WO2022092421A1 - 메디아의 손실없는 수처리용 하이드로크래셔 - Google Patents

메디아의 손실없는 수처리용 하이드로크래셔 Download PDF

Info

Publication number
WO2022092421A1
WO2022092421A1 PCT/KR2020/017946 KR2020017946W WO2022092421A1 WO 2022092421 A1 WO2022092421 A1 WO 2022092421A1 KR 2020017946 W KR2020017946 W KR 2020017946W WO 2022092421 A1 WO2022092421 A1 WO 2022092421A1
Authority
WO
WIPO (PCT)
Prior art keywords
raw water
cyclone
media
sterilized
body portion
Prior art date
Application number
PCT/KR2020/017946
Other languages
English (en)
French (fr)
Inventor
김형오
김기범
Original Assignee
김형오
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김형오 filed Critical 김형오
Publication of WO2022092421A1 publication Critical patent/WO2022092421A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B13/00Conduits for emptying or ballasting; Self-bailing equipment; Scuppers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63JAUXILIARIES ON VESSELS
    • B63J4/00Arrangements of installations for treating ballast water, waste water, sewage, sludge, or refuse, or for preventing environmental pollution not otherwise provided for
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • C02F1/32Treatment of water, waste water, or sewage by irradiation with ultraviolet light
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/38Treatment of water, waste water, or sewage by centrifugal separation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/467Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/78Treatment of water, waste water, or sewage by oxidation with ozone
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated

Definitions

  • the present invention relates to a hydrocrasher for water treatment without loss of media and a water treatment system using the same.
  • a water treatment device for removing organisms contained in water, such as ballast water has been developed and used.
  • the present applicant discloses a hydrocrasher for ballast water treatment based on floating particles having a boost function in Korean Patent Application Laid-Open No. 10-2017-0132987 (published on December 5, 2017) (hereinafter, '987 Patent').
  • a ballast water treatment system using a ballast water treatment system.
  • This patent No. 987 discloses a technique for physically sterilizing ballast water using solid moving particles (eg, alumina, silicon carbide, ceramic beads, or silicon material), and prevents the loss of flowing particles.
  • a filter is used to prevent it. That is, in Patent No. 987, a mesh filter is used to prevent loss of flowing particles.
  • Patent No. 987 it is a technology that requires a backwashing operation for cleaning the filter, and this backwashing operation is often cumbersome and cannot be solved only by backwashing and requires replacement of the filter.
  • a hydrocrasher for water treatment without media loss and a water treatment system using the same can be provided.
  • the body portion 4 having an interior space containing the flowing particles (M);
  • a raw water inlet (1) operatively coupled to the body (4) to supply raw water to the inner space of the body (4);
  • the body portion 4 and the communication tube 6 for communicating the cyclone portion 5 includes;
  • Part of the sterilized raw water introduced from the cyclone unit 5 is discharged to the first discharge pipe 11, and the remaining part of the sterilized raw water introduced from the cyclone unit 5 is discharged to the second discharge pipe 12,
  • the sterilized raw water discharged through the first discharge pipe 11 is mixed with the raw water flowing into the raw water inlet 1, and a hydrocrasher for water treatment without media loss is provided.
  • the body portion 4 has a cylindrical shape consisting of a lower portion and an upper portion, the upper end of the body portion 4 is blocked by the upper surface, the lower end of the body portion 4 is blocked by the bottom surface, and the raw water
  • the raw water inlet 1 may be operatively coupled to the lower end of the body 4 so that it flows into the interior of the body 4 .
  • the cyclone part 5 may be coupled to the body part 4 so as to penetrate the upper surface of the body part 4 , the inner space of the body part 4 , and the bottom surface of the body part 4 .
  • the raw water introduced into the inner space of the body part 4 through the raw water inlet 1 may be configured to flow into the cyclone part 5 only through the communication pipe 6 after being sterilized while turning.
  • a pressure chamber part 2 is formed in the body part 4, and the pressure chamber part 2 and the raw water inlet 1 is operatively coupled, and the cyclone part 5 may also penetrate the pressure chamber part 2 .
  • the wall surface IS of the inner space of the cyclone unit 5 may be roughened.
  • the first discharge pipe 11 is formed in the lower part of the cyclone part 5, and the lower part of the cyclone part 5 is an arbitrary part after penetrating the bottom surface of the body part 4,
  • the second discharge pipe 12 is formed on the upper part of the cyclone part 5 , and the upper part of the cyclone part 5 may be any part after penetrating the upper surface of the body part 4 .
  • the communicating part may communicate with each other an arbitrary position where it is 1/2 or more of the height of the body part 4 and an arbitrary position where it is 1/2 or more of the height of the cyclone part 5 .
  • Swallower 3 is coupled to the inside of body 4 , and the swirler 3 , the inside of body 4 , and the bottom surface of body 4 form a pressure chamber part 2 . And, the pressure chamber part 2 and the raw water inlet 1 may be operatively coupled so that the raw water flowing into the raw water inlet 1 directly flows into the pressure chamber part 2 .
  • the above-described hydrocrasher further includes; an injector 15 including two inlets and one outlet, one of the two inlets is coupled to the raw water inlet 1 through which raw water flows, and the two The other one of the inlets is coupled to the first discharge pipe 11, and the outlet is coupled to communicate with the internal space of the body 4,
  • the second discharge pipe 12 protrudes a first distance from the top of the cyclone part 5 in the downward direction, and the communication part 6 has a higher position than the protruding part of the second discharge pipe 12.
  • the cyclone part 5 ) and the body portion 4 may be in communication.
  • FIG. 1 is a view for explaining a water treatment system using a hydrocrash for water treatment without media loss according to an embodiment of the present invention.
  • FIGS. 2 and 3 are views for explaining a hydrocrasher for water treatment without media loss according to an embodiment of the present invention.
  • FIG 4 and 5 are views for explaining the raw water inlet of the hydrocrasher for water treatment without media loss according to an embodiment of the present invention.
  • FIG. 6 is a view for explaining the swapper 3 according to an embodiment of the present invention.
  • injector M floating particle 100: raw water storage unit
  • Embodiments described herein will be described with reference to cross-sectional and/or plan views, which are ideal illustrative views of the present invention.
  • terms such as first, second, etc. are used to describe various components, but these components should not be limited by these terms. These terms are only used to distinguish one component from another.
  • Embodiments described and illustrated herein also include complementary embodiments thereof.
  • the terms 'comprise' and/or 'comprising' do not exclude the presence or addition of one or more other components.
  • any component A and component B are operatively coupled to each other means that any component A and component B are directly or indirectly connected to each other (via one or more other components) so that an operation is performed. ) means that they are connected.
  • ballast water means killing or inactivating organisms (eg, zooplankton, phytoplankton) included in ballast water.
  • FIG. 1 is a view for explaining a water treatment system using a hydrocrash for water treatment without media loss according to an embodiment of the present invention.
  • the water treatment system includes a raw water storage unit 100 , a hydrocrasher for water treatment without media loss (hereinafter, often referred to as a 'hydrocrasher') 200 , and a sterilization unit 300 . ), a storage unit 400 for storing treated water, main pipes (L1, L2, L3), and one or more pumps (P1, P2) may be included.
  • raw water means water to be sterilized (meaning at least one of fresh water and sea water), and may be various types of water.
  • the present water treatment system will be described on the assumption that raw water is ballast water.
  • raw water in the present invention is ballast water as an example, and may be applied to other types of raw water.
  • the raw water is ballast water
  • the raw water storage unit 100 is the sea chest 100
  • the storage unit 400 is a ballast water storage tank 400 for storing sterilized ballast water.
  • Sea chest (sea chest) (100) is a place for introducing seawater to be used as ballast water from the sea.
  • the ballast water introduced into the sea chest 100 is supplied to the hydrocrasher 200 through the ballast water main pipe L1 connected to the sea chest 100 .
  • the ballast water flowing in the ballast water main pipe (L1) may be pumped by the pump (P1) installed on the main pipe (L1) and provided to the hydrocrasher (200).
  • the hydrocrash 200 includes particles (hereinafter, 'flowing particles') that flow by the shape of the hydrocrasher, the flow velocity of ballast water, and a vortex flow generated by hydraulic pressure, and such
  • the flowing particles collide with each other and rub against each other while rotating by the vortex generated in the hydrocrash, and crush the shape.
  • living organisms included in ballast water collide with each other and are killed or deactivated by colliding with frictional moving particles.
  • the hydrocrasher 200 is configured such that the flowing particles of the self 200 do not flow out by the ballast water and continue to exist inside the self 200 .
  • the hydrocrasher 200 may be installed on the main pipe existing between the sea chest 100 and the ballast water storage tank 400 .
  • the main pipe provides a path through which ballast water can move from the sea chest 100 to the ballast water storage tank 400 .
  • the main pipe existing between the sea chest 100 and the hydrocrasher 200 is present between the main pipe L1, the hydrocrasher 200 and the sterilization unit 300 .
  • the main pipe (L2), the main pipe existing between the sterilization unit 300 and the ballast water storage tank 400 is referred to as a main pipe (L3).
  • Ballast water is pumped from the sea chest 100 by the pump P1 installed on the main pipe L1 and flows into the hydrocrash 200 .
  • the ballast water introduced into the hydrocrasher 200 is subjected to physical motions such as collision and friction with particles flowing by the shape of the hydrocrasher 200, the flow velocity of the ballast water, and a vortex flow generated by hydraulic pressure. After killing the living creatures included in the ballast water by the hydrocrash 200, it flows out to the outside.
  • the water treatment system according to the present embodiment may further include a sterilization unit 300 .
  • the sterilization unit 300 may be installed between the hydrocrasher 200 and the ballast water storage tank 400, and the ballast water discharged from the hydrocrasher 200 through the main pipe L2. provided and sterilized.
  • the sterilization unit 300 may sterilize the ballast water using ozone, UV, or electrolysis.
  • the sterilization unit 300 may be applied to the present embodiment as long as it is a device capable of sterilizing ballast water using any type of technology.
  • Korean Patent Application No. 2010-0035788 (application date: April 19, 2010, title of invention: ballast water sterilization apparatus for ships) describes a technique for sterilizing ballast water using ultraviolet rays.
  • the technology described in this Korean Patent Application No. is incorporated as a part of the present specification to the extent that it does not conflict with the present invention.
  • the sterilizing unit 300 may have the same configuration as the hydrocrash 200 according to an embodiment of the present invention.
  • the sterilization unit 300 improves the sterilization performance of the ballast water by performing an operation of sterilizing again after being first sterilized by the hydrocrasher 200 .
  • the sterilizing unit 300 sterilizes the ballast water together with the hydrocracker 200, so that the oxidizing agent that contributes to sterilization in the case of chemical sterilization than when sterilizing the ballast water by itself (300) without the hydrocracker 200 alone can be used less, which in turn makes it possible to downsize the components of ballast water and use less resources.
  • the sterilization unit 300 is a device for sterilizing ballast water using ozone, it is possible to sterilize the ballast water by using a relatively small amount of ozone.
  • the sterilizer 300 is a device for sterilizing ballast water using UV or electrolysis, it is possible to sterilize the ballast water by using relatively little electric power. Therefore, it is possible to miniaturize the component equipment.
  • the ballast water storage tank 400 stores the ballast water sterilized by the hydrocrash 200 and the sterilization unit 300 .
  • the ballast water stored in the ballast water storage tank 400 may be discharged to the outside through the pipe L4 connected to the ballast water storage tank 400 .
  • the sterilization unit 300 is discharged as it is, or after neutralization by inputting a neutralizing agent, depending on the type of method.
  • the sterilizer 300 sterilizes the ballast water using ozone
  • the ballast water stored in the ballast water storage tank 400 is neutralized by a neutralizing agent and discharged when discharged to the outside.
  • FIGS. 2 and 3 are views for explaining a hydrocrasher for water treatment without media loss according to an embodiment of the present invention.
  • the hydrocrash according to an embodiment of the present invention can sterilize raw water.
  • the hydrocrash according to an embodiment of the present invention has an internal space (the same meaning as 'inside', and 'inside' and 'internal space' have the same meaning and will be used interchangeably)
  • An excitation tubular body 4 a cyclone 5 capable of separating large and small particles by centrifugal force, an injector 15, and a communication pipe for communicating the body 4 and the cyclone 5 (6) may be included.
  • the raw water sterilized while turning in the internal space of the body part 4 is introduced into the cyclone part 5 through the communication pipe 6 .
  • 'raw water' means water before sterilization, but if there is no real benefit of distinguishing whether to sterilize, for ease of explanation, 'raw water under sterilization' in the body part 4 or the communication pipe 6
  • the 'sterilized raw water' in the and cyclone section 5 is also often referred to as 'raw water'.
  • Flowing particles M are included in the inner space of the body 4, and are often referred to as media, and in this specification, 'flowing particles' and 'media' are used interchangeably.
  • the media may be located anywhere inside the body portion 4 .
  • a media may be located inside the pressure chamber part 2 to be described later.
  • the cylindrical body portion 4 having an internal space has a structure in which raw water and media can be efficiently rotated.
  • the inner surface of the body portion 4 may be cylindrical in the body portion 8 of the cyclone portion 5 .
  • the shape of the inner surface of the body portion 4 according to the present invention is not necessarily limited to a circular shape.
  • the body part 4 has a cylindrical shape consisting of a lower part and an upper part, and the pressure chamber part 2 and the raw water inlet 1 through which raw water can be introduced are formed in the lower part of the body part 4 .
  • one side is called the upper side and the other side is called the lower part, and also the center (H_C) of the length (H_C) of the cyclone part 5 H_OC), one side is called the top and the other side is called the bottom.
  • a higher side is referred to as an upper side
  • a lower side is referred to as a lower side, based on the Earth's gravity.
  • the communicating portion is configured to communicate with an arbitrary position of the upper portion of the body portion 4 and an arbitrary position of the upper half of the cyclone portion 5 or more with each other. That is, the communicating portion communicates with an upper portion higher than the center of the length of the body portion 4 and an upper portion higher than the center of the length of the cyclone portion 5 with each other.
  • the body part 4 and the raw water inlet 1 are operatively coupled to each other so that raw water is supplied to the inner space of the body part 4 .
  • the upper end of the body part 4 is blocked by the upper surface, the lower end is blocked by the bottom surface, and the swapper 3 is located on the inner side of the body 4 at a location spaced a certain distance from the lower end. are connected
  • the body part 4 is configured so that raw water or media does not leak to the outside.
  • the lower end of the body portion 4 and the raw water inlet 1 are operatively coupled to each other so that the raw water flows into the interior of the body portion 4 .
  • the pressure chamber part 2 is formed in the body part 4 , in particular, the lower part of the body part 4 .
  • the pressure chamber part 2 and the raw water inlet 1 are operatively coupled to each other so that raw water flowing into the raw water inlet 1 directly flows into the pressure chamber part 2 .
  • the raw water introduced into the raw water inlet (1) is pressed by the swirler (3) when proceeding to the upper portion of the body (4). That is, the space composed of the swapper 3, the bottom surface of the lower end, and the side surface of the body part 4 constitutes the pressure chamber part 2, and the raw water introduced through the raw water inlet 1 is the body. It does not move to the upper part of the part 4 but turns and rises to the body part 4 through the swirler 3 while turning and rising inside the pressure chamber part 2 . Swallower 3 has an efficient configuration in which the enemy can be swiveled.
  • the cyclone part 5 and the body part 4 are operatively coupled.
  • the cyclone part 5 is located in the inner space of the body part 4 .
  • the cyclone part 5 is coupled with the body part 4 so as to penetrate the upper end, the inner space, and the lower end of the body part 4 .
  • the upper end of the body portion 4 is blocked by an upper surface, through which the cyclone portion 5 passes through the inner space of the body portion 4, and the bottom surface of the lower end of the body portion 4 goes through
  • the outer surface and the upper surface of the cyclone unit 5 are closely coupled so that raw water or media existing inside the body unit 4 does not leak to the outside. Even when the cyclone penetrates the bottom surface, the outer surface and the bottom surface of the cyclone are closely coupled so that raw water or media existing inside the body portion 4 does not leak to the outside.
  • the shape of the cyclone part 5, specifically, the external shape of the cyclone part 5, has a circular structure so that raw water can rotate.
  • Swallower 3 is positioned inside the body portion 4, and the cyclone portion 5 also penetrates through the swirler 3 . That is, the cyclone part 5 is coupled to the body part 4 so as to penetrate the upper surface of the body part 4 , the swirler 3 of the internal space, the pressure chamber part 2 , and the bottom surface.
  • the cyclone part 5 penetrates through the center of the upper surface of the body part 4, the center of the swirler 3 of the inner space, the center of the pressure chamber part 2, and the center of the bottom surface. , is coupled to the body (4).
  • the cyclone part 5 since the cyclone part 5 is disposed in the center of the body part 4, the raw water introduced into the raw water inlet 1 rises while turning. With the additionally positioned Swallower 3, the enemy is able to turn more violently.
  • the cyclone unit 5 has a configuration so that the fluid (including at least one of raw water or media) is rotated, for example, the cyclone unit 5 has a circular tube shape so that the fluid moves while turning, The diameter of the inlet is relatively larger than the diameter of the outlet, and the diameter of the tube gradually decreases from the inlet to the outlet. Accordingly, the body portion 8 of the cyclone portion 5 has a conical shape, and this conical body portion 8 is located in the center of the inner space of the body portion 4 of the hydrocrash.
  • the cyclone part 5 and the hydrocrasher are aligned so that the longitudinal direction of the cyclone part 5 and the longitudinal direction of the body part 4 of the hydrocrasher are parallel to each other, and at the same time, the central axis of the cyclone part 5 ( An imaginary axis passing through the center of the body portion of the cyclone portion 5 in the longitudinal direction of the cyclone portion 5) and the central axis of the body portion 4 of the hydrocrasher (the body portion in the longitudinal direction of the body portion 4) The imaginary axes passing through the center of 4) coincide with each other.
  • the raw water introduced into the raw water inlet (1) rises while turning inside the body (4). As described above, the raw water goes through the swirler 3 while turning from the pressure chamber part 2 and rises while turning around the outer surface of the cyclone part 5, and all the raw water that rises is the communication pipe 6 ) is released as
  • the communication pipe 6 is a pipe connecting the inside of the body part 4 and the cyclone part 5, and provides a path through which raw water or media can be moved.
  • the raw water (including a part of the media) rotating while turning along the outer wall OS of the cyclone part 5 inside the body part 4 is transmitted through the communication pipe 6 ) is moved to the upper part of the cyclone unit (5) through.
  • the communicating pipe 6 communicates the upper part of the body part 4 and the upper part of the cyclone part 5, and the communicating pipe 6, the body part 4, and the cyclone part 5 are the raw water inlet ( The raw water introduced through 1) is sterilized while turning, and then is operatively coupled to each other so that it flows into the cyclone unit 5 only through the communication pipe 6 .
  • the upper part of the cyclone part 5 is configured to receive raw water (including a part of the media) through the communication pipe 6 .
  • Raw water (including a part of the media) introduced into the upper part of the cyclone unit 5 through the communication pipe 6 descends while turning, and this swirling flow is referred to as a 'downward swirling flow (9)' in the present specification.
  • the descending swirl flow 9 mainly contains a material with a heavy specific gravity, and is thus descended and discharged while turning along the wall surface IS of the inner space of the cyclone unit 5 . That is, the separation of substances with a heavy specific gravity contained in the raw water occurs, and the substances with a heavy specific gravity may contain relatively large animal and phytoplankton.
  • the wall surface IS of the inner space of the cyclone unit 5 is roughened.
  • the surface roughness of the wall surface IS of the inner space of the cyclone unit 5 is to be killed or deactivated when the animals and phytoplankton collide with the wall surface IS of the inner space of the cyclone unit 5 . is composed of
  • the relatively heavy copper and phytoplankton descending while turning along the wall surface IS of the inner space of the cyclone unit 5 rotate along the wall surface IS of the inner space of the cyclone unit 5 and descend while turning to the surface. It may be destroyed or deactivated while colliding with the wall (IS) with a large roughness. That is, in the inner space of the cyclone unit 5, the separation of substances with heavy specific gravity contained in raw water may occur, but also the death of relatively large animal and phytoplankton with heavy specific gravity may occur.
  • the ascending swirl flow 10 contains a material having a relatively light specific gravity, and ascends while turning along the inner center of the cyclone unit 5 and is discharged to the outside.
  • a discharge pipe is formed in the lower and upper portions of the cyclone unit 5 , and the discharge pipe formed in the lower part is called a first discharge pipe 11 , and the discharge pipe formed in the upper part is called a second discharge pipe 12 .
  • the place where the first discharge pipe 11 is formed is any part after penetrating the bottom surface of the body part 4 from the lower part of the cyclone part 5, and the second discharge pipe 12 is formed
  • the place is any part after passing through the upper surface of the body part 4 in the upper part of the cyclone part 5 .
  • the descending swirl flow 9 that descends while turning inside the cyclone unit 5 is discharged to the first discharge pipe 11, and the ascending swirl flow 10 that rises while turning at the center of the descending swirl flow 9 is discharged to the second discharge pipe (12).
  • the second discharge pipe 12 protrudes from the top of the cyclone part 5 downward by a first distance H_T, and the communication part 6 is a protruding portion of the second discharge pipe 12 .
  • the cyclone part 5 and the body part 4 at a higher position are connected to each other. This is to prevent the raw water (treated water) flowing into the cyclone unit 5 from the communication unit 6 from interfering with the upward swirling flow 10 .
  • the raw water (treated water) discharged to the first discharge pipe 11 may contain the dead or solid matter of mediana organisms, but the raw water (treated water) discharged through the second discharge pipe 12 contains the dead or solid matter of the median organism. These may not be mixed.
  • a part of the sterilized raw water introduced from the cyclone unit 5 is discharged to the first discharge pipe 11 , and the remaining part of the sterilized raw water introduced from the cyclone unit 5 is a second discharge pipe 12 .
  • the sterilized raw water discharged through the first discharge pipe 11 is mixed with the raw water flowing into the raw water inlet (1).
  • the injector 15 is used in the present invention.
  • the injector 15 is configured to include two inlets IN1 and IN2 and one outlet OUT.
  • the injector 15 is configured to mix the fluid flowing into the two inlets IN1 and IN2 and flow it out to one outlet OUT.
  • one of the two inlets of the injector 15 is coupled to the raw water inlet 1 through which raw water is introduced, and the other one (IN2) of the two inlets of the injector 15 is It is coupled to the first discharge pipe (11).
  • the outlet (OUT) of the injector (15) is coupled to communicate with the internal space of the body (4).
  • the raw water flowing into the raw water inlet 1 is mixed with the sterilized raw water discharged through the first discharge pipe 11 , and then introduced into the body 4 again.
  • the raw water flowing into the raw water inlet 1 is mixed with the sterilized raw water discharged through the first discharge pipe 11 , and then introduced into the body 4 again.
  • the flowing particles (M) are solid particles (a, b) that are strong enough to sterilize organisms contained in raw water (eg, ballast water, but not limited thereto). , it can be composed of a mixture of particles of silicon material (c) to prevent wear of solid particles (a, b) with strong hardness and increase the coefficient of restitution, vortex motion is possible.
  • the flowing particles M may be mixed including at least one of alumina, silicon carbide, ceramic beads, and a silicon material.
  • This mixing is exemplary, and any particles with strong hardness are possible, and they are rotated by the raw water received through the raw water inlet 1, and alumina, silicon carbide, ceramic beads, Silicon materials collide with each other.
  • raw water is naturally sterilized in the process of passing between the flowing particles (M) causing friction with each other while turning.
  • the moving particles (M) have a weight and size enough to be moved (including rising) by raw water. This is because the flowing particles M collide with each other and thereby the raw water can be sterilized by having enough weight and size to be raised by raw water.
  • the hydrocrash 200 according to the present embodiment may further include a swapper 3 .
  • Swallower 3 may or may not be used in the present invention so that a person (hereinafter, 'person of ordinary skill') engaged in the technical field to which the present invention belongs (hereinafter referred to as 'the person skilled in the art') suits the field situation.
  • Swallower 3 is configured to swirl the raw water introduced through the raw water inlet 1, and may use a conventionally known configuration or develop and use a more effective configuration.
  • Raw water introduced through the raw water inlet 1 may be pressurized by the swirler 3 , whereby the space between the swirler 3 and the bottom surface may have a function as the pressure chamber part 2 . .
  • 4 and 5 are views for explaining the raw water inlet 1 of the hydrocrash for water treatment without media loss according to an embodiment of the present invention.
  • the raw water inlet 1 may be positioned so that raw water flowing into the raw water inlet 1 flows in a direction toward the cyclone unit 5 which is the central axis of the inner space.
  • the raw water inlet 1 does not face the cyclone part 5, which is the central axis of the inner space, but the raw water in the direction toward the axis deviating even a little from the central axis (hereinafter, 'oblique It is possible to be positioned so as to flow in the direction '), and in this case, there is an effect that the turning force is improved than when it flows in the direction toward the central axis.
  • FIG. 6 is a view for explaining the swapper 3 according to an embodiment of the present invention.
  • the swapper 3 may have a plate shape having a predetermined thickness as a whole, and the shape of the inner surface of the body part 4 of the hydrocrasher It consists of a plate of a shape and size that can be easily attached to the For example, if the inner surface of the body part 4 of the hydrocrasher is circular, the swapper 3 may also be configured in the plate shape of the body part 8 of the cyclone part 5 .
  • the swapper 3 is closely coupled to the inner surface of the body portion 4 of the hydrocrasher, and is attached to the inner surface of the body portion 4 by conventionally well-known fastening means (nuts, screws, nails, ). can be combined.
  • the center of the swirler (3) has an insertion hole (P) through which the cyclone part (5) is inserted, and the outer edge of the swirler (3) is formed.
  • a plurality of penetrating portions 31 having a shape to allow raw water to pass while turning are formed.
  • the shape and distance between the through portions 31 may be determined by conventionally well-known techniques.
  • the region 32 between the insertion hole P and the through portions 31 is blocked from passing raw water.
  • the swallower 3 is configured such that raw water existing in the pressure chamber part 2 can be moved only through the plurality of penetration parts.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Water Supply & Treatment (AREA)
  • Hydrology & Water Resources (AREA)
  • Mechanical Engineering (AREA)
  • Toxicology (AREA)
  • Combustion & Propulsion (AREA)
  • Health & Medical Sciences (AREA)
  • Ocean & Marine Engineering (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physical Water Treatments (AREA)

Abstract

일 실시예에 따르면, 유동 입자(M)를 포함하는 내부 공간을 가진 바디부(4); 상기 바디부(4)의 내부 공간으로 원수를 공급하도록 상기 바디부(4)와 동작적으로 결합된 원수 유입구(1); 상기 바디부(4)의 내부 공간에 위치된 사이클론부(5); 및 상기 바디부(4)와 상기 사이클론부(5)를 연통시키는 연통관(6);을 포함하며, 상기 바디부(4)의 내부 공간에서 선회하면서 살균된 원수는 상기 연통관(6)을 통해서 상기 사이클론부(5)로 유입되고, 상기 사이클론부(5)로부터 유입된 살균된 원수의 일부는 제1배출관(11)으로 배출되고, 상기 사이클론부(5)로부터 유입된 살균된 원수의 나머지 일부는 제2배출관(12)으로 배출되며, 상기 제1배출관(11)으로 배출되는 살균된 원수는 상기 원수 유입구(1)로 유입되는 원수와 혼합되는 것인, 메디아의 손실없는 수처리용 하이드로크래셔가 개시된다.

Description

메디아의 손실없는 수처리용 하이드로크래셔
본 발명은 메디아의 손실없는 수처리용 하이드로크래셔 및 이를 이용한 수처리 시스템에 관한 것이다.
선박 평형수와 같이 물에 포함된 생물을 제거하기 위한 수처리 장치가 개발되어 사용되고 있다. 예를 들면, 본 출원인은 한국공개특허 10-2017-0132987(2017. 12. 5 공개)호(이하, '987호 특허')에 부스트 기능을 가진 유동 입자 기반의 선박 평형수 처리용 하이드로크래셔를 이용한 선박 평형수 처리 시스템을 개시하고 있다.
이러한 987호 특허에는 고체로 이루어진 유동 입자(예를 들면, 알루미나, 탄화규소, 세라믹비드, 또는 실리콘 소재)를 사용하여, 물리적으로 선박 평형수를 살균하는 기술을 개시하고 있고, 유동 입자의 손실을 막기 위해서 필터를 사용하고 있다. 즉, 987호 특허에서는 메쉬 형태의 필터를 사용하여 유동 입자의 손실을 방지하고자 한다.
하지만, 987호 특허의 경우 필터의 세척을 위한 역세척 동작이 필요한 기술이며, 이러한 역세척 동작은 종종 번거롭고, 역세척 만으로 해소되지 않고 필터의 교환이 필요하다.
본 발명의 하나 이상의 실시예에 따르면, 메디아의 손실없는 수처리용 하이드로크래셔 및 이를 이용한 수 처리 시스템이 제공될 수 있다.
본 발명의 일 실시예에 따르면, 유동 입자(M)를 포함하는 내부 공간을 가진 바디부(4);
바디부(4)의 내부 공간으로 원수를 공급하도록 바디부(4)와 동작적으로 결합된 원수 유입구(1);
바디부(4)의 내부 공간에 위치된 사이클론부(5); 및
바디부(4)와 사이클론부(5)를 연통시키는 연통관(6);을 포함하며,
바디부(4)의 내부 공간에서 선회하면서 살균된 원수는 연통관(6)을 통해서 사이클론부(5)로 유입되고,
사이클론부(5)로부터 유입된 살균된 원수의 일부는 제1배출관(11)으로 배출되고, 사이클론부(5)로부터 유입된 살균된 원수의 나머지 일부는 제2배출관(12)으로 배출되며, 제1배출관(11)으로 배출되는 살균된 원수는 원수 유입구(1)로 유입되는 원수와 혼합되는 것인, 메디아의 손실없는 수처리용 하이드로크래셔가 제공된다.
바디부(4)는 하부와 상부로 이루어진 통 형상을 가지며, 바디부(4)의 상부 단부는 상부면에 의해 막혀 있고, 바디부(4)의 하부의 단부는 바닥면에 의해 막혀 있으며, 원수가 바디부(4)의 내부로 유입되도록 바디부(4)의 하부 단부에 원수 유입구(1)가 동작적으로 결합된 것일 수 있다.
사이클론부(5)는 바디부(4)의 상부면, 바디부(4)의 내부 공간, 및 바디부(4)의 바닥면을 관통하도록 바디부(4)에 결합된 것일 수 있다.
원수 유입구(1)를 통해서 바디부(4)의 내부 공간에 유입된 원수는 선회하면서 살균된 후 연통관(6)을 통해서만 사이클론부(5)로 유입되도록 구성된 것일 수 있다.
바디부(4)에는 압력 챔버부(2)가 형성되어 있고, 원수 유입구(1)로 유입되는 원수는 압력 챔버부(2)로 바로 유입되도록, 압력 챔버부(2)와 원수 유입구(1)가 동작적으로 결합되어 있고, 사이클론부(5)는, 또한 압력 챔버부(2)를 관통하는 것일 수 있다.
사이클론부(5)의 내부 공간의 벽면(IS)은 거칠기 처리가 되어 있는 것일 수 있다.
제1배출관(11)은 사이클론부(5)의 하부에 형성되어 있고, 사이클론부(5)의 하부는 바디부(4)의 바닥면을 관통한 이후의 임의의 부분이고,
제2배출관(12)은 사이클론부(5)의 상부에 형성되어 있고, 사이클론부(5)의 상부는 바디부(4)의 상부면을 관통한 이후의 임의의 부분일 수 있다.
연통부는 바디부(4)의 높이의 1/2 이상 되는 곳의 임의의 위치와, 사이클론부(5)의 높이의 1/2 이상 되는 곳의 임의의 위치를 서로 연통시키는 것일 수 있다.
바디부(4)의 내부에는 스왈러(3)가 결합되어 있고, 스왈러(3), 바디부(4)의 내부, 및 바디부(4)의 바닥면은 압력 챔버부(2)를 형성하고, 원수 유입구(1)로 유입되는 원수는 압력 챔버부(2)로 바로 유입되도록, 압력 챔버부(2)와 원수 유입구(1)가 동작적으로 결합된 것일 수 있다.
상술한 하이드로크래셔는, 2개의 입구와 1개의 출구를 포함하는 인젝터(15);를 더 포함하며, 상기 2개의 입구 중에서 1개는 원수가 유입되는 원수 유입구(1)와 결합되어 있고, 상기 2개의 입구 중에서 나머지 1개는 제1배출관(11)과 결합되어 있고, 상기 출구는 바디부(4)의 내부 공간과 연통되도록 결합되어 있고,
제2배출관(12)은 사이클론부(5)의 최상부에서 하부 방향으로 제1거리만큼 돌출되어 있고, 연통부(6)는 제2배출관(12)의 돌출된 부분보다 높은 위치의 사이클론부(5)와 바디부(4)를 연통시키는 것일 수 있다.
본 발명의 하나 이상의 실시예에 따르면, 유동 입자들의 손실 없이, 원수에 포함된 생물에 충격을 가하여 사멸시키거나 비활성화 시킴으로써 물리적인 살균이 가능하도록 하는 효과가 있다.
도 1은 본 발명의 일 실시예에 따른 메디아의 손실없는 수처리용 하이드로크래셔를 이용한 수 처리 시스템을 설명하기 위한 도면이다.
도 2와 도 3은 본 발명의 일 실시예에 따른 메디아의 손실없는 수처리용 하이드로크래셔를 설명하기 위한 도면들이다.
도 4와 도 5는 본 발명의 일 실시예에 따른 메디아의 손실없는 수처리용 하이드로크래셔의 원수 유입구를 설명하기 위한 도면이다.
도 6은 본 발명의 일 실시예에 따른 스왈러(3)를 설명하기 위한 도면이다.
[부호의 설명
1: 원수 유입구 2: 압력 챔버부 3: 스왈러
4: 바디부 5: 사이클론부 6: 연통관
8: 사이클론부의 바디부 9: 하강 선회류
10: 상승 선회류 11: 제1배출관 12: 제2배출관
15: 인젝터 M: 유동 입자 100: 원수 저장부
200: 하이드로크래셔 300: 살균부 400: 처리수 저장부
이상의 본 발명의 목적들, 다른 목적들, 특징들 및 이점들은 첨부된 도면과 관련된 이하의 바람직한 실시예들을 통해서 쉽게 이해될 것이다. 그러나 본 발명은 여기서 설명되는 실시예들에 한정되지 않고 다른 형태로 구체화될 수도 있다. 오히려, 여기서 소개되는 실시예들은 개시된 내용이 철저하고 완전해질 수 있도록 그리고 당업자에게 본 발명의 사상이 충분히 전달될 수 있도록 하기 위해 제공되는 것이다.
본 명세서에서, 어떤 구성요소가 다른 구성요소 상에 있다고 언급되는 경우에 그것은 다른 구성요소 상에 직접 위치될 수 있거나 또는 그들 사이에 제3의 구성요소가 개재될 수도 있다는 것을 의미한다. 또한, 도면들에 있어서, 구성요소들의 두께는 기술적 내용의 효과적인 설명을 위해 과장된 것이다.
또한 본 명세서에서 구성요소간의 위치 관계를 설명하기 위해 사용되는 '상부(위)', '하부(아래)', '좌측’, '우측’, '전면', '후면' 등의 표현은 절대적 기준으로서의 방향이나 위치를 의미하지 않으며, 각 도면을 참조하여 본 발명을 설명할 때 해당 도면을 기준으로 설명의 편의를 위해 사용되는 상대적 표현이다.
본 명세서에서 기술하는 실시예들은 본 발명의 이상적인 예시도인 단면도 및/또는 평면도들을 참고하여 설명될 것이다. 본 명세서의 다양한 실시예들에서 제1, 제2 등의 용어가 다양한 구성요소들을 기술하기 위해서 사용되었지만, 이들 구성요소들이 이 같은 용어들에 의해서 한정되어서는 안된다. 이들 용어들은 단지 어느 구성요소를 다른 구성요소와 구별시키기 위해서 사용되었을 뿐이다. 여기에 설명되고 예시되는 실시예들은 그것의 상보적인 실시예들도 포함한다.
본 명세서에서 사용된 용어는 실시예들을 설명하기 위한 것이며 본 발명을 제한하고자 하는 것은 아니다. 본 명세서에서, 단수형은 문구에서 특별히 언급하지 않는 한 복수형도 포함한다.
명세서에서 사용되는 '포함한다(comprise)' 및/또는 '포함하는(comprising)'은 언급된 구성요소는 하나 이상의 다른 구성요소의 존재 또는 추가를 배제하지 않는다.
본원 명세서에서는 임의의 구성요소 A와 구성요소 B가 서로 동작적으로 결합되어 있다고 함은, 어떤 동작이 이루어지도록 임의의 구성요소 A와 구성요소 B가 서로 직접 또는 간접(하나 이상의 다른 구성요소를 매개로 하여) 결합되어 있는 것을 의미한다.
이하, 도면을 참조하여 본 발명을 상세히 설명하도록 한다. 아래의 특정 실시예들을 기술하는데 있어서, 여러 가지의 특정적인 내용들은 발명을 더 구체적으로 설명하고 이해를 돕기 위해 작성되었다. 하지만 본 발명을 이해할 수 있을 정도로 이 분야의 지식을 갖고 있는 독자는 이러한 여러 가지의 특정적인 내용들이 없어도 사용될 수 있다는 것을 인지할 수 있다. 어떤 경우에는, 발명을 기술하는 데 있어서 흔히 알려졌으면서 발명과 크게 관련 없는 부분들은 본 발명을 설명하는 데 있어 혼돈을 막기 위해 기술하지 않음을 미리 언급해 둔다.
용어
본원 명세서에서, 선박 평형수를 '처리', '사멸' 또는 '살균'한다는 표현은 선박 평형수에 포함된 생물(예를 들면, 동물성 플랑크톤, 식물성 플랑크톤)을 죽이거나 비활성화 하는 것을 의미한다.
도 1은 본 발명의 일 실시예에 따른 메디아의 손실없는 수처리용 하이드로크래셔를 이용한 수 처리 시스템을 설명하기 위한 도면이다.
도 1을 참조하면, 본 실시예에 따른 수 처리 시스템은, 원수 저장부(100), 메디아의 손실없는 수처리용 하이드로크래셔(이하,종종 '하이드로크래셔'라고 함)(200), 살균부(300), 처리수를 저장하는 저장부(400), 메인 배관(L1, L2, L3), 및 하나 이상의 펌프(P1, P2)를 포함할 수 있다. 본원 발명에서, 원수는 살균의 대상이 되는 물(민물과 바닷물 중 적어도 하나를 의미)을 의미하며, 다양한 종류의 물일 수 있다. 본 실시예에서, 원수는 선박 평형수인 경우를 가정하여 본 수처리 시스템을 설명하기로 한다. 본원 발명에서 원수가 선박 평형수인 것은 예시적인 것으로서, 다른 종류의 원수에도 적용될 수 있음은 물론이다. 이하에서는, 원수가 선박 평형수이고, 원수 저장부(100)는 씨체스트(100)이고, 저장부(400)는 살균된 선박 평형수를 저장하는 선박 평형수 저장 탱크(400)인 경우를 가정하여 본 실시예를 설명하기로 한다.
씨체스트(sea chest)(100)는 바다로부터 선박 평형수로 이용할 해수를 유입하는 곳이다. 씨체스트(100)에 유입된 선박 평형수는 씨체스트(100)에 연결된 선박 평형수 메인 배관(L1)을 통해 하이드로크래셔(200)로 공급된다. 여기서, 선박 평형수 메인 배관(L1)에 흐르는 선박 평형수는 메인 배관(L1) 상에 설치된 펌프(P1)에 의해 펌핑되어 하이드로크래셔(200)로 제공될 수 있다.
본 실시예에 따른 하이드로크래셔(200)는, 하이드로크래셔의 형상과 선박 평형수의 유속과 유압으로 발생되는 와류(vortex flow)에 의해 유동되는 입자(이하, '유동 입자')들을 구비하며, 그러한 유동 입자들은 하이드로크래셔 내에서 발생하는 와류에 의해 회전하면서 서로 충돌(collision)하고 마찰(friction)되며 형상물에 부딪친다(crush). 한편, 선박 평형수에 포함되어 있는 생물들은 서로 충돌, 마찰되는 유동입자와 충돌하면서 사멸 혹은 비활성화 된다.
본 발명의 일 실시예에 따른 하이드로크래셔(200)는, 자신(200)이 구비하고 있는 유동 입자들이 선박 평형수에 의해 외부로 유출되지 않고 자신(200)의 내부에 계속 존재하도록 구성되어 있다.
본 발명의 일 실시예에 따르면, 하이드로크래셔(200)는, 씨체스트(100)와 선박 평형수 저장 탱크(400) 사이에 존재하는 메인 배관상에 설치될 수 있다. 여기서, 메인 배관은 선박 평형수가 씨체스트(100)로부터 선박 평형수 저장 탱크(400)까지 이동할 수 있는 경로를 제공한다.
본원 명세서에서, 본 발명의 설명의 목적을 위해서 씨체스트(100)와 하이드로크래셔(200) 사이에 존재하는 메인 배관을 메인 배관(L1), 하이드로크래셔(200)와 살균부(300) 사이에 존재하는 메인 배관(L2), 살균부(300)와 선박 평형수 저장 탱크(400) 사이에 존재하는 메인 배관을 메인 배관(L3)라고 부르기로 한다.
메인 배관(L1) 상에 설치된 펌프(P1)에 의해 선박 평형수가 씨체스트(100)로부터 펌핑(Pumping)되어 하이드로크래셔(200)로 유입된다.
하이드로크래셔(200)로 유입된 선박 평형수는 하이드로크래셔(200)의 형상과 선박 평형수의 유속과 유압으로 발생되는 와류(vortex flow)에 의해 유동되는 입자들과 충돌, 마찰 등의 물리적 운동에 의해 선박 평형수에 포함되어 있는 생물들을 사멸시킨 후 하이드로크래셔(200) 외부로 유출된다.
하이드로크래셔(200)에 대한 보다 구체적인 설명은 도 2 내지 도 6를 참조하여 후술하기로 한다.
본 실시예에 따른 수 처리 시스템은, 살균부(300)를 더 포함할 수 있다. 본 실시예에서, 살균부(300)는 하이드로크래셔(200)와 선박 평형수 저장 탱크(400) 사이에 설치될 수 있고, 하이드로크래셔(200)로부터 배출된 선박 평형수를 메인 배관(L2)을 통해 제공 받아 살균한다.
본 실시예에서, 살균부(300)는 오존, UV, 또는 전기 분해 등을 이용하여 선박 평형수를 살균할 수 있다. 살균부(300)는 어떠한 방식의 기술이던 선박 평형수를 살균할 수 있는 장치라면 본 실시예에 적용될 수 있다.
예를 들면, 한국특허출원번호 2013-0107176호(출원일: 2013.09.06, 발명의 명칭: 오존을 이용한 발라스트수 살균시스템에서 TRO 농도 계측을 통한 오존 가스 농도 및 유량의 자동제어 장치와 방법)에는 오존을 이용하여 선박 평형수를 살균하는 기술이 기재되어 있다. 본 한국특허출원번호에 기재된 기술은 본원 발명과 서로 상충되지 않는 범위에서 본원 명세서의 일부로 결합된다.
다른 예를 들면, 한국특허출원번호 2010-0035788 호(출원일: 2010.04.19, 발명의 명칭: 선박의 평형수 살균장치)에는 자외선을 이용하여 선박 평형수를 살균하는 기술이 기재되어 있다. 본 한국특허출원번호에 기재된 기술은 본원 발명과 서로 상충되지 않는 범위에서 본원 명세서의 일부로 결합된다.
또 다른 예를 들면, 한국특허출원번호 2011-0067818호(출원일: 2011.07.08, 발명의 명칭: 전기분해 유닛을 이용한 선박의 발라스트 수 처리방법)에는 전기분해를 이용하여 선박 평형수를 살균하는 기술이 기재되어 있다. 본 한국특허출원번호에 기재된 기술은 본원 발명과 서로 상충되지 않는 범위에서 본원 명세서의 일부로 결합된다.
또 다른 예를 들면, 살균부(300)는 본 발명의 일 실시예에 따른 하이드로크래셔(200)와 동일한 구성을 가질 수 있다.
이처럼, 살균부(300)는 하이드로크래셔(200)에 의해 1차적으로 살균된 후에, 다시 살균하는 동작을 수행함으로써, 선박 평형수에 대한 살균 성능을 향상시킨다.
나아가, 살균부(300)는 하이드로크래셔(200)와 함께 선박 평형수를 살균함으로써, 하이드로크래셔(200) 없이 자신(300) 혼자서 선박 평형수를 살균할 때보다 화학적 살균인 경우 살균에 기여 하는 산화제를 적게 사용해도 되며 이는 결국 선박 평형수의 구성 장비를 소형화 할 수 있으며 리소스(resource)를 적게 사용하게 된다.
예를 들면, 살균부(300)가 오존을 이용하여 선박 평형수를 살균하는 장치인 경우에는, 오존의 량을 상대적으로 적게 사용하여 선박 평형수를 살균할 수 있다. 다른 예를 들면, 살균부(300)가 UV나 전기분해 방식을 사용하여 선박 평형수를 살균하는 장치인 경우에는, 전력을 상대적으로 적게 사용하여 선박 평형수를 살균할 수 있다. 따라서 구성 장비의 소형화가 가능하다.
본 실시예에 따른 선박 평형수 저장 탱크(400)는 하이드로크래셔(200) 및 살균부(300)에 의해 살균된 선박 평형수를 저장한다. 선박 평형수 저장 탱크(400)에 저장된 선박 평형수는 배출이 필요한 경우, 선박 평형수 저장 탱크(400)에 연결된 배관(L4)을 통해서 외부로 배출될 수 있다. 외부로 배출될 때, 살균부(300)가 어떠한 방식이냐에 따라서 그대로 배출되거나 또는 중화제를 투입하여 중화시킨 후에 배출한다. 예를 들면, 살균부(300)가 오존을 이용하여 선박 평형수를 살균한 경우에는, 선박 평형수 저장 탱크(400)에 저장된 선박 평형수는 외부로 배출될 때 중화제에 의해 중화되어 배출된다. 한국특허출원번호 2009-0023795호(출원일: 2009.03.20, 발명의 명칭: 선박평형수 중화장치 및 중화방법)에는 오존 가스를 중화시킨 후에 외부로 배출하는 기술이 기재되어 있다. 본 한국특허출원번호에 기재된 기술은 본원 발명과 서로 상충되지 않는 범위에서 본원 명세서의 일부로 결합된다.
도 2와 도 3은 본 발명의 일 실시예에 따른 메디아의 손실없는 수처리용 하이드로크래셔를 설명하기 위한 도면들이다. 본 발명의 일 실시예에 따른 하이드로크래셔는 원수를 살균처리할 수 있다.
도 2 및 도 3을 참조하면, 본 발명의 일 실시예에 따른 하이드로크래셔는 내부 공간('내부'와 같은 의미이며, '내부'와 '내부 공간'은 같은 의미로 서로 혼용하기로 한다)을 가진 통 형상의 바디부(4), 원심력에 의해 큰 입자와 작은 입자를 분리시킬 수 있는 사이클론부(5), 인젝터(15), 및 바디부(4)와 사이클론부(5)를 연통시키는 연통관(6)을 포함할 수 있다. 본 실시예에서, 바디부(4)의 내부 공간에서 선회하면서 살균된 원수는 연통관(6)을 통해서 사이클론부(5)로 유입된다.
본원 명세서에서, '원수'는 살균전의 물을 의미하지만, 살균여부에 대한 구별의 실익이 없을 경우에는, 설명의 용이를 위해서, 바디부(4)에서 '살균 중인 원수'나, 연통관(6)과 사이클론부(5)에 있는 '살균된 원수'도 종종 '원수'로 언급하기로 한다.
바디부(4)의 내부 공간에는 유동 입자(M)들이 포함되며, 종종 메디아로도 호칭되기도 하며, 본원 명세서에서 '유동 입자들'과 '메디아'는 같은 의미로 사용된다.
후술하겠지만, 메디아는 바디부(4)의 내부 어디에도 위치될 수 있다. 원수에 포함된 생물의 사멸 효과를 높이기 위해서, 후술하는 압력 챔버부(2) 내부에도 메디아가 위치될 수 있다.
내부 공간을 가진 통 형상의 바디부(4)는 원수와 메디아가 효율적으로 선회될 수 있는 구조를 가지는 것이 바람직하다. 예를 들면, 바디부(4)의 내부 표면이 사이클론부(5)의 바디부(8) 통 형상일 수 있다. 하지만, 본원 발명에 따른 바디부(4)의 내부 표면의 형상이 반드시 원형에 한정될 필요는 없다.
바디부(4)는 하부, 및 상부로 이루어진 통 형상을 가지며, 바디부(4)의 하부에는 압력 챔버부(2)와 원수를 유입받을 수 있는 원수 유입구(1)가 형성되어 있다.
본 실시예에서, 바디부(4)의 길이(H_B)의 중앙(H_OB)을 기준으로, 한쪽은 상부이고 나머지 한쪽은 하부라고 하며, 또한, 사이클론부(5)의 길이(H_C)의 중앙(H_OC)을 기준으로, 한쪽은 상부이고 나머지 한쪽은 하부라고 한다. 한편, 본원 명세서에서는, 지구의 중력을 기준으로 높은 쪽을 상부라고 하고, 낮은 쪽을 하부라고 부르기로 한다.
본 실시예에서 연통부는 바디부(4)의 상부의 임의의 위치와, 사이클론부(5)의 상부의 1/2 이상 되는 곳의 임의의 위치를 서로 연통시키도록 구성된다. 즉, 연통부는 바디부(4)의 길이의 중앙보다 높은 상부와 사이클론부(5)의 길이의 중앙보다 높은 상부를 서로 연통시킨다.
바디부(4)와 원수 유입구(1)는 바디부(4)의 내부 공간으로 원수가 공급되도록 서로 동작적으로 결합되어 있다.
바디부(4)의 상부 단부는 상부면에 의해 막혀있고, 하부 단부는 바닥면에 막혀 있고, 하부 단부로부터 일정 거리 이격된 위치에 스왈러(3)가 바디부(4)의 내부의 측면에 결합되어 있다. 바디부(4)는 원수나 메디아가 외부로 누출되지 않도록 구성되어 있다.
본 실시예에서, 바디부(4)의 하부 단부와 원수 유입구(1)는, 원수가 바디부(4)의 내부로 유입되도록 서로 동작적으로 결합되어 있다.
후술하겠지만, 바디부(4), 특히 바디부(4)의 하부에는 압력 챔버부(2)가 형성되어 있다. 원수 유입구(1)로 유입되는 원수는 압력 챔버부(2)로 바로 유입되도록, 압력 챔버부(2)와 원수 유입구(1)는 서로 동작적으로 결합되어 있다.
원수 유입구(1)로 유입된 원수는 바디부(4)의 상부로 진행할때 스왈러(3)에 의해 압력을 받는다. 즉, 스왈러(3), 하부 단부의 바닥면, 및 바디부(4)의 측면으로 구성된 공간은, 압력 챔버부(2)를 구성하며, 원수 유입구(1)를 통해서 유입된 원수는 바로 바디부(4)의 상부로 이동되는 것이 아니고 압력 챔버부(2)의 내부에서 선회 및 상승하면서 스왈러(3)를 통해서 바디부(4)로 선회 및 상승한다. 스왈러(3)는 원수가 선회될 수 있는 효율적인 구성을 가진다.
사이클론부(5)와 바디부(4)는 동작적으로 결합되어 있다. 본 실시예에서, 사이클론부(5)는 바디부(4)의 내부 공간에 위치된다.
본 실시예에 따르면, 사이클론부(5)는 바디부(4)의 상부 단부, 내부 공간, 및 하부 단부를 관통하도록 바디부(4)와 결합되어 있다. 바디부(4)의 상부 단부는 상부면에 의해 막혀 있는데, 사이클론부(5)는 그러한 상부면을 관통하여 바디부(4)의 내부 공간을 지나고, 바디부(4)의 하부 단부의 바닥면을 관통한다.
사이클론부(5)가 상부면을 관통할때, 바디부(4) 내부에 존재하는 원수나 메디아가 외부로 누설되지 않도록, 사이클론부(5)의 외부면과 상부면은 긴밀하게 결합되어 있다. 사이클론이 바닥면을 관통할때에도, 바디부(4) 내부에 존재하는 원수나 메디아가 외부로 누설되지 않도록, 사이클론의 외부면과 바닥면은 긴밀하게 결합되어 있다.
사이클론부(5)의 형상, 구체적으로는 사이클론부(5)의 외부의 형상은, 원수가 선회될 수 있도록 원형 구조이다.
바디부(4)의 내부에는 스왈러(3)가 위치되어 있고, 사이클론부(5)는 스왈러(3)도 관통한다. 즉, 사이클론부(5)는 바디부(4)의 상부면, 내부 공간의 스왈러(3), 압력 챔버부(2), 및 바닥면을 관통하도록 바디부(4)와 결합되어 있다.
본 실시예에서, 사이클론부(5)는 바디부(4)의 상부면의 중앙, 내부 공간의 스왈러(3)의 중앙, 압력 챔버부(2)의 중앙, 및 바닥면의 중앙을 관통하도록, 바디부(4)와 결합되어 있다. 이처럼, 사이클론부(5)가 바디부(4)의 중앙에 배치됨으로써, 원수 유입구(1)로 유입된 원수는 선회하면서 상승하게 된다. 스왈러(3)가 추가적으로 위치됨으로서, 원수는 더욱 격렬하게 선회할 수 있게 된다.
사이클론부(5)는 유체(원수나 메디아중 적어도 하나를 포함)가 선회되도록 하는 구성을 가지며, 예를 들면 사이클론부(5)는 유체가 선회하면서 이동하도록 원형 관의 형상을 가지되, 관의 입구의 직경이 출구의 직경보다 상대적으로 크고, 관의 직경은 관의 입구에서 출구로 가면서 점진적으로 작아진다. 따라서, 사이클론부(5)의 바디부(8)는 원뿔형의 형상을 가지며, 이러한 원뿔형의 바디부(8)는 하이드로크래셔의 바디부(4)의 내부 공간의 중앙에 위치된다.
즉, 사이클론부(5)과 하이드로크래셔는, 사이클론부(5)의 길이 방향과 하이드로크래셔의 바디부(4)의 길이 방향이 서로 평행하도록 정렬되어 있고, 동시에 사이클론부(5)의 중심축(사이클론부(5)의 길이 방향으로 사이클론부(5)의 바디부의 중심을 지나는 가상의 축)과, 하이드로크래셔의 바디부(4)의 중심축(바디부(4)의 길이 방향으로 바디부(4)의 중심을 지나는 가상의 축)은 서로 일치한다.
원수 유입구(1)로 유입된 원수는 바디부(4) 내부에서 선회하면서 상승하게 된다. 상술한 바와 같이, 원수는 압력 챔버부(2)에서부터 선회되면서, 스왈러(3)를 경유하고, 사이클론부(5)의 외부면의 주위를 선회하면서 상승하게 되고, 상승한 원수는 모두 연통관(6)으로 배출된다. 연통관(6)은 바디부(4)의 내부와 사이클론부(5)를 연결하는 관으로서, 원수나 메디아가 이동될 수 있는 경로를 제공한다.
바디부(4)의 상부 단부는 상부면에 의해 막혀 있으므로, 바디부(4)의 내부에서 사이클론부(5)의 외벽(OS)을 따라 선회하면서 회전하던 원수(메디아 일부 포함)는 연통관(6)을 통해서 사이클론부(5)의 상부로 이동된다. 본 실시예에서, 연통관(6)은 바디부(4)의 상부와 사이클론부(5)의 상부를 연통시키며, 연통관(6), 바디부(4), 및 사이클론부(5)는 원수 유입구(1)를 통해서 유입되는 원수가 선회되면서 살균된 후 연통관(6)을 통해서만 사이클론부(5)로 유입되도록 서로 동작적으로 결합된다.
사이클론부(5)의 상부는 연통관(6)을 통해서 원수(메디아 일부 포함)를 유입받도록 구성되어 있어 있다. 연통관(6)을 통해서 사이클론부(5)의 상부로 유입된 원수(메디아 일부 포함)는 선회하면서 하강하며, 이러한 선회류를 본원 명세서에서는 '하강 선회류(9)'라고 부르기로 한다. 하강 선회류(9)에는 주로 비중이 무거운 물질이 포함되어 있고, 따라서 사이클론부(5)의 내부 공간의 벽면(IS)을 따라 선회하면서 하강되어 배출된다. 즉, 원수에 포함된 비중이 무거운 물질의 분리가 일어나고, 비중이 무거운 물질에는 비교적 큰 동,식물 플랑크톤이 포함될 수 있다.
본 실시예에서, 사이클론부(5)의 내부 공간의 벽면(IS)은 거칠기 처리가 되어 있다. 여기서, 사이클론부(5)의 내부 공간의 벽면(IS)의 표면 거칠기(surface roughness)는, 동, 식물 플랑크톤이 사이클론부(5)의 내부 공간의 벽면(IS)에 충돌할 때 사멸 또는 비활성될정도로 구성된다.
이처럼, 사이클론부(5)의 내부 공간의 벽면(IS)을 따라 선회하면서 하강되는 비교적 비중이 무거운 동, 식물 플랑크톤은 사이클론부(5)의 내부 공간의 벽면(IS)을 따라 선회, 하강하면서 표면 거칠기가 큰 벽면(IS)에 충돌하면서 사멸 혹은 비활성화될 수 있다. 즉, 사이클론부(5)의 내부 공간에서, 원수에 포함된 비중이 무거운 물질의 분리가 일어나기도 하지만 비중이 무거운, 비교적 큰 동,식물 플랑크톤의 사멸작용도 함께 일어날 수 있다.
한편, 하강 선회류(9)의 중앙에는 상부로 선회하면서 상승하는 선회류가 있고, 이러한 선회류를 본원 명세서에서는 '상승 선회류(10)'라고 부르기로 한다. 상승 선회류(10)는 상대적으로 비중이 가벼운 물질이 포함되어 있고, 사이클론부(5)의 내부 중앙을 따라서 선회하면서 상승하여 외부로 배출된다.
사이클론부(5)의 하부와 상부에는 각각 배출관이 형성되어 있고, 하부에 형성된 배출관은 제1배출관(11), 상부에 형성된 배출관은 제2배출관(12)으로 부르기로 한다.
본 실시예에서, 제1배출관(11)이 형성된 곳은 사이클론부(5)의 하부에서 상기 바디부(4)의 바닥면을 관통한 이후의 임의의 부분이고, 제2배출관(12)이 형성된 곳은 사이클론부(5)의 상부에서 상기 바디부(4)의 상부면을 관통한 이후의 임의의 부분이다.
상술한 사이클론부(5)의 내부에서 선회하면서 하강하는 하강 선회류(9)는 제1배출관(11)으로 배출되고, 하강 선회류(9)의 중앙에서 선회하면서 상승하는 상승 선회류(10)는 제2배출관(12)으로 배출된다.
본 실시예에서, 제2배출관(12)은 사이클론부(5)의 최상부에서 하부 방향으로 제1거리(H_T)만큼 돌출되어 있고, 연통부(6)는 제2배출관(12)의 돌출된 부분보다 높은 위치의 사이클론부(5)와 바디부(4)를 연통시킨다. 이는, 연통부(6)로부터 사이클론부(5)로 유입되는 원수(처리수)가 상승 선회류(10)를 방해하지 않지 않도록 하기 위함이다.
제1배출관(11)으로 배출되는 원수(처리수)에는 메디아나 생물의 사체나 고형물이 섞여 있을 수 있지만, 제2배출관(12)으로 배출되는 원수(처리수)에는 메디아나 생물의 사체나 고형물이 섞여 있지 않을 수 있다.
본 실시예에서, 사이클론부(5)로부터 유입된 살균된 원수의 일부는 제1배출관(11)으로 배출되고, 사이클론부(5)로부터 유입된 살균된 원수의 나머지 일부는 제2배출관(12)으로 배출된다. 한편 제1배출관(11)으로 배출되는 살균된 원수는 원수 유입구(1)로 유입되는 원수와 혼합된다. 이를 위한 예시적 구성으로서, 인젝터(15)가 본원 발명에 사용된다.
인젝터(15)는 2개의 입구(IN1, IN2)와 1개의 출구(OUT)를 포함하는 구성이다. 인젝터(15)는 2개의 입구(IN1, IN2)로 유입되는 유체를 혼합하여 1개의 출구(OUT)로 유출하도록 구성된다.
본 실시예에서, 인젝터(15)의 2개의 입구 중에서 1개(IN1)는 원수가 유입되는 원수 유입구(1)와 결합되어 있고, 인젝터(15)의 2개의 입구 중에서 나머지 1개(IN2)는 제1배출관(11)과 결합되어 있다. 한편, 인젝터(15)의 출구(OUT)는 바디부(4)의 내부 공간과 연통되도록 결합되어 있다.
즉, 원수 유입구(1)로 유입되는 원수는 제1배출관(11)으로 배출되는 살균된 원수와 혼합되어, 다시 바디부(4)로 유입되게 된다. 이와 같은 구성에 의해, 메디아의 손실은 전혀 없이, 지속적으로 원수를 살균할 수 있게 된다.
본 실시예에 따른 유동 입자(M)들은, 원수(예를 들면, 선박 평형수일 수 있으나 이에 한정되는 것은 아님)에 포함된 생물을 살균 시킬 수 있을 정도로 경도가 강한 고체 입자들(a, b), 경도가 강한 고체 입자들(a, b)의 마모 방지와 반발 계수를 높이기 위한 실리콘 소재의 입자들(c)이 섞여 있는 혼합물로 구성될 수 있으며, 원수 유입구(1)를 통해 유입 받은 원수에 의해 와류 운동이 가능하다.
예를 들면, 유동 입자(M)들은 알루미나, 탄화규소, 세라믹비드, 실리콘 소재 중 적어도 어느 하나를 포함하여 혼합되어 있을 수 있다. 이러한 혼합은 예시적인 것으로서, 경도가 강한 입자라면 어느 것이라도 가능하며, 원수 유입구(1)를 통해 유입 받은 원수에 의해 회전하게 되고, 유동 입자(M)들을 구성하는 알루미나, 탄화규소, 세라믹비드, 실리콘 소재들이 서로 충돌을 일으킨다. 한편, 원수는 선회하면서 서로 마찰을 일으키는 유동 입자(M)들 사이를 경유하는 과정에 자연스럽게 살균된다.
한편, 유동 입자(M)들은 원수에 의해 이동(상승을 포함)될 수 있을 정도의 무게와 크기를 가지는 것이 바람직하다. 원수에 의해 상승될 수 있을 정도의 무게와 크기를 가져야, 유동 입자(M)들이 서로 부딪치게 되고 그에 의해 원수가 살균될 수 있기 때문이다.
상술한 바와 같이, 본 실시예에 따른 하이드로크래셔(200)는 스왈러(3)를 더 포함할 수 있다. 스왈러(3)는 본 발명이 속하는 기술분야에 종사하는 자(이하, '당업자')가 현장 상황에 맞도록 본 발명에 사용하거나 또는 사용하지 않을 수 있다.
스왈러(3)는 원수 유입구(1)를 통해 유입된 원수를 선회시키도록 구성되며, 종래의 알려진 구성을 사용하거나 또는 보다 효과적인 구성을 개발하여 사용할 수 있다.
원수 유입구(1)를 통해 유입된 원수는 스왈러(3)에 의해 압력을 받을 수 있고, 이에 의해 스왈러(3)와 바닥면 사이의 공간은 압력 챔버부(2)로서의 기능을 가질 수 있다.
도 4와 도 5는 본 발명의 일 실시예에 따른 메디아의 손실없는 수처리용 하이드로크래셔의 원수 유입구(1)를 설명하기 위한 도면이다.
도 4를 참조하면, 원수 유입구(1)는 원수 유입구(1)로 유입되는 원수가 내부 공간의 중심축인 사이클론부(5)를 향한 방향으로 유입되도록 위치될 수 있다. 다르게는(alternatively), 도 5에 도시된 바와 같이 원수 유입구(1)는 원수가 내부 공간의 중심축인 사이클론부(5)를 향하지 않고, 중심축에서 조금이라도 벗어난 축을 향한 방향(이하, '비스듬한 방향')으로 유입되도록 위치되는 것이 가능하고, 이 경우 중심축을 향한 방향으로 유입될 때 보다 선회력이 향상되는 효과가 있다.
도 6은 본 발명의 일 실시예에 따른 스왈러(3)를 설명하기 위한 도면이다.
도 6과 함께, 도 2와 도 3을 같이 참조하면, 스왈러(3)는 전체적으로 소정의 두께를 가진 판(plate) 형상을 가질 수 있고, 하이드로크래셔의 바디부(4)의 내부면의 형상에 용이하게 부착될 수 있는 형상과 크기의 판으로 구성된다. 예를 들면, 하이드로크래셔의 바디부(4)의 내부면이 원형이면, 스왈러(3)도 사이클론부(5)의 바디부(8) 판 형상으로 구성될 수 있다. 스왈러(3)는 하이드로크래셔의 바디부(4)의 내부면과 밀접하게 결합되며, 종래 널리 알려진 체결수단(너트, 나사, 못,...)에 의해서 바디부(4)의 내부면에 결합될 수 있다.
도 2, 도 3, 및 도 6을 참조하면, 스왈러(3)의 중앙은 사이클론부(5)가 삽입되어 관통될 수 있는 삽입구(P)가 형성되어 있고, 스왈러(3)의 외곽에는 원수가 선회되면서 통과되도록 하는 형상을 가진 복수의 관통부들(31)이 형성되어 있다. 이들 관통부들(31)의 형상과 상호간의 거리는 종래 널리 알려진 기술들에 의해 결정될 수 있다. 본 실시예에서, 삽입구(P)와 관통부들(31)의 사이의 영역(32)은 원수가 통과하지 못하도록 막혀 있다.
따라서, 본 실시예에 따른 스왈러(3)는, 압력 챔버부(2)에 존재하던 원수가 상기 복수의 관통부들을 통해서만 이동될 수 있도록 구성된다.
이와 같이 본 발명이 속하는 분야에서 통상의 지식을 가진 자라면 상술한 명세서의 기재로부터 다양한 수정 및 변형이 가능하다. 그러므로 본 발명의 범위는 설명된 실시예에 국한되어 정해져서는 아니 되며 후술하는 특허청구범위뿐 아니라 이 특허청구범위와 균등한 것들에 의해 정해져야 한다.

Claims (5)

  1. 유동 입자(M)를 포함하는 내부 공간을 가진 바디부(4);
    바디부(4)의 내부 공간으로 원수를 공급하도록 바디부(4)와 동작적으로 결합된 원수 유입구(1);
    바디부(4)의 내부 공간에 위치된 사이클론부(5); 및
    바디부(4)와 사이클론부(5)를 연통시키는 연통관(6);을 포함하며,
    바디부(4)의 내부 공간에서 선회하면서 살균된 원수는 연통관(6)을 통해서 사이클론부(5)로 유입되고,
    사이클론부(5)로부터 유입된 살균된 원수의 일부는 제1배출관(11)으로 배출되고, 사이클론부(5)로부터 유입된 살균된 원수의 나머지 일부는 제2배출관(12)으로 배출되며, 제1배출관(11)으로 배출되는 살균된 원수는 원수 유입구(1)로 유입되는 원수와 혼합되는 것인, 메디아의 손실없는 수처리용 하이드로크래셔.
  2. 제1항에 있어서,
    바디부(4)는 하부와 상부로 이루어진 통 형상을 가지며, 바디부(4)의 상부 단부는 상부면에 의해 막혀 있고, 바디부(4)의 하부의 단부는 바닥면에 의해 막혀 있으며, 원수가 바디부(4)의 내부로 유입되도록 바디부(4)의 하부 단부에 원수 유입구(1)가 동작적으로 결합된 것인, 메디아의 손실없는 수처리용 하이드로크래셔.
  3. 제2항에 있어서,
    사이클론부(5)는 바디부(4)의 상부면, 바디부(4)의 내부 공간, 및 바디부(4)의 바닥면을 관통하도록 바디부(4)에 결합된 것인, 메디아의 손실없는 수처리용 하이드로크래셔.
  4. 제3항에 있어서,
    원수 유입구(1)를 통해서 바디부(4)의 내부 공간에 유입된 원수는 선회하면서 살균된 후 연통관(6)을 통해서만 사이클론부(5)로 유입되도록 구성된 것인, 메디아의 손실없는 수처리용 하이드로크래셔.
  5. 제3항에 있어서,
    바디부(4)에는 압력 챔버부(2)가 형성되어 있고, 원수 유입구(1)로 유입되는 원수는 압력 챔버부(2)로 바로 유입되도록, 압력 챔버부(2)와 원수 유입구(1)가 동작적으로 결합되어 있고,
    사이클론부(5)는, 또한 압력 챔버부(2)를 관통하는 것인, 메디아의 손실없는 수처리용 하이드로크래셔.
PCT/KR2020/017946 2020-10-29 2020-12-09 메디아의 손실없는 수처리용 하이드로크래셔 WO2022092421A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020200142160A KR102391394B1 (ko) 2020-10-29 2020-10-29 메디아의 손실없는 수처리용 하이드로크래셔
KR10-2020-0142160 2020-10-29

Publications (1)

Publication Number Publication Date
WO2022092421A1 true WO2022092421A1 (ko) 2022-05-05

Family

ID=81382749

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/017946 WO2022092421A1 (ko) 2020-10-29 2020-12-09 메디아의 손실없는 수처리용 하이드로크래셔

Country Status (2)

Country Link
KR (1) KR102391394B1 (ko)
WO (1) WO2022092421A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012161728A (ja) * 2011-02-04 2012-08-30 Toru Kitagawa 流動層式抗菌装置
KR20160095375A (ko) * 2015-02-03 2016-08-11 (주) 디아이엔바이로 Uv 여과기
KR20170131011A (ko) * 2016-05-20 2017-11-29 김형오 필터의 세척기능을 구비하고 와류 속을 유동하는 고체 입자들의 마찰과 충돌을 이용한 수 처리용 하이드로크래셔
KR101848784B1 (ko) * 2017-05-31 2018-04-13 대구대학교 산학협력단 선박 평형수 처리 및 여과 장치의 역세척 시스템
KR101855226B1 (ko) * 2017-01-20 2018-05-08 주식회사 에스엔 회전 혼합 유동을 향상시킨 건식 반응가속장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012161728A (ja) * 2011-02-04 2012-08-30 Toru Kitagawa 流動層式抗菌装置
KR20160095375A (ko) * 2015-02-03 2016-08-11 (주) 디아이엔바이로 Uv 여과기
KR20170131011A (ko) * 2016-05-20 2017-11-29 김형오 필터의 세척기능을 구비하고 와류 속을 유동하는 고체 입자들의 마찰과 충돌을 이용한 수 처리용 하이드로크래셔
KR101855226B1 (ko) * 2017-01-20 2018-05-08 주식회사 에스엔 회전 혼합 유동을 향상시킨 건식 반응가속장치
KR101848784B1 (ko) * 2017-05-31 2018-04-13 대구대학교 산학협력단 선박 평형수 처리 및 여과 장치의 역세척 시스템

Also Published As

Publication number Publication date
KR102391394B1 (ko) 2022-05-04

Similar Documents

Publication Publication Date Title
CN1045159C (zh) 用于牙科器械的水净化系统
WO2017048034A1 (ko) 마이크로 버블을 이용한 공기 청정장치
WO2022019404A1 (ko) 수처리를 위한 사이클론 기반의 하이드로크래셔
WO2017146339A1 (ko) 아토마이징 장치 및 이를 이용한 유체처리설비
KR101818996B1 (ko) 마이크로 버블 발생기 및 마이크로 버블, 저농도 오존과 자외선램프를 이용한 고도처리 시스템
WO2011013872A1 (ko) 연속식 의료폐기물 처리장치
CN103299024A (zh) 用于流体处理的方法和设备
WO2022092421A1 (ko) 메디아의 손실없는 수처리용 하이드로크래셔
WO2016013896A1 (ko) 동물사체 처리장치
KR101003162B1 (ko) 축산폐수 처리장치
KR100989034B1 (ko) 오존 발생 및 재순환장치
US4936552A (en) Aerating apparatus
WO2016006952A1 (ko) 다양한 규모와 모양의 생물여과조 디자인이 가능한 양식장 사육수의 생물여과장치 및 생물여과시스템
WO2024029905A1 (ko) 버블 생성기를 구비하는 살균 여과 장치 및 이를 이용한 선박 평형수 처리 시스템
KR102391397B1 (ko) 비순환식 또는 순환식 수처리용 하이드로크래셔
KR200194241Y1 (ko) 초음파와 원적외선 및 플라즈마화한 o₂, o₃를 이용한수처리 장치
US6902667B1 (en) Fluid treatment system
KR100835585B1 (ko) 고도 산화 공정을 이용한 수 처리 장치
KR20220010991A (ko) 수처리를 위한 사이클론 기반의 하이드로크래셔
WO2019124709A1 (ko) 해수를 이용한 기능성 음용수 제조장치 및 제조방법
WO2023048326A1 (ko) 노즐형 분사부와 미스트 분무부를 가진 투웨이 살균수 분사 장치
WO2022234893A1 (ko) 양액 살균 장치 및 이를 이용하는 배지재배 시스템
WO2010047531A2 (ko) 오폐수처리장치 및 이를 이용한 오폐수처리방법
CN207391159U (zh) 一种医疗污水处理用药物处理池
KR101285319B1 (ko) 침출수 처리 장치 및 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20960037

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20960037

Country of ref document: EP

Kind code of ref document: A1