WO2022091974A1 - Vehicle lamp - Google Patents

Vehicle lamp Download PDF

Info

Publication number
WO2022091974A1
WO2022091974A1 PCT/JP2021/039107 JP2021039107W WO2022091974A1 WO 2022091974 A1 WO2022091974 A1 WO 2022091974A1 JP 2021039107 W JP2021039107 W JP 2021039107W WO 2022091974 A1 WO2022091974 A1 WO 2022091974A1
Authority
WO
WIPO (PCT)
Prior art keywords
light source
semiconductor light
lighting
scanning
circuit
Prior art date
Application number
PCT/JP2021/039107
Other languages
French (fr)
Japanese (ja)
Inventor
光治 眞野
Original Assignee
株式会社小糸製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社小糸製作所 filed Critical 株式会社小糸製作所
Priority to JP2022559093A priority Critical patent/JPWO2022091974A1/ja
Publication of WO2022091974A1 publication Critical patent/WO2022091974A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60QARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
    • B60Q1/00Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor
    • B60Q1/02Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments
    • B60Q1/04Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments the devices being headlights
    • B60Q1/14Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments the devices being headlights having dimming means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60QARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
    • B60Q11/00Arrangement of monitoring devices for devices provided for in groups B60Q1/00 - B60Q9/00
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/10Controlling the intensity of the light
    • H05B45/14Controlling the intensity of the light using electrical feedback from LEDs or from LED modules
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/32Pulse-control circuits
    • H05B45/325Pulse-width modulation [PWM]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/345Current stabilisation; Maintaining constant current
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/50Circuit arrangements for operating light-emitting diodes [LED] responsive to malfunctions or undesirable behaviour of LEDs; responsive to LED life; Protective circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21WINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO USES OR APPLICATIONS OF LIGHTING DEVICES OR SYSTEMS
    • F21W2102/00Exterior vehicle lighting devices for illuminating purposes
    • F21W2102/10Arrangement or contour of the emitted light
    • F21W2102/13Arrangement or contour of the emitted light for high-beam region or low-beam region
    • F21W2102/135Arrangement or contour of the emitted light for high-beam region or low-beam region the light having cut-off lines, i.e. clear borderlines between emitted regions and dark regions
    • F21W2102/14Arrangement or contour of the emitted light for high-beam region or low-beam region the light having cut-off lines, i.e. clear borderlines between emitted regions and dark regions having vertical cut-off lines; specially adapted for adaptive high beams, i.e. wherein the beam is broader but avoids glaring other road users
    • F21W2102/145Arrangement or contour of the emitted light for high-beam region or low-beam region the light having cut-off lines, i.e. clear borderlines between emitted regions and dark regions having vertical cut-off lines; specially adapted for adaptive high beams, i.e. wherein the beam is broader but avoids glaring other road users wherein the light is emitted between two parallel vertical cutoff lines, e.g. selectively emitted rectangular-shaped high beam
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21WINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO USES OR APPLICATIONS OF LIGHTING DEVICES OR SYSTEMS
    • F21W2102/00Exterior vehicle lighting devices for illuminating purposes
    • F21W2102/10Arrangement or contour of the emitted light
    • F21W2102/13Arrangement or contour of the emitted light for high-beam region or low-beam region
    • F21W2102/165Arrangement or contour of the emitted light for high-beam region or low-beam region the borderlines between emitted regions and dark regions other than cut-off lines being variable
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]

Definitions

  • This disclosure relates to lighting fixtures for vehicles used in automobiles and the like.
  • Vehicle lighting fixtures can generally switch between low beam and high beam.
  • the low beam illuminates the vicinity of the own vehicle with a predetermined illuminance, and the light distribution rule is set so as not to give glare to the oncoming vehicle or the preceding vehicle, and is mainly used when traveling in an urban area.
  • the high beam illuminates a wide area and a distant place in front with a relatively high illuminance, and is mainly used when traveling at high speed on a road where there are few oncoming vehicles and preceding vehicles. Therefore, although the high beam has better visibility by the driver than the low beam, there is a problem that glare is given to the driver and pedestrian of the vehicle existing in front of the vehicle.
  • ADB Adaptive Driving Beam
  • a shutter method for controlling an actuator, a rotary method, an LED array method, etc. have been proposed.
  • the width of the light-off area (light-shielding area) can be continuously changed, but the number of light-off areas is limited to one.
  • the LED array method it is possible to set a plurality of extinguishing areas, but the width of the extinguishing area is limited by the irradiation width of the LED chip, so that the extinguishing area is discrete.
  • the applicant has proposed a scanning method as an ADB method that can solve these problems (see Patent Documents 2 and 3).
  • the scan method is to incident light on a rotating reflector (blade mirror), reflect the incident light at an angle according to the rotation position of the reflector, scan the reflected light in front of the vehicle, and turn on and off the light source.
  • a desired light distribution pattern is formed in front of the vehicle by changing the light distribution pattern according to the rotation position of the vehicle.
  • the light source is turned on and off (on and off) in a time-division manner while keeping the amount of drive current flowing through the light source constant during one scan. Therefore, it was easy to realize a glare-free function that shields a predetermined area from light, but the illuminance in the irradiation area was restricted to a substantially constant level.
  • Patent Document 4 discloses a specific method for forming a light distribution using a scan-type vehicle lamp.
  • a light distribution is formed by a multi-channel light source.
  • Each of the multi-channel light sources is responsible for a part of the horizontal range, and the scan range of each light source is shifted horizontally while partially overlapping the scan range of the other light sources.
  • the amount of light of each light source is controlled by so-called DC dimming (analog dimming), and is variable in units of one scan due to the limitation of response speed.
  • the illuminance at each scanning position can be controlled by combining multiple light sources on, off, and the amount of light, and it is now compatible with various light distribution patterns other than the glare-free function (for example, electronic swivel). There is.
  • Patent Document 4 requires light sources and lighting circuits of many channels to form one light distribution, has a complicated structure, and also controls the light source to form a desired light distribution. It was complicated.
  • a certain aspect of the present disclosure has been made in view of the above problems, and one of its exemplary purposes is to provide a vehicle lamp capable of generating various light distribution patterns other than the glare-free function.
  • a certain aspect of the present disclosure has been made in view of the above problems, and one of its exemplary purposes is to provide a lamp capable of suppressing the occurrence of vertical stripes.
  • a certain aspect of the present disclosure is made in such a situation, and one of its exemplary purposes is to provide a vehicle lamp capable of detecting an abnormality immediately after the start of lighting in a scanning lamp.
  • a certain aspect of the present disclosure is made in such a situation, and one of the exemplary purposes is to provide a vehicle lamp capable of reliable abnormality detection.
  • the vehicle lighting fixture of one aspect of the present disclosure includes a semiconductor light source, a scanning light source that scans the emitted light of the semiconductor light source over the entire horizontal range of the light distribution, and each scanning in synchronization with the scanning of the scanning light source. It is provided with a lighting circuit capable of dimming the amount of light of a semiconductor light source at a position in multiple gradations by pulse modulation.
  • the vehicle lighting fixture of one aspect of the present disclosure includes a semiconductor light source, and pulse-modulates the amount of light of the semiconductor light source at each scanning position in synchronization with the scanning of the scanning type light source that scans the emitted light of the semiconductor light source and the scanning type light source. It is equipped with a lighting circuit that can be dimmed with multiple gradations. The lighting circuit changes the phase of pulse modulation with each scan.
  • the vehicle lighting fixture of one aspect of the present disclosure includes a semiconductor light source, controls a scanning light source that scans the emitted light of the semiconductor light source, and controls a drive current supplied to the semiconductor light source in synchronization with scanning of the scanning light source, and is a semiconductor. It is equipped with a constant current driver that controls the amount of light from the light source.
  • the constant current driver is connected to a series switch provided in series with the semiconductor light source and a series connection circuit between the series switch and the semiconductor light source, and (i) outputs a constant current during the on period of the series switch, and (ii) the series switch.
  • the driver circuit that drives the series switch based on the pulse dimming signal, and the output voltage of the buck converter.
  • the constant current driver drives the semiconductor light source and performs initialization lighting that raises the output voltage of the buck converter to the specified voltage.
  • the vehicle lighting fixture of one aspect of the present disclosure includes a semiconductor light source, controls a scanning light source that scans the emitted light of the semiconductor light source, and controls a drive current supplied to the semiconductor light source in synchronization with scanning of the scanning light source, and is a semiconductor. It is equipped with a constant current driver that controls the amount of light from the light source.
  • the constant current driver is connected to a series switch provided in series with the semiconductor light source and a series connection circuit between the series switch and the semiconductor light source, and (i) outputs a constant current during the ON period of the series switch, and (ii) the series switch.
  • the driver circuit that drives the series switch based on the pulse dimming signal, and the output voltage of the buck converter. Based on this, the abnormality detection circuit that detects anomalies, the duty cycle of the pulse dimming signal, and the product of the lighting time are integrated to calculate the cumulative lighting time, and the abnormality is detected while the cumulative lighting time is lower than the predetermined threshold value. It is provided with a mask processing unit that masks abnormality detection by the circuit.
  • an abnormality can be reliably detected.
  • FIG. 4 (a) and 4 (b) are diagrams illustrating the formation of glare-free light distribution by vehicle lamps.
  • 5 (a) and 5 (b) are diagrams illustrating the formation of a partially dimmed light distribution by a vehicle lamp.
  • 6 (a) and 6 (b) are diagrams illustrating an electronic swivel by a vehicle lamp. It is a figure which shows the lamp for a vehicle which concerns on the comparative technique.
  • FIG. 11A is a diagram showing current control by a series switch
  • FIG. 11B is a diagram showing current control by a bypass switch.
  • FIG. 11A is a diagram showing current control by a series switch
  • FIG. 11B is a diagram showing current control by a bypass switch.
  • FIG. 11A is a diagram showing current control by a series switch
  • FIG. 11B is a diagram showing current control by a bypass switch.
  • FIG. 11A is a diagram showing current control by a series switch
  • FIG. 11B is a diagram showing current control by a bypass switch.
  • It is a circuit diagram which shows the structural example of the LED driver.
  • It is a circuit diagram which shows another configuration example of the LED driver.
  • It is a circuit diagram which shows the further structural example of the LED driver.
  • FIG. 25 is a block diagram of a vehicle lamp according to the embodiment.
  • 26 (a) and 26 (b) are diagrams illustrating the operation of the mask processing unit. It is a block diagram of the mask processing part which concerns on the 1st processing example. It is a block diagram of the mask processing part which concerns on the 2nd processing example. It is a block diagram of the mask processing part which concerns on 3rd processing example.
  • 30 (a) to 30 (c) are diagrams illustrating vertical stripes in a combination of scan-type light distribution formation and pulse dimming. It is a block diagram of the lamp for a vehicle which concerns on embodiment.
  • 32 (a) to 32 (c) are views illustrating an example of the operation of a vehicle lamp.
  • 33 (a) to 33 (c) are diagrams illustrating an example of the operation of a vehicle lamp.
  • FIG. 3 is an operation waveform diagram of the PWM signal generation unit of FIG. 34. It is operation waveform diagram of the PWM signal generation part which concerns on modification 1.
  • FIG. It is a block diagram of the lighting equipment for a vehicle which supports the initialization lighting.
  • FIG. 3 is an operation waveform diagram of the vehicle lamp of FIG. 37. It is an operation waveform diagram of the lamp for a vehicle which concerns on modification 2.
  • FIG. 3 is an operation waveform diagram of the lamp of FIG. 34. It is an operation waveform diagram of the lamp for a vehicle which concerns on modification 2.
  • the vehicle lighting equipment includes a semiconductor light source, a scanning light source that scans the emitted light of the semiconductor light source over the entire horizontal range of the light distribution, and each scanning position in synchronization with the scanning of the scanning light source. It is provided with a lighting circuit capable of dimming the light amount of the semiconductor light source in multiple gradations by pulse modulation.
  • the amount of light from the light source can be changed at high speed according to the scanning position within one scanning cycle. Therefore, as compared with DC dimming (analog dimming) in which the amount of light is constant within one scanning cycle, the variation of light distribution that can be formed by one light source increases. As a result, the number of light sources and lighting circuits can be reduced as compared with the conventional case, or control can be simplified.
  • Pulse modulation includes pulse width modulation (PWM), pulse frequency modulation (PFM), pulse density modulation (PDM), etc., and switches the drive current flowing through the light source at high speed to obtain the time average value of the drive current. It may include varying modulation schemes.
  • the scanning type light source may further include a reflector that receives the emitted light of the semiconductor light source and scans the reflected light in front of the vehicle by repeating a predetermined periodic motion.
  • the lighting circuit may generate a control waveform of pulse modulation in synchronization with the motion of the reflector, and may switch the drive current supplied to the semiconductor light source according to the control waveform.
  • the lighting circuit may include a series switch provided in series with the semiconductor light source and a constant current driver connected to the series connection circuit of the series switch and the semiconductor light source.
  • the lighting circuit may switch the series switch in a duty cycle according to the scanning position.
  • Patent Document 4 In the prior art (Patent Document 4), two semiconductor light sources are connected in series, and a bypass switch is provided in parallel with each semiconductor light source. In this configuration, switching one bypass switch at a frequency sufficiently higher than the scanning frequency will affect the other semiconductor light source. On the other hand, by individually driving each semiconductor light source with a series switch, it is possible to eliminate the influence of driving one channel on other channels.
  • the constant current driver may include a switching converter and a converter controller that drives the switching converter so that the detected value of the output current of the switching converter approaches a predetermined target value.
  • the vehicle lamp according to the embodiment includes a semiconductor light source, and the light amount of the semiconductor light source at each scanning position is pulse-modulated in synchronization with the scanning of the scanning light source and the scanning light source that scans the emitted light of the semiconductor light source. It is equipped with a lighting circuit that can be dimmed with multiple gradations. The lighting circuit changes the phase of pulse modulation with each scan.
  • Pulse modulation includes pulse width modulation (PWM), pulse frequency modulation (PFM), pulse density modulation (PDM), etc., and switches the drive current flowing through the light source at high speed to obtain the time average value of the drive current. It may include varying modulation schemes.
  • Changing the phase of pulse modulation may include changing the start timing of the pulse cycle, changing the pulse generation position within the pulse cycle, and the like.
  • the lighting portion and the extinguishing portion due to pulse modulation can be moved for each scan.
  • vertical lines vertical stripes
  • the lighting circuit may shift the phase of pulse modulation by 180 ° for each scan.
  • the lighting circuit may shift the phase of pulse modulation by 360 ° / N (N ⁇ 3) for each scan.
  • the lighting circuit is connected to a series switch provided in series with the semiconductor light source, a step-down converter having a constant current output connected to the series connection circuit of the series switch and the semiconductor light source, and a phase-down converter for each scan. It may be provided with a dimming signal generation unit that generates a pulse-modulated pulse dimming signal that shifts the current, and a driver circuit that drives a series switch based on the pulse dimming signal.
  • the vehicle lighting equipment includes a semiconductor light source, controls a scanning type light source that scans the emitted light of the semiconductor light source, and controls a drive current supplied to the semiconductor light source in synchronization with scanning of the scanning type light source, and controls the semiconductor light source. It is equipped with a constant current driver that controls the amount of light.
  • the constant current driver is connected to a series switch provided in series with the semiconductor light source and a series connection circuit between the series switch and the semiconductor light source, and (i) outputs a constant current during the on period of the series switch, and (ii) the series switch.
  • the driver circuit that drives the series switch based on the pulse dimming signal, and the output voltage of the buck converter.
  • the constant current driver drives the semiconductor light source and performs initialization lighting that raises the output voltage of the buck converter to the specified voltage.
  • the series switch cuts off the output current of the buck converter and switches the continuity at high speed, so it is not necessary to change the output voltage of the buck converter in steps.
  • ringing of the drive current due to charging / discharging of the output capacitor can be suppressed, and dimming by high-speed pulse modulation of several kHz to several tens of kHz becomes possible.
  • Pulse modulation includes pulse width modulation (PWM), pulse frequency modulation (PFM), pulse density modulation (PDM), etc., and switches the drive current flowing through the light source at high speed to obtain the time average value of the drive current. It may include varying modulation schemes.
  • the abnormality detection circuit can immediately start abnormality detection. can.
  • the abnormality detection circuit may determine that the series switch is abnormal if the output voltage of the buck converter deviates from the normal range during the off period of the series switch.
  • the constant current driver may drive the semiconductor light source with a brightness that cannot be visually recognized from the surroundings in the initialized lighting. As a result, the initialization lighting can be completed without being noticed by the surrounding people.
  • the constant current driver may turn on the semiconductor light source with a brightness that can be visually recognized from the surroundings in the initialized lighting. As a result, the initialized lighting can be shown to the surrounding people as an effect.
  • the vehicle lighting fixture may further include a leveling device that controls the optical axis of the scanning light source in the pitch direction. In the initialized lighting, the leveling device may lower the optical axis of the scanning light source.
  • the constant current driver may reduce the duty cycle of the pulse dimming signal to 5% or less or the duty cycle to the minimum value in the initialized lighting.
  • the scanning light source may include a plurality of semiconductor light sources.
  • the constant current driver may reduce the amount of drive current in the initialized lighting as compared with the normal lighting. This makes it difficult to see from the surroundings.
  • the vehicle lighting equipment includes a semiconductor light source, controls a scanning type light source that scans the emitted light of the semiconductor light source, and controls a drive current supplied to the semiconductor light source in synchronization with scanning of the scanning type light source, and controls the semiconductor light source. It is equipped with a constant current driver that controls the amount of light.
  • the constant current driver is connected to a series switch provided in series with the semiconductor light source and a series connection circuit between the series switch and the semiconductor light source, and (i) outputs a constant current during the ON period of the series switch, and (ii) the series switch.
  • the driver circuit that drives the series switch based on the pulse dimming signal, and the output voltage of the buck converter. Based on this, the abnormality detection circuit that detects anomalies, the duty cycle of the pulse dimming signal, and the product of the lighting time are integrated to calculate the cumulative lighting time, and the abnormality is detected while the cumulative lighting time is lower than the predetermined threshold value. It is provided with a mask processing unit that masks abnormality detection by the circuit.
  • the series switch cuts off the output current of the buck converter and switches the continuity at high speed, so it is not necessary to change the output voltage of the buck converter in steps.
  • ringing of the drive current due to charging / discharging of the output capacitor can be suppressed, and dimming by high-speed pulse modulation of several kHz to several tens of kHz becomes possible.
  • Pulse modulation includes pulse width modulation (PWM), pulse frequency modulation (PFM), pulse density modulation (PDM), etc., and switches the drive current flowing through the light source at high speed to obtain the time average value of the drive current. It may include varying modulation schemes.
  • the output voltage of the buck converter is 0V, and it is impossible to detect an abnormality based on the output voltage.
  • this configuration by calculating the cumulative lighting time from the start of lighting in consideration of the duty cycle of pulse dimming, it is possible to accurately detect that the output voltage of the buck converter has risen to the specified voltage, and then it can be detected accurately. , Abnormality detection based on the output voltage is possible. Since the duty cycle is equivalent to the brightness (dimming rate), the process of integrating the product of the brightness of the semiconductor light source and the lighting time is also included in the scope of the present disclosure.
  • the abnormality detection circuit may weight the lighting time with a coefficient corresponding to the power supply voltage and integrate the lighting time.
  • the lighting time is weighted by the power supply voltage and integrated, so that it can be accurately detected that the output voltage of the buck converter has risen to the specified voltage.
  • the abnormality detection circuit may determine that the series switch is abnormal if the output voltage of the buck converter deviates from the normal range during the off period of the series switch.
  • the pulse dimming signal generation circuit that generates the pulse dimming signal and the mask processing unit may be mounted on the same microcontroller. Since the microcontroller that generates the pulse dimming signal knows the duty cycle of the pulse dimming signal, the configuration can be simplified by performing the mask processing by the software processing of the microcontroller.
  • the "state in which the member A is connected to the member B" means that the member A and the member B are physically directly connected, and the member A and the member B are electrically connected to each other. It also includes cases of being indirectly connected via other members that do not substantially affect the connection state or impair the functions and effects performed by the combination thereof.
  • a state in which the member C is provided between the member A and the member B means that the member A and the member C, or the member B and the member C are directly connected, and their electricity. It also includes cases of being indirectly connected via other members that do not substantially affect the connection state or impair the functions and effects performed by the combination thereof.
  • the reference numerals attached to electric signals such as voltage signals and current signals, or circuit elements such as resistors and capacitors have their respective voltage values, current values, resistance values, and capacitance values as necessary. It shall be represented.
  • FIG. 1 is a block diagram of a vehicle lamp 100R according to a comparative technique examined by the present inventors.
  • the vehicle lamp 100R includes a scanning optical system 2, a plurality of LEDs 4_1 to 4_N, a plurality of LED drivers 10, and a light distribution controller 20.
  • a plurality of LEDs 4_1 to 4_N are connected in series every two (or three) to form a plurality of M LED strings 6_1 to 6_M.
  • the LED driver 10 is provided for each LED string 6. The reason why the two LEDs are connected in series is to reduce the number of LED drivers.
  • the LED driver 10_1 includes a constant current output buck converter 12 and a drive circuit 14 for bypass switches SW1 and SW2 and bypass switches SW1 and SW2 provided in parallel with LEDs 4_1 and 4_2.
  • the LED drivers 10_1 to 10_M are similarly configured.
  • the scanning optical system 2 horizontally scans the emitted beams BM 1 to BM N of the plurality of LEDs 4_1 to 4_N on the virtual vertical screen 900 in front of the vehicle.
  • individual light distribution patterns PTN 1 to PTN N are formed.
  • a plurality of individual light distribution patterns PTN 1 to PTN N are formed in different ranges in the horizontal direction.
  • synthesizing a plurality of individual light distribution patterns PTN 1 to PTN N a synthetic light distribution of the entire vehicle lamp 100R is formed.
  • the scanning frequency by the scanning optical system 2 needs to be set higher than 60 Hz so that the scanning is not perceived by the human eye. For example, it is set to about 200 Hz, and one scanning cycle is 5 ms.
  • the light amount (luminance) of each LED is controlled by analog dimming (DC dimming), but it is difficult to dynamically change the output current I OUT of the switching converter 12 within a scanning cycle of 5 ms. Therefore, the output current I OUT is constant during one scan cycle, and therefore the illuminance of the irradiated portion included in one individual light distribution pattern PTN i is uniform.
  • the present inventors have studied that in the vehicle lamp 100R of FIG. 1, the light intensity of each of the LEDs 4_1 to 4_N is changed within one scanning cycle by PWM-controlling the bypass switches SW1 to SWN.
  • FIG. 2 is a diagram (measurement result) showing a ringing waveform of the driving current of the LED.
  • the initial state is the state in which the bypass switch SW1 is off and the bypass switch SW2 is on. At this time, the output voltage V OUT of the switching converter 12 becomes VF .
  • VF is a forward voltage of one LED.
  • the switching converter 12 When the bypass switch SW2 is turned off, the switching converter 12 needs to raise its output voltage V OUT to 2 ⁇ VF, and has to charge the output capacitor C1 with the charge of C ⁇ VF . Therefore, immediately after the turn-off of the bypass switch SW2, a part of the output current I OUT is consumed as the charging current of the capacitor C1, so that the output current I OUT is insufficient. In the switching converter 12, feedback is applied so that the insufficient current approaches the target value, but the output current I OUT rings due to the resonance of the inductor of the switching converter 12.
  • ringing time When the duration of ringing (hereinafter referred to as ringing time) was measured by an experiment, it was about 30 to 50 ⁇ s.
  • the PWM frequency of a general non-scanning lamp is about 300 Hz, and the PWM cycle is 3.3 ms.
  • the ringing time of 50 ⁇ s is only about 5% of the PWM cycle, and the influence of ringing on the gradation control is small.
  • the PWM frequency needs to be several times or more, that is, several kHz. It can be said that this is a very high frequency as compared with the PWM frequency of about 300 Hz in a general non-scan type lamp.
  • the PWM cycle is 50 ⁇ s, which is about the same as the ringing time of 50 ⁇ s. Therefore, in the configuration of FIG. 1, it is practically difficult to perform PWM dimming at several tens of kHz by using the bypass switches SW1 and SW2.
  • FIG. 3 is a diagram showing a vehicle lamp 100A according to the first embodiment.
  • the vehicle lamp 100A of FIG. 3 has a scan-type ADB function and forms various light distribution patterns in front of the vehicle.
  • the vehicle lamp 100A mainly includes a scanning light source 200A, a lighting circuit 300A, and a light distribution controller 400.
  • the light distribution controller 400 receives and distributes information (sensor information) S1 and information (vehicle information) S2 such as vehicle speed and steering angle from sensors such as cameras and LiDAR (Light Detection and Ringing, Laser Imaging Detection and Ringing). Determine the light pattern.
  • the light distribution controller 400 may be housed in the lamp body or may be provided on the vehicle side.
  • the light distribution controller 400 transmits information (light distribution pattern information) S3 indicating a light distribution pattern to the vehicle lamp 100.
  • the light distribution controller 400 is also referred to as an ADB ECU (Electronic Control Unit).
  • the scanning light source 200A includes a light source unit 210A, a scanning optical system 220, and a projection optical system 230.
  • the light source unit 210A includes one semiconductor light source 212 and a heat sink (not shown).
  • An LED (light emitting diode), a laser diode, or the like can be used as the semiconductor light source 212.
  • the scanning optical system 220 scans the emitted light (beam) BM of the semiconductor light source 212 in front of the vehicle.
  • the scanning optical system 220 includes a motor 222 and one or a plurality of M (two in this example) blade mirrors 224_1224_2.
  • the M blade mirrors (M ⁇ 2) are mounted at 360 / M ° offset positions, and in this example, the two blade mirrors are mounted at 180 ° offset positions.
  • the optical axis of the semiconductor light source 212 is directed so that the emitted beam BM irradiates one of the M blade mirrors.
  • the incident light BM on the blade mirror 224 is reflected at a reflection angle corresponding to the position of the blade mirror 224 (rotation angle of the rotor), and an instantaneous irradiation spot SPT is formed on the virtual vertical screen 900 in front of the vehicle.
  • the instantaneous irradiation spot SPT has a width ⁇ v in the horizontal direction (H direction) and a width ⁇ h in the vertical direction (V direction).
  • the rotation of the blade mirror 224 changes the reflection angle, that is, the emission direction of the reflected beam BMr, and the horizontal (H direction) position (scanning position) of the instantaneous irradiation spot SPT moves.
  • a light distribution pattern PTN is formed in front of the vehicle.
  • the light distribution pattern PTN formed by one beam BM extends over the entire horizontal range of the vehicle lamp 100A to ⁇ MAX to + ⁇ MAX . That is, the scanning light source 200A scans the reflected beam BMr over the entire horizontal range.
  • ⁇ MAX is about 20 to 25 °.
  • the entire range is the entire range that can be irradiated by scanning, and does not include the range irradiated by a light source other than scanning.
  • the lighting circuit 300A determines the amount of light of the semiconductor light source 212 at each scanning position, that is, the intensity of the beam BM, in synchronization with the scanning of the scanning light source 200A so that the light distribution pattern indicated by the light distribution pattern information S3 can be obtained. Dimming with multiple gradations by pulse modulation.
  • the average amount of drive current I LEDs flowing through the semiconductor light source 212 is changed by PWM (pulse width modulation), and the amount of light of the semiconductor light source 212 is changed (PWM dimming).
  • the PWM frequency is set sufficiently higher than the scanning frequency, and it is desirable that the PWM frequency is, for example, several kHz to several hundred kHz.
  • the lighting circuit 300A may change the amount of current I OUT in a scanning cycle or a control cycle longer than that. That is, PWM dimming and DC dimming may be used together.
  • PWM dimming and DC dimming may be used together.
  • FIG. 4 (a) and 4 (b) are diagrams illustrating the formation of glare-free light distribution by the vehicle lamp 100A.
  • the glare-free light distribution 910 of FIG. 4A includes a light-shielding portion 912 and an irradiation portion 914,916.
  • 4 (a) shows the light distribution on the virtual vertical screen
  • FIG. 4 (b) shows the operation waveform of the vehicle lamp 100A corresponding to the light distribution of FIG. 4 (a).
  • the vertical and horizontal axes of the waveform charts and time charts referred to in the present specification are appropriately enlarged or reduced for easy understanding, and each waveform shown is also simplified for easy understanding. It is made, or exaggerated or emphasized.
  • the lighting circuit 300A sets the duty cycle of the drive current I LED of the semiconductor light source 212 to a non-zero value (100% constant value in this example) in the section corresponding to the irradiation portions 914 and 916, and corresponds to the light shielding portion 912. In this section, the duty cycle of the drive current I LED is set to 0%.
  • 5 (a) and 5 (b) are diagrams illustrating the formation of a partially dimmed light distribution by the vehicle lamp 100A.
  • 5 (a) shows the horizontal illuminance distribution of the light distribution on the virtual vertical screen
  • FIG. 5 (b) shows the operation waveform of the vehicle lamp 100A corresponding to the light distribution of FIG. 5 (a).
  • the partial dimming distribution 920 shown in FIG. 5A includes two dimming portions 922,924 and three non-dimming portions 926,927,928.
  • the duty cycle of the drive current I LED of the semiconductor light source 212 is fixed to 100% in the section corresponding to the non-dimming portion (irradiation portion) 926,927,928, and the duty cycle is fixed to the dimming portion 922,924.
  • the duty cycle of the drive current I LED is 50% and 25%, respectively.
  • partial dimming can be realized by PWM-controlling the drive current I LED flowing through a single semiconductor light source.
  • FIG. 6 (a) and 6 (b) are diagrams illustrating an electronic swivel by a vehicle lamp 100A.
  • FIG. 6A shows the brightest light distribution in the center
  • FIG. 6B shows the brightest light distribution on the right side.
  • the electronic swivel function can be realized by PWM-controlling the drive current I LED flowing through a single semiconductor light source.
  • FIG. 7 is a diagram showing a vehicle lamp 100R according to the comparative technique.
  • the light source unit 210R includes a plurality of semiconductor light sources 212_1 to 212_N. Each of the emission beams BM 1 to BM N of the semiconductor light sources 212_1 to 212_N is scanned in different horizontal ranges on the virtual vertical screen 900, and a plurality of individual light distribution patterns are scanned by scanning the emission beams BM 1 to BM N. PTN 1 to PTN N are formed.
  • the light distribution formed by the vehicle lamp 100R is a superposition of a plurality of individual light distribution patterns PTN 1 to PTN N.
  • the lighting circuit 300R supplies drive currents I LED1 to I LEDN to each of the plurality of semiconductor light sources 212_1 to 212_N.
  • the lighting circuit 300R can turn on and off the drive currents I LED1 to I LEDN , respectively, within one cycle. Further, the lighting circuit 300R can control the amount of current during the on period of each of the drive currents I LED1 to I LEDN by DC dimming, but the amount of current can be switched only for each scan.
  • FIG. 8 is a diagram illustrating light distribution formation by the vehicle lamp 100R according to the comparative technique.
  • N 6 channels.
  • the irradiation widths of the plurality of individual light distribution patterns PTN 1 to PTN 6 are controlled. By superimposing them, a light distribution pattern with a bright left front is formed in this example.
  • the light amount of the light source can be changed at high speed according to the scanning position within one scanning cycle. Therefore, as compared with the conventional analog dimming in which the amount of light is constant within one scanning cycle, the variation of the light distribution that can be formed by one light source increases. As a result, the number of light sources and lighting circuits can be reduced as compared with the conventional case, or control can be simplified.
  • the present disclosure is grasped as a block diagram and a circuit diagram of FIG. 1, and extends to various devices and circuits derived from the waveform diagrams of FIGS. 3 to 4 or the above description, and is limited to a specific configuration. It's not a thing.
  • a more specific configuration example will be described not to narrow the scope of the present disclosure but to facilitate and clarify the essence of the disclosure and the circuit operation.
  • FIG. 9 is a block diagram showing a configuration example of the lighting circuit 300A.
  • the light distribution controller 400 receives sensor information S1 and vehicle information S2.
  • the light distribution controller 400 detects the situation in front of the vehicle, specifically, the presence / absence of an oncoming vehicle, a preceding vehicle, the presence / absence of a pedestrian, and the like based on the sensor information S1. Further, the light distribution controller 400 detects the current vehicle speed, steering angle, and the like based on the vehicle information S2. Based on these information, the light distribution controller 400 determines a light distribution pattern to be irradiated to the front of the vehicle, and transmits information (light distribution pattern information) S3 instructing the light distribution pattern to the lighting circuit 300A.
  • the lighting circuit 300A changes the light amount (luminance) of the semiconductor light source 212 in multiple gradations by PWM dimming while synchronizing with the rotation of the blade mirror 224 based on the light distribution pattern information S3.
  • the lighting circuit 300A mainly includes a position detector 302, a PWM signal generation unit 310, and a constant current driver (hereinafter referred to as LED driver) 320.
  • the position detector 302 is provided to detect the position of the blade mirror 224, in other words, the scanning position of the current beam.
  • the position detector 302 generates a position detection signal S4 indicating the timing at which the predetermined reference point of the blade mirror 224 passes the predetermined position.
  • the reference portion may be the end portion (separation) of the two blade mirrors 224, or may be the center of each blade mirror, and may be any location.
  • a Hall element may be attached to the motor 222 that rotates the blade mirror 224.
  • the Hall signal from the Hall element has a periodic waveform corresponding to the position of the rotor, that is, the position of the blade mirror.
  • the position detector 302 may detect the timing at which the polarity of the Hall signal is inverted, and specifically, may be configured by a Hall comparator that compares a pair of Hall signals.
  • the position detection method of the blade mirror 224 by the position detector 302 is not limited to the one using a Hall element.
  • the position detector 302 may generate the position detection signal S4 by using an optical or other rotary encoder that detects the position of the rotor of the motor 222.
  • the position detector 302 may include a photosensor provided on the back side of the blade mirror 224 and a light source for position detection that irradiates light from the surface side of the blade mirror 224 toward the photosensor.
  • the blade mirror 224 may be provided with a slit or a pinhole. This makes it possible to detect when the slit or pinhole passes over the photo sensor.
  • the slit may be a gap between the two blade mirrors 224.
  • the light source for position detection may be an infrared light source or a semiconductor light source 212. As described above, there may be various variations in the configuration of the position detector 302.
  • the PWM signal generation unit 310 generates a pulse dimming signal PWM_DIM in synchronization with the movement of the blade mirror 224.
  • the PWM signal generation unit 310 may be implemented by combining the microcontroller 304 and the software program, or may be implemented only by hardware.
  • the microcontroller 304 and the LED driver 320 may be mounted on one substrate or may be arranged in one housing.
  • the frequency of the pulse dimming signal PWM_DIM is set higher than 200 Hz, and can be, for example, several kHz to several tens of kHz.
  • the duty cycle of the pulse dimming signal PWM_DIM determines the amount of light of the semiconductor light source 212, and the duty cycle may be set for each PWM cycle or may be set for each of a plurality of PWM cycles. good.
  • the LED driver 320 supplies a drive current I LED to the semiconductor light source 212.
  • the current amount of the drive current I LED is stabilized to a predetermined target value, and the LED driver 320 switches the drive current I LED according to the pulse dimming signal PWM_DIM.
  • FIG. 10 is a circuit diagram showing a configuration example (320A) of the LED driver 320.
  • the LED driver 320A includes a buck converter 322, a series switch 323, and a driver circuit 324.
  • the series switch 323 and the semiconductor light source 212 are connected in series.
  • the series switch 323 is inserted on the anode side of the semiconductor light source 212, but may be inserted between the cathode and the ground.
  • the buck converter 322 is a constant current output switching converter and includes an output circuit 326 and a converter controller 328.
  • the output circuit 326 includes a switching transistor MH, a synchronous rectifying transistor ML, an inductor L1, and an output capacitor C1.
  • the converter controller 328 switches and controls the switching transistor MH and the synchronous rectifying transistor ML of the output circuit 326 so that the output current I OUT of the buck converter 322 approaches a predetermined target amount while the series switch 323 is on.
  • the control method of the converter controller 328 is not particularly limited, and may be an analog controller using an error amplifier, a digital controller including a PID (proportional / integral / differential) compensator, or a hysteresis control controller.
  • the driver circuit 324 drives the series switch 323 in response to the pulse dimming signal PWM_DIM.
  • the driver circuit 324 may be integrated in the same IC as the converter controller 328.
  • the converter controller 328 stops the switching of the switching transistor MH and the synchronous rectifying transistor ML when the pulse dimming signal PWM_DIM is at the off level indicating the off of the series switch 323.
  • the above is the configuration of the LED driver 320A.
  • this LED driver 320A since the output current I OUT of the buck converter 322 is cut off and the continuity is switched at high speed by the series switch 323, it is not necessary to change the output voltage V OUT of the buck converter 322 in a stepwise manner. As a result, ringing of the output current I OUT due to charging / discharging of the output capacitor C1 can be suppressed, and dimming by high-speed pulse modulation of several kHz to several tens of kHz becomes possible.
  • FIG. 11A is a diagram showing current control by a series switch
  • FIG. 11B is a diagram showing current control by a bypass switch. These waveforms show one cycle of PWM dimming, the PWM frequency is 5 kHz (200 ⁇ s cycle), and the duty cycle is 50%.
  • the converter controller 328 stops switching between the switching transistor MH and the synchronous rectifying transistor ML.
  • the voltage V OUT of the output capacitor C1 is kept constant during the period when the series switch 323 is off, so that the fluctuation amount of the output voltage V OUT immediately after the series switch 323 is turned on can be brought close to zero. ..
  • ringing of the output current I OUT can be further suppressed.
  • FIG. 12 is a circuit diagram showing a configuration example of the LED driver 320A.
  • the LED driver 320A includes a control IC (Integrated Circuit) 340.
  • the control IC 340 integrates a switching transistor MH, a synchronous rectifier transistor ML, and a driver circuit 324.
  • the output circuit 326 includes a current detection resistor Rcs.
  • the voltage across the current detection resistor Rcs is fed back to the ISP / ISN pin of the control IC.
  • the transconductance amplifier 330 generates a current corresponding to an error of the current detection signal Vcs, which is the potential difference between the two terminals ISP and ISN, and the reference voltage Vref.
  • the output of the transconductance amplifier 330 is connected to the Vc pin via the sample hold circuit 332.
  • a resistor Rc and a capacitor Cc are connected to the Vc pin.
  • the resistance Rc and the capacitor Cc also serve as a phase compensation circuit.
  • the resistance Rc may be omitted.
  • the capacitor Cc is charged and discharged according to the output current of the transconductance amplifier 330, so that an error voltage Vc is generated in the Vc pin. Due to the feedback, this error voltage Vc increases or decreases so that the current detection signal Vcs approaches the reference voltage Vref.
  • the transconductance amplifier 330 and the phase compensation circuits Rc and Cc are grasped as an error amplifier.
  • the on-time control unit 334 is a pulse width modulator, and generates a control pulse Spwm having a duty cycle corresponding to an error voltage Vc.
  • the frequency of this control pulse Spwm is set even higher than the pulse dimming signal PWM_DIM.
  • the configuration of the on-time control unit 334 is not particularly limited, but may include an oscillator that generates a periodic voltage such as a triangular wave or a sawtooth wave, and generate a control pulse Spwm by comparing the periodic voltage and the error voltage Vc. ..
  • the gate driver 336 drives the switching transistor MH and the synchronous rectifying transistor ML according to the control pulse Spwm.
  • the PWM signal generation unit 310 is composed of a microcontroller.
  • a pulse dimming signal PWM_DIM generated by the PWM signal generation unit 310 is input to the PWM pin of the control IC 340.
  • the driver circuit 324 receives the pulse dimming signal PWM_DIM and drives the series switch 323.
  • the series switch 323 is a polyclonal transistor, and the driver circuit 324 outputs a signal obtained by inverting the pulse dimming signal PWM_DIM from the PWMG pin.
  • the pulse dimming signal PWM_DIM is input to the sample hold circuit 332.
  • the sample hold circuit 332 connects the output of the transconductance amplifier 330 to the Vc pin and the input of the on-time control unit 334 during the on-level (high) period in which the pulse dimming signal PWM_DIM instructs the series switch 323 to turn on. Further, the sample hold circuit 332 maintains the connection between the Vc pin and the input of the on-time control unit 334 during the off-level (low) period in which the pulse dimming signal PWM_DIM instructs the series switch 323 to be turned off, while maintaining the connection of the transconductance amplifier 330. The output is cut off from the Vc pin and the on-time control unit 334.
  • the error voltage Vc of the Vc pin is held during the period when the pulse dimming signal PWM_DIM is off, and when the next pulse dimming signal PWM_DIM is turned on, the error voltage Vc is immediately returned to the appropriate voltage level. Can be made to.
  • the pulse dimming signal PWM_DIM is input to the gate driver 336.
  • the gate driver 336 selectively switches the switching transistor MH and the synchronous rectifying transistor ML according to the control pulse Spwm during the period when the pulse dimming signal PWM_DIM is on level (high). Further, the gate driver 336 stops switching between the switching transistor MH and the synchronous rectifying transistor ML during the period when the pulse dimming signal PWM_DIM is off level (low). Specifically, the gate driver 336 fixes both the switching transistor MH and the synchronous rectifying transistor ML to off during the period when the pulse dimming signal PWM_DIM is off level.
  • FIG. 13 is a circuit diagram showing another configuration example (320B) of the LED driver 320.
  • the LED driver 320B includes a buck converter 322, a bypass switch SW2, and a driver circuit 324.
  • the buck converter 322 may include an output circuit 326 and a converter controller 328, as in FIG.
  • the buck converter 322 produces a regulated output current I OUT to a predetermined target amount.
  • the bypass switch SW2 is connected in parallel with the semiconductor light source 212.
  • the driver circuit 324 drives the bypass switch SW2 in response to the pulse dimming signal PWM_DIM.
  • the output current I OUT is supplied to the semiconductor light source 212 as the drive current I LED
  • the output current I OUT flows to the bypass switch SW2, so that the drive current I LED Is zero.
  • FIG. 14 is a circuit diagram showing still another configuration example (320C) of the LED driver 320.
  • the LED driver 320C includes a constant voltage converter 327 and a constant current source 329.
  • the constant voltage converter 327 produces an output voltage V OUT stabilized at a predetermined voltage level.
  • the constant current source 329 is connected in series with the semiconductor light source 212.
  • the constant current source 329 can be switched on and off, and during the on period, a predetermined amount of stabilized drive current I LED is generated (sink).
  • the on / off of the constant current source 329 is controlled according to the pulse dimming signal PWM_DIM.
  • the configuration of the LED driver 320 is not limited to the one illustrated here.
  • FIG. 15 is a diagram showing a vehicle lamp 100B according to the second embodiment. Differences from the first embodiment will be described.
  • the light source unit 210B of the scanning light source 200B includes a plurality of N (N ⁇ 2) semiconductor light sources 212_1 to 212_N.
  • the optical axes of the semiconductor light sources 212_1 to 212_N are directed so that the respective emitted beams BM 1 to BM N irradiate one of the M blade mirrors.
  • the light beam of the emitted beam BM 2 of the semiconductor light source 212_2 is shown as a representative.
  • the incident light BM 2 on the blade mirror 224 is reflected at a reflection angle corresponding to the position of the blade mirror 224 (rotation angle of the rotor), and an instantaneous irradiation spot SPT 2 is formed on the virtual vertical screen 900 in front of the vehicle. do.
  • the instantaneous irradiation spot SPT 2 has a predetermined width in each of the horizontal direction (H direction) and the vertical direction (V direction).
  • the reflection angle changes, the emission direction of the reflected beam BMr 2 changes as shown by the broken line, and the horizontal (H direction) position (scanning position) of the instantaneous irradiation spot SPT 2 moves. do.
  • an individual light distribution pattern PTN 2 is formed in front of the vehicle.
  • the individual light distribution pattern PTN i is formed by scanning the i-th reflected beam BM r i .
  • the individual light distribution patterns PTN 1 to PTN N formed by the beams BM 1 to BM N are formed at different heights on the virtual vertical screen 900.
  • the light distribution pattern PTN_ALL of the entire vehicle lamp 100 is formed.
  • the individual light distribution patterns PTNs adjacent to each other in the vertical direction may slightly overlap each other in the vertical direction.
  • At least one of the plurality of individual light distribution patterns PTN 1 to PTN N extends over the entire horizontal range of the vehicle lamp 100 to ⁇ MAX to + ⁇ MAX . That is, the scanning light source 200B scans at least one of the plurality of beams BMr 1 to BMr N over the entire horizontal range. In the example of FIG. 15, all the individual light distribution patterns PTN 1 to PTN N extend over the entire horizontal range ⁇ MAX to + ⁇ MAX .
  • the lighting circuit 300B adjusts the light intensity of each of the semiconductor light sources 212_1 to 212_N at each scanning position, that is, the intensity of the beams BM 1 to BM N in multiple gradations in synchronization with the scanning of the scanning light source 200B. ..
  • the lighting circuit 300B may change the amount of current I OUT in a scanning cycle or a control cycle longer than that. That is, PWM dimming and DC dimming may be used together.
  • FIG. 16 is a block diagram showing a configuration example of the lighting circuit 300B of FIG.
  • the lighting circuit 300B includes a plurality of LED drivers 320_1 to 320_N corresponding to the plurality of semiconductor light sources 212_1 to 212_N.
  • the PWM signal generation unit 310 generates pulse dimming signals PWM_DIM_1 to PWM_DIM_N for a plurality of LED drivers 320_1 to 320_N so that the desired light distribution can be obtained.
  • the i-th (1 ⁇ i ⁇ N) LED driver 320 supplies a PWM-modulated drive current I LEDi to the corresponding semiconductor light source 212_i.
  • the configuration of the LED driver 320 is the same as that of the first embodiment.
  • the resolution in the height direction can be improved as compared with the first embodiment.
  • the entire light distribution is vertically divided into a plurality of regions, and a plurality of individual light distribution patterns PTN 1 to PTN N are associated with the plurality of regions, but this is not the case. Some of the plurality of individual light distribution patterns PTN 1 to PTN N may completely overlap.
  • FIG. 17 is a diagram showing a vehicle lamp 100C according to the third embodiment.
  • the light source unit 210C includes a plurality of semiconductor light sources 212_1 to 212_N.
  • the emitted beams BM 1 to BM N of the semiconductor light sources 212_1 to 212_N are irradiated over the entire range of the horizontal scan, but in the third embodiment, the emitted beams BM 1 to BM N are emitted.
  • Different horizontal ranges are scanned on the virtual vertical screen 900, and the scanning of the emitted beams BM 1 to BM N forms a plurality of individual light distribution patterns PTN 1 to PTN N.
  • the light distribution formed by the vehicle lamp 100R is a superposition of a plurality of individual light distribution patterns PTN 1 to PTN N.
  • the lighting circuit 300C can be configured in the same manner as the lighting circuit 300B of the second embodiment.
  • the short-circuit abnormality cannot cut off the current supply to the semiconductor light source 212 even if the pulse dimming signal PWM_DIM is turned off, such as an abnormality in which the series switch cannot be turned off or an abnormality in which both ends of the series switch are short-circuited. It means an abnormality.
  • FIG. 18 is a block diagram of a vehicle lamp 100F having a short abnormality detection function.
  • the vehicle lamp 100F includes a semiconductor light source 212, an LED driver 320F, and a PWM signal generation unit 310.
  • the PWM signal generation unit 310 generates a pulse dimming signal PWM_DIM pulse-modulated so as to form a desired light distribution pattern.
  • the LED driver 320F includes a buck converter 322, a series switch 323, and a driver circuit 324, similarly to the LED driver 320A of FIG. These functions and operations are as described above. That is, the buck converter 322 outputs a constant current during the on period (i) of the series switch 323 (the period during which the pulse dimming signal PWM_DIM is on level). Further, the buck converter 322 stops the switching operation during the off period of the (ii) series switch 323 (the period during which the pulse dimming signal PWM_DIM is at the off level), and has substantially the same output voltage V OUT , that is, the semiconductor as the immediately preceding on period. It is configured to maintain the forward voltage of the light source 212.
  • the LED driver 320F further includes an abnormality detection circuit 370.
  • the abnormality detection circuit 370 determines that the series switch 323 is abnormal and asserts the abnormality detection signal (fail signal) FAIL.
  • the fail signal FAIL is transmitted to the PWM signal generation unit 310 or an upper block such as another microcontroller, processor, or ECU.
  • the PWM signal generation unit 310 that has received the fail signal FAIL may stop the generation of the pulse dimming signal PWM_DIM and turn off the semiconductor light source 212.
  • 19 (a) and 19 (b) are diagrams illustrating the operation of the vehicle lamp 100F of FIG.
  • an operation for one scan is taken as an example when forming a light distribution including two light-shielding portions and one dimming portion.
  • the pulse dimming signal PWM_DIM is an off-level (low) in the light-shielding portion, a pulse signal having a duty cycle according to the dimming rate in the dimming portion, and an on-level (high) in the other portion.
  • the series switch 323 When the pulse dimming signal PWM_DIM is high (on level), the series switch 323 conducts, so that the constant current I OUT generated by the buck converter 322 is supplied to the semiconductor light source 212, and the drive current I flows through the semiconductor light source 212. The LED is stabilized to a constant current I OUT . At this time, the output voltage V OUT of the buck converter 322 becomes equal to the forward voltage VF of the semiconductor light source 212.
  • the series switch 323 When the pulse dimming signal PWM_DIM is low (off level), the series switch 323 is cut off, so that the drive current I LED flowing through the semiconductor light source 212 becomes 0A. Further, since the switching operation of the buck converter 322 is stopped and charging / discharging to the output capacitor C1 does not occur, the output voltage V OUT is kept at a substantially constant level.
  • the output voltage V OUT of the buck converter 322 is in a certain voltage range near the forward voltage VF regardless of whether the series switch 323 is on or off (this). Is included in the normal range).
  • the pulse dimming signal PWM_DIM is the same as that in FIG. 19A.
  • the series switch 323 cannot be cut off, so that the drive current I LED continues to flow in the semiconductor light source 212.
  • the drive current I LED is covered by the discharge of the output capacitor C1 of the buck converter 322. Therefore, as the discharge progresses, the drive current I LED decreases with time. Since the low section of the pulse dimming signal PWM_DIM is long in the light-shielded portion, when the output capacitor C1 is discharged and drops to the lighting start voltage V MIN shown in FIG. 21, the drive current I LED drops to 0 A.
  • the discharge of the output capacitor C1 is stopped, so that the output voltage V OUT is near the lighting start voltage V MIN .
  • the drive current I LED may not decrease to 0A.
  • the output voltage V OUT can be detected by utilizing the difference in the behavior of the output voltage V OUT at the time of short circuit abnormality and the normal state.
  • FIG. 20 is a circuit diagram of the abnormality detection circuit 370 according to the embodiment.
  • the abnormality detection circuit 370 includes a comparison circuit 372 and a signal processing unit 374.
  • the comparison circuit 372 includes resistors R31 and R32 and a voltage comparator COMP1.
  • the output voltage V OUT of the buck converter 322 is divided by a voltage divider circuit including resistors R31 and R32.
  • the voltage comparator COMP1 compares the output voltage V OUT'after voltage division with a predetermined threshold voltage VTH , and generates a detection signal S DET indicating the comparison result.
  • the detection signal S DET is a binary signal indicating whether or not the output voltage V OUT of the buck converter 322 is included in the normal range.
  • VSHORT VTH ⁇ (R31 + R32) / R32 is the threshold value (lower limit) in the normal range.
  • V OUT > V SHORT V OUT > V SHORT
  • the detection signal S DET at this time keeps high.
  • V OUT ⁇ V SHORT becomes V OUT ⁇ V SHORT
  • the detection signal S DET becomes low.
  • the signal processing unit 374 determines the presence or absence of a short-circuit abnormality based on the detection signal S DET , and when the abnormality is detected, asserts the fail signal FAIL. Specifically, in the signal processing unit 374, the detection signal S DET reaches a predetermined level (low), that is, the output voltage V OUT of the buck converter 322 becomes a predetermined threshold value V SHORT during the off period of the series switch 323. It is a condition of abnormality judgment that it is less than.
  • the signal processing unit 374 can be implemented by combining a microcontroller and software. In this case, the PWM signal generation unit 310 and the signal processing unit 374 may be mounted on the same microcontroller.
  • the signal processing unit 374 may be configured by a hardware logic circuit.
  • FIG. 21 is a diagram showing the IV characteristics of the semiconductor light source 212.
  • the lower limit threshold V SHORT in the normal range may be set higher than the lighting start voltage V MIN of the semiconductor light source 212 and lower than the forward voltage VF when the semiconductor light source 212 is lit.
  • the abnormality detection by the abnormality detection circuit 370 is invalidated after the operation of the buck converter 322 is started until the output voltage V OUT exceeds a predetermined voltage.
  • FIG. 22 is a diagram illustrating the determination process 1 of the abnormality detection circuit 370.
  • FIG. 22 shows the waveform at the time of short circuit abnormality.
  • the vehicle lamp 100 includes a scanning optical system 220.
  • the pulse dimming signal PWM_DIM is generated so that the series switch 323 is turned off for a predetermined period (referred to as blank period TBLANK ) at the break between scans.
  • blank period TBLANK a predetermined period
  • the scanning optical system 220 includes a plurality of blade mirrors 224
  • the gap between the blade mirrors can be set as a blank period TBLANK .
  • the scanning period TSCAN is 5 ms.
  • the PWM cycle is 50 ⁇ s.
  • the blank period TBLANK may be set longer than the PWM cycle of 50 ⁇ s, for example 70 ⁇ s.
  • the abnormality detection circuit 370 detects an abnormality of the series switch 323 based on the output voltage V OUT of the step-down converter 322 in the blank period TBLANK .
  • the abnormality detection circuit 370 sets a tentative determination state when the output voltage V OUT falls below the threshold value V SHORT in the blank period TBLANK . Then, when the provisional determination state is established over a predetermined number of scans, the final determination may be performed.
  • the signal processing unit 374 acquires the position of the blank period TBLANK based on the position detection signal S4, and the detection signal SDET transitions to a predetermined level (low) during the blank period TBLANK . Is a condition for determining a short circuit abnormality.
  • the fail signal FAIL is asserted.
  • the signal processing unit 374 includes a counter, and counts up the counter each time the detection signal S DET of the blank period TBLANK becomes low. Then, when the count value reaches a predetermined value M, the fail signal FAIL is asserted.
  • the counter may be reset. That is, in the determination process 1, the short-circuit abnormality is detected by focusing only on the hatched portion of the detection signal S DET in FIG. 22.
  • the determination process 1 will be described. If the blank period TBLANK is not provided, the short circuit abnormality cannot be detected unless the pulse dimming signal PWM_DIM transitions to low. In the first determination process, by inserting the blank period TBLANK , an opportunity for abnormality determination is always given once per scan. This makes it possible to reliably detect a short circuit abnormality in a short time.
  • the PWM dimming section and the low section of the detection signal S DET are narrow pulses shorter than 50 ⁇ s. Therefore, in order to use the detection signal S DET in the PWM dimming section, a high-speed signal processing unit 374 is required. Further, when the duty cycle of the pulse dimming signal PWM_DIM is large (when the low section is short), the output voltage V OUT may not fall below the threshold value V SHORT . In the blank period TBLANK longer than the PWM cycle, the output voltage V OUT surely falls below the threshold value V SHORT , so that a low-level detection signal S DET can be generated, and a short-circuit abnormality can be detected stably.
  • FIG. 23 is a diagram illustrating the determination process 2 of the abnormality detection circuit 370.
  • FIG. 23 shows the waveform at the time of short circuit abnormality.
  • the blank period TBLANK is not essential.
  • the abnormality detection circuit 370 constantly monitors the detection signal S DET , and a state in which the detection signal S DET is not a DC signal (DC state), in other words, a pulse signal (pulse state) is a predetermined determination. If the time ⁇ DET continues , it is determined that the condition is abnormal and the fail signal FAIL is asserted.
  • the signal processing unit 374 generates a provisional determination signal DC / PULSE indicating whether the detection signal S DET is in the pulse state or the DC state.
  • a state in which the detection signal S DET is continuously high for a predetermined time or longer may be a DC state, and a state in which the detection signal S DET is continuously high may be a pulse state.
  • the signal processing unit 374 determines that the temporary determination signal DC / PULSE is an abnormal state and asserts the fail signal FAIL.
  • the signal processing unit 374 may be implemented by using the timer resource of the microcontroller.
  • the determination process 1 requires timing synchronization with the blank period TBLANK , whereas the determination process 2 has an advantage that timing synchronization is not required.
  • FIG. 24 is a diagram illustrating the determination process 3 of the abnormality detection circuit 370.
  • FIG. 24 shows the waveform at the time of short circuit abnormality.
  • the blank period TBLANK is not essential.
  • the abnormality detection circuit 370 constantly monitors the detection signal S DET , the number of times the detection signal S DET transitions to low, in other words, the number of low pulses generated on the detection signal S DET , in other words, the detection signal S.
  • the number of negative edges of the DET is counted, and when the count value exceeds a predetermined threshold value K, it is determined as an abnormal state.
  • some of the determination processes 1 to 3 can be regarded as a condition for abnormality determination that the output voltage V OUT of the buck converter 322 is not constant and lasts for a predetermined time. From another point of view, it is understood that some of the determination processes 1 to 3 require that the switching state of the output voltage V OUT of the buck converter 322 lasts for a predetermined determination time as a condition for abnormality determination. Will be done.
  • the abnormality determination is performed after binarizing the output voltage V OUT , but this is not the case.
  • a high-speed A / D converter may capture a waveform of an output voltage V OUT , and the presence or absence of an abnormality may be determined based on the waveform.
  • the abnormality detection circuit 370 makes it a condition for abnormality determination that the output voltage V OUT of the buck converter 322 deviates from a predetermined voltage range. Since the output voltage V OUT of the buck converter 322 rises from 0V during the period when the buck converter 322 is switched and the series switch 323 is on, the output voltage V OUT deviates from the predetermined voltage range immediately after the start of lighting. ing. That is, immediately after the start of lighting, a short circuit abnormality of the series switch cannot be detected. In order to solve this problem, it is advisable to mask the detection of short circuit abnormality (fail information) immediately after the start of lighting.
  • the output voltage V OUT of the buck converter 322 does not increase during the period when the series switch 323 is off, that is, while the lamp is off. Even if the light is on, when PWM dimming (PWM dimming) is performed by the series switch 323, the rising speed of the output voltage V OUT differs depending on the dimming rate. In other words, if a process that releases the mask after a certain period of time has elapsed from the start of lighting is incorporated, a situation may occur in which the output voltage V OUT does not reach the specified voltage after a certain period of time, depending on the duty cycle, resulting in a fail state. May be erroneously detected.
  • FIG. 25 is a block diagram of the vehicle lamp 100H according to the embodiment.
  • the scanning light source 200A starts lighting.
  • the rotation of the motor 222 may be started, for example, triggered by an ignition on, prior to the start of lighting.
  • the lighting circuit 300H includes a mask processing unit 376.
  • the fail signal FAIL which is the output of the abnormality detection circuit 370, is input to the mask processing unit 376.
  • the mask processing unit 376 integrates the product of the duty cycle of the pulse dimming signal PWM_DIM and the lighting time, and generates a cumulative lighting time indicating the integrated result. Then, the cumulative lighting time is compared with a predetermined threshold value, and while the cumulative lighting time is lower than the threshold value, the fail signal FAIL which is the detection result of the abnormality detection circuit 370 is masked.
  • the mask processing unit 376 may be mounted on the same microcontroller 304H as the PWM signal generation unit 310 that generates the pulse dimming signal PWM_DIM. As described above, when the abnormality detection circuit 370 includes the comparison circuit 372 and the signal processing unit 374, the signal processing unit 374 and the PWM signal generation unit 310 can be mounted on the same microcontroller as the PWM signal generation unit 310. ..
  • 26 (a) and 26 (b) are diagrams illustrating the operation of the mask processing unit 376.
  • a light distribution pattern PTN including four regions having different brightness is taken as an example.
  • the four regions RGN 1 to RGN 4 are any of a light-shielding region, a dimming region, and a non-dimming region, and each exists over an angle range of ⁇ 1 to ⁇ 4 .
  • 26 (b) shows the duty cycle and pulse dimming signal PWM_DIM corresponding to the light distribution of FIG. 26 (a).
  • the scanning period is TSCAN
  • the length of the time interval Ti corresponding to the i -th region RGN i is expressed by the equation (1).
  • T i T SCAN ⁇ ⁇ i / 2 ⁇ MAX ...
  • the signal processing unit 374 calculates the cumulative lighting time ⁇ from the start of lighting, compares it with the threshold value ⁇ TH , and negates (unmasks) the mask signal MASK when ⁇ > ⁇ TH .
  • the threshold value ⁇ TH can be determined based on the specified voltage of the output voltage V OUT . The larger the duty cycle, the faster the rate at which the cumulative time ⁇ rises, and when the duty cycle is 0, the cumulative time ⁇ becomes constant.
  • the addition process may be performed in units of region RGNs having the same duty cycle.
  • the mask processing unit 376 calculates the length of the time interval Ti for each region RGN i , multiplies the length of the time interval Ti by the duty cycle di , and cumulatively adds them.
  • ⁇ i the cumulative time from the start of lighting to the i -th section Ti
  • the mask signal MASK is negated. do.
  • FIG. 27 is a block diagram of the mask processing unit 376 according to the first processing example.
  • the mask processing unit 376 is implemented by software processing by a microcontroller, each block in the block diagram schematically shows a step of software processing.
  • the duty cycle di and the time length Ti thereof are input to the mask processing unit 376 every time the duty cycle changes, that is, every time the region changes.
  • the duty cycle di and its time length Ti can be generated by the PWM signal generation unit 310. From the equation (1), the time length Ti of each region is proportional to the scanning period TSCAN . When the rotation speed of the motor fluctuates, the scanning period TSCAN may be acquired and the time length Ti may be calculated based on the equation (1). On the contrary, when the rotation speed of the motor is constant or the fluctuation can be ignored, T SCAN and 2 ⁇ MAX in the equation (1) are constants, so that ⁇ i can be used as Ti . good.
  • the multiplier 380 multiplies the duty cycle di by the time length Ti .
  • the memory 382 stores the cumulative time ⁇ i- 1 up to the previous area RGN i-1 .
  • the adder 384 adds the output di ⁇ Ti of the multiplier 380 and the value ⁇ i -1 of the memory 382, and outputs ⁇ i .
  • the value of memory 382 is updated by ⁇ i .
  • the comparator 386 compares the cumulative time ⁇ i with the threshold ⁇ TH , asserts the mask signal MASK when ⁇ i ⁇ TH (for example, high), and negates the mask signal MASK when ⁇ i ⁇ TH . For example, low).
  • the gate means 388 passes the fail signal FAIL when the mask signal MASK is negated, and shuts off the fail signal FAIL when the mask signal MASK is asserted.
  • An abnormality of the series switch 323 is determined based on the fail signal FAIL_MASKED after masking.
  • the gate means 388 may be omitted, the mask signal MASK may be supplied to the abnormality detection circuit 370, and the operation of the abnormality detection circuit 370 may be stopped during the period in which the mask signal MASK is asserted.
  • FIG. 28 is a block diagram of the mask processing unit 376 according to the second processing example.
  • the duty cycle dj is input to the mask processing unit 376 for each PWM cycle (PWM pulse unit).
  • d j indicates the duty cycle in the jth PWM cycle from the start of lighting.
  • the memory 382 stores the cumulative time ⁇ j -1 up to the previous PWM cycle.
  • the adder 384 adds d j and the value ⁇ j-1 of the memory 382, and outputs ⁇ j .
  • the value of memory 382 is updated by ⁇ j .
  • the comparator 386 compares the cumulative time ⁇ j with the threshold ⁇ TH , asserts the mask signal MASK when ⁇ j ⁇ ⁇ TH (for example, high), and negates the mask signal MASK when ⁇ j ⁇ ⁇ TH . For example, low). The processing after the generation of the mask signal MASK is omitted.
  • FIG. 29 is a block diagram of the mask processing unit 376 according to the third processing example.
  • the duty cycle dj is input to the mask processing unit 376 for each PWM cycle (PWM pulse unit).
  • d j indicates the duty cycle in the jth PWM cycle from the start of lighting.
  • the duty cycle d j and the cycle length Tpwm j are input to the mask processing unit 376 for each PWM cycle.
  • the configuration of the mask processing unit 376 is the same as that of the first processing example (FIG. 27).
  • Modification 1 When the rising speed of the output voltage V OUT during the period when the series switch 323 is on depends on the input voltage of the buck converter, in other words, the power supply voltage (ignition voltage) supplied to the lighting circuit 300H, the power supply voltage VDD is used.
  • the lighting period may be weighted by the corresponding coefficient K.
  • the power supply voltage VDD is measured for each time interval Ti or scan cycle, and for each time interval Ti (or scan cycle) according to the power supply voltage VDD .
  • the coefficient Ki may be updated.
  • the power supply voltage may be regarded as constant immediately after the start of lighting, the power supply voltage may be measured only once, and the coefficient K corresponding to the power supply voltage VDD0 may be used fixedly.
  • ⁇ i K 0 ⁇ T i ⁇ di + ⁇ i -1 ... (2 ”)
  • the threshold value ⁇ TH may be changed according to the power supply voltage VDD0 .
  • the abnormality detection circuit 370 has determined to detect a short circuit of the series switch 323 based on the output voltage V OUT of the buck converter 322, but this is not the case.
  • the anomaly detection circuit 370 may detect an open anomaly in place of or in addition to the short circuit of the series switch 323.
  • an abnormality (ground fault, heaven fault, etc.) other than the series switch 323 may be monitored, and the present disclosure is applicable as long as the abnormality is detected based on the output voltage V OUT of the buck converter 322.
  • FIG. 30A shows a light distribution pattern 800 in a certain traveling scene.
  • the sign 810 and the oncoming vehicle 812 are present in front of the vehicle, and the light distribution pattern 800 is arranged in the existence range of the dimming portion 802 arranged in the existence range of the sign 810 and the oncoming vehicle 812. Includes the shaded portion 804.
  • the illuminance of the portion 806 other than the dimming portion 802 and the light-shielding portion 804 is the maximum (100%), and the illuminance of the light-shielding portion 804 is the minimum (0%).
  • the illuminance of the dimmed portion 802 is controlled according to the target present there, and is set to 20% in this example.
  • FIG. 30B shows the luminance of the semiconductor light source, that is, the time waveform of the pulse dimming signal PWM_DIM.
  • the duty cycle is 100%, in the light-shielding portion 804 it is 0%, and in the dimming portion 802 it is 20%.
  • FIG. 30 (c) shows the dimmed portion 802 in an enlarged manner.
  • PWM_DIM pulse dimming signal
  • FIG. 31 is a block diagram of the vehicle lamp 100E according to the embodiment.
  • the vehicle lamp 100E includes a scanning light source 200A and a lighting circuit 300E.
  • the basic configuration of the lighting circuit 300E is the same as that of the lighting circuit 300A of FIG.
  • the PWM signal generation unit 310E has a phase shift function, and changes the phase of the pulse dimming signal PWM_DIM_E for each scan by the scanning light source 200A.
  • the microcontroller 304 and the LED driver 320 may be mounted on one substrate or may be arranged in one housing.
  • the method of PWM dimming by the LED driver 320 is not particularly limited, and may be one using the above-mentioned series switch 323 or one using a bypass switch parallel to the light source.
  • FIG. 32 (a) to 32 (c) are diagrams illustrating an example of the operation of the vehicle lamp 100E.
  • FIG. 32A shows an example of the phase shift of the pulse dimming signal PWM_DIM_E.
  • FIG. 32 (b) shows a part of the waveform of the pulse dimming signal PWM_DIM_E over a plurality of continuous scanning cycles corresponding to the dimmed portion.
  • the PWM signal generation unit 310E shifts the phase of the pulse dimming signal PWM_DIM_E by 180 ° (half cycle T PWM / 2 of the PWM cycle) for each scan.
  • FIG. 32 (b) is a diagram showing the dimming distribution of the dimming portion 802 corresponding to the pulse dimming signal PWM_DIM_E of FIG. 32 (a).
  • PWM_DIM_E pulse dimming signal
  • the solid line (i) in FIG. 32 (c) shows the illuminance distribution of the dimmed portion 802.
  • the illuminance distribution of the same dimmed portion 802 in FIG. 30 (c) is shown by the alternate long and short dash line (ii).
  • the illuminance (time average) of the vertical stripes 803' is 1/2 times the illuminance of the vertical stripes 803 of FIG. 30 (c).
  • the contrast of the vertical stripes 803' is lower than the contrast of the vertical stripes 803', it becomes difficult to see the vertical stripes 803'by the human eye or a camera. As a result, the label 810 is easy to see or identify.
  • FIG. 33 (a) to 33 (c) are diagrams illustrating an example of the operation of the vehicle lamp 100E.
  • FIG. 33 (a) shows another example of the phase shift of the pulse dimming signal PWM_DIM_E.
  • FIG. 33 (b) shows a part of the waveform of the pulse dimming signal PWM_DIM_E over a plurality of continuous scanning cycles corresponding to the dimmed portion.
  • FIG. 33 (b) is a diagram showing the light distribution of the dimming portion 802 corresponding to the pulse dimming signal PWM_DIM_E of FIG. 33 (a).
  • PWM_DIM_E pulse dimming signal
  • the solid line (i) in FIG. 33 (c) shows the illuminance distribution of the dimmed portion 802.
  • the illuminance distribution of the same dimmed portion 802 in FIG. 30 (c) is shown by the alternate long and short dash line (ii).
  • the illuminance (time average) of the vertical stripes 803 "is 1 / N times the illuminance of the vertical stripes 803 in FIG. 30 (c).
  • the vertical stripes 803 Since the contrast of the vertical stripes 803 is lower than that of the vertical stripes 803, the vertical stripes 803'are difficult to see by the human eye or a camera. As a result, the sign 810 is easy to see or identify.
  • FIG. 34 is a block diagram showing a configuration example of the PWM signal generation unit 310E.
  • the PWM signal generation unit 310E can be implemented as a microcontroller, and therefore each block represents a function or process of the PWM signal generation unit 310E.
  • the PWM signal generation unit 310E includes a carrier signal generator 312, a duty cycle controller 314, and a comparator 316.
  • the carrier signal generator 312 generates a periodic carrier signal S11 of a triangular wave or a sawtooth wave in synchronization with the position detection signal S4.
  • the carrier signal generator 312 changes the phase of the carrier signal S11 for each scanning cycle.
  • the carrier signal generator 312 can be configured by, for example, a counter, and the timing of starting the operation of the counter may be shifted for each scanning cycle.
  • the duty cycle controller 314 receives the light distribution pattern information S3 and the position detection signal S4, and outputs the duty cycle command value S12 at each scanning position for each PWM cycle T PWM .
  • the comparator 316 compares the command value S12 of the duty cycle with the carrier signal S11, and outputs a pulse dimming signal PWM_DIM_E according to the comparison result.
  • FIG. 35 is an operation waveform diagram of the PWM signal generation unit 310E of FIG. 34.
  • the PWM signal generation unit 310E starts the scan cycle TSCAN with the assertion of the position detection signal S4 as a trigger.
  • the light distribution pattern information S3 is the command value S12 of the duty cycle for each PWM cycle. To update.
  • the carrier signal generator 312 generates the sawtooth wave carrier signal S11.
  • the phase of the carrier signal S11 is shifted by 180 ° in each scanning cycle.
  • the phase of the pulse dimming signal PWM_DIM_E based on the comparison result of the carrier signal S11 and the duty cycle command value S12 changes by 180 ° for each scanning cycle.
  • the configuration of the PWM signal generation unit 310E is not limited to FIG. 34, and its operation is not limited to FIG. 35.
  • FIG. 36 is an operation waveform diagram of the PWM signal generation unit 310E according to the first modification. Also by this method, the phase of the pulse dimming signal PWM_DIM_E can be shifted for each scan.
  • Modification 2 In FIG. 33, the phase is delayed by 360 ° / N for each scanning cycle, but the phase may be advanced by 360 ° / N for each scanning cycle. Alternatively, the phase may be randomly changed for each scanning cycle.
  • the abnormality detection circuit 370 makes it a condition for abnormality determination that the output voltage V OUT of the buck converter 322 deviates from a predetermined voltage range. Since the output voltage V OUT of the buck converter 322 rises from 0V during the period when the buck converter 322 is switched and the series switch 323 is on, the output voltage V OUT deviates from the predetermined voltage range immediately after the start of lighting. ing. That is, immediately after the start of lighting, a short circuit abnormality of the series switch cannot be detected. To solve this problem, initialize lighting is introduced.
  • FIG. 37 is a block diagram of a vehicle lighting device 100G that supports initialization lighting.
  • An ignition signal IG is input to the vehicle lamp 100G in addition to the lighting command LAMP_ON.
  • the vehicle lamp 100G is set to the initialization mode by using the ignition on as a trigger.
  • the mode of the vehicle lamp 100G can be managed by the microcontroller 304G, and the function related to the mode management is shown as the mode control unit 314.
  • the microcontroller 304G detects the ignition on, it shifts to the initialization mode and instructs the lighting circuit 300G to start lighting even though the lighting command LAMP_ON is not input (referred to as initialization lighting).
  • the light distribution pattern information S3 is not input, or even if it is input, it can be ignored.
  • the rotation of the motor 222 starts with the ignition on as a trigger.
  • the lighting circuit 300G When the lighting circuit 300G receives an instruction for initialization lighting from the mode control unit 314, it drives the semiconductor light source 212 and raises the output voltage V OUT of the buck converter 322 to a specified voltage, that is, Vf. At this time, since the current I LED flows through the semiconductor light source 212, the semiconductor light source 212 emits light.
  • the lighting circuit 300G drives the semiconductor light source 212 with a brightness that cannot be visually recognized from the surroundings in the initialized lighting.
  • the semiconductor light source 212 may be lit with a very low duty cycle in order to illuminate with a brightness that cannot be visually recognized from the surroundings (PWM dimming).
  • the PWM signal generation unit 310 may generate a pulse dimming signal PWM_DIM having a predetermined duty cycle in synchronization with the position detection signal S4 and supply it to the LED driver 320.
  • the duty cycle at this time may be 5% or less, and for example, the duty cycle may be the minimum value (corresponding to 1LSB).
  • the pulse dimming signal PWM_DIM in the initialized lighting is irrelevant to the light distribution pattern information S3.
  • FIG. 38 is an operation waveform diagram of the vehicle lamp 100G of FIG. 37.
  • the ignition signal IG_ON becomes high, and the ignition on is notified.
  • the lighting circuit 300G starts the rotation of the motor 222.
  • a predetermined value for example, 6000 rpm
  • the initialization lighting is started.
  • Initialized lighting produces a pulse dimming signal PWM_DIM with a very small duty cycle.
  • the LED driver 320 operates intermittently in response to the pulse dimming signal PWM_DIM.
  • the drive current I LED having a very short time width is supplied to the semiconductor light source 212, and the output voltage V OUT of the LED driver 320 (output voltage V OUT of the buck converter 322) increases with time.
  • the output voltage V OUT reaches the specified voltage at time t2, the initialization lighting ends and the standby state is set.
  • the PWM signal generation unit 310 generates a pulse dimming signal PWM_DIM corresponding to the light distribution pattern information S3.
  • the initialization lighting is completed, and the output voltage V OUT of the LED driver 320 has reached the specified voltage, so that the lighting can be started immediately.
  • the abnormality detection circuit 370 can immediately start the abnormality detection.
  • Modification 1 In the initialization mode, PWM dimming is used to make the semiconductor light source 212 emit light so as not to be seen from the surroundings, but analog dimming (DC dimming) may be used instead of or in addition to it.
  • DC dimming analog dimming
  • the current amount of the drive current I LED may be reduced in the initialization mode as compared with the normal lighting. This makes it difficult to see from the surroundings.
  • the vehicle lamp 100G may include a plurality of semiconductor light sources 212_1 to 212_N (N ⁇ 2) and a plurality of LED drivers 320_1 to 320_N corresponding thereto.
  • a plurality of semiconductor light sources 212_1 to 212_N are scanned and combined on a virtual vertical screen to form a light distribution.
  • the on timing of the plurality of pulse dimming signals PWM_DIM_1 to PWM_DIM_N supplied to the plurality of LED drivers 320_1 to 320_N may be shifted.
  • FIG. 39 is an operation waveform diagram of the vehicle lamp 100G according to the second modification. According to the second modification, it is possible to prevent a plurality of semiconductor light sources 212_1 to 212_N from lighting at the same time during the PWM cycle, and it is possible to make it difficult to see from the surroundings.
  • the initialization lighting is performed in such a manner that it cannot be visually recognized from the surroundings, but it may be positively emitted as an effect. In this case, if the semiconductor light source 212 is flashed halfway, it will be confused with a failure or abnormality. Therefore, in the third modification, the initialized lighting is turned on for a certain long time, for example, several hundred ms to several seconds, so that it can be recognized that the initial lighting is not a failure.
  • the vehicle lamp 100G may further include a leveling device that controls the optical axis of the scanning light source 200 in the pitch direction. In the initialization mode, the leveling device may lower the optical axis of the scanning light source. As a result, the emitted light during the initialization lighting can be radiated downward as much as possible.
  • the microcontroller 304G of the lighting circuit 300G controls the initialization lighting, but the light distribution controller (ADB ECU) 400 may control the initialization lighting.
  • the light distribution controller 400 monitors the ignition signal IG_ON and shifts to the initialization mode when the ignition is turned on. Then, when the mode shifts to the initialize mode, the light distribution pattern information S3 corresponding to the initialize lighting is generated.
  • the abnormality detection circuit 370 has determined to detect a short circuit of the series switch 323 based on the output voltage V OUT of the buck converter 322, but this is not the case.
  • the abnormality detection circuit 370 may detect an open abnormality in place of or in addition to the short circuit of the series switch 323.
  • an abnormality (ground fault, heaven fault, etc.) other than the series switch 323 may be monitored, and the present disclosure is applicable as long as the abnormality is detected based on the output voltage V OUT of the buck converter 322.
  • This disclosure relates to lighting fixtures for vehicles used in automobiles and the like.
  • Transconductance amplifier 332 ... Sample hold circuit, 334 ... On-time control unit, 336 ... Gate driver, 340 ... control IC, 370 ... abnormality detection circuit, 372 ... comparison circuit, 374 ... signal processing unit, 376 ... mask processing unit, 400 ... light distribution controller, 900 ... virtual vertical screen.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Lighting Device Outwards From Vehicle And Optical Signal (AREA)

Abstract

In the present invention, a scanning light-source (200A) includes a semiconductor light-source (212) and scans the emission light (BM) of the semiconductor light-source (212) across the entire range of the light distribution horizontal-direction. A lighting circuit (300A), in synchronization with the scanning of the scanning light-source (200A), can modulate the light volume of the semiconductor light-source (212) at each scanning position to multiple levels by using pulse modulation.

Description

車両用灯具Vehicle lighting
 本開示は、自動車などに用いられる車両用灯具に関する。 This disclosure relates to lighting fixtures for vehicles used in automobiles and the like.
 車両用灯具は、一般にロービームとハイビームとを切りかえることが可能である。ロービームは、自車近傍を所定の照度で照明するものであって、対向車や先行車にグレアを与えないよう配光規定が定められており、主に市街地を走行する場合に用いられる。一方、ハイビームは、前方の広範囲および遠方を比較的高い照度で照明するものであり、主に対向車や先行車が少ない道路を高速走行する場合に用いられる。したがって、ハイビームはロービームと比較してより運転者による視認性に優れているが、車両前方に存在する車両の運転者や歩行者にグレアを与えてしまうという問題がある。 Vehicle lighting fixtures can generally switch between low beam and high beam. The low beam illuminates the vicinity of the own vehicle with a predetermined illuminance, and the light distribution rule is set so as not to give glare to the oncoming vehicle or the preceding vehicle, and is mainly used when traveling in an urban area. On the other hand, the high beam illuminates a wide area and a distant place in front with a relatively high illuminance, and is mainly used when traveling at high speed on a road where there are few oncoming vehicles and preceding vehicles. Therefore, although the high beam has better visibility by the driver than the low beam, there is a problem that glare is given to the driver and pedestrian of the vehicle existing in front of the vehicle.
 近年、車両の周囲の状態にもとづいて、ハイビームの配光パターンを動的、適応的に制御するADB(Adaptive Driving Beam)技術が実用化されている。ADB技術は、車両の前方の先行車、対向車や歩行者の有無を検出し、車両に対応する領域を減光するなどして、車両に与えるグレアを低減するものである。 In recent years, ADB (Adaptive Driving Beam) technology that dynamically and adaptively controls the light distribution pattern of high beams based on the surrounding conditions of the vehicle has been put into practical use. The ADB technique detects the presence or absence of a preceding vehicle, an oncoming vehicle, or a pedestrian in front of the vehicle, dims the area corresponding to the vehicle, and reduces glare given to the vehicle.
 ADB機能を実現する方式として、アクチュエータを制御するシャッター方式、ロータリー方式、LEDアレイ方式などが提案されている。シャッター方式やロータリー方式は、消灯領域(遮光領域)の幅を連続的に変化させることが可能であるが、消灯領域の数が1個に制限される。LEDアレイ方式は、消灯領域を複数個、設定することが可能であるが、消灯領域の幅が、LEDチップの照射幅に制約されるため、離散的となる。 As a method for realizing the ADB function, a shutter method for controlling an actuator, a rotary method, an LED array method, etc. have been proposed. In the shutter method and the rotary method, the width of the light-off area (light-shielding area) can be continuously changed, but the number of light-off areas is limited to one. In the LED array method, it is possible to set a plurality of extinguishing areas, but the width of the extinguishing area is limited by the irradiation width of the LED chip, so that the extinguishing area is discrete.
 本出願人は、これらの問題点を解決可能なADB方式として、スキャン方式を提案している(特許文献2、3参照)。スキャン方式とは、回転するリフレクタ(ブレードミラー)に光を入射し、リフレクタの回転位置に応じた角度で入射光を反射して反射光を車両前方で走査しつつ、光源の点消灯を、リフレクタの回転位置に応じて変化させることで、車両前方に、所望の配光パターンを形成するものである。 The applicant has proposed a scanning method as an ADB method that can solve these problems (see Patent Documents 2 and 3). The scan method is to incident light on a rotating reflector (blade mirror), reflect the incident light at an angle according to the rotation position of the reflector, scan the reflected light in front of the vehicle, and turn on and off the light source. A desired light distribution pattern is formed in front of the vehicle by changing the light distribution pattern according to the rotation position of the vehicle.
 特許文献3に記載のスキャン方式では、1スキャンの間、光源に流す駆動電流の電流量を一定に保ちつつ、光源の点消灯(オン、オフ)を時分割で切り替える。そのため所定のエリアを遮光するグレアフリー機能の実現は容易であったが、照射領域の照度は実質的に一定に制約されていた。 In the scan method described in Patent Document 3, the light source is turned on and off (on and off) in a time-division manner while keeping the amount of drive current flowing through the light source constant during one scan. Therefore, it was easy to realize a glare-free function that shields a predetermined area from light, but the illuminance in the irradiation area was restricted to a substantially constant level.
 特許文献4には、スキャン方式の車両用灯具による具体的な配光の形成手法が開示される。この技術では、複数チャンネルの光源により配光が形成される。複数チャンネルの光源はそれぞれ、水平方向の一部の範囲を受け持っており、各光源のスキャン範囲は、他の光源のスキャン範囲と一部がオーバーラップしつつ、水平方向にシフトしたものとなっている。各光源の光量は、いわゆるDC調光(アナログ調光)によって制御され、応答速度の制約から1スキャン単位で可変である。この灯具では、各走査位置の照度を、複数の光源のオン、オフ、および光量の組み合わせにより制御でき、グレアフリー機能以外の多様な配光パターン(たとえば電子スイブルなど)に対応するようになっている。 Patent Document 4 discloses a specific method for forming a light distribution using a scan-type vehicle lamp. In this technique, a light distribution is formed by a multi-channel light source. Each of the multi-channel light sources is responsible for a part of the horizontal range, and the scan range of each light source is shifted horizontally while partially overlapping the scan range of the other light sources. There is. The amount of light of each light source is controlled by so-called DC dimming (analog dimming), and is variable in units of one scan due to the limitation of response speed. With this lamp, the illuminance at each scanning position can be controlled by combining multiple light sources on, off, and the amount of light, and it is now compatible with various light distribution patterns other than the glare-free function (for example, electronic swivel). There is.
特開2008-205357号公報Japanese Unexamined Patent Publication No. 2008-205357 特開2012-224317号公報Japanese Unexamined Patent Publication No. 2012-224317 特開2010-6109号公報Japanese Unexamined Patent Publication No. 2010-6109 特開2018-187979号公報Japanese Unexamined Patent Publication No. 2018-187979
1. 特許文献4の技術では、1つの配光を形成するために、多くのチャンネルの光源および点灯回路を必要としており、構造が複雑であり、また所望の配光を形成するための光源の制御も複雑であった。 1. 1. The technique of Patent Document 4 requires light sources and lighting circuits of many channels to form one light distribution, has a complicated structure, and also controls the light source to form a desired light distribution. It was complicated.
 本開示のある態様は係る課題に鑑みてなされたものであり、その例示的な目的のひとつは、グレアフリー機能以外の多様な配光パターンを生成可能な車両用灯具の提供にある。 A certain aspect of the present disclosure has been made in view of the above problems, and one of its exemplary purposes is to provide a vehicle lamp capable of generating various light distribution patterns other than the glare-free function.
2. 走査ごとに、完全に同一なPWM信号(パルス調光信号)を繰り返し発生し、光源を点消灯させると、PWM周波数や走査周波数、およびデューティサイクルの組み合わせによっては、走査方向と直交する縦ライン(縦縞)が見えてしまう可能性がある。 2. 2. When the completely same PWM signal (pulse dimming signal) is repeatedly generated for each scan and the light source is turned on and off, a vertical line perpendicular to the scan direction (depending on the combination of PWM frequency, scan frequency, and duty cycle) ( Vertical stripes) may be visible.
 本開示のある態様は係る課題に鑑みてなされたものであり、その例示的な目的のひとつは、縦縞の発生を抑制可能な灯具の提供にある。 A certain aspect of the present disclosure has been made in view of the above problems, and one of its exemplary purposes is to provide a lamp capable of suppressing the occurrence of vertical stripes.
3. 本開示のある態様は係る状況においてされたものであり、その例示的な目的のひとつは、走査型ランプにおいて、点灯開始後に直ちに異常検出が可能な車両用灯具の提供にある。 3. 3. A certain aspect of the present disclosure is made in such a situation, and one of its exemplary purposes is to provide a vehicle lamp capable of detecting an abnormality immediately after the start of lighting in a scanning lamp.
4. 本開示のある態様は係る状況においてされたものであり、その例示的な目的のひとつは、確実な異常検出が可能な車両用灯具の提供にある。 4. A certain aspect of the present disclosure is made in such a situation, and one of the exemplary purposes is to provide a vehicle lamp capable of reliable abnormality detection.
1. 本開示のある態様の車両用灯具は、半導体光源を含み、半導体光源の出射光を配光の水平方向の全範囲にわたり走査する走査型光源と、走査型光源の走査と同期して、各走査位置における半導体光源の光量をパルス変調により多階調で調光可能な点灯回路と、を備える。 1. 1. The vehicle lighting fixture of one aspect of the present disclosure includes a semiconductor light source, a scanning light source that scans the emitted light of the semiconductor light source over the entire horizontal range of the light distribution, and each scanning in synchronization with the scanning of the scanning light source. It is provided with a lighting circuit capable of dimming the amount of light of a semiconductor light source at a position in multiple gradations by pulse modulation.
2. 本開示のある態様の車両用灯具は、半導体光源を含み、半導体光源の出射光を走査する走査型光源と、走査型光源の走査と同期して、各走査位置における半導体光源の光量をパルス変調により多階調で調光可能な点灯回路と、を備える。点灯回路は、走査ごとに、パルス変調の位相を変化させる。 2. 2. The vehicle lighting fixture of one aspect of the present disclosure includes a semiconductor light source, and pulse-modulates the amount of light of the semiconductor light source at each scanning position in synchronization with the scanning of the scanning type light source that scans the emitted light of the semiconductor light source and the scanning type light source. It is equipped with a lighting circuit that can be dimmed with multiple gradations. The lighting circuit changes the phase of pulse modulation with each scan.
3. 本開示のある態様の車両用灯具は、半導体光源を含み、半導体光源の出射光を走査する走査型光源と、走査型光源の走査と同期して半導体光源に供給する駆動電流を制御し、半導体光源の光量を制御する定電流ドライバと、を備える。定電流ドライバは、半導体光源と直列に設けられるシリーズスイッチと、シリーズスイッチと半導体光源との直列接続回路に接続され、(i)シリーズスイッチのオン期間において定電流を出力し、(ii)シリーズスイッチのオフ期間においてスイッチング動作を停止し、直前のオン期間と実質的に同じ出力電圧を維持する降圧コンバータと、パルス調光信号にもとづいてシリーズスイッチを駆動するドライバ回路と、降圧コンバータの出力電圧にもとづいて、異常を検出する異常検出回路と、を備える。イグニッションオンをトリガーとして、定電流ドライバは半導体光源を駆動し、降圧コンバータの出力電圧を規定電圧まで上昇させるイニシャライズ点灯を行う。 3. 3. The vehicle lighting fixture of one aspect of the present disclosure includes a semiconductor light source, controls a scanning light source that scans the emitted light of the semiconductor light source, and controls a drive current supplied to the semiconductor light source in synchronization with scanning of the scanning light source, and is a semiconductor. It is equipped with a constant current driver that controls the amount of light from the light source. The constant current driver is connected to a series switch provided in series with the semiconductor light source and a series connection circuit between the series switch and the semiconductor light source, and (i) outputs a constant current during the on period of the series switch, and (ii) the series switch. To the buck converter that stops the switching operation during the off period and maintains substantially the same output voltage as the previous on period, the driver circuit that drives the series switch based on the pulse dimming signal, and the output voltage of the buck converter. Originally, it is provided with an abnormality detection circuit for detecting an abnormality. Triggered by the ignition on, the constant current driver drives the semiconductor light source and performs initialization lighting that raises the output voltage of the buck converter to the specified voltage.
4. 本開示のある態様の車両用灯具は、半導体光源を含み、半導体光源の出射光を走査する走査型光源と、走査型光源の走査と同期して半導体光源に供給する駆動電流を制御し、半導体光源の光量を制御する定電流ドライバと、を備える。定電流ドライバは、半導体光源と直列に設けられるシリーズスイッチと、シリーズスイッチと半導体光源との直列接続回路に接続され、(i)シリーズスイッチのオン期間において定電流を出力し、(ii)シリーズスイッチのオフ期間においてスイッチング動作を停止し、直前のオン期間と実質的に同じ出力電圧を維持する降圧コンバータと、パルス調光信号にもとづいてシリーズスイッチを駆動するドライバ回路と、降圧コンバータの出力電圧にもとづいて、異常を検出する異常検出回路と、パルス調光信号のデューティサイクルと点灯時間の積を積算して累積点灯時間を計算し、累積点灯時間が所定のしきい値より低い間、異常検出回路による異常検出をマスクするマスク処理部と、を備える。 4. The vehicle lighting fixture of one aspect of the present disclosure includes a semiconductor light source, controls a scanning light source that scans the emitted light of the semiconductor light source, and controls a drive current supplied to the semiconductor light source in synchronization with scanning of the scanning light source, and is a semiconductor. It is equipped with a constant current driver that controls the amount of light from the light source. The constant current driver is connected to a series switch provided in series with the semiconductor light source and a series connection circuit between the series switch and the semiconductor light source, and (i) outputs a constant current during the ON period of the series switch, and (ii) the series switch. To the buck converter that stops the switching operation during the off period and maintains substantially the same output voltage as the previous on period, the driver circuit that drives the series switch based on the pulse dimming signal, and the output voltage of the buck converter. Based on this, the abnormality detection circuit that detects anomalies, the duty cycle of the pulse dimming signal, and the product of the lighting time are integrated to calculate the cumulative lighting time, and the abnormality is detected while the cumulative lighting time is lower than the predetermined threshold value. It is provided with a mask processing unit that masks abnormality detection by the circuit.
 なお、以上の構成要素の任意の組み合わせや、本開示の構成要素や表現を、方法、装置、システムなどの間で相互に置換したものもまた、本開示の態様として有効である。 It should be noted that any combination of the above components and those in which the components and expressions of the present disclosure are mutually replaced between methods, devices, systems, etc. are also effective as aspects of the present disclosure.
 本開示のある態様によれば、確実に異常を検出できる。 According to a certain aspect of the present disclosure, an abnormality can be reliably detected.
本発明者らが検討した比較技術に係る車両用灯具のブロック図である。It is a block diagram of the lamp for a vehicle which concerns on the comparative technique examined by the present inventors. LEDの駆動電流のリンギング波形を示す図である。It is a figure which shows the ringing waveform of the driving current of LED. 実施形態1に係る車両用灯具を示す図である。It is a figure which shows the lighting fixture for a vehicle which concerns on Embodiment 1. FIG. 図4(a)、(b)は、車両用灯具よるグレアフリー配光の形成を説明する図である。4 (a) and 4 (b) are diagrams illustrating the formation of glare-free light distribution by vehicle lamps. 図5(a)、(b)は、車両用灯具よる部分減光配光の形成を説明する図である。5 (a) and 5 (b) are diagrams illustrating the formation of a partially dimmed light distribution by a vehicle lamp. 図6(a)、(b)は、車両用灯具による電子スイブルを説明する図である。6 (a) and 6 (b) are diagrams illustrating an electronic swivel by a vehicle lamp. 比較技術に係る車両用灯具を示す図である。It is a figure which shows the lamp for a vehicle which concerns on the comparative technique. 比較技術に係る車両用灯具による配光形成を説明する図である。It is a figure explaining the light distribution formation by the lamp for vehicle which concerns on the comparative technique. 点灯回路の構成例を示すブロック図である。It is a block diagram which shows the structural example of a lighting circuit. LEDドライバの構成例を示す回路図である。It is a circuit diagram which shows the structural example of the LED driver. 図11(a)は、シリーズスイッチによる電流制御を、図11(b)は、バイパススイッチによる電流制御を示す図である。FIG. 11A is a diagram showing current control by a series switch, and FIG. 11B is a diagram showing current control by a bypass switch. LEDドライバの構成例を示す回路図である。It is a circuit diagram which shows the structural example of the LED driver. LEDドライバの別の構成例を示す回路図である。It is a circuit diagram which shows another configuration example of the LED driver. LEDドライバのさらに別の構成例を示す回路図である。It is a circuit diagram which shows the further structural example of the LED driver. 実施形態2に係る車両用灯具を示す図である。It is a figure which shows the lighting fixture for a vehicle which concerns on Embodiment 2. 図15の点灯回路の構成例を示すブロック図である。It is a block diagram which shows the structural example of the lighting circuit of FIG. 実施形態3に係る車両用灯具を示す図である。It is a figure which shows the lighting fixture for a vehicle which concerns on Embodiment 3. ショート異常検出機能を備える車両用灯具のブロック図である。It is a block diagram of a vehicle lamp equipped with a short-circuit abnormality detection function. 図19(a)、(b)は、図18の車両用灯具の動作を説明する図である。19 (a) and 19 (b) are diagrams illustrating the operation of the vehicle lamp of FIG. 一実施例に係る異常検出回路の回路図である。It is a circuit diagram of the abnormality detection circuit which concerns on one Example. 半導体光源のIV特性を示す図である。It is a figure which shows the IV characteristic of a semiconductor light source. 異常検出回路の判定処理1を説明する図である。It is a figure explaining the determination process 1 of an abnormality detection circuit. 異常検出回路の判定処理2を説明する図である。It is a figure explaining the determination process 2 of an abnormality detection circuit. 異常検出回路の判定処理3を説明する図である。It is a figure explaining the determination process 3 of an abnormality detection circuit. 図25は、実施形態に係る車両用灯具のブロック図である。FIG. 25 is a block diagram of a vehicle lamp according to the embodiment. 図26(a)、(b)は、マスク処理部の動作を説明する図である。26 (a) and 26 (b) are diagrams illustrating the operation of the mask processing unit. 第1処理例に係るマスク処理部のブロック図である。It is a block diagram of the mask processing part which concerns on the 1st processing example. 第2処理例に係るマスク処理部のブロック図である。It is a block diagram of the mask processing part which concerns on the 2nd processing example. 第3処理例に係るマスク処理部のブロック図である。It is a block diagram of the mask processing part which concerns on 3rd processing example. 図30(a)~(c)は、スキャン方式の配光形成とパルス調光の組み合わせにおける縦縞を説明する図である。30 (a) to 30 (c) are diagrams illustrating vertical stripes in a combination of scan-type light distribution formation and pulse dimming. 実施形態に係る車両用灯具のブロック図である。It is a block diagram of the lamp for a vehicle which concerns on embodiment. 図32(a)~(c)は、車両用灯具の動作の一例を説明する図である。32 (a) to 32 (c) are views illustrating an example of the operation of a vehicle lamp. 図33(a)~(c)は、車両用灯具の動作の一例を説明する図である。33 (a) to 33 (c) are diagrams illustrating an example of the operation of a vehicle lamp. PWM信号生成部の構成例を示すブロック図である。It is a block diagram which shows the structural example of the PWM signal generation part. 図34のPWM信号生成部の動作波形図である。FIG. 3 is an operation waveform diagram of the PWM signal generation unit of FIG. 34. 変形例1に係るPWM信号生成部の動作波形図である。It is operation waveform diagram of the PWM signal generation part which concerns on modification 1. FIG. イニシャライズ点灯をサポートする車両用灯具のブロック図である。It is a block diagram of the lighting equipment for a vehicle which supports the initialization lighting. 図37の車両用灯具の動作波形図である。FIG. 3 is an operation waveform diagram of the vehicle lamp of FIG. 37. 変形例2に係る車両用灯具の動作波形図である。It is an operation waveform diagram of the lamp for a vehicle which concerns on modification 2. FIG.
(実施形態の概要)
 本開示のいくつかの例示的な実施形態の概要を説明する。この概要は、後述する詳細な説明の前置きとして、実施形態の基本的な理解を目的として、1つまたは複数の実施形態のいくつかの概念を簡略化して説明するものであり、発明あるいは開示の広さを限定するものではない。またこの概要は、考えられるすべての実施形態の包括的な概要ではなく、実施形態の欠くべからざる構成要素を限定するものではない。便宜上、「一実施形態」は、本明細書に開示するひとつの実施形態(実施例や変形例)または複数の実施形態(実施例や変形例)を指すものとして用いる場合がある。
(Outline of Embodiment)
Some exemplary embodiments of the present disclosure will be outlined. This overview simplifies and describes some concepts of one or more embodiments for the purpose of basic understanding of embodiments, as a prelude to the detailed description described below, and is an invention or disclosure. It does not limit the size. Also, this overview is not a comprehensive overview of all possible embodiments and does not limit the essential components of the embodiments. For convenience, "one embodiment" may be used to refer to one embodiment (examples or modifications) or a plurality of embodiments (examples or modifications) disclosed herein.
1. 一実施形態に係る車両用灯具は、半導体光源を含み、半導体光源の出射光を配光の水平方向の全範囲にわたり走査する走査型光源と、走査型光源の走査と同期して、各走査位置における半導体光源の光量をパルス変調により多階調で調光可能な点灯回路と、を備える。 1. 1. The vehicle lighting equipment according to the embodiment includes a semiconductor light source, a scanning light source that scans the emitted light of the semiconductor light source over the entire horizontal range of the light distribution, and each scanning position in synchronization with the scanning of the scanning light source. It is provided with a lighting circuit capable of dimming the light amount of the semiconductor light source in multiple gradations by pulse modulation.
 この構成によれば、パルス変調を採用することで、1走査周期内において、走査位置に応じて、光源の光量を高速に変化させることができる。したがって、1走査周期内で光量を一定とするDC調光(アナログ調光)と比べて、1個の光源で形成できる配光のバリエーションが増える。これにより、従来に比べて、光源および点灯回路の個数を減らすことができ、あるいは、制御を簡略化できる。 According to this configuration, by adopting pulse modulation, the amount of light from the light source can be changed at high speed according to the scanning position within one scanning cycle. Therefore, as compared with DC dimming (analog dimming) in which the amount of light is constant within one scanning cycle, the variation of light distribution that can be formed by one light source increases. As a result, the number of light sources and lighting circuits can be reduced as compared with the conventional case, or control can be simplified.
 「パルス変調」は、パルス幅変調(PWM)のほか、パルス周波数変調(PFM)やパルス密度変調(PDM)などを含み、光源に流れる駆動電流を高速にスイッチングし、駆動電流の時間平均値を変化させる変調方式を含みうる。 "Pulse modulation" includes pulse width modulation (PWM), pulse frequency modulation (PFM), pulse density modulation (PDM), etc., and switches the drive current flowing through the light source at high speed to obtain the time average value of the drive current. It may include varying modulation schemes.
 走査型光源は、半導体光源に加えて、半導体光源の出射光を受け、所定の周期運動を繰り返すことによりその反射光を車両前方で走査する反射体をさらに含んでもよい。点灯回路は、反射体の運動と同期して、パルス変調の制御波形を生成し、制御波形に応じて半導体光源に供給する駆動電流をスイッチングしてもよい。 In addition to the semiconductor light source, the scanning type light source may further include a reflector that receives the emitted light of the semiconductor light source and scans the reflected light in front of the vehicle by repeating a predetermined periodic motion. The lighting circuit may generate a control waveform of pulse modulation in synchronization with the motion of the reflector, and may switch the drive current supplied to the semiconductor light source according to the control waveform.
 点灯回路は、半導体光源と直列に設けられるシリーズスイッチと、シリーズスイッチと半導体光源の直列接続回路に接続される定電流ドライバと、を備えてもよい。点灯回路は、走査位置に応じたデューティサイクルで、シリーズスイッチをスイッチングしてもよい。 The lighting circuit may include a series switch provided in series with the semiconductor light source and a constant current driver connected to the series connection circuit of the series switch and the semiconductor light source. The lighting circuit may switch the series switch in a duty cycle according to the scanning position.
 従来技術(特許文献4)では、2個の半導体光源を直列に接続し、各半導体光源と並列にバイパススイッチを設ける構成が採られていた。この構成では、1個のバイパススイッチを走査周波数よりも十分高い周波数でスイッチングすると、他方の半導体光源にその影響が及ぶこととなる。これに対して、半導体光源ごとにシリーズスイッチによって個別に駆動することにより、あるチャンネルの駆動が、他のチャンネルに及ぼす影響を排除できる。 In the prior art (Patent Document 4), two semiconductor light sources are connected in series, and a bypass switch is provided in parallel with each semiconductor light source. In this configuration, switching one bypass switch at a frequency sufficiently higher than the scanning frequency will affect the other semiconductor light source. On the other hand, by individually driving each semiconductor light source with a series switch, it is possible to eliminate the influence of driving one channel on other channels.
 定電流ドライバは、スイッチングコンバータと、スイッチングコンバータの出力電流の検出値が、所定の目標値に近づくように、スイッチングコンバータを駆動するコンバータコントローラと、を含んでもよい。 The constant current driver may include a switching converter and a converter controller that drives the switching converter so that the detected value of the output current of the switching converter approaches a predetermined target value.
2. 一実施形態に係る車両用灯具は、半導体光源を含み、半導体光源の出射光を走査する走査型光源と、走査型光源の走査と同期して、各走査位置における半導体光源の光量をパルス変調により多階調で調光可能な点灯回路と、を備える。点灯回路は、走査ごとに、パルス変調の位相を変化させる。 2. 2. The vehicle lamp according to the embodiment includes a semiconductor light source, and the light amount of the semiconductor light source at each scanning position is pulse-modulated in synchronization with the scanning of the scanning light source and the scanning light source that scans the emitted light of the semiconductor light source. It is equipped with a lighting circuit that can be dimmed with multiple gradations. The lighting circuit changes the phase of pulse modulation with each scan.
 「パルス変調」は、パルス幅変調(PWM)のほか、パルス周波数変調(PFM)やパルス密度変調(PDM)などを含み、光源に流れる駆動電流を高速にスイッチングし、駆動電流の時間平均値を変化させる変調方式を含みうる。 "Pulse modulation" includes pulse width modulation (PWM), pulse frequency modulation (PFM), pulse density modulation (PDM), etc., and switches the drive current flowing through the light source at high speed to obtain the time average value of the drive current. It may include varying modulation schemes.
 パルス変調の位相を変化させることは、パルス周期の開始タイミングを変化させること、あるいは、パルス周期内におけるパルスの発生位置を変化させることなどを含みうる。 Changing the phase of pulse modulation may include changing the start timing of the pulse cycle, changing the pulse generation position within the pulse cycle, and the like.
 走査ごとにパルス変調の位相、すなわち点灯タイミングおよび消灯タイミングを変化させることで、パルス変調による点灯部分および消灯部分を走査毎に移動させることができる。これにより、縦ライン(縦縞)を抑制できる。 By changing the phase of pulse modulation for each scan, that is, the lighting timing and the extinguishing timing, the lighting portion and the extinguishing portion due to pulse modulation can be moved for each scan. As a result, vertical lines (vertical stripes) can be suppressed.
 一実施形態において、点灯回路は、走査ごとに、パルス変調の位相を180°シフトしてもよい。 In one embodiment, the lighting circuit may shift the phase of pulse modulation by 180 ° for each scan.
 一実施形態において、点灯回路は、走査ごとに、パルス変調の位相を360°/N、(N≧3)シフトしてもよい。 In one embodiment, the lighting circuit may shift the phase of pulse modulation by 360 ° / N (N ≧ 3) for each scan.
 一実施形態において、点灯回路は、半導体光源と直列に設けられるシリーズスイッチと、シリーズスイッチと半導体光源の直列接続回路と接続され、駆動電流を生成する定電流出力の降圧コンバータと、走査ごとに位相がシフトするパルス変調されたパルス調光信号を生成する調光信号生成部と、パルス調光信号にもとづいてシリーズスイッチを駆動するドライバ回路と、を備えてもよい。 In one embodiment, the lighting circuit is connected to a series switch provided in series with the semiconductor light source, a step-down converter having a constant current output connected to the series connection circuit of the series switch and the semiconductor light source, and a phase-down converter for each scan. It may be provided with a dimming signal generation unit that generates a pulse-modulated pulse dimming signal that shifts the current, and a driver circuit that drives a series switch based on the pulse dimming signal.
3. 一実施形態に係る車両用灯具は、半導体光源を含み、半導体光源の出射光を走査する走査型光源と、走査型光源の走査と同期して半導体光源に供給する駆動電流を制御し、半導体光源の光量を制御する定電流ドライバと、を備える。定電流ドライバは、半導体光源と直列に設けられるシリーズスイッチと、シリーズスイッチと半導体光源との直列接続回路に接続され、(i)シリーズスイッチのオン期間において定電流を出力し、(ii)シリーズスイッチのオフ期間においてスイッチング動作を停止し、直前のオン期間と実質的に同じ出力電圧を維持する降圧コンバータと、パルス調光信号にもとづいてシリーズスイッチを駆動するドライバ回路と、降圧コンバータの出力電圧にもとづいて、異常を検出する異常検出回路と、を備える。イグニッションオンをトリガーとして、定電流ドライバは半導体光源を駆動し、降圧コンバータの出力電圧を規定電圧まで上昇させるイニシャライズ点灯を行う。 3. 3. The vehicle lighting equipment according to one embodiment includes a semiconductor light source, controls a scanning type light source that scans the emitted light of the semiconductor light source, and controls a drive current supplied to the semiconductor light source in synchronization with scanning of the scanning type light source, and controls the semiconductor light source. It is equipped with a constant current driver that controls the amount of light. The constant current driver is connected to a series switch provided in series with the semiconductor light source and a series connection circuit between the series switch and the semiconductor light source, and (i) outputs a constant current during the on period of the series switch, and (ii) the series switch. To the buck converter that stops the switching operation during the off period and maintains substantially the same output voltage as the previous on period, the driver circuit that drives the series switch based on the pulse dimming signal, and the output voltage of the buck converter. Originally, it is provided with an abnormality detection circuit for detecting an abnormality. Triggered by the ignition on, the constant current driver drives the semiconductor light source and performs initialization lighting that raises the output voltage of the buck converter to the specified voltage.
 この構成によれば、シリーズスイッチによって、降圧コンバータの出力電流の遮断、導通を高速に切り替えるため、降圧コンバータの出力電圧をステップ状に変化させる必要がない。これにより、出力キャパシタの充放電にともなう駆動電流のリンギングを抑制でき、数kHz~数十kHzの高速なパルス変調による調光が可能となる。 According to this configuration, the series switch cuts off the output current of the buck converter and switches the continuity at high speed, so it is not necessary to change the output voltage of the buck converter in steps. As a result, ringing of the drive current due to charging / discharging of the output capacitor can be suppressed, and dimming by high-speed pulse modulation of several kHz to several tens of kHz becomes possible.
 「パルス変調」は、パルス幅変調(PWM)のほか、パルス周波数変調(PFM)やパルス密度変調(PDM)などを含み、光源に流れる駆動電流を高速にスイッチングし、駆動電流の時間平均値を変化させる変調方式を含みうる。 "Pulse modulation" includes pulse width modulation (PWM), pulse frequency modulation (PFM), pulse density modulation (PDM), etc., and switches the drive current flowing through the light source at high speed to obtain the time average value of the drive current. It may include varying modulation schemes.
 またこの構成によれば、イニシャライズ点灯の完了後、ランプの点灯指令を受けたときに、降圧コンバータの出力電圧は規定電圧まで上昇しているため、異常検出回路は直ちに異常検出を開始することができる。 Also, according to this configuration, when the lamp lighting command is received after the initialization lighting is completed, the output voltage of the buck converter has risen to the specified voltage, so the abnormality detection circuit can immediately start abnormality detection. can.
 一実施形態において、異常検出回路は、シリーズスイッチのオフ期間において、降圧コンバータの出力電圧が正常範囲から逸脱すると、シリーズスイッチの異常と判定してもよい。 In one embodiment, the abnormality detection circuit may determine that the series switch is abnormal if the output voltage of the buck converter deviates from the normal range during the off period of the series switch.
 バイパススイッチによるPWM調光では、バイパススイッチがオフできなくなるショート故障が発生したときに、LEDは消灯状態となるため、グレアを与えないという観点からは好ましい状態となる。これに対して、シリーズスイッチによるパルス調光では、シリーズスイッチがオフできない、あるいは短絡される異常(ショート異常と総称する)が発生すると、半導体光源に電流が流れ、対向車や先行車等にグレアを与えることとなる。上記構成によれば、シリーズスイッチのオフ期間において降圧コンバータのスイッチングが停止するため、シリーズスイッチにショート異常が生じた場合に、ショート異常のシリーズスイッチと半導体光源を含む経路によって、降圧コンバータの出力の電荷が放電され、出力電圧が低下する。したがって、シリーズスイッチのオフ期間において降圧コンバータの出力電圧を監視することで、シリーズスイッチのショート異常を検出できる。 In PWM dimming by the bypass switch, when a short-circuit failure that the bypass switch cannot be turned off occurs, the LED is turned off, which is a preferable state from the viewpoint of not giving glare. On the other hand, in pulse dimming by the series switch, when the series switch cannot be turned off or a short circuit occurs (generally called short circuit abnormality), a current flows through the semiconductor light source and glare occurs on the oncoming vehicle or the preceding vehicle. Will be given. According to the above configuration, the switching of the buck converter is stopped during the off period of the series switch. Therefore, when a short circuit error occurs in the series switch, the output of the buck converter is output by the path including the series switch with the short circuit error and the semiconductor light source. The charge is discharged and the output voltage drops. Therefore, by monitoring the output voltage of the buck converter during the off period of the series switch, a short circuit abnormality of the series switch can be detected.
 一実施形態において、定電流ドライバは、イニシャライズ点灯において、周囲から視認できない明るさで、半導体光源を駆動してもよい。これにより、周囲の人に気づかれずに、イニシャライズ点灯を完了できる。 In one embodiment, the constant current driver may drive the semiconductor light source with a brightness that cannot be visually recognized from the surroundings in the initialized lighting. As a result, the initialization lighting can be completed without being noticed by the surrounding people.
 一実施形態において、定電流ドライバは、イニシャライズ点灯において、周囲から視認可能な明るさで半導体光源を点灯させてもよい。これにより、イニシャライズ点灯を演出として周囲の人に見せることができる。 In one embodiment, the constant current driver may turn on the semiconductor light source with a brightness that can be visually recognized from the surroundings in the initialized lighting. As a result, the initialized lighting can be shown to the surrounding people as an effect.
 一実施形態において、車両用灯具は、走査型光源の光軸をピッチ方向に制御するレベリング装置をさらに備えてもよい。イニシャライズ点灯において、レベリング装置は、走査型光源の光軸を下げてもよい。 In one embodiment, the vehicle lighting fixture may further include a leveling device that controls the optical axis of the scanning light source in the pitch direction. In the initialized lighting, the leveling device may lower the optical axis of the scanning light source.
 一実施形態において、定電流ドライバは、イニシャライズ点灯において、パルス調光信号のデューティサイクルを5%以下に下げてもよく、デューティサイクルを最小値まで低下させてもよい。 In one embodiment, the constant current driver may reduce the duty cycle of the pulse dimming signal to 5% or less or the duty cycle to the minimum value in the initialized lighting.
 一実施形態において、走査型光源は複数の半導体光源を含んでもよい。定電流ドライバは複数の半導体光源に対応して複数であり、複数の定電流ドライバに供給される複数のパルス調光信号は、オンのタイミングがシフトしていてもよい。これにより、複数の半導体光源が同時に点灯するのを防止し、周囲から見えにくくできる。 In one embodiment, the scanning light source may include a plurality of semiconductor light sources. There are a plurality of constant current drivers corresponding to a plurality of semiconductor light sources, and the timing of turning on the plurality of pulse dimming signals supplied to the plurality of constant current drivers may be shifted. This prevents a plurality of semiconductor light sources from lighting at the same time and makes it difficult to see from the surroundings.
 一実施形態において、定電流ドライバは、イニシャライズ点灯において、駆動電流の電流量を通常点灯時に比べて減少させてもよい。これにより、周囲から見えにくくできる。 In one embodiment, the constant current driver may reduce the amount of drive current in the initialized lighting as compared with the normal lighting. This makes it difficult to see from the surroundings.
4. 一実施形態に係る車両用灯具は、半導体光源を含み、半導体光源の出射光を走査する走査型光源と、走査型光源の走査と同期して半導体光源に供給する駆動電流を制御し、半導体光源の光量を制御する定電流ドライバと、を備える。定電流ドライバは、半導体光源と直列に設けられるシリーズスイッチと、シリーズスイッチと半導体光源との直列接続回路に接続され、(i)シリーズスイッチのオン期間において定電流を出力し、(ii)シリーズスイッチのオフ期間においてスイッチング動作を停止し、直前のオン期間と実質的に同じ出力電圧を維持する降圧コンバータと、パルス調光信号にもとづいてシリーズスイッチを駆動するドライバ回路と、降圧コンバータの出力電圧にもとづいて、異常を検出する異常検出回路と、パルス調光信号のデューティサイクルと点灯時間の積を積算して累積点灯時間を計算し、累積点灯時間が所定のしきい値より低い間、異常検出回路による異常検出をマスクするマスク処理部と、を備える。 4. The vehicle lighting equipment according to one embodiment includes a semiconductor light source, controls a scanning type light source that scans the emitted light of the semiconductor light source, and controls a drive current supplied to the semiconductor light source in synchronization with scanning of the scanning type light source, and controls the semiconductor light source. It is equipped with a constant current driver that controls the amount of light. The constant current driver is connected to a series switch provided in series with the semiconductor light source and a series connection circuit between the series switch and the semiconductor light source, and (i) outputs a constant current during the ON period of the series switch, and (ii) the series switch. To the buck converter that stops the switching operation during the off period and maintains substantially the same output voltage as the previous on period, the driver circuit that drives the series switch based on the pulse dimming signal, and the output voltage of the buck converter. Based on this, the abnormality detection circuit that detects anomalies, the duty cycle of the pulse dimming signal, and the product of the lighting time are integrated to calculate the cumulative lighting time, and the abnormality is detected while the cumulative lighting time is lower than the predetermined threshold value. It is provided with a mask processing unit that masks abnormality detection by the circuit.
 この構成によれば、シリーズスイッチによって、降圧コンバータの出力電流の遮断、導通を高速に切り替えるため、降圧コンバータの出力電圧をステップ状に変化させる必要がない。これにより、出力キャパシタの充放電にともなう駆動電流のリンギングを抑制でき、数kHz~数十kHzの高速なパルス変調による調光が可能となる。 According to this configuration, the series switch cuts off the output current of the buck converter and switches the continuity at high speed, so it is not necessary to change the output voltage of the buck converter in steps. As a result, ringing of the drive current due to charging / discharging of the output capacitor can be suppressed, and dimming by high-speed pulse modulation of several kHz to several tens of kHz becomes possible.
 「パルス変調」は、パルス幅変調(PWM)のほか、パルス周波数変調(PFM)やパルス密度変調(PDM)などを含み、光源に流れる駆動電流を高速にスイッチングし、駆動電流の時間平均値を変化させる変調方式を含みうる。 "Pulse modulation" includes pulse width modulation (PWM), pulse frequency modulation (PFM), pulse density modulation (PDM), etc., and switches the drive current flowing through the light source at high speed to obtain the time average value of the drive current. It may include varying modulation schemes.
 点灯開始直後は、降圧コンバータの出力電圧は0Vであり、出力電圧にもとづく異常検出が不可能である。この構成によれば、点灯開始からの累積点灯時間を、パルス調光のデューティサイクルを考慮して計算することにより、降圧コンバータの出力電圧が規定電圧まで上昇したことを正確に検出でき、その後は、出力電圧にもとづく異常検出が可能となる。なお、デューティサイクルは、明るさ(減光率)と等価であるから、半導体光源の明るさと点灯時間の積を積算する処理も、本開示の範囲に含まれる。 Immediately after the start of lighting, the output voltage of the buck converter is 0V, and it is impossible to detect an abnormality based on the output voltage. According to this configuration, by calculating the cumulative lighting time from the start of lighting in consideration of the duty cycle of pulse dimming, it is possible to accurately detect that the output voltage of the buck converter has risen to the specified voltage, and then it can be detected accurately. , Abnormality detection based on the output voltage is possible. Since the duty cycle is equivalent to the brightness (dimming rate), the process of integrating the product of the brightness of the semiconductor light source and the lighting time is also included in the scope of the present disclosure.
 一実施形態において、異常検出回路は、点灯時間を、電源電圧に応じた係数で重み付けして積算してもよい。降圧コンバータの出力電圧の上昇速度が電源電圧に依存する場合には、点灯時間を電源電圧によって重み付けして積算することで、降圧コンバータの出力電圧が規定電圧まで上昇したことを正確に検出できる。 In one embodiment, the abnormality detection circuit may weight the lighting time with a coefficient corresponding to the power supply voltage and integrate the lighting time. When the rising speed of the output voltage of the buck converter depends on the power supply voltage, the lighting time is weighted by the power supply voltage and integrated, so that it can be accurately detected that the output voltage of the buck converter has risen to the specified voltage.
 一実施形態において、異常検出回路は、シリーズスイッチのオフ期間において、降圧コンバータの出力電圧が正常範囲から逸脱すると、シリーズスイッチの異常と判定してもよい。 In one embodiment, the abnormality detection circuit may determine that the series switch is abnormal if the output voltage of the buck converter deviates from the normal range during the off period of the series switch.
 バイパススイッチによるPWM調光では、バイパススイッチがオフできなくなるショート故障が発生したときに、LEDは消灯状態となるため、グレアを与えないという観点からは好ましい状態となる。これに対して、シリーズスイッチによるパルス調光では、シリーズスイッチがオフできない、あるいは短絡される異常(ショート異常と総称する)が発生すると、半導体光源に電流が流れ、対向車や先行車等にグレアを与えることとなる。上記構成によれば、シリーズスイッチのオフ期間において降圧コンバータのスイッチングが停止するため、シリーズスイッチにショート異常が生じた場合に、ショート異常のシリーズスイッチと半導体光源を含む経路によって、降圧コンバータの出力の電荷が放電され、出力電圧が低下する。したがって、シリーズスイッチのオフ期間において降圧コンバータの出力電圧を監視することで、シリーズスイッチのショート異常を検出できる。 In PWM dimming by the bypass switch, when a short-circuit failure that the bypass switch cannot be turned off occurs, the LED is turned off, which is a preferable state from the viewpoint of not giving glare. On the other hand, in pulse dimming by the series switch, when the series switch cannot be turned off or a short circuit occurs (generally called short circuit abnormality), a current flows through the semiconductor light source and glare occurs on the oncoming vehicle or the preceding vehicle. Will be given. According to the above configuration, the switching of the buck converter is stopped during the off period of the series switch. Therefore, when a short circuit error occurs in the series switch, the output of the buck converter is output by the path including the series switch with the short circuit error and the semiconductor light source. The charge is discharged and the output voltage drops. Therefore, by monitoring the output voltage of the buck converter during the off period of the series switch, a short circuit abnormality of the series switch can be detected.
 一実施形態において、パルス調光信号を生成するパルス調光信号生成回路と、マスク処理部は、同じマイクロコントローラに実装されてもよい。パルス調光信号を生成するマイクロコントローラは、パルス調光信号のデューティサイクルを知っているため、マイクロコントローラのソフトウェア処理によって、マスク処理を行うことで、構成を簡素化できる。 In one embodiment, the pulse dimming signal generation circuit that generates the pulse dimming signal and the mask processing unit may be mounted on the same microcontroller. Since the microcontroller that generates the pulse dimming signal knows the duty cycle of the pulse dimming signal, the configuration can be simplified by performing the mask processing by the software processing of the microcontroller.
(実施形態)
 以下、本開示を好適な実施の形態をもとに図面を参照しながら説明する。各図面に示される同一または同等の構成要素、部材、処理には、同一の符号を付するものとし、適宜重複した説明は省略する。また、実施の形態は、開示を限定するものではなく例示であって、実施の形態に記述されるすべての特徴やその組み合わせは、必ずしも開示の本質的なものであるとは限らない。
(Embodiment)
Hereinafter, the present disclosure will be described with reference to the drawings based on the preferred embodiments. The same or equivalent components, members, and processes shown in the drawings shall be designated by the same reference numerals, and duplicate description thereof will be omitted as appropriate. Further, the embodiment is not limited to the disclosure but is an example, and all the features and combinations thereof described in the embodiment are not necessarily essential to the disclosure.
 本明細書において、「部材Aが、部材Bと接続された状態」とは、部材Aと部材Bが物理的に直接的に接続される場合のほか、部材Aと部材Bが、それらの電気的な接続状態に実質的な影響を及ぼさない、あるいはそれらの結合により奏される機能や効果を損なわせない、その他の部材を介して間接的に接続される場合も含む。 In the present specification, the "state in which the member A is connected to the member B" means that the member A and the member B are physically directly connected, and the member A and the member B are electrically connected to each other. It also includes cases of being indirectly connected via other members that do not substantially affect the connection state or impair the functions and effects performed by the combination thereof.
 同様に、「部材Cが、部材Aと部材Bの間に設けられた状態」とは、部材Aと部材C、あるいは部材Bと部材Cが直接的に接続される場合のほか、それらの電気的な接続状態に実質的な影響を及ぼさない、あるいはそれらの結合により奏される機能や効果を損なわせない、その他の部材を介して間接的に接続される場合も含む。 Similarly, "a state in which the member C is provided between the member A and the member B" means that the member A and the member C, or the member B and the member C are directly connected, and their electricity. It also includes cases of being indirectly connected via other members that do not substantially affect the connection state or impair the functions and effects performed by the combination thereof.
 また本明細書において、電圧信号、電流信号などの電気信号、あるいは抵抗、キャパシタなどの回路素子に付された符号は、必要に応じてそれぞれの電圧値、電流値、あるいは抵抗値、容量値を表すものとする。 Further, in the present specification, the reference numerals attached to electric signals such as voltage signals and current signals, or circuit elements such as resistors and capacitors have their respective voltage values, current values, resistance values, and capacitance values as necessary. It shall be represented.
 はじめに、比較技術について説明する。図1は、本発明者らが検討した比較技術に係る車両用灯具100Rのブロック図である。車両用灯具100Rは、走査光学系2、複数のLED4_1~4_N、複数のLEDドライバ10、配光コントローラ20を備える。複数のLED4_1~4_Nは、2個(あるいは3個)ごとに直列に接続され、複数M個のLEDストリング6_1~6_Mが形成される。LEDドライバ10は、LEDストリング6ごとに設けられる。2個のLEDを直列接続するのは、LEDドライバの個数を減らすためである。 First, the comparison technique will be explained. FIG. 1 is a block diagram of a vehicle lamp 100R according to a comparative technique examined by the present inventors. The vehicle lamp 100R includes a scanning optical system 2, a plurality of LEDs 4_1 to 4_N, a plurality of LED drivers 10, and a light distribution controller 20. A plurality of LEDs 4_1 to 4_N are connected in series every two (or three) to form a plurality of M LED strings 6_1 to 6_M. The LED driver 10 is provided for each LED string 6. The reason why the two LEDs are connected in series is to reduce the number of LED drivers.
 LEDドライバ10_1は、定電流出力の降圧コンバータ12と、LED4_1,4_2と並列に設けられるバイパススイッチSW1,SW2、バイパススイッチSW1,SW2の駆動回路14を含む。LEDドライバ10_2~10_Mも同様に構成される。 The LED driver 10_1 includes a constant current output buck converter 12 and a drive circuit 14 for bypass switches SW1 and SW2 and bypass switches SW1 and SW2 provided in parallel with LEDs 4_1 and 4_2. The LED drivers 10_1 to 10_M are similarly configured.
 走査光学系2は、複数のLED4_1~4_Nの出射ビームBM~BMを、車両前方の仮想鉛直スクリーン900上で、水平方向に走査する。出射ビームBM~BMが走査されることにより、個別配光パターンPTN~PTNが形成される。複数の個別配光パターンPTN~PTNは、水平方向に関して、異なる範囲に形成される。複数の個別配光パターンPTN~PTNを合成することにより、車両用灯具100R全体の合成配光が形成される。 The scanning optical system 2 horizontally scans the emitted beams BM 1 to BM N of the plurality of LEDs 4_1 to 4_N on the virtual vertical screen 900 in front of the vehicle. By scanning the emitted beams BM 1 to BM N , individual light distribution patterns PTN 1 to PTN N are formed. A plurality of individual light distribution patterns PTN 1 to PTN N are formed in different ranges in the horizontal direction. By synthesizing a plurality of individual light distribution patterns PTN 1 to PTN N , a synthetic light distribution of the entire vehicle lamp 100R is formed.
 ひとつのLED_iに着目する。走査中のある期間、対応するバイパススイッチSWiをオンすると、LED4_iには電流が供給されなくなるため、LED_iを消灯することができる。車両前方に対向車や先行車(前方車という)が存在する場合、前方車の存在範囲を、LED_iの出射ビームが通過する間、バイパススイッチSWiがオンされる。これにより、前方車の存在範囲を遮光することができる。 Focus on one LED_i. When the corresponding bypass switch SWi is turned on for a certain period of time during scanning, no current is supplied to the LED4_i, so that the LED_i can be turned off. When an oncoming vehicle or a preceding vehicle (referred to as a vehicle in front) is present in front of the vehicle, the bypass switch SWi is turned on while the emitted beam of LED_i passes through the existing range of the vehicle in front. As a result, the existing range of the vehicle in front can be shielded from light.
 走査が人間の目に知覚されないように、走査光学系2による走査周波数は、60Hzより高く定める必要があり、たとえば200Hz程度とされ、1走査周期は5msとなる。比較技術において、各LEDの光量(輝度)は、アナログ調光(DC調光)によって制御されるが、スイッチングコンバータ12の出力電流IOUTを5msの走査周期内で動的に変化させることは困難であるため、1走査周期の間、出力電流IOUTは一定とされ、したがってひとつの個別配光パターンPTNに含まれる照射部分の照度は均一である。最終的な合成配光において、明るい部分と暗い部分を形成したい場合には、個別配光パターンPTN~PTNそれぞれの明るさを制御し、それらを重ね合わせる必要がある。 The scanning frequency by the scanning optical system 2 needs to be set higher than 60 Hz so that the scanning is not perceived by the human eye. For example, it is set to about 200 Hz, and one scanning cycle is 5 ms. In the comparative technique, the light amount (luminance) of each LED is controlled by analog dimming (DC dimming), but it is difficult to dynamically change the output current I OUT of the switching converter 12 within a scanning cycle of 5 ms. Therefore, the output current I OUT is constant during one scan cycle, and therefore the illuminance of the irradiated portion included in one individual light distribution pattern PTN i is uniform. When it is desired to form a bright part and a dark part in the final synthetic light distribution, it is necessary to control the brightness of each of the individual light distribution patterns PTN 1 to PTN N and superimpose them.
 本発明者らは、図1の車両用灯具100Rにおいて、バイパススイッチSW1~SWNをPWM制御することにより、1走査周期内で、LED4_1~4_Nそれぞれの光量を変化させることを検討した。 The present inventors have studied that in the vehicle lamp 100R of FIG. 1, the light intensity of each of the LEDs 4_1 to 4_N is changed within one scanning cycle by PWM-controlling the bypass switches SW1 to SWN.
 ひとつのLEDドライバ10_1に着目する。バイパススイッチSW1をオフに固定し、バイパススイッチSW2をスイッチングする状況を考える。バイパススイッチSW2をスイッチングすると、スイッチのターンオフのタイミング、つまりLED4_2が点灯するタイミングで、このLED4_2に流れる電流ILED2が、リンギングする。この現象は、スイッチングコンバータ12の出力キャパシタC1の電荷の充放電により説明される。図2は、LEDの駆動電流のリンギング波形を示す図(測定結果)である。 Focus on one LED driver 10_1. Consider a situation in which the bypass switch SW1 is fixed to off and the bypass switch SW2 is switched. When the bypass switch SW2 is switched, the current I LED2 flowing through the LED4_2 rings at the turn-off timing of the switch, that is, at the timing when the LED4_2 is turned on. This phenomenon is explained by charging / discharging the electric charge of the output capacitor C1 of the switching converter 12. FIG. 2 is a diagram (measurement result) showing a ringing waveform of the driving current of the LED.
 バイパススイッチSW1がオフ、バイパススイッチSW2がオンの状態を初期状態とする。このとき、スイッチングコンバータ12の出力電圧VOUTはVとなる。Vは、LED1個の順方向電圧である。 The initial state is the state in which the bypass switch SW1 is off and the bypass switch SW2 is on. At this time, the output voltage V OUT of the switching converter 12 becomes VF . VF is a forward voltage of one LED.
 バイパススイッチSW2がターンオフすると、スイッチングコンバータ12は、その出力電圧VOUTを2×Vまで上昇させる必要があり、C×Vの電荷を出力キャパシタC1に充電しなければならない。したがってバイパススイッチSW2のターンオフ直後は、出力電流IOUTの一部分がキャパシタC1の充電電流として消費されるため、出力電流IOUTが不足する。スイッチングコンバータ12において、不足した電流が目標値に近づくようにフィードバックがかかるが、スイッチングコンバータ12のインダクタの共振により、出力電流IOUTがリンギングする。 When the bypass switch SW2 is turned off, the switching converter 12 needs to raise its output voltage V OUT to 2 × VF, and has to charge the output capacitor C1 with the charge of C × VF . Therefore, immediately after the turn-off of the bypass switch SW2, a part of the output current I OUT is consumed as the charging current of the capacitor C1, so that the output current I OUT is insufficient. In the switching converter 12, feedback is applied so that the insufficient current approaches the target value, but the output current I OUT rings due to the resonance of the inductor of the switching converter 12.
 このように、バイパススイッチSW2をスイッチングすると、それと並列なLED4_2の電流ILED2がリンギングする。それのみでなく、常時点灯されるLED4_1の電流ILED1もリンギングすることとなる。 When the bypass switch SW2 is switched in this way, the current I LED2 of the LED4_2 in parallel with the bypass switch SW2 rings. Not only that, the current I LED1 of the LED4_1 that is always lit will also be ringing.
 実験によりリンギングの持続時間(以下、リンギング時間という)を測定したところ、おおよそ30~50μsであった。 When the duration of ringing (hereinafter referred to as ringing time) was measured by an experiment, it was about 30 to 50 μs.
 一般的な非走査型ランプにおけるPWM周波数は300Hz程度であり、PWM周期は3.3msである。この場合、リンギング時間50μsは、PWM周期の5%程度に過ぎず、リンギングが階調制御に及ぼす影響は小さい。 The PWM frequency of a general non-scanning lamp is about 300 Hz, and the PWM cycle is 3.3 ms. In this case, the ringing time of 50 μs is only about 5% of the PWM cycle, and the influence of ringing on the gradation control is small.
 ところが、図1の走査型ランプでは、走査周波数を100~200Hzとする場合、PWM周波数はその数倍以上、つまり数kHzとする必要がある。これは、非スキャン型の一般的な灯具におけるPWM周波数が300Hz程度であるのと比べて非常に高い周波数であると言える。 However, in the scanning lamp of FIG. 1, when the scanning frequency is 100 to 200 Hz, the PWM frequency needs to be several times or more, that is, several kHz. It can be said that this is a very high frequency as compared with the PWM frequency of about 300 Hz in a general non-scan type lamp.
 たとえば走査型ランプにおいて、PWM周波数を20kHzとすると、PWM周期は50μsとなり、リンギング時間50μsと同程度となる。したがって、図1の構成では、バイパススイッチSW1,SW2を利用して、数十kHzでPWM調光することは現実的に難しい。 For example, in a scanning lamp, when the PWM frequency is 20 kHz, the PWM cycle is 50 μs, which is about the same as the ringing time of 50 μs. Therefore, in the configuration of FIG. 1, it is practically difficult to perform PWM dimming at several tens of kHz by using the bypass switches SW1 and SW2.
 以下、実施形態に係る車両用灯具100ついて説明する。 Hereinafter, the vehicle lamp 100 according to the embodiment will be described.
 図3は、実施形態1に係る車両用灯具100Aを示す図である。図3の車両用灯具100Aは、スキャン方式のADB機能を有し、車両前方に多様な配光パターンを形成する。車両用灯具100Aは主として、走査型光源200A、点灯回路300Aおよび配光コントローラ400を備える。 FIG. 3 is a diagram showing a vehicle lamp 100A according to the first embodiment. The vehicle lamp 100A of FIG. 3 has a scan-type ADB function and forms various light distribution patterns in front of the vehicle. The vehicle lamp 100A mainly includes a scanning light source 200A, a lighting circuit 300A, and a light distribution controller 400.
 配光コントローラ400は、カメラやLiDAR(Light Detection and Ranging、Laser Imaging Detection and Ranging)などのセンサからの情報(センサ情報)S1、車速やステアリング角などの情報(車両情報)S2などを受け、配光パターンを決定する。配光コントローラ400は、ランプボディ内に収容されてもよいし、車両側に設けられてもよい。配光コントローラ400は、配光パターンを指示する情報(配光パターン情報)S3を車両用灯具100に送信する。配光コントローラ400を、ADB用ECU(Electronic Control Unit)とも称する。 The light distribution controller 400 receives and distributes information (sensor information) S1 and information (vehicle information) S2 such as vehicle speed and steering angle from sensors such as cameras and LiDAR (Light Detection and Ringing, Laser Imaging Detection and Ringing). Determine the light pattern. The light distribution controller 400 may be housed in the lamp body or may be provided on the vehicle side. The light distribution controller 400 transmits information (light distribution pattern information) S3 indicating a light distribution pattern to the vehicle lamp 100. The light distribution controller 400 is also referred to as an ADB ECU (Electronic Control Unit).
 走査型光源200Aは、光源ユニット210A、走査光学系220、投影光学系230を備える。光源ユニット210Aは、1個の半導体光源212や図示しないヒートシンクを含む。半導体光源212には、LED(発光ダイオード)あるいはレーザダイオードなどを用いることができる。走査光学系220は、半導体光源212の出射光(ビーム)BMを車両前方で走査する。 The scanning light source 200A includes a light source unit 210A, a scanning optical system 220, and a projection optical system 230. The light source unit 210A includes one semiconductor light source 212 and a heat sink (not shown). An LED (light emitting diode), a laser diode, or the like can be used as the semiconductor light source 212. The scanning optical system 220 scans the emitted light (beam) BM of the semiconductor light source 212 in front of the vehicle.
 本実施形態において走査光学系220は、モータ222および1枚あるいは複数M枚(この例では2枚)のブレードミラー224_1,224_2を備える。M枚(M≧2)のブレードミラーは、360/M°、ずれた位置に取り付けられ、この例では、2枚のブレードミラーが180°ずれた位置に取り付けられている。 In the present embodiment, the scanning optical system 220 includes a motor 222 and one or a plurality of M (two in this example) blade mirrors 224_1224_2. The M blade mirrors (M ≧ 2) are mounted at 360 / M ° offset positions, and in this example, the two blade mirrors are mounted at 180 ° offset positions.
 半導体光源212の光軸は、その出射ビームBMが、M枚のブレードミラーのうちの1枚に照射されるように向けられている。 The optical axis of the semiconductor light source 212 is directed so that the emitted beam BM irradiates one of the M blade mirrors.
 ある時刻においてブレードミラー224への入射光BMは、ブレードミラー224の位置(ロータの回転角)に応じた反射角で反射し、車両前方の仮想鉛直スクリーン900上に瞬時照射スポットSPTを形成する。瞬時照射スポットSPTは、水平方向(H方向)に幅Δv、垂直方向(V方向)に幅Δhを有している。ブレードミラー224が回転することで反射角、すなわち反射ビームBMrの出射方向が変化し、瞬時照射スポットSPTの水平方向(H方向)の位置(走査位置)が移動する。この動作を高速に、たとえば50Hz以上で繰り返すことで車両前方には、配光パターンPTNが形成される。 At a certain time, the incident light BM on the blade mirror 224 is reflected at a reflection angle corresponding to the position of the blade mirror 224 (rotation angle of the rotor), and an instantaneous irradiation spot SPT is formed on the virtual vertical screen 900 in front of the vehicle. The instantaneous irradiation spot SPT has a width Δv in the horizontal direction (H direction) and a width Δh in the vertical direction (V direction). The rotation of the blade mirror 224 changes the reflection angle, that is, the emission direction of the reflected beam BMr, and the horizontal (H direction) position (scanning position) of the instantaneous irradiation spot SPT moves. By repeating this operation at high speed, for example, at 50 Hz or higher, a light distribution pattern PTN is formed in front of the vehicle.
 本実施形態において、ひとつのビームBMが形成する配光パターンPTNは、車両用灯具100Aの水平方向の全範囲-θMAX~+θMAXに広がっている。すなわち走査型光源200Aは、反射ビームBMrを、水平方向の全範囲にわたり走査する。たとえばθMAXは20~25°程度である。なお全範囲とは、スキャン照射可能な全範囲であり、スキャン以外の光源により照射される範囲は含まない。 In the present embodiment, the light distribution pattern PTN formed by one beam BM extends over the entire horizontal range of the vehicle lamp 100A to −θMAX to + θMAX . That is, the scanning light source 200A scans the reflected beam BMr over the entire horizontal range. For example, θ MAX is about 20 to 25 °. The entire range is the entire range that can be irradiated by scanning, and does not include the range irradiated by a light source other than scanning.
 点灯回路300Aは、配光パターン情報S3が指示する配光パターンが得られるように、走査型光源200Aの走査と同期して、各走査位置における半導体光源212の光量、すなわちビームBMの強度を、パルス変調により多階調で調光する。本実施形態では、PWM(パルス幅変調)によって、半導体光源212に流れる駆動電流ILEDの平均量を変化させ、半導体光源212の光量を変化させる(PWM調光)。PWM周波数は、走査周波数よりも十分に高く定められ、たとえば数kHz~数百kHzとすることが望ましい。 The lighting circuit 300A determines the amount of light of the semiconductor light source 212 at each scanning position, that is, the intensity of the beam BM, in synchronization with the scanning of the scanning light source 200A so that the light distribution pattern indicated by the light distribution pattern information S3 can be obtained. Dimming with multiple gradations by pulse modulation. In the present embodiment, the average amount of drive current I LEDs flowing through the semiconductor light source 212 is changed by PWM (pulse width modulation), and the amount of light of the semiconductor light source 212 is changed (PWM dimming). The PWM frequency is set sufficiently higher than the scanning frequency, and it is desirable that the PWM frequency is, for example, several kHz to several hundred kHz.
 なお点灯回路300Aは、走査周期、またはそれより長い制御周期で、電流IOUTの電流量を変化させてもよい。つまりPWM調光とDC調光を併用してもよい。以上が車両用灯具100Aの構成である。続いてその動作を説明する。 The lighting circuit 300A may change the amount of current I OUT in a scanning cycle or a control cycle longer than that. That is, PWM dimming and DC dimming may be used together. The above is the configuration of the vehicle lamp 100A. Next, the operation will be described.
 図4(a)、(b)は、車両用灯具100Aよるグレアフリー配光の形成を説明する図である。図4(a)のグレアフリー配光910は、遮光部分912と、照射部分914,916を含んでいる。図4(a)は仮想鉛直スクリーン上の配光を、図4(b)は、図4(a)の配光に対応する車両用灯具100Aの動作波形を示す。なお本明細書において参照する波形図やタイムチャートの縦軸および横軸は、理解を容易とするために適宜拡大、縮小したものであり、また示される各波形も、理解の容易のために簡略化され、あるいは誇張もしくは強調されている。 4 (a) and 4 (b) are diagrams illustrating the formation of glare-free light distribution by the vehicle lamp 100A. The glare-free light distribution 910 of FIG. 4A includes a light-shielding portion 912 and an irradiation portion 914,916. 4 (a) shows the light distribution on the virtual vertical screen, and FIG. 4 (b) shows the operation waveform of the vehicle lamp 100A corresponding to the light distribution of FIG. 4 (a). The vertical and horizontal axes of the waveform charts and time charts referred to in the present specification are appropriately enlarged or reduced for easy understanding, and each waveform shown is also simplified for easy understanding. It is made, or exaggerated or emphasized.
 たとえば点灯回路300Aは、照射部分914,916に対応する区間において、半導体光源212の駆動電流ILEDのデューティサイクルを非ゼロの値(この例では100%の一定値)とし、遮光部分912に対応する区間において、駆動電流ILEDのデューティサイクルを0%とする。 For example, the lighting circuit 300A sets the duty cycle of the drive current I LED of the semiconductor light source 212 to a non-zero value (100% constant value in this example) in the section corresponding to the irradiation portions 914 and 916, and corresponds to the light shielding portion 912. In this section, the duty cycle of the drive current I LED is set to 0%.
 図5(a)、(b)は、車両用灯具100Aよる部分減光配光の形成を説明する図である。図5(a)は仮想鉛直スクリーン上の配光の水平方向の照度分布を示し、図5(b)は、図5(a)の配光に対応する車両用灯具100Aの動作波形を示す。図5(a)に示す部分減光配光920は、2個の減光部分922,924と、3個の非減光部分926,927,928を含んでいる。 5 (a) and 5 (b) are diagrams illustrating the formation of a partially dimmed light distribution by the vehicle lamp 100A. 5 (a) shows the horizontal illuminance distribution of the light distribution on the virtual vertical screen, and FIG. 5 (b) shows the operation waveform of the vehicle lamp 100A corresponding to the light distribution of FIG. 5 (a). The partial dimming distribution 920 shown in FIG. 5A includes two dimming portions 922,924 and three non-dimming portions 926,927,928.
 たとえば点灯回路300Aは、非減光部分(照射部分)926,927,928に対応する区間において、半導体光源212の駆動電流ILEDのデューティサイクルを100%に固定し、減光部分922,924に対応する区間において、駆動電流ILEDのデューティサイクルをそれぞれ、50%、25%とする。この車両用灯具100Aによれば、単一の半導体光源に流れる駆動電流ILEDをPWM制御することにより、部分減光を実現できる。 For example, in the lighting circuit 300A, the duty cycle of the drive current I LED of the semiconductor light source 212 is fixed to 100% in the section corresponding to the non-dimming portion (irradiation portion) 926,927,928, and the duty cycle is fixed to the dimming portion 922,924. In the corresponding section, the duty cycle of the drive current I LED is 50% and 25%, respectively. According to the vehicle lamp 100A, partial dimming can be realized by PWM-controlling the drive current I LED flowing through a single semiconductor light source.
 図6(a)、(b)は、車両用灯具100Aによる電子スイブルを説明する図である。図6(a)は、中央が最も明るい配光を、図6(b)は、右側が最も明るい配光を示す。この車両用灯具100Aによれば、単一の半導体光源に流れる駆動電流ILEDをPWM制御することにより、電子スイブル機能を実現できる。 6 (a) and 6 (b) are diagrams illustrating an electronic swivel by a vehicle lamp 100A. FIG. 6A shows the brightest light distribution in the center, and FIG. 6B shows the brightest light distribution on the right side. According to the vehicle lamp 100A, the electronic swivel function can be realized by PWM-controlling the drive current I LED flowing through a single semiconductor light source.
 以上が車両用灯具100Aの動作である。車両用灯具100Aの利点は、比較技術との対比によって一層明確となる。そこで比較技術について説明する。図7は、比較技術に係る車両用灯具100Rを示す図である。 The above is the operation of the vehicle lamp 100A. The advantages of the vehicle lamp 100A are further clarified by comparison with the comparative technique. Therefore, the comparative technique will be described. FIG. 7 is a diagram showing a vehicle lamp 100R according to the comparative technique.
 比較技術に係る車両用灯具100Rにおいて、光源ユニット210Rは複数の半導体光源212_1~212_Nを備える。半導体光源212_1~212_Nそれぞれの出射ビームBM~BMはそれぞれ、仮想鉛直スクリーン900上の、水平方向の異なる範囲を走査され、出射ビームBM~BMの走査により、複数の個別配光パターンPTN~PTNが形成される。車両用灯具100Rが形成する配光は、複数の個別配光パターンPTN~PTNの重ね合わせである。 In the vehicle lamp 100R according to the comparative technique, the light source unit 210R includes a plurality of semiconductor light sources 212_1 to 212_N. Each of the emission beams BM 1 to BM N of the semiconductor light sources 212_1 to 212_N is scanned in different horizontal ranges on the virtual vertical screen 900, and a plurality of individual light distribution patterns are scanned by scanning the emission beams BM 1 to BM N. PTN 1 to PTN N are formed. The light distribution formed by the vehicle lamp 100R is a superposition of a plurality of individual light distribution patterns PTN 1 to PTN N.
 点灯回路300Rは、複数の半導体光源212_1~212_Nそれぞれに、駆動電流ILED1~ILEDNを供給する。点灯回路300Rは、1周期内で、駆動電流ILED1~ILEDNそれぞれを、オン、オフすることが可能である。また点灯回路300Rは、DC調光によって、駆動電流ILED1~ILEDNそれぞれのオン期間における電流量を制御可能であるが、電流量は、1走査ごとにしか切りかえることができない。 The lighting circuit 300R supplies drive currents I LED1 to I LEDN to each of the plurality of semiconductor light sources 212_1 to 212_N. The lighting circuit 300R can turn on and off the drive currents I LED1 to I LEDN , respectively, within one cycle. Further, the lighting circuit 300R can control the amount of current during the on period of each of the drive currents I LED1 to I LEDN by DC dimming, but the amount of current can be switched only for each scan.
 図8は、比較技術に係る車両用灯具100Rによる配光形成を説明する図である。ここではN=6チャンネルとする。複数の個別配光パターンPTN~PTNの照射幅が制御される。それらを重ね合わせることにより、この例では左前方が明るい配光パターンが形成される。 FIG. 8 is a diagram illustrating light distribution formation by the vehicle lamp 100R according to the comparative technique. Here, N = 6 channels. The irradiation widths of the plurality of individual light distribution patterns PTN 1 to PTN 6 are controlled. By superimposing them, a light distribution pattern with a bright left front is formed in this example.
 実施形態1に戻る。実施形態1に係る車両用灯具100Aによれば、パルス変調を採用することで、1走査周期内において、走査位置に応じて、光源の光量を高速に変化させることができる。したがって、1走査周期内で光量を一定とする従来のアナログ調光と比べて、1個の光源で形成できる配光のバリエーションが増える。これにより、従来に比べて、光源および点灯回路の個数を減らすことができ、あるいは、制御を簡略化できる。 Return to embodiment 1. According to the vehicle lamp 100A according to the first embodiment, by adopting pulse modulation, the light amount of the light source can be changed at high speed according to the scanning position within one scanning cycle. Therefore, as compared with the conventional analog dimming in which the amount of light is constant within one scanning cycle, the variation of the light distribution that can be formed by one light source increases. As a result, the number of light sources and lighting circuits can be reduced as compared with the conventional case, or control can be simplified.
 本開示は、図1のブロック図や回路図として把握され、図3~図4の波形図、あるいは上述の説明から導かれるさまざまな装置、回路に及ぶものであり、特定の構成に限定されるものではない。以下、本開示の範囲を狭めるためではなく、開示の本質や回路動作の理解を容易、明確化するために、より具体的な構成例を説明する。 The present disclosure is grasped as a block diagram and a circuit diagram of FIG. 1, and extends to various devices and circuits derived from the waveform diagrams of FIGS. 3 to 4 or the above description, and is limited to a specific configuration. It's not a thing. Hereinafter, a more specific configuration example will be described not to narrow the scope of the present disclosure but to facilitate and clarify the essence of the disclosure and the circuit operation.
 点灯回路300Aの具体的な構成例を説明する。図9は、点灯回路300Aの構成例を示すブロック図である。 A specific configuration example of the lighting circuit 300A will be described. FIG. 9 is a block diagram showing a configuration example of the lighting circuit 300A.
 配光コントローラ400は、センサ情報S1や車両情報S2を受ける。配光コントローラ400は、センサ情報S1にもとづいて、車両前方の状況、具体的には対向車、先行車の有無、歩行者の有無等を検出する。また配光コントローラ400は、車両情報S2にもとづいて、現在の車速、操舵角などを検出する。配光コントローラ400はこれらの情報にもとづいて、車両前方に照射すべき配光パターンを決定し、配光パターンを指示する情報(配光パターン情報)S3を、点灯回路300Aに送信する。 The light distribution controller 400 receives sensor information S1 and vehicle information S2. The light distribution controller 400 detects the situation in front of the vehicle, specifically, the presence / absence of an oncoming vehicle, a preceding vehicle, the presence / absence of a pedestrian, and the like based on the sensor information S1. Further, the light distribution controller 400 detects the current vehicle speed, steering angle, and the like based on the vehicle information S2. Based on these information, the light distribution controller 400 determines a light distribution pattern to be irradiated to the front of the vehicle, and transmits information (light distribution pattern information) S3 instructing the light distribution pattern to the lighting circuit 300A.
 点灯回路300Aは、配光パターン情報S3にもとづいてブレードミラー224の回転と同期しながら、PWM調光により、半導体光源212の光量(輝度)を多階調で変化させる。たとえば点灯回路300Aは主として、位置検出器302、PWM信号生成部310、定電流ドライバ(以下、LEDドライバという)320を備える。 The lighting circuit 300A changes the light amount (luminance) of the semiconductor light source 212 in multiple gradations by PWM dimming while synchronizing with the rotation of the blade mirror 224 based on the light distribution pattern information S3. For example, the lighting circuit 300A mainly includes a position detector 302, a PWM signal generation unit 310, and a constant current driver (hereinafter referred to as LED driver) 320.
 位置検出器302は、ブレードミラー224の位置、言い換えれば現在のビームの走査位置を検出するために設けられる。位置検出器302は、ブレードミラー224の所定の基準箇所が所定位置を通過するタイミングを示す位置検出信号S4を生成する。たとえば基準箇所は、2枚のブレードミラー224の端部(区切れ目)であってもよいし、各ブレードミラーの中央であってもよく、任意の箇所とすることができる。 The position detector 302 is provided to detect the position of the blade mirror 224, in other words, the scanning position of the current beam. The position detector 302 generates a position detection signal S4 indicating the timing at which the predetermined reference point of the blade mirror 224 passes the predetermined position. For example, the reference portion may be the end portion (separation) of the two blade mirrors 224, or may be the center of each blade mirror, and may be any location.
 ブレードミラー224を回転させるモータ222には、ホール素子が取り付けられていてもよい。この場合、ホール素子からのホール信号は、ロータの位置、すなわちブレードミラーの位置に応じた周期波形となる。位置検出器302は、ホール信号の極性が反転するタイミングを検出してもよく、具体的には一対のホール信号を比較するホールコンパレータで構成してもよい。 A Hall element may be attached to the motor 222 that rotates the blade mirror 224. In this case, the Hall signal from the Hall element has a periodic waveform corresponding to the position of the rotor, that is, the position of the blade mirror. The position detector 302 may detect the timing at which the polarity of the Hall signal is inverted, and specifically, may be configured by a Hall comparator that compares a pair of Hall signals.
 位置検出器302によるブレードミラー224の位置検出方法は、ホール素子を利用したものに限定されない。たとえば位置検出器302は、モータ222のロータの位置を検出する光学式、あるいはその他の方式のロータリーエンコーダを利用して、位置検出信号S4を生成してもよい。あるいは位置検出器302は、ブレードミラー224の裏側に設けられたフォトセンサと、ブレードミラー224の表面側からフォトセンサに向かって光を照射する位置検出用の光源と、を含んでもよい。そしてブレードミラー224に、スリットあるいはピンホールを設けてもよい。これにより、スリットあるいはピンホールが、フォトセンサの上を通過するタイミングを検出できる。スリットは、2枚のブレードミラー224の間隙であってもよい。また位置検出用の光源は、赤外線光源を利用してもよいし、半導体光源212であってもよい。このように位置検出器302の構成にはさまざまなバリエーションが存在しうる。 The position detection method of the blade mirror 224 by the position detector 302 is not limited to the one using a Hall element. For example, the position detector 302 may generate the position detection signal S4 by using an optical or other rotary encoder that detects the position of the rotor of the motor 222. Alternatively, the position detector 302 may include a photosensor provided on the back side of the blade mirror 224 and a light source for position detection that irradiates light from the surface side of the blade mirror 224 toward the photosensor. Then, the blade mirror 224 may be provided with a slit or a pinhole. This makes it possible to detect when the slit or pinhole passes over the photo sensor. The slit may be a gap between the two blade mirrors 224. Further, the light source for position detection may be an infrared light source or a semiconductor light source 212. As described above, there may be various variations in the configuration of the position detector 302.
 PWM信号生成部310は、ブレードミラー224の運動と同期して、パルス調光信号PWM_DIMを生成する。パルス調光信号PWM_DIMの1走査周期のデューティサイクルは、配光パターンにもとづいて規定される。たとえばモータ222の回転数が6000rpm(100Hz)であり、ブレードミラーが2枚である場合、走査周波数は、100Hz×2=200Hzとなり、走査周期は5msである。PWM信号生成部310は、マイクロコントローラ304とソフトウェアプログラムの組み合わせで実装してもよいし、ハードウェアのみで実装してもよい。マイクロコントローラ304およびLEDドライバ320は、一枚の基板上に搭載してもよいし、あるいは1つの筐体内に配置してもよい。 The PWM signal generation unit 310 generates a pulse dimming signal PWM_DIM in synchronization with the movement of the blade mirror 224. The duty cycle of one scan cycle of the pulse dimming signal PWM_DIM is defined based on the light distribution pattern. For example, when the rotation speed of the motor 222 is 6000 rpm (100 Hz) and the number of blade mirrors is two, the scanning frequency is 100 Hz × 2 = 200 Hz, and the scanning cycle is 5 ms. The PWM signal generation unit 310 may be implemented by combining the microcontroller 304 and the software program, or may be implemented only by hardware. The microcontroller 304 and the LED driver 320 may be mounted on one substrate or may be arranged in one housing.
 パルス調光信号PWM_DIMの周波数は、200Hzより高く定められ、たとえば数kHz~数十kHzとすることができる。パルス調光信号PWM_DIMのデューティサイクルは、半導体光源212の光量を定めるものであり、デューティサイクルは、1PWM周期ごとに設定可能であってもよいし、複数のPWM周期ごとに設定可能であってもよい。 The frequency of the pulse dimming signal PWM_DIM is set higher than 200 Hz, and can be, for example, several kHz to several tens of kHz. The duty cycle of the pulse dimming signal PWM_DIM determines the amount of light of the semiconductor light source 212, and the duty cycle may be set for each PWM cycle or may be set for each of a plurality of PWM cycles. good.
 LEDドライバ320は半導体光源212に駆動電流ILEDを供給する。駆動電流ILEDの電流量は、所定の目標値に安定化されており、LEDドライバ320は、パルス調光信号PWM_DIMに応じて、駆動電流ILEDをスイッチングする。 The LED driver 320 supplies a drive current I LED to the semiconductor light source 212. The current amount of the drive current I LED is stabilized to a predetermined target value, and the LED driver 320 switches the drive current I LED according to the pulse dimming signal PWM_DIM.
 図10は、LEDドライバ320の構成例(320A)を示す回路図である。LEDドライバ320Aは、降圧コンバータ322と、シリーズスイッチ323、ドライバ回路324を備える。シリーズスイッチ323と半導体光源212は直列に接続される。この例ではシリーズスイッチ323が半導体光源212のアノード側に挿入されるが、カソードと接地の間に挿入してもよい。 FIG. 10 is a circuit diagram showing a configuration example (320A) of the LED driver 320. The LED driver 320A includes a buck converter 322, a series switch 323, and a driver circuit 324. The series switch 323 and the semiconductor light source 212 are connected in series. In this example, the series switch 323 is inserted on the anode side of the semiconductor light source 212, but may be inserted between the cathode and the ground.
 降圧コンバータ322は、定電流出力のスイッチングコンバータであり、出力回路326およびコンバータコントローラ328を含む。出力回路326は、スイッチングトランジスタMH、同期整流トランジスタML、インダクタL1、出力キャパシタC1を含む。コンバータコントローラ328は、シリーズスイッチ323がオンの期間に降圧コンバータ322の出力電流IOUTが所定の目標量に近づくように、出力回路326のスイッチングトランジスタMHおよび同期整流トランジスタMLをスイッチング制御する。 The buck converter 322 is a constant current output switching converter and includes an output circuit 326 and a converter controller 328. The output circuit 326 includes a switching transistor MH, a synchronous rectifying transistor ML, an inductor L1, and an output capacitor C1. The converter controller 328 switches and controls the switching transistor MH and the synchronous rectifying transistor ML of the output circuit 326 so that the output current I OUT of the buck converter 322 approaches a predetermined target amount while the series switch 323 is on.
 コンバータコントローラ328の制御方式は特に限定されず、エラーアンプを用いたアナログコントローラ、PID(比例・積分・微分)補償器を含むデジタルコントローラ、あるいはヒステリシス制御のコントローラであってもよい。 The control method of the converter controller 328 is not particularly limited, and may be an analog controller using an error amplifier, a digital controller including a PID (proportional / integral / differential) compensator, or a hysteresis control controller.
 ドライバ回路324は、パルス調光信号PWM_DIMに応じてシリーズスイッチ323を駆動する。このドライバ回路324は、コンバータコントローラ328と同じICに集積化されてもよい。 The driver circuit 324 drives the series switch 323 in response to the pulse dimming signal PWM_DIM. The driver circuit 324 may be integrated in the same IC as the converter controller 328.
 コンバータコントローラ328は、パルス調光信号PWM_DIMがシリーズスイッチ323のオフを指示するオフレベルであるとき、スイッチングトランジスタMHおよび同期整流トランジスタMLのスイッチングを停止する。 The converter controller 328 stops the switching of the switching transistor MH and the synchronous rectifying transistor ML when the pulse dimming signal PWM_DIM is at the off level indicating the off of the series switch 323.
 以上がLEDドライバ320Aの構成である。このLEDドライバ320Aでは、シリーズスイッチ323によって、降圧コンバータ322の出力電流IOUTの遮断、導通を高速に切り替えるため、降圧コンバータ322の出力電圧VOUTをステップ状に変化させる必要がない。これにより、出力キャパシタC1の充放電にともなう出力電流IOUTのリンギングを抑制でき、数kHz~数十kHzの高速なパルス変調による調光が可能となる。 The above is the configuration of the LED driver 320A. In this LED driver 320A, since the output current I OUT of the buck converter 322 is cut off and the continuity is switched at high speed by the series switch 323, it is not necessary to change the output voltage V OUT of the buck converter 322 in a stepwise manner. As a result, ringing of the output current I OUT due to charging / discharging of the output capacitor C1 can be suppressed, and dimming by high-speed pulse modulation of several kHz to several tens of kHz becomes possible.
 図11(a)は、シリーズスイッチによる電流制御を、図11(b)は、バイパススイッチによる電流制御を示す図である。これらの波形は、PWM調光の1周期を示しており、PWM周波数は5kHz(200μs周期)、デューティサイクルは50%である。 FIG. 11A is a diagram showing current control by a series switch, and FIG. 11B is a diagram showing current control by a bypass switch. These waveforms show one cycle of PWM dimming, the PWM frequency is 5 kHz (200 μs cycle), and the duty cycle is 50%.
 バイパススイッチによるPWM調光では、図11(b)に示すように、降圧コンバータ322の出力電流、すなわちLED電流にリンギングが発生するのに対して、シリーズスイッチによるPWM調光では、図11(a)に示すように、LED電流のリンギングが抑制できる。これにより、デューティサイクルが小さい領域でも、PWM調光による階調制御が可能となる。 As shown in FIG. 11B, in the PWM dimming by the bypass switch, ringing occurs in the output current of the buck converter 322, that is, the LED current, whereas in the PWM dimming by the series switch, FIG. 11 (a). ), The ringing of the LED current can be suppressed. As a result, gradation control by PWM dimming becomes possible even in a region where the duty cycle is small.
 また、シリーズスイッチ323がオフの期間、コンバータコントローラ328は、スイッチングトランジスタMHと同期整流トランジスタMLのスイッチングを停止する。これにより、シリーズスイッチ323がオフの期間は、出力キャパシタC1の電圧VOUTが一定に保たれるため、シリーズスイッチ323がターンオンした直後の、出力電圧VOUTの変動量をゼロに近づけることができる。これにより出力電流IOUTのリンギングをさらに抑制できる。 Further, during the period when the series switch 323 is off, the converter controller 328 stops switching between the switching transistor MH and the synchronous rectifying transistor ML. As a result, the voltage V OUT of the output capacitor C1 is kept constant during the period when the series switch 323 is off, so that the fluctuation amount of the output voltage V OUT immediately after the series switch 323 is turned on can be brought close to zero. .. As a result, ringing of the output current I OUT can be further suppressed.
 図12は、LEDドライバ320Aの構成例を示す回路図である。LEDドライバ320Aは、制御IC(Integrated Circuit)340を備える。制御IC340には、コンバータコントローラ328に加えて、スイッチングトランジスタMH、同期整流トランジスタML、ドライバ回路324が集積化されている。 FIG. 12 is a circuit diagram showing a configuration example of the LED driver 320A. The LED driver 320A includes a control IC (Integrated Circuit) 340. In addition to the converter controller 328, the control IC 340 integrates a switching transistor MH, a synchronous rectifier transistor ML, and a driver circuit 324.
 出力回路326は、電流検出抵抗Rcsを含む。電流検出抵抗Rcsの両端の電圧は、制御ICのISP/ISNピンにフィードバックされる。トランスコンダクタンスアンプ330は、2つの端子ISP,ISNの電位差である電流検出信号Vcsと、基準電圧Vrefの誤差に応じた電流を生成する。トランスコンダクタンスアンプ330の出力は、サンプルホールド回路332を介して、Vcピンと接続される。Vcピンには、抵抗RcおよびキャパシタCcが接続される。抵抗RcおよびキャパシタCcは位相補償回路を兼ねている。なお抵抗Rcは省略してもよい。キャパシタCcが、トランスコンダクタンスアンプ330の出力電流に応じて充電・放電されることにより、Vcピンには、誤差電圧Vcが発生する。フィードバックにより、この誤差電圧Vcは、電流検出信号Vcsが基準電圧Vrefに近づくように増減する。トランスコンダクタンスアンプ330および位相補償回路Rc,Ccは、エラーアンプと把握される。 The output circuit 326 includes a current detection resistor Rcs. The voltage across the current detection resistor Rcs is fed back to the ISP / ISN pin of the control IC. The transconductance amplifier 330 generates a current corresponding to an error of the current detection signal Vcs, which is the potential difference between the two terminals ISP and ISN, and the reference voltage Vref. The output of the transconductance amplifier 330 is connected to the Vc pin via the sample hold circuit 332. A resistor Rc and a capacitor Cc are connected to the Vc pin. The resistance Rc and the capacitor Cc also serve as a phase compensation circuit. The resistance Rc may be omitted. The capacitor Cc is charged and discharged according to the output current of the transconductance amplifier 330, so that an error voltage Vc is generated in the Vc pin. Due to the feedback, this error voltage Vc increases or decreases so that the current detection signal Vcs approaches the reference voltage Vref. The transconductance amplifier 330 and the phase compensation circuits Rc and Cc are grasped as an error amplifier.
 オン時間制御部334はパルス幅変調器であり、誤差電圧Vcに応じたデューティサイクルを有する制御パルスSpwmを生成する。この制御パルスSpwmの周波数は、パルス調光信号PWM_DIMよりもさらに高く設定される。オン時間制御部334の構成は特に限定されないが、たとえば三角波やのこぎり波である周期電圧を生成するオシレータを含み、周期電圧と誤差電圧Vcを比較することにより、制御パルスSpwmを生成してもよい。 The on-time control unit 334 is a pulse width modulator, and generates a control pulse Spwm having a duty cycle corresponding to an error voltage Vc. The frequency of this control pulse Spwm is set even higher than the pulse dimming signal PWM_DIM. The configuration of the on-time control unit 334 is not particularly limited, but may include an oscillator that generates a periodic voltage such as a triangular wave or a sawtooth wave, and generate a control pulse Spwm by comparing the periodic voltage and the error voltage Vc. ..
 ゲートドライバ336は制御パルスSpwmに応じて、スイッチングトランジスタMHおよび同期整流トランジスタMLを駆動する。 The gate driver 336 drives the switching transistor MH and the synchronous rectifying transistor ML according to the control pulse Spwm.
 PWM信号生成部310は、マイクロコントローラで構成される。制御IC340のPWMピンには、PWM信号生成部310が生成するパルス調光信号PWM_DIMが入力される。ドライバ回路324は、パルス調光信号PWM_DIMを受け、シリーズスイッチ323を駆動する。この実施例においてシリーズスイッチ323はPMOSトランジスタであり、ドライバ回路324は、パルス調光信号PWM_DIMを反転した信号を、PWMGピンから出力する。 The PWM signal generation unit 310 is composed of a microcontroller. A pulse dimming signal PWM_DIM generated by the PWM signal generation unit 310 is input to the PWM pin of the control IC 340. The driver circuit 324 receives the pulse dimming signal PWM_DIM and drives the series switch 323. In this embodiment, the series switch 323 is a polyclonal transistor, and the driver circuit 324 outputs a signal obtained by inverting the pulse dimming signal PWM_DIM from the PWMG pin.
 パルス調光信号PWM_DIMは、サンプルホールド回路332に入力される。サンプルホールド回路332は、パルス調光信号PWM_DIMがシリーズスイッチ323のオンを指示するオンレベル(ハイ)の期間、トランスコンダクタンスアンプ330の出力を、Vcピンおよびオン時間制御部334の入力と接続する。またサンプルホールド回路332は、パルス調光信号PWM_DIMがシリーズスイッチ323のオフを指示するオフレベル(ロー)の期間、Vcピンとオン時間制御部334の入力の接続を維持しつつ、トランスコンダクタンスアンプ330の出力を、Vcピンおよびオン時間制御部334から遮断する。これにより、パルス調光信号PWM_DIMがオフの期間は、Vcピンの誤差電圧Vcがホールドされ、次のパルス調光信号PWM_DIMがオンになったときには、誤差電圧Vcを、直ちに適切な電圧レベルに復帰させることができる。 The pulse dimming signal PWM_DIM is input to the sample hold circuit 332. The sample hold circuit 332 connects the output of the transconductance amplifier 330 to the Vc pin and the input of the on-time control unit 334 during the on-level (high) period in which the pulse dimming signal PWM_DIM instructs the series switch 323 to turn on. Further, the sample hold circuit 332 maintains the connection between the Vc pin and the input of the on-time control unit 334 during the off-level (low) period in which the pulse dimming signal PWM_DIM instructs the series switch 323 to be turned off, while maintaining the connection of the transconductance amplifier 330. The output is cut off from the Vc pin and the on-time control unit 334. As a result, the error voltage Vc of the Vc pin is held during the period when the pulse dimming signal PWM_DIM is off, and when the next pulse dimming signal PWM_DIM is turned on, the error voltage Vc is immediately returned to the appropriate voltage level. Can be made to.
 またパルス調光信号PWM_DIMは、ゲートドライバ336に入力されている。ゲートドライバ336は、パルス調光信号PWM_DIMがオンレベル(ハイ)である期間、制御パルスSpwmに応じてスイッチングトランジスタMHと同期整流トランジスタMLを相補的にスイッチングする。またゲートドライバ336は、パルス調光信号PWM_DIMがオフレベル(ロー)である期間、スイッチングトランジスタMHと同期整流トランジスタMLのスイッチングを停止する。具体的にはゲートドライバ336は、パルス調光信号PWM_DIMがオフレベルの期間、スイッチングトランジスタMHと同期整流トランジスタMLの両方をオフに固定する。 The pulse dimming signal PWM_DIM is input to the gate driver 336. The gate driver 336 selectively switches the switching transistor MH and the synchronous rectifying transistor ML according to the control pulse Spwm during the period when the pulse dimming signal PWM_DIM is on level (high). Further, the gate driver 336 stops switching between the switching transistor MH and the synchronous rectifying transistor ML during the period when the pulse dimming signal PWM_DIM is off level (low). Specifically, the gate driver 336 fixes both the switching transistor MH and the synchronous rectifying transistor ML to off during the period when the pulse dimming signal PWM_DIM is off level.
 図13は、LEDドライバ320の別の構成例(320B)を示す回路図である。LEDドライバ320Bは、降圧コンバータ322と、バイパススイッチSW2、ドライバ回路324を備える。降圧コンバータ322は図8と同様に、出力回路326と、コンバータコントローラ328を含んでもよい。降圧コンバータ322は、所定の目標量に安定化された出力電流IOUTを生成する。 FIG. 13 is a circuit diagram showing another configuration example (320B) of the LED driver 320. The LED driver 320B includes a buck converter 322, a bypass switch SW2, and a driver circuit 324. The buck converter 322 may include an output circuit 326 and a converter controller 328, as in FIG. The buck converter 322 produces a regulated output current I OUT to a predetermined target amount.
 バイパススイッチSW2は、半導体光源212と並列に接続される。ドライバ回路324は、パルス調光信号PWM_DIMに応じて、バイパススイッチSW2を駆動する。バイパススイッチSW2のオフ期間、半導体光源212には出力電流IOUTが、駆動電流ILEDとして供給され、バイパススイッチSW2のオン期間、出力電流IOUTは、バイパススイッチSW2に流れるため、駆動電流ILEDはゼロとなる。 The bypass switch SW2 is connected in parallel with the semiconductor light source 212. The driver circuit 324 drives the bypass switch SW2 in response to the pulse dimming signal PWM_DIM. During the off period of the bypass switch SW2, the output current I OUT is supplied to the semiconductor light source 212 as the drive current I LED , and during the on period of the bypass switch SW2, the output current I OUT flows to the bypass switch SW2, so that the drive current I LED Is zero.
 図14は、LEDドライバ320のさらに別の構成例(320C)を示す回路図である。LEDドライバ320Cは、定電圧コンバータ327と定電流源329を含む。定電圧コンバータ327は、所定の電圧レベルに安定化された出力電圧VOUTを生成する。定電流源329は、半導体光源212と直列に接続される。定電流源329は、オン、オフが切りかえ可能であり、オン期間において、所定量に安定化された駆動電流ILEDを発生する(シンク)。定電流源329のオン、オフは、パルス調光信号PWM_DIMに応じて制御される。 FIG. 14 is a circuit diagram showing still another configuration example (320C) of the LED driver 320. The LED driver 320C includes a constant voltage converter 327 and a constant current source 329. The constant voltage converter 327 produces an output voltage V OUT stabilized at a predetermined voltage level. The constant current source 329 is connected in series with the semiconductor light source 212. The constant current source 329 can be switched on and off, and during the on period, a predetermined amount of stabilized drive current I LED is generated (sink). The on / off of the constant current source 329 is controlled according to the pulse dimming signal PWM_DIM.
 なお、LEDドライバ320の構成はここで例示したものに限定されない。 The configuration of the LED driver 320 is not limited to the one illustrated here.
(実施形態2)
 図15は、実施形態2に係る車両用灯具100Bを示す図である。実施形態1との相違点を説明する。
(Embodiment 2)
FIG. 15 is a diagram showing a vehicle lamp 100B according to the second embodiment. Differences from the first embodiment will be described.
 走査型光源200Bの光源ユニット210Bは、複数N個(N≧2)の半導体光源212_1~212_Nを備える。半導体光源212_1~212_Nの光軸は、それぞれの出射ビームBM~BMが、M枚のブレードミラーのうちの1枚に照射されるように向けられている。ここでは、半導体光源212_2の出射ビームBMの光線のみを代表として示す。 The light source unit 210B of the scanning light source 200B includes a plurality of N (N ≧ 2) semiconductor light sources 212_1 to 212_N. The optical axes of the semiconductor light sources 212_1 to 212_N are directed so that the respective emitted beams BM 1 to BM N irradiate one of the M blade mirrors. Here, only the light beam of the emitted beam BM 2 of the semiconductor light source 212_2 is shown as a representative.
 ある時刻においてブレードミラー224への入射光BMは、ブレードミラー224の位置(ロータの回転角)に応じた反射角で反射し、車両前方の仮想鉛直スクリーン900上に瞬時照射スポットSPTを形成する。瞬時照射スポットSPTは、水平方向(H方向)、垂直方向(V方向)それぞれに所定の幅を有している。ブレードミラー224が回転することで反射角が変化し、破線で示すように反射ビームBMrの出射方向が変化し、瞬時照射スポットSPTの水平方向(H方向)の位置(走査位置)が移動する。この動作を高速に、たとえば50Hz以上で繰り返すことで車両前方には、個別配光パターンPTNが形成される。 At a certain time, the incident light BM 2 on the blade mirror 224 is reflected at a reflection angle corresponding to the position of the blade mirror 224 (rotation angle of the rotor), and an instantaneous irradiation spot SPT 2 is formed on the virtual vertical screen 900 in front of the vehicle. do. The instantaneous irradiation spot SPT 2 has a predetermined width in each of the horizontal direction (H direction) and the vertical direction (V direction). As the blade mirror 224 rotates, the reflection angle changes, the emission direction of the reflected beam BMr 2 changes as shown by the broken line, and the horizontal (H direction) position (scanning position) of the instantaneous irradiation spot SPT 2 moves. do. By repeating this operation at high speed, for example, at 50 Hz or higher, an individual light distribution pattern PTN 2 is formed in front of the vehicle.
 別のビームBM,BM~BMについても同様であり、i番目の反射ビームBMrの走査により、個別配光パターンPTNが形成される。 The same applies to the other beams BM 1 , BM 3 to BM N , and the individual light distribution pattern PTN i is formed by scanning the i-th reflected beam BM r i .
 たとえばビームBM~BMが形成する個別配光パターンPTN~PTNは、仮想鉛直スクリーン900上の異なる高さに形成される。複数の個別配光パターンPTN~PTNの合成により、車両用灯具100全体の配光パターンPTN_ALLが形成される。垂直方向に隣接する個別配光パターンPTN同士は、垂直方向にわずかにオーバーラップしていてもよい。 For example, the individual light distribution patterns PTN 1 to PTN N formed by the beams BM 1 to BM N are formed at different heights on the virtual vertical screen 900. By synthesizing a plurality of individual light distribution patterns PTN 1 to PTN N , the light distribution pattern PTN_ALL of the entire vehicle lamp 100 is formed. The individual light distribution patterns PTNs adjacent to each other in the vertical direction may slightly overlap each other in the vertical direction.
 実施形態2において、複数の個別配光パターンPTN~PTNの少なくともひとつは、車両用灯具100の水平方向の全範囲-θMAX~+θMAXに広がっている。すなわち、走査型光源200Bは、複数のビームBMr~BMrの少なくともひとつを、水平方向の全範囲にわたり走査する。図15の例では、すべての個別配光パターンPTN~PTNが、水平方向の全範囲-θMAX~+θMAXに広がっている。 In the second embodiment, at least one of the plurality of individual light distribution patterns PTN 1 to PTN N extends over the entire horizontal range of the vehicle lamp 100 to −θMAX to + θMAX . That is, the scanning light source 200B scans at least one of the plurality of beams BMr 1 to BMr N over the entire horizontal range. In the example of FIG. 15, all the individual light distribution patterns PTN 1 to PTN N extend over the entire horizontal range −θ MAX to + θ MAX .
 点灯回路300Bは、走査型光源200Bの走査と同期して、各走査位置における半導体光源212_1~212_Nそれぞれの光量、すなわちビームBM~BMの強度を、パルス変調により多階調で調光する。点灯回路300Bは、走査周期、またはそれより長い制御周期で、電流IOUTの電流量を変化させてもよい。つまりPWM調光とDC調光を併用してもよい。 The lighting circuit 300B adjusts the light intensity of each of the semiconductor light sources 212_1 to 212_N at each scanning position, that is, the intensity of the beams BM 1 to BM N in multiple gradations in synchronization with the scanning of the scanning light source 200B. .. The lighting circuit 300B may change the amount of current I OUT in a scanning cycle or a control cycle longer than that. That is, PWM dimming and DC dimming may be used together.
 図16は、図15の点灯回路300Bの構成例を示すブロック図である。点灯回路300Bは、複数の半導体光源212_1~212_Nに対応する複数のLEDドライバ320_1~320_Nを備える。PWM信号生成部310は、目的とする配光が得られるように、複数のLEDドライバ320_1~320_Nに対するパルス調光信号PWM_DIM_1~PWM_DIM_Nを生成する。i番目(1≦i≦N)のLEDドライバ320は、対応する半導体光源212_iに対して、PWM変調された駆動電流ILEDiを供給する。LEDドライバ320の構成は、実施形態1と同様である。 FIG. 16 is a block diagram showing a configuration example of the lighting circuit 300B of FIG. The lighting circuit 300B includes a plurality of LED drivers 320_1 to 320_N corresponding to the plurality of semiconductor light sources 212_1 to 212_N. The PWM signal generation unit 310 generates pulse dimming signals PWM_DIM_1 to PWM_DIM_N for a plurality of LED drivers 320_1 to 320_N so that the desired light distribution can be obtained. The i-th (1 ≦ i ≦ N) LED driver 320 supplies a PWM-modulated drive current I LEDi to the corresponding semiconductor light source 212_i. The configuration of the LED driver 320 is the same as that of the first embodiment.
 この車両用灯具100Bによれば、実施形態1に比べて、高さ方向の分解能を高めることができる。 According to this vehicle lamp 100B, the resolution in the height direction can be improved as compared with the first embodiment.
 実施形態2の変形例を説明する。上の説明では、複数の配光パターンPTN~PTNのすべてが、全範囲に広がっていたがその限りでなく、その中のいくつかは、全範囲ではなく、一部の範囲に広がっていてもよい。 A modified example of the second embodiment will be described. In the above explanation, all of the plurality of light distribution patterns PTN 1 to PTN N are spread over the entire range, but not limited to this, and some of them are spread over a part of the range, not the entire range. You may.
 実施形態2では、配光全体を垂直方向に複数の領域に分割し、複数の領域に複数の個別配光パターンPTN~PTNを対応付けたがその限りでない。複数の個別配光パターンPTN~PTNのいくつかは、完全にオーバーラップしていてもよい。 In the second embodiment, the entire light distribution is vertically divided into a plurality of regions, and a plurality of individual light distribution patterns PTN 1 to PTN N are associated with the plurality of regions, but this is not the case. Some of the plurality of individual light distribution patterns PTN 1 to PTN N may completely overlap.
(実施形態3)
 図17は、実施形態3に係る車両用灯具100Cを示す図である。実施形態2と同様に、光源ユニット210Cは複数の半導体光源212_1~212_Nを備える。実施形態1、あるいは実施形態2では、半導体光源212_1~212_Nそれぞれの出射ビームBM~BMが、水平走査の全範囲にわたり照射されたが、実施形態3では、出射ビームBM~BMは、仮想鉛直スクリーン900上の、水平方向の異なる範囲を走査され、出射ビームBM~BMの走査により、複数の個別配光パターンPTN~PTNが形成される。車両用灯具100Rが形成する配光は、複数の個別配光パターンPTN~PTNの重ね合わせである。
(Embodiment 3)
FIG. 17 is a diagram showing a vehicle lamp 100C according to the third embodiment. Similar to the second embodiment, the light source unit 210C includes a plurality of semiconductor light sources 212_1 to 212_N. In the first embodiment or the second embodiment, the emitted beams BM 1 to BM N of the semiconductor light sources 212_1 to 212_N are irradiated over the entire range of the horizontal scan, but in the third embodiment, the emitted beams BM 1 to BM N are emitted. , Different horizontal ranges are scanned on the virtual vertical screen 900, and the scanning of the emitted beams BM 1 to BM N forms a plurality of individual light distribution patterns PTN 1 to PTN N. The light distribution formed by the vehicle lamp 100R is a superposition of a plurality of individual light distribution patterns PTN 1 to PTN N.
 点灯回路300Cは、実施形態2の点灯回路300Bと同様に構成することができる。 The lighting circuit 300C can be configured in the same manner as the lighting circuit 300B of the second embodiment.
(シリーズスイッチのショート異常検出)
 シリーズスイッチによるPWM調光を行う場合、シリーズスイッチにショート異常が生ずると、半導体光源212への駆動電流ILEDが遮断できなくなり、半導体光源212が点灯してしまい、正しい配光を形成できなくなる。具体的には、十分に減光できなくなり、対向車や先行車にグレアを与えるおそれがある。
(Short abnormality detection of series switch)
When PWM dimming is performed by the series switch, if a short circuit error occurs in the series switch, the drive current I LED to the semiconductor light source 212 cannot be cut off, the semiconductor light source 212 lights up, and the correct light distribution cannot be formed. Specifically, the dimming cannot be sufficiently performed, which may cause glare on the oncoming vehicle and the preceding vehicle.
 なお、ショート異常は、シリーズスイッチがターンオフ不能になる異常、あるいはシリーズスイッチの両端間が短絡される異常など、パルス調光信号PWM_DIMをオフレベルにしても、半導体光源212への電流供給を遮断できない異常をいう。 Note that the short-circuit abnormality cannot cut off the current supply to the semiconductor light source 212 even if the pulse dimming signal PWM_DIM is turned off, such as an abnormality in which the series switch cannot be turned off or an abnormality in which both ends of the series switch are short-circuited. It means an abnormality.
 以下では、シリーズスイッチのショート異常を検出可能な車両用灯具について説明する。 The following describes vehicle lamps that can detect short-circuit abnormalities in series switches.
 図18は、ショート異常検出機能を備える車両用灯具100Fのブロック図である。車両用灯具100Fは、半導体光源212、LEDドライバ320F、PWM信号生成部310を備える。PWM信号生成部310は、所望の配光パターンが形成されるようにパルス変調されたパルス調光信号PWM_DIMを生成する。 FIG. 18 is a block diagram of a vehicle lamp 100F having a short abnormality detection function. The vehicle lamp 100F includes a semiconductor light source 212, an LED driver 320F, and a PWM signal generation unit 310. The PWM signal generation unit 310 generates a pulse dimming signal PWM_DIM pulse-modulated so as to form a desired light distribution pattern.
 LEDドライバ320Fは、図10のLEDドライバ320Aと同様に、降圧コンバータ322、シリーズスイッチ323、ドライバ回路324、を備える。これらの機能、動作は、すでに説明した通りである。つまり降圧コンバータ322は、(i)シリーズスイッチ323のオン期間(パルス調光信号PWM_DIMがオンレベルの期間)において定電流を出力する。また降圧コンバータ322は、(ii)シリーズスイッチ323のオフ期間(パルス調光信号PWM_DIMがオフレベルの期間)においてスイッチング動作を停止し、直前のオン期間と実質的に同じ出力電圧VOUT、つまり半導体光源212の順方向電圧を維持するように構成される。 The LED driver 320F includes a buck converter 322, a series switch 323, and a driver circuit 324, similarly to the LED driver 320A of FIG. These functions and operations are as described above. That is, the buck converter 322 outputs a constant current during the on period (i) of the series switch 323 (the period during which the pulse dimming signal PWM_DIM is on level). Further, the buck converter 322 stops the switching operation during the off period of the (ii) series switch 323 (the period during which the pulse dimming signal PWM_DIM is at the off level), and has substantially the same output voltage V OUT , that is, the semiconductor as the immediately preceding on period. It is configured to maintain the forward voltage of the light source 212.
 LEDドライバ320Fはさらに異常検出回路370を備える。異常検出回路370は、シリーズスイッチ323のオフ期間における降圧コンバータ322の出力電圧VOUTが正常範囲から逸脱すると、シリーズスイッチ323の異常と判定し、異常検出信号(フェイル信号)FAILをアサートする。フェイル信号FAILは、PWM信号生成部310あるいは他のマイクロコントローラやプロセッサ、ECUなどの上位のブロックに送信される。フェイル信号FAILを受信したPWM信号生成部310は、パルス調光信号PWM_DIMの生成を停止し、半導体光源212を消灯してもよい。 The LED driver 320F further includes an abnormality detection circuit 370. When the output voltage V OUT of the buck converter 322 deviates from the normal range during the off period of the series switch 323, the abnormality detection circuit 370 determines that the series switch 323 is abnormal and asserts the abnormality detection signal (fail signal) FAIL. The fail signal FAIL is transmitted to the PWM signal generation unit 310 or an upper block such as another microcontroller, processor, or ECU. The PWM signal generation unit 310 that has received the fail signal FAIL may stop the generation of the pulse dimming signal PWM_DIM and turn off the semiconductor light source 212.
 図19(a)、(b)は、図18の車両用灯具100Fの動作を説明する図である。ここでは、2個の遮光部分と1個の減光部分を含む配光を形成する際の、1走査分の動作を例とする。 19 (a) and 19 (b) are diagrams illustrating the operation of the vehicle lamp 100F of FIG. Here, an operation for one scan is taken as an example when forming a light distribution including two light-shielding portions and one dimming portion.
 図19(a)を参照して、シリーズスイッチ323が正常であるときの動作を説明する。パルス調光信号PWM_DIMは、遮光部分においてオフレベル(ロー)であり、減光部分において、減光率に応じたデューティサイクルを有するパルス信号であり、それ以外の部分において、オンレベル(ハイ)をとる。 The operation when the series switch 323 is normal will be described with reference to FIG. 19 (a). The pulse dimming signal PWM_DIM is an off-level (low) in the light-shielding portion, a pulse signal having a duty cycle according to the dimming rate in the dimming portion, and an on-level (high) in the other portion. Take.
 パルス調光信号PWM_DIMがハイ(オンレベル)のとき、シリーズスイッチ323が導通するから、半導体光源212には、降圧コンバータ322が生成する定電流IOUTが供給され、半導体光源212に流れる駆動電流ILEDは定電流IOUTに安定化される。このとき、降圧コンバータ322の出力電圧VOUTは、半導体光源212の順方向電圧Vと等しくなる。 When the pulse dimming signal PWM_DIM is high (on level), the series switch 323 conducts, so that the constant current I OUT generated by the buck converter 322 is supplied to the semiconductor light source 212, and the drive current I flows through the semiconductor light source 212. The LED is stabilized to a constant current I OUT . At this time, the output voltage V OUT of the buck converter 322 becomes equal to the forward voltage VF of the semiconductor light source 212.
 パルス調光信号PWM_DIMがロー(オフレベル)のとき、シリーズスイッチ323が遮断するから、半導体光源212に流れる駆動電流ILEDは0Aとなる。また降圧コンバータ322のスイッチング動作が停止し、出力キャパシタC1への充放電が発生しなくなるため、出力電圧VOUTは実質的に一定レベルに保たれる。 When the pulse dimming signal PWM_DIM is low (off level), the series switch 323 is cut off, so that the drive current I LED flowing through the semiconductor light source 212 becomes 0A. Further, since the switching operation of the buck converter 322 is stopped and charging / discharging to the output capacitor C1 does not occur, the output voltage V OUT is kept at a substantially constant level.
 このように、シリーズスイッチ323が正常である場合には、シリーズスイッチ323のオン、オフにかかわらず、降圧コンバータ322の出力電圧VOUTが、順方向電圧Vの近傍のとある電圧範囲(これを正常範囲という)に含まれる。 Thus, when the series switch 323 is normal, the output voltage V OUT of the buck converter 322 is in a certain voltage range near the forward voltage VF regardless of whether the series switch 323 is on or off (this). Is included in the normal range).
 図19(b)を参照して、シリーズスイッチ323にショート異常が生じたときの動作を説明する。パルス調光信号PWM_DIMは、図19(a)のそれと同様である。 The operation when a short-circuit abnormality occurs in the series switch 323 will be described with reference to FIG. 19 (b). The pulse dimming signal PWM_DIM is the same as that in FIG. 19A.
 ショート異常が発生していても、パルス調光信号PWM_DIMがハイ(オンレベル)のときは、正常時と同様に動作するが、パルス調光信号PWM_DIMがロー(オフレベル)のときに、車両用灯具100Fは、正常時とは異なる振る舞いを見せる。 Even if a short-circuit error occurs, when the pulse dimming signal PWM_DIM is high (on level), it operates in the same way as normal, but when the pulse dimming signal PWM_DIM is low (off level), it is for vehicles. The lamp 100F behaves differently from the normal state.
 すなわち、パルス調光信号PWM_DIMがロー(オフレベル)であっても、シリーズスイッチ323が遮断できないため、半導体光源212には駆動電流ILEDが流れ続けてしまう。ただし、パルス調光信号PWM_DIMがローの間は、降圧コンバータ322のスイッチングは停止しているため、駆動電流ILEDは降圧コンバータ322の出力キャパシタC1の放電によってまかなわれる。したがって放電が進むにしたがって駆動電流ILEDは時間とともに減少する。遮光部分では、パルス調光信号PWM_DIMのロー区間が長いため、出力キャパシタC1が放電され、図21に示す点灯開始電圧VMINまで低下すると、駆動電流ILEDは0Aまで低下する。この時点で、出力キャパシタC1の放電が停止するため、出力電圧VOUTは、点灯開始電圧VMIN付近となる。一方、減光部分では、パルス調光信号PWM_DIMのロー区間が短いため、駆動電流ILEDは0Aまでは低下しない場合もあり得る。 That is, even if the pulse dimming signal PWM_DIM is low (off level), the series switch 323 cannot be cut off, so that the drive current I LED continues to flow in the semiconductor light source 212. However, since the switching of the buck converter 322 is stopped while the pulse dimming signal PWM_DIM is low, the drive current I LED is covered by the discharge of the output capacitor C1 of the buck converter 322. Therefore, as the discharge progresses, the drive current I LED decreases with time. Since the low section of the pulse dimming signal PWM_DIM is long in the light-shielded portion, when the output capacitor C1 is discharged and drops to the lighting start voltage V MIN shown in FIG. 21, the drive current I LED drops to 0 A. At this point, the discharge of the output capacitor C1 is stopped, so that the output voltage V OUT is near the lighting start voltage V MIN . On the other hand, in the dimmed portion, since the low section of the pulse dimming signal PWM_DIM is short, the drive current I LED may not decrease to 0A.
 このように、シリーズスイッチ323のショート異常が発生すると、減光部分において、駆動電流ILEDがほとんど減少せず、対向車にグレアを与えたり、運転者が物標を認識しにくくなるおそれがある。 In this way, when a short-circuit abnormality of the series switch 323 occurs, the drive current I LED hardly decreases in the dimmed portion, which may cause glare to the oncoming vehicle or make it difficult for the driver to recognize the target. ..
 ショート異常時のパルス調光信号PWM_DIMのロー区間に着目すると、出力キャパシタC1が、半導体光源212を介して放電されることにより、出力電圧VOUTが低下する。その結果、図19(a)で説明した正常範囲を逸脱することが分かる。 Focusing on the low section of the pulse dimming signal PWM_DIM at the time of a short-circuit abnormality, the output capacitor C1 is discharged via the semiconductor light source 212, so that the output voltage V OUT drops. As a result, it can be seen that it deviates from the normal range described in FIG. 19 (a).
 本実施形態によれば、ショート異常時と正常時での出力電圧VOUTの振る舞いの違いを利用することにより、出力電圧VOUTを検出することができる。 According to this embodiment, the output voltage V OUT can be detected by utilizing the difference in the behavior of the output voltage V OUT at the time of short circuit abnormality and the normal state.
 以下、異常検出回路370の具体的な構成や、具体的な信号処理を、いくつかの実施例にもとづいて説明する。 Hereinafter, a specific configuration of the abnormality detection circuit 370 and a specific signal processing will be described based on some examples.
 図20は、一実施例に係る異常検出回路370の回路図である。異常検出回路370は、比較回路372と、信号処理部374を含む。比較回路372は、抵抗R31,R32と、電圧コンパレータCOMP1を含む。降圧コンバータ322の出力電圧VOUTは、抵抗R31,R32を含む分圧回路によって分圧される。電圧コンパレータCOMP1は、分圧後の出力電圧VOUT’を、所定のしきい値電圧VTHと比較し、比較結果を示す検出信号SDETを生成する。検出信号SDETは、降圧コンバータ322の出力電圧VOUTが正常範囲に含まれるか否かを示す二値信号である。この構成では、VSHORT=VTH×(R31+R32)/R32が、正常範囲のしきい値(下限)となる。 FIG. 20 is a circuit diagram of the abnormality detection circuit 370 according to the embodiment. The abnormality detection circuit 370 includes a comparison circuit 372 and a signal processing unit 374. The comparison circuit 372 includes resistors R31 and R32 and a voltage comparator COMP1. The output voltage V OUT of the buck converter 322 is divided by a voltage divider circuit including resistors R31 and R32. The voltage comparator COMP1 compares the output voltage V OUT'after voltage division with a predetermined threshold voltage VTH , and generates a detection signal S DET indicating the comparison result. The detection signal S DET is a binary signal indicating whether or not the output voltage V OUT of the buck converter 322 is included in the normal range. In this configuration, VSHORT = VTH × (R31 + R32) / R32 is the threshold value (lower limit) in the normal range.
 たとえば、正常時は、VOUT>VSHORTであり、このときの検出信号SDETはハイを維持する。ショート異常が生ずると、パルス調光信号PWM_DIMがオフレベルになるたびに、VOUT<VSHORTとなり、検出信号SDETがローとなる。比較回路372によって二値化することで、マイクロコントローラやロジック回路を用いたデジタル信号処理により、ショート異常の判定がしやすくなる。 For example, in the normal state, V OUT > V SHORT , and the detection signal S DET at this time keeps high. When a short-circuit abnormality occurs, every time the pulse dimming signal PWM_DIM becomes an off level, V OUT <V SHORT becomes V OUT <V SHORT, and the detection signal S DET becomes low. By binarizing with the comparison circuit 372, it becomes easy to determine a short circuit abnormality by digital signal processing using a microcontroller or a logic circuit.
 信号処理部374は、検出信号SDETにもとづいて、ショート異常の有無を判定し、異常を検出すると、フェイル信号FAILをアサートする。具体的には信号処理部374は、検出信号SDETが所定レベル(ロー)となったこと、つまりシリーズスイッチ323のオフ期間において降圧コンバータ322の出力電圧VOUTが、所定のしきい値VSHORTを下回ることを異常判定の条件とする。 The signal processing unit 374 determines the presence or absence of a short-circuit abnormality based on the detection signal S DET , and when the abnormality is detected, asserts the fail signal FAIL. Specifically, in the signal processing unit 374, the detection signal S DET reaches a predetermined level (low), that is, the output voltage V OUT of the buck converter 322 becomes a predetermined threshold value V SHORT during the off period of the series switch 323. It is a condition of abnormality judgment that it is less than.
 信号処理部374は、マイクロコントローラとソフトウェアの組み合わせで実装することができる。この場合において、PWM信号生成部310と信号処理部374を、同じマイクロコントローラに実装してもよい。なお信号処理部374をハードウェアロジック回路で構成してもよい。 The signal processing unit 374 can be implemented by combining a microcontroller and software. In this case, the PWM signal generation unit 310 and the signal processing unit 374 may be mounted on the same microcontroller. The signal processing unit 374 may be configured by a hardware logic circuit.
 図21は、半導体光源212のIV特性を示す図である。正常範囲の下限しきい値VSHORTは、半導体光源212の点灯開始電圧VMINより高く、半導体光源212の点灯時の順方向電圧Vより低く定めるとよい。 FIG. 21 is a diagram showing the IV characteristics of the semiconductor light source 212. The lower limit threshold V SHORT in the normal range may be set higher than the lighting start voltage V MIN of the semiconductor light source 212 and lower than the forward voltage VF when the semiconductor light source 212 is lit.
 なお、降圧コンバータ322の動作開始の直後は、出力電圧VOUTは0Vであるから、出力電圧VOUTにもとづく異常判定はできない。そこで異常検出回路370による異常検出は、降圧コンバータ322の動作開始後、出力電圧VOUTが所定電圧を超えるまでの間、無効化される。 Immediately after the start of operation of the buck converter 322, the output voltage V OUT is 0 V, so that an abnormality cannot be determined based on the output voltage V OUT . Therefore, the abnormality detection by the abnormality detection circuit 370 is invalidated after the operation of the buck converter 322 is started until the output voltage V OUT exceeds a predetermined voltage.
 続いて、異常検出回路370による判定処理の具体例を説明する。 Subsequently, a specific example of the determination process by the abnormality detection circuit 370 will be described.
(判定処理1)
 図22は、異常検出回路370の判定処理1を説明する図である。図22にはショート異常時の波形が示される。図3に示したように、車両用灯具100は、走査光学系220を備える。パルス調光信号PWM_DIMは、走査と走査の区切れ目において所定期間(ブランク期間TBLANKという)、シリーズスイッチ323がオフするように生成される。たとえば走査光学系220が、複数のブレードミラー224を備える場合、ブレードミラーとブレードミラーの隙間を、ブランク期間TBLANKとすることができる。
(Judgment process 1)
FIG. 22 is a diagram illustrating the determination process 1 of the abnormality detection circuit 370. FIG. 22 shows the waveform at the time of short circuit abnormality. As shown in FIG. 3, the vehicle lamp 100 includes a scanning optical system 220. The pulse dimming signal PWM_DIM is generated so that the series switch 323 is turned off for a predetermined period (referred to as blank period TBLANK ) at the break between scans. For example, when the scanning optical system 220 includes a plurality of blade mirrors 224, the gap between the blade mirrors can be set as a blank period TBLANK .
 たとえば走査周波数が200Hzの場合、走査周期TSCANは5msとなる。またPWM周波数を20kHzとした場合、PWM周期は50μsである。ブランク期間TBLANKはPWM周期50μsよりも長く定めるとよく、たとえば70μsであるとする。 For example, when the scanning frequency is 200 Hz, the scanning period TSCAN is 5 ms. When the PWM frequency is 20 kHz, the PWM cycle is 50 μs. The blank period TBLANK may be set longer than the PWM cycle of 50 μs, for example 70 μs.
 異常検出回路370は、ブランク期間TBLANKにおける降圧コンバータ322の出力電圧VOUTにもとづいてシリーズスイッチ323の異常を検出する。異常検出回路370は、ブランク期間TBLANKにおいて、出力電圧VOUTがしきい値VSHORTを下回ると仮判定状態とする。そして、所定数の走査にわたり、仮判定状態が成立すると、本判定してもよい。 The abnormality detection circuit 370 detects an abnormality of the series switch 323 based on the output voltage V OUT of the step-down converter 322 in the blank period TBLANK . The abnormality detection circuit 370 sets a tentative determination state when the output voltage V OUT falls below the threshold value V SHORT in the blank period TBLANK . Then, when the provisional determination state is established over a predetermined number of scans, the final determination may be performed.
 具体的には、信号処理部374は、位置検出信号S4にもとづいて、ブランク期間TBLANKの位置を取得し、ブランク期間TBLANK中に、検出信号SDETが所定レベル(ロー)に遷移したことを、ショート異常の判定条件とする。ブランク期間TBLANKにおいて検出信号SDETがローとなる仮判定状態が、所定数回M、成立すると、フェイル信号FAILをアサートする。たとえば信号処理部374は、カウンタを含み、ブランク期間TBLANKの検出信号SDETがローとなるたびに、カウンタをカウントアップさせる。そして、カウント値が所定値Mに達すると、フェイル信号FAILをアサートする。カウント値が所定値Mに達する前に、ローの検出信号SDETが検出できない場合には、カウンタをリセットしてもよい。つまり、判定処理1では、図22の検出信号SDETのうち、ハッチングを付す部分のみに着目して、ショート異常を検出するものである。 Specifically, the signal processing unit 374 acquires the position of the blank period TBLANK based on the position detection signal S4, and the detection signal SDET transitions to a predetermined level (low) during the blank period TBLANK . Is a condition for determining a short circuit abnormality. When the provisional determination state in which the detection signal S DET becomes low in the blank period TBLANK is established several times M a predetermined number of times, the fail signal FAIL is asserted. For example, the signal processing unit 374 includes a counter, and counts up the counter each time the detection signal S DET of the blank period TBLANK becomes low. Then, when the count value reaches a predetermined value M, the fail signal FAIL is asserted. If the low detection signal S DET cannot be detected before the count value reaches the predetermined value M, the counter may be reset. That is, in the determination process 1, the short-circuit abnormality is detected by focusing only on the hatched portion of the detection signal S DET in FIG. 22.
 判定処理1の利点を説明する。ブランク期間TBLANKを設けないとすると、パルス調光信号PWM_DIMがローに遷移しない限り、ショート異常を検出できない。第1判定処理では、ブランク期間TBLANKを挿入することで、1走査に1回、必ず異常判定の機会が与えられる。これにより、ショート異常を短時間で確実に検出できる。 The advantages of the determination process 1 will be described. If the blank period TBLANK is not provided, the short circuit abnormality cannot be detected unless the pulse dimming signal PWM_DIM transitions to low. In the first determination process, by inserting the blank period TBLANK , an opportunity for abnormality determination is always given once per scan. This makes it possible to reliably detect a short circuit abnormality in a short time.
 PWM減光の区間、検出信号SDETのロー区間は、50μsよりも短い狭パルスとなる。したがってPWM減光区間の検出信号SDETを利用しようとすると、高速な信号処理部374が必要となる。またパルス調光信号PWM_DIMのデューティサイクルが大きいと(ロー区間が短いと)、出力電圧VOUTがしきい値VSHORTを下回らない場合も発生しうる。PWM周期よりも長いブランク期間TBLANKでは、出力電圧VOUTは確実にしきい値VSHORTを下回るため、ローレベルの検出信号SDETを発生させることができ、安定的に、ショート異常を検出できる。 The PWM dimming section and the low section of the detection signal S DET are narrow pulses shorter than 50 μs. Therefore, in order to use the detection signal S DET in the PWM dimming section, a high-speed signal processing unit 374 is required. Further, when the duty cycle of the pulse dimming signal PWM_DIM is large (when the low section is short), the output voltage V OUT may not fall below the threshold value V SHORT . In the blank period TBLANK longer than the PWM cycle, the output voltage V OUT surely falls below the threshold value V SHORT , so that a low-level detection signal S DET can be generated, and a short-circuit abnormality can be detected stably.
(判定処理2)
 図23は、異常検出回路370の判定処理2を説明する図である。図23にはショート異常時の波形が示される。なお、判定処理2において、ブランク期間TBLANKは必須ではない。
(Judgment process 2)
FIG. 23 is a diagram illustrating the determination process 2 of the abnormality detection circuit 370. FIG. 23 shows the waveform at the time of short circuit abnormality. In the determination process 2, the blank period TBLANK is not essential.
 判定処理2では、異常検出回路370は、検出信号SDETを常時監視し、検出信号SDETが直流信号でない状態(DC状態)、言い換えるとパルス信号である状態(パルス状態)が、所定の判定時間τDET、持続すると、異常状態と本判定してフェイル信号FAILをアサートする。 In the determination process 2, the abnormality detection circuit 370 constantly monitors the detection signal S DET , and a state in which the detection signal S DET is not a DC signal (DC state), in other words, a pulse signal (pulse state) is a predetermined determination. If the time τ DET continues , it is determined that the condition is abnormal and the fail signal FAIL is asserted.
 たとえば信号処理部374は、検出信号SDETがパルス状態であるかDC状態であるかを示す仮判定信号DC/PULSEを生成する。検出信号SDETが所定時間以上連続してハイである状態をDC状態、それ以外をパルス状態としてもよい。信号処理部374は、仮判定信号DC/PULSEが、パルス状態を示すハイである期間が、所定の判定時間τDET持続すると、異常状態と本判定してフェイル信号FAILをアサートする。信号処理部374は、マイクロコントローラのタイマーリソースを利用して実装してもよい。 For example, the signal processing unit 374 generates a provisional determination signal DC / PULSE indicating whether the detection signal S DET is in the pulse state or the DC state. A state in which the detection signal S DET is continuously high for a predetermined time or longer may be a DC state, and a state in which the detection signal S DET is continuously high may be a pulse state. When the temporary determination signal DC / PULSE is high indicating the pulse state for a predetermined determination time τ DET , the signal processing unit 374 determines that the temporary determination signal DC / PULSE is an abnormal state and asserts the fail signal FAIL. The signal processing unit 374 may be implemented by using the timer resource of the microcontroller.
 判定処理1は、ブランク期間TBLANKとのタイミング同期が必要であったのに対して、判定処理2は、タイミング同期が不要であるという利点がある。 The determination process 1 requires timing synchronization with the blank period TBLANK , whereas the determination process 2 has an advantage that timing synchronization is not required.
(判定処理3)
 図24は、異常検出回路370の判定処理3を説明する図である。図24にはショート異常時の波形が示される。なお、判定処理3において、ブランク期間TBLANKは必須ではない。
(Judgment process 3)
FIG. 24 is a diagram illustrating the determination process 3 of the abnormality detection circuit 370. FIG. 24 shows the waveform at the time of short circuit abnormality. In the determination process 3, the blank period TBLANK is not essential.
 判定処理3では、異常検出回路370は、検出信号SDETを常時監視し、検出信号SDETがローに遷移した回数、言い換えると検出信号SDET上に生じたローパルスの個数、言い換えると検出信号SDETのネガティブエッジの個数をカウントし、カウント値が所定のしきい値Kを超えると、異常状態と本判定する。 In the determination process 3, the abnormality detection circuit 370 constantly monitors the detection signal S DET , the number of times the detection signal S DET transitions to low, in other words, the number of low pulses generated on the detection signal S DET , in other words, the detection signal S. The number of negative edges of the DET is counted, and when the count value exceeds a predetermined threshold value K, it is determined as an abnormal state.
 ある観点から見ると、判定処理1~3のいくつかは、降圧コンバータ322の出力電圧VOUTが一定でないことが、所定時間持続したことを異常判定の条件としていると捉えることができる。また別の観点から見ると、判定処理1~3のいくつかは、降圧コンバータ322の出力電圧VOUTがスイッチングする状態が、所定の判定時間にわたり持続することを異常判定の条件としているものと解される。 From a certain point of view, some of the determination processes 1 to 3 can be regarded as a condition for abnormality determination that the output voltage V OUT of the buck converter 322 is not constant and lasts for a predetermined time. From another point of view, it is understood that some of the determination processes 1 to 3 require that the switching state of the output voltage V OUT of the buck converter 322 lasts for a predetermined determination time as a condition for abnormality determination. Will be done.
(判定処理4)
 実施形態では、出力電圧VOUTを2値化した上で、異常判定を行ったがその限りでない。たとえば高速なA/Dコンバータによって、出力電圧VOUTの波形を取り込み、波形にもとづいて、異常の有無を判定してもよい。
(Judgment process 4)
In the embodiment, the abnormality determination is performed after binarizing the output voltage V OUT , but this is not the case. For example, a high-speed A / D converter may capture a waveform of an output voltage V OUT , and the presence or absence of an abnormality may be determined based on the waveform.
(フェイルマスク処理)
 上述のように、異常検出回路370は、降圧コンバータ322の出力電圧VOUTが所定の電圧範囲から逸脱したことを、異常判定の条件としている。降圧コンバータ322の出力電圧VOUTは、降圧コンバータ322がスイッチング動作し、シリーズスイッチ323がオンである期間に、0Vから上昇するため、点灯開始直後は、出力電圧VOUTは所定の電圧範囲から外れている。つまり点灯開始直後は、シリーズスイッチのショート異常を検出できない。この問題を解決するために、点灯開始直後は、ショート異常の検出(フェイル情報)をマスクするとよい。
(Fail mask processing)
As described above, the abnormality detection circuit 370 makes it a condition for abnormality determination that the output voltage V OUT of the buck converter 322 deviates from a predetermined voltage range. Since the output voltage V OUT of the buck converter 322 rises from 0V during the period when the buck converter 322 is switched and the series switch 323 is on, the output voltage V OUT deviates from the predetermined voltage range immediately after the start of lighting. ing. That is, immediately after the start of lighting, a short circuit abnormality of the series switch cannot be detected. In order to solve this problem, it is advisable to mask the detection of short circuit abnormality (fail information) immediately after the start of lighting.
 シリーズスイッチ323を備える点灯回路では、シリーズスイッチ323がオフの期間、つまりランプの消灯中は、降圧コンバータ322の出力電圧VOUTは上昇しない。また点灯中であったとしても、シリーズスイッチ323によるPWM調光(PWM減光)を行う場合、減光率に応じて、出力電圧VOUTの上昇速度が異なることとなる。つまり、点灯開始から一定時間の経過後にマスクを解除するような処理を組み込むと、デューティサイクルによっては、一定時間の経過後に、出力電圧VOUTが規定電圧に達していない状況が発生し、フェイル状態を誤検出するおそれがある。 In the lighting circuit including the series switch 323, the output voltage V OUT of the buck converter 322 does not increase during the period when the series switch 323 is off, that is, while the lamp is off. Even if the light is on, when PWM dimming (PWM dimming) is performed by the series switch 323, the rising speed of the output voltage V OUT differs depending on the dimming rate. In other words, if a process that releases the mask after a certain period of time has elapsed from the start of lighting is incorporated, a situation may occur in which the output voltage V OUT does not reach the specified voltage after a certain period of time, depending on the duty cycle, resulting in a fail state. May be erroneously detected.
 図25は、実施形態に係る車両用灯具100Hのブロック図である。点灯回路300Hには、点灯指令LAMP_ONが入力され、点灯指令LAMP_ONが点灯を指示する状態となると、走査型光源200Aの点灯を開始する。モータ222の回転は、点灯開始に先だって、たとえばイグニッションオンをトリガーとしてスタートしてもよい。 FIG. 25 is a block diagram of the vehicle lamp 100H according to the embodiment. When the lighting command LAMP_ON is input to the lighting circuit 300H and the lighting command LAMP_ON is in a state of instructing lighting, the scanning light source 200A starts lighting. The rotation of the motor 222 may be started, for example, triggered by an ignition on, prior to the start of lighting.
 点灯回路300Hは、マスク処理部376を備える。マスク処理部376には、異常検出回路370の出力であるフェイル信号FAILが入力される。マスク処理部376は、パルス調光信号PWM_DIMのデューティサイクルと点灯時間の積を積算し、積算結果を示す累積点灯時間を生成する。そして累積点灯時間を所定のしきい値と比較し、累積点灯時間がしきい値より低い間、異常検出回路370の検出結果であるフェイル信号FAILをマスクする。 The lighting circuit 300H includes a mask processing unit 376. The fail signal FAIL, which is the output of the abnormality detection circuit 370, is input to the mask processing unit 376. The mask processing unit 376 integrates the product of the duty cycle of the pulse dimming signal PWM_DIM and the lighting time, and generates a cumulative lighting time indicating the integrated result. Then, the cumulative lighting time is compared with a predetermined threshold value, and while the cumulative lighting time is lower than the threshold value, the fail signal FAIL which is the detection result of the abnormality detection circuit 370 is masked.
 マスク処理部376は、パルス調光信号PWM_DIMを生成するPWM信号生成部310と同じマイクロコントローラ304Hに実装してもよい。上述のように、異常検出回路370が、比較回路372と信号処理部374を含む場合、信号処理部374とPWM信号生成部310を、PWM信号生成部310と同じマイクロコントローラに実装することができる。 The mask processing unit 376 may be mounted on the same microcontroller 304H as the PWM signal generation unit 310 that generates the pulse dimming signal PWM_DIM. As described above, when the abnormality detection circuit 370 includes the comparison circuit 372 and the signal processing unit 374, the signal processing unit 374 and the PWM signal generation unit 310 can be mounted on the same microcontroller as the PWM signal generation unit 310. ..
 図26(a)、(b)は、マスク処理部376の動作を説明する図である。図26(a)に示すように、明るさが異なる4個の領域を含む配光パターンPTNを例とする。4個の領域RGN~RGNは、遮光領域、減光領域、非減光領域のいずれかであり、それぞれ、θ~θの角度範囲にわたり存在する。 26 (a) and 26 (b) are diagrams illustrating the operation of the mask processing unit 376. As shown in FIG. 26 (a), a light distribution pattern PTN including four regions having different brightness is taken as an example. The four regions RGN 1 to RGN 4 are any of a light-shielding region, a dimming region, and a non-dimming region, and each exists over an angle range of θ 1 to θ 4 .
 図26(b)には、図26(a)の配光に対応するデューティサイクルおよびパルス調光信号PWM_DIMが示される。走査周期がTSCANであるとき、i番目の領域RGNに対応する時間区間Tの長さは、式(1)で表される。
 T=TSCAN×θ/2θMAX   …(1)
 i番目の領域RGNが遮光領域の場合、パルス調光信号PWM_DIMのデューティサイクルdは0%であり、減光領域の場合、0%<d<100%であり、非減光領域の場合、d=100%である。この例では、RGN,RGNが非減光領域でありd=d=100%、RGNが遮光領域でありd=0%、RGNが減光領域でありd=50%としている。
26 (b) shows the duty cycle and pulse dimming signal PWM_DIM corresponding to the light distribution of FIG. 26 (a). When the scanning period is TSCAN , the length of the time interval Ti corresponding to the i -th region RGN i is expressed by the equation (1).
T i = T SCAN × θ i / 2θ MAX … (1)
When the i-th region RGN i is a light-shielding region, the duty cycle di of the pulse dimming signal PWM_DIM is 0 %, and when it is a dimming region, 0% <di <100%, which is the non-dimming region. In the case, di = 100%. In this example, RGN 1 and RGN 4 are non-dimming regions and d 1 = d 4 = 100%, RGN 2 is a light-shielding region and d 2 = 0%, and RGN 3 is a dimming region and d 3 = 50. %.
 配光パターンPTNが一定であれば、走査周期ごとに同じデューティサイクルが繰り返される。 If the light distribution pattern PTN is constant, the same duty cycle is repeated for each scanning cycle.
 1走査周期の累積点灯時間τ、すなわちパルス調光信号PWM_DIMがオンレベル(ハイ)である累積時間は、
 τ=T×d+T×d+T×d+T×d
となる。2走査周期の累積点灯時間τは、
 τ=T×d+T×d+T×d+T×d+T×d+T×d+T×d+T×d
である。点灯開始時刻tから、i番目の時間区間Tまでの累積点灯時間τは、
 τ=T×d+τi-1…(2)
となる。なお、デューティサイクルdと明るさは比例するから、デューティサイクルdは、各領域の明るさ(減光率)と等価であり、それを読み替えたものも本発明に含まれる。
The cumulative lighting time τ of one scanning cycle, that is, the cumulative time when the pulse dimming signal PWM_DIM is on level (high) is
τ = T 1 x d 1 + T 2 x d 2 + T 3 x d 3 + T 4 x d 4
Will be. The cumulative lighting time τ of the two scan cycles is
τ = T 1 x d 1 + T 2 x d 2 + T 3 x d 3 + T 4 x d 4 + T 5 x d 5 + T 6 x d 6 + T 7 x d 7 + T 8 x d 8
Is. The cumulative lighting time τ i from the lighting start time t 0 to the i-th time interval Ti is
τ i = Ti × di + τ i -1 … (2)
Will be. Since the duty cycle di is proportional to the brightness, the duty cycle di is equivalent to the brightness ( dimming rate) of each region, and a replacement thereof is also included in the present invention.
 信号処理部374は、点灯開始からの累積点灯時間τを計算し、それをしきい値τTHと比較し、τ>τTHとなると、マスク信号MASKをネゲート(マスク解除)する。しきい値τTHは、出力電圧VOUTの規定電圧にもとづいて定めることができる。デューティサイクルが大きいほど、累積時間τが上昇する速度が速くなり、デューティサイクルが0のとき、累積時間τは一定となる。 The signal processing unit 374 calculates the cumulative lighting time τ from the start of lighting, compares it with the threshold value τ TH , and negates (unmasks) the mask signal MASK when τ> τ TH . The threshold value τ TH can be determined based on the specified voltage of the output voltage V OUT . The larger the duty cycle, the faster the rate at which the cumulative time τ rises, and when the duty cycle is 0, the cumulative time τ becomes constant.
 本実施形態によれば、シリーズスイッチを用いたPWM調光のデューティサイクルを考慮して、累積点灯時間を計算することにより、出力電圧VOUTが規定電圧を超えたことを正確に検出できる。 According to this embodiment, it is possible to accurately detect that the output voltage V OUT exceeds the specified voltage by calculating the cumulative lighting time in consideration of the duty cycle of PWM dimming using the series switch.
 以下、マスク処理部376における累積点灯時間の算出の例を説明する。 Hereinafter, an example of calculating the cumulative lighting time in the mask processing unit 376 will be described.
(第1処理例)
 デューティサイクルが同一である領域RGNを単位として、加算処理を行ってもよい。マスク処理部376は、各領域RGNごとに、その時間区間Tの長さを算出し、時間区間Tの長さにデューティサイクルdを乗算し、それを累積加算する。点灯開始からi番目の区間Tまでの累積時間をτと表記すると、式(2)にもとづいて算出し、累積点灯時間τがしきい値τTHを超えると、マスク信号MASKをネゲートする。
(Example of first processing)
The addition process may be performed in units of region RGNs having the same duty cycle. The mask processing unit 376 calculates the length of the time interval Ti for each region RGN i , multiplies the length of the time interval Ti by the duty cycle di , and cumulatively adds them. When the cumulative time from the start of lighting to the i -th section Ti is expressed as τ i , it is calculated based on the equation (2), and when the cumulative lighting time τ i exceeds the threshold value τ TH , the mask signal MASK is negated. do.
 図27は、第1処理例に係るマスク処理部376のブロック図である。なお、マスク処理部376をマイクロコントローラによるソフトウェア処理により実装する場合、ブロック図における各ブロックは、ソフトウェア処理のステップを模式的に示すものである。 FIG. 27 is a block diagram of the mask processing unit 376 according to the first processing example. When the mask processing unit 376 is implemented by software processing by a microcontroller, each block in the block diagram schematically shows a step of software processing.
 マスク処理部376には、デューティサイクルが変化する度に、つまり領域が変化するたびに、デューティサイクルdと、その時間長Tが入力される。デューティサイクルdとその時間長Tは、PWM信号生成部310により生成することができる。なお、式(1)から、各領域の時間長Tは、走査周期TSCANに比例する。モータの回転数が変動する場合には、走査周期TSCANを取得し、式(1)にもとづいて時間長Tを計算すればよい。反対に、モータの回転数が一定である場合、あるいは変動が無視できる場合には、式(1)のうち、TSCANと2θMAXが定数となるため、θを、Tとして用いてもよい。 The duty cycle di and the time length Ti thereof are input to the mask processing unit 376 every time the duty cycle changes, that is, every time the region changes. The duty cycle di and its time length Ti can be generated by the PWM signal generation unit 310. From the equation (1), the time length Ti of each region is proportional to the scanning period TSCAN . When the rotation speed of the motor fluctuates, the scanning period TSCAN may be acquired and the time length Ti may be calculated based on the equation (1). On the contrary, when the rotation speed of the motor is constant or the fluctuation can be ignored, T SCAN and 2θ MAX in the equation (1) are constants, so that θ i can be used as Ti . good.
 乗算器380は、デューティサイクルdと時間長Tを乗算する。メモリ382は、1つ前の領域RGNi-1までの累積時間τi-1を格納する。加算器384は、乗算器380の出力d×Tと、メモリ382の値τi-1を加算し、τを出力する。メモリ382の値は、τによって更新される。 The multiplier 380 multiplies the duty cycle di by the time length Ti . The memory 382 stores the cumulative time τ i- 1 up to the previous area RGN i-1 . The adder 384 adds the output di × Ti of the multiplier 380 and the value τ i -1 of the memory 382, and outputs τ i . The value of memory 382 is updated by τ i .
 比較器386は、累積時間τをしきい値τTHと比較し、τ<τTHのときマスク信号MASKをアサート(たとえばハイ)し、τ<τTHのときマスク信号MASKをネゲート(たとえばロー)する。ゲート手段388は、マスク信号MASKがネゲートされているとき、フェイル信号FAILを通過させ、マスク信号MASKがアサートされているときは、フェイル信号FAILを遮断する。マスク後のフェイル信号FAIL_MASKEDにもとづいて、シリーズスイッチ323の異常が判定される。 The comparator 386 compares the cumulative time τ i with the threshold τ TH , asserts the mask signal MASK when τ iTH (for example, high), and negates the mask signal MASK when τ iTH . For example, low). The gate means 388 passes the fail signal FAIL when the mask signal MASK is negated, and shuts off the fail signal FAIL when the mask signal MASK is asserted. An abnormality of the series switch 323 is determined based on the fail signal FAIL_MASKED after masking.
 なお、ゲート手段388を省略し、マスク信号MASKを、異常検出回路370に供給し、マスク信号MASKがアサートされる期間、異常検出回路370の動作を停止するようにしてもよい。 The gate means 388 may be omitted, the mask signal MASK may be supplied to the abnormality detection circuit 370, and the operation of the abnormality detection circuit 370 may be stopped during the period in which the mask signal MASK is asserted.
(第2処理例)
 第1処理例では、領域ごとに加算処理を行った。第2処理例では、PWM1周期毎に加算処理を行う。パルス調光信号PWM_DIMの周期Tpwmが一定であるとする。この場合、マスク処理部376は、PWM周期Tpwmごとにデューティサイクルの値を積算する。そして積算値τが、所定のしきい値τTHより低い間は、フェイル信号FAILをマスクする。
(Second processing example)
In the first processing example, addition processing was performed for each area. In the second processing example, the addition processing is performed every one PWM cycle. It is assumed that the period Tpwm of the pulse dimming signal PWM_DIM is constant. In this case, the mask processing unit 376 integrates the duty cycle values for each PWM cycle Tpwm. Then, while the integrated value τ is lower than the predetermined threshold value τ TH , the fail signal FAIL is masked.
 図28は、第2処理例に係るマスク処理部376のブロック図である。マスク処理部376には、PWM周期ごと(PWMのパルス単位)に、デューティサイクルdが入力される。dは点灯開始からj番目のPWM周期におけるデューティサイクルを示す。 FIG. 28 is a block diagram of the mask processing unit 376 according to the second processing example. The duty cycle dj is input to the mask processing unit 376 for each PWM cycle (PWM pulse unit). d j indicates the duty cycle in the jth PWM cycle from the start of lighting.
 メモリ382は、1つ前のPWM周期までの累積時間τj-1を格納する。加算器384は、dと、メモリ382の値τj-1を加算し、τを出力する。メモリ382の値は、τによって更新される。 The memory 382 stores the cumulative time τj -1 up to the previous PWM cycle. The adder 384 adds d j and the value τ j-1 of the memory 382, and outputs τ j . The value of memory 382 is updated by τj .
 比較器386は、累積時間τをしきい値τTHと比較し、τ<τTHのときマスク信号MASKをアサート(たとえばハイ)し、τ<τTHのときマスク信号MASKをネゲート(たとえばロー)する。マスク信号MASKの生成より後段の処理は、省略する。 The comparator 386 compares the cumulative time τj with the threshold τTH , asserts the mask signal MASK when τj < τTH (for example, high), and negates the mask signal MASK when τj < τTH . For example, low). The processing after the generation of the mask signal MASK is omitted.
(第3処理例)
 第2処理例では、PWM周期が一定であることを前提としたが、可変であってもよい。図29は、第3処理例に係るマスク処理部376のブロック図である。マスク処理部376には、PWM周期ごと(PWMのパルス単位)に、デューティサイクルdが入力される。dは点灯開始からj番目のPWM周期におけるデューティサイクルを示す。
(Third processing example)
In the second processing example, it is assumed that the PWM cycle is constant, but it may be variable. FIG. 29 is a block diagram of the mask processing unit 376 according to the third processing example. The duty cycle dj is input to the mask processing unit 376 for each PWM cycle (PWM pulse unit). d j indicates the duty cycle in the jth PWM cycle from the start of lighting.
 マスク処理部376には、PWM周期ごとに、デューティサイクルdと、周期長Tpwmが入力される。マスク処理部376の構成は、第1処理例(図27)と同様である。 The duty cycle d j and the cycle length Tpwm j are input to the mask processing unit 376 for each PWM cycle. The configuration of the mask processing unit 376 is the same as that of the first processing example (FIG. 27).
 続いてフェイルマスクに関する変形例を説明する。 Next, a modified example of the fail mask will be explained.
(変形例1)
 シリーズスイッチ323がオンである期間における出力電圧VOUTの上昇速度が、降圧コンバータの入力電圧、言い換えると、点灯回路300Hに供給される電源電圧(イグニッション電圧)に依存する場合、電源電圧VDDに応じた係数Kで、点灯期間を重み付けしてもよい。この場合、第1処理例における式(2)を以下のように修正してもよい。
 τ=K×T×d+τi-1…(2’)
 電源電圧VDDが頻繁に変動する場合、時間区間T毎、あるいは走査周期ごとに電源電圧VDDiを測定し、時間区間Tごと(あるいは走査周期ごと)に、電源電圧VDDに応じて係数Kを更新してもよい。
(Modification 1)
When the rising speed of the output voltage V OUT during the period when the series switch 323 is on depends on the input voltage of the buck converter, in other words, the power supply voltage (ignition voltage) supplied to the lighting circuit 300H, the power supply voltage VDD is used. The lighting period may be weighted by the corresponding coefficient K. In this case, the equation (2) in the first processing example may be modified as follows.
τ i = Ki x Ti x di + τ i -1 ... (2')
When the power supply voltage VDD fluctuates frequently, the power supply voltage VDD is measured for each time interval Ti or scan cycle, and for each time interval Ti (or scan cycle) according to the power supply voltage VDD . The coefficient Ki may be updated.
 電源電圧が点灯開始直後、一定と見なせる場合、電源電圧を1回だけ測定し、その電源電圧VDD0に応じた係数Kを固定的に用いてもよい。
 τ=K×T×d+τi-1…(2”)
If the power supply voltage can be regarded as constant immediately after the start of lighting, the power supply voltage may be measured only once, and the coefficient K corresponding to the power supply voltage VDD0 may be used fixedly.
τ i = K 0 × T i × di + τ i -1 … (2 ”)
 累積時間の方を重み付けするのではなく、しきい値τTHを、電源電圧VDD0に応じて変化させてもよい。 Instead of weighting the cumulative time, the threshold value τ TH may be changed according to the power supply voltage VDD0 .
(変形例2)
 また、走査周期TSCANが変動する場合、しきい値τTHを、走査周期TSCANに応じて変化させてもよい。
(Modification 2)
Further, when the scanning cycle T SCAN fluctuates, the threshold value τ TH may be changed according to the scanning cycle T SCAN .
(変形例3)
 これまでの説明では、異常検出回路370が降圧コンバータ322の出力電圧VOUTにもとづいてシリーズスイッチ323のショートを検出することとしたがその限りでない。たとえば異常検出回路370は、シリーズスイッチ323のショートに代えて、あるいはそれに加えて、オープン異常を検出してもよい。あるいは、シリーズスイッチ323以外における異常(地絡や天絡など)を監視対象としてもよく、降圧コンバータ322の出力電圧VOUTにもとづく異常検出であれば本開示は適用可能である。
(Modification 3)
In the above description, the abnormality detection circuit 370 has determined to detect a short circuit of the series switch 323 based on the output voltage V OUT of the buck converter 322, but this is not the case. For example, the anomaly detection circuit 370 may detect an open anomaly in place of or in addition to the short circuit of the series switch 323. Alternatively, an abnormality (ground fault, heaven fault, etc.) other than the series switch 323 may be monitored, and the present disclosure is applicable as long as the abnormality is detected based on the output voltage V OUT of the buck converter 322.
(PWM調光にともなう縦縞の抑制)
 スキャン方式の配光形成を、パルス調光と組み合わせると、縦縞が発生する場合がある。図30(a)~(c)は、スキャン方式の配光形成とパルス調光の組み合わせにおける縦縞を説明する図である。図30(a)は、ある走行シーンにおける配光パターン800が示される。この走行シーンでは、車両前方に、標識810と対向車812が存在しており、配光パターン800は、標識810の存在範囲に配置された減光部分802と、対向車812の存在範囲に配置された遮光部分804を含む。配光パターン800のうち、減光部分802と遮光部分804以外の部分806の照度は最大(100%)であり、遮光部分804の照度は最小(0%)である。減光部分802の照度は、そこに存在する物標に応じて制御され、この例では20%とされる。
(Suppression of vertical stripes due to PWM dimming)
When the scan-type light distribution formation is combined with pulse dimming, vertical stripes may occur. 30 (a) to 30 (c) are diagrams illustrating vertical stripes in a combination of scan-type light distribution formation and pulse dimming. FIG. 30A shows a light distribution pattern 800 in a certain traveling scene. In this driving scene, the sign 810 and the oncoming vehicle 812 are present in front of the vehicle, and the light distribution pattern 800 is arranged in the existence range of the dimming portion 802 arranged in the existence range of the sign 810 and the oncoming vehicle 812. Includes the shaded portion 804. Of the light distribution pattern 800, the illuminance of the portion 806 other than the dimming portion 802 and the light-shielding portion 804 is the maximum (100%), and the illuminance of the light-shielding portion 804 is the minimum (0%). The illuminance of the dimmed portion 802 is controlled according to the target present there, and is set to 20% in this example.
 図30(b)は、半導体光源の輝度、すなわちパルス調光信号PWM_DIMの時間波形を示す。非減光部分806では、デューティサイクルは100%であり、遮光部分804では0%、減光部分802では20%となる。 FIG. 30B shows the luminance of the semiconductor light source, that is, the time waveform of the pulse dimming signal PWM_DIM. In the non-dimming portion 806, the duty cycle is 100%, in the light-shielding portion 804 it is 0%, and in the dimming portion 802 it is 20%.
 図30(c)は、減光部分802を拡大して示す。図30(b)のパルス調光信号PWM_DIMのように、連続する複数の走査にわたり、PWM調光の位相が一定に固定されると、水平方向で同じ部分が照射され続けるため、標識810に、縦縞803が現れる。この縦縞803によって、標識810が見えにくくなるなど、好ましくない影響を及ぼす。 FIG. 30 (c) shows the dimmed portion 802 in an enlarged manner. As in the pulse dimming signal PWM_DIM of FIG. 30B, when the phase of PWM dimming is fixed to be constant over a plurality of continuous scans, the same portion is continuously irradiated in the horizontal direction. Vertical stripes 803 appear. The vertical stripes 803 have an unfavorable effect such as making the sign 810 difficult to see.
 以下では、こうした縦縞を抑制する技術を説明する。図31は、実施形態に係る車両用灯具100Eのブロック図である。車両用灯具100Eは、走査型光源200Aおよび点灯回路300Eを備える。点灯回路300Eの基本構成は、図5の点灯回路300Aと同様である。PWM信号生成部310Eは、フェーズシフト機能を備え、走査型光源200Aによる走査ごとに、パルス調光信号PWM_DIM_Eの位相を変化させる。マイクロコントローラ304およびLEDドライバ320は、一枚の基板上に搭載してもよいし、あるいは1つの筐体内に配置してもよい。 Below, we will explain the technique for suppressing such vertical stripes. FIG. 31 is a block diagram of the vehicle lamp 100E according to the embodiment. The vehicle lamp 100E includes a scanning light source 200A and a lighting circuit 300E. The basic configuration of the lighting circuit 300E is the same as that of the lighting circuit 300A of FIG. The PWM signal generation unit 310E has a phase shift function, and changes the phase of the pulse dimming signal PWM_DIM_E for each scan by the scanning light source 200A. The microcontroller 304 and the LED driver 320 may be mounted on one substrate or may be arranged in one housing.
 LEDドライバ320によるPWM調光の方式は、特に限定されず、上述したシリーズスイッチ323を利用したものであってもよいし、光源と並列なバイパススイッチを用いたものであってもよい。 The method of PWM dimming by the LED driver 320 is not particularly limited, and may be one using the above-mentioned series switch 323 or one using a bypass switch parallel to the light source.
 図32(a)~(c)は、車両用灯具100Eの動作の一例を説明する図である。図32(a)には、パルス調光信号PWM_DIM_Eの位相シフトの一例が示される。図32(b)には、連続する複数の走査周期にわたるパルス調光信号PWM_DIM_Eの波形の、減光部分に対応する一部が示される。PWM信号生成部310Eは、パルス調光信号PWM_DIM_Eの位相を、1走査ごとに180°(PWM周期の半周期TPWM/2)シフトさせる。 32 (a) to 32 (c) are diagrams illustrating an example of the operation of the vehicle lamp 100E. FIG. 32A shows an example of the phase shift of the pulse dimming signal PWM_DIM_E. FIG. 32 (b) shows a part of the waveform of the pulse dimming signal PWM_DIM_E over a plurality of continuous scanning cycles corresponding to the dimmed portion. The PWM signal generation unit 310E shifts the phase of the pulse dimming signal PWM_DIM_E by 180 ° (half cycle T PWM / 2 of the PWM cycle) for each scan.
 図32(b)は、図32(a)のパルス調光信号PWM_DIM_Eに対応する減光部分802の配光を示す図である。180度の位相シフトを与えた場合には、縦縞803’の間隔は、図30の縦縞803の間隔の1/2倍となる。 FIG. 32 (b) is a diagram showing the dimming distribution of the dimming portion 802 corresponding to the pulse dimming signal PWM_DIM_E of FIG. 32 (a). When a phase shift of 180 degrees is given, the interval of the vertical stripes 803'is 1/2 times the interval of the vertical stripes 803 in FIG. 30.
 図32(c)の実線(i)は、減光部分802の照度分布を示す。比較のために図30(c)の同じ減光部分802の照度分布を一点鎖線(ii)で示す。縦縞803’の照度(時間平均)は、図30(c)の縦縞803の照度の1/2倍となる。 The solid line (i) in FIG. 32 (c) shows the illuminance distribution of the dimmed portion 802. For comparison, the illuminance distribution of the same dimmed portion 802 in FIG. 30 (c) is shown by the alternate long and short dash line (ii). The illuminance (time average) of the vertical stripes 803'is 1/2 times the illuminance of the vertical stripes 803 of FIG. 30 (c).
 縦縞803’のコントラストは、縦縞803のコントラストに比べて低いため、人間の目あるいはカメラによって縦縞803’は見えにくくなる。その結果、標識810が見やすくなり、あるいは識別しやすくなる。 Since the contrast of the vertical stripes 803'is lower than the contrast of the vertical stripes 803', it becomes difficult to see the vertical stripes 803'by the human eye or a camera. As a result, the label 810 is easy to see or identify.
 図33(a)~(c)は、車両用灯具100Eの動作の一例を説明する図である。図33(a)には、パルス調光信号PWM_DIM_Eの位相シフトの別の例が示される。図33(b)には、連続する複数の走査周期にわたるパルス調光信号PWM_DIM_Eの波形の、減光部分に対応する一部が示される。この例では、PWM信号生成部310Eは、パルス調光信号PWM_DIM_Eの位相を、N走査ごとに360°/N(PWM周期の半周期TPWM/N)シフトさせる。この例ではN=3の場合が示される。 33 (a) to 33 (c) are diagrams illustrating an example of the operation of the vehicle lamp 100E. FIG. 33 (a) shows another example of the phase shift of the pulse dimming signal PWM_DIM_E. FIG. 33 (b) shows a part of the waveform of the pulse dimming signal PWM_DIM_E over a plurality of continuous scanning cycles corresponding to the dimmed portion. In this example, the PWM signal generation unit 310E shifts the phase of the pulse dimming signal PWM_DIM_E by 360 ° / N (half cycle T PWM / N of the PWM cycle) for each N scan. In this example, the case of N = 3 is shown.
 図33(b)は、図33(a)のパルス調光信号PWM_DIM_Eに対応する減光部分802の配光を示す図である。走査ごとに、360°/N=120°の位相シフトを与えた場合には、縦縞803’の間隔は、図30の縦縞803の間隔の1/N倍となる。 FIG. 33 (b) is a diagram showing the light distribution of the dimming portion 802 corresponding to the pulse dimming signal PWM_DIM_E of FIG. 33 (a). When a phase shift of 360 ° / N = 120 ° is given for each scan, the interval of the vertical stripes 803'is 1 / N times the interval of the vertical stripes 803 in FIG. 30.
 図33(c)の実線(i)は、減光部分802の照度分布を示す。比較のために図30(c)の同じ減光部分802の照度分布を一点鎖線(ii)で示す。縦縞803”の照度(時間平均)は、図30(c)の縦縞803の照度の1/N倍となる。 The solid line (i) in FIG. 33 (c) shows the illuminance distribution of the dimmed portion 802. For comparison, the illuminance distribution of the same dimmed portion 802 in FIG. 30 (c) is shown by the alternate long and short dash line (ii). The illuminance (time average) of the vertical stripes 803 "is 1 / N times the illuminance of the vertical stripes 803 in FIG. 30 (c).
 縦縞803”のコントラストは、縦縞803のコントラストに比べて低いため、人間の目あるいはカメラによって縦縞803’は見えにくくなる。その結果、標識810が見やすくなり、あるいは識別しやすくなる。 Since the contrast of the vertical stripes 803 is lower than that of the vertical stripes 803, the vertical stripes 803'are difficult to see by the human eye or a camera. As a result, the sign 810 is easy to see or identify.
 図34は、PWM信号生成部310Eの構成例を示すブロック図である。上述のように、PWM信号生成部310Eは、マイクロコントローラとして実装することができ、したがって各ブロックは、PWM信号生成部310Eの機能あるいは処理を表す。 FIG. 34 is a block diagram showing a configuration example of the PWM signal generation unit 310E. As described above, the PWM signal generation unit 310E can be implemented as a microcontroller, and therefore each block represents a function or process of the PWM signal generation unit 310E.
 PWM信号生成部310Eは、キャリア信号発生器312、デューティサイクルコントローラ314、比較器316を含む。キャリア信号発生器312は、位置検出信号S4と同期して、三角波あるいはのこぎり波の周期的なキャリア信号S11を生成する。キャリア信号発生器312は、走査周期ごとに、キャリア信号S11の位相を変化させる。キャリア信号発生器312は、たとえばカウンタで構成することができ、カウンタの動作開始のタイミングを、走査周期毎にシフトさせてもよい。 The PWM signal generation unit 310E includes a carrier signal generator 312, a duty cycle controller 314, and a comparator 316. The carrier signal generator 312 generates a periodic carrier signal S11 of a triangular wave or a sawtooth wave in synchronization with the position detection signal S4. The carrier signal generator 312 changes the phase of the carrier signal S11 for each scanning cycle. The carrier signal generator 312 can be configured by, for example, a counter, and the timing of starting the operation of the counter may be shifted for each scanning cycle.
 デューティサイクルコントローラ314は、配光パターン情報S3と位置検出信号S4を受け、各走査位置におけるデューティサイクルの指令値S12を、PWM周期TPWMごとに出力する。 The duty cycle controller 314 receives the light distribution pattern information S3 and the position detection signal S4, and outputs the duty cycle command value S12 at each scanning position for each PWM cycle T PWM .
 比較器316は、デューティサイクルの指令値S12を、キャリア信号S11と比較し、比較結果に応じたパルス調光信号PWM_DIM_Eを出力する。 The comparator 316 compares the command value S12 of the duty cycle with the carrier signal S11, and outputs a pulse dimming signal PWM_DIM_E according to the comparison result.
 図35は、図34のPWM信号生成部310Eの動作波形図である。PWM信号生成部310Eは、位置検出信号S4のアサートをトリガーとして、走査周期TSCANを開始する。配光パターン情報S3は、PWM周期ごとに、デューティサイクルの指令値S12
を更新する。
FIG. 35 is an operation waveform diagram of the PWM signal generation unit 310E of FIG. 34. The PWM signal generation unit 310E starts the scan cycle TSCAN with the assertion of the position detection signal S4 as a trigger. The light distribution pattern information S3 is the command value S12 of the duty cycle for each PWM cycle.
To update.
 キャリア信号発生器312は、のこぎり波のキャリア信号S11を生成する。キャリア信号S11の位相は、走査周期毎に180°シフトされる。キャリア信号S11とデューティサイクル指令値S12の比較結果にもとづくパルス調光信号PWM_DIM_Eの位相は、走査周期ごとに180°、変化する。 The carrier signal generator 312 generates the sawtooth wave carrier signal S11. The phase of the carrier signal S11 is shifted by 180 ° in each scanning cycle. The phase of the pulse dimming signal PWM_DIM_E based on the comparison result of the carrier signal S11 and the duty cycle command value S12 changes by 180 ° for each scanning cycle.
 なおPWM信号生成部310Eの構成は図34に限定されず、またその動作も、図35に限定されない。 Note that the configuration of the PWM signal generation unit 310E is not limited to FIG. 34, and its operation is not limited to FIG. 35.
(変形例1)
 変形例1において、PWM信号生成部310Eは、走査周期毎に、キャリア信号S11の極性を反転する。図36は、変形例1に係るPWM信号生成部310Eの動作波形図である。この方法によっても、走査ごとにパルス調光信号PWM_DIM_Eの位相をシフトさせることができる。
(Modification 1)
In the first modification, the PWM signal generation unit 310E inverts the polarity of the carrier signal S11 for each scanning cycle. FIG. 36 is an operation waveform diagram of the PWM signal generation unit 310E according to the first modification. Also by this method, the phase of the pulse dimming signal PWM_DIM_E can be shifted for each scan.
(変形例2)
 図33では、走査周期ごとに、位相を360°/N、遅らせたが、走査周期ごとに位相を360°/N、進めてもよい。あるいは、走査周期毎に位相をランダムに変化させてもよい。
(Modification 2)
In FIG. 33, the phase is delayed by 360 ° / N for each scanning cycle, but the phase may be advanced by 360 ° / N for each scanning cycle. Alternatively, the phase may be randomly changed for each scanning cycle.
(イニシャライズ点灯)
 上述のように、異常検出回路370は、降圧コンバータ322の出力電圧VOUTが所定の電圧範囲から逸脱したことを、異常判定の条件としている。降圧コンバータ322の出力電圧VOUTは、降圧コンバータ322がスイッチング動作し、シリーズスイッチ323がオンである期間に、0Vから上昇するため、点灯開始直後は、出力電圧VOUTは所定の電圧範囲から外れている。つまり点灯開始直後は、シリーズスイッチのショート異常を検出できない。この問題を解決するために、イニシャライズ点灯が導入される。
(Initialized lighting)
As described above, the abnormality detection circuit 370 makes it a condition for abnormality determination that the output voltage V OUT of the buck converter 322 deviates from a predetermined voltage range. Since the output voltage V OUT of the buck converter 322 rises from 0V during the period when the buck converter 322 is switched and the series switch 323 is on, the output voltage V OUT deviates from the predetermined voltage range immediately after the start of lighting. ing. That is, immediately after the start of lighting, a short circuit abnormality of the series switch cannot be detected. To solve this problem, initialize lighting is introduced.
 図37は、イニシャライズ点灯をサポートする車両用灯具100Gのブロック図である。車両用灯具100Gには、点灯指令LAMP_ONに加えて、イグニッション信号IGが入力される。車両用灯具100Gは、イグニッションオンをトリガーとして、イニシャライズモードとなる。車両用灯具100Gのモードは、マイクロコントローラ304Gによって管理することができ、モードの管理に関する機能は、モード制御部314として示される。マイクロコントローラ304Gは、イグニッションオンを検出すると、イニシャライズモードに移行し、点灯指令LAMP_ONが入力されていないにもかかわらず、点灯回路300Gに点灯開始を指示する(イニシャライズ点灯という)。イニシャライズ点灯では、配光パターン情報S3は入力されないか、入力されたとしても無視することができる。 FIG. 37 is a block diagram of a vehicle lighting device 100G that supports initialization lighting. An ignition signal IG is input to the vehicle lamp 100G in addition to the lighting command LAMP_ON. The vehicle lamp 100G is set to the initialization mode by using the ignition on as a trigger. The mode of the vehicle lamp 100G can be managed by the microcontroller 304G, and the function related to the mode management is shown as the mode control unit 314. When the microcontroller 304G detects the ignition on, it shifts to the initialization mode and instructs the lighting circuit 300G to start lighting even though the lighting command LAMP_ON is not input (referred to as initialization lighting). In the initialized lighting, the light distribution pattern information S3 is not input, or even if it is input, it can be ignored.
 またイグニッションオンをトリガーとして、モータ222の回転がスタートする。 In addition, the rotation of the motor 222 starts with the ignition on as a trigger.
 点灯回路300Gは、モード制御部314からイニシャライズ点灯の指示を受けると、半導体光源212を駆動し、降圧コンバータ322の出力電圧VOUTを規定電圧、すなわちVfまで上昇させる。このとき、半導体光源212には電流ILEDが流れるため、半導体光源212は発光することとなる。 When the lighting circuit 300G receives an instruction for initialization lighting from the mode control unit 314, it drives the semiconductor light source 212 and raises the output voltage V OUT of the buck converter 322 to a specified voltage, that is, Vf. At this time, since the current I LED flows through the semiconductor light source 212, the semiconductor light source 212 emits light.
 点灯回路300Gは、イニシャライズ点灯において、周囲から視認できない明るさで、半導体光源212を駆動する。これにより、周囲の人に気づかれずに、イニシャライズを完了できる。周囲から視認できない明るさで点灯させるために、イニシャライズ点灯では、半導体光源212を非常に低いデューティサイクルで点灯させてもよい(PWM減光)。たとえば、イニシャライズ点灯の指示を受けると、PWM信号生成部310は、位置検出信号S4と同期して、所定のデューティサイクルのパルス調光信号PWM_DIMを生成し、LEDドライバ320に供給してもよい。このときのデューティサイクルは5%以下としてもよく、たとえばデューティサイクルは最小値(1LSB相当)としてもよい。イニシャライズ点灯におけるパルス調光信号PWM_DIMは、配光パターン情報S3とは無関係である。 The lighting circuit 300G drives the semiconductor light source 212 with a brightness that cannot be visually recognized from the surroundings in the initialized lighting. As a result, the initialization can be completed without being noticed by the people around. In the initialized lighting, the semiconductor light source 212 may be lit with a very low duty cycle in order to illuminate with a brightness that cannot be visually recognized from the surroundings (PWM dimming). For example, upon receiving an instruction for initialization lighting, the PWM signal generation unit 310 may generate a pulse dimming signal PWM_DIM having a predetermined duty cycle in synchronization with the position detection signal S4 and supply it to the LED driver 320. The duty cycle at this time may be 5% or less, and for example, the duty cycle may be the minimum value (corresponding to 1LSB). The pulse dimming signal PWM_DIM in the initialized lighting is irrelevant to the light distribution pattern information S3.
 以上が車両用灯具100Gの構成である。続いてその動作を説明する。図38は、図37の車両用灯具100Gの動作波形図である。 The above is the configuration of the vehicle lighting equipment 100G. Next, the operation will be described. FIG. 38 is an operation waveform diagram of the vehicle lamp 100G of FIG. 37.
 時刻tに、イグニッション信号IG_ONがハイとなり、イグニッションオンが通知される。これをトリガーとして、点灯回路300Gは、モータ222の回転を開始する。モータ222の回転数が所定値(たとえば6000rpm)に達すると、イニシャライズ点灯を開始する。イニシャライズ点灯では、デューティサイクルが非常に小さいパルス調光信号PWM_DIMが生成される。LEDドライバ320は、パルス調光信号PWM_DIMに応じて間欠的に動作する。これにより、半導体光源212には、非常に短い時間幅の駆動電流ILEDが供給され、時間とともに、LEDドライバ320の出力電圧VOUT(降圧コンバータ322の出力電圧VOUT)が上昇していく。時刻tに、出力電圧VOUTが規定電圧に達すると、イニシャライズ点灯が終了し、待機状態となる。 At time t 0 , the ignition signal IG_ON becomes high, and the ignition on is notified. With this as a trigger, the lighting circuit 300G starts the rotation of the motor 222. When the rotation speed of the motor 222 reaches a predetermined value (for example, 6000 rpm), the initialization lighting is started. Initialized lighting produces a pulse dimming signal PWM_DIM with a very small duty cycle. The LED driver 320 operates intermittently in response to the pulse dimming signal PWM_DIM. As a result, the drive current I LED having a very short time width is supplied to the semiconductor light source 212, and the output voltage V OUT of the LED driver 320 (output voltage V OUT of the buck converter 322) increases with time. When the output voltage V OUT reaches the specified voltage at time t2, the initialization lighting ends and the standby state is set.
 そして時刻tに、点灯指令LAMP_ONがアサートされると、PWM信号生成部310は配光パターン情報S3に応じたパルス調光信号PWM_DIMを生成する。 Then, when the lighting command LAMP_ON is asserted at time t3, the PWM signal generation unit 310 generates a pulse dimming signal PWM_DIM corresponding to the light distribution pattern information S3.
 点灯指令LAMP_ONのアサートの時点で、イニシャライズ点灯は完了しており、LEDドライバ320の出力電圧VOUTは規定電圧まで達しているため、直ちに点灯を開始することができる。 At the time of asserting the lighting command LAMP_ON, the initialization lighting is completed, and the output voltage V OUT of the LED driver 320 has reached the specified voltage, so that the lighting can be started immediately.
 またイニシャライズモードの完了後、ランプの点灯指令を受けたときに、LEDドライバ320の出力電圧VOUTは規定電圧まで上昇しているため、異常検出回路370は直ちに異常検出を開始することができる。 Further, since the output voltage V OUT of the LED driver 320 has risen to the specified voltage when the lamp lighting command is received after the initialization mode is completed, the abnormality detection circuit 370 can immediately start the abnormality detection.
 続いてイニシャライズモードに関する変形例を説明する。 Next, a modified example of the initialization mode will be explained.
(変形例1)
 イニシャライズモードにおいて、半導体光源212を周囲から見えないように発光させるためにPWM減光を利用したが、それに代えて、またはそれに加えて、アナログ調光(DC調光)を利用してもよい。変形例1に係る点灯回路300Gは、イニシャライズモードにおいて、駆動電流ILEDの電流量を、通常点灯時に比べて減少させてもよい。これにより、周囲から見えにくくできる。
(Modification 1)
In the initialization mode, PWM dimming is used to make the semiconductor light source 212 emit light so as not to be seen from the surroundings, but analog dimming (DC dimming) may be used instead of or in addition to it. In the lighting circuit 300G according to the first modification, the current amount of the drive current I LED may be reduced in the initialization mode as compared with the normal lighting. This makes it difficult to see from the surroundings.
(変形例2)
 図16と同様に、車両用灯具100Gは、複数の半導体光源212_1~212_N(N≧2)と、それらに対応する複数のLEDドライバ320_1~320_Nを備えてもよい。複数の半導体光源212_1~212_Nが走査され、仮想鉛直スクリーン上で合成されることにより、配光が形成される。
(Modification 2)
Similar to FIG. 16, the vehicle lamp 100G may include a plurality of semiconductor light sources 212_1 to 212_N (N ≧ 2) and a plurality of LED drivers 320_1 to 320_N corresponding thereto. A plurality of semiconductor light sources 212_1 to 212_N are scanned and combined on a virtual vertical screen to form a light distribution.
 この変形例2において、複数のLEDドライバ320_1~320_Nに供給される複数のパルス調光信号PWM_DIM_1~PWM_DIM_Nは、オンのタイミングがシフトしていてもよい。 In this modification 2, the on timing of the plurality of pulse dimming signals PWM_DIM_1 to PWM_DIM_N supplied to the plurality of LED drivers 320_1 to 320_N may be shifted.
 図39は、変形例2に係る車両用灯具100Gの動作波形図である。変形例2によれば、PWM周期の中で、複数の半導体光源212_1~212_Nが同時に点灯するのを防止でき、周囲から見えにくくできる。 FIG. 39 is an operation waveform diagram of the vehicle lamp 100G according to the second modification. According to the second modification, it is possible to prevent a plurality of semiconductor light sources 212_1 to 212_N from lighting at the same time during the PWM cycle, and it is possible to make it difficult to see from the surroundings.
(変形例3)
 これまでの説明では、イニシャライズ点灯は、周囲から視認できない態様で行ったが、演出として積極的に発光させてもよい。この場合に、半導体光源212を中途半端に瞬灯させると、故障や異常と紛らわしくなる。そこで、変形例3では、イニシャライズ点灯が、故障ではないと分かる程度の時間、たとえば数百ms~数秒のある程度の長い時間にわたって点灯させる。
(Modification 3)
In the above description, the initialization lighting is performed in such a manner that it cannot be visually recognized from the surroundings, but it may be positively emitted as an effect. In this case, if the semiconductor light source 212 is flashed halfway, it will be confused with a failure or abnormality. Therefore, in the third modification, the initialized lighting is turned on for a certain long time, for example, several hundred ms to several seconds, so that it can be recognized that the initial lighting is not a failure.
 なお半導体光源212がハイビーム用の光源である場合には、カットラインより上側が照射されるため好ましくない。そこで車両用灯具100Gは、走査型光源200の光軸を、ピッチ方向に制御するレベリング装置をさらに備えてもよい。イニシャライズモードにおいて、レベリング装置は、走査型光源の光軸を下げてもよい。これにより、イニシャライズ点灯中の出射光をなるべく下向きに放射することができる。 When the semiconductor light source 212 is a light source for a high beam, it is not preferable because the upper side of the cut line is irradiated. Therefore, the vehicle lamp 100G may further include a leveling device that controls the optical axis of the scanning light source 200 in the pitch direction. In the initialization mode, the leveling device may lower the optical axis of the scanning light source. As a result, the emitted light during the initialization lighting can be radiated downward as much as possible.
(変形例4)
 これまでの説明は、点灯回路300Gのマイクロコントローラ304Gにおいて、イニシャライズ点灯の制御を行ったが、配光コントローラ(ADB用ECU)400が、イニシャライズ点灯の制御を行ってもよい。この場合、配光コントローラ400は、イグニッション信号IG_ONを監視し、イグニッションオンとともにイニシャライズモードに移行する。そしてイニシャライズモードに移行すると、イニシャライズ点灯に対応する配光パターン情報S3を生成する。
(Modification example 4)
In the description so far, the microcontroller 304G of the lighting circuit 300G controls the initialization lighting, but the light distribution controller (ADB ECU) 400 may control the initialization lighting. In this case, the light distribution controller 400 monitors the ignition signal IG_ON and shifts to the initialization mode when the ignition is turned on. Then, when the mode shifts to the initialize mode, the light distribution pattern information S3 corresponding to the initialize lighting is generated.
(変形例5)
 これまでの説明では、異常検出回路370が降圧コンバータ322の出力電圧VOUTにもとづいてシリーズスイッチ323のショートを検出することとしたがその限りでない。たとえば異常検出回路370は、シリーズスイッチ323のショートに代えて、あるいはそれに加えて、オープン異常を検出してもよい。あるいは、シリーズスイッチ323以外における異常(地絡や天絡など)を監視対象としてもよく、降圧コンバータ322の出力電圧VOUTにもとづく異常検出であれば本開示は適用可能である。
(Modification 5)
In the above description, the abnormality detection circuit 370 has determined to detect a short circuit of the series switch 323 based on the output voltage V OUT of the buck converter 322, but this is not the case. For example, the abnormality detection circuit 370 may detect an open abnormality in place of or in addition to the short circuit of the series switch 323. Alternatively, an abnormality (ground fault, heaven fault, etc.) other than the series switch 323 may be monitored, and the present disclosure is applicable as long as the abnormality is detected based on the output voltage V OUT of the buck converter 322.
 実施の形態にもとづき、具体的な語句を用いて本開示を説明したが、実施の形態は、本開示の原理、応用を示しているにすぎず、実施の形態には、請求の範囲に規定された本開示の思想を逸脱しない範囲において、多くの変形例や配置の変更が認められる。 Although the present disclosure has been described using specific terms and phrases based on the embodiments, the embodiments merely indicate the principles and applications of the present disclosure, and the embodiments are defined in the claims. Many modifications and arrangement changes are permitted to the extent that they do not deviate from the ideas of the present disclosure.
 本開示は、自動車などに用いられる車両用灯具に関する。 This disclosure relates to lighting fixtures for vehicles used in automobiles and the like.
S1…センサ情報、S2…車両情報、S3…配光パターン情報、S4…位置検出信号、PWM_DIM…パルス調光信号、100…車両用灯具、200…走査型光源、210…光源ユニット、212…半導体光源、220…走査光学系、222…モータ、224…ブレードミラー、226…ミラー間隔、230…投影光学系、300…点灯回路、302…位置検出器、310…PWM信号生成部、320…LEDドライバ、322…降圧コンバータ、323…シリーズスイッチ、324…ドライバ回路、326…出力回路、328…コンバータコントローラ、330…トランスコンダクタンスアンプ、332…サンプルホールド回路、334…オン時間制御部、336…ゲートドライバ、340…制御IC、370…異常検出回路、372…比較回路、374…信号処理部、376…マスク処理部、400…配光コントローラ、900…仮想鉛直スクリーン。 S1 ... Sensor information, S2 ... Vehicle information, S3 ... Light distribution pattern information, S4 ... Position detection signal, PWM_DIM ... Pulse dimming signal, 100 ... Vehicle optics, 200 ... Scanning light source, 210 ... Light source unit, 212 ... Semiconductor Light source, 220 ... scanning optical system, 222 ... motor, 224 ... blade mirror, 226 ... mirror spacing, 230 ... projection optical system, 300 ... lighting circuit, 302 ... position detector, 310 ... PWM signal generator, 320 ... LED driver 322 ... Step-down converter, 323 ... Series switch, 324 ... Driver circuit, 326 ... Output circuit, 328 ... Converter controller, 330 ... Transconductance amplifier, 332 ... Sample hold circuit, 334 ... On-time control unit, 336 ... Gate driver, 340 ... control IC, 370 ... abnormality detection circuit, 372 ... comparison circuit, 374 ... signal processing unit, 376 ... mask processing unit, 400 ... light distribution controller, 900 ... virtual vertical screen.

Claims (24)

  1.  半導体光源を含み、前記半導体光源の出射光を配光の水平方向の全範囲にわたり走査する走査型光源と、
     前記走査型光源の走査と同期して、各走査位置における前記半導体光源の光量をパルス変調により多階調で調光可能な点灯回路と、
     を備えることを特徴とする車両用灯具。
    A scanning light source that includes a semiconductor light source and scans the emitted light of the semiconductor light source over the entire horizontal range of the light distribution.
    A lighting circuit that can adjust the amount of light of the semiconductor light source at each scanning position in multiple gradations by pulse modulation in synchronization with the scanning of the scanning type light source.
    A vehicle lighting fixture characterized by being equipped with.
  2.  前記走査型光源は、前記半導体光源に加えて、前記半導体光源の出射光を受け、所定の周期運動を繰り返すことによりその反射光を車両前方で走査する反射体をさらに含み、
     前記点灯回路は、前記反射体の運動と同期して、パルス変調の制御波形を生成し、前記制御波形に応じて前記半導体光源に供給する駆動電流をスイッチングすることを特徴とする請求項1に記載の車両用灯具。
    In addition to the semiconductor light source, the scanning light source further includes a reflector that receives the emitted light of the semiconductor light source and scans the reflected light in front of the vehicle by repeating a predetermined periodic motion.
    The lighting circuit is characterized in that, in synchronization with the motion of the reflector, a control waveform of pulse modulation is generated, and the drive current supplied to the semiconductor light source is switched according to the control waveform. The vehicle lighting equipment described.
  3.  前記点灯回路は、
     前記半導体光源と直列に設けられるシリーズスイッチと、
     前記シリーズスイッチと前記半導体光源の直列接続回路に接続される定電流ドライバと、
     を備え、
     前記点灯回路は、走査位置に応じたデューティサイクルで、前記シリーズスイッチをスイッチングすることを特徴とする請求項1または2に記載の車両用灯具。
    The lighting circuit is
    A series switch provided in series with the semiconductor light source,
    A constant current driver connected to the series connection circuit of the series switch and the semiconductor light source,
    Equipped with
    The vehicle lamp according to claim 1 or 2, wherein the lighting circuit switches the series switch in a duty cycle according to a scanning position.
  4.  前記定電流ドライバは、
     スイッチングコンバータと、
     前記スイッチングコンバータの出力電流の検出値が、所定の目標値に近づくように、前記スイッチングコンバータを駆動するコンバータコントローラと、
     を含むことを特徴とする請求項3に記載の車両用灯具。
    The constant current driver
    With a switching converter
    A converter controller that drives the switching converter so that the detected value of the output current of the switching converter approaches a predetermined target value.
    The vehicle lamp according to claim 3, wherein the lamp comprises the above.
  5.  前記半導体光源は複数であり、前記走査型光源は、前記複数の半導体光源の2個以上の出射光を、前記配光の水平方向の全範囲にわたり走査することを特徴とする請求項1から4のいずれかに記載の車両用灯具。 Claims 1 to 4 include a plurality of semiconductor light sources, and the scanning type light source scans two or more emitted lights of the plurality of semiconductor light sources over the entire horizontal range of the light distribution. Vehicle lighting equipment described in any of.
  6.  前記2個以上の出射光は、仮想鉛直スクリーン上の異なる高さで走査されることを特徴とする請求項5に記載の車両用灯具。 The vehicle lighting fixture according to claim 5, wherein the two or more emitted lights are scanned at different heights on a virtual vertical screen.
  7.  半導体光源を含み、前記半導体光源の出射光を走査する走査型光源と、
     前記走査型光源の走査と同期して、各走査位置における前記半導体光源の光量をパルス変調により多階調で調光可能な点灯回路と、
     を備え、
     前記点灯回路は、走査ごとに、パルス変調の位相を変化させることを特徴とする車両用灯具。
    A scanning light source that includes a semiconductor light source and scans the emitted light of the semiconductor light source,
    A lighting circuit that can adjust the amount of light of the semiconductor light source at each scanning position in multiple gradations by pulse modulation in synchronization with the scanning of the scanning type light source.
    Equipped with
    The lighting circuit is a vehicle lighting device characterized in that the phase of pulse modulation is changed for each scan.
  8.  前記点灯回路は、走査ごとに、パルス変調の位相を180°シフトすることを特徴とする請求項7に記載の車両用灯具。 The vehicle lamp according to claim 7, wherein the lighting circuit shifts the phase of pulse modulation by 180 ° for each scan.
  9.  前記点灯回路は、走査ごとに、パルス変調の位相を360°/N、(N≧3)シフトすることを特徴とする請求項7に記載の車両用灯具。 The vehicle lamp according to claim 7, wherein the lighting circuit shifts the phase of pulse modulation by 360 ° / N (N ≧ 3) for each scan.
  10.  前記点灯回路は、
     前記半導体光源と直列に設けられるシリーズスイッチと、
     前記シリーズスイッチと前記半導体光源の直列接続回路と接続され、駆動電流を生成する定電流出力の降圧コンバータと、
     走査ごとに位相がシフトするパルス変調されたパルス調光信号を生成する調光信号生成部と、
     前記パルス調光信号にもとづいて前記シリーズスイッチを駆動するドライバ回路と、
     を備えることを特徴とする請求項7から9のいずれかに記載の車両用灯具。
    The lighting circuit is
    A series switch provided in series with the semiconductor light source,
    A constant current output buck converter that is connected to the series switch and the series connection circuit of the semiconductor light source to generate a drive current.
    A dimming signal generator that generates a pulse-modulated pulse dimming signal whose phase shifts with each scan,
    A driver circuit that drives the series switch based on the pulse dimming signal,
    The vehicle lamp according to any one of claims 7 to 9, wherein the lamp is provided with.
  11.  前記点灯回路は、
     走査毎に位相が変化する周期的なキャリア信号を生成し、
     パルス周期ごとに、デューティサイクル指令値を生成し、
     前記デューティサイクル指令値と前記キャリア信号を比較し、パルス調光信号を生成し、
     前記パルス調光信号にもとづいて前記半導体光源に流れる駆動電流をスイッチングすることを特徴とする請求項7から10のいずれかに記載の車両用灯具。
    The lighting circuit is
    Generates a periodic carrier signal whose phase changes with each scan,
    A duty cycle command value is generated for each pulse cycle.
    The duty cycle command value is compared with the carrier signal to generate a pulse dimming signal.
    The vehicle lamp according to any one of claims 7 to 10, wherein the drive current flowing through the semiconductor light source is switched based on the pulse dimming signal.
  12.  半導体光源を含み、前記半導体光源の出射光を走査する走査型光源と、
     前記走査型光源の走査と同期して前記半導体光源に供給する駆動電流を制御し、前記半導体光源の光量を制御する定電流ドライバと、
     を備え、
     前記定電流ドライバは、
     前記半導体光源と直列に設けられるシリーズスイッチと、
     前記シリーズスイッチと前記半導体光源との直列接続回路に接続され、(i)前記シリーズスイッチのオン期間において定電流を出力し、(ii)前記シリーズスイッチのオフ期間においてスイッチング動作を停止し、直前のオン期間と実質的に同じ出力電圧を維持する降圧コンバータと、
     パルス調光信号にもとづいて前記シリーズスイッチを駆動するドライバ回路と、
     前記降圧コンバータの出力電圧にもとづいて、異常を検出する異常検出回路と、
     を備え、
     イグニッションオンをトリガーとして、前記定電流ドライバは前記半導体光源を駆動し、前記降圧コンバータの出力電圧を規定電圧まで上昇させるイニシャライズ点灯を実行することを特徴とする車両用灯具。
    A scanning light source that includes a semiconductor light source and scans the emitted light of the semiconductor light source,
    A constant current driver that controls the drive current supplied to the semiconductor light source in synchronization with the scanning of the scanning light source and controls the amount of light of the semiconductor light source.
    Equipped with
    The constant current driver
    A series switch provided in series with the semiconductor light source,
    It is connected to the series connection circuit of the series switch and the semiconductor light source, (i) outputs a constant current during the on period of the series switch, (ii) stops the switching operation during the off period of the series switch, and immediately before. With a buck converter that maintains substantially the same output voltage as the on period,
    The driver circuit that drives the series switch based on the pulse dimming signal,
    An abnormality detection circuit that detects an abnormality based on the output voltage of the buck converter,
    Equipped with
    A vehicle lighting fixture characterized in that the constant current driver drives the semiconductor light source and executes initialization lighting that raises the output voltage of the buck converter to a specified voltage by using an ignition on as a trigger.
  13.  前記異常検出回路は、前記シリーズスイッチのオフ期間において、前記降圧コンバータの前記出力電圧が正常範囲から逸脱すると、前記シリーズスイッチの異常と判定することを特徴とする請求項12に記載の車両用灯具。 The vehicle lamp according to claim 12, wherein the abnormality detection circuit determines that the series switch is abnormal when the output voltage of the buck converter deviates from the normal range during the off period of the series switch. ..
  14.  前記定電流ドライバは、周囲から視認できない明るさで、前記半導体光源を駆動することを特徴とする請求項12または13に記載の車両用灯具。 The vehicle lamp according to claim 12 or 13, wherein the constant current driver drives the semiconductor light source with a brightness that cannot be visually recognized from the surroundings.
  15.  前記定電流ドライバは、前記イニシャライズ点灯において、周囲から視認可能な明るさで前記半導体光源を点灯させることを特徴とする請求項12または13に記載の車両用灯具。 The vehicle lamp according to claim 12 or 13, wherein the constant current driver lights the semiconductor light source with a brightness that can be visually recognized from the surroundings in the initialized lighting.
  16.  前記走査型光源の光軸をピッチ方向に制御するレベリング装置をさらに備え、
     前記イニシャライズ点灯において、前記レベリング装置は、前記走査型光源の光軸を下げることを特徴とする請求項15に記載の車両用灯具。
    A leveling device for controlling the optical axis of the scanning light source in the pitch direction is further provided.
    The vehicle lamp according to claim 15, wherein in the initialized lighting, the leveling device lowers the optical axis of the scanning light source.
  17.  前記定電流ドライバは、前記イニシャライズ点灯において、前記パルス調光信号のデューティサイクルを5%以下に下げることを特徴とする請求項12から16のいずれかに記載の車両用灯具。 The vehicle lamp according to any one of claims 12 to 16, wherein the constant current driver reduces the duty cycle of the pulse dimming signal to 5% or less in the initialized lighting.
  18.  前記走査型光源は複数の前記半導体光源を含み、
     前記定電流ドライバは前記複数の半導体光源に対応して複数であり、
     前記複数の定電流ドライバに供給される複数のパルス調光信号は、オンのタイミングがシフトしていることを特徴とする請求項12から17のいずれかに記載の車両用灯具。
    The scanning light source includes a plurality of the semiconductor light sources.
    There are a plurality of constant current drivers corresponding to the plurality of semiconductor light sources.
    The vehicle lighting device according to any one of claims 12 to 17, wherein the plurality of pulse dimming signals supplied to the plurality of constant current drivers are turned on at different timings.
  19.  前記定電流ドライバは、前記イニシャライズ点灯において、前記駆動電流の電流量を通常点灯時に比べて減少させることを特徴とする請求項12から18のいずれかに記載の車両用灯具。 The vehicle lamp according to any one of claims 12 to 18, wherein the constant current driver reduces the amount of current of the drive current in the initialized lighting as compared with the case of normal lighting.
  20.  半導体光源を含み、前記半導体光源の出射光を走査する走査型光源と、
     前記走査型光源の走査と同期して前記半導体光源に供給する駆動電流を制御し、前記半導体光源の光量を制御する定電流ドライバと、
     を備え、
     前記定電流ドライバは、
     前記半導体光源と直列に設けられるシリーズスイッチと、
     前記シリーズスイッチと前記半導体光源との直列接続回路に接続され、(i)前記シリーズスイッチのオン期間において定電流を出力し、(ii)前記シリーズスイッチのオフ期間においてスイッチング動作を停止し、直前のオン期間と実質的に同じ出力電圧を維持する降圧コンバータと、
     パルス調光信号にもとづいて前記シリーズスイッチを駆動するドライバ回路と、
     前記降圧コンバータの出力電圧にもとづいて、異常を検出する異常検出回路と、
     前記パルス調光信号のデューティサイクルと点灯時間の積を積算して得られる累積点灯時間が所定のしきい値より低い間、前記異常検出回路の検出結果をマスクするマスク処理部と、
     を備えることを特徴とする車両用灯具。
    A scanning light source that includes a semiconductor light source and scans the emitted light of the semiconductor light source,
    A constant current driver that controls the drive current supplied to the semiconductor light source in synchronization with the scanning of the scanning light source and controls the amount of light of the semiconductor light source.
    Equipped with
    The constant current driver
    A series switch provided in series with the semiconductor light source,
    It is connected to the series connection circuit of the series switch and the semiconductor light source, (i) outputs a constant current during the on period of the series switch, (ii) stops the switching operation during the off period of the series switch, and immediately before. With a buck converter that maintains substantially the same output voltage as the on period,
    The driver circuit that drives the series switch based on the pulse dimming signal,
    An abnormality detection circuit that detects an abnormality based on the output voltage of the buck converter,
    A mask processing unit that masks the detection result of the abnormality detection circuit while the cumulative lighting time obtained by integrating the product of the duty cycle of the pulse dimming signal and the lighting time is lower than a predetermined threshold value.
    A lighting fixture for vehicles characterized by being equipped with.
  21.  前記マスク処理部は、前記点灯時間を、前記車両用灯具に供給される電源電圧で重み付けして積算することを特徴とする請求項20に記載の車両用灯具。 The vehicle lamp according to claim 20, wherein the mask processing unit weights the lighting time with a power supply voltage supplied to the vehicle lamp and integrates the lighting time.
  22.  前記マスク処理部は、前記しきい値を、前記車両用灯具に供給される電源電圧と、前記走査型光源の走査周期の少なくとも一方に応じて変化させることを特徴とする請求項20または21に記載の車両用灯具。 20 or 21, wherein the mask processing unit changes the threshold value according to at least one of a power supply voltage supplied to the vehicle lamp and a scanning cycle of the scanning light source. The vehicle lighting equipment described.
  23.  前記異常検出回路は、前記シリーズスイッチのオフ期間において、前記降圧コンバータの前記出力電圧が正常範囲から逸脱すると、前記シリーズスイッチの異常と判定することを特徴とする請求項20から22のいずれかに記載の車両用灯具。 The abnormality detection circuit according to any one of claims 20 to 22, wherein when the output voltage of the buck converter deviates from the normal range during the off period of the series switch, the abnormality detection circuit determines that the series switch is abnormal. The vehicle lighting equipment described.
  24.  前記パルス調光信号を生成するパルス調光信号生成回路と、前記マスク処理部は、同じマイクロコントローラに実装されることを特徴とする請求項20から22のいずれかに記載の車両用灯具。 The vehicle lighting device according to any one of claims 20 to 22, wherein the pulse dimming signal generation circuit for generating the pulse dimming signal and the mask processing unit are mounted on the same microcontroller.
PCT/JP2021/039107 2020-10-29 2021-10-22 Vehicle lamp WO2022091974A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022559093A JPWO2022091974A1 (en) 2020-10-29 2021-10-22

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2020-181836 2020-10-29
JP2020181833 2020-10-29
JP2020-181833 2020-10-29
JP2020181836 2020-10-29
JP2020193799 2020-11-20
JP2020193800 2020-11-20
JP2020-193799 2020-11-20
JP2020-193800 2020-11-20

Publications (1)

Publication Number Publication Date
WO2022091974A1 true WO2022091974A1 (en) 2022-05-05

Family

ID=81383885

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/039107 WO2022091974A1 (en) 2020-10-29 2021-10-22 Vehicle lamp

Country Status (2)

Country Link
JP (1) JPWO2022091974A1 (en)
WO (1) WO2022091974A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120274228A1 (en) * 2011-04-28 2012-11-01 Allegro Microsystems, Inc Electronic circuits and methods for driving a diode load
JP2012224317A (en) * 2011-04-22 2012-11-15 Koito Mfg Co Ltd Obstacle detection device
JP2015032469A (en) * 2013-08-02 2015-02-16 パナソニックIpマネジメント株式会社 Lighting fixture and lighting device for use therein
WO2016104319A1 (en) * 2014-12-25 2016-06-30 株式会社小糸製作所 Lighting circuit and lighting appliance for vehicle
WO2016167250A1 (en) * 2015-04-17 2016-10-20 株式会社小糸製作所 Vehicle lamp

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012224317A (en) * 2011-04-22 2012-11-15 Koito Mfg Co Ltd Obstacle detection device
US20120274228A1 (en) * 2011-04-28 2012-11-01 Allegro Microsystems, Inc Electronic circuits and methods for driving a diode load
JP2015032469A (en) * 2013-08-02 2015-02-16 パナソニックIpマネジメント株式会社 Lighting fixture and lighting device for use therein
WO2016104319A1 (en) * 2014-12-25 2016-06-30 株式会社小糸製作所 Lighting circuit and lighting appliance for vehicle
WO2016167250A1 (en) * 2015-04-17 2016-10-20 株式会社小糸製作所 Vehicle lamp

Also Published As

Publication number Publication date
JPWO2022091974A1 (en) 2022-05-05

Similar Documents

Publication Publication Date Title
JP6936359B2 (en) Vehicle lighting
JP6820909B2 (en) Vehicle lighting fixtures and their lighting circuits
WO2016104319A1 (en) Lighting circuit and lighting appliance for vehicle
CN109114518B (en) Vehicle lamp
US10766400B2 (en) Vehicle lamp and lighting circuit of light source
CN108882438B (en) Driving circuit and vehicle lamp
CN108966405B (en) Vehicle lamp
CN109219920B (en) Load driving device and vehicle lamp
JP2020095816A (en) Lighting circuit and vehicle lighting
CN108340829B (en) Lighting circuit and vehicle lighting device
WO2022091973A1 (en) Vehicle lamp fitting and lighting circuit
JP7186727B2 (en) vehicle lamp
WO2022091974A1 (en) Vehicle lamp
WO2022131303A1 (en) Vehicle lamp and illumination method
JP7331100B2 (en) vehicle lamp
JP6916649B2 (en) Lighting circuit and vehicle lighting equipment
CN209897315U (en) Vehicle lamp
WO2022131302A1 (en) Vehicle lamp
CN209897316U (en) Vehicle lamp
JP2020196290A (en) Vehicle light fixture
JP6889612B2 (en) Lighting circuit for vehicle lamps and light sources
WO2021039725A1 (en) Vehicular lamp

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21886092

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022559093

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21886092

Country of ref document: EP

Kind code of ref document: A1