인 고농도 암모니아수를 제조하여 저장하는 암모니아수탱크;
    상기 암모니아수탱크 내의 암모니아수 농도를 측정하는 pH센서; 및
    상기 암모니아수탱크로부터 상기 2차 흡수액 저장탱크로 암모니아수를 공급하는 암모니아수 공급펌프;를 포함하는 것을 특징으로 하는,
    선박의 온실가스 배출 저감장치.
  33. 제 32 항에 있어서,
    상기 2차 흡수액 저장탱크로부터 상기 흡수타워로 암모니아수를 순환시키는 암모니아수 순환펌프를 더 포함하는 것을 특징으로 하는,
    선박의 온실가스 배출 저감장치.
  34. 제 22 항에 있어서,
    상기 CO2 제거부는,
    상기 흡수액 재생부로부터 공급되는 흡수액을 하방으로 분사하는 암모니아수 분사노즐;
    CO2와 흡수액인 암모니아수와 접촉시켜 CO2를 NH4HCO3(aq)로 전환시키는 충진재;
    상기 충진재가 채워진 흡수탑의 구간마다 다단으로 형성되어 CO2제거반응으로 인한 발열을 냉각하는 쿨링재킷;
    CO2와 반응하지 않고 외부로 배출되는 NH3를 포집하는 워터 스프레이;
    굴곡진 다판 형태로 형성되어 암모니아수를 상기 충진재 방향으로 회귀시키는 미스트 제거판;
    암모니아수가 누액되지 않도록 형성된 격벽; 및
    상기 격벽으로 둘러싸인 배기가스 유입홀을 커버하는 우산형태의 차단판;을 포함하는 것을 특징으로 하는,
    선박의 온실가스 배출 저감장치.
  35. 제 34 항에 있어서,
    상기 충진재는 단위 부피당 접촉면적이 크도록 설계된 다단의 증류 칼럼 패킹으로 구성되고,
    상기 증류 칼럼 패킹 사이에 용액 재분배기가 형성되는 것을 특징으로 하는,
    선박의 온실가스 배출 저감장치.
  36. 제 30 항에 있어서,
    상기 흡수타워는,
    상기 NOX 흡수부와 상기 배기가스 냉각부 사이에 형성되어 상기 선박 엔진으로부터의 배기가스의 폐열과 보일러수를 열교환시키는 EGE를 더 포함하는 것을 특징으로 하는,
    선박의 온실가스 배출 저감장치.
  37. 제 22 항 내지 제 36 항 중 어느 한 항에 따른 선박의 온실가스 배출 저감장치를 구비한 선박.
PCT/KR2020/018603 2020-10-26 2020-12-17 선박의 온실가스 배출 저감장치 및 동 장치 구비한 선박 WO2022092428A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP20960044.4A EP4234899A1 (en) 2020-10-26 2020-12-17 Apparatus for reducing greenhouse gas emission in ship and ship including same
US18/031,352 US20230372867A1 (en) 2020-10-26 2020-12-17 Apparatus for reducing greenhouse gas emission in vessel and vessel including the same
JP2023520522A JP2023544055A (ja) 2020-10-26 2020-12-17 船舶の温室効果ガス排出低減装置及び同装置を具備した船舶
CN202080106395.7A CN116529466A (zh) 2020-10-26 2020-12-17 船舶的温室气体减排装置及具备其的船舶

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR1020200139682A KR102232587B1 (ko) 2020-10-26 2020-10-26 선박의 온실가스 배출 저감장치 및 동 장치 구비한 선박
KR10-2020-0139682 2020-10-26
KR1020200154964A KR102231473B1 (ko) 2020-11-18 2020-11-18 선박의 온실가스 배출 저감장치 및 동 장치 구비한 선박
KR10-2020-0154964 2020-11-18

Publications (1)

Publication Number Publication Date
WO2022092428A1 true WO2022092428A1 (ko) 2022-05-05

Family

ID=81382752

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/018603 WO2022092428A1 (ko) 2020-10-26 2020-12-17 선박의 온실가스 배출 저감장치 및 동 장치 구비한 선박

Country Status (4)

Country Link
US (1) US20230372867A1 (ko)
EP (1) EP4234899A1 (ko)
JP (1) JP2023544055A (ko)
WO (1) WO2022092428A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010531728A (ja) * 2007-07-03 2010-09-30 アルストム テクノロジー リミテッド アンモニア含有媒体による煙道ガスからの二酸化炭素の除去
US20130287673A1 (en) * 2009-12-22 2013-10-31 Xialong WANG Capture of carbon dioxide
JP2019510628A (ja) * 2016-03-25 2019-04-18 ブルー プラネット,エルティーディー. アンモニア媒介二酸化炭素(co2)隔離方法及びシステム
KR20190113486A (ko) * 2018-03-27 2019-10-08 한국조선해양 주식회사 배기가스 처리장치
KR20200084288A (ko) * 2019-01-02 2020-07-10 한국조선해양 주식회사 배기가스 처리장치 및 이를 포함하는 선박

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010531728A (ja) * 2007-07-03 2010-09-30 アルストム テクノロジー リミテッド アンモニア含有媒体による煙道ガスからの二酸化炭素の除去
US20130287673A1 (en) * 2009-12-22 2013-10-31 Xialong WANG Capture of carbon dioxide
JP2019510628A (ja) * 2016-03-25 2019-04-18 ブルー プラネット,エルティーディー. アンモニア媒介二酸化炭素(co2)隔離方法及びシステム
KR20190113486A (ko) * 2018-03-27 2019-10-08 한국조선해양 주식회사 배기가스 처리장치
KR20200084288A (ko) * 2019-01-02 2020-07-10 한국조선해양 주식회사 배기가스 처리장치 및 이를 포함하는 선박

Also Published As

Publication number Publication date
JP2023544055A (ja) 2023-10-19
EP4234899A1 (en) 2023-08-30
US20230372867A1 (en) 2023-11-23

Similar Documents

Publication Publication Date Title
KR102232553B1 (ko) 선박의 온실가스 배출 저감장치 및 동 장치 구비한 선박
KR102232540B1 (ko) 선박의 온실가스 배출 저감장치 및 이를 구비한 선박
KR102232587B1 (ko) 선박의 온실가스 배출 저감장치 및 동 장치 구비한 선박
KR102231449B1 (ko) 선박의 온실가스 배출 저감장치 및 이를 구비한 선박
KR102231475B1 (ko) 선박의 온실가스 배출 저감장치 및 동 장치 구비한 선박
WO2022092427A1 (ko) 선박의 온실가스 배출 저감장치 및 동 장치 구비한 선박
KR102415706B1 (ko) 선박의 온실가스 배출 저감장치 및 동 장치 구비한 선박
WO2022092428A1 (ko) 선박의 온실가스 배출 저감장치 및 동 장치 구비한 선박
WO2021066461A2 (ko) 배기가스 처리장치
KR102231467B1 (ko) 선박의 온실가스 배출 저감장치 및 이를 구비한 선박
WO2022080588A1 (ko) 선박의 온실가스 배출 저감장치 및 이를 구비한 선박
KR102231451B1 (ko) 선박의 온실가스 배출 저감장치 및 이를 구비한 선박
KR102441664B1 (ko) 선박의 온실가스 배출 저감장치 및 동 장치 구비한 선박
KR102231448B1 (ko) 선박의 온실가스 배출 저감장치 및 이를 구비한 선박
KR20220022131A (ko) 선박의 온실가스 배출 저감장치 및 이를 구비한 선박
WO2024038978A1 (ko) 선박의 온실가스 배출 저감장치 및 이를 구비한 선박 또는 해양 구조물
WO2024038977A1 (ko) 선박의 온실가스 배출 저감장치 및 이를 구비한 선박 또는 해양 구조물
KR20220022133A (ko) 선박의 온실가스 배출 저감장치 및 이를 구비한 선박
WO2021261691A1 (ko) 선박의 온실가스 배출 저감장치 및 이를 구비한 선박
KR102231473B1 (ko) 선박의 온실가스 배출 저감장치 및 동 장치 구비한 선박
KR102446545B1 (ko) 암모니아 운반선의 온실가스 배출 저감장치
KR102239993B1 (ko) 선박의 온실가스 배출 저감장치
KR102231477B1 (ko) 선박의 EGR 및 iCER 결합 온실가스 배출 저감장치 및 동 장치를 구비한 선박
KR20240025434A (ko) 선박의 온실가스 배출 저감장치 및 이를 구비한 선박 또는 해양 구조물
KR20240076575A (ko) 선박의 온실가스 배출 저감장치 및 이를 구비한 선박

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20960044

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023520522

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202080106395.7

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020960044

Country of ref document: EP

Effective date: 20230526

WWE Wipo information: entry into national phase

Ref document number: 11202302556S

Country of ref document: SG