WO2022092267A1 - 屈曲操作機構 - Google Patents

屈曲操作機構 Download PDF

Info

Publication number
WO2022092267A1
WO2022092267A1 PCT/JP2021/040035 JP2021040035W WO2022092267A1 WO 2022092267 A1 WO2022092267 A1 WO 2022092267A1 JP 2021040035 W JP2021040035 W JP 2021040035W WO 2022092267 A1 WO2022092267 A1 WO 2022092267A1
Authority
WO
WIPO (PCT)
Prior art keywords
driven
operation mechanism
bending operation
drive
bending
Prior art date
Application number
PCT/JP2021/040035
Other languages
English (en)
French (fr)
Inventor
貴史 平田
裕樹 保戸田
正紘 稲葉
Original Assignee
日本発條株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本発條株式会社 filed Critical 日本発條株式会社
Priority to CN202180073380.XA priority Critical patent/CN116507462A/zh
Priority to US18/034,360 priority patent/US20230405844A1/en
Priority to EP21886384.3A priority patent/EP4238722A4/en
Publication of WO2022092267A1 publication Critical patent/WO2022092267A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/005Flexible endoscopes
    • A61B1/0051Flexible endoscopes with controlled bending of insertion part
    • A61B1/0055Constructional details of insertion parts, e.g. vertebral elements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/005Flexible endoscopes
    • A61B1/0051Flexible endoscopes with controlled bending of insertion part
    • A61B1/0057Constructional details of force transmission elements, e.g. control wires
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/01Introducing, guiding, advancing, emplacing or holding catheters
    • A61M25/0105Steering means as part of the catheter or advancing means; Markers for positioning
    • A61M25/0133Tip steering devices
    • A61M25/0138Tip steering devices having flexible regions as a result of weakened outer material, e.g. slots, slits, cuts, joints or coils
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/01Introducing, guiding, advancing, emplacing or holding catheters
    • A61M25/0105Steering means as part of the catheter or advancing means; Markers for positioning
    • A61M25/0133Tip steering devices
    • A61M25/0147Tip steering devices with movable mechanical means, e.g. pull wires
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J18/00Arms
    • B25J18/06Arms flexible
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J3/00Manipulators of master-slave type, i.e. both controlling unit and controlled unit perform corresponding spatial movements
    • B25J3/02Manipulators of master-slave type, i.e. both controlling unit and controlled unit perform corresponding spatial movements involving a parallelogram coupling of the master and slave units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/06Programme-controlled manipulators characterised by multi-articulated arms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/10Programme-controlled manipulators characterised by positioning means for manipulator elements
    • B25J9/104Programme-controlled manipulators characterised by positioning means for manipulator elements with cables, chains or ribbons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • A61B2034/301Surgical robots for introducing or steering flexible instruments inserted into the body, e.g. catheters or endoscopes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • A61B2034/305Details of wrist mechanisms at distal ends of robotic arms

Definitions

  • the present invention relates to a flexion operation mechanism provided to a joint function part such as a robot or a manipulator.
  • Some robots, manipulators, actuators, etc. are equipped with joint function parts that enable flexion and extension.
  • As a bending operation mechanism for operating such a joint function portion for example, there is one described in Patent Document 1.
  • the bending operation mechanism of Patent Document 1 has a first portion as a driving portion and a second portion as a driven portion, and the first portion and the second portion are similarly stretched at both ends of a plurality of cables. It has a structured elastic structure.
  • the problem to be solved is that the followability of the driven part to the driving part is reduced.
  • the present invention connects an elastically bendable drive portion, an elastically bendable driven portion provided at a distance from the drive portion, and the drive portion and the driven portion to form the drive portion.
  • a link portion for pulling and bending the driven portion in response to bending is provided, and each of the driving portion and the driven portion includes an inner coil portion and an outer coil portion that can be bent in the axial direction, and the outer coil portion is provided.
  • the most main feature of the bending operation mechanism is that the corresponding winding portion of the inner coil portion is fitted in the gap between the adjacent winding portions of the portion.
  • the drive portion and the driven portion cannot be pushed in the axial direction by fitting the corresponding winding portion of the inner coil portion into the gap between the adjacent winding portions of the outer coil portion during bending and non-bending. , It is possible to improve the followability of the driven portion with respect to the driving portion.
  • FIG. 1 is a perspective view showing a bending operation mechanism according to the first embodiment of the present invention.
  • FIG. 2 is an enlarged perspective view of a drive unit of the bending operation mechanism of FIG.
  • FIG. 3 is a perspective sectional view showing a part of the driving portion of FIG. 2 as a cross section.
  • 4 (A) and 4 (B) are cross-sectional views showing an inner cylinder used for the drive unit of FIG. 2, FIG. 4 (A) is a normal time, and FIG. 4 (B) is a bending time.
  • 5 (A) and 5 (B) are schematic cross-sectional views of the bending operation mechanism of FIG. 1, FIG. 5 (A) shows a normal time, and FIG. 5 (B) shows a bending time.
  • FIG. 5 (A) shows a normal time
  • FIG. 5 (B) shows a bending time.
  • FIG. 6 is a perspective view showing a state of a drive wire of the bending operation mechanism of FIG. 7 (A) and 7 (B) are schematic cross-sectional views of the bending operation mechanism according to the second embodiment of the present invention
  • FIG. 7 (A) shows normal times
  • FIG. 7 (B) shows a bending time.
  • FIG. 8 is a perspective view showing a state of the drive wire of the bending operation mechanism of FIG. 7.
  • FIG. 9 is a schematic cross-sectional view at the time of bending showing the bending operation mechanism according to the third embodiment of the present invention.
  • FIG. 10 is a schematic cross-sectional view at the time of bending showing the bending operation mechanism according to the fourth embodiment of the present invention.
  • FIG. 11 is a schematic view showing a state of a drive wire of the bending operation mechanism according to the fifth embodiment of the present invention.
  • FIG. 12 is a schematic view showing a state of a drive wire of a bending operation mechanism according to a modified example of the fifth embodiment of the present invention.
  • FIG. 13 is a conceptual diagram showing the connection positional relationship of the drive wires of the bending operation mechanism of FIG.
  • the purpose of improving the followability of the driven part to the driving part was realized by using a double coil for the driving part and the moving part.
  • the bending operation mechanism (1) includes a driving unit (5), a driven unit (7), and a link unit (9).
  • the drive portion (5) is elastically bendable
  • the driven portion (7) is provided at a distance from the drive portion (5) and is elastically bendable.
  • the link portion (9) connects between the driving portion (5) and the driven portion (7), and pulls and bends the driven portion (7) according to the bending of the driving portion (5).
  • Each of the drive portion (5) and the driven portion (7) includes an inner coil portion (19) and an outer coil portion (21) that can be bent in the axial direction, and an adjacent winding portion (21) of the outer coil portion (21).
  • the corresponding winding portion (19a) of the inner coil portion (19) is fitted in the gap (21b) between the 21a).
  • connection position of the link portion (9) with respect to the drive portion (5) and the length (L1) of the drive portion (5) to the base end portion (11) are the connection positions of the link portion (9) with respect to the driven portion (7).
  • the length (L2) to the base end portion (11) of the driven portion (7) may be different.
  • the drive unit (5) and the driven unit (7) have different axial lengths, and the link unit (9) connects between the drive unit (5) and the tip portion (13) of the driven unit (7). It may be configured to be used.
  • the link portion (9) is a cord-shaped member (25) connecting positions displaced radially from the center of the drive portion (5) and the driven portion (7), and the bending angle of the drive portion (5) is set to ⁇ 1.
  • the link portion (9) is composed of one or more cord-shaped members (25), and each cord-shaped member (25) connects the driving portion (5) and the driven portion (7) at different positions by 180 degrees in the circumferential direction. You may.
  • Each cord-shaped member (25) is formed in a spiral shape between the driving portion (5) and the driven portion (7), and differs by 180 degrees depending on the spiral shape between the driving portion (5) and the driven portion (7). It may be configured to be displaced 180 degrees corresponding to the connection at the position.
  • FIG. 1 is a perspective view showing a bending operation mechanism according to the first embodiment of the present invention
  • FIG. 2 is an enlarged perspective view of a drive portion of the bending operation mechanism
  • FIG. 3 is a perspective cross section in which a part of the drive portion is a cross section.
  • 4A and 4B are cross-sectional views showing an inner cylinder used for a drive unit
  • FIG. 4A is a normal time view
  • FIG. 4B is a bending state
  • 5 (A) and 5 (B) are schematic cross-sectional views of a bending operation mechanism
  • FIG. 5 (A) shows a normal time
  • FIG. 5 (B) shows a bending time
  • FIG. 6 is a perspective view showing a state of the drive wire of the bending operation mechanism.
  • the bending operation mechanism 1 is applied to the joint functional part of various devices for medical and industrial use such as manipulators, robots, and actuators.
  • the joint function portion is a device, mechanism, device or the like having a function as a joint that bends and extends.
  • the bending operation mechanism 1 of the present embodiment includes a shaft 3, a driving unit 5, a driven unit 7, a link unit 9, a flexible tube 10 as a flexible member, and a push-pull cable 12. There is.
  • the shaft 3 is formed of a hollow cylinder, for example, a cylinder by metal or the like.
  • a drive unit 5 and a driven unit 7 are provided at both ends of the shaft 3, respectively. Therefore, the shaft 3 functions as a base on which the drive unit 5 and the driven unit 7 are provided.
  • the drive unit 5 is coaxially provided at one end of the shaft 3 and is configured to be elastically bendable in the axial direction.
  • the axial direction means a direction along the axis of the bending operation mechanism 1, and includes a direction strictly parallel to the axis and a slightly inclined direction.
  • the drive unit 5 is a part that is directly or indirectly operated by the operator, and performs a bending operation according to the operation.
  • the drive unit 5 of this embodiment includes a base portion 11, a movable portion 13, an inner cylinder 15, and an outer cylinder 17.
  • the base 11 is a columnar body formed of resin, metal, or the like, for example, a columnar body.
  • the base portion 11 is attached to one end of the shaft 3 and constitutes the base end portion of the drive unit 5.
  • the base portion 11 is not limited to the columnar body, and has an appropriate shape depending on the device to which the bending operation mechanism 1 is applied.
  • the movable portion 13 is a columnar body formed of resin, metal, or the like, for example, a columnar body.
  • the movable portion 13 constitutes the tip portion of the drive portion 5.
  • the movable portion 13 is also not limited to a columnar body, and has an appropriate form depending on the device to which the bending operation mechanism 1 is applied.
  • the movable portion 13 is supported by the base portion 11 so as to be displaceable in the axial direction by the inner cylinder 15 and the outer cylinder 17.
  • the inner cylinder 15 is arranged along the axial direction of the drive unit 5.
  • the inner cylinder 15 is a double coil that can be elastically bent and restored in the axial direction, and includes an inner coil portion 19 and an outer coil portion 21.
  • the inner coil portion 19 and the outer coil portion 21 are coil springs made of metal, resin, or the like, respectively, and have elasticity that can be bent in the axial direction.
  • the cross-sectional shape of the strands of the inner coil portion 19 and the outer coil portion 21 is circular. However, this cross-sectional shape is not limited to a circle, but may be a semicircle, an ellipse, or the like.
  • the inner coil portion 19 has a center diameter smaller than that of the outer coil portion 21, and is screwed into the outer coil portion 21.
  • the center diameters of the inner coil portion 19 and the outer coil portion 21 are constant from one end to the other end in the axial direction. However, the center diameter of the outer coil portion 21 can be changed in the axial direction.
  • the outer coil portion 21 has a pitch 21b which is a plurality of gaps in which the winding portions 21a (adjacent winding portions 21a) adjacent in the axial direction are separated in the axial direction.
  • the corresponding winding portion 19a of the inner coil portion 19 is fitted to the plurality of pitches 21b from the inside. By this fitting, the winding portion 19a of the inner coil portion 19 comes into contact with both of the winding portions 21a of the adjacent outer coil portions 21.
  • the inner coil portion 19 has a pitch 19b as a plurality of gaps in which the winding portions 19a adjacent in the axial direction (between the adjacent winding portions 19a) are separated in the axial direction.
  • the corresponding winding portion 21a of the outer coil portion 21 is fitted to the plurality of pitches 19b from the outside. By this fitting, the winding portion 21a of the outer coil portion 21 comes into contact with both of the winding portions 19a of the adjacent inner coil portions 19.
  • the inner cylinder 15 is restricted from compression in the axial direction.
  • the outer cylinder 17 is a cylinder that is arranged concentrically with the inner cylinder 15 and covers the outer circumference of the inner cylinder 15.
  • the outer cylinder 17 of this embodiment is configured by laminating a plurality of wave washers 23 in the axial direction.
  • the wave washers 23 adjacent to each other in the axial direction are joined to each other.
  • the outer cylinder 17 can be bent by the elastic deformation of the wave washer 23.
  • Each wave washer 23 is formed in a closed ring shape by metal, resin, or the like. Between the wave washers 23 adjacent in the axial direction, the mountain portion 23a of one wave washer 23 abuts on the valley portion 23b of the other wave washer 23, and the contacting mountain portions 23a and the valley portion 23b are welded or bonded. It is joined by appropriate means of.
  • a plurality of flat washers 24 having a smaller amount of deformation than the wave washers 23 are attached to both ends of the outer cylinder 17 in the axial direction.
  • a base 11 and a movable portion 13 are coupled to both ends of the outer cylinder 17 via the flat washer 24. This coupling is performed by an appropriate means such as welding.
  • the flat washer 24 can be omitted.
  • the outer cylinder 17 is provided with insertion holes 23c and 24a that communicate in the axial direction between the peak portion 23a and the valley portion 23b of each wave washer 23 and the corresponding portion of the flat washer 24.
  • the insertion holes 23c and 24a of this embodiment are provided every 90 degrees in the circumferential direction.
  • the insertion holes 23c and 24a insert the drive wire 25 of the link portion 9 in the axial direction.
  • the outer cylinder 17 functions as a guide for holding the drive wire 25 in a predetermined position.
  • the outer cylinder 17 is not limited to the one in which the wave washers 23 are laminated, and can be made of other flexible members.
  • the outer cylinder 17 can be configured by a bellows made of a tubular body having a wave-shaped cross section or a double coil similar to the inner cylinder 15.
  • the driven portion 7 is coaxially provided at the other end of the shaft 3 and is provided apart from the drive portion 5.
  • the driven portion 7 constitutes a joint functional portion of the device to which the bending operation mechanism 1 is applied, and is configured to be elastically flexible in the axial direction.
  • the bending of the driven portion 7 is performed by following the bending of the driving portion 5.
  • the driven unit 7 of this embodiment has the same configuration as the drive unit 5, and is composed of a base portion 11, a movable portion 13, an inner cylinder 15, and an outer cylinder 17. Therefore, for each part of the driven unit 7, the description of the driving unit 5 will be referred to by reading as the driven unit 7.
  • the driven unit 7 is configured in the opposite direction to the driving unit 5. Therefore, the bending direction of the driven portion 7 is opposite to the bending direction of the driving portion 5.
  • the movable portion 13 of the driven portion 7 constitutes the tip portion of the driven portion 7, and an end effector or the like is attached depending on the device to which the bending operation mechanism 1 is applied.
  • the link portion 9 connects between the drive portion 5 and the driven portion 7, and the driven portion 7 is pulled and bent according to the bending of the drive portion 5.
  • the link portion 9 is composed of a plurality of drive wires 25 parallel to each other as one or more cord-like members. In this embodiment, four drive wires 25 are provided.
  • Each drive wire 25 is a cord-like member made of metal or the like.
  • the drive wire 25 has flexibility to the extent that it does not hinder the bending and restoration of the driving portion 5 and the driven portion 7 of the bending operation mechanism 1.
  • the cross-sectional shape of the drive wire 25 may be a circular shape similar to the insertion holes 23c and 24a of the outer cylinder 17, or may be a different shape such as an ellipse or a rectangle. Further, the drive wire 25 can be a stranded wire, a NiTi (nickel titanium) single wire, a piano wire, an articulated rod, a chain, a string, a thread, a rope, or the like as long as it is a cord-like member.
  • NiTi nickel titanium
  • the drive wire 25 inserts the shaft 3, the drive unit 5, and the driven unit 7 along the axial direction.
  • the drive wire 25 is guided through the insertion holes 23c and 24a of the outer cylinder 17.
  • the guide member may be a plate or the like fixed in the shaft 3 and may have an insertion hole, a slit or the like through which the drive wire 25 is inserted.
  • the drive wire 25 is shafted at a position where the drive wire 25 is displaced in the radial direction from the centers of the drive unit 5, the driven unit 7, and the shaft 3 when the bending operation mechanism 1 is straight (extended). It extends in the direction.
  • Both ends of the drive wire 25 are connected to positions displaced in the radial direction from the center of the movable portion 13 as the tip portions of the drive portion 5 and the driven portion 7 according to the guide of the drive wire 25.
  • the drive wire 25 as the link portion 9 is configured to connect the positions displaced in the radial direction from the centers of the drive portion 5 and the driven portion 7.
  • the displacement amount r1 of the drive wire 25 in the drive unit 5 is equal to the displacement amount r2 of the drive wire 25 in the driven unit 7.
  • the drive wire 25 connects between the movable portion 13 of the drive portion 5 and the driven portion 7 in a state where tension is applied, but the tension of the drive wire 25 may be appropriately set according to the characteristics of the bending operation mechanism 1 and the like. can.
  • Both ends of the drive wire 25 are located in the connection holes 13a provided in the movable portion 13, and are prevented from coming off by engaging with the movable portion 13 by end processing or the like. As a result, both ends of the drive wire 25 are connected to the drive unit 5 and the driven unit 7.
  • the engagement position with the movable portion 13 on both sides is the connection position of the link portion 9 with respect to the drive portion 5 and the driven portion 7.
  • the connection position is an axial position corresponding to each other, and refers to a position symmetrical with respect to a line along the radial direction passing through the axial center of the bending operation mechanism 1 in this embodiment.
  • the connection may be made by an appropriate method such as welding or adhesion, and the connection position may be set according to the connection method.
  • connection position of the link portion 9 to the drive unit 5 and the length L1 to the base portion 11 as the base end portion of the drive unit 5 are the connection position of the link portion 9 to the driven portion 7 and the base portion as the base end portion of the driven portion 7. It is the same as the length L2 up to 11.
  • the length L1 refers to the length from the connection position of the link portion 9 to the drive unit 5 to an arbitrary axial position of the base portion 11 of the drive unit 5.
  • the length L2 is the link portion 9 to the driven unit 7.
  • any axial position of the base 11 is an axial position corresponding to each other, and is a position symmetrical with respect to a line along the radial direction passing through the axial center of the bending operation mechanism 1 in this embodiment. To say.
  • the bending angle ⁇ 1 when the driving unit 5 is bent and the bending angle ⁇ 2 of the driven portion 7 that is bent in accordance with the bending angle ⁇ 1 are equal. ..
  • the bending angle refers to the central angle of the axial centers of the inner cylinder 15 and the outer cylinder 17 that are responsible for the bending operation.
  • the flexible tube 10 is located at the axial center of the bending operation mechanism 1 and is a tubular member formed of resin or the like. Both ends of the flexible tube 10 are inserted into the inner cylinder 15 of the driving portion 3 and the driven portion 5.
  • the flexible tube 10 has flexibility to the extent that it does not hinder the bending and restoration of the driving portion 5 and the driven portion 5.
  • a push-pull cable 12 is inserted in the flexible tube 10.
  • the push-pull cable 12 operates an end effector or the like by moving forward and backward.
  • a drive member such as an air tube other than the push-pull cable 12 or another flexible member or the like. Further, depending on the device, it is possible to omit either or both of the flexible member of the flexible tube 10 and the push-pull cable 12.
  • the bending operation mechanism 1 of the present embodiment has the driving unit 5 and the driven unit 7 in a straight state (extended) when the driving unit 5 and the driven unit 7 are not bent, as shown in FIGS. 4 (A) and 5 (A).
  • the corresponding winding portion 19a of the inner coil portion 19 is fitted between the adjacent winding portions 21a of the outer coil portion 21 of the inner cylinder 15.
  • the inner coil portion 19 of the inner cylinder 15 is pushed out toward the outside of the bend.
  • the extrusion of the inner coil portion 19 is permitted by the increased pitch 21b between the adjacent winding portions 21a of the outer coil portion 21 of the inner cylinder 15 at the bent outer portion. Therefore, the bending operation can be smoothly performed.
  • the corresponding winding portion 19a of the inner coil portion 19 continues to be fitted between the adjacent winding portions 21a of the outer coil portion 21 of the inner cylinder 15.
  • the drive unit 5 and the driven unit 7 can suppress inadvertent pushing due to compression in the axial direction, and can suppress fluctuations in the length of the central portion. Therefore, the driven unit 7 linearly follows the bending of the driving unit 5 and bends with good followability.
  • the drive unit 5 that can be elastically bent
  • the driven unit 7 that is provided apart from the drive unit 5 and that can be elastically bent
  • the drive unit 5 and the driven unit 5 It is provided with a link portion 9 that connects 7 to each other and pulls and bends the driven portion 7 according to the bending of the driving portion 5.
  • Each of the drive portion 5 and the driven portion 7 includes an inner coil portion 19 and an outer coil portion 21 that can be bent in the axial direction, and the inner coil portion 19 is provided at a pitch 21b between adjacent winding portions 21a of the outer coil portion 21.
  • the corresponding winding portion 19a fits.
  • the driving unit 5 and the driven unit 7 are suppressed from being pushed in the axial direction during bending and non-bending before and after bending, and the followability of the driven unit 7 to the driving unit 5 can be improved. It can be operated intuitively.
  • the link portion 9 is a drive wire 25 as a cord-like member connecting positions displaced in the radial direction from the centers of the drive portion 5 and the driven portion 7, and the bending operation mechanism 1 sets the bending angle of the driving portion 5.
  • ⁇ 1 and the bending angle of the driven portion 7 are ⁇ 2
  • the displacement amount of the drive wire 25 in the drive portion 5 is r1
  • the displacement amount of the drive wire 25 in the driven portion 7 is r2
  • ⁇ 1: ⁇ 2 r2: r1.
  • the driven portion 7 can be reliably bent by the amount of bending the driving portion 5, which is more intuitive. Operation is possible.
  • FIG. 7 (A) and 7 (B) are schematic cross-sectional views of the bending operation mechanism according to the second embodiment of the present invention, FIG. 7 (A) shows normal times, and FIG. 7 (B) shows a bending time. ..
  • FIG. 8 is a perspective view showing a state of the drive wire of the bending operation mechanism of FIG. 7.
  • the same reference numerals are given to the configurations corresponding to the first embodiment, and duplicate description will be omitted.
  • the drive wire 25 as each cord-like member connects the drive unit 5 and the driven unit 7 at different positions by 180 degrees in the circumferential direction. Others are the same as in Example 1.
  • each drive wire 25 is provided by being gradually displaced in the circumferential direction so as to form a spiral, and is provided between the connection position of the drive unit 5 with respect to the movable portion 13 and the connection position of the driven portion 7 with respect to the movable portion 13. Displace 180 degrees in the direction.
  • the drive wire 25 may be configured such that the displacement amount is not limited to 180 degrees and any other angle is used, and the drive unit 5 and the driven unit 7 are connected to different positions in the circumferential direction according to this angle.
  • the drive wire 25 of this embodiment is spirally formed in the shaft 3 which is the drive portion 5 and the driven portion 7 windings, and the circumference corresponds to the connection at different positions by 180 degrees due to the spiral shape in the shaft 3. Displace 180 degrees in the direction. That is, in the drive unit 5 and the driven unit 7, the drive wires 25 are not spiral but parallel. However, the drive wire 25 may be configured in a spiral shape as a whole from the movable portion 13 of the drive portion 5 to the movable portion 13 of the driven portion 7.
  • a holding hole gradually displaced in the circumferential direction is formed in a plurality of holding members arranged in the axial direction, and the spiral shape is held by inserting the drive wire 25 into the holding hole. ..
  • the drive wire 25 is inserted in the same manner as in the first embodiment.
  • the driven portion 7 can be bent in the direction in which the drive portion 5 is bent, and a more intuitive operation can be performed. Further, in this embodiment, since the drive wire 25 is spiral only in the shaft 3, the structure of the drive unit 5 and the driven unit 7 is prevented from being complicated, the operation is stabilized, and the versatility is achieved. Can be improved. In addition, even in Example 2, the same action and effect as in Example 1 can be obtained.
  • FIG. 9 is a schematic cross-sectional view at the time of bending showing the bending operation mechanism according to the third embodiment of the present invention.
  • the same reference numerals are given to the configurations corresponding to the first embodiment, and duplicate description will be omitted.
  • connection position of the link portion 9 with respect to the drive portion 5 and the length L1 to the base portion 11 as the base end portion of the drive portion 5 are set, the connection position of the link portion 9 with respect to the driven portion 7, and the base of the driven portion 7. It is longer than the length L2 up to the base 11 as an end portion. Others are the same as in Example 1.
  • the length of the drive unit 5 is made longer in the axial direction than the length of the driven unit 7, and the drive wire 25 of the link unit 9 is the movable unit 13 of the drive unit 5 and the driven unit 7 as in the first embodiment. Connect between.
  • the length L1 may be formed shorter than the length L2.
  • the length of the drive unit 5 is made shorter in the axial direction than the length of the driven unit 7, and the drive wire 25 of the link unit 9 is between the drive unit 5 and the movable unit 13 of the driven unit 7 as in the first embodiment. Just connect. Therefore, in this embodiment, the length L1 may be different from the length L2.
  • the displacement amount of the movable portion 13 of the driving unit 5 until the bending angle ⁇ 1 is set. It becomes larger than the displacement amount of the movable portion 13 of the driven portion 7 until the bending angle ⁇ 2 is reached.
  • the large displacement of the movable portion 13 of the driven portion 7 can be controlled by the small displacement of the movable portion 13 of the drive portion 5, and the drive portion 5 is formed. It is possible to make the driven portion 7 perform a large displacement without increasing the size.
  • Example 2 the same action and effect as in Example 2 can be obtained in this example as well.
  • FIG. 10 is a schematic cross-sectional view at the time of bending showing the bending operation mechanism according to the fourth embodiment of the present invention.
  • the same reference numerals are given to the configurations corresponding to the second embodiment, and duplicate description will be omitted.
  • the displacement amount r1 of the drive wire 25 in the drive unit 5 is larger than the displacement amount r2 of the drive wire 25 in the driven unit 7.
  • Others are the same as in Example 1.
  • the outer cylinder 17 of the drive unit 5 has a larger diameter than the outer cylinder 17 of the driven unit 7, and the insertion hole 23c of the drive unit 5 is arranged radially outside the insertion hole 23c of the driven unit 7 accordingly. are doing.
  • the displacement amount r1 is made larger than the displacement amount r2.
  • the bending angle ⁇ 1 of the driving unit 5 is smaller than the bending angle ⁇ 2 of the driven unit 7.
  • the displacement amount r1 may be smaller than the displacement amount r2.
  • the driven portion 7 can be made to perform a bending operation having a large bending angle ⁇ 2 by the bending operation having a small bending angle ⁇ 1 of the driving unit 5. Therefore, in this embodiment, the driven portion 7 can be greatly bent with a small operating force. Moreover, the diameter of the drive unit 5 can be increased to facilitate operation, and bending with a smaller operating force becomes possible.
  • the driven portion 7 can be made to perform the bending operation having a small bending angle ⁇ 2 by the bending operation in which the bending angle ⁇ 1 of the driving unit 5 is large. Therefore, it is possible to enable the delicate operation of the driven portion 7, improve the operability of the delicate operation, and suppress operation errors and the like.
  • Example 4 Even in Example 4, the same action and effect as in Example 2 can be obtained.
  • FIG. 11 is a schematic view showing a state of a drive wire of the bending operation mechanism according to the fifth embodiment of the present invention.
  • the same reference numerals are given to the configurations corresponding to the first embodiment, and duplicate description will be omitted.
  • the number of drive wires 25 is three. Others are the same as in Example 1.
  • the three drive wires 25 are arranged at predetermined intervals in the circumferential direction, and connect the drive unit 5 and the driven unit 7 at positions facing each other in the axial direction.
  • FIG. 12 is a schematic view showing the state of the drive wire of the bending operation mechanism according to the modified example of the fifth embodiment.
  • FIG. 13 is a conceptual diagram showing a connection position of the drive wire of the bending operation mechanism of FIG.
  • the drive wire 25 connects the drive unit 5 and the driven unit 7 at different positions by 180 degrees in the circumferential direction, as in the second embodiment.
  • Example 2 the same action and effect as in Example 2 can be obtained.

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Robotics (AREA)
  • Biophysics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Surgery (AREA)
  • Biomedical Technology (AREA)
  • Medical Informatics (AREA)
  • Pulmonology (AREA)
  • Molecular Biology (AREA)
  • Pathology (AREA)
  • Optics & Photonics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Physics & Mathematics (AREA)
  • Radiology & Medical Imaging (AREA)
  • Anesthesiology (AREA)
  • Hematology (AREA)
  • Instruments For Viewing The Inside Of Hollow Bodies (AREA)
  • Manipulator (AREA)
  • Transmission Devices (AREA)
  • Mechanical Control Devices (AREA)
  • Endoscopes (AREA)

Abstract

駆動部に対する従動部の追従性を向上させることが可能な屈曲操作機構を提供する。弾性的に屈曲可能な駆動部5と、駆動部5に対して離間して設けられ弾性的に屈曲可能な従動部7と、駆動部5及び従動部7間を接続し、駆動部5の屈曲に応じて従動部7を引張り屈曲させるリンク部9とを備え、駆動部5及び従動部7のそれぞれは、軸方向に対して屈曲可能な内コイル部19及び外コイル部21を備え、外コイル部21の隣接巻部21a間のピッチ21bに内コイル部19の対応する巻部19aが嵌合する。

Description

屈曲操作機構
 本発明は、ロボットやマニピュレーター等の関節機能部に供される屈曲操作機構に関する。
 ロボット、マニピュレーター、或いはアクチュエーター等には、屈曲・伸展を可能とする関節機能部を備えたものがある。このような関節機能部を操作するための屈曲操作機構としては、例えば、特許文献1に記載のものがある。
 特許文献1の屈曲操作機構は、駆動部である第1部分及び従動部である第2部分を有し、第1部分及び第2部分は、複数のケーブルの両端部が同様に張られることで構成された弾性構造を有する。
 この屈曲操作機構では、第1部分を屈曲させることでケーブルを引張り、第2部分を従動により屈曲させる。従って、第1部分に第2部分を従動、追従させ、直感的な操作が可能となる。
 しかし、かかる屈曲操作機構では、第1部分が軸方向に押込み可能になっているため、第1部分を押し込んだ状態で屈曲させると、第2部分の追従性が低下し、直感性や操作精度が落ちる等のおそれがあった。
国際公開第2015/105421号公報
 解決しようとする問題点は、駆動部に対する従動部の追従性が低下する点である。
 本発明は、弾性的に屈曲可能な駆動部と、前記駆動部に対して離間して設けられ弾性的に屈曲可能な従動部と、前記駆動部及び前記従動部間を接続し前記駆動部の屈曲に応じて前記従動部を引張り屈曲させるリンク部と、を備え、前記駆動部及び前記従動部のそれぞれは、軸方向に対して屈曲可能な内コイル部及び外コイル部を備え、前記外コイル部の隣接巻部間の隙間に前記内コイル部の対応する巻部が嵌合することを屈曲操作機構の最も主な特徴とする。
 本発明によれば、屈曲時及び非屈曲時において駆動部及び従動部が外コイル部の隣接巻部間の隙間に内コイル部の対応する巻部が嵌合することで軸方向に押込み不能となり、駆動部に対する従動部の追従性を向上させることができる。
図1は、本発明の実施例1に係る屈曲操作機構を示す斜視図である。 図2は、図1の屈曲操作機構の駆動部の拡大斜視図である。 図3は、図2の駆動部の一部を断面にした斜視断面図である。 図4(A)及び(B)は、図2の駆動部に用いられる内筒を示す断面図であり、図4(A)は平常時、図4(B)は屈曲時である。 図5(A)及び(B)は、図1の屈曲操作機構の概略断面図であり、図5(A)は、平常時、図5(B)は、屈曲時を示す。 図6は、図1の屈曲操作機構の駆動ワイヤーの状態を示す斜視図である。 図7(A)及び(B)は、本発明の実施例2に係る屈曲操作機構の概略断面図であり、図7(A)は、平常時、図7(B)は、屈曲時を示す。 図8は、図7の屈曲操作機構の駆動ワイヤーの状態を示す斜視図である。 図9は、本発明の実施例3に係る屈曲操作機構を示す屈曲時の概略断面図である。 図10は、本発明の実施例4に係る屈曲操作機構を示す屈曲時の概略断面図である。 図11は、本発明の実施例5に係る屈曲操作機構の駆動ワイヤーの状態を示す概略図である。 図12は、本発明の実施例5の変形例に係る屈曲操作機構の駆動ワイヤーの状態を示す概略図である。 図13は、図12の屈曲操作機構の駆動ワイヤーの接続位置関係を示す概念図である。
 駆動部に対する従動部の追従性を向上させるという目的を、駆動部及び可動部に二重コイルを用いることで実現した。
 すなわち、屈曲操作機構(1)は、駆動部(5)と、従動部(7)と、リンク部(9)とを備える。駆動部(5)は、弾性的に屈曲可能であり、従動部(7)は、駆動部(5)に対して離間して設けられ、弾性的に屈曲可能となっている。リンク部(9)は、駆動部(5)及び従動部(7)間を接続し駆動部(5)の屈曲に応じて従動部(7)を引張り屈曲させる。
 駆動部(5)及び従動部(7)のそれぞれは、軸方向に対して屈曲可能な内コイル部(19)及び外コイル部(21)を備え、外コイル部(21)の隣接巻部(21a)間の隙間(21b)に内コイル部(19)の対応する巻部(19a)が嵌合する。
 駆動部(5)に対するリンク部(9)の接続位置と駆動部(5)の基端部(11)までの長さ(L1)は、従動部(7)に対するリンク部(9)の接続位置と従動部(7)の基端部(11)までの長さ(L2)と異なる構成としてもよい。
 この場合、駆動部(5)と従動部(7)は、軸方向長さが異なり、リンク部(9)は、駆動部(5)と従動部(7)の先端部(13)間を接続する構成としてもよい。
 リンク部(9)は、駆動部(5)及び従動部(7)の中心から径方向に変位した位置を接続する索状部材(25)であり、駆動部(5)の屈曲角度をθ1、従動部(7)の屈曲角度をθ2、索状部材(25)の駆動部(5)での変位量をr1、索状部材(25)の従動部(7)での変位量をr2とした場合、θ1:θ2=r2:r1の関係を有する。
 リンク部(9)は、1以上の索状部材(25)からなり、各索状部材(25)は、駆動部(5)と従動部(7)とを周方向で180度異なる位置で接続してもよい。
 各索状部材(25)は、駆動部(5)及び従動部(7)間で螺旋状に形成され、この駆動部(5)及び従動部(7)間での螺旋状により、180度異なる位置での接続に対応して180度変位する構成としてもよい。
[屈曲操作機構]
 図1は、本発明の実施例1に係る屈曲操作機構を示す斜視図、図2は、屈曲操作機構の駆動部の拡大斜視図、図3は、駆動部の一部を断面にした斜視断面図である。図4は、駆動部に用いられる内筒を示す断面図であり、図4(A)は平常時、図4(B)は屈曲時である。図5(A)及び(B)は、屈曲操作機構の概略断面図であり、図5(A)は平常時、図5(B)は屈曲時を示す。図6は、屈曲操作機構の駆動ワイヤーの状態を示す斜視図である。
 屈曲操作機構1は、マニピュレーター、ロボット、アクチュエーターのような医療用や産業用等の各種の機器の関節機能部に適用されるものである。関節機能部は、屈曲・伸展する関節としての機能を有する装置、機構、デバイス等である。
 本実施例の屈曲操作機構1は、シャフト3と、駆動部5と、従動部7と、リンク部9と、可撓部材としての可撓チューブ10及びプッシュプルケーブル12とを備えて構成されている。
 シャフト3は、金属等によって中空筒状、例えば円筒状に形成されている。シャフト3の両端には、駆動部5及び従動部7がそれぞれ設けられている。従って、シャフト3は、駆動部5及び従動部7が設けられるベースとして機能している。なお、駆動部5及び従動部7のベースは、屈曲操作機構1が適用される機器に応じ、シャフト3に代えて適宜の部材を用いればよい。
 駆動部5は、シャフト3の一端に同軸に設けられ、軸方向に対して弾性的に屈曲可能に構成されている。なお、軸方向とは、屈曲操作機構1の軸心に沿った方向を意味し、厳密に軸心に平行な方向の他、僅かに傾斜した方向も含まれる。
 この駆動部5は、操作者によって直接又は間接的に操作される部分であり、操作に応じて屈曲動作を行う。本実施例の駆動部5は、基部11と、可動部13と、内筒15と、外筒17とを備えている。
 基部11は、樹脂や金属等によって形成された柱状体、例えば円柱状体である。この基部11は、シャフト3の一端に取り付けられ、駆動部5の基端部を構成する。なお、基部11は、柱状体に限られず、屈曲操作機構1が適用される機器に応じて適宜の形態とする。
 可動部13は、基部11と同様、樹脂や金属等によって形成された柱状体、例えば円柱状体である。この可動部13は、駆動部5の先端部を構成する。なお、可動部13も、屈曲操作機構1が適用される機器に応じて適宜の形態とされ、柱状体に限られない。
 かかる可動部13は、内筒15及び外筒17によって軸方向に対して変位可能に基部11に支持されている。
 内筒15は、駆動部5の軸方向に沿って配置されている。この内筒15は、軸方向に対して弾性的に屈曲及び復元が可能な二重コイルであり、内コイル部19と、外コイル部21とを備えている。
 内コイル部19及び外コイル部21は、それぞれ金属や樹脂等からなり、軸方向に対して屈曲可能な弾性を有するコイルばねである。内コイル部19及び外コイル部21の素線の断面形状は、円形となっている。ただし、この断面形状は、円形に限られるものではなく、半円や楕円等とすることも可能である。
 内コイル部19は、外コイル部21よりも小さい中心径を有し、外コイル部21内に螺合されている。内コイル部19及び外コイル部21の中心径は、軸方向の一端から他端に至るまで一定となっている。ただし、この外コイル部21の中心径は、軸方向で変化させることも可能である。
 外コイル部21は、軸方向で隣接する巻部21a(隣接巻部21a)間を軸方向で離間させた複数の隙間であるピッチ21bを有している。この複数のピッチ21bには、内コイル部19の対応する巻部19aが内側から嵌合している。この嵌合により、内コイル部19の巻部19aは、隣接する外コイル部21の巻部21aの双方に接触する。
 一方、内コイル部19は、軸方向で隣接する巻部19a間(隣接巻部19a間)を軸方向で離間させた複数の隙間としてのピッチ19bを有している。この複数のピッチ19bには、外コイル部21の対応する巻部21aが外側から嵌合している。この嵌合により、外コイル部21の巻部21aは、隣接する内コイル部19の巻部19aの双方に接触する。
 かかる構成により、内筒15は、軸方向の圧縮が規制されている。
 外筒17は、内筒15と同心に配置され、内筒15の外周を覆う筒体である。本実施例の外筒17は、複数のウェーブワッシャー23を軸方向で積層して構成されている。軸方向で隣接するウェーブワッシャー23は、相互間が接合されている。この外筒17は、ウェーブワッシャー23の弾性変形により屈曲可能となっている。
 各ウェーブワッシャー23は、金属や樹脂等によって閉環状に形成されている。軸方向で隣接するウェーブワッシャー23間では、一方のウェーブワッシャー23の山部23aが他方のウェーブワッシャー23の谷部23bに当接し、これら当接する山部23a及び谷部23b間が溶接や接着等の適宜の手段によって接合されている。
 外筒17の軸方向の両端部には、ウェーブワッシャー23よりも変形量が小さい複数の平ワッシャー24が取り付けられている。この平ワッシャー24を介し、外筒17の両端部には、基部11及び可動部13が結合されている。この結合は、溶接等の適宜の手段によって行われている。なお、平ワッシャー24は省略することも可能である。
 かかる外筒17には、各ウェーブワッシャー23の山部23aと谷部23bとの間及びこれに対応する平ワッシャー24の部位において、軸方向に連通する挿通孔23c,24aが設けられている。本実施例の挿通孔23c,24aは、周方向で90度毎に設けられている。
 挿通孔23c,24aは、リンク部9の駆動ワイヤー25を軸方向に挿通する。これにより、外筒17は、駆動ワイヤー25を所定位置に保持するガイドとして機能する。
 なお、外筒17は、ウェーブワッシャー23を積層したものに限られず、他の可撓性部材によって構成することが可能である。例えば、外筒17は、断面波形状の管体からなるベローズや内筒15と同様の二重コイルによって構成すること等が可能である。
 従動部7は、シャフト3の他端に同軸に設けられ、駆動部5に対して離間して設けられた構成となっている。この従動部7は、屈曲操作機構1が適用される機器の関節機能部を構成するものであり、軸方向に対して弾性的に屈曲可能に構成されている。従動部7の屈曲は、駆動部5の屈曲に従動することで行われる。
 本実施例の従動部7は、駆動部5と同一構成であり、基部11と、可動部13と、内筒15と、外筒17とで構成されている。このため、従動部7の各部については、駆動部5の説明を従動部7と読み替えることで参照する。
 なお、従動部7は、駆動部5と逆向きに構成されている。このため、従動部7の屈曲方向が、駆動部5の屈曲方向とは逆向きとなる。この従動部7の可動部13は、従動部7の先端部を構成し、屈曲操作機構1が適用される機器に応じて、エンドエフェクタ等が取り付けられる。
 リンク部9は、駆動部5及び従動部7間を接続し、駆動部5の屈曲に応じて従動部7を引張り屈曲させる。このリンク部9は、一以上の索状部材として相互に平行な複数の駆動ワイヤー25からなる。本実施例では、4本の駆動ワイヤー25が設けられている。
 各駆動ワイヤー25は、金属等からなる索状部材である。駆動ワイヤー25は、屈曲操作機構1の駆動部5及び従動部7の屈曲及び復元を妨げない程度の柔軟性を有している。
 駆動ワイヤー25の断面形状は、外筒17の挿通孔23c,24aと同様の円形とする他、楕円形や矩形等の異なる形状としてもよい。また、駆動ワイヤー25は、索状部材であれば、撚り線、NiTi(ニッケルチタン)単線、ピアノ線、多関節ロッド、鎖、紐、糸、縄等とすることが可能である。
 かかる駆動ワイヤー25は、シャフト3、駆動部5、及び従動部7を軸方向に沿って挿通している。駆動部5及び従動部7において、駆動ワイヤー25は、外筒17の挿通孔23c,24aを挿通してガイドされている。シャフト3内では、図示しないガイド部材によってガイドされる。ガイド部材は、シャフト3内に固定したプレート等であり、駆動ワイヤー25を挿通する挿通孔やスリット等を有するものとすればよい。
 このガイドに応じ、駆動ワイヤー25は、屈曲操作機構1の直状時(伸展時)において、駆動ワイヤー25が駆動部5、従動部7、及びシャフト3の中心から径方向に変位した位置において軸方向に延びている。
 駆動ワイヤー25の両端部は、駆動ワイヤー25のガイドに応じ、駆動部5及び従動部7の先端部としての可動部13の中心から径方向に変位した位置に接続される。これにより、リンク部9としての駆動ワイヤー25は、駆動部5及び従動部7の中心から径方向に変位した位置を接続する構成となっている。
 なお、本実施例では、駆動ワイヤー25の駆動部5での変位量r1は、駆動ワイヤー25の従動部7での変位量r2と等しい。駆動ワイヤー25は、張力のかかった状態で駆動部5及び従動部7の可動部13間を接続するが、駆動ワイヤー25の張力は、屈曲操作機構1の特性等に応じて適宜設定することができる。
 かかる駆動ワイヤー25の両端部は、可動部13に設けられた接続孔13a内に位置し、端部処理等によって可動部13に係合することで抜け止めされている。これによって、駆動ワイヤー25の両端部は、駆動部5及び従動部7に接続される。
 従って、本実施例の駆動ワイヤー25では、両側の可動部13への係合位置がリンク部9の駆動部5及び従動部7に対する接続位置となる。接続位置は、相互に対応する軸方向位置であり、本実施例において屈曲操作機構1の軸方向の中心を通る径方向に沿った線に対して対称な位置をいう。なお、接続は、溶接や接着等の適宜の手法によって行えばよく、接続位置は、接続手法に応じて設定すればよい。
 駆動部5に対するリンク部9の接続位置と駆動部5の基端部としての基部11までの長さL1は、従動部7に対するリンク部9の接続位置と従動部7の基端部としての基部11までの長さL2と同一になっている。
 長さL1は、駆動部5に対するリンク部9の接続位置と駆動部5の基部11の任意の軸方向位置までの長さをいい、同様に、長さL2は、従動部7に対するリンク部9の接続位置と従動部7の基部11の任意の軸方向位置までの長さをいう。ここで、基部11の任意の軸方向位置は、相互に対応する軸方向位置であり、本実施例において屈曲操作機構1の軸方向の中心を通る径方向に沿った線に対して対称な位置をいう。
 上記のように変位量r1及びr2が等しいので、本実施例では、駆動部5を屈曲させたときの屈曲角度θ1とこれに従動して屈曲した従動部7の屈曲角度θ2が等しくなっている。この長さ屈曲角度θ1及びθ2並びに変位量r1及びr2の関係は、θ1:θ2=r2:r1となる。なお、屈曲角度とは、屈曲動作を担う内筒15及び外筒17の軸心の中心角をいう。
 可撓チューブ10は、屈曲操作機構1の軸心部に位置し、樹脂等によって形成された筒状部材となっている。可撓チューブ10の両端部は、駆動部3及び従動部5の内筒15内を挿通している。この可撓チューブ10は、駆動部5及び従動部5の屈曲及び復元を妨げない程度の柔軟性を有している。
 可撓チューブ10内には、プッシュプルケーブル12が挿通している。プッシュプルケーブル12は、進退動作によってエンドエフェクタ等を動作させるものである。
 なお、機器に応じて、プッシュプルケーブル12以外のエアチューブ等の駆動部材や他の可撓性を有する部材等とすることが可能である。また、機器によっては、可撓チューブ10やプッシュプルケーブル12の可撓部材の何れか一方又は双方を省略することも可能である。
[動作]
 本実施例の屈曲操作機構1は、図4(A)及び図5(A)のように、駆動部5及び従動部7を屈曲していない直状時(伸展時)において、駆動部5及び従動部7において内筒15の外コイル部21の隣接巻部21a間に内コイル部19の対応する巻部19aが嵌合している。
 このため、屈曲操作機構1は、駆動部5又は従動部7に軸方向での圧縮力が作用しても、内筒15の内外コイル部19及び21が圧縮されない。結果、駆動部5及び従動部7が押し込まれずに中心部の長さを維持することができる。
 従って、操作者が駆動部5を屈曲させる前において、不用意に駆動部5及び従動部7が押し込まれることを抑制し、駆動部5及び従動部7の中心部の長さが変動することを抑制できる。
 この屈曲操作機構1では、従動部7を屈曲させる際、操作者が駆動部5を360度全方位の何れかに向けて屈曲させる。これにより、何れか一つ又は複数の駆動ワイヤー25が引かれ、従動部7を引張り従動させて屈曲させることになる。従って、屈曲操作機構1が適用された機器のエンドエフェクタ等を所望の方向に指向させることができる。
 駆動ワイヤー25が引かれると、図4(B)及び図5(B)のように、屈曲の内側では、内筒15の外コイル部21の隣接巻部21a間のピッチ21bが小さくなり、屈曲の外側では、内筒15の外コイル部21の隣接巻部21a間のピッチ21bが大きくなる。これにより、内筒15の中心部の長さは屈曲時も変わらずに姿勢が安定する。
 このとき、内筒15の内コイル部19が屈曲の外側へ向けて押し出される。この内コイル部19の押出しは、屈曲外側部分で内筒15の外コイル部21の隣接巻部21a間の大きくなったピッチ21bにより許容される。このため、円滑に屈曲動作を行わせることができる。
 しかも、屈曲時には、内筒15の外コイル部21の隣接巻部21a間に内コイル部19の対応する巻部19aが嵌合し続けている。
 このため、直状時と同様に、駆動部5及び従動部7は、軸方向の圧縮による不用意な押込みが抑制され、中心部の長さが変動することを抑制できる。従って、従動部7は、駆動部5の屈曲に対してリニアに従動し、追従性良く屈曲する。
[実施例1の効果]
 以上説明したように、本実施例では、弾性的に屈曲可能な駆動部5と、駆動部5に対して離間して設けられ弾性的に屈曲可能な従動部7と、駆動部5及び従動部7間を接続し、駆動部5の屈曲に応じて従動部7を引張り屈曲させるリンク部9とを備える。
 駆動部5及び従動部7のそれぞれは、軸方向に対して屈曲可能な内コイル部19及び外コイル部21を備え、外コイル部21の隣接巻部21a間のピッチ21bに内コイル部19の対応する巻部19aが嵌合する。
 従って、本実施例では、屈曲時及び屈曲前後の非屈曲時において、駆動部5及び従動部7の軸方向への押込みが抑制され、駆動部5に対する従動部7の追従性を向上することができ、直観的な操作を可能とする。
 また、リンク部9は、駆動部5及び従動部7の中心から径方向に変位した位置を接続する索状部材としての駆動ワイヤー25であり、屈曲操作機構1は、駆動部5の屈曲角度をθ1、従動部7の屈曲角度をθ2、駆動ワイヤー25の駆動部5での変位量をr1、駆動ワイヤー25の従動部7での変位量をr2とした場合に、θ1:θ2=r2:r1の関係を有する。
 本実施例では、駆動部5及び従動部7の軸方向への押込みが抑制されるため、駆動部5及び従動部7の長さL1及びL2の関係を維持し、θ1:θ2=r2:r1の関係を確実に得ることができる。従って、駆動部5及び従動部7の屈曲角度θ1及びθ2を駆動ワイヤー25の変位量に応じて正確に設定することができる。
 本実施例では、変位量r1及びr2が等しく、屈曲角度θ1及びθ2が等しく設定されているので、駆動部5を屈曲させた分だけ従動部7を確実に屈曲させることができ、より直観的な動作が可能となる。
 図7(A)及び(B)は、本発明の実施例2に係る屈曲操作機構の概略断面図であり、図7(A)は、平常時、図7(B)は、屈曲時を示す。図8は、図7の屈曲操作機構の駆動ワイヤーの状態を示す斜視図である。なお、実施例2では、実施例1と対応する構成に同符号を付して重複した説明を省略する。
 実施例2では、各索状部材としての駆動ワイヤー25が駆動部5と従動部7とを周方向で180度異なる位置で接続する。その他は実施例1と同一である。
 すなわち、各駆動ワイヤー25は、螺旋状になるように周方向に漸次変位して設けられ、駆動部5の可動部13に対する接続位置から従動部7の可動部13に対する接続位置までの間に周方向に180度変位する。なお、駆動ワイヤー25は、変位量を180度に限らず他の任意の角度とし、この角度に応じて駆動部5と従動部7とを周方向で異なる位置を接続する構成としてもよい。
 本実施例の駆動ワイヤー25は、駆動部5及び従動部7巻であるシャフト3内で螺旋状に形成され、このシャフト3内での螺旋状により180度異なる位置での接続に対応して周方向に180度変位する。つまり、駆動部5及び従動部7内では、駆動ワイヤー25は螺旋状ではなく平行となっている。ただし、駆動ワイヤー25は、駆動部5の可動部13から従動部7の可動部13まで全体として螺旋状に構成してもよい。
 シャフト3内では、軸方向に複数配置された保持部材等に漸次周方向に変位した保持用の孔を形成し、この保持用の孔に駆動ワイヤー25を挿通することで螺旋形状が保持される。駆動部5及び従動部7では、実施例1と同様にして駆動ワイヤー25を挿通する。
 かかる実施例2では、駆動部5を屈曲させた方向に従動部7を屈曲させることができ、より直観的な操作を行うことができる。また、本実施例では、シャフト3内でのみ駆動ワイヤー25が螺旋状になっているため、駆動部5及び従動部7の構造の複雑化を防止し、動作の安定化を図り、且つ汎用性を向上できる。その他、実施例2でも、実施例1と同様の作用効果を奏することができる。
 図9は、本発明の実施例3に係る屈曲操作機構を示す屈曲時の概略断面図である。なお、実施例3では、実施例1と対応する構成に同符号を付して重複した説明を省略する。
 実施例3では、駆動部5に対するリンク部9の接続位置と駆動部5の基端部としての基部11までの長さL1を、従動部7に対するリンク部9の接続位置と従動部7の基端部としての基部11までの長さL2よりも長くしたものである。その他は実施例1と同一である。
 本実施例では、駆動部5の長さを従動部7の長さよりも軸方向に長くし、リンク部9の駆動ワイヤー25が実施例1と同様に駆動部5と従動部7の可動部13間を接続する。
 なお、長さL1を長さL2よりも短く形成してもよい。この場合、駆動部5の長さを従動部7の長さよりも軸方向に短くし、リンク部9の駆動ワイヤー25が実施例1と同様に駆動部5と従動部7の可動部13間を接続すればよい。従って、本実施例では、長さL1が長さL2とは異なればよい。
 かかる実施例3では、実施例1と同様に駆動部5の屈曲角度θ1と従動部7の屈曲角度θ2とが等しいため、屈曲角度θ1とするまでの駆動部5の可動部13の変位量が屈曲角度θ2となるまでの従動部7の可動部13の変位量よりも大きくなる。
 この結果、駆動部5の可動部13の大きな変位によって従動部7の可動部13の小さな変位を制御することができる。駆動部5を小さくすることなく従動部7の繊細な動作を可能にでき、繊細な動作の操作性を向上することができると共に操作ミス等を抑制することができる。
 逆に、長さL1を長さL2よりも短く形成した場合は、駆動部5の可動部13の小さな変位によって従動部7の可動部13の大きな変位を制御することができ、駆動部5を大きくすることなく従動部7に大きな変位を行わせることができる。
 その他、本実施例でも、実施例2と同様の作用効果を奏することができる。
 図10は、本発明の実施例4に係る屈曲操作機構を示す屈曲時の概略断面図である。なお、実施例4では、実施例2と対応する構成に同符号を付して重複した説明を省略する。
 実施例4では、駆動部5での駆動ワイヤー25の変位量r1を従動部7での駆動ワイヤー25の変位量r2よりも大きくしたものである。その他は、実施例1と同一である。
 すなわち、駆動部5の外筒17を従動部7の外筒17よりも大径にし、これに応じて駆動部5の挿通孔23cを従動部7の挿通孔23cよりも径方向の外側に配置している。この挿通穴23cに駆動ワイヤー25を挿通することで、変位量r1を変位量r2よりも大きくしている。
 このため、θ1:θ2=r2:r1の関係より、駆動部5の屈曲角度θ1が従動部7の屈曲角度θ2よりも小さくなる。なお、変位量r1を変位量r2よりも小さくしてもよい。
 かかる実施例4では、駆動部5の屈曲角度θ1が小さい屈曲動作によって、従動部7に屈曲角度θ2が大きい屈曲動作を行わせることができる。このため、本実施例では、少ない操作力で従動部7を大きく屈曲させることができる。しかも、駆動部5の径を大きくして操作しやすくでき、より小さな操作力での屈曲が可能となる。
 逆に、変位量r1を変位量r2よりも小さくした場合は、駆動部5の屈曲角度θ1が大きい屈曲動作によって、従動部7に屈曲角度θ2が小さい屈曲動作を行わせることができる。従って、従動部7の繊細な動作を可能にでき、繊細な動作の操作性を向上することができると共に操作ミス等を抑制することができる。
 その他、実施例4でも、実施例2と同様の作用効果を奏することができる。
 図11は、本発明の実施例5に係る屈曲操作機構の駆動ワイヤーの状態を示す概略図である。なお、実施例4では、実施例1と対応する構成に同符号を付して重複した説明を省略する。
 本実施例では、駆動ワイヤー25を3本にしている。その他は、実施例1と同一である。3本の駆動ワイヤー25は、周方向に所定間隔毎に配置され、それぞれ駆動部5と従動部7とを軸方向で対向した位置で接続する。
 かかる実施例5でも、実施例1と同様の作用効果を奏することができる。
 図12は、実施例5の変形例に係る屈曲操作機構の駆動ワイヤーの状態を示す概略図である。図13は、図12の屈曲操作機構の駆動ワイヤーの接続位置を示す概念図である。
 変形例では、実施例5において、実施例2と同様に、駆動ワイヤー25が駆動部5と従動部7とを周方向で180度異なる位置で接続している。
 かかる変形例では、実施例2と同様の作用効果を奏することができる。
1 屈曲操作機構
5 駆動部
7 従動部
9 リンク部
11 基部(先端部)
13 可動部(基端部)
19 内コイル部
19a 巻部
21 外コイル部
21a 巻部
25 駆動ワイヤー(索状部材)

Claims (6)

  1.  弾性的に屈曲可能な駆動部と、
     前記駆動部に対して離間して設けられ弾性的に屈曲可能な従動部と、
     前記駆動部及び前記従動部間を接続し前記駆動部の屈曲に応じて前記従動部を引張り屈曲させるリンク部と、
     を備え、
     前記駆動部及び前記従動部のそれぞれは、軸方向に対して屈曲可能な内コイル部及び外コイル部を備え、前記外コイル部の隣接巻部間の隙間に前記内コイル部の対応する巻部が嵌合する、
     屈曲操作機構。
  2.  請求項1記載の屈曲操作機構であって、
     前記駆動部に対する前記リンク部の接続位置と前記駆動部の基端部までの長さが、前記従動部に対する前記リンク部の接続位置と前記従動部の基端部までの長さと異なる、
     屈曲操作機構。
  3.  請求項2記載の屈曲操作機構であって、
     前記駆動部と前記従動部は、軸方向長さが異なり、
     前記リンク部は、前記駆動部と前記従動部の先端部間を接続する、
     屈曲操作機構。
  4.  請求項1~3の何れか一項に記載の屈曲操作機構であって、
     前記リンク部は、前記駆動部及び前記従動部の中心から径方向に変位した位置を接続する索状部材であり、
     前記駆動部の屈曲角度をθ1、前記従動部の屈曲角度をθ2、前記索状部材の前記駆動部での変位量をr1、前記索状部材の前記従動部での変位量をr2とした場合、
     θ1:θ2=r2:r1の関係を有する、
     屈曲操作機構。
  5.  請求項1~4の何れか一項に記載の屈曲操作機構であって、
     前記リンク部は、1以上の索状部材からなり、
     各索状部材は、前記駆動部と前記従動部とを周方向で180度異なる位置で接続する、
     屈曲操作機構。
  6.  請求項5記載の屈曲操作機構であって、
     前記各索状部材は、前記駆動部及び前記従動部間で螺旋状に形成され、該駆動部及び前記従動部間での螺旋状により前記180度異なる位置での接続に対応して180度変位する、
     屈曲操作機構。
PCT/JP2021/040035 2020-10-30 2021-10-29 屈曲操作機構 WO2022092267A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202180073380.XA CN116507462A (zh) 2020-10-30 2021-10-29 弯曲操作机构
US18/034,360 US20230405844A1 (en) 2020-10-30 2021-10-29 Bending operation mechanism
EP21886384.3A EP4238722A4 (en) 2020-10-30 2021-10-29 BENDING OPERATING MECHANISM

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-183191 2020-10-30
JP2020183191A JP2022073298A (ja) 2020-10-30 2020-10-30 屈曲操作機構

Publications (1)

Publication Number Publication Date
WO2022092267A1 true WO2022092267A1 (ja) 2022-05-05

Family

ID=81384032

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/040035 WO2022092267A1 (ja) 2020-10-30 2021-10-29 屈曲操作機構

Country Status (6)

Country Link
US (1) US20230405844A1 (ja)
EP (1) EP4238722A4 (ja)
JP (1) JP2022073298A (ja)
CN (1) CN116507462A (ja)
TW (1) TWI831068B (ja)
WO (1) WO2022092267A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015105421A1 (en) 2014-01-09 2015-07-16 Technische Universiteit Delft Industrial or medical tool with steering cables
CN110269694A (zh) * 2018-03-14 2019-09-24 深圳市精锋医疗科技有限公司 连接组件、操作臂、从操作设备及手术机器人
JP2020026019A (ja) * 2018-08-14 2020-02-20 日本発條株式会社 手術支援ロボット用インスツルメント

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2998242A (en) * 1959-05-18 1961-08-29 John G Schwarzbeck Stress equalized coil spring
US7410483B2 (en) * 2003-05-23 2008-08-12 Novare Surgical Systems, Inc. Hand-actuated device for remote manipulation of a grasping tool
US7147650B2 (en) * 2003-10-30 2006-12-12 Woojin Lee Surgical instrument
US7686826B2 (en) * 2003-10-30 2010-03-30 Cambridge Endoscopic Devices, Inc. Surgical instrument
US8398587B2 (en) * 2008-02-05 2013-03-19 Steerable Instruments B.V.B.A. Steerable tube
US10962093B2 (en) * 2014-08-27 2021-03-30 Steerable Instruments nv Torque-transmitting steering mechanism for a steerable tool
US20210186637A1 (en) * 2017-10-12 2021-06-24 Nhk Spring Co., Ltd. Bending structure and flexible tube for medical manipulator

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015105421A1 (en) 2014-01-09 2015-07-16 Technische Universiteit Delft Industrial or medical tool with steering cables
CN110269694A (zh) * 2018-03-14 2019-09-24 深圳市精锋医疗科技有限公司 连接组件、操作臂、从操作设备及手术机器人
JP2020026019A (ja) * 2018-08-14 2020-02-20 日本発條株式会社 手術支援ロボット用インスツルメント

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4238722A4

Also Published As

Publication number Publication date
US20230405844A1 (en) 2023-12-21
TWI831068B (zh) 2024-02-01
EP4238722A1 (en) 2023-09-06
EP4238722A4 (en) 2024-05-01
CN116507462A (zh) 2023-07-28
TW202216042A (zh) 2022-05-01
JP2022073298A (ja) 2022-05-17

Similar Documents

Publication Publication Date Title
WO2020036085A1 (ja) 屈曲構造体及びこれを用いた関節機能部
JP7475858B2 (ja) 医療用マニピュレーターの可撓チューブ及び屈曲構造体
WO2020209386A1 (ja) 可撓部材
WO2022092267A1 (ja) 屈曲操作機構
US20240116195A1 (en) Bending structure and conductive device
US20230256625A1 (en) Joint function unit
WO2021162089A1 (ja) 屈曲構造体及び関節機能部
US20140117689A1 (en) Gripper with remote cable drive
JP2023153902A (ja) 屈曲構造体
WO2023008274A1 (ja) 屈曲構造体
WO2023095861A1 (ja) 屈曲構造体及びその半製品
EP4331783A1 (en) Bending structure body
EP4302941A1 (en) Bending structural body
JP2023049956A (ja) 屈曲構造体
CN116021550A (zh) 弯曲结构、机械臂及机械臂系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21886384

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180073380.X

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 18034360

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021886384

Country of ref document: EP

Effective date: 20230530