WO2022091973A1 - Vehicle lamp fitting and lighting circuit - Google Patents

Vehicle lamp fitting and lighting circuit Download PDF

Info

Publication number
WO2022091973A1
WO2022091973A1 PCT/JP2021/039106 JP2021039106W WO2022091973A1 WO 2022091973 A1 WO2022091973 A1 WO 2022091973A1 JP 2021039106 W JP2021039106 W JP 2021039106W WO 2022091973 A1 WO2022091973 A1 WO 2022091973A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
light source
series switch
semiconductor light
output
Prior art date
Application number
PCT/JP2021/039106
Other languages
French (fr)
Japanese (ja)
Inventor
賢 菊池
紀人 高橋
光治 眞野
雄太 丸山
Original Assignee
株式会社小糸製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社小糸製作所 filed Critical 株式会社小糸製作所
Priority to JP2022559092A priority Critical patent/JPWO2022091973A1/ja
Publication of WO2022091973A1 publication Critical patent/WO2022091973A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60QARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
    • B60Q1/00Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor
    • B60Q1/02Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments
    • B60Q1/04Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments the devices being headlights
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60QARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
    • B60Q1/00Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor
    • B60Q1/02Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments
    • B60Q1/04Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments the devices being headlights
    • B60Q1/14Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments the devices being headlights having dimming means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/14Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
    • F21S41/141Light emitting diodes [LED]
    • F21S41/151Light emitting diodes [LED] arranged in one or more lines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/60Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by a variable light distribution
    • F21S41/65Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by a variable light distribution by acting on light sources
    • F21S41/663Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by a variable light distribution by acting on light sources by switching light sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/60Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by a variable light distribution
    • F21S41/67Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by a variable light distribution by acting on reflectors
    • F21S41/675Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by a variable light distribution by acting on reflectors by moving reflectors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/10Controlling the intensity of the light
    • H05B45/14Controlling the intensity of the light using electrical feedback from LEDs or from LED modules
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/32Pulse-control circuits
    • H05B45/325Pulse-width modulation [PWM]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/32Pulse-control circuits
    • H05B45/327Burst dimming
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/32Pulse-control circuits
    • H05B45/335Pulse-frequency modulation [PFM]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/345Current stabilisation; Maintaining constant current
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/37Converter circuits
    • H05B45/3725Switched mode power supply [SMPS]
    • H05B45/375Switched mode power supply [SMPS] using buck topology
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/40Details of LED load circuits
    • H05B45/44Details of LED load circuits with an active control inside an LED matrix
    • H05B45/48Details of LED load circuits with an active control inside an LED matrix having LEDs organised in strings and incorporating parallel shunting devices
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/50Circuit arrangements for operating light-emitting diodes [LED] responsive to malfunctions or undesirable behaviour of LEDs; responsive to LED life; Protective circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/10Controlling the light source
    • H05B47/105Controlling the light source in response to determined parameters
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/10Controlling the light source
    • H05B47/16Controlling the light source by timing means
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/10Controlling the light source
    • H05B47/165Controlling the light source following a pre-assigned programmed sequence; Logic control [LC]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21WINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO USES OR APPLICATIONS OF LIGHTING DEVICES OR SYSTEMS
    • F21W2102/00Exterior vehicle lighting devices for illuminating purposes
    • F21W2102/10Arrangement or contour of the emitted light
    • F21W2102/13Arrangement or contour of the emitted light for high-beam region or low-beam region
    • F21W2102/135Arrangement or contour of the emitted light for high-beam region or low-beam region the light having cut-off lines, i.e. clear borderlines between emitted regions and dark regions
    • F21W2102/14Arrangement or contour of the emitted light for high-beam region or low-beam region the light having cut-off lines, i.e. clear borderlines between emitted regions and dark regions having vertical cut-off lines; specially adapted for adaptive high beams, i.e. wherein the beam is broader but avoids glaring other road users
    • F21W2102/145Arrangement or contour of the emitted light for high-beam region or low-beam region the light having cut-off lines, i.e. clear borderlines between emitted regions and dark regions having vertical cut-off lines; specially adapted for adaptive high beams, i.e. wherein the beam is broader but avoids glaring other road users wherein the light is emitted between two parallel vertical cutoff lines, e.g. selectively emitted rectangular-shaped high beam
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21WINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO USES OR APPLICATIONS OF LIGHTING DEVICES OR SYSTEMS
    • F21W2102/00Exterior vehicle lighting devices for illuminating purposes
    • F21W2102/10Arrangement or contour of the emitted light
    • F21W2102/13Arrangement or contour of the emitted light for high-beam region or low-beam region
    • F21W2102/165Arrangement or contour of the emitted light for high-beam region or low-beam region the borderlines between emitted regions and dark regions other than cut-off lines being variable
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • Y02B20/40Control techniques providing energy savings, e.g. smart controller or presence detection

Definitions

  • This disclosure relates to lighting fixtures for vehicles used in automobiles and the like.
  • Vehicle lighting fixtures can generally switch between low beam and high beam.
  • the low beam illuminates the vicinity of the own vehicle with a predetermined illuminance, and the light distribution rule is set so as not to give glare to the oncoming vehicle or the preceding vehicle, and is mainly used when traveling in an urban area.
  • the high beam illuminates a wide area and a distant place in front with a relatively high illuminance, and is mainly used when traveling at high speed on a road where there are few oncoming vehicles and preceding vehicles. Therefore, although the high beam has better visibility by the driver than the low beam, there is a problem that glare is given to the driver and pedestrian of the vehicle existing in front of the vehicle.
  • ADB Adaptive Driving Beam
  • a shutter method for controlling an actuator, a rotary method, an LED array method, etc. have been proposed.
  • the width of the light-off area (light-shielding area) can be continuously changed, but the number of light-off areas is limited to one.
  • the LED array method it is possible to set a plurality of extinguishing areas, but the width of the extinguishing area is limited by the irradiation width of the LED chip, so that the extinguishing area is discrete.
  • the applicant has proposed a scanning method as an ADB method that can solve these problems (see Patent Documents 2 and 3).
  • the scan method is to incident light on a rotating reflector (blade mirror), reflect the incident light at an angle according to the rotation position of the reflector, scan the reflected light in front of the vehicle, and turn on and off the light source.
  • a desired light distribution pattern is formed in front of the vehicle by changing the light distribution pattern according to the rotation position of the vehicle.
  • the light source is turned on and off (on and off) in a time-division manner while keeping the amount of drive current flowing through the light source constant during one scan. Therefore, it was easy to realize a glare-free function that shields a predetermined area from light, but the illuminance in the irradiation area was restricted to a substantially constant level.
  • Patent Document 4 discloses a specific method for forming a light distribution using a scan-type vehicle lamp.
  • a light distribution is formed by a multi-channel light source.
  • Each of the multi-channel light sources is responsible for a part of the horizontal range, and the scan range of each light source is shifted horizontally while partially overlapping the scan range of the other light sources.
  • the amount of light of each light source is controlled by so-called DC dimming (analog dimming), and is variable in units of one scan due to the limitation of response speed.
  • the illuminance at each scanning position can be controlled by combining multiple light sources on, off, and the amount of light, and it is now compatible with various light distribution patterns other than the glare-free function (for example, electronic swivel). There is.
  • FIG. 1 is a block diagram of a vehicle lamp 100R according to a comparative technique examined by the present inventors.
  • the vehicle lamp 100R includes a scanning optical system 2, a plurality of LEDs 4_1 to 4_N, a plurality of LED drivers 10, and a light distribution controller 20.
  • a plurality of LEDs 4_1 to 4_N are connected in series every two (or three) to form a plurality of M LED strings 6_1 to 6_M.
  • the LED driver 10 is provided for each LED string 6. The reason why the two LEDs are connected in series is to reduce the number of LED drivers.
  • the LED driver 10_1 includes a constant current output buck converter 12 and a drive circuit 14 for bypass switches SW1 and SW2 and bypass switches SW1 and SW2 provided in parallel with LEDs 4_1 and 4_2.
  • the LED drivers 10_1 to 10_M are similarly configured.
  • the scanning optical system 2 horizontally scans the emitted beams BM 1 to BM N of the plurality of LEDs 4_1 to 4_N on the virtual vertical screen 900 in front of the vehicle.
  • individual light distribution patterns PTN 1 to PTN N are formed.
  • a plurality of individual light distribution patterns PTN 1 to PTN N are formed in different ranges in the horizontal direction.
  • synthesizing a plurality of individual light distribution patterns PTN 1 to PTN N a synthetic light distribution of the entire vehicle lamp 100R is formed.
  • the scanning frequency by the scanning optical system 2 needs to be set higher than 60 Hz so that the scanning is not perceived by the human eye. For example, it is set to about 200 Hz, and one scanning cycle is 5 ms.
  • the light amount (luminance) of each LED is controlled by analog dimming (DC dimming), but it is difficult to dynamically change the output current I OUT of the switching converter 12 within a scanning cycle of 5 ms. Therefore, the output current I OUT is constant during one scan cycle, and therefore the illuminance of the irradiated portion included in one individual light distribution pattern PTN i is uniform.
  • the present inventors have studied that in the vehicle lamp 100R of FIG. 1, the light intensity of each of the LEDs 4_1 to 4_N is changed within one scanning cycle by PWM-controlling the bypass switches SW1 to SWN.
  • FIG. 2 is a diagram (measurement result) showing a ringing waveform of the driving current of the LED.
  • the initial state is the state in which the bypass switch SW1 is off and the bypass switch SW2 is on. At this time, the output voltage V OUT of the switching converter 12 becomes VF .
  • VF is a forward voltage of one LED.
  • the switching converter 12 When the bypass switch SW2 is turned off, the switching converter 12 needs to raise its output voltage V OUT to 2 ⁇ VF, and has to charge the output capacitor C1 with the charge of C ⁇ VF . Therefore, immediately after the turn-off of the bypass switch SW2, a part of the output current I OUT is consumed as the charging current of the capacitor C1, so that the output current I OUT is insufficient. In the switching converter 12, feedback is applied so that the insufficient current approaches the target value, but the output current I OUT rings due to the resonance of the inductor of the switching converter 12.
  • ringing time When the duration of ringing (hereinafter referred to as ringing time) was measured by an experiment, it was about 30 to 50 ⁇ s.
  • the PWM frequency of a general non-scanning lamp is about 300 Hz, and the PWM cycle is 3.3 ms.
  • the ringing time of 50 ⁇ s is only about 5% of the PWM cycle, and the influence of ringing on the gradation control is small.
  • the PWM frequency needs to be several times or more, that is, several kHz. It can be said that this is a very high frequency as compared with the PWM frequency of about 300 Hz in a general non-scan type lamp.
  • the PWM cycle is 50 ⁇ s, which is about the same as the ringing time of 50 ⁇ s. Therefore, in the configuration of FIG. 1, it is practically difficult to perform PWM dimming at several tens of kHz by using the bypass switches SW1 and SW2.
  • a certain aspect of the present disclosure has been made in view of the above problems, and one of its exemplary purposes is to provide a scan type vehicle lamp capable of PWM dimming. 2.
  • One aspect of the present disclosure has been made in view of the subject, and one of its exemplary purposes is to provide a vehicle lamp capable of PWM dimming over a wide range. 3.
  • One aspect of the present disclosure is made in such a situation, and one of its exemplary purposes is to provide a vehicle lamp capable of detecting an abnormality in a short switch in a lighting circuit that performs pulse dimming by a short switch. be.
  • One aspect of the present disclosure has been made in such circumstances, one of which is an exemplary purpose of optimizing signal processing scheduling in a scanning lamp.
  • the vehicle lighting fixture of a certain aspect of the present disclosure includes a scanning light source and a lighting circuit.
  • the scanning light source includes a semiconductor light source and scans the emitted light of the semiconductor light source.
  • the lighting circuit is configured to be capable of dimming the light amount of the semiconductor light source at each scanning position in multiple gradations by pulse modulation in synchronization with the scanning of the scanning light source.
  • the lighting circuit consists of a series switch installed in series with the semiconductor light source, a constant current output buck converter connected to the series connection circuit of the series switch and the semiconductor light source, and pulse tuning pulse-modulated to obtain the desired light distribution. It is equipped with a driver circuit that switches the series switch based on the optical signal.
  • the vehicle lighting fixture of a certain aspect of the present disclosure includes a semiconductor light source and a lighting circuit capable of dimming the light amount of the semiconductor light source in multiple gradations by pulse modulation.
  • the lighting circuit consists of a series switch installed in series with the semiconductor light source, a constant current output buck converter connected to the series connection circuit of the series switch and the semiconductor light source, and a series switch based on a pulse-modulated pulse dimming signal. It is equipped with a driver circuit to drive.
  • the buck converter includes an output circuit including a switching transistor and an output capacitor, and a converter controller that feedback-controls the switching transistor so that the detected value of the output current of the buck converter during the on period of the series switch approaches a predetermined target value.
  • An overshoot suppression circuit that acts on at least one of the output circuit and converter controller in synchronization with the pulse dimming signal so that the overshoot immediately after the series switch of the drive current flowing through the semiconductor light source is turned on is suppressed. Be prepared.
  • This lighting circuit is a lighting circuit capable of dimming the light amount of the semiconductor light source in multiple gradations by pulse modulation, and is connected to a series switch provided in series with the semiconductor light source and a series connection circuit of the series switch and the semiconductor light source. It is equipped with a constant current output buck converter and a driver circuit that drives a series switch based on a pulse-modulated pulse dimming signal.
  • the buck converter includes an output circuit including a switching transistor and an output capacitor, and a converter controller that feedback-controls the switching transistor so that the detected value of the output current of the buck converter during the on period of the series switch approaches a predetermined target value.
  • An overshoot suppression circuit that acts on at least one of the output circuit and converter controller in synchronization with the pulse dimming signal so that the overshoot immediately after the series switch of the drive current flowing through the semiconductor light source is turned on is suppressed. Be prepared.
  • the vehicle lighting fixture of a certain aspect of the present disclosure includes a semiconductor light source and a lighting circuit capable of dimming the light amount of the semiconductor light source in multiple gradations by pulse modulation.
  • the lighting circuit is connected to a series switch provided in series with the semiconductor light source and a series connection circuit between the series switch and the semiconductor light source, (i) outputs a constant current during the on period of the series switch, and (ii) turns off the series switch.
  • a buck converter that stops the switching operation during the period and maintains substantially the same output voltage as the previous on period, a driver circuit that drives the series switch based on the pulse-modulated pulse dimming signal, and the series switch off. If the output voltage of the buck converter deviates from the normal range during the period, an abnormality detection circuit for determining an abnormality of the series switch is provided.
  • a vehicle lighting fixture of an aspect of the present disclosure includes a semiconductor light source, a motor, and a plurality of mirrors attached to the rotor of the motor at intervals from each other, and the emitted light of the semiconductor light source is reflected and scanned by the plurality of mirrors. It includes a scanning light source and a lighting circuit that controls a drive current supplied to the semiconductor light source in synchronization with scanning of the scanning light source and controls the amount of light of the semiconductor light source. The lighting circuit turns off the semiconductor light source in a plurality of blank periods in which the optical axis of the semiconductor light source crosses the distance between the plurality of mirrors, and the distance between the plurality of mirrors is non-uniform.
  • PWM dimming is possible at a PWM frequency of several tens of kHz. 2.
  • PWM dimming is possible in a wide range. 3.
  • anomalies in the short switch can be detected. 4.
  • signal processing scheduling can be optimized for scanning lamps.
  • FIG. 4 (a) and 4 (b) are diagrams illustrating the formation of glare-free light distribution by vehicle lamps.
  • 5 (a) and 5 (b) are diagrams illustrating the formation of a partially dimmed light distribution by a vehicle lamp.
  • 6 (a) and 6 (b) are diagrams illustrating an electronic swivel by a vehicle lamp. It is a block diagram which shows the structural example of a lighting circuit. It is a circuit diagram which shows the structural example of the LED driver.
  • FIG. 4 (a) and 4 (b) are diagrams illustrating the formation of glare-free light distribution by vehicle lamps.
  • 5 (a) and 5 (b) are diagrams illustrating the formation of a partially dimmed light distribution by a vehicle lamp.
  • 6 (a) and 6 (b) are diagrams illustrating an electronic swivel by a vehicle lamp.
  • FIG. 9A is a diagram showing current control by a series switch
  • FIG. 9B is a diagram showing current control by a bypass switch.
  • It is a circuit diagram which shows the structural example of the LED driver. It is a figure which shows the lighting fixture for a vehicle which concerns on Embodiment 2. It is a block diagram which shows the structural example of the lighting circuit of FIG. It is a figure which shows the lighting fixture for a vehicle which concerns on Embodiment 3.
  • 15 (a) and 15 (b) are diagrams illustrating the operation of the vehicle lamp of FIG. 14. It is a circuit diagram of the abnormality detection circuit which concerns on one Example.
  • FIG. 23A is a diagram illustrating position detection in a 4-pole motor
  • FIG. 23B is a diagram illustrating rotation detection in a 2-pole motor. It is a figure explaining the overshoot of the drive current I LED with PWM dimming in the LED driver of FIG.
  • FIG. 6 is an operation waveform diagram of the LED driver of FIG. 26. It is a circuit diagram which shows the structural example of the overshoot suppression circuit.
  • FIG. 8 is an operation waveform diagram of the overshoot suppression circuit of FIG. 28. It is a circuit diagram of the modification of the overshoot suppression circuit of FIG. 28. It is an operation waveform diagram of the overshoot suppression circuit of FIG. It is a circuit diagram of the LED driver which concerns on Example 2.
  • FIG. It is operation waveform diagram of the LED driver which concerns on Example 2.
  • FIG. 39 It is a circuit diagram of the LED driver which concerns on Example 3.
  • FIG. 39 It is an operation waveform diagram of the LED driver of FIG. 35. It is a circuit diagram which shows the structural example of the overshoot suppression circuit which concerns on Example 3.
  • FIG. It is a circuit diagram of the modification of the overshoot suppression circuit of FIG. 37. It is a circuit diagram of the LED driver which concerns on Example 4.
  • FIG. It is an operation waveform diagram of the LED driver of FIG. 39.
  • the vehicle lamp according to the embodiment includes a semiconductor light source, and the light amount of the semiconductor light source at each scanning position is pulse-modulated in synchronization with the scanning of the scanning light source and the scanning light source that scans the emitted light of the semiconductor light source. It is equipped with a lighting circuit that can be dimmed with multiple gradations.
  • the lighting circuit consists of a series switch installed in series with the semiconductor light source, a constant current output buck converter connected to the series connection circuit of the series switch and the semiconductor light source, and pulse tuning pulse-modulated to obtain the desired light distribution. It is equipped with a driver circuit that switches the series switch based on the optical signal.
  • the output current of the buck converter is cut off and the continuity is switched at high speed by the series switch, so it is not necessary to change the output voltage of the buck converter in steps.
  • ringing of the output current due to charging / discharging of the output capacitor can be suppressed, and dimming by high-speed pulse modulation of several kHz to several tens of kHz becomes possible.
  • the amount of light of one semiconductor light source can be changed within one scanning cycle, not only partial shading but also partial dimming can be realized, and the degree of freedom of the light distribution pattern can be increased. ..
  • Pulse modulation includes pulse width modulation (PWM), pulse frequency modulation (PFM), pulse density modulation (PDM), etc., and switches the drive current flowing through the light source at high speed to obtain the time average value of the drive current. It may include varying modulation schemes.
  • the scanning light source includes a plurality of semiconductor light sources, and a lighting circuit may be provided for each semiconductor light source. As a result, even if the output current of the step-down inverter of one channel is ringing, the other channels are not affected.
  • the buck converter is a converter controller that switches and drives the output circuit including the switching transistor and the switching transistor so that the detected value of the output current of the buck converter during the on period of the series switch approaches a predetermined target value. And may be included.
  • the converter controller may stop the switching drive of the switching transistor during the off period of the series switch.
  • the vehicle lamp according to the embodiment includes a semiconductor light source and a lighting circuit capable of dimming the light amount of the semiconductor light source in multiple gradations by pulse modulation.
  • the lighting circuit consists of a series switch installed in series with the semiconductor light source, a constant current output buck converter connected to the series connection circuit of the series switch and the semiconductor light source, and a series switch based on a pulse-modulated pulse dimming signal. It is equipped with a driver circuit to drive.
  • the buck converter includes an output circuit including a switching transistor and an output capacitor, and a converter controller that feedback-controls the switching transistor so that the detected value of the output current of the buck converter during the on period of the series switch approaches a predetermined target value.
  • An overshoot suppression circuit that acts on at least one of the output circuit and converter controller in synchronization with the pulse dimming signal so that the overshoot immediately after the series switch of the drive current flowing through the semiconductor light source is turned on is suppressed. Be prepared.
  • the series switch cuts off the output current of the buck converter and switches the continuity at high speed, so it is not necessary to change the output voltage of the buck converter in steps.
  • ringing of the drive current due to charging / discharging of the output capacitor can be suppressed, and dimming by high-speed pulse modulation of several kHz to several tens of kHz becomes possible.
  • Pulse modulation includes pulse width modulation (PWM), pulse frequency modulation (PFM), pulse density modulation (PDM), etc., and switches the drive current flowing through the light source at high speed to obtain the time average value of the drive current. It may include varying modulation schemes.
  • the present inventors have recognized that when the output current of a constant current output buck converter is switched at high speed by a series switch, the output current exceeds the target amount and overshoot occurs immediately after the series switch is turned on. According to one embodiment, by providing an overshoot suppression circuit that operates in synchronization with the pulse dimming signal, overshoot of the drive current immediately after the turn-on of the series switch can be suppressed.
  • the overshoot suppression circuit may discharge the output capacitor in synchronization with the pulse dimming signal.
  • the drive current is affected by the charge current and discharge current of the output capacitor, and the drive current can be indirectly controlled by controlling the charge amount of the output capacitor.
  • the overshoot suppression circuit may discharge the output capacitor during the off period of the series switch. By reducing the charge amount of the output capacitor during the off period, the discharge current from the output capacitor immediately after the turn-on of the subsequent series switch can be reduced, and the drive current can be prevented from overshooting.
  • the overshoot suppression circuit includes a first capacitor with a grounded first end, which initializes the charge of the first capacitor during the on period of the series switch, based on the pulse dimming signal, of the series switch.
  • the second end of the first capacitor may be connected to the output capacitor. This allows the output capacitor to be discharged during the off period of the series switch.
  • the overshoot suppression circuit may forcibly discharge the output capacitor immediately after the series switch is turned on.
  • the overshoot suppression circuit may sink current from the output capacitor immediately after the series switch is turned on. As a result, it is possible to prevent the drive current from overshooting immediately after the turn-on.
  • the overshoot suppression circuit includes a first capacitor with a grounded first end, which initializes the charge of the first capacitor during the off period of the series switch, based on the pulse dimming signal, of the series switch.
  • the second end of the first capacitor may be connected to the output capacitor during the on period.
  • the overshoot suppression circuit is provided between the first switch provided between the second end of the first capacitor and the output line, and the second end of the first capacitor and the constant voltage node. 2 switches and may be included.
  • the constant voltage node may be a ground line.
  • the constant voltage node may be the output of a constant voltage source.
  • the amount of electric charge to be discharged can be controlled according to the output voltage of the constant voltage source.
  • the overshoot suppression circuit may act on the converter controller to change the internal signal that correlates with the duty cycle of the switching transistor generated by the converter controller.
  • the waveform of the coil current of the buck converter changes according to the duty cycle of the switching transistor, but the waveform of the coil current can be controlled by changing the internal signal, so that the drive current can be indirectly controlled.
  • the overshoot suppression circuit may forcibly reduce the internal signal that correlates with the duty cycle of the switching transistor generated by the converter controller during the off period of the series switch.
  • the internal signal that correlates with the duty cycle is reduced during the off period, so that the buck converter starts operating from the state where the switching duty cycle is lowered immediately after the turn-on, so that the coil current increases. The speed slows down. This can prevent the drive current from overshooting.
  • the converter controller comprises an error amplifier that generates an error signal according to an error between the detected value and the target value of the output current of the step-down converter, a feedback capacitor connected to the output of the error amplifier, and a voltage of the feedback capacitor. It may include a pulse modulator which produces a pulse signal having a duty cycle according to the above.
  • the overshoot suppression circuit includes a second capacitor with the first end grounded, which initializes the charge of the second capacitor during the series switch on period and the series switch off period based on the pulse dimming signal. The second end of the capacitor may be connected to the output of the error amplifier.
  • the overshoot suppression circuit may forcibly reduce the internal signal having a correlation with the duty cycle of the switching transistor generated by the converter controller immediately after the turn-on of the series switch. As a result, the duty cycle of the switching transistor decreases immediately after the turn-on, so that the rate of increase in the coil current slows down. This can prevent the drive current from overshooting.
  • the converter controller comprises an error amplifier that generates an error signal according to an error between the detected value and the target value of the output current of the step-down converter, a feedback capacitor connected to the output of the error amplifier, and a voltage of the feedback capacitor. It may include a pulse modulator which produces a pulse signal having a duty cycle according to the above.
  • the overshoot suppression circuit includes a second capacitor whose first end is grounded, and based on the pulse dimming signal, initializes the charge of the second capacitor during the off period of the series switch, and during the on period of the series switch, the second. The second end of the capacitor may be connected to the output of the error amplifier.
  • the overshoot suppression circuit is provided between a third switch provided between the second end of the second capacitor and the output of the error amplifier, and between the second end of the second capacitor and the constant voltage node.
  • the fourth switch may be included.
  • the constant voltage node may be a ground line.
  • the constant voltage node may be the output of a constant voltage source.
  • the reduction width of the duty cycle of the switching transistor can be controlled according to the output voltage of the constant voltage source.
  • the vehicle lamp according to the embodiment includes a semiconductor light source and a lighting circuit capable of dimming the light amount of the semiconductor light source in multiple gradations by pulse modulation.
  • the lighting circuit is connected to a series switch provided in series with the semiconductor light source and a series connection circuit between the series switch and the semiconductor light source, (i) outputs a constant current during the on period of the series switch, and (ii) turns off the series switch.
  • a buck converter that stops the switching operation during the period and maintains substantially the same output voltage as the previous on period, a driver circuit that drives the series switch based on the pulse-modulated pulse dimming signal, and the series switch off. If the output voltage of the buck converter deviates from the normal range during the period, an abnormality detection circuit for determining an abnormality of the series switch is provided.
  • the series switch cuts off the output current of the buck converter and switches the continuity at high speed, so it is not necessary to change the output voltage of the buck converter in steps.
  • ringing of the drive current due to charging / discharging of the output capacitor can be suppressed, and dimming by high-speed pulse modulation of several kHz to several tens of kHz becomes possible.
  • Pulse modulation includes pulse width modulation (PWM), pulse frequency modulation (PFM), pulse density modulation (PDM), etc., and switches the drive current flowing through the light source at high speed to obtain the time average value of the drive current. It may include varying modulation schemes.
  • the abnormality detection circuit may have an abnormality determination condition that the output voltage of the buck converter falls below a predetermined threshold value during the off period of the series switch. This enables reliable detection.
  • the predetermined threshold value may be set higher than the lighting start voltage of the semiconductor light source and lower than the forward voltage Vf when the semiconductor light source is lit.
  • the vehicle lighting fixture may further include a scanning optical system that scans the emitted light of the semiconductor light source.
  • the pulse dimming signal may be generated so that the series switch is turned off for a predetermined period of time at the scan-scan break.
  • the abnormality detection circuit may detect an abnormality of the series switch based on the output voltage of the buck converter in a predetermined period. By inserting a predetermined period during which the series switch is always turned off between scans and using this predetermined period for abnormality detection, abnormality detection is performed using a short off period within the pulse modulation cycle. Compared to the case, it is possible to detect anomalies with a margin of time.
  • the abnormality detection circuit may make a provisional determination state when the output voltage falls below the threshold value in a predetermined period, and may make a final determination when the provisional determination state is established over a predetermined number of scans. This makes it possible to prevent erroneous detection of abnormalities.
  • the abnormality detection circuit is a comparison circuit that compares the output voltage of the step-down converter with a threshold value and generates a detection signal that becomes a predetermined level when the output voltage of the step-down converter is lower than the threshold value.
  • the detection signal reaches a predetermined level in the period, the provisional determination state is set, and when the provisional determination state is established over a predetermined number of scans, the signal processing unit for the main determination may be included.
  • the abnormality detection circuit may have an abnormality determination condition that the output voltage of the buck converter is not constant.
  • the output voltage of the buck converter is kept substantially constant, whereas when a short circuit error occurs in the series switch, the on / off control of the series switch (that is, switching of the buck converter) is performed.
  • the output voltage of the buck converter vibrates in conjunction with the operation / stop of. Therefore, an abnormality can be detected by monitoring whether the output voltage is constant or vibrating.
  • the abnormality detection circuit may be subject to an abnormality determination condition that the switching state of the output voltage of the buck converter is maintained for a predetermined determination time.
  • the anomaly detection circuit is a comparison circuit that compares the output voltage of the buck converter with a threshold value and generates a detection signal that reaches a predetermined level when the output voltage of the buck converter is lower than the threshold value.
  • the signal processing unit for determining the abnormal state may be included.
  • the anomaly detection circuit compares the output voltage of the buck converter with a threshold and generates a detection signal that reaches a predetermined level when the output voltage of the buck converter is lower than the threshold. It may include a signal processing unit that counts the number of times the signal has transitioned to a predetermined level and determines that the signal is in an abnormal state when the count value exceeds a predetermined threshold value.
  • the abnormality detection by the abnormality detection circuit may be disabled after the operation of the buck converter is started until the output voltage exceeds a predetermined voltage. This can prevent erroneous detection.
  • the lighting circuit is connected to a series switch provided in series with the semiconductor light source and a series connection circuit of the series switch and the semiconductor light source, and (i) outputs a constant current during the on period of the series switch, and (ii). )
  • a buck converter that stops the switching operation during the off period of the series switch and maintains substantially the same output voltage as the immediately preceding on period, and a driver circuit that drives the series switch based on the pulse-modulated pulse dimming signal.
  • An abnormality detection circuit for determining an abnormality of the series switch when the output voltage of the buck converter deviates from the normal range during the off period of the series switch is provided.
  • a vehicle lamp includes a semiconductor light source, a motor, and a plurality of mirrors attached to the rotor of the motor at intervals from each other, and scans the emitted light of the semiconductor light source by being reflected by the plurality of mirrors. It includes a type light source and a lighting circuit that controls a drive current supplied to the semiconductor light source in synchronization with scanning of the scanning type light source and controls the amount of light of the semiconductor light source. The lighting circuit turns off the semiconductor light source in a plurality of blank periods in which the optical axis of the semiconductor light source crosses the distance between the plurality of mirrors, and the distance between the plurality of mirrors is non-uniform.
  • the vehicle lighting fixture may further include a pulse dimming signal generator that generates an off-level pulse dimming signal in a section where the optical axis of the semiconductor light source passes through the space between a plurality of mirrors. ..
  • the lighting circuit is connected to a series switch provided in series with the semiconductor light source and a series connection circuit between the series switch and the semiconductor light source, (i) outputs a constant current during the on period of the series switch, and (ii) turns off the series switch. It may include a buck converter that stops the switching operation during the period and maintains substantially the same output voltage as the immediately preceding on period, and a driver circuit that drives the series switch based on the pulse dimming signal.
  • the series switch cuts off the output current of the buck converter and switches the continuity at high speed, so it is not necessary to change the output voltage of the buck converter in steps.
  • ringing of the drive current due to charging / discharging of the output capacitor can be suppressed, and dimming by high-speed pulse modulation of several kHz to several tens of kHz becomes possible.
  • Pulse modulation includes pulse width modulation (PWM), pulse frequency modulation (PFM), pulse density modulation (PDM), etc., and switches the drive current flowing through the light source at high speed to obtain the time average value of the drive current. It may include varying modulation schemes.
  • the lighting circuit is an abnormality detection circuit that determines that the series switch is abnormal when the output voltage of the buck converter deviates from the normal range in the longest blank period corresponding to the widest interval among the intervals of the plurality of mirrors. May be further provided.
  • the blank period When detecting a short abnormality during the off period, that is, during the blank period, the blank period becomes shorter in inverse proportion to the rotation speed of the motor, so that the higher the scanning frequency, the more difficult it becomes to detect the short abnormality.
  • another blank period instead of shortening one blank period, another blank period is lengthened, so that the short blank abnormality can be detected by utilizing the long blank period.
  • the motor is a two-pole motor
  • the lighting circuit may detect the rotation position of the motor based on the Hall signal. In this case, it is possible to discriminate between a long blank period and a short blank period based on the waveform of the Hall signal.
  • the vehicle lighting fixture may include a microcontroller.
  • the microcontroller may perform a predetermined process in the longest blank period corresponding to the widest spacing of the plurality of mirrors.
  • the number of mirrors may be two. In this case, two scan cycles and two blank periods are included in one rotation of the motor.
  • the "state in which the member A is connected to the member B" means that the member A and the member B are physically directly connected, and the member A and the member B are electrically connected to each other. It also includes cases of being indirectly connected via other members that do not substantially affect the connection state or impair the functions and effects performed by the combination thereof.
  • a state in which the member C is provided between the member A and the member B means that the member A and the member C, or the member B and the member C are directly connected, and their electricity. It also includes cases of being indirectly connected via other members that do not substantially affect the connection state or impair the functions and effects performed by the combination thereof.
  • the reference numerals attached to electric signals such as voltage signals and current signals, or circuit elements such as resistors and capacitors have their respective voltage values, current values, resistance values, and capacitance values as necessary. It shall be represented.
  • FIG. 3 is a diagram showing a vehicle lamp 100A according to the first embodiment.
  • the vehicle lamp 100A of FIG. 1 has a scan-type ADB function and forms various light distribution patterns in front of the vehicle.
  • the vehicle lamp 100A mainly includes a scanning light source 200A, a lighting circuit 300A, and a light distribution controller 400.
  • the light distribution controller 400 receives and distributes information (sensor information) S1 and information (vehicle information) S2 such as vehicle speed and steering angle from sensors such as cameras and LiDAR (Light Detection and Ringing, Laser Imaging Detection and Ringing). Determine the light pattern.
  • the light distribution controller 400 may be housed in the lamp body or may be provided on the vehicle side.
  • the light distribution controller 400 transmits information (light distribution pattern information) S3 indicating a light distribution pattern to the vehicle lamp 100.
  • the light distribution controller 400 is also referred to as an ADB ECU (Electronic Control Unit).
  • the scanning light source 200A includes a light source unit 210A, a scanning optical system 220, and a projection optical system 230.
  • the light source unit 210A includes one semiconductor light source 212 and a heat sink (not shown).
  • An LED (light emitting diode), a laser diode, or the like can be used as the semiconductor light source 212.
  • the scanning optical system 220 scans the emitted light (beam) BM of the semiconductor light source 212 in front of the vehicle.
  • the scanning optical system 220 includes a motor 222 and one or a plurality of M (two in this example) blade mirrors 224_1224_2.
  • the M blade mirrors (M ⁇ 2) are mounted at 360 / M ° offset positions, and in this example, the two blade mirrors are mounted at 180 ° offset positions.
  • the optical axis of the semiconductor light source 212 is directed so that the emitted beam BM irradiates one of the M blade mirrors.
  • the incident light BM on the blade mirror 224 is reflected at a reflection angle corresponding to the position of the blade mirror 224 (rotation angle of the rotor), and an instantaneous irradiation spot SPT is formed on the virtual vertical screen 900 in front of the vehicle.
  • the instantaneous irradiation spot SPT has a width ⁇ v in the horizontal direction (H direction) and a width ⁇ h in the vertical direction (V direction).
  • the rotation of the blade mirror 224 changes the reflection angle, that is, the emission direction of the reflected beam BMr, and the horizontal (H direction) position (scanning position) of the instantaneous irradiation spot SPT moves.
  • a light distribution pattern PTN is formed in front of the vehicle.
  • the light distribution pattern PTN formed by one beam BM extends over the entire horizontal range of the vehicle lamp 100A to ⁇ MAX to + ⁇ MAX . That is, the scanning light source 200A scans the reflected beam BMr over the entire horizontal range.
  • ⁇ MAX is about 20 to 25 °.
  • the entire range is the entire range that can be irradiated by scanning, and does not include the range irradiated by a light source other than scanning.
  • the lighting circuit 300A determines the amount of light of the semiconductor light source 212 at each scanning position, that is, the intensity of the beam BM, in synchronization with the scanning of the scanning light source 200A so that the light distribution pattern indicated by the light distribution pattern information S3 can be obtained. Dimming with multiple gradations by pulse modulation.
  • the average amount of drive current I LEDs flowing through the semiconductor light source 212 is changed by PWM (pulse width modulation), and the amount of light of the semiconductor light source 212 is changed (PWM dimming).
  • the PWM frequency is set sufficiently higher than the scanning frequency, and it is desirable that the PWM frequency is, for example, several kHz to several hundred kHz.
  • the lighting circuit 300 may change the amount of current I OUT in a scanning cycle or a control cycle longer than that. That is, PWM dimming and DC dimming may be used together.
  • PWM dimming and DC dimming may be used together.
  • FIG. 4 (a) and 4 (b) are diagrams illustrating the formation of glare-free light distribution by the vehicle lamp 100A.
  • the glare-free light distribution 910 of FIG. 4A includes a light-shielding portion 912 and an irradiation portion 914,916.
  • 4 (a) shows the light distribution on the virtual vertical screen
  • FIG. 4 (b) shows the operation waveform of the vehicle lamp 100A corresponding to the light distribution of FIG. 4 (a).
  • the vertical and horizontal axes of the waveform charts and time charts referred to in the present specification are appropriately enlarged or reduced for easy understanding, and each waveform shown is also simplified for easy understanding. It is made, or exaggerated or emphasized.
  • the lighting circuit 300 sets the duty cycle of the drive current I LED of the semiconductor light source 212 to a non-zero value (100% constant value in this example) in the section corresponding to the irradiation portions 914 and 916, and corresponds to the light shielding portion 912. In this section, the duty cycle of the drive current I LED is set to 0%.
  • 5 (a) and 5 (b) are diagrams illustrating the formation of a partially dimmed light distribution by the vehicle lamp 100A.
  • 5 (a) shows the horizontal illuminance distribution of the light distribution on the virtual vertical screen
  • FIG. 5 (b) shows the operation waveform of the vehicle lamp 100A corresponding to the light distribution of FIG. 5 (a).
  • the partial dimming distribution 920 shown in FIG. 5A includes two dimming portions 922,924 and three non-dimming portions 926,927,928.
  • the duty cycle of the drive current I LED of the semiconductor light source 212 is fixed to 100% in the section corresponding to the non-dimming portion (irradiation portion) 926,927,928, and the duty cycle is fixed to the dimming portion 922,924.
  • the duty cycle of the drive current I LED is 50% and 25%, respectively.
  • partial dimming can be realized by PWM-controlling the drive current I LED flowing through a single semiconductor light source.
  • FIG. 6 (a) and 6 (b) are diagrams illustrating an electronic swivel by a vehicle lamp 100A.
  • FIG. 6A shows the brightest light distribution in the center
  • FIG. 6B shows the brightest light distribution on the right side.
  • the electronic swivel function can be realized by PWM-controlling the drive current I LED flowing through a single semiconductor light source.
  • FIG. 7 is a block diagram showing a configuration example of the lighting circuit 300.
  • the light distribution controller 400 receives sensor information S1 and vehicle information S2.
  • the light distribution controller 400 detects the situation in front of the vehicle, specifically, the presence / absence of an oncoming vehicle, a preceding vehicle, the presence / absence of a pedestrian, and the like based on the sensor information S1. Further, the light distribution controller 400 detects the current vehicle speed, steering angle, and the like based on the vehicle information S2. Based on these information, the light distribution controller 400 determines a light distribution pattern to be irradiated to the front of the vehicle, and transmits information (light distribution pattern information) S3 instructing the light distribution pattern to the lighting circuit 300.
  • the lighting circuit 300 changes the light amount (luminance) of the semiconductor light source 212 in multiple gradations by PWM dimming while synchronizing with the rotation of the blade mirror 224 based on the light distribution pattern information S3.
  • the lighting circuit 300 mainly includes a position detector 302, a PWM signal generation unit 310, and a constant current driver (hereinafter referred to as an LED driver) 320.
  • the position detector 302 is provided to detect the position of the blade mirror 224, in other words, the scanning position of the current beam.
  • the position detector 302 generates a position detection signal S4 indicating the timing at which the predetermined reference point of the blade mirror 224 passes the predetermined position.
  • the reference portion may be the end portion (separation) of the two blade mirrors 224, or may be the center of each blade mirror, and may be any location.
  • a Hall element may be attached to the motor 222 that rotates the blade mirror 224.
  • the Hall signal from the Hall element has a periodic waveform corresponding to the position of the rotor, that is, the position of the blade mirror.
  • the position detector 302 may detect the timing at which the polarity of the Hall signal is inverted, and specifically, may be configured by a Hall comparator that compares a pair of Hall signals.
  • the position detection method of the blade mirror 224 by the position detector 302 is not limited to the one using a Hall element.
  • the position detector 302 may generate the position detection signal S4 by using an optical or other rotary encoder that detects the position of the rotor of the motor 222.
  • the position detector 302 may include a photosensor provided on the back side of the blade mirror 224 and a light source for position detection that irradiates light from the surface side of the blade mirror 224 toward the photosensor.
  • the blade mirror 224 may be provided with a slit or a pinhole. This makes it possible to detect when the slit or pinhole passes over the photo sensor.
  • the slit may be a gap between the two blade mirrors 224.
  • the light source for position detection may be an infrared light source or a semiconductor light source 212. As described above, there may be various variations in the configuration of the position detector 302.
  • the PWM signal generation unit 310 generates a pulse dimming signal PWM_DIM in synchronization with the movement of the blade mirror 224.
  • the PWM signal generation unit 310 may be implemented by combining the microcontroller 304 and the software program, or may be implemented only by hardware.
  • the microcontroller 304 and the LED driver 320 may be mounted on one substrate or may be arranged in one housing.
  • the frequency of the pulse dimming signal PWM_DIM is set higher than 200 Hz, and can be, for example, several kHz to several tens of kHz.
  • the duty cycle of the pulse dimming signal PWM_DIM determines the amount of light of the semiconductor light source 212, and the duty cycle may be set for each PWM cycle or may be set for each of a plurality of PWM cycles. good.
  • the LED driver 320 supplies a drive current I LED to the semiconductor light source 212.
  • the current amount of the drive current I LED is stabilized to a predetermined target value, and the LED driver 320 switches the drive current I LED according to the pulse dimming signal PWM_DIM.
  • FIG. 8 is a circuit diagram showing a configuration example (320A) of the LED driver 320.
  • the LED driver 320A includes a buck converter 322, a series switch 323, and a driver circuit 324.
  • the series switch 323 and the semiconductor light source 212 are connected in series.
  • the series switch 323 is inserted on the anode side of the semiconductor light source 212, but may be inserted between the cathode and the ground.
  • the buck converter 322 is a constant current output switching converter and includes an output circuit 326 and a converter controller 328.
  • the output circuit 326 includes a switching transistor MH, a synchronous rectifying transistor ML, an inductor L1, and an output capacitor C1.
  • the converter controller 328 switches and controls the switching transistor MH and the synchronous rectifying transistor ML of the output circuit 326 so that the output current I OUT of the buck converter 322 approaches a predetermined target amount while the series switch 323 is on.
  • the control method of the converter controller 328 is not particularly limited, and may be an analog controller using an error amplifier, a digital controller including a PID (proportional / integral / differential) compensator, or a hysteresis control controller.
  • the driver circuit 324 drives the series switch 323 in response to the pulse dimming signal PWM_DIM.
  • the driver circuit 324 may be integrated in the same IC as the converter controller 328.
  • the converter controller 328 stops the switching of the switching transistor MH and the synchronous rectifying transistor ML when the pulse dimming signal PWM_DIM is at the off level indicating the off of the series switch 323.
  • the above is the configuration of the LED driver 320A.
  • this LED driver 320A since the output current I OUT of the buck converter 322 is cut off and the continuity is switched at high speed by the series switch 323, it is not necessary to change the output voltage V OUT of the buck converter 322 in a stepwise manner. As a result, ringing of the output current I OUT due to charging / discharging of the output capacitor C1 can be suppressed, and dimming by high-speed pulse modulation of several kHz to several tens of kHz becomes possible.
  • FIG. 9A is a diagram showing current control by a series switch
  • FIG. 9B is a diagram showing current control by a bypass switch. These waveforms show one cycle of PWM dimming, the PWM frequency is 5 kHz (200 ⁇ s cycle), and the duty cycle is 50%.
  • the converter controller 328 stops switching between the switching transistor MH and the synchronous rectifying transistor ML.
  • the voltage V OUT of the output capacitor C1 is kept constant during the period when the series switch 323 is off, so that the fluctuation amount of the output voltage V OUT immediately after the series switch 323 is turned on can be brought close to zero. ..
  • ringing of the output current I OUT can be further suppressed.
  • FIG. 10 is a circuit diagram showing a configuration example of the LED driver 320A.
  • the LED driver 320A includes a control IC (Integrated Circuit) 340.
  • the control IC 340 integrates a switching transistor MH, a synchronous rectifier transistor ML, and a driver circuit 324.
  • the output circuit 326 includes a current detection resistor Rcs.
  • the voltage across the current detection resistor Rcs is fed back to the ISP / ISN pin of the control IC.
  • the transconductance amplifier 330 generates a current corresponding to an error of the current detection signal Vcs, which is the potential difference between the two terminals ISP and ISN, and the reference voltage Vref.
  • the output of the transconductance amplifier 330 is connected to the Vc pin via the sample hold circuit 332.
  • a resistor Rc and a capacitor Cc are connected to the Vc pin.
  • the resistance Rc and the capacitor Cc also serve as a phase compensation circuit.
  • the resistance Rc may be omitted.
  • the capacitor Cc is charged and discharged according to the output current of the transconductance amplifier 330, so that an error voltage Vc is generated in the Vc pin. Due to the feedback, this error voltage Vc increases or decreases so that the current detection signal Vcs approaches the reference voltage Vref.
  • the transconductance amplifier 330 and the phase compensation circuits Rc and Cc are grasped as an error amplifier.
  • the on-time control unit 334 is a pulse width modulator, and generates a control pulse Spwm having a duty cycle corresponding to an error voltage Vc.
  • the frequency of this control pulse Spwm is set even higher than the pulse dimming signal PWM_DIM.
  • the configuration of the on-time control unit 334 is not particularly limited, but may include an oscillator that generates a periodic voltage such as a triangular wave or a sawtooth wave, and generate a control pulse Spwm by comparing the periodic voltage and the error voltage Vc. ..
  • the gate driver 336 drives the switching transistor MH and the synchronous rectifying transistor ML according to the control pulse Spwm.
  • the PWM signal generation unit 310 is composed of a microcontroller.
  • a pulse dimming signal PWM_DIM generated by the PWM signal generation unit 310 is input to the PWM pin of the control IC 340.
  • the driver circuit 324 receives the pulse dimming signal PWM_DIM and drives the series switch 323.
  • the series switch 323 is a polyclonal transistor, and the driver circuit 324 outputs a signal obtained by inverting the pulse dimming signal PWM_DIM from the PWMG pin.
  • the pulse dimming signal PWM_DIM is input to the sample hold circuit 332.
  • the sample hold circuit 332 connects the output of the transconductance amplifier 330 to the Vc pin and the input of the on-time control unit 334 during the on-level (high) period in which the pulse dimming signal PWM_DIM instructs the series switch 323 to turn on. Further, the sample hold circuit 332 maintains the connection between the Vc pin and the input of the on-time control unit 334 during the off-level (low) period in which the pulse dimming signal PWM_DIM instructs the series switch 323 to be turned off, while maintaining the connection of the transconductance amplifier 330. The output is cut off from the Vc pin and the on-time control unit 334.
  • the error voltage Vc of the Vc pin is held during the period when the pulse dimming signal PWM_DIM is off, and when the next pulse dimming signal PWM_DIM is turned on, the error voltage Vc is immediately returned to the appropriate voltage level. Can be made to.
  • the pulse dimming signal PWM_DIM is input to the gate driver 336.
  • the gate driver 336 selectively switches the switching transistor MH and the synchronous rectifying transistor ML according to the control pulse Spwm during the period when the pulse dimming signal PWM_DIM is on level (high). Further, the gate driver 336 stops switching between the switching transistor MH and the synchronous rectifying transistor ML during the period when the pulse dimming signal PWM_DIM is off level (low). Specifically, the gate driver 336 fixes both the switching transistor MH and the synchronous rectifying transistor ML to off during the period when the pulse dimming signal PWM_DIM is off level.
  • FIG. 11 is a diagram showing a vehicle lamp 100B according to the second embodiment. Differences from the first embodiment will be described.
  • the light source unit 210B of the scanning light source 200B includes a plurality of N (N ⁇ 2) semiconductor light sources 212_1 to 212_N.
  • the optical axes of the semiconductor light sources 212_1 to 212_N are directed so that the respective emitted beams BM 1 to BM N irradiate one of the M blade mirrors.
  • the light beam of the emitted beam BM 2 of the semiconductor light source 212_2 is shown as a representative.
  • the incident light BM 2 on the blade mirror 224 is reflected at a reflection angle corresponding to the position of the blade mirror 224 (rotation angle of the rotor), and an instantaneous irradiation spot SPT 2 is formed on the virtual vertical screen 900 in front of the vehicle. do.
  • the instantaneous irradiation spot SPT 2 has a predetermined width in each of the horizontal direction (H direction) and the vertical direction (V direction).
  • the reflection angle changes, the emission direction of the reflected beam BMr 2 changes as shown by the broken line, and the horizontal (H direction) position (scanning position) of the instantaneous irradiation spot SPT 2 moves. do.
  • an individual light distribution pattern PTN 2 is formed in front of the vehicle.
  • the individual light distribution pattern PTN i is formed by scanning the i-th reflected beam BM r i .
  • the individual light distribution patterns PTN 1 to PTN N formed by the beams BM 1 to BM N are formed at different heights on the virtual vertical screen 900.
  • the light distribution pattern PTN_ALL of the entire vehicle lamp 100 is formed.
  • the individual light distribution patterns PTNs adjacent to each other in the vertical direction may slightly overlap each other in the vertical direction.
  • At least one of the plurality of individual light distribution patterns PTN 1 to PTN N extends over the entire horizontal range of the vehicle lamp 100 to ⁇ MAX to + ⁇ MAX . That is, the scanning light source 200B scans at least one of the plurality of beams BMr 1 to BMr N over the entire horizontal range. In the example of FIG. 11, all the individual light distribution patterns PTN 1 to PTN N extend over the entire horizontal range ⁇ MAX to + ⁇ MAX .
  • the lighting circuit 300B adjusts the light intensity of each of the semiconductor light sources 212_1 to 212_N at each scanning position, that is, the intensity of the beams BM 1 to BM N in multiple gradations in synchronization with the scanning of the scanning light source 200B. ..
  • the lighting circuit 300B may change the amount of current I OUT in a scanning cycle or a control cycle longer than that. That is, PWM dimming and DC dimming may be used together.
  • FIG. 12 is a block diagram showing a configuration example of the lighting circuit 300B of FIG.
  • the lighting circuit 300B includes a plurality of LED drivers 320_1 to 320_N corresponding to the plurality of semiconductor light sources 212_1 to 212_N.
  • the PWM signal generation unit 310 generates pulse dimming signals PWM_DIM_1 to PWM_DIM_N for a plurality of LED drivers 320_1 to 320_N so that the desired light distribution can be obtained.
  • the i-th (1 ⁇ i ⁇ N) LED driver 320 supplies a PWM-modulated drive current I LEDi to the corresponding semiconductor light source 212_i.
  • the configuration of the LED driver 320 is the same as that of the first embodiment.
  • the resolution in the height direction can be improved as compared with the first embodiment.
  • the entire light distribution is vertically divided into a plurality of regions, and a plurality of individual light distribution patterns PTN 1 to PTN N are associated with the plurality of regions, but this is not the case. Some of the plurality of individual light distribution patterns PTN 1 to PTN N may completely overlap.
  • FIG. 13 is a diagram showing a vehicle lamp 100C according to the third embodiment.
  • the light source unit 210C includes a plurality of semiconductor light sources 212_1 to 212_N.
  • the emitted beams BM 1 to BM N of the semiconductor light sources 212_1 to 212_N are irradiated over the entire range of the horizontal scan, but in the third embodiment, the emitted beams BM 1 to BM N are emitted.
  • Different horizontal ranges are scanned on the virtual vertical screen 900, and the scanning of the emitted beams BM 1 to BM N forms a plurality of individual light distribution patterns PTN 1 to PTN N.
  • the light distribution formed by the vehicle lamp 100R is a superposition of a plurality of individual light distribution patterns PTN 1 to PTN N.
  • the lighting circuit 300C can be configured in the same manner as the lighting circuit 300B of the second embodiment.
  • the short-circuit abnormality cannot cut off the current supply to the semiconductor light source 212 even if the pulse dimming signal PWM_DIM is turned off, such as an abnormality in which the series switch cannot be turned off or an abnormality in which both ends of the series switch are short-circuited. It means an abnormality.
  • FIG. 14 is a block diagram of a vehicle lamp 100F having a short abnormality detection function.
  • the vehicle lamp 100F includes a semiconductor light source 212, an LED driver 320F, and a PWM signal generation unit 310.
  • the PWM signal generation unit 310 generates a pulse dimming signal PWM_DIM pulse-modulated so as to form a desired light distribution pattern.
  • the LED driver 320F includes a buck converter 322, a series switch 323, and a driver circuit 324, similarly to the LED driver 320A of FIG. These functions and operations are as described above. That is, the buck converter 322 outputs a constant current during the on period (i) of the series switch 323 (the period during which the pulse dimming signal PWM_DIM is on level). Further, the buck converter 322 stops the switching operation during the off period of the (ii) series switch 323 (the period during which the pulse dimming signal PWM_DIM is at the off level), and has substantially the same output voltage V OUT , that is, the semiconductor as the immediately preceding on period. It is configured to maintain the forward voltage of the light source 212.
  • the LED driver 320F further includes an abnormality detection circuit 370.
  • the abnormality detection circuit 370 determines that the series switch 323 is abnormal and asserts the abnormality detection signal (fail signal) FAIL.
  • the fail signal FAIL is transmitted to the PWM signal generation unit 310 or an upper block such as another microcontroller, processor, or ECU.
  • the PWM signal generation unit 310 that has received the fail signal FAIL may stop the generation of the pulse dimming signal PWM_DIM and turn off the semiconductor light source 212.
  • 15 (a) and 15 (b) are diagrams illustrating the operation of the vehicle lamp 100F of FIG.
  • an operation for one scan is taken as an example when forming a light distribution including two light-shielding portions and one dimming portion.
  • the pulse dimming signal PWM_DIM is an off-level (low) in the light-shielding portion, a pulse signal having a duty cycle according to the dimming rate in the dimming portion, and an on-level (high) in the other portion.
  • the series switch 323 When the pulse dimming signal PWM_DIM is high (on level), the series switch 323 conducts, so that the constant current I OUT generated by the buck converter 322 is supplied to the semiconductor light source 212, and the drive current I flows through the semiconductor light source 212. The LED is stabilized to a constant current I OUT . At this time, the output voltage V OUT of the buck converter 322 becomes equal to the forward voltage VF of the semiconductor light source 212.
  • the series switch 323 When the pulse dimming signal PWM_DIM is low (off level), the series switch 323 is cut off, so that the drive current I LED flowing through the semiconductor light source 212 becomes 0A. Further, since the switching operation of the buck converter 322 is stopped and charging / discharging to the output capacitor C1 does not occur, the output voltage V OUT is kept at a substantially constant level.
  • the output voltage V OUT of the buck converter 322 is in a certain voltage range near the forward voltage VF regardless of whether the series switch 323 is on or off (this). Is included in the normal range).
  • the pulse dimming signal PWM_DIM is the same as that in FIG. 15 (a).
  • the series switch 323 cannot be cut off, so that the drive current I LED continues to flow in the semiconductor light source 212.
  • the drive current I LED is covered by the discharge of the output capacitor C1 of the buck converter 322. Therefore, as the discharge progresses, the drive current I LED decreases with time. Since the low section of the pulse dimming signal PWM_DIM is long in the light-shielded portion, when the output capacitor C1 is discharged and drops to the lighting start voltage V MIN shown in FIG. 17, the drive current I LED drops to 0 A.
  • the discharge of the output capacitor C1 is stopped, so that the output voltage V OUT is near the lighting start voltage V MIN .
  • the drive current I LED may not decrease to 0A.
  • the output voltage V OUT can be detected by utilizing the difference in the behavior of the output voltage V OUT at the time of short circuit abnormality and the normal state.
  • FIG. 16 is a circuit diagram of the abnormality detection circuit 370 according to the embodiment.
  • the abnormality detection circuit 370 includes a comparison circuit 372 and a signal processing unit 374.
  • the comparison circuit 372 includes resistors R31 and R32 and a voltage comparator COMP1.
  • the output voltage V OUT of the buck converter 322 is divided by a voltage divider circuit including resistors R31 and R32.
  • the voltage comparator COMP1 compares the output voltage V OUT'after voltage division with a predetermined threshold voltage VTH , and generates a detection signal S DET indicating the comparison result.
  • the detection signal S DET is a binary signal indicating whether or not the output voltage V OUT of the buck converter 322 is included in the normal range.
  • VSHORT VTH ⁇ (R31 + R32) / R32 is the threshold value (lower limit) in the normal range.
  • V OUT > V SHORT V OUT > V SHORT
  • the detection signal S DET at this time keeps high.
  • V OUT ⁇ V SHORT becomes V OUT ⁇ V SHORT
  • the detection signal S DET becomes low.
  • the signal processing unit 374 determines the presence or absence of a short-circuit abnormality based on the detection signal S DET , and when the abnormality is detected, asserts the fail signal FAIL. Specifically, in the signal processing unit 374, the detection signal S DET reaches a predetermined level (low), that is, the output voltage V OUT of the buck converter 322 becomes a predetermined threshold value V SHORT during the off period of the series switch 323. It is a condition of abnormality judgment that it is less than.
  • the signal processing unit 374 can be implemented by combining a microcontroller and software. In this case, the PWM signal generation unit 310 and the signal processing unit 374 may be mounted on the same microcontroller.
  • the signal processing unit 374 may be configured by a hardware logic circuit.
  • FIG. 17 is a diagram showing the IV characteristics of the semiconductor light source 212.
  • the horizontal axis represents the voltage V LED between both ends of the semiconductor light source 212, and the vertical axis represents the current.
  • the lower limit threshold V SHORT in the normal range may be set higher than the lighting start voltage V MIN of the semiconductor light source 212 and lower than the forward voltage VF when the semiconductor light source 212 is lit.
  • the abnormality detection by the abnormality detection circuit 370 is invalidated after the operation of the buck converter 322 is started until the output voltage V OUT exceeds a predetermined voltage.
  • FIG. 18 is a diagram illustrating the determination process 1 of the abnormality detection circuit 370.
  • FIG. 18 shows the waveform at the time of short circuit abnormality.
  • the vehicle lamp 100 includes a scanning optical system 220.
  • the pulse dimming signal PWM_DIM is generated so that the series switch 323 is turned off for a predetermined period (referred to as blank period TBLANK ) at the break between scans.
  • blank period TBLANK a predetermined period
  • the scanning optical system 220 includes a plurality of blade mirrors 224
  • the gap between the blade mirrors can be set as a blank period TBLANK .
  • the scanning period TSCAN is 5 ms.
  • the PWM cycle is 50 ⁇ s.
  • the blank period TBLANK may be set longer than the PWM cycle of 50 ⁇ s, for example 70 ⁇ s.
  • the abnormality detection circuit 370 detects an abnormality of the series switch 323 based on the output voltage V OUT of the step-down converter 322 in the blank period TBLANK .
  • the abnormality detection circuit 370 sets a tentative determination state when the output voltage V OUT falls below the threshold value V SHORT in the blank period TBLANK . Then, when the provisional determination state is established over a predetermined number of scans, the final determination may be performed.
  • the signal processing unit 374 acquires the position of the blank period TBLANK based on the position detection signal S4, and the detection signal SDET transitions to a predetermined level (low) during the blank period TBLANK . Is a condition for determining a short circuit abnormality.
  • the fail signal FAIL is asserted.
  • the signal processing unit 374 includes a counter, and counts up the counter each time the detection signal S DET of the blank period TBLANK becomes low. Then, when the count value reaches a predetermined value M, the fail signal FAIL is asserted.
  • the counter may be reset. That is, in the determination process 1, the short-circuit abnormality is detected by focusing only on the hatched portion of the detection signal S DET in FIG.
  • the determination process 1 will be described. If the blank period TBLANK is not provided, the short circuit abnormality cannot be detected unless the pulse dimming signal PWM_DIM transitions to low. In the first determination process, by inserting the blank period TBLANK , an opportunity for abnormality determination is always given once per scan. This makes it possible to reliably detect a short circuit abnormality in a short time.
  • the PWM dimming section and the low section of the detection signal S DET are narrow pulses shorter than 50 ⁇ s. Therefore, in order to use the detection signal S DET in the PWM dimming section, a high-speed signal processing unit 374 is required. Further, when the duty cycle of the pulse dimming signal PWM_DIM is large (when the low section is short), the output voltage V OUT may not fall below the threshold value V SHORT . In the blank period TBLANK longer than the PWM cycle, the output voltage V OUT surely falls below the threshold value V SHORT , so that a low-level detection signal S DET can be generated, and a short-circuit abnormality can be detected stably.
  • FIG. 19 is a diagram illustrating the determination process 2 of the abnormality detection circuit 370.
  • FIG. 19 shows the waveform at the time of short circuit abnormality.
  • the blank period TBLANK is not essential.
  • the abnormality detection circuit 370 constantly monitors the detection signal S DET , and a state in which the detection signal S DET is not a DC signal (DC state), in other words, a pulse signal (pulse state) is a predetermined determination. If the time ⁇ DET continues , it is determined that the condition is abnormal and the fail signal FAIL is asserted.
  • the signal processing unit 374 generates a provisional determination signal DC / PULSE indicating whether the detection signal S DET is in the pulse state or the DC state.
  • a state in which the detection signal S DET is continuously high for a predetermined time or longer may be a DC state, and a state in which the detection signal S DET is continuously high may be a pulse state.
  • the signal processing unit 374 determines that the temporary determination signal DC / PULSE is an abnormal state and asserts the fail signal FAIL.
  • the signal processing unit 374 may be implemented by using the timer resource of the microcontroller.
  • the determination process 1 requires timing synchronization with the blank period TBLANK , whereas the determination process 2 has an advantage that timing synchronization is not required.
  • FIG. 20 is a diagram illustrating the determination process 3 of the abnormality detection circuit 370.
  • FIG. 20 shows the waveform at the time of short circuit abnormality.
  • the blank period TBLANK is not essential.
  • the abnormality detection circuit 370 constantly monitors the detection signal S DET , the number of times the detection signal S DET transitions to low, in other words, the number of low pulses generated on the detection signal S DET , in other words, the detection signal S.
  • the number of negative edges of the DET is counted, and when the count value exceeds a predetermined threshold value K, it is determined as an abnormal state.
  • some of the determination processes 1 to 3 can be regarded as a condition for abnormality determination that the output voltage V OUT of the buck converter 322 is not constant and lasts for a predetermined time. From another point of view, it is understood that some of the determination processes 1 to 3 require that the switching state of the output voltage V OUT of the buck converter 322 lasts for a predetermined determination time as a condition for abnormality determination. Will be done.
  • the abnormality determination is performed after binarizing the output voltage V OUT , but this is not the case.
  • a high-speed A / D converter may capture a waveform of an output voltage V OUT , and the presence or absence of an abnormality may be determined based on the waveform.
  • FIG. 21 is a diagram showing a configuration example of the scanning optical system 220.
  • the scanning optical system 220 includes a motor 222 and a plurality of blade mirrors 224.
  • the number of blade mirrors 224 is two.
  • the blade mirrors 224_1224_2 are attached to the rotor (rotating shaft) of the motor 222 with a gap (hereinafter referred to as mirror spacing) 226_1.226_2.
  • mirror spacing hereinafter referred to as mirror spacing
  • the distance between the two mirrors 226_1, 226_2 is non-uniform, and d1> d2.
  • FIG. 22 is a diagram showing a blank period T BALNK corresponding to the distance between the two blades.
  • BM indicates the optical axis (beam spot) of the semiconductor light source.
  • T SCAN two scanning cycles included in the cycle TROT of one rotation of the motor 222. Each time the motor rotates, a long blank period TBLANK1 and a short blank period TBLANK2 are alternately generated.
  • a long blank period TBLANK1 and a short blank period TBLANK2 can be intentionally created by making the spacing between the plurality of blade mirrors non-uniform.
  • the microcontroller 304 for vehicle lighting performs various tasks (processes).
  • the microcontroller 304 may perform a predetermined process in the longest blank period TBLANK1 corresponding to the widest spacing of the plurality of mirrors. For example, the microcontroller 304 may perform a relatively heavy task during a long blank period TBLANK1 and a relatively light task during a short blank period TBLANK2 .
  • the task may be executed in the long blank period TBLANK1 .
  • FIG. 23A is a diagram illustrating position detection in a 4-pole motor. H + and H- indicate the hall signal, and the FG signal indicates the comparison result of the hall signal.
  • the output H + (FG signal) of the Hall element repeats the same waveform twice within one rotation of the motor. Therefore, it is not possible to distinguish between a long blank period and a short blank period based on the Hall signal H + or the FB signal.
  • FIG. 23B is a diagram illustrating rotation detection in a two-pole motor.
  • the cycle of the FG signal matches the rotation cycle of the motor, so it is possible to distinguish between the blank periods TBLANK1 and TBLANK2 based on the position of the edge of the FG signal. ..
  • the method for detecting the blank periods T BLANK 1 and T BLANK 2 is not limited to this.
  • a position detection light source that is always lit and a light receiving element that detects the emitted light of the position detection light source may be provided facing each other so as to sandwich the blade mirror.
  • the output of the light receiving element becomes zero during the period when the emitted light of the position detecting light source is blocked by the blade mirror, and the output of the light receiving element becomes non-zero during the period when the emitted light of the position detecting light source passes through the mirror interval. Since the length of time during which the output of the light receiving element becomes non-zero differs depending on the widths d1 and d2 of the mirror interval, it is possible to distinguish between the blank periods TBLNK1 and TBLANK2 .
  • one position detection magnet may be added to the rotor or blade of the motor, and the magnetic field of the position detection magnet may be detected by the Hall element.
  • FIG. 24 is a diagram illustrating overshoot of the drive current I LED due to PWM dimming in the LED driver 320A of FIG. While the pulse dimming signal PWM_DIM from time t 0 to t 1 is on level (high), the drive current I LED is supplied to the semiconductor light source 212, and the voltage drop V LED of the semiconductor light source 212 is the forward voltage VF . Become.
  • the series switch 323 When the pulse dimming signal PWM_DIM transitions to the off level (low) at time t1, the series switch 323 is immediately turned off. On the other hand, the energy stored in the inductor L1 of the output circuit 326 is supplied to the output capacitor C1 of the output circuit 326 as a current signal (coil current) IL (with hatching), and the output capacitor C1 is charged. As a result, the voltage of the output capacitor C1 is higher than VF by ⁇ V .
  • the series switch 323 turns on.
  • the voltage of the output capacitor C1 decreases from VF + ⁇ V toward VF. That is, the electric charge (with hatching) corresponding to the potential difference ⁇ V, the discharge current from the output capacitor C1 flows into the semiconductor light source 212 via the series switch 323.
  • FIG. 25 is a circuit diagram of the LED driver 320D according to the embodiment.
  • the LED driver 320D supplies an intermittent drive current I LED corresponding to the PWM signal (pulse dimming signal) PWM_DIM to the semiconductor light source 212.
  • the LED driver 320D includes a buck converter 322D, a series switch 323, and a driver circuit 324.
  • the buck converter 322D includes an overshoot suppression circuit 350 in addition to the output circuit 326 and the converter controller 328.
  • a pulse dimming signal PWM_DIM is input to the overshoot suppression circuit 350.
  • the overshoot suppression circuit 350 is connected to at least one of the output circuit 326 and the converter controller 328 in synchronization with the pulse dimming signal PWM_DIM so that the overshoot of the drive current I LED immediately after the series switch 323 is turned on is suppressed. It works.
  • the broken line (i) conceptually shows the function or configuration acting on the output circuit 326
  • the broken line (ii) conceptually shows the function or configuration acting on the converter controller 328.
  • “Acting" may include forcibly changing the voltage of a certain node, changing the circuit constant of a circuit element, and the like.
  • overshoot suppression circuit 350 that operates in synchronization with the pulse dimming signal PWM_DIM, it is possible to suppress the overshoot of the drive current I LED immediately after the turn-on of the series switch 323.
  • the overshoot suppression circuit 350 discharges the output capacitor C1 of the output circuit 326 in synchronization with the pulse dimming signal PWM_DIM, and forcibly changes the output voltage V OUT of the buck converter 322.
  • FIG. 26 is a circuit diagram of the LED driver 320Da according to the first embodiment.
  • the overshoot suppression circuit 350a is connected to the output line 327 of the output circuit 326.
  • the overshoot suppression circuit 350a discharges the output capacitor C1 during the off period of the series switch 323, and makes the output voltage V OUT of the buck converter 322 higher than the output voltage V OUT of the buck converter 322 during the on period of the series switch 323. Decrease.
  • FIG. 27 is an operation waveform diagram of the LED driver 320Da of FIG. 26.
  • the drive current I LED'and the output voltage V OUT ' of the alternate long and short dash line show the waveform (FIG. 24) when the overshoot suppression circuit 350a is not provided.
  • the pulse dimming signal PWM_DIM transitions to the off level.
  • the overshoot suppression circuit 350Da forcibly discharges the output capacitor C1 when the pulse dimming signal PWM_DIM becomes an off level (low), and forcibly lowers the output voltage V OUT below the voltage level of the broken line.
  • a part of the coil current IL of the buck converter 322D is used to charge the output capacitor C1 of the output circuit 326 immediately after the turn-on. As it is used, this can further suppress overshoot.
  • FIG. 28 is a circuit diagram showing a configuration example of the overshoot suppression circuit 350a.
  • the overshoot suppression circuit 350a includes a first capacitor C11, a first switch SW11, a second switch SW12, and a switch controller 352. The first end of the first capacitor C11 is grounded.
  • the overshoot suppression circuit 350a initializes the charge of the first capacitor C11 when the pulse dimming signal PWM_DIM is on level, and sets the second end of the first capacitor C11 when the pulse dimming signal PWM_DIM is off level. Connect to the output line 327.
  • the first switch SW11 is provided between the second end of the capacitor C11 and the output line 327
  • the second switch SW12 is provided between the second end of the capacitor C11 and the ground.
  • the switch controller 352 turns off the first switch SW11 and turns on the second switch SW12 when the pulse dimming signal PWM_DIM is on level, and turns on the first switch SW11 when the pulse dimming signal PWM_DIM is off level. 2 Switch SW12 is turned off.
  • FIG. 29 is an operation waveform diagram of the overshoot suppression circuit 350a of FIG. 28.
  • VC11 indicates the voltage of the first capacitor C11 .
  • the second switch SW12 is turned on, and the voltage VC11 of the first capacitor C11 becomes 0V.
  • the first switch SW11 is turned on, the first capacitor C11 is connected to the output capacitor C1, and the charge is transferred from the output capacitor C1 to the first capacitor C11. As a result, the output voltage V OUT generated in the output capacitor C1 is reduced.
  • the above is the operation waveform diagram of the overshoot suppression circuit 350a of FIG. 28.
  • FIG. 30 is a circuit diagram of a modification (350a') of the overshoot suppression circuit 350a of FIG. 28.
  • the overshoot suppression circuit 350a' includes a constant voltage source 354 in addition to the overshoot suppression circuit 350a of FIG. 28.
  • the constant voltage source 354 produces a predetermined voltage V ADJ .
  • the second switch SW12 is provided between the second end of the first capacitor C11 and the output node of the constant voltage source 354.
  • FIG. 31 is an operation waveform diagram of the overshoot suppression circuit 350a'of FIG. 30.
  • the second switch SW12 is turned on, and the voltage VC11 of the first capacitor C11 becomes the constant voltage VADJ.
  • the first switch SW11 is turned on, the first capacitor C11 is connected to the output capacitor C1, and the charge is transferred from the output capacitor C1 to the first capacitor C11.
  • the reduced voltage level V LOW' can be adjusted according to the constant voltage V ADJ .
  • FIG. 32 is a circuit diagram of the LED driver 320Db according to the second embodiment.
  • the overshoot suppression circuit 350b forcibly discharges the electric charge from the output capacitor C1 in synchronization with the pulse dimming signal PWM_DIM, but the timing of the discharge is different.
  • the LED driver 320Db according to the second embodiment can be configured in the same manner as the LED driver 320Da in FIG.
  • the LED driver 320Db includes an overshoot suppression circuit 350b.
  • the overshoot suppression circuit 350b forcibly discharges the output capacitor C1 immediately after the series switch 323 is turned on.
  • FIG. 33 is an operation waveform diagram of the LED driver 320Db according to the second embodiment.
  • the drive current I LED'of the alternate long and short dash line shows the waveform (FIG. 24) when the overshoot suppression circuit 350b is not provided.
  • the pulse dimming signal PWM_DIM from time t 0 to t 1 is on level (high)
  • the drive current I LED is supplied to the semiconductor light source 212
  • the voltage drop V LED of the semiconductor light source 212 is the forward voltage VF .
  • the series switch 323 When the pulse dimming signal PWM_DIM transitions to the off level (low) at time t1, the series switch 323 is immediately turned off. On the other hand, the energy stored in the inductor L1 of the output circuit 326 is supplied to the output capacitor C1 of the output circuit 326 as a current signal (coil current) IL (with hatching), and the output capacitor C1 is charged. As a result, the voltage of the output capacitor C1 is higher than VF by ⁇ V .
  • the overshoot suppression circuit 350b forcibly discharges the output capacitor C1.
  • the overshoot suppression circuit 350b can also be grasped as a current source that sucks in the sink current ISINK immediately after the turn-on of the series switch 323. As a result, a part of the current supplied to the semiconductor light source 212 flows into the overshoot suppression circuit 350b, so that the overshoot of the drive current I LED can be suppressed.
  • the overshoot suppression circuit 350b is configured in the same manner as the overshoot suppression circuit 350a of FIG. 28. However, the control of the switch by the switch controller 352 is reversed. Specifically, the switch controller 352 of the overshoot suppression circuit 350b turns off the first switch SW11 and turns on the second switch SW12 when the pulse dimming signal PWM_DIM is off level, and the pulse dimming signal PWM_DIM is on level. At this time, the first switch SW11 is turned on and the second switch SW12 is turned off.
  • FIG. 34 is an operation waveform diagram of the overshoot suppression circuit 350b according to the second embodiment. While the pulse dimming signal PWM_DIM is off level, the second switch SW12 is discharged and the voltage VC11 of the first capacitor C11 becomes zero. Further, while the pulse dimming signal PWM_DIM is off level, the output capacitor C1 takes a voltage level higher than Vf.
  • the output capacitor C1 and the first capacitor C11 are connected, and charge transfer occurs. At this time, the electric charge that moves from the output capacitor C1 to the first capacitor C11 is the sink current ISINK , and the output capacitor C1 is discharged by this sink current ISINK .
  • the overshoot suppression circuit 350b'in FIG. 30 may be used.
  • the amount of sink current ISINK can be adjusted according to the voltage V ADJ .
  • FIG. 35 is a circuit diagram of the LED driver 320Dc according to the third embodiment.
  • the overshoot suppression circuit 350c acts on the converter controller 328 in synchronization with the pulse dimming signal PWM_DIM to change the internal signal having a correlation with the duty cycle of the switching transistor MH generated by the converter controller 328.
  • the converter controller 328 includes an error amplifier 360, a pulse width modulator 362, and a driver 364.
  • the error amplifier 360 amplifies the error between the detected value Vcs of the output current I OUT of the buck converter 322 and the target value Vref, and generates an error signal Verr.
  • the pulse width modulator 362 generates a pulse signal Spwm having a duty cycle corresponding to the error signal Verr.
  • the driver 364 drives the switching transistor MH and the synchronous rectifying transistor ML according to the pulse signal Spwm.
  • the overshoot suppression circuit 350c can use the output signal of the error amplifier 360 included in the converter controller 328, in other words, the input signal of the pulse width modulator 362 as an internal signal.
  • the overshoot suppression circuit 350c forcibly lowers the error voltage Verr, which is an internal signal, during the off period of the series switch 323.
  • FIG. 36 is an operation waveform diagram of the LED driver 320Dc of FIG. 35.
  • the alternate long and short dash line indicates the operation when the overshoot suppression circuit 350c is not provided.
  • the series switch 323 When the pulse dimming signal PWM_DIM transitions to the off level (low) at time t1, the series switch 323 is immediately turned off. On the other hand, the energy stored in the inductor L1 of the output circuit 326 is supplied to the output capacitor C1 of the output circuit 326 as a current signal (coil current) IL, and the output capacitor C1 is charged. As a result, the voltage of the output capacitor C1 is higher than VF by ⁇ V .
  • the overshoot suppression circuit 350c forcibly lowers the error voltage Verr.
  • the pulse dimming signal PWM_DIM transitions to the on-level. At this time, the excess charge C1 ⁇ ⁇ V of the output capacitor C1 is discharged as the discharge current I DIS .
  • the transconductance amplifier 330, the sample hold circuit 332, the resistor Rc, and the capacitor Cc of FIG. 10 are grasped as the error amplifier 360. Further, the on-time control unit 334 of FIG. 10 can be grasped as a pulse width modulator 362. Therefore, the overshoot suppression circuit 350c may change the voltage of the Vc pin in FIG. 10 as an internal signal.
  • FIG. 37 is a circuit diagram showing a configuration example of the overshoot suppression circuit 350c according to the third embodiment.
  • the control IC 340 has a Vc pin, and a feedback capacitor Cc is externally attached to the Vc pin.
  • the overshoot suppression circuit 350c includes a second capacitor C12, a third switch SW13, a fourth switch SW14, and a switch controller 356.
  • the first end of the second capacitor C12 is grounded.
  • the third switch SW13 is provided between the second end of the second capacitor C12 and the Vc pin which is the output of the error amplifier.
  • the fourth switch SW14 is provided between the second end of the second capacitor C12 and the ground.
  • the switch controller 356 complementaryly switches the third switch SW13 and the fourth switch SW14 in synchronization with the pulse dimming signal PWM_DIM. Specifically, the switch controller 356 initializes the charge of the second capacitor C12 by turning off the third switch SW13 and turning on the fourth switch SW14 when the pulse dimming signal PWM_DIM is on level. When the pulse dimming signal PWM_DIM is at the off level, the switch controller 356 turns on the third switch SW13 and turns off the fourth switch SW14, and outputs the second end of the second capacitor C12 to the output of the error amplifier, that is, the control IC 340. Connect with Vc pin.
  • FIG. 38 is a circuit diagram of a modification (350c') of the overshoot suppression circuit 350c of FIG. 37.
  • the overshoot suppression circuit 350c' includes a constant voltage source 358 in addition to the overshoot suppression circuit 350c of FIG. 37.
  • the constant voltage source 358 produces a predetermined voltage V ADJ .
  • the fourth switch SW14 is provided between the second end of the second capacitor C12 and the output node of the constant voltage source 358.
  • the amount of decrease in the error voltage Vc can be controlled according to the voltage level of the voltage VADJ .
  • FIG. 39 is a circuit diagram of the LED driver 320Dd according to the fourth embodiment. Similar to the third embodiment, the overshoot suppression circuit 350d according to the fourth embodiment forcibly lowers the internal signal Verr in synchronization with the pulse dimming signal PWM_DIM, but the operation timing thereof is different. Specifically, the overshoot suppression circuit 350d generates a sink current ISINK immediately after the turn-on of the series switch 323, and lowers the internal signal Verr.
  • FIG. 40 is an operation waveform diagram of the LED driver 320Dd of FIG. 39.
  • the alternate long and short dash line indicates the operation when the overshoot suppression circuit 350d is not provided.
  • the series switch 323 When the pulse dimming signal PWM_DIM transitions to the off level (low) at time t1, the series switch 323 is immediately turned off. On the other hand, the energy stored in the inductor L1 of the output circuit 326 is supplied to the output capacitor C1 of the output circuit 326 as a current signal (coil current) IL, and the output capacitor C1 is charged. As a result, the voltage of the output capacitor C1 is higher than VF by ⁇ V .
  • the pulse dimming signal PWM_DIM transitions to the on-level. At this time, the excess charge C1 ⁇ ⁇ V of the output capacitor C1 is discharged as the discharge current I DIS .
  • the pulse dimming signal PWM_DIM transitions to the on - level at time t2
  • the error voltage Verr is forcibly lowered.
  • the rate of increase of the coil current IL slows down. That is, immediately after the turn-on of the series switch 323, the coil current IL decreases.
  • overshoot of the drive current I LED which is the sum of the coil current IL and the discharge current I DIS of the output capacitor C1, is suppressed.
  • the overshoot suppression circuit 350d can be configured in the same manner as the overshoot suppression circuit 350c of FIG. 37 or the overshoot suppression circuit 350c'of FIG. 38, and the switches SW13 and S14 can be operated in the opposite phase to that of the third embodiment. Just do it.
  • the switch controller 356 of the overshoot suppression circuit 350d initializes the charge of the second capacitor C12 by turning off the third switch SW13 and turning on the fourth switch SW14 when the pulse dimming signal PWM_DIM is at the off level. .. Further, the switch controller 356 turns on the third switch SW13 and turns off the fourth switch SW14 when the pulse dimming signal PWM_DIM is on level, and outputs the second end of the second capacitor C12 to the output of the error amplifier, that is, the control IC 340. Connect to the Vc pin of. As a result, the error voltage Verr, which is an internal signal, can be reduced immediately after the turn-on of the series switch 323.
  • the LED driver 320D with an overshoot suppression function described with reference to FIGS. 24 to 40 can be suitably combined with, but is not limited to, a scanning type vehicle lamp.
  • a scanning type vehicle lamp For example, in an array type vehicle lighting equipment, when the frequency of PWM dimming is set as high as several kHz to several tens of kHz, it is effective to perform PWM dimming with a series switch, and at that time, the drive current I LED .
  • the LED driver 320D can be used to suppress the overshoot.
  • This disclosure relates to lighting fixtures for vehicles used in automobiles and the like.
  • Transconductance amplifier 332 ... Sample hold circuit, 334 ... On-time control unit, 336 ... Gate driver, 340 ... control IC, 350 ... overshoot suppression circuit, 370 ... abnormality detection circuit, 400 ... light distribution controller, 900 ... virtual vertical screen.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Optics & Photonics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Lighting Device Outwards From Vehicle And Optical Signal (AREA)

Abstract

A scanning-type light source (200A) includes a semiconductor light source (212), and performs scanning with light emitted from the semiconductor light source (212). A LED driver (320A) can dim, through pulse modulation in multiple levels, the quantity of light of the semiconductor light source (212) at each scanning position, in synchronization with the scanning by the scanning-type light source (200A). A series switch (323) is provided in series with the semiconductor light source (212). A step-down converter (322) of a constant current output is connected to a series-connection circuit of the semiconductor light source (212) and the series switch (323), and generates driving current (Iout). A driver circuit (324) causes, so as to obtain target light distribution, switching of the series switch (323) on the basis of a pulse dimming signal (PWM_DIM) which is pulse-modulated and in which the same waveform is repeated for each scanning.

Description

車両用灯具および点灯回路Vehicle lighting and lighting circuits
 本開示は、自動車などに用いられる車両用灯具に関する。 This disclosure relates to lighting fixtures for vehicles used in automobiles and the like.
 車両用灯具は、一般にロービームとハイビームとを切りかえることが可能である。ロービームは、自車近傍を所定の照度で照明するものであって、対向車や先行車にグレアを与えないよう配光規定が定められており、主に市街地を走行する場合に用いられる。一方、ハイビームは、前方の広範囲および遠方を比較的高い照度で照明するものであり、主に対向車や先行車が少ない道路を高速走行する場合に用いられる。したがって、ハイビームはロービームと比較してより運転者による視認性に優れているが、車両前方に存在する車両の運転者や歩行者にグレアを与えてしまうという問題がある。 Vehicle lighting fixtures can generally switch between low beam and high beam. The low beam illuminates the vicinity of the own vehicle with a predetermined illuminance, and the light distribution rule is set so as not to give glare to the oncoming vehicle or the preceding vehicle, and is mainly used when traveling in an urban area. On the other hand, the high beam illuminates a wide area and a distant place in front with a relatively high illuminance, and is mainly used when traveling at high speed on a road where there are few oncoming vehicles and preceding vehicles. Therefore, although the high beam has better visibility by the driver than the low beam, there is a problem that glare is given to the driver and pedestrian of the vehicle existing in front of the vehicle.
 近年、車両の周囲の状態にもとづいて、ハイビームの配光パターンを動的、適応的に制御するADB(Adaptive Driving Beam)技術が実用化されている。ADB技術は、車両の前方の先行車、対向車や歩行者の有無を検出し、車両に対応する領域を減光するなどして、車両に与えるグレアを低減するものである。 In recent years, ADB (Adaptive Driving Beam) technology that dynamically and adaptively controls the light distribution pattern of high beams based on the surrounding conditions of the vehicle has been put into practical use. The ADB technique detects the presence or absence of a preceding vehicle, an oncoming vehicle, or a pedestrian in front of the vehicle, dims the area corresponding to the vehicle, and reduces glare given to the vehicle.
 ADB機能を実現する方式として、アクチュエータを制御するシャッター方式、ロータリー方式、LEDアレイ方式などが提案されている。シャッター方式やロータリー方式は、消灯領域(遮光領域)の幅を連続的に変化させることが可能であるが、消灯領域の数が1個に制限される。LEDアレイ方式は、消灯領域を複数個、設定することが可能であるが、消灯領域の幅が、LEDチップの照射幅に制約されるため、離散的となる。 As a method for realizing the ADB function, a shutter method for controlling an actuator, a rotary method, an LED array method, etc. have been proposed. In the shutter method and the rotary method, the width of the light-off area (light-shielding area) can be continuously changed, but the number of light-off areas is limited to one. In the LED array method, it is possible to set a plurality of extinguishing areas, but the width of the extinguishing area is limited by the irradiation width of the LED chip, so that the extinguishing area is discrete.
 本出願人は、これらの問題点を解決可能なADB方式として、スキャン方式を提案している(特許文献2、3参照)。スキャン方式とは、回転するリフレクタ(ブレードミラー)に光を入射し、リフレクタの回転位置に応じた角度で入射光を反射して反射光を車両前方で走査しつつ、光源の点消灯を、リフレクタの回転位置に応じて変化させることで、車両前方に、所望の配光パターンを形成するものである。 The applicant has proposed a scanning method as an ADB method that can solve these problems (see Patent Documents 2 and 3). The scan method is to incident light on a rotating reflector (blade mirror), reflect the incident light at an angle according to the rotation position of the reflector, scan the reflected light in front of the vehicle, and turn on and off the light source. A desired light distribution pattern is formed in front of the vehicle by changing the light distribution pattern according to the rotation position of the vehicle.
 特許文献3に記載のスキャン方式では、1スキャンの間、光源に流す駆動電流の電流量を一定に保ちつつ、光源の点消灯(オン、オフ)を時分割で切り替える。そのため所定のエリアを遮光するグレアフリー機能の実現は容易であったが、照射領域の照度は実質的に一定に制約されていた。 In the scan method described in Patent Document 3, the light source is turned on and off (on and off) in a time-division manner while keeping the amount of drive current flowing through the light source constant during one scan. Therefore, it was easy to realize a glare-free function that shields a predetermined area from light, but the illuminance in the irradiation area was restricted to a substantially constant level.
 特許文献4には、スキャン方式の車両用灯具による具体的な配光の形成手法が開示される。この技術では、複数チャンネルの光源により配光が形成される。複数チャンネルの光源はそれぞれ、水平方向の一部の範囲を受け持っており、各光源のスキャン範囲は、他の光源のスキャン範囲と一部がオーバーラップしつつ、水平方向にシフトしたものとなっている。各光源の光量は、いわゆるDC調光(アナログ調光)によって制御され、応答速度の制約から1スキャン単位で可変である。この灯具では、各走査位置の照度を、複数の光源のオン、オフ、および光量の組み合わせにより制御でき、グレアフリー機能以外の多様な配光パターン(たとえば電子スイブルなど)に対応するようになっている。 Patent Document 4 discloses a specific method for forming a light distribution using a scan-type vehicle lamp. In this technique, a light distribution is formed by a multi-channel light source. Each of the multi-channel light sources is responsible for a part of the horizontal range, and the scan range of each light source is shifted horizontally while partially overlapping the scan range of the other light sources. There is. The amount of light of each light source is controlled by so-called DC dimming (analog dimming), and is variable in units of one scan due to the limitation of response speed. With this lamp, the illuminance at each scanning position can be controlled by combining multiple light sources on, off, and the amount of light, and it is now compatible with various light distribution patterns other than the glare-free function (for example, electronic swivel). There is.
特開2008-205357号公報Japanese Unexamined Patent Publication No. 2008-205357 特開2012-224317号公報Japanese Unexamined Patent Publication No. 2012-224317 特開2010-6109号公報Japanese Unexamined Patent Publication No. 2010-6109 特開2018-187979号公報Japanese Unexamined Patent Publication No. 2018-187979
 図1は、本発明者らが検討した比較技術に係る車両用灯具100Rのブロック図である。車両用灯具100Rは、走査光学系2、複数のLED4_1~4_N、複数のLEDドライバ10、配光コントローラ20を備える。複数のLED4_1~4_Nは、2個(あるいは3個)ごとに直列に接続され、複数M個のLEDストリング6_1~6_Mが形成される。LEDドライバ10は、LEDストリング6ごとに設けられる。2個のLEDを直列接続するのは、LEDドライバの個数を減らすためである。 FIG. 1 is a block diagram of a vehicle lamp 100R according to a comparative technique examined by the present inventors. The vehicle lamp 100R includes a scanning optical system 2, a plurality of LEDs 4_1 to 4_N, a plurality of LED drivers 10, and a light distribution controller 20. A plurality of LEDs 4_1 to 4_N are connected in series every two (or three) to form a plurality of M LED strings 6_1 to 6_M. The LED driver 10 is provided for each LED string 6. The reason why the two LEDs are connected in series is to reduce the number of LED drivers.
 LEDドライバ10_1は、定電流出力の降圧コンバータ12と、LED4_1,4_2と並列に設けられるバイパススイッチSW1,SW2、バイパススイッチSW1,SW2の駆動回路14を含む。LEDドライバ10_2~10_Mも同様に構成される。 The LED driver 10_1 includes a constant current output buck converter 12 and a drive circuit 14 for bypass switches SW1 and SW2 and bypass switches SW1 and SW2 provided in parallel with LEDs 4_1 and 4_2. The LED drivers 10_1 to 10_M are similarly configured.
 走査光学系2は、複数のLED4_1~4_Nの出射ビームBM~BMを、車両前方の仮想鉛直スクリーン900上で、水平方向に走査する。出射ビームBM~BMが走査されることにより、個別配光パターンPTN~PTNが形成される。複数の個別配光パターンPTN~PTNは、水平方向に関して、異なる範囲に形成される。複数の個別配光パターンPTN~PTNを合成することにより、車両用灯具100R全体の合成配光が形成される。 The scanning optical system 2 horizontally scans the emitted beams BM 1 to BM N of the plurality of LEDs 4_1 to 4_N on the virtual vertical screen 900 in front of the vehicle. By scanning the emitted beams BM 1 to BM N , individual light distribution patterns PTN 1 to PTN N are formed. A plurality of individual light distribution patterns PTN 1 to PTN N are formed in different ranges in the horizontal direction. By synthesizing a plurality of individual light distribution patterns PTN 1 to PTN N , a synthetic light distribution of the entire vehicle lamp 100R is formed.
 ひとつのLED_iに着目する。走査中のある期間、対応するバイパススイッチSWiをオンすると、LED4_iには電流が供給されなくなるため、LED_iを消灯することができる。車両前方に対向車や先行車(前方車という)が存在する場合、前方車の存在範囲を、LED_iの出射ビームが通過する間、バイパススイッチSWiがオンされる。これにより、前方車の存在範囲を遮光することができる。 Focus on one LED_i. When the corresponding bypass switch SWi is turned on for a certain period of time during scanning, no current is supplied to the LED4_i, so that the LED_i can be turned off. When an oncoming vehicle or a preceding vehicle (referred to as a vehicle in front) is present in front of the vehicle, the bypass switch SWi is turned on while the emitted beam of LED_i passes through the existing range of the vehicle in front. As a result, the existing range of the vehicle in front can be shielded from light.
 走査が人間の目に知覚されないように、走査光学系2による走査周波数は、60Hzより高く定める必要があり、たとえば200Hz程度とされ、1走査周期は5msとなる。比較技術において、各LEDの光量(輝度)は、アナログ調光(DC調光)によって制御されるが、スイッチングコンバータ12の出力電流IOUTを5msの走査周期内で動的に変化させることは困難であるため、1走査周期の間、出力電流IOUTは一定とされ、したがってひとつの個別配光パターンPTNに含まれる照射部分の照度は均一である。最終的な合成配光において、明るい部分と暗い部分を形成したい場合には、個別配光パターンPTN~PTNそれぞれの明るさを制御し、それらを重ね合わせる必要がある。 The scanning frequency by the scanning optical system 2 needs to be set higher than 60 Hz so that the scanning is not perceived by the human eye. For example, it is set to about 200 Hz, and one scanning cycle is 5 ms. In the comparative technique, the light amount (luminance) of each LED is controlled by analog dimming (DC dimming), but it is difficult to dynamically change the output current I OUT of the switching converter 12 within a scanning cycle of 5 ms. Therefore, the output current I OUT is constant during one scan cycle, and therefore the illuminance of the irradiated portion included in one individual light distribution pattern PTN i is uniform. When it is desired to form a bright part and a dark part in the final synthetic light distribution, it is necessary to control the brightness of each of the individual light distribution patterns PTN 1 to PTN N and superimpose them.
 本発明者らは、図1の車両用灯具100Rにおいて、バイパススイッチSW1~SWNをPWM制御することにより、1走査周期内で、LED4_1~4_Nそれぞれの光量を変化させることを検討した。 The present inventors have studied that in the vehicle lamp 100R of FIG. 1, the light intensity of each of the LEDs 4_1 to 4_N is changed within one scanning cycle by PWM-controlling the bypass switches SW1 to SWN.
 ひとつのLEDドライバ10_1に着目する。バイパススイッチSW1をオフに固定し、バイパススイッチSW2をスイッチングする状況を考える。バイパススイッチSW2をスイッチングすると、スイッチのターンオフのタイミング、つまりLED4_2が点灯するタイミングで、このLED4_2に流れる電流ILED2が、リンギングする。この現象は、スイッチングコンバータ12の出力キャパシタC1の電荷の充放電により説明される。図2は、LEDの駆動電流のリンギング波形を示す図(測定結果)である。 Focus on one LED driver 10_1. Consider a situation in which the bypass switch SW1 is fixed to off and the bypass switch SW2 is switched. When the bypass switch SW2 is switched, the current I LED2 flowing through the LED4_2 rings at the turn-off timing of the switch, that is, at the timing when the LED4_2 is turned on. This phenomenon is explained by charging / discharging the electric charge of the output capacitor C1 of the switching converter 12. FIG. 2 is a diagram (measurement result) showing a ringing waveform of the driving current of the LED.
 バイパススイッチSW1がオフ、バイパススイッチSW2がオンの状態を初期状態とする。このとき、スイッチングコンバータ12の出力電圧VOUTはVとなる。Vは、LED1個の順方向電圧である。 The initial state is the state in which the bypass switch SW1 is off and the bypass switch SW2 is on. At this time, the output voltage V OUT of the switching converter 12 becomes VF . VF is a forward voltage of one LED.
 バイパススイッチSW2がターンオフすると、スイッチングコンバータ12は、その出力電圧VOUTを2×Vまで上昇させる必要があり、C×Vの電荷を出力キャパシタC1に充電しなければならない。したがってバイパススイッチSW2のターンオフ直後は、出力電流IOUTの一部分がキャパシタC1の充電電流として消費されるため、出力電流IOUTが不足する。スイッチングコンバータ12において、不足した電流が目標値に近づくようにフィードバックがかかるが、スイッチングコンバータ12のインダクタの共振により、出力電流IOUTがリンギングする。 When the bypass switch SW2 is turned off, the switching converter 12 needs to raise its output voltage V OUT to 2 × VF, and has to charge the output capacitor C1 with the charge of C × VF . Therefore, immediately after the turn-off of the bypass switch SW2, a part of the output current I OUT is consumed as the charging current of the capacitor C1, so that the output current I OUT is insufficient. In the switching converter 12, feedback is applied so that the insufficient current approaches the target value, but the output current I OUT rings due to the resonance of the inductor of the switching converter 12.
 このように、バイパススイッチSW2をスイッチングすると、それと並列なLED4_2の電流ILED2がリンギングする。それのみでなく、常時点灯されるLED4_1の電流ILED1もリンギングすることとなる。 When the bypass switch SW2 is switched in this way, the current I LED2 of the LED4_2 in parallel with the bypass switch SW2 rings. Not only that, the current I LED1 of the LED4_1 that is always lit will also be ringing.
 実験によりリンギングの持続時間(以下、リンギング時間という)を測定したところ、おおよそ30~50μsであった。 When the duration of ringing (hereinafter referred to as ringing time) was measured by an experiment, it was about 30 to 50 μs.
 一般的な非走査型ランプにおけるPWM周波数は300Hz程度であり、PWM周期は3.3msである。この場合、リンギング時間50μsは、PWM周期の5%程度に過ぎず、リンギングが階調制御に及ぼす影響は小さい。 The PWM frequency of a general non-scanning lamp is about 300 Hz, and the PWM cycle is 3.3 ms. In this case, the ringing time of 50 μs is only about 5% of the PWM cycle, and the influence of ringing on the gradation control is small.
 ところが、図1の走査型ランプでは、走査周波数を100~200Hzとする場合、PWM周波数はその数倍以上、つまり数kHzとする必要がある。これは、非スキャン型の一般的な灯具におけるPWM周波数が300Hz程度であるのと比べて非常に高い周波数であると言える。 However, in the scanning lamp of FIG. 1, when the scanning frequency is 100 to 200 Hz, the PWM frequency needs to be several times or more, that is, several kHz. It can be said that this is a very high frequency as compared with the PWM frequency of about 300 Hz in a general non-scan type lamp.
 たとえば走査型ランプにおいて、PWM周波数を20kHzとすると、PWM周期は50μsとなり、リンギング時間50μsと同程度となる。したがって、図1の構成では、バイパススイッチSW1,SW2を利用して、数十kHzでPWM調光することは現実的に難しい。 For example, in a scanning lamp, when the PWM frequency is 20 kHz, the PWM cycle is 50 μs, which is about the same as the ringing time of 50 μs. Therefore, in the configuration of FIG. 1, it is practically difficult to perform PWM dimming at several tens of kHz by using the bypass switches SW1 and SW2.
1. 本開示のある態様は係る課題に鑑みてなされたものであり、その例示的な目的のひとつは、PWM調光可能なスキャン方式の車両用灯具の提供にある。
2. 本開示のある態様は係る課題に鑑みてなされたものであり、その例示的な目的のひとつは、幅広いレンジでPWM調光可能な車両用灯具の提供にある。
3. 本開示のある態様は係る状況においてなされたものであり、その例示的な目的のひとつは、ショートスイッチによるパルス調光を行う点灯回路において、ショートスイッチの異常を検出可能な車両用灯具の提供にある。
4. 本開示のある態様は係る状況においてされたものであり、その例示的な目的のひとつは、走査型ランプにおいて、信号処理のスケジューリングを最適化することにある。
1. 1. A certain aspect of the present disclosure has been made in view of the above problems, and one of its exemplary purposes is to provide a scan type vehicle lamp capable of PWM dimming.
2. 2. One aspect of the present disclosure has been made in view of the subject, and one of its exemplary purposes is to provide a vehicle lamp capable of PWM dimming over a wide range.
3. 3. One aspect of the present disclosure is made in such a situation, and one of its exemplary purposes is to provide a vehicle lamp capable of detecting an abnormality in a short switch in a lighting circuit that performs pulse dimming by a short switch. be.
4. One aspect of the present disclosure has been made in such circumstances, one of which is an exemplary purpose of optimizing signal processing scheduling in a scanning lamp.
1. 本開示のある態様の車両用灯具は、走査型光源と、点灯回路と、を備える。走査型光源は、半導体光源を含み、半導体光源の出射光を走査する。点灯回路は、走査型光源の走査と同期して、各走査位置における半導体光源の光量をパルス変調により多階調で調光可能に構成される。点灯回路は、半導体光源と直列に設けられるシリーズスイッチと、シリーズスイッチと半導体光源の直列接続回路と接続される定電流出力の降圧コンバータと、目的配光が得られるようにパルス変調されたパルス調光信号にもとづいてシリーズスイッチをスイッチングするドライバ回路と、を備える。 1. 1. The vehicle lighting fixture of a certain aspect of the present disclosure includes a scanning light source and a lighting circuit. The scanning light source includes a semiconductor light source and scans the emitted light of the semiconductor light source. The lighting circuit is configured to be capable of dimming the light amount of the semiconductor light source at each scanning position in multiple gradations by pulse modulation in synchronization with the scanning of the scanning light source. The lighting circuit consists of a series switch installed in series with the semiconductor light source, a constant current output buck converter connected to the series connection circuit of the series switch and the semiconductor light source, and pulse tuning pulse-modulated to obtain the desired light distribution. It is equipped with a driver circuit that switches the series switch based on the optical signal.
2.  本開示のある態様の車両用灯具は、半導体光源と、半導体光源の光量をパルス変調により多階調で調光可能な点灯回路と、を備える。点灯回路は、半導体光源と直列に設けられるシリーズスイッチと、シリーズスイッチと半導体光源の直列接続回路と接続される定電流出力の降圧コンバータと、パルス変調されたパルス調光信号にもとづいてシリーズスイッチを駆動するドライバ回路と、を備える。降圧コンバータは、スイッチングトランジスタおよび出力キャパシタを含む出力回路と、シリーズスイッチのオン期間における降圧コンバータの出力電流の検出値が、所定の目標値に近づくように、スイッチングトランジスタをフィードバック制御するコンバータコントローラと、半導体光源に流れる駆動電流のシリーズスイッチがターンオンした直後のオーバーシュートが抑制されるように、パルス調光信号と同期して、出力回路およびコンバータコントローラの少なくとも一方に作用するオーバーシュート抑制回路と、を備える。 2. 2. The vehicle lighting fixture of a certain aspect of the present disclosure includes a semiconductor light source and a lighting circuit capable of dimming the light amount of the semiconductor light source in multiple gradations by pulse modulation. The lighting circuit consists of a series switch installed in series with the semiconductor light source, a constant current output buck converter connected to the series connection circuit of the series switch and the semiconductor light source, and a series switch based on a pulse-modulated pulse dimming signal. It is equipped with a driver circuit to drive. The buck converter includes an output circuit including a switching transistor and an output capacitor, and a converter controller that feedback-controls the switching transistor so that the detected value of the output current of the buck converter during the on period of the series switch approaches a predetermined target value. An overshoot suppression circuit that acts on at least one of the output circuit and converter controller in synchronization with the pulse dimming signal so that the overshoot immediately after the series switch of the drive current flowing through the semiconductor light source is turned on is suppressed. Be prepared.
 本開示の別の態様は、点灯回路である。この点灯回路は、半導体光源の光量をパルス変調により多階調で調光可能な点灯回路であって、半導体光源と直列に設けられるシリーズスイッチと、シリーズスイッチと半導体光源の直列接続回路と接続される定電流出力の降圧コンバータと、パルス変調されたパルス調光信号にもとづいてシリーズスイッチを駆動するドライバ回路と、を備える。降圧コンバータは、スイッチングトランジスタおよび出力キャパシタを含む出力回路と、シリーズスイッチのオン期間における降圧コンバータの出力電流の検出値が、所定の目標値に近づくように、スイッチングトランジスタをフィードバック制御するコンバータコントローラと、半導体光源に流れる駆動電流のシリーズスイッチがターンオンした直後のオーバーシュートが抑制されるように、パルス調光信号と同期して、出力回路およびコンバータコントローラの少なくとも一方に作用するオーバーシュート抑制回路と、を備える。 Another aspect of the present disclosure is a lighting circuit. This lighting circuit is a lighting circuit capable of dimming the light amount of the semiconductor light source in multiple gradations by pulse modulation, and is connected to a series switch provided in series with the semiconductor light source and a series connection circuit of the series switch and the semiconductor light source. It is equipped with a constant current output buck converter and a driver circuit that drives a series switch based on a pulse-modulated pulse dimming signal. The buck converter includes an output circuit including a switching transistor and an output capacitor, and a converter controller that feedback-controls the switching transistor so that the detected value of the output current of the buck converter during the on period of the series switch approaches a predetermined target value. An overshoot suppression circuit that acts on at least one of the output circuit and converter controller in synchronization with the pulse dimming signal so that the overshoot immediately after the series switch of the drive current flowing through the semiconductor light source is turned on is suppressed. Be prepared.
3. 本開示のある態様の車両用灯具は、半導体光源と、半導体光源の光量をパルス変調により多階調で調光可能な点灯回路と、を備える。点灯回路は、半導体光源と直列に設けられるシリーズスイッチと、シリーズスイッチと半導体光源の直列接続回路と接続され、(i)シリーズスイッチのオン期間において定電流を出力し、(ii)シリーズスイッチのオフ期間においてスイッチング動作を停止して直前のオン期間と実質的に同じ出力電圧を維持する降圧コンバータと、パルス変調されたパルス調光信号にもとづいてシリーズスイッチを駆動するドライバ回路と、シリーズスイッチのオフ期間において降圧コンバータの出力電圧が正常範囲から逸脱すると、シリーズスイッチの異常と判定する異常検出回路と、を備える。 3. 3. The vehicle lighting fixture of a certain aspect of the present disclosure includes a semiconductor light source and a lighting circuit capable of dimming the light amount of the semiconductor light source in multiple gradations by pulse modulation. The lighting circuit is connected to a series switch provided in series with the semiconductor light source and a series connection circuit between the series switch and the semiconductor light source, (i) outputs a constant current during the on period of the series switch, and (ii) turns off the series switch. A buck converter that stops the switching operation during the period and maintains substantially the same output voltage as the previous on period, a driver circuit that drives the series switch based on the pulse-modulated pulse dimming signal, and the series switch off. If the output voltage of the buck converter deviates from the normal range during the period, an abnormality detection circuit for determining an abnormality of the series switch is provided.
4. 本開示のある態様の車両用灯具は、半導体光源、モータ、およびモータのロータに互いに間隔を隔てて取り付けられた複数のミラーを含み、半導体光源の出射光を複数のミラーによって反射して走査する走査型光源と、走査型光源の走査と同期して半導体光源に供給する駆動電流を制御し、半導体光源の光量を制御する点灯回路と、を備える。点灯回路は、半導体光源の光軸が複数のミラーの間隔を横切る複数のブランク期間において、半導体光源を消灯するものであり、複数のミラーの間隔は不均一である。 4. A vehicle lighting fixture of an aspect of the present disclosure includes a semiconductor light source, a motor, and a plurality of mirrors attached to the rotor of the motor at intervals from each other, and the emitted light of the semiconductor light source is reflected and scanned by the plurality of mirrors. It includes a scanning light source and a lighting circuit that controls a drive current supplied to the semiconductor light source in synchronization with scanning of the scanning light source and controls the amount of light of the semiconductor light source. The lighting circuit turns off the semiconductor light source in a plurality of blank periods in which the optical axis of the semiconductor light source crosses the distance between the plurality of mirrors, and the distance between the plurality of mirrors is non-uniform.
 なお、以上の構成要素を任意に組み合わせたもの、本開示の構成要素や表現を、方法、装置、システムなどの間で相互に置換したものもまた、本開示の態様として有効である。 It should be noted that an arbitrary combination of the above components and a mutual replacement of the components and expressions of the present disclosure among methods, devices, systems and the like are also effective as aspects of the present disclosure.
1. 本開示のある態様によれば、スキャン方式の車両用灯具において、数十kHzのPWM周波数でPWM調光が可能となる。
2. 本開示のある態様によれば、幅広いレンジでPWM調光が可能となる。
3. 本開示のある態様によれば、ショートスイッチの異常を検出できる。
4. 本開示のある態様によれば、走査型ランプにおいて、信号処理のスケジューリングを最適化できる。
1. 1. According to an aspect of the present disclosure, in a scan type vehicle lamp, PWM dimming is possible at a PWM frequency of several tens of kHz.
2. 2. According to one aspect of the present disclosure, PWM dimming is possible in a wide range.
3. 3. According to certain aspects of the present disclosure, anomalies in the short switch can be detected.
4. According to certain aspects of the present disclosure, signal processing scheduling can be optimized for scanning lamps.
本発明者らが検討した比較技術に係る車両用灯具のブロック図である。It is a block diagram of the lamp for a vehicle which concerns on the comparative technique examined by the present inventors. LEDの駆動電流のリンギング波形を示す図である。It is a figure which shows the ringing waveform of the driving current of LED. 実施形態1に係る車両用灯具を示す図である。It is a figure which shows the lighting fixture for a vehicle which concerns on Embodiment 1. FIG. 図4(a)、(b)は、車両用灯具よるグレアフリー配光の形成を説明する図である。4 (a) and 4 (b) are diagrams illustrating the formation of glare-free light distribution by vehicle lamps. 図5(a)、(b)は、車両用灯具よる部分減光配光の形成を説明する図である。5 (a) and 5 (b) are diagrams illustrating the formation of a partially dimmed light distribution by a vehicle lamp. 図6(a)、(b)は、車両用灯具による電子スイブルを説明する図である。6 (a) and 6 (b) are diagrams illustrating an electronic swivel by a vehicle lamp. 点灯回路の構成例を示すブロック図である。It is a block diagram which shows the structural example of a lighting circuit. LEDドライバの構成例を示す回路図である。It is a circuit diagram which shows the structural example of the LED driver. 図9(a)は、シリーズスイッチによる電流制御を、図9(b)は、バイパススイッチによる電流制御を示す図である。FIG. 9A is a diagram showing current control by a series switch, and FIG. 9B is a diagram showing current control by a bypass switch. LEDドライバの構成例を示す回路図である。It is a circuit diagram which shows the structural example of the LED driver. 実施形態2に係る車両用灯具を示す図である。It is a figure which shows the lighting fixture for a vehicle which concerns on Embodiment 2. 図11の点灯回路の構成例を示すブロック図である。It is a block diagram which shows the structural example of the lighting circuit of FIG. 実施形態3に係る車両用灯具を示す図である。It is a figure which shows the lighting fixture for a vehicle which concerns on Embodiment 3. ショート異常検出機能を備える車両用灯具のブロック図である。It is a block diagram of a vehicle lamp equipped with a short-circuit abnormality detection function. 図15(a)、(b)は、図14の車両用灯具の動作を説明する図である。15 (a) and 15 (b) are diagrams illustrating the operation of the vehicle lamp of FIG. 14. 一実施例に係る異常検出回路の回路図である。It is a circuit diagram of the abnormality detection circuit which concerns on one Example. 半導体光源のIV特性を示す図である。It is a figure which shows the IV characteristic of a semiconductor light source. 異常検出回路の判定処理1を説明する図である。It is a figure explaining the determination process 1 of an abnormality detection circuit. 異常検出回路の判定処理2を説明する図である。It is a figure explaining the determination process 2 of an abnormality detection circuit. 異常検出回路の判定処理3を説明する図である。It is a figure explaining the determination process 3 of an abnormality detection circuit. 走査光学系の構成例を示す図である。It is a figure which shows the structural example of a scanning optical system. 2つのブレード間隔に対応するブランク期間を示す図である。It is a figure which shows the blank period corresponding to the space between two blades. 図23(a)は、4極モータにおける位置検出を説明する図であり、図23(b)は、2極モータにおける回転検出を説明する図である。FIG. 23A is a diagram illustrating position detection in a 4-pole motor, and FIG. 23B is a diagram illustrating rotation detection in a 2-pole motor. 図8のLEDドライバにおけるPWM調光にともなう駆動電流ILEDのオーバーシュートを説明する図である。It is a figure explaining the overshoot of the drive current I LED with PWM dimming in the LED driver of FIG. 一実施形態に係るLEDドライバの回路図である。It is a circuit diagram of the LED driver which concerns on one Embodiment. 実施例1に係るLEDドライバの回路図である。It is a circuit diagram of the LED driver which concerns on Example 1. FIG. 図26のLEDドライバの動作波形図である。FIG. 6 is an operation waveform diagram of the LED driver of FIG. 26. オーバーシュート抑制回路の構成例を示す回路図である。It is a circuit diagram which shows the structural example of the overshoot suppression circuit. 図28のオーバーシュート抑制回路の動作波形図である。FIG. 8 is an operation waveform diagram of the overshoot suppression circuit of FIG. 28. 図28のオーバーシュート抑制回路の変形例の回路図である。It is a circuit diagram of the modification of the overshoot suppression circuit of FIG. 28. 図30のオーバーシュート抑制回路の動作波形図である。It is an operation waveform diagram of the overshoot suppression circuit of FIG. 実施例2に係るLEDドライバの回路図である。It is a circuit diagram of the LED driver which concerns on Example 2. FIG. 実施例2に係るLEDドライバの動作波形図である。It is operation waveform diagram of the LED driver which concerns on Example 2. FIG. 実施例2に係るオーバーシュート抑制回路の動作波形図である。It is an operation waveform diagram of the overshoot suppression circuit which concerns on Example 2. FIG. 実施例3に係るLEDドライバの回路図である。It is a circuit diagram of the LED driver which concerns on Example 3. FIG. 図35のLEDドライバの動作波形図である。It is an operation waveform diagram of the LED driver of FIG. 35. 実施例3に係るオーバーシュート抑制回路の構成例を示す回路図である。It is a circuit diagram which shows the structural example of the overshoot suppression circuit which concerns on Example 3. FIG. 図37のオーバーシュート抑制回路の変形例の回路図である。It is a circuit diagram of the modification of the overshoot suppression circuit of FIG. 37. 実施例4に係るLEDドライバの回路図である。It is a circuit diagram of the LED driver which concerns on Example 4. FIG. 図39のLEDドライバの動作波形図である。It is an operation waveform diagram of the LED driver of FIG. 39.
(実施形態の概要)
 本開示のいくつかの例示的な実施形態の概要を説明する。この概要は、後述する詳細な説明の前置きとして、実施形態の基本的な理解を目的として、1つまたは複数の実施形態のいくつかの概念を簡略化して説明するものであり、発明あるいは開示の広さを限定するものではない。またこの概要は、考えられるすべての実施形態の包括的な概要ではなく、実施形態の欠くべからざる構成要素を限定するものではない。便宜上、「一実施形態」は、本明細書に開示するひとつの実施形態(実施例や変形例)または複数の実施形態(実施例や変形例)を指すものとして用いる場合がある。
(Outline of Embodiment)
Some exemplary embodiments of the present disclosure will be outlined. This overview simplifies and describes some concepts of one or more embodiments for the purpose of basic understanding of embodiments, as a prelude to the detailed description described below, and is an invention or disclosure. It does not limit the size. Also, this overview is not a comprehensive overview of all possible embodiments and does not limit the essential components of the embodiments. For convenience, "one embodiment" may be used to refer to one embodiment (examples or modifications) or a plurality of embodiments (examples or modifications) disclosed herein.
1. 一実施形態に係る車両用灯具は、半導体光源を含み、半導体光源の出射光を走査する走査型光源と、走査型光源の走査と同期して、各走査位置における半導体光源の光量をパルス変調により多階調で調光可能な点灯回路と、を備える。点灯回路は、半導体光源と直列に設けられるシリーズスイッチと、シリーズスイッチと半導体光源の直列接続回路と接続される定電流出力の降圧コンバータと、目的配光が得られるようにパルス変調されたパルス調光信号にもとづいて、シリーズスイッチをスイッチングするドライバ回路と、を備える。 1. 1. The vehicle lamp according to the embodiment includes a semiconductor light source, and the light amount of the semiconductor light source at each scanning position is pulse-modulated in synchronization with the scanning of the scanning light source and the scanning light source that scans the emitted light of the semiconductor light source. It is equipped with a lighting circuit that can be dimmed with multiple gradations. The lighting circuit consists of a series switch installed in series with the semiconductor light source, a constant current output buck converter connected to the series connection circuit of the series switch and the semiconductor light source, and pulse tuning pulse-modulated to obtain the desired light distribution. It is equipped with a driver circuit that switches the series switch based on the optical signal.
 この構成では、シリーズスイッチによって、降圧コンバータの出力電流の遮断、導通を高速に切り替えるため、降圧コンバータの出力電圧をステップ状に変化させる必要がない。これにより、出力キャパシタの充放電にともなう出力電流のリンギングを抑制でき、数kHz~数十kHzの高速なパルス変調による調光が可能となる。また1個の半導体光源の光量を、1走査周期内で変化させることができるため、部分的な遮光のみでなく、部分的な減光も実現でき、配光パターンの自由度を高めることができる。 In this configuration, the output current of the buck converter is cut off and the continuity is switched at high speed by the series switch, so it is not necessary to change the output voltage of the buck converter in steps. As a result, ringing of the output current due to charging / discharging of the output capacitor can be suppressed, and dimming by high-speed pulse modulation of several kHz to several tens of kHz becomes possible. Further, since the amount of light of one semiconductor light source can be changed within one scanning cycle, not only partial shading but also partial dimming can be realized, and the degree of freedom of the light distribution pattern can be increased. ..
 「パルス変調」は、パルス幅変調(PWM)のほか、パルス周波数変調(PFM)やパルス密度変調(PDM)などを含み、光源に流れる駆動電流を高速にスイッチングし、駆動電流の時間平均値を変化させる変調方式を含みうる。 "Pulse modulation" includes pulse width modulation (PWM), pulse frequency modulation (PFM), pulse density modulation (PDM), etc., and switches the drive current flowing through the light source at high speed to obtain the time average value of the drive current. It may include varying modulation schemes.
 一実施形態において、走査型光源は、半導体光源を複数個、含んでおり、点灯回路は、半導体光源ごとに設けられてもよい。これにより、あるチャンネルの降圧インバータの出力電流がリンギングした場合であっても、他のチャンネルには影響が及ばない。 In one embodiment, the scanning light source includes a plurality of semiconductor light sources, and a lighting circuit may be provided for each semiconductor light source. As a result, even if the output current of the step-down inverter of one channel is ringing, the other channels are not affected.
 一実施形態において、降圧コンバータは、スイッチングトランジスタを含む出力回路と、シリーズスイッチのオン期間における降圧コンバータの出力電流の検出値が、所定の目標値に近づくように、スイッチングトランジスタをスイッチング駆動するコンバータコントローラと、を含んでもよい。 In one embodiment, the buck converter is a converter controller that switches and drives the output circuit including the switching transistor and the switching transistor so that the detected value of the output current of the buck converter during the on period of the series switch approaches a predetermined target value. And may be included.
 一実施形態において、コンバータコントローラは、シリーズスイッチのオフ期間の間、スイッチングトランジスタのスイッチング駆動を停止してもよい。 In one embodiment, the converter controller may stop the switching drive of the switching transistor during the off period of the series switch.
2. 一実施形態に係る車両用灯具は、半導体光源と、半導体光源の光量をパルス変調により多階調で調光可能な点灯回路と、を備える。点灯回路は、半導体光源と直列に設けられるシリーズスイッチと、シリーズスイッチと半導体光源の直列接続回路と接続される定電流出力の降圧コンバータと、パルス変調されたパルス調光信号にもとづいてシリーズスイッチを駆動するドライバ回路と、を備える。降圧コンバータは、スイッチングトランジスタおよび出力キャパシタを含む出力回路と、シリーズスイッチのオン期間における降圧コンバータの出力電流の検出値が、所定の目標値に近づくように、スイッチングトランジスタをフィードバック制御するコンバータコントローラと、半導体光源に流れる駆動電流のシリーズスイッチがターンオンした直後のオーバーシュートが抑制されるように、パルス調光信号と同期して、出力回路およびコンバータコントローラの少なくとも一方に作用するオーバーシュート抑制回路と、を備える。 2. 2. The vehicle lamp according to the embodiment includes a semiconductor light source and a lighting circuit capable of dimming the light amount of the semiconductor light source in multiple gradations by pulse modulation. The lighting circuit consists of a series switch installed in series with the semiconductor light source, a constant current output buck converter connected to the series connection circuit of the series switch and the semiconductor light source, and a series switch based on a pulse-modulated pulse dimming signal. It is equipped with a driver circuit to drive. The buck converter includes an output circuit including a switching transistor and an output capacitor, and a converter controller that feedback-controls the switching transistor so that the detected value of the output current of the buck converter during the on period of the series switch approaches a predetermined target value. An overshoot suppression circuit that acts on at least one of the output circuit and converter controller in synchronization with the pulse dimming signal so that the overshoot immediately after the series switch of the drive current flowing through the semiconductor light source is turned on is suppressed. Be prepared.
 この構成によれば、シリーズスイッチによって、降圧コンバータの出力電流の遮断、導通を高速に切り替えるため、降圧コンバータの出力電圧をステップ状に変化させる必要がない。これにより、出力キャパシタの充放電にともなう駆動電流のリンギングを抑制でき、数kHz~数十kHzの高速なパルス変調による調光が可能となる。 According to this configuration, the series switch cuts off the output current of the buck converter and switches the continuity at high speed, so it is not necessary to change the output voltage of the buck converter in steps. As a result, ringing of the drive current due to charging / discharging of the output capacitor can be suppressed, and dimming by high-speed pulse modulation of several kHz to several tens of kHz becomes possible.
 「パルス変調」は、パルス幅変調(PWM)のほか、パルス周波数変調(PFM)やパルス密度変調(PDM)などを含み、光源に流れる駆動電流を高速にスイッチングし、駆動電流の時間平均値を変化させる変調方式を含みうる。 "Pulse modulation" includes pulse width modulation (PWM), pulse frequency modulation (PFM), pulse density modulation (PDM), etc., and switches the drive current flowing through the light source at high speed to obtain the time average value of the drive current. It may include varying modulation schemes.
 本発明者らは、シリーズスイッチにより、定電流出力の降圧コンバータの出力電流を高速にスイッチングすると、シーリーズスイッチのターンオン直後に、出力電流が目標量を超えてオーバーシュートが発生することを認識した。一実施形態によれば、パルス調光信号と同期して動作するオーバーシュート抑制回路を設けることにより、シリーズスイッチのターンオン直後の駆動電流のオーバーシュートを抑制できる。 The present inventors have recognized that when the output current of a constant current output buck converter is switched at high speed by a series switch, the output current exceeds the target amount and overshoot occurs immediately after the series switch is turned on. According to one embodiment, by providing an overshoot suppression circuit that operates in synchronization with the pulse dimming signal, overshoot of the drive current immediately after the turn-on of the series switch can be suppressed.
 一実施形態において、オーバーシュート抑制回路は、パルス調光信号と同期して、出力キャパシタを放電してもよい。駆動電流は、出力キャパシタの充電電流、放電電流の影響を受けるところ、出力キャパシタの電荷量を制御することで、駆動電流を間接的に制御できる。 In one embodiment, the overshoot suppression circuit may discharge the output capacitor in synchronization with the pulse dimming signal. The drive current is affected by the charge current and discharge current of the output capacitor, and the drive current can be indirectly controlled by controlling the charge amount of the output capacitor.
 一実施形態において、オーバーシュート抑制回路は、シリーズスイッチのオフ期間の間、出力キャパシタを放電してもよい。オフ期間中に、出力キャパシタの電荷量を減らしておくことで、それに続くシリーズスイッチのターンオン直後の出力キャパシタからの放電電流を減らすことができ、駆動電流がオーバーシュートするのを防止できる。 In one embodiment, the overshoot suppression circuit may discharge the output capacitor during the off period of the series switch. By reducing the charge amount of the output capacitor during the off period, the discharge current from the output capacitor immediately after the turn-on of the subsequent series switch can be reduced, and the drive current can be prevented from overshooting.
 一実施形態において、オーバーシュート抑制回路は、第1端が接地された第1キャパシタを含み、パルス調光信号にもとづいて、シリーズスイッチのオン期間、第1キャパシタの電荷を初期化し、シリーズスイッチのオフ期間、第1キャパシタの第2端を出力キャパシタと接続してもよい。これにより、シリーズスイッチのオフ期間中、出力キャパシタを放電できる。 In one embodiment, the overshoot suppression circuit includes a first capacitor with a grounded first end, which initializes the charge of the first capacitor during the on period of the series switch, based on the pulse dimming signal, of the series switch. During the off period, the second end of the first capacitor may be connected to the output capacitor. This allows the output capacitor to be discharged during the off period of the series switch.
 一実施形態において、オーバーシュート抑制回路は、シリーズスイッチのターンオンの直後、出力キャパシタを強制的に放電してもよい。言い換えるとオーバーシュート抑制回路は、シリーズスイッチのターンオンの直後、出力キャパシタから電流をシンクしてもよい。これにより、ターンオン直後に、駆動電流がオーバーシュートするのを防止できる。 In one embodiment, the overshoot suppression circuit may forcibly discharge the output capacitor immediately after the series switch is turned on. In other words, the overshoot suppression circuit may sink current from the output capacitor immediately after the series switch is turned on. As a result, it is possible to prevent the drive current from overshooting immediately after the turn-on.
 一実施形態において、オーバーシュート抑制回路は、第1端が接地された第1キャパシタを含み、パルス調光信号にもとづいて、シリーズスイッチのオフ期間、第1キャパシタの電荷を初期化し、シリーズスイッチのオン期間、第1キャパシタの第2端を出力キャパシタと接続してもよい。これにより、シリーズスイッチのターンオンの直後に、出力キャパシタを強制的に放電できる。 In one embodiment, the overshoot suppression circuit includes a first capacitor with a grounded first end, which initializes the charge of the first capacitor during the off period of the series switch, based on the pulse dimming signal, of the series switch. The second end of the first capacitor may be connected to the output capacitor during the on period. As a result, the output capacitor can be forcibly discharged immediately after the turn-on of the series switch.
 一実施形態において、オーバーシュート抑制回路は、第1キャパシタの第2端と出力ラインの間に設けられた第1スイッチと、第1キャパシタの第2端と定電圧ノードの間に設けられた第2スイッチと、を含んでもよい。 In one embodiment, the overshoot suppression circuit is provided between the first switch provided between the second end of the first capacitor and the output line, and the second end of the first capacitor and the constant voltage node. 2 switches and may be included.
 一実施形態において、定電圧ノードは接地ラインであってもよい。 In one embodiment, the constant voltage node may be a ground line.
 一実施形態において、定電圧ノードは、定電圧源の出力であってもよい。この場合、定電圧源の出力電圧に応じて、放電する電荷量を制御できる。 In one embodiment, the constant voltage node may be the output of a constant voltage source. In this case, the amount of electric charge to be discharged can be controlled according to the output voltage of the constant voltage source.
 一実施形態において、オーバーシュート抑制回路は、コンバータコントローラに作用し、コンバータコントローラが生成するスイッチングトランジスタのデューティサイクルと相関を有する内部信号を変化させてもよい。降圧コンバータのコイル電流の波形は、スイッチングトランジスタのデューティサイクルに応じて変化するところ、内部信号を変化させることにより、コイル電流の波形を制御することができるため、駆動電流を間接的に制御できる。 In one embodiment, the overshoot suppression circuit may act on the converter controller to change the internal signal that correlates with the duty cycle of the switching transistor generated by the converter controller. The waveform of the coil current of the buck converter changes according to the duty cycle of the switching transistor, but the waveform of the coil current can be controlled by changing the internal signal, so that the drive current can be indirectly controlled.
 一実施形態において、オーバーシュート抑制回路は、シリーズスイッチのオフ期間、コンバータコントローラが生成するスイッチングトランジスタのデューティサイクルと相関を有する内部信号を強制的に低下させてもよい。これにより、オフ期間中に、デューティサイクルと相関を有する内部信号を低下させておくことで、ターンオン直後に、降圧コンバータは、スイッチングのデューティサイクルが下がった状態から動作し始めるため、コイル電流の増加速度が遅くなる。これにより駆動電流がオーバーシュートするのを防止できる。 In one embodiment, the overshoot suppression circuit may forcibly reduce the internal signal that correlates with the duty cycle of the switching transistor generated by the converter controller during the off period of the series switch. As a result, the internal signal that correlates with the duty cycle is reduced during the off period, so that the buck converter starts operating from the state where the switching duty cycle is lowered immediately after the turn-on, so that the coil current increases. The speed slows down. This can prevent the drive current from overshooting.
 一実施形態において、コンバータコントローラは、降圧コンバータの出力電流の検出値と目標値の誤差に応じた誤差信号を生成するエラーアンプと、エラーアンプの出力と接続されるフィードバックキャパシタと、フィードバックキャパシタの電圧に応じたデューティサイクルを有するパルス信号を生成するパルス変調器と、を含んでもよい。オーバーシュート抑制回路は、第1端が接地された第2キャパシタを含み、パルス調光信号にもとづいて、シリーズスイッチのオン期間、第2キャパシタの電荷を初期化し、シリーズスイッチのオフ期間、第2キャパシタの第2端をエラーアンプの出力と接続してもよい。フィードバックキャパシタの電圧を内部信号とすることで、デューティサイクルを強制的に低くすることができる。 In one embodiment, the converter controller comprises an error amplifier that generates an error signal according to an error between the detected value and the target value of the output current of the step-down converter, a feedback capacitor connected to the output of the error amplifier, and a voltage of the feedback capacitor. It may include a pulse modulator which produces a pulse signal having a duty cycle according to the above. The overshoot suppression circuit includes a second capacitor with the first end grounded, which initializes the charge of the second capacitor during the series switch on period and the series switch off period based on the pulse dimming signal. The second end of the capacitor may be connected to the output of the error amplifier. By using the voltage of the feedback capacitor as an internal signal, the duty cycle can be forcibly lowered.
 一実施形態において、オーバーシュート抑制回路は、前記シリーズスイッチのターンオン直後、コンバータコントローラが生成するスイッチングトランジスタのデューティサイクルと相関を有する内部信号を強制的に低下させてもよい。これにより、ターンオン直後に、スイッチングトランジスタのデューティサイクルが低下するため、コイル電流の増加速度が遅くなる。これにより駆動電流がオーバーシュートするのを防止できる。 In one embodiment, the overshoot suppression circuit may forcibly reduce the internal signal having a correlation with the duty cycle of the switching transistor generated by the converter controller immediately after the turn-on of the series switch. As a result, the duty cycle of the switching transistor decreases immediately after the turn-on, so that the rate of increase in the coil current slows down. This can prevent the drive current from overshooting.
 一実施形態において、コンバータコントローラは、降圧コンバータの出力電流の検出値と目標値の誤差に応じた誤差信号を生成するエラーアンプと、エラーアンプの出力と接続されるフィードバックキャパシタと、フィードバックキャパシタの電圧に応じたデューティサイクルを有するパルス信号を生成するパルス変調器と、を含んでもよい。オーバーシュート抑制回路は、第1端が接地された第2キャパシタを含み、パルス調光信号にもとづいて、シリーズスイッチのオフ期間、第2キャパシタの電荷を初期化し、シリーズスイッチのオン期間、第2キャパシタの第2端をエラーアンプの出力と接続してもよい。フィードバックキャパシタの電圧を内部信号とすることで、デューティサイクルを強制的に低くすることができる。 In one embodiment, the converter controller comprises an error amplifier that generates an error signal according to an error between the detected value and the target value of the output current of the step-down converter, a feedback capacitor connected to the output of the error amplifier, and a voltage of the feedback capacitor. It may include a pulse modulator which produces a pulse signal having a duty cycle according to the above. The overshoot suppression circuit includes a second capacitor whose first end is grounded, and based on the pulse dimming signal, initializes the charge of the second capacitor during the off period of the series switch, and during the on period of the series switch, the second. The second end of the capacitor may be connected to the output of the error amplifier. By using the voltage of the feedback capacitor as an internal signal, the duty cycle can be forcibly lowered.
 一実施形態において、オーバーシュート抑制回路は、第2キャパシタの第2端とエラーアンプの前記出力の間に設けられた第3スイッチと、第2キャパシタの第2端と定電圧ノードの間に設けられた第4スイッチと、を含んでもよい。 In one embodiment, the overshoot suppression circuit is provided between a third switch provided between the second end of the second capacitor and the output of the error amplifier, and between the second end of the second capacitor and the constant voltage node. The fourth switch may be included.
 一実施形態において、定電圧ノードは接地ラインであってもよい。 In one embodiment, the constant voltage node may be a ground line.
 一実施形態において、定電圧ノードは、定電圧源の出力であってもよい。この場合、定電圧源の出力電圧に応じて、スイッチングトランジスタのデューティサイクルの低下幅を制御できる。 In one embodiment, the constant voltage node may be the output of a constant voltage source. In this case, the reduction width of the duty cycle of the switching transistor can be controlled according to the output voltage of the constant voltage source.
3. 一実施形態に係る車両用灯具は、半導体光源と、半導体光源の光量をパルス変調により多階調で調光可能な点灯回路と、を備える。点灯回路は、半導体光源と直列に設けられるシリーズスイッチと、シリーズスイッチと半導体光源の直列接続回路と接続され、(i)シリーズスイッチのオン期間において定電流を出力し、(ii)シリーズスイッチのオフ期間においてスイッチング動作を停止して直前のオン期間と実質的に同じ出力電圧を維持する降圧コンバータと、パルス変調されたパルス調光信号にもとづいてシリーズスイッチを駆動するドライバ回路と、シリーズスイッチのオフ期間において降圧コンバータの出力電圧が正常範囲から逸脱すると、シリーズスイッチの異常と判定する異常検出回路と、を備える。 3. 3. The vehicle lamp according to the embodiment includes a semiconductor light source and a lighting circuit capable of dimming the light amount of the semiconductor light source in multiple gradations by pulse modulation. The lighting circuit is connected to a series switch provided in series with the semiconductor light source and a series connection circuit between the series switch and the semiconductor light source, (i) outputs a constant current during the on period of the series switch, and (ii) turns off the series switch. A buck converter that stops the switching operation during the period and maintains substantially the same output voltage as the previous on period, a driver circuit that drives the series switch based on the pulse-modulated pulse dimming signal, and the series switch off. If the output voltage of the buck converter deviates from the normal range during the period, an abnormality detection circuit for determining an abnormality of the series switch is provided.
 この構成によれば、シリーズスイッチによって、降圧コンバータの出力電流の遮断、導通を高速に切り替えるため、降圧コンバータの出力電圧をステップ状に変化させる必要がない。これにより、出力キャパシタの充放電にともなう駆動電流のリンギングを抑制でき、数kHz~数十kHzの高速なパルス変調による調光が可能となる。 According to this configuration, the series switch cuts off the output current of the buck converter and switches the continuity at high speed, so it is not necessary to change the output voltage of the buck converter in steps. As a result, ringing of the drive current due to charging / discharging of the output capacitor can be suppressed, and dimming by high-speed pulse modulation of several kHz to several tens of kHz becomes possible.
 「パルス変調」は、パルス幅変調(PWM)のほか、パルス周波数変調(PFM)やパルス密度変調(PDM)などを含み、光源に流れる駆動電流を高速にスイッチングし、駆動電流の時間平均値を変化させる変調方式を含みうる。 "Pulse modulation" includes pulse width modulation (PWM), pulse frequency modulation (PFM), pulse density modulation (PDM), etc., and switches the drive current flowing through the light source at high speed to obtain the time average value of the drive current. It may include varying modulation schemes.
 バイパススイッチによるPWM調光では、バイパススイッチがオフできなくなるショート故障が発生したときに、LEDは消灯状態となるため、グレアを与えないという観点からは好ましい状態となる。これに対して、シリーズスイッチによるパルス調光では、シリーズスイッチがオフできない、あるいは短絡される異常(ショート異常と総称する)が発生すると、半導体光源に電流が流れ、対向車や先行車等にグレアを与えることとなる。上記構成によれば、シリーズスイッチのオフ期間において降圧コンバータのスイッチングが停止するため、シリーズスイッチにショート異常が生じた場合に、ショート異常のシリーズスイッチと半導体光源を含む経路によって、降圧コンバータの出力の電荷が放電され、出力電圧が低下する。したがって、シリーズスイッチのオフ期間において降圧コンバータの出力電圧を監視することで、シリーズスイッチのショート異常を検出できる。 In PWM dimming by the bypass switch, when a short-circuit failure that the bypass switch cannot be turned off occurs, the LED is turned off, which is a preferable state from the viewpoint of not giving glare. On the other hand, in pulse dimming by the series switch, when the series switch cannot be turned off or a short circuit occurs (generally called short circuit abnormality), a current flows through the semiconductor light source and glare occurs on the oncoming vehicle or the preceding vehicle. Will be given. According to the above configuration, the switching of the buck converter is stopped during the off period of the series switch. Therefore, when a short circuit error occurs in the series switch, the output of the buck converter is output by the path including the series switch with the short circuit error and the semiconductor light source. The charge is discharged and the output voltage drops. Therefore, by monitoring the output voltage of the buck converter during the off period of the series switch, a short circuit abnormality of the series switch can be detected.
 一実施形態において、異常検出回路は、シリーズスイッチのオフ期間において降圧コンバータの出力電圧が、所定のしきい値を下回ることを異常判定の条件としてもよい。これにより、確実な検出が可能となる。 In one embodiment, the abnormality detection circuit may have an abnormality determination condition that the output voltage of the buck converter falls below a predetermined threshold value during the off period of the series switch. This enables reliable detection.
 一実施形態において、所定のしきい値は、半導体光源の点灯開始電圧より高く、半導体光源の点灯時の順方向電圧Vfより低く定めてもよい。 In one embodiment, the predetermined threshold value may be set higher than the lighting start voltage of the semiconductor light source and lower than the forward voltage Vf when the semiconductor light source is lit.
 一実施形態において、車両用灯具は、半導体光源の出射光を走査する走査光学系をさらに備えてもよい。パルス調光信号は、走査と走査の区切れ目において所定期間、シリーズスイッチがオフするように生成されてもよい。異常検出回路は、所定期間における降圧コンバータの出力電圧にもとづいてシリーズスイッチの異常を検出してもよい。走査と走査の間に、シリーズスイッチが必ずオフとなる所定期間を挿入し、この所定期間を異常検出に利用することで、パルス変調の周期内での短いオフ期間を利用して異常検出をする場合に比べて、時間的な余裕を持って、異常検出が可能となる。 In one embodiment, the vehicle lighting fixture may further include a scanning optical system that scans the emitted light of the semiconductor light source. The pulse dimming signal may be generated so that the series switch is turned off for a predetermined period of time at the scan-scan break. The abnormality detection circuit may detect an abnormality of the series switch based on the output voltage of the buck converter in a predetermined period. By inserting a predetermined period during which the series switch is always turned off between scans and using this predetermined period for abnormality detection, abnormality detection is performed using a short off period within the pulse modulation cycle. Compared to the case, it is possible to detect anomalies with a margin of time.
 一実施形態において、異常検出回路は、所定期間において、出力電圧がしきい値を下回ると仮判定状態とし、所定数の走査にわたり仮判定状態が成立すると、本判定してもよい。これにより異常の誤検出を防止できる。 In one embodiment, the abnormality detection circuit may make a provisional determination state when the output voltage falls below the threshold value in a predetermined period, and may make a final determination when the provisional determination state is established over a predetermined number of scans. This makes it possible to prevent erroneous detection of abnormalities.
 一実施形態において、異常検出回路は、降圧コンバータの出力電圧をしきい値と比較し、降圧コンバータの出力電圧がしきい値より低いときに所定レベルとなる検出信号を生成する比較回路と、所定期間において検出信号が所定レベルとなると、仮判定状態とし、所定数の走査にわたり仮判定状態が成立すると、本判定する信号処理部と、を含んでもよい。 In one embodiment, the abnormality detection circuit is a comparison circuit that compares the output voltage of the step-down converter with a threshold value and generates a detection signal that becomes a predetermined level when the output voltage of the step-down converter is lower than the threshold value. When the detection signal reaches a predetermined level in the period, the provisional determination state is set, and when the provisional determination state is established over a predetermined number of scans, the signal processing unit for the main determination may be included.
 一実施形態において、異常検出回路は、降圧コンバータの出力電圧が一定でないことを異常判定の条件としてもよい。シリーズスイッチが正常であるとき、降圧コンバータの出力電圧は、実質的に一定に保たれるのに対して、シリーズスイッチにショート異常が発生すると、シリーズスイッチのオン、オフ制御(つまり降圧コンバータのスイッチングの動作・停止)と連動して、降圧コンバータの出力電圧が振動する。そこで、出力電圧が一定か、振動しているかを監視することにより、異常を検出できる。 In one embodiment, the abnormality detection circuit may have an abnormality determination condition that the output voltage of the buck converter is not constant. When the series switch is normal, the output voltage of the buck converter is kept substantially constant, whereas when a short circuit error occurs in the series switch, the on / off control of the series switch (that is, switching of the buck converter) is performed. The output voltage of the buck converter vibrates in conjunction with the operation / stop of. Therefore, an abnormality can be detected by monitoring whether the output voltage is constant or vibrating.
 一実施形態において、異常検出回路は、降圧コンバータの出力電圧がスイッチングする状態が、所定の判定時間にわたり持続することを異常判定の条件としてもよい。 In one embodiment, the abnormality detection circuit may be subject to an abnormality determination condition that the switching state of the output voltage of the buck converter is maintained for a predetermined determination time.
 一実施形態において、異常検出回路は、降圧コンバータの出力電圧をしきい値と比較し、降圧コンバータの出力電圧がしきい値より低いときに所定レベルとなる検出信号を生成する比較回路と、検出信号がパルス信号である状態が所定時間持続すると、異常状態と本判定する信号処理部と、を含んでもよい。 In one embodiment, the anomaly detection circuit is a comparison circuit that compares the output voltage of the buck converter with a threshold value and generates a detection signal that reaches a predetermined level when the output voltage of the buck converter is lower than the threshold value. When the state in which the signal is a pulse signal continues for a predetermined time, the signal processing unit for determining the abnormal state may be included.
 一実施形態において、異常検出回路は、降圧コンバータの出力電圧をしきい値と比較し、降圧コンバータの出力電圧がしきい値より低いときに所定レベルとなる検出信号を生成する比較回路と、検出信号が所定レベルに遷移した回数をカウントし、カウント値が所定のしきい値を超えると、異常状態と本判定する信号処理部と、を含んでもよい。 In one embodiment, the anomaly detection circuit compares the output voltage of the buck converter with a threshold and generates a detection signal that reaches a predetermined level when the output voltage of the buck converter is lower than the threshold. It may include a signal processing unit that counts the number of times the signal has transitioned to a predetermined level and determines that the signal is in an abnormal state when the count value exceeds a predetermined threshold value.
 一実施形態において、異常検出回路による異常検出は、降圧コンバータの動作開始後、出力電圧が所定電圧を超えるまでの間、無効化されてもよい。これにより、誤検出を防止できる。 In one embodiment, the abnormality detection by the abnormality detection circuit may be disabled after the operation of the buck converter is started until the output voltage exceeds a predetermined voltage. This can prevent erroneous detection.
 一実施形態に係る点灯回路は、半導体光源と直列に設けられるシリーズスイッチと、シリーズスイッチと半導体光源の直列接続回路と接続され、(i)シリーズスイッチのオン期間において定電流を出力し、(ii)シリーズスイッチのオフ期間においてスイッチング動作を停止して直前のオン期間と実質的に同じ出力電圧を維持する降圧コンバータと、パルス変調されたパルス調光信号にもとづいてシリーズスイッチを駆動するドライバ回路と、シリーズスイッチのオフ期間において降圧コンバータの出力電圧が正常範囲から逸脱すると、シリーズスイッチの異常と判定する異常検出回路と、を備える。 The lighting circuit according to one embodiment is connected to a series switch provided in series with the semiconductor light source and a series connection circuit of the series switch and the semiconductor light source, and (i) outputs a constant current during the on period of the series switch, and (ii). ) A buck converter that stops the switching operation during the off period of the series switch and maintains substantially the same output voltage as the immediately preceding on period, and a driver circuit that drives the series switch based on the pulse-modulated pulse dimming signal. , An abnormality detection circuit for determining an abnormality of the series switch when the output voltage of the buck converter deviates from the normal range during the off period of the series switch is provided.
4. 一実施形態に係る車両用灯具は、半導体光源、モータ、およびモータのロータに互いに間隔を隔てて取り付けられた複数のミラーを含み、半導体光源の出射光を複数のミラーによって反射して走査する走査型光源と、走査型光源の走査と同期して半導体光源に供給する駆動電流を制御し、半導体光源の光量を制御する点灯回路と、を備える。点灯回路は、半導体光源の光軸が複数のミラーの間隔を横切る複数のブランク期間において、半導体光源を消灯するものであり、複数のミラーの間隔は不均一である。 4. A vehicle lamp according to an embodiment includes a semiconductor light source, a motor, and a plurality of mirrors attached to the rotor of the motor at intervals from each other, and scans the emitted light of the semiconductor light source by being reflected by the plurality of mirrors. It includes a type light source and a lighting circuit that controls a drive current supplied to the semiconductor light source in synchronization with scanning of the scanning type light source and controls the amount of light of the semiconductor light source. The lighting circuit turns off the semiconductor light source in a plurality of blank periods in which the optical axis of the semiconductor light source crosses the distance between the plurality of mirrors, and the distance between the plurality of mirrors is non-uniform.
 この構成によると、複数のミラーの間隔を不均一化することで、長いブランク期間と短いブランク期間を意図的に作り出すことができる。これにより、長いブランク期間と、短いブランク期間とで、車両用灯具に異なる処理を実行させることができるようになり、信号処理のスケジューリングを最適化しやすくなる。 According to this configuration, it is possible to intentionally create a long blank period and a short blank period by making the intervals of a plurality of mirrors non-uniform. This allows the vehicle lamps to perform different processes during the long blank period and the short blank period, making it easier to optimize signal processing scheduling.
 一実施形態において、車両用灯具は、半導体光源の光軸が、複数のミラーの間隔を通過する区間、オフレベルとなるパルス調光信号を生成するパルス調光信号生成部をさらに備えてもよい。点灯回路は、半導体光源と直列に設けられるシリーズスイッチと、シリーズスイッチと半導体光源の直列接続回路と接続され、(i)シリーズスイッチのオン期間において定電流を出力し、(ii)シリーズスイッチのオフ期間においてスイッチング動作を停止し、直前のオン期間と実質的に同じ出力電圧を維持する降圧コンバータと、パルス調光信号にもとづいてシリーズスイッチを駆動するドライバ回路と、を備えてもよい。 In one embodiment, the vehicle lighting fixture may further include a pulse dimming signal generator that generates an off-level pulse dimming signal in a section where the optical axis of the semiconductor light source passes through the space between a plurality of mirrors. .. The lighting circuit is connected to a series switch provided in series with the semiconductor light source and a series connection circuit between the series switch and the semiconductor light source, (i) outputs a constant current during the on period of the series switch, and (ii) turns off the series switch. It may include a buck converter that stops the switching operation during the period and maintains substantially the same output voltage as the immediately preceding on period, and a driver circuit that drives the series switch based on the pulse dimming signal.
 この構成によれば、シリーズスイッチによって、降圧コンバータの出力電流の遮断、導通を高速に切り替えるため、降圧コンバータの出力電圧をステップ状に変化させる必要がない。これにより、出力キャパシタの充放電にともなう駆動電流のリンギングを抑制でき、数kHz~数十kHzの高速なパルス変調による調光が可能となる。 According to this configuration, the series switch cuts off the output current of the buck converter and switches the continuity at high speed, so it is not necessary to change the output voltage of the buck converter in steps. As a result, ringing of the drive current due to charging / discharging of the output capacitor can be suppressed, and dimming by high-speed pulse modulation of several kHz to several tens of kHz becomes possible.
 「パルス変調」は、パルス幅変調(PWM)のほか、パルス周波数変調(PFM)やパルス密度変調(PDM)などを含み、光源に流れる駆動電流を高速にスイッチングし、駆動電流の時間平均値を変化させる変調方式を含みうる。 "Pulse modulation" includes pulse width modulation (PWM), pulse frequency modulation (PFM), pulse density modulation (PDM), etc., and switches the drive current flowing through the light source at high speed to obtain the time average value of the drive current. It may include varying modulation schemes.
 一実施形態において、点灯回路は、複数のミラーの間隔のうち最も広い間隔に対応する最も長いブランク期間において、降圧コンバータの出力電圧が正常範囲から逸脱すると、シリーズスイッチの異常と判定する異常検出回路をさらに備えてもよい。 In one embodiment, the lighting circuit is an abnormality detection circuit that determines that the series switch is abnormal when the output voltage of the buck converter deviates from the normal range in the longest blank period corresponding to the widest interval among the intervals of the plurality of mirrors. May be further provided.
 バイパススイッチによるPWM調光では、バイパススイッチがオフできなくなるショート故障が発生したときに、LEDは消灯状態となるため、グレアを与えないという観点からは好ましい状態となる。これに対して、シリーズスイッチによるパルス調光では、シリーズスイッチがオフできない、あるいは短絡される異常(ショート異常と総称する)が発生すると、半導体光源に電流が流れ、対向車や先行車等にグレアを与えることとなる。上記構成によれば、シリーズスイッチのオフ期間において降圧コンバータのスイッチングが停止するため、シリーズスイッチにショート異常が生じた場合に、ショート異常のシリーズスイッチと半導体光源を含む経路によって、降圧コンバータの出力の電荷が放電され、出力電圧が低下する。したがって、シリーズスイッチのオフ期間において降圧コンバータの出力電圧を監視することで、シリーズスイッチのショート異常を検出できる。 In PWM dimming by the bypass switch, when a short-circuit failure that the bypass switch cannot be turned off occurs, the LED is turned off, which is a preferable state from the viewpoint of not giving glare. On the other hand, in pulse dimming by the series switch, when the series switch cannot be turned off or a short circuit occurs (generally called short circuit abnormality), a current flows through the semiconductor light source and glare occurs on the oncoming vehicle or the preceding vehicle. Will be given. According to the above configuration, the switching of the buck converter is stopped during the off period of the series switch. Therefore, when a short circuit error occurs in the series switch, the output of the buck converter is output by the path including the series switch with the short circuit error and the semiconductor light source. The charge is discharged and the output voltage drops. Therefore, by monitoring the output voltage of the buck converter during the off period of the series switch, a short circuit abnormality of the series switch can be detected.
 オフ期間、すなわちブランク期間におけるショート異常検出を行う際に、モータの回転数に反比例してブランク期間が短くなるため、走査周波数を高めるほどショート異常検出が難しくなる。一実施形態では、ひとつのブランク期間を短くする代わりに、別のブランク期間を長くとることで、長いブランク期間を利用して、ショート異常検出を行うことが可能となる。 When detecting a short abnormality during the off period, that is, during the blank period, the blank period becomes shorter in inverse proportion to the rotation speed of the motor, so that the higher the scanning frequency, the more difficult it becomes to detect the short abnormality. In one embodiment, instead of shortening one blank period, another blank period is lengthened, so that the short blank abnormality can be detected by utilizing the long blank period.
 一実施形態において、モータは2極モータであり、点灯回路は、ホール信号にもとづいてモータの回転位置を検出してもよい。この場合、ホール信号の波形にもとづいて、長いブランク期間と短いブランク期間を判別することが可能となる。 In one embodiment, the motor is a two-pole motor, and the lighting circuit may detect the rotation position of the motor based on the Hall signal. In this case, it is possible to discriminate between a long blank period and a short blank period based on the waveform of the Hall signal.
 一実施形態において、車両用灯具は、マイクロコントローラを備えてもよい。マイクロコントローラは、複数のミラーの間隔のうち最も広い間隔に対応する最も長いブランク期間において、所定の処理を実行してもよい。 In one embodiment, the vehicle lighting fixture may include a microcontroller. The microcontroller may perform a predetermined process in the longest blank period corresponding to the widest spacing of the plurality of mirrors.
 一実施形態において、ミラーの枚数は2枚であってもよい。この場合、モータの1回転の間に、2つの走査周期と、2つのブランク期間が含まれることとなる。 In one embodiment, the number of mirrors may be two. In this case, two scan cycles and two blank periods are included in one rotation of the motor.
(実施形態)
 以下、本開示を好適な実施の形態をもとに図面を参照しながら説明する。各図面に示される同一または同等の構成要素、部材、処理には、同一の符号を付するものとし、適宜重複した説明は省略する。また、実施の形態は、開示を限定するものではなく例示であって、実施の形態に記述されるすべての特徴やその組み合わせは、必ずしも開示の本質的なものであるとは限らない。
(Embodiment)
Hereinafter, the present disclosure will be described with reference to the drawings based on the preferred embodiments. The same or equivalent components, members, and processes shown in the drawings shall be designated by the same reference numerals, and duplicate description thereof will be omitted as appropriate. Further, the embodiment is not limited to the disclosure but is an example, and all the features and combinations thereof described in the embodiment are not necessarily essential to the disclosure.
 本明細書において、「部材Aが、部材Bと接続された状態」とは、部材Aと部材Bが物理的に直接的に接続される場合のほか、部材Aと部材Bが、それらの電気的な接続状態に実質的な影響を及ぼさない、あるいはそれらの結合により奏される機能や効果を損なわせない、その他の部材を介して間接的に接続される場合も含む。 In the present specification, the "state in which the member A is connected to the member B" means that the member A and the member B are physically directly connected, and the member A and the member B are electrically connected to each other. It also includes cases of being indirectly connected via other members that do not substantially affect the connection state or impair the functions and effects performed by the combination thereof.
 同様に、「部材Cが、部材Aと部材Bの間に設けられた状態」とは、部材Aと部材C、あるいは部材Bと部材Cが直接的に接続される場合のほか、それらの電気的な接続状態に実質的な影響を及ぼさない、あるいはそれらの結合により奏される機能や効果を損なわせない、その他の部材を介して間接的に接続される場合も含む。 Similarly, "a state in which the member C is provided between the member A and the member B" means that the member A and the member C, or the member B and the member C are directly connected, and their electricity. It also includes cases of being indirectly connected via other members that do not substantially affect the connection state or impair the functions and effects performed by the combination thereof.
 また本明細書において、電圧信号、電流信号などの電気信号、あるいは抵抗、キャパシタなどの回路素子に付された符号は、必要に応じてそれぞれの電圧値、電流値、あるいは抵抗値、容量値を表すものとする。 Further, in the present specification, the reference numerals attached to electric signals such as voltage signals and current signals, or circuit elements such as resistors and capacitors have their respective voltage values, current values, resistance values, and capacitance values as necessary. It shall be represented.
 図3は、実施形態1に係る車両用灯具100Aを示す図である。図1の車両用灯具100Aは、スキャン方式のADB機能を有し、車両前方に多様な配光パターンを形成する。車両用灯具100Aは主として、走査型光源200A、点灯回路300Aおよび配光コントローラ400を備える。 FIG. 3 is a diagram showing a vehicle lamp 100A according to the first embodiment. The vehicle lamp 100A of FIG. 1 has a scan-type ADB function and forms various light distribution patterns in front of the vehicle. The vehicle lamp 100A mainly includes a scanning light source 200A, a lighting circuit 300A, and a light distribution controller 400.
 配光コントローラ400は、カメラやLiDAR(Light Detection and Ranging、Laser Imaging Detection and Ranging)などのセンサからの情報(センサ情報)S1、車速やステアリング角などの情報(車両情報)S2などを受け、配光パターンを決定する。配光コントローラ400は、ランプボディ内に収容されてもよいし、車両側に設けられてもよい。配光コントローラ400は、配光パターンを指示する情報(配光パターン情報)S3を車両用灯具100に送信する。配光コントローラ400を、ADB用ECU(Electronic Control Unit)とも称する。 The light distribution controller 400 receives and distributes information (sensor information) S1 and information (vehicle information) S2 such as vehicle speed and steering angle from sensors such as cameras and LiDAR (Light Detection and Ringing, Laser Imaging Detection and Ringing). Determine the light pattern. The light distribution controller 400 may be housed in the lamp body or may be provided on the vehicle side. The light distribution controller 400 transmits information (light distribution pattern information) S3 indicating a light distribution pattern to the vehicle lamp 100. The light distribution controller 400 is also referred to as an ADB ECU (Electronic Control Unit).
 走査型光源200Aは、光源ユニット210A、走査光学系220、投影光学系230を備える。光源ユニット210Aは、1個の半導体光源212や図示しないヒートシンクを含む。半導体光源212には、LED(発光ダイオード)あるいはレーザダイオードなどを用いることができる。走査光学系220は、半導体光源212の出射光(ビーム)BMを車両前方で走査する。 The scanning light source 200A includes a light source unit 210A, a scanning optical system 220, and a projection optical system 230. The light source unit 210A includes one semiconductor light source 212 and a heat sink (not shown). An LED (light emitting diode), a laser diode, or the like can be used as the semiconductor light source 212. The scanning optical system 220 scans the emitted light (beam) BM of the semiconductor light source 212 in front of the vehicle.
 本実施形態において走査光学系220は、モータ222および1枚あるいは複数M枚(この例では2枚)のブレードミラー224_1,224_2を備える。M枚(M≧2)のブレードミラーは、360/M°、ずれた位置に取り付けられ、この例では、2枚のブレードミラーが180°ずれた位置に取り付けられている。 In the present embodiment, the scanning optical system 220 includes a motor 222 and one or a plurality of M (two in this example) blade mirrors 224_1224_2. The M blade mirrors (M ≧ 2) are mounted at 360 / M ° offset positions, and in this example, the two blade mirrors are mounted at 180 ° offset positions.
 半導体光源212の光軸は、その出射ビームBMが、M枚のブレードミラーのうちの1枚に照射されるように向けられている。 The optical axis of the semiconductor light source 212 is directed so that the emitted beam BM irradiates one of the M blade mirrors.
 ある時刻においてブレードミラー224への入射光BMは、ブレードミラー224の位置(ロータの回転角)に応じた反射角で反射し、車両前方の仮想鉛直スクリーン900上に瞬時照射スポットSPTを形成する。瞬時照射スポットSPTは、水平方向(H方向)に幅Δv、垂直方向(V方向)に幅Δhを有している。ブレードミラー224が回転することで反射角、すなわち反射ビームBMrの出射方向が変化し、瞬時照射スポットSPTの水平方向(H方向)の位置(走査位置)が移動する。この動作を高速に、たとえば50Hz以上で繰り返すことで車両前方には、配光パターンPTNが形成される。 At a certain time, the incident light BM on the blade mirror 224 is reflected at a reflection angle corresponding to the position of the blade mirror 224 (rotation angle of the rotor), and an instantaneous irradiation spot SPT is formed on the virtual vertical screen 900 in front of the vehicle. The instantaneous irradiation spot SPT has a width Δv in the horizontal direction (H direction) and a width Δh in the vertical direction (V direction). The rotation of the blade mirror 224 changes the reflection angle, that is, the emission direction of the reflected beam BMr, and the horizontal (H direction) position (scanning position) of the instantaneous irradiation spot SPT moves. By repeating this operation at high speed, for example, at 50 Hz or higher, a light distribution pattern PTN is formed in front of the vehicle.
 本実施形態において、ひとつのビームBMが形成する配光パターンPTNは、車両用灯具100Aの水平方向の全範囲-θMAX~+θMAXに広がっている。すなわち走査型光源200Aは、反射ビームBMrを、水平方向の全範囲にわたり走査する。たとえばθMAXは20~25°程度である。なお全範囲とは、スキャン照射可能な全範囲であり、スキャン以外の光源により照射される範囲は含まない。 In the present embodiment, the light distribution pattern PTN formed by one beam BM extends over the entire horizontal range of the vehicle lamp 100A to −θMAX to + θMAX . That is, the scanning light source 200A scans the reflected beam BMr over the entire horizontal range. For example, θ MAX is about 20 to 25 °. The entire range is the entire range that can be irradiated by scanning, and does not include the range irradiated by a light source other than scanning.
 点灯回路300Aは、配光パターン情報S3が指示する配光パターンが得られるように、走査型光源200Aの走査と同期して、各走査位置における半導体光源212の光量、すなわちビームBMの強度を、パルス変調により多階調で調光する。本実施形態では、PWM(パルス幅変調)によって、半導体光源212に流れる駆動電流ILEDの平均量を変化させ、半導体光源212の光量を変化させる(PWM調光)。PWM周波数は、走査周波数よりも十分に高く定められ、たとえば数kHz~数百kHzとすることが望ましい。 The lighting circuit 300A determines the amount of light of the semiconductor light source 212 at each scanning position, that is, the intensity of the beam BM, in synchronization with the scanning of the scanning light source 200A so that the light distribution pattern indicated by the light distribution pattern information S3 can be obtained. Dimming with multiple gradations by pulse modulation. In the present embodiment, the average amount of drive current I LEDs flowing through the semiconductor light source 212 is changed by PWM (pulse width modulation), and the amount of light of the semiconductor light source 212 is changed (PWM dimming). The PWM frequency is set sufficiently higher than the scanning frequency, and it is desirable that the PWM frequency is, for example, several kHz to several hundred kHz.
 なお点灯回路300は、走査周期、またはそれより長い制御周期で、電流IOUTの電流量を変化させてもよい。つまりPWM調光とDC調光を併用してもよい。以上が車両用灯具100Aの構成である。続いてその動作を説明する。 The lighting circuit 300 may change the amount of current I OUT in a scanning cycle or a control cycle longer than that. That is, PWM dimming and DC dimming may be used together. The above is the configuration of the vehicle lamp 100A. Next, the operation will be described.
 図4(a)、(b)は、車両用灯具100Aよるグレアフリー配光の形成を説明する図である。図4(a)のグレアフリー配光910は、遮光部分912と、照射部分914,916を含んでいる。図4(a)は仮想鉛直スクリーン上の配光を、図4(b)は、図4(a)の配光に対応する車両用灯具100Aの動作波形を示す。なお本明細書において参照する波形図やタイムチャートの縦軸および横軸は、理解を容易とするために適宜拡大、縮小したものであり、また示される各波形も、理解の容易のために簡略化され、あるいは誇張もしくは強調されている。 4 (a) and 4 (b) are diagrams illustrating the formation of glare-free light distribution by the vehicle lamp 100A. The glare-free light distribution 910 of FIG. 4A includes a light-shielding portion 912 and an irradiation portion 914,916. 4 (a) shows the light distribution on the virtual vertical screen, and FIG. 4 (b) shows the operation waveform of the vehicle lamp 100A corresponding to the light distribution of FIG. 4 (a). The vertical and horizontal axes of the waveform charts and time charts referred to in the present specification are appropriately enlarged or reduced for easy understanding, and each waveform shown is also simplified for easy understanding. It is made, or exaggerated or emphasized.
 たとえば点灯回路300は、照射部分914,916に対応する区間において、半導体光源212の駆動電流ILEDのデューティサイクルを非ゼロの値(この例では100%の一定値)とし、遮光部分912に対応する区間において、駆動電流ILEDのデューティサイクルを0%とする。 For example, the lighting circuit 300 sets the duty cycle of the drive current I LED of the semiconductor light source 212 to a non-zero value (100% constant value in this example) in the section corresponding to the irradiation portions 914 and 916, and corresponds to the light shielding portion 912. In this section, the duty cycle of the drive current I LED is set to 0%.
 図5(a)、(b)は、車両用灯具100Aよる部分減光配光の形成を説明する図である。図5(a)は仮想鉛直スクリーン上の配光の水平方向の照度分布を示し、図5(b)は、図5(a)の配光に対応する車両用灯具100Aの動作波形を示す。図5(a)に示す部分減光配光920は、2個の減光部分922,924と、3個の非減光部分926,927,928を含んでいる。 5 (a) and 5 (b) are diagrams illustrating the formation of a partially dimmed light distribution by the vehicle lamp 100A. 5 (a) shows the horizontal illuminance distribution of the light distribution on the virtual vertical screen, and FIG. 5 (b) shows the operation waveform of the vehicle lamp 100A corresponding to the light distribution of FIG. 5 (a). The partial dimming distribution 920 shown in FIG. 5A includes two dimming portions 922,924 and three non-dimming portions 926,927,928.
 たとえば点灯回路300は、非減光部分(照射部分)926,927,928に対応する区間において、半導体光源212の駆動電流ILEDのデューティサイクルを100%に固定し、減光部分922,924に対応する区間において、駆動電流ILEDのデューティサイクルをそれぞれ、50%、25%とする。この車両用灯具100Aによれば、単一の半導体光源に流れる駆動電流ILEDをPWM制御することにより、部分減光を実現できる。 For example, in the lighting circuit 300, the duty cycle of the drive current I LED of the semiconductor light source 212 is fixed to 100% in the section corresponding to the non-dimming portion (irradiation portion) 926,927,928, and the duty cycle is fixed to the dimming portion 922,924. In the corresponding section, the duty cycle of the drive current I LED is 50% and 25%, respectively. According to the vehicle lamp 100A, partial dimming can be realized by PWM-controlling the drive current I LED flowing through a single semiconductor light source.
 図6(a)、(b)は、車両用灯具100Aによる電子スイブルを説明する図である。図6(a)は、中央が最も明るい配光を、図6(b)は、右側が最も明るい配光を示す。この車両用灯具100Aによれば、単一の半導体光源に流れる駆動電流ILEDをPWM制御することにより、電子スイブル機能を実現できる。 6 (a) and 6 (b) are diagrams illustrating an electronic swivel by a vehicle lamp 100A. FIG. 6A shows the brightest light distribution in the center, and FIG. 6B shows the brightest light distribution on the right side. According to the vehicle lamp 100A, the electronic swivel function can be realized by PWM-controlling the drive current I LED flowing through a single semiconductor light source.
 点灯回路300の具体的な構成例を説明する。図7は、点灯回路300の構成例を示すブロック図である。 A specific configuration example of the lighting circuit 300 will be described. FIG. 7 is a block diagram showing a configuration example of the lighting circuit 300.
 配光コントローラ400は、センサ情報S1や車両情報S2を受ける。配光コントローラ400は、センサ情報S1にもとづいて、車両前方の状況、具体的には対向車、先行車の有無、歩行者の有無等を検出する。また配光コントローラ400は、車両情報S2にもとづいて、現在の車速、操舵角などを検出する。配光コントローラ400はこれらの情報にもとづいて、車両前方に照射すべき配光パターンを決定し、配光パターンを指示する情報(配光パターン情報)S3を、点灯回路300に送信する。 The light distribution controller 400 receives sensor information S1 and vehicle information S2. The light distribution controller 400 detects the situation in front of the vehicle, specifically, the presence / absence of an oncoming vehicle, a preceding vehicle, the presence / absence of a pedestrian, and the like based on the sensor information S1. Further, the light distribution controller 400 detects the current vehicle speed, steering angle, and the like based on the vehicle information S2. Based on these information, the light distribution controller 400 determines a light distribution pattern to be irradiated to the front of the vehicle, and transmits information (light distribution pattern information) S3 instructing the light distribution pattern to the lighting circuit 300.
 点灯回路300は、配光パターン情報S3にもとづいてブレードミラー224の回転と同期しながら、PWM調光により、半導体光源212の光量(輝度)を多階調で変化させる。たとえば点灯回路300は主として、位置検出器302、PWM信号生成部310、定電流ドライバ(以下、LEDドライバという)320を備える。 The lighting circuit 300 changes the light amount (luminance) of the semiconductor light source 212 in multiple gradations by PWM dimming while synchronizing with the rotation of the blade mirror 224 based on the light distribution pattern information S3. For example, the lighting circuit 300 mainly includes a position detector 302, a PWM signal generation unit 310, and a constant current driver (hereinafter referred to as an LED driver) 320.
 位置検出器302は、ブレードミラー224の位置、言い換えれば現在のビームの走査位置を検出するために設けられる。位置検出器302は、ブレードミラー224の所定の基準箇所が所定位置を通過するタイミングを示す位置検出信号S4を生成する。たとえば基準箇所は、2枚のブレードミラー224の端部(区切れ目)であってもよいし、各ブレードミラーの中央であってもよく、任意の箇所とすることができる。 The position detector 302 is provided to detect the position of the blade mirror 224, in other words, the scanning position of the current beam. The position detector 302 generates a position detection signal S4 indicating the timing at which the predetermined reference point of the blade mirror 224 passes the predetermined position. For example, the reference portion may be the end portion (separation) of the two blade mirrors 224, or may be the center of each blade mirror, and may be any location.
 ブレードミラー224を回転させるモータ222には、ホール素子が取り付けられていてもよい。この場合、ホール素子からのホール信号は、ロータの位置、すなわちブレードミラーの位置に応じた周期波形となる。位置検出器302は、ホール信号の極性が反転するタイミングを検出してもよく、具体的には一対のホール信号を比較するホールコンパレータで構成してもよい。 A Hall element may be attached to the motor 222 that rotates the blade mirror 224. In this case, the Hall signal from the Hall element has a periodic waveform corresponding to the position of the rotor, that is, the position of the blade mirror. The position detector 302 may detect the timing at which the polarity of the Hall signal is inverted, and specifically, may be configured by a Hall comparator that compares a pair of Hall signals.
 位置検出器302によるブレードミラー224の位置検出方法は、ホール素子を利用したものに限定されない。たとえば位置検出器302は、モータ222のロータの位置を検出する光学式、あるいはその他の方式のロータリーエンコーダを利用して、位置検出信号S4を生成してもよい。あるいは位置検出器302は、ブレードミラー224の裏側に設けられたフォトセンサと、ブレードミラー224の表面側からフォトセンサに向かって光を照射する位置検出用の光源と、を含んでもよい。そしてブレードミラー224に、スリットあるいはピンホールを設けてもよい。これにより、スリットあるいはピンホールが、フォトセンサの上を通過するタイミングを検出できる。スリットは、2枚のブレードミラー224の間隙であってもよい。また位置検出用の光源は、赤外線光源を利用してもよいし、半導体光源212であってもよい。このように位置検出器302の構成にはさまざまなバリエーションが存在しうる。 The position detection method of the blade mirror 224 by the position detector 302 is not limited to the one using a Hall element. For example, the position detector 302 may generate the position detection signal S4 by using an optical or other rotary encoder that detects the position of the rotor of the motor 222. Alternatively, the position detector 302 may include a photosensor provided on the back side of the blade mirror 224 and a light source for position detection that irradiates light from the surface side of the blade mirror 224 toward the photosensor. Then, the blade mirror 224 may be provided with a slit or a pinhole. This makes it possible to detect when the slit or pinhole passes over the photo sensor. The slit may be a gap between the two blade mirrors 224. Further, the light source for position detection may be an infrared light source or a semiconductor light source 212. As described above, there may be various variations in the configuration of the position detector 302.
 PWM信号生成部310は、ブレードミラー224の運動と同期して、パルス調光信号PWM_DIMを生成する。パルス調光信号PWM_DIMの1走査周期のデューティサイクルは、配光パターンにもとづいて規定される。たとえばモータ222の回転数が6000rpm(100Hz)であり、ブレードミラーが2枚である場合、走査周波数は、100Hz×2=200Hzとなり、走査周期は5msである。PWM信号生成部310は、マイクロコントローラ304とソフトウェアプログラムの組み合わせで実装してもよいし、ハードウェアのみで実装してもよい。マイクロコントローラ304およびLEDドライバ320は、一枚の基板上に搭載してもよいし、あるいは1つの筐体内に配置してもよい。 The PWM signal generation unit 310 generates a pulse dimming signal PWM_DIM in synchronization with the movement of the blade mirror 224. The duty cycle of one scan cycle of the pulse dimming signal PWM_DIM is defined based on the light distribution pattern. For example, when the rotation speed of the motor 222 is 6000 rpm (100 Hz) and the number of blade mirrors is two, the scanning frequency is 100 Hz × 2 = 200 Hz, and the scanning cycle is 5 ms. The PWM signal generation unit 310 may be implemented by combining the microcontroller 304 and the software program, or may be implemented only by hardware. The microcontroller 304 and the LED driver 320 may be mounted on one substrate or may be arranged in one housing.
 パルス調光信号PWM_DIMの周波数は、200Hzより高く定められ、たとえば数kHz~数十kHzとすることができる。パルス調光信号PWM_DIMのデューティサイクルは、半導体光源212の光量を定めるものであり、デューティサイクルは、1PWM周期ごとに設定可能であってもよいし、複数のPWM周期ごとに設定可能であってもよい。 The frequency of the pulse dimming signal PWM_DIM is set higher than 200 Hz, and can be, for example, several kHz to several tens of kHz. The duty cycle of the pulse dimming signal PWM_DIM determines the amount of light of the semiconductor light source 212, and the duty cycle may be set for each PWM cycle or may be set for each of a plurality of PWM cycles. good.
 LEDドライバ320は半導体光源212に駆動電流ILEDを供給する。駆動電流ILEDの電流量は、所定の目標値に安定化されており、LEDドライバ320は、パルス調光信号PWM_DIMに応じて、駆動電流ILEDをスイッチングする。 The LED driver 320 supplies a drive current I LED to the semiconductor light source 212. The current amount of the drive current I LED is stabilized to a predetermined target value, and the LED driver 320 switches the drive current I LED according to the pulse dimming signal PWM_DIM.
 図8は、LEDドライバ320の構成例(320A)を示す回路図である。LEDドライバ320Aは、降圧コンバータ322と、シリーズスイッチ323、ドライバ回路324を備える。シリーズスイッチ323と半導体光源212は直列に接続される。この例ではシリーズスイッチ323が半導体光源212のアノード側に挿入されるが、カソードと接地の間に挿入してもよい。 FIG. 8 is a circuit diagram showing a configuration example (320A) of the LED driver 320. The LED driver 320A includes a buck converter 322, a series switch 323, and a driver circuit 324. The series switch 323 and the semiconductor light source 212 are connected in series. In this example, the series switch 323 is inserted on the anode side of the semiconductor light source 212, but may be inserted between the cathode and the ground.
 降圧コンバータ322は、定電流出力のスイッチングコンバータであり、出力回路326およびコンバータコントローラ328を含む。出力回路326は、スイッチングトランジスタMH、同期整流トランジスタML、インダクタL1、出力キャパシタC1を含む。コンバータコントローラ328は、シリーズスイッチ323がオンの期間に降圧コンバータ322の出力電流IOUTが所定の目標量に近づくように、出力回路326のスイッチングトランジスタMHおよび同期整流トランジスタMLをスイッチング制御する。 The buck converter 322 is a constant current output switching converter and includes an output circuit 326 and a converter controller 328. The output circuit 326 includes a switching transistor MH, a synchronous rectifying transistor ML, an inductor L1, and an output capacitor C1. The converter controller 328 switches and controls the switching transistor MH and the synchronous rectifying transistor ML of the output circuit 326 so that the output current I OUT of the buck converter 322 approaches a predetermined target amount while the series switch 323 is on.
 コンバータコントローラ328の制御方式は特に限定されず、エラーアンプを用いたアナログコントローラ、PID(比例・積分・微分)補償器を含むデジタルコントローラ、あるいはヒステリシス制御のコントローラであってもよい。 The control method of the converter controller 328 is not particularly limited, and may be an analog controller using an error amplifier, a digital controller including a PID (proportional / integral / differential) compensator, or a hysteresis control controller.
 ドライバ回路324は、パルス調光信号PWM_DIMに応じてシリーズスイッチ323を駆動する。このドライバ回路324は、コンバータコントローラ328と同じICに集積化されてもよい。 The driver circuit 324 drives the series switch 323 in response to the pulse dimming signal PWM_DIM. The driver circuit 324 may be integrated in the same IC as the converter controller 328.
 コンバータコントローラ328は、パルス調光信号PWM_DIMがシリーズスイッチ323のオフを指示するオフレベルであるとき、スイッチングトランジスタMHおよび同期整流トランジスタMLのスイッチングを停止する。 The converter controller 328 stops the switching of the switching transistor MH and the synchronous rectifying transistor ML when the pulse dimming signal PWM_DIM is at the off level indicating the off of the series switch 323.
 以上がLEDドライバ320Aの構成である。このLEDドライバ320Aでは、シリーズスイッチ323によって、降圧コンバータ322の出力電流IOUTの遮断、導通を高速に切り替えるため、降圧コンバータ322の出力電圧VOUTをステップ状に変化させる必要がない。これにより、出力キャパシタC1の充放電にともなう出力電流IOUTのリンギングを抑制でき、数kHz~数十kHzの高速なパルス変調による調光が可能となる。 The above is the configuration of the LED driver 320A. In this LED driver 320A, since the output current I OUT of the buck converter 322 is cut off and the continuity is switched at high speed by the series switch 323, it is not necessary to change the output voltage V OUT of the buck converter 322 in a stepwise manner. As a result, ringing of the output current I OUT due to charging / discharging of the output capacitor C1 can be suppressed, and dimming by high-speed pulse modulation of several kHz to several tens of kHz becomes possible.
 図9(a)は、シリーズスイッチによる電流制御を、図9(b)は、バイパススイッチによる電流制御を示す図である。これらの波形は、PWM調光の1周期を示しており、PWM周波数は5kHz(200μs周期)、デューティサイクルは50%である。 FIG. 9A is a diagram showing current control by a series switch, and FIG. 9B is a diagram showing current control by a bypass switch. These waveforms show one cycle of PWM dimming, the PWM frequency is 5 kHz (200 μs cycle), and the duty cycle is 50%.
 バイパススイッチによるPWM調光では、図9(b)に示すように、降圧コンバータ322の出力電流、すなわちLED電流にリンギングが発生するのに対して、シリーズスイッチによるPWM調光では、図9(a)に示すように、LED電流のリンギングが抑制できる。これにより、デューティサイクルが小さい領域でも、PWM調光による階調制御が可能となる。 As shown in FIG. 9B, in the PWM dimming by the bypass switch, ringing occurs in the output current of the buck converter 322, that is, the LED current, whereas in the PWM dimming by the series switch, FIG. 9 (a). ), The ringing of the LED current can be suppressed. As a result, gradation control by PWM dimming becomes possible even in a region where the duty cycle is small.
 また、シリーズスイッチ323がオフの期間、コンバータコントローラ328は、スイッチングトランジスタMHと同期整流トランジスタMLのスイッチングを停止する。これにより、シリーズスイッチ323がオフの期間は、出力キャパシタC1の電圧VOUTが一定に保たれるため、シリーズスイッチ323がターンオンした直後の、出力電圧VOUTの変動量をゼロに近づけることができる。これにより出力電流IOUTのリンギングをさらに抑制できる。 Further, during the period when the series switch 323 is off, the converter controller 328 stops switching between the switching transistor MH and the synchronous rectifying transistor ML. As a result, the voltage V OUT of the output capacitor C1 is kept constant during the period when the series switch 323 is off, so that the fluctuation amount of the output voltage V OUT immediately after the series switch 323 is turned on can be brought close to zero. .. As a result, ringing of the output current I OUT can be further suppressed.
 図10は、LEDドライバ320Aの構成例を示す回路図である。LEDドライバ320Aは、制御IC(Integrated Circuit)340を備える。制御IC340には、コンバータコントローラ328に加えて、スイッチングトランジスタMH、同期整流トランジスタML、ドライバ回路324が集積化されている。 FIG. 10 is a circuit diagram showing a configuration example of the LED driver 320A. The LED driver 320A includes a control IC (Integrated Circuit) 340. In addition to the converter controller 328, the control IC 340 integrates a switching transistor MH, a synchronous rectifier transistor ML, and a driver circuit 324.
 出力回路326は、電流検出抵抗Rcsを含む。電流検出抵抗Rcsの両端の電圧は、制御ICのISP/ISNピンにフィードバックされる。トランスコンダクタンスアンプ330は、2つの端子ISP,ISNの電位差である電流検出信号Vcsと、基準電圧Vrefの誤差に応じた電流を生成する。トランスコンダクタンスアンプ330の出力は、サンプルホールド回路332を介して、Vcピンと接続される。Vcピンには、抵抗RcおよびキャパシタCcが接続される。抵抗RcおよびキャパシタCcは位相補償回路を兼ねている。なお抵抗Rcは省略してもよい。キャパシタCcが、トランスコンダクタンスアンプ330の出力電流に応じて充電・放電されることにより、Vcピンには、誤差電圧Vcが発生する。フィードバックにより、この誤差電圧Vcは、電流検出信号Vcsが基準電圧Vrefに近づくように増減する。トランスコンダクタンスアンプ330および位相補償回路Rc,Ccは、エラーアンプと把握される。 The output circuit 326 includes a current detection resistor Rcs. The voltage across the current detection resistor Rcs is fed back to the ISP / ISN pin of the control IC. The transconductance amplifier 330 generates a current corresponding to an error of the current detection signal Vcs, which is the potential difference between the two terminals ISP and ISN, and the reference voltage Vref. The output of the transconductance amplifier 330 is connected to the Vc pin via the sample hold circuit 332. A resistor Rc and a capacitor Cc are connected to the Vc pin. The resistance Rc and the capacitor Cc also serve as a phase compensation circuit. The resistance Rc may be omitted. The capacitor Cc is charged and discharged according to the output current of the transconductance amplifier 330, so that an error voltage Vc is generated in the Vc pin. Due to the feedback, this error voltage Vc increases or decreases so that the current detection signal Vcs approaches the reference voltage Vref. The transconductance amplifier 330 and the phase compensation circuits Rc and Cc are grasped as an error amplifier.
 オン時間制御部334はパルス幅変調器であり、誤差電圧Vcに応じたデューティサイクルを有する制御パルスSpwmを生成する。この制御パルスSpwmの周波数は、パルス調光信号PWM_DIMよりもさらに高く設定される。オン時間制御部334の構成は特に限定されないが、たとえば三角波やのこぎり波である周期電圧を生成するオシレータを含み、周期電圧と誤差電圧Vcを比較することにより、制御パルスSpwmを生成してもよい。 The on-time control unit 334 is a pulse width modulator, and generates a control pulse Spwm having a duty cycle corresponding to an error voltage Vc. The frequency of this control pulse Spwm is set even higher than the pulse dimming signal PWM_DIM. The configuration of the on-time control unit 334 is not particularly limited, but may include an oscillator that generates a periodic voltage such as a triangular wave or a sawtooth wave, and generate a control pulse Spwm by comparing the periodic voltage and the error voltage Vc. ..
 ゲートドライバ336は制御パルスSpwmに応じて、スイッチングトランジスタMHおよび同期整流トランジスタMLを駆動する。 The gate driver 336 drives the switching transistor MH and the synchronous rectifying transistor ML according to the control pulse Spwm.
 PWM信号生成部310は、マイクロコントローラで構成される。制御IC340のPWMピンには、PWM信号生成部310が生成するパルス調光信号PWM_DIMが入力される。ドライバ回路324は、パルス調光信号PWM_DIMを受け、シリーズスイッチ323を駆動する。この実施例においてシリーズスイッチ323はPMOSトランジスタであり、ドライバ回路324は、パルス調光信号PWM_DIMを反転した信号を、PWMGピンから出力する。 The PWM signal generation unit 310 is composed of a microcontroller. A pulse dimming signal PWM_DIM generated by the PWM signal generation unit 310 is input to the PWM pin of the control IC 340. The driver circuit 324 receives the pulse dimming signal PWM_DIM and drives the series switch 323. In this embodiment, the series switch 323 is a polyclonal transistor, and the driver circuit 324 outputs a signal obtained by inverting the pulse dimming signal PWM_DIM from the PWMG pin.
 パルス調光信号PWM_DIMは、サンプルホールド回路332に入力される。サンプルホールド回路332は、パルス調光信号PWM_DIMがシリーズスイッチ323のオンを指示するオンレベル(ハイ)の期間、トランスコンダクタンスアンプ330の出力を、Vcピンおよびオン時間制御部334の入力と接続する。またサンプルホールド回路332は、パルス調光信号PWM_DIMがシリーズスイッチ323のオフを指示するオフレベル(ロー)の期間、Vcピンとオン時間制御部334の入力の接続を維持しつつ、トランスコンダクタンスアンプ330の出力を、Vcピンおよびオン時間制御部334から遮断する。これにより、パルス調光信号PWM_DIMがオフの期間は、Vcピンの誤差電圧Vcがホールドされ、次のパルス調光信号PWM_DIMがオンになったときには、誤差電圧Vcを、直ちに適切な電圧レベルに復帰させることができる。 The pulse dimming signal PWM_DIM is input to the sample hold circuit 332. The sample hold circuit 332 connects the output of the transconductance amplifier 330 to the Vc pin and the input of the on-time control unit 334 during the on-level (high) period in which the pulse dimming signal PWM_DIM instructs the series switch 323 to turn on. Further, the sample hold circuit 332 maintains the connection between the Vc pin and the input of the on-time control unit 334 during the off-level (low) period in which the pulse dimming signal PWM_DIM instructs the series switch 323 to be turned off, while maintaining the connection of the transconductance amplifier 330. The output is cut off from the Vc pin and the on-time control unit 334. As a result, the error voltage Vc of the Vc pin is held during the period when the pulse dimming signal PWM_DIM is off, and when the next pulse dimming signal PWM_DIM is turned on, the error voltage Vc is immediately returned to the appropriate voltage level. Can be made to.
 またパルス調光信号PWM_DIMは、ゲートドライバ336に入力されている。ゲートドライバ336は、パルス調光信号PWM_DIMがオンレベル(ハイ)である期間、制御パルスSpwmに応じてスイッチングトランジスタMHと同期整流トランジスタMLを相補的にスイッチングする。またゲートドライバ336は、パルス調光信号PWM_DIMがオフレベル(ロー)である期間、スイッチングトランジスタMHと同期整流トランジスタMLのスイッチングを停止する。具体的にはゲートドライバ336は、パルス調光信号PWM_DIMがオフレベルの期間、スイッチングトランジスタMHと同期整流トランジスタMLの両方をオフに固定する。 The pulse dimming signal PWM_DIM is input to the gate driver 336. The gate driver 336 selectively switches the switching transistor MH and the synchronous rectifying transistor ML according to the control pulse Spwm during the period when the pulse dimming signal PWM_DIM is on level (high). Further, the gate driver 336 stops switching between the switching transistor MH and the synchronous rectifying transistor ML during the period when the pulse dimming signal PWM_DIM is off level (low). Specifically, the gate driver 336 fixes both the switching transistor MH and the synchronous rectifying transistor ML to off during the period when the pulse dimming signal PWM_DIM is off level.
(実施形態2)
 図11は、実施形態2に係る車両用灯具100Bを示す図である。実施形態1との相違点を説明する。
(Embodiment 2)
FIG. 11 is a diagram showing a vehicle lamp 100B according to the second embodiment. Differences from the first embodiment will be described.
 走査型光源200Bの光源ユニット210Bは、複数N個(N≧2)の半導体光源212_1~212_Nを備える。半導体光源212_1~212_Nの光軸は、それぞれの出射ビームBM~BMが、M枚のブレードミラーのうちの1枚に照射されるように向けられている。ここでは、半導体光源212_2の出射ビームBMの光線のみを代表として示す。 The light source unit 210B of the scanning light source 200B includes a plurality of N (N ≧ 2) semiconductor light sources 212_1 to 212_N. The optical axes of the semiconductor light sources 212_1 to 212_N are directed so that the respective emitted beams BM 1 to BM N irradiate one of the M blade mirrors. Here, only the light beam of the emitted beam BM 2 of the semiconductor light source 212_2 is shown as a representative.
 ある時刻においてブレードミラー224への入射光BMは、ブレードミラー224の位置(ロータの回転角)に応じた反射角で反射し、車両前方の仮想鉛直スクリーン900上に瞬時照射スポットSPTを形成する。瞬時照射スポットSPTは、水平方向(H方向)、垂直方向(V方向)それぞれに所定の幅を有している。ブレードミラー224が回転することで反射角が変化し、破線で示すように反射ビームBMrの出射方向が変化し、瞬時照射スポットSPTの水平方向(H方向)の位置(走査位置)が移動する。この動作を高速に、たとえば50Hz以上で繰り返すことで車両前方には、個別配光パターンPTNが形成される。 At a certain time, the incident light BM 2 on the blade mirror 224 is reflected at a reflection angle corresponding to the position of the blade mirror 224 (rotation angle of the rotor), and an instantaneous irradiation spot SPT 2 is formed on the virtual vertical screen 900 in front of the vehicle. do. The instantaneous irradiation spot SPT 2 has a predetermined width in each of the horizontal direction (H direction) and the vertical direction (V direction). As the blade mirror 224 rotates, the reflection angle changes, the emission direction of the reflected beam BMr 2 changes as shown by the broken line, and the horizontal (H direction) position (scanning position) of the instantaneous irradiation spot SPT 2 moves. do. By repeating this operation at high speed, for example, at 50 Hz or higher, an individual light distribution pattern PTN 2 is formed in front of the vehicle.
 別のビームBM,BM~BMについても同様であり、i番目の反射ビームBMrの走査により、個別配光パターンPTNが形成される。 The same applies to the other beams BM 1 , BM 3 to BM N , and the individual light distribution pattern PTN i is formed by scanning the i-th reflected beam BM r i .
 たとえばビームBM~BMが形成する個別配光パターンPTN~PTNは、仮想鉛直スクリーン900上の異なる高さに形成される。複数の個別配光パターンPTN~PTNの合成により、車両用灯具100全体の配光パターンPTN_ALLが形成される。垂直方向に隣接する個別配光パターンPTN同士は、垂直方向にわずかにオーバーラップしていてもよい。 For example, the individual light distribution patterns PTN 1 to PTN N formed by the beams BM 1 to BM N are formed at different heights on the virtual vertical screen 900. By synthesizing a plurality of individual light distribution patterns PTN 1 to PTN N , the light distribution pattern PTN_ALL of the entire vehicle lamp 100 is formed. The individual light distribution patterns PTNs adjacent to each other in the vertical direction may slightly overlap each other in the vertical direction.
 実施形態2において、複数の個別配光パターンPTN~PTNの少なくともひとつは、車両用灯具100の水平方向の全範囲-θMAX~+θMAXに広がっている。すなわち、走査型光源200Bは、複数のビームBMr~BMrの少なくともひとつを、水平方向の全範囲にわたり走査する。図11の例では、すべての個別配光パターンPTN~PTNが、水平方向の全範囲-θMAX~+θMAXに広がっている。 In the second embodiment, at least one of the plurality of individual light distribution patterns PTN 1 to PTN N extends over the entire horizontal range of the vehicle lamp 100 to −θMAX to + θMAX . That is, the scanning light source 200B scans at least one of the plurality of beams BMr 1 to BMr N over the entire horizontal range. In the example of FIG. 11, all the individual light distribution patterns PTN 1 to PTN N extend over the entire horizontal range −θ MAX to + θ MAX .
 点灯回路300Bは、走査型光源200Bの走査と同期して、各走査位置における半導体光源212_1~212_Nそれぞれの光量、すなわちビームBM~BMの強度を、パルス変調により多階調で調光する。点灯回路300Bは、走査周期、またはそれより長い制御周期で、電流IOUTの電流量を変化させてもよい。つまりPWM調光とDC調光を併用してもよい。 The lighting circuit 300B adjusts the light intensity of each of the semiconductor light sources 212_1 to 212_N at each scanning position, that is, the intensity of the beams BM 1 to BM N in multiple gradations in synchronization with the scanning of the scanning light source 200B. .. The lighting circuit 300B may change the amount of current I OUT in a scanning cycle or a control cycle longer than that. That is, PWM dimming and DC dimming may be used together.
 図12は、図11の点灯回路300Bの構成例を示すブロック図である。点灯回路300Bは、複数の半導体光源212_1~212_Nに対応する複数のLEDドライバ320_1~320_Nを備える。PWM信号生成部310は、目的とする配光が得られるように、複数のLEDドライバ320_1~320_Nに対するパルス調光信号PWM_DIM_1~PWM_DIM_Nを生成する。i番目(1≦i≦N)のLEDドライバ320は、対応する半導体光源212_iに対して、PWM変調された駆動電流ILEDiを供給する。LEDドライバ320の構成は、実施形態1と同様である。 FIG. 12 is a block diagram showing a configuration example of the lighting circuit 300B of FIG. The lighting circuit 300B includes a plurality of LED drivers 320_1 to 320_N corresponding to the plurality of semiconductor light sources 212_1 to 212_N. The PWM signal generation unit 310 generates pulse dimming signals PWM_DIM_1 to PWM_DIM_N for a plurality of LED drivers 320_1 to 320_N so that the desired light distribution can be obtained. The i-th (1 ≦ i ≦ N) LED driver 320 supplies a PWM-modulated drive current I LEDi to the corresponding semiconductor light source 212_i. The configuration of the LED driver 320 is the same as that of the first embodiment.
 この車両用灯具100Bによれば、実施形態1に比べて、高さ方向の分解能を高めることができる。 According to this vehicle lamp 100B, the resolution in the height direction can be improved as compared with the first embodiment.
 実施形態2の変形例を説明する。上の説明では、複数の配光パターンPTN~PTNのすべてが、全範囲に広がっていたがその限りでなく、その中のいくつかは、全範囲ではなく、一部の範囲に広がっていてもよい。 A modified example of the second embodiment will be described. In the above explanation, all of the plurality of light distribution patterns PTN 1 to PTN N are spread over the entire range, but not limited to this, and some of them are spread over a part of the range, not the entire range. You may.
 実施形態2では、配光全体を垂直方向に複数の領域に分割し、複数の領域に複数の個別配光パターンPTN~PTNを対応付けたがその限りでない。複数の個別配光パターンPTN~PTNのいくつかは、完全にオーバーラップしていてもよい。 In the second embodiment, the entire light distribution is vertically divided into a plurality of regions, and a plurality of individual light distribution patterns PTN 1 to PTN N are associated with the plurality of regions, but this is not the case. Some of the plurality of individual light distribution patterns PTN 1 to PTN N may completely overlap.
(実施形態3)
 図13は、実施形態3に係る車両用灯具100Cを示す図である。実施形態2と同様に、光源ユニット210Cは複数の半導体光源212_1~212_Nを備える。実施形態1、あるいは実施形態2では、半導体光源212_1~212_Nそれぞれの出射ビームBM~BMが、水平走査の全範囲にわたり照射されたが、実施形態3では、出射ビームBM~BMは、仮想鉛直スクリーン900上の、水平方向の異なる範囲を走査され、出射ビームBM~BMの走査により、複数の個別配光パターンPTN~PTNが形成される。車両用灯具100Rが形成する配光は、複数の個別配光パターンPTN~PTNの重ね合わせである。
(Embodiment 3)
FIG. 13 is a diagram showing a vehicle lamp 100C according to the third embodiment. Similar to the second embodiment, the light source unit 210C includes a plurality of semiconductor light sources 212_1 to 212_N. In the first embodiment or the second embodiment, the emitted beams BM 1 to BM N of the semiconductor light sources 212_1 to 212_N are irradiated over the entire range of the horizontal scan, but in the third embodiment, the emitted beams BM 1 to BM N are emitted. , Different horizontal ranges are scanned on the virtual vertical screen 900, and the scanning of the emitted beams BM 1 to BM N forms a plurality of individual light distribution patterns PTN 1 to PTN N. The light distribution formed by the vehicle lamp 100R is a superposition of a plurality of individual light distribution patterns PTN 1 to PTN N.
 点灯回路300Cは、実施形態2の点灯回路300Bと同様に構成することができる。 The lighting circuit 300C can be configured in the same manner as the lighting circuit 300B of the second embodiment.
(シリーズスイッチのショート異常検出)
 シリーズスイッチによるPWM調光を行う場合、シリーズスイッチにショート異常が生ずると、半導体光源212への駆動電流ILEDが遮断できなくなり、半導体光源212が点灯してしまい、正しい配光を形成できなくなる。具体的には、十分に減光できなくなり、対向車や先行車にグレアを与えるおそれがある。
(Short abnormality detection of series switch)
When PWM dimming is performed by the series switch, if a short circuit error occurs in the series switch, the drive current I LED to the semiconductor light source 212 cannot be cut off, the semiconductor light source 212 lights up, and the correct light distribution cannot be formed. Specifically, the dimming cannot be sufficiently performed, which may cause glare on the oncoming vehicle and the preceding vehicle.
 なお、ショート異常は、シリーズスイッチがターンオフ不能になる異常、あるいはシリーズスイッチの両端間が短絡される異常など、パルス調光信号PWM_DIMをオフレベルにしても、半導体光源212への電流供給を遮断できない異常をいう。 Note that the short-circuit abnormality cannot cut off the current supply to the semiconductor light source 212 even if the pulse dimming signal PWM_DIM is turned off, such as an abnormality in which the series switch cannot be turned off or an abnormality in which both ends of the series switch are short-circuited. It means an abnormality.
 以下では、シリーズスイッチのショート異常を検出可能な車両用灯具について説明する。 The following describes vehicle lamps that can detect short-circuit abnormalities in series switches.
 図14は、ショート異常検出機能を備える車両用灯具100Fのブロック図である。車両用灯具100Fは、半導体光源212、LEDドライバ320F、PWM信号生成部310を備える。PWM信号生成部310は、所望の配光パターンが形成されるようにパルス変調されたパルス調光信号PWM_DIMを生成する。 FIG. 14 is a block diagram of a vehicle lamp 100F having a short abnormality detection function. The vehicle lamp 100F includes a semiconductor light source 212, an LED driver 320F, and a PWM signal generation unit 310. The PWM signal generation unit 310 generates a pulse dimming signal PWM_DIM pulse-modulated so as to form a desired light distribution pattern.
 LEDドライバ320Fは、図8のLEDドライバ320Aと同様に、降圧コンバータ322、シリーズスイッチ323、ドライバ回路324、を備える。これらの機能、動作は、すでに説明した通りである。つまり降圧コンバータ322は、(i)シリーズスイッチ323のオン期間(パルス調光信号PWM_DIMがオンレベルの期間)において定電流を出力する。また降圧コンバータ322は、(ii)シリーズスイッチ323のオフ期間(パルス調光信号PWM_DIMがオフレベルの期間)においてスイッチング動作を停止し、直前のオン期間と実質的に同じ出力電圧VOUT、つまり半導体光源212の順方向電圧を維持するように構成される。 The LED driver 320F includes a buck converter 322, a series switch 323, and a driver circuit 324, similarly to the LED driver 320A of FIG. These functions and operations are as described above. That is, the buck converter 322 outputs a constant current during the on period (i) of the series switch 323 (the period during which the pulse dimming signal PWM_DIM is on level). Further, the buck converter 322 stops the switching operation during the off period of the (ii) series switch 323 (the period during which the pulse dimming signal PWM_DIM is at the off level), and has substantially the same output voltage V OUT , that is, the semiconductor as the immediately preceding on period. It is configured to maintain the forward voltage of the light source 212.
 LEDドライバ320Fはさらに異常検出回路370を備える。異常検出回路370は、シリーズスイッチ323のオフ期間における降圧コンバータ322の出力電圧VOUTが正常範囲から逸脱すると、シリーズスイッチ323の異常と判定し、異常検出信号(フェイル信号)FAILをアサートする。フェイル信号FAILは、PWM信号生成部310あるいは他のマイクロコントローラやプロセッサ、ECUなどの上位のブロックに送信される。フェイル信号FAILを受信したPWM信号生成部310は、パルス調光信号PWM_DIMの生成を停止し、半導体光源212を消灯してもよい。 The LED driver 320F further includes an abnormality detection circuit 370. When the output voltage V OUT of the buck converter 322 deviates from the normal range during the off period of the series switch 323, the abnormality detection circuit 370 determines that the series switch 323 is abnormal and asserts the abnormality detection signal (fail signal) FAIL. The fail signal FAIL is transmitted to the PWM signal generation unit 310 or an upper block such as another microcontroller, processor, or ECU. The PWM signal generation unit 310 that has received the fail signal FAIL may stop the generation of the pulse dimming signal PWM_DIM and turn off the semiconductor light source 212.
 図15(a)、(b)は、図14の車両用灯具100Fの動作を説明する図である。ここでは、2個の遮光部分と1個の減光部分を含む配光を形成する際の、1走査分の動作を例とする。 15 (a) and 15 (b) are diagrams illustrating the operation of the vehicle lamp 100F of FIG. Here, an operation for one scan is taken as an example when forming a light distribution including two light-shielding portions and one dimming portion.
 図15(a)を参照して、シリーズスイッチ323が正常であるときの動作を説明する。パルス調光信号PWM_DIMは、遮光部分においてオフレベル(ロー)であり、減光部分において、減光率に応じたデューティサイクルを有するパルス信号であり、それ以外の部分において、オンレベル(ハイ)をとる。 The operation when the series switch 323 is normal will be described with reference to FIG. 15 (a). The pulse dimming signal PWM_DIM is an off-level (low) in the light-shielding portion, a pulse signal having a duty cycle according to the dimming rate in the dimming portion, and an on-level (high) in the other portion. Take.
 パルス調光信号PWM_DIMがハイ(オンレベル)のとき、シリーズスイッチ323が導通するから、半導体光源212には、降圧コンバータ322が生成する定電流IOUTが供給され、半導体光源212に流れる駆動電流ILEDは定電流IOUTに安定化される。このとき、降圧コンバータ322の出力電圧VOUTは、半導体光源212の順方向電圧Vと等しくなる。 When the pulse dimming signal PWM_DIM is high (on level), the series switch 323 conducts, so that the constant current I OUT generated by the buck converter 322 is supplied to the semiconductor light source 212, and the drive current I flows through the semiconductor light source 212. The LED is stabilized to a constant current I OUT . At this time, the output voltage V OUT of the buck converter 322 becomes equal to the forward voltage VF of the semiconductor light source 212.
 パルス調光信号PWM_DIMがロー(オフレベル)のとき、シリーズスイッチ323が遮断するから、半導体光源212に流れる駆動電流ILEDは0Aとなる。また降圧コンバータ322のスイッチング動作が停止し、出力キャパシタC1への充放電が発生しなくなるため、出力電圧VOUTは実質的に一定レベルに保たれる。 When the pulse dimming signal PWM_DIM is low (off level), the series switch 323 is cut off, so that the drive current I LED flowing through the semiconductor light source 212 becomes 0A. Further, since the switching operation of the buck converter 322 is stopped and charging / discharging to the output capacitor C1 does not occur, the output voltage V OUT is kept at a substantially constant level.
 このように、シリーズスイッチ323が正常である場合には、シリーズスイッチ323のオン、オフにかかわらず、降圧コンバータ322の出力電圧VOUTが、順方向電圧Vの近傍のとある電圧範囲(これを正常範囲という)に含まれる。 Thus, when the series switch 323 is normal, the output voltage V OUT of the buck converter 322 is in a certain voltage range near the forward voltage VF regardless of whether the series switch 323 is on or off (this). Is included in the normal range).
 図15(b)を参照して、シリーズスイッチ323にショート異常が生じたときの動作を説明する。パルス調光信号PWM_DIMは、図15(a)のそれと同様である。 The operation when a short-circuit abnormality occurs in the series switch 323 will be described with reference to FIG. 15 (b). The pulse dimming signal PWM_DIM is the same as that in FIG. 15 (a).
 ショート異常が発生していても、パルス調光信号PWM_DIMがハイ(オンレベル)のときは、正常時と同様に動作するが、パルス調光信号PWM_DIMがロー(オフレベル)のときに、車両用灯具100Fは、正常時とは異なる振る舞いを見せる。 Even if a short-circuit error occurs, when the pulse dimming signal PWM_DIM is high (on level), it operates in the same way as normal, but when the pulse dimming signal PWM_DIM is low (off level), it is for vehicles. The lamp 100F behaves differently from the normal state.
 すなわち、パルス調光信号PWM_DIMがロー(オフレベル)であっても、シリーズスイッチ323が遮断できないため、半導体光源212には駆動電流ILEDが流れ続けてしまう。ただし、パルス調光信号PWM_DIMがローの間は、降圧コンバータ322のスイッチングは停止しているため、駆動電流ILEDは降圧コンバータ322の出力キャパシタC1の放電によってまかなわれる。したがって放電が進むにしたがって駆動電流ILEDは時間とともに減少する。遮光部分では、パルス調光信号PWM_DIMのロー区間が長いため、出力キャパシタC1が放電され、図17に示す点灯開始電圧VMINまで低下すると、駆動電流ILEDは0Aまで低下する。この時点で、出力キャパシタC1の放電が停止するため、出力電圧VOUTは、点灯開始電圧VMIN付近となる。一方、減光部分では、パルス調光信号PWM_DIMのロー区間が短いため、駆動電流ILEDは0Aまでは低下しない場合もあり得る。 That is, even if the pulse dimming signal PWM_DIM is low (off level), the series switch 323 cannot be cut off, so that the drive current I LED continues to flow in the semiconductor light source 212. However, since the switching of the buck converter 322 is stopped while the pulse dimming signal PWM_DIM is low, the drive current I LED is covered by the discharge of the output capacitor C1 of the buck converter 322. Therefore, as the discharge progresses, the drive current I LED decreases with time. Since the low section of the pulse dimming signal PWM_DIM is long in the light-shielded portion, when the output capacitor C1 is discharged and drops to the lighting start voltage V MIN shown in FIG. 17, the drive current I LED drops to 0 A. At this point, the discharge of the output capacitor C1 is stopped, so that the output voltage V OUT is near the lighting start voltage V MIN . On the other hand, in the dimmed portion, since the low section of the pulse dimming signal PWM_DIM is short, the drive current I LED may not decrease to 0A.
 このように、シリーズスイッチ323のショート異常が発生すると、減光部分において、駆動電流ILEDがほとんど減少せず、対向車にグレアを与えたり、運転者が物標を認識しにくくなるおそれがある。 In this way, when a short-circuit abnormality of the series switch 323 occurs, the drive current I LED hardly decreases in the dimmed portion, which may cause glare to the oncoming vehicle or make it difficult for the driver to recognize the target. ..
 ショート異常時のパルス調光信号PWM_DIMのロー区間に着目すると、出力キャパシタC1が、半導体光源212を介して放電されることにより、出力電圧VOUTが低下する。その結果、図15(a)で説明した正常範囲を逸脱することが分かる。 Focusing on the low section of the pulse dimming signal PWM_DIM at the time of a short-circuit abnormality, the output capacitor C1 is discharged via the semiconductor light source 212, so that the output voltage V OUT drops. As a result, it can be seen that it deviates from the normal range described in FIG. 15 (a).
 本実施形態によれば、ショート異常時と正常時での出力電圧VOUTの振る舞いの違いを利用することにより、出力電圧VOUTを検出することができる。 According to this embodiment, the output voltage V OUT can be detected by utilizing the difference in the behavior of the output voltage V OUT at the time of short circuit abnormality and the normal state.
 以下、異常検出回路370の具体的な構成や、具体的な信号処理を、いくつかの実施例にもとづいて説明する。 Hereinafter, a specific configuration of the abnormality detection circuit 370 and a specific signal processing will be described based on some examples.
 図16は、一実施例に係る異常検出回路370の回路図である。異常検出回路370は、比較回路372と、信号処理部374を含む。比較回路372は、抵抗R31,R32と、電圧コンパレータCOMP1を含む。降圧コンバータ322の出力電圧VOUTは、抵抗R31,R32を含む分圧回路によって分圧される。電圧コンパレータCOMP1は、分圧後の出力電圧VOUT’を、所定のしきい値電圧VTHと比較し、比較結果を示す検出信号SDETを生成する。検出信号SDETは、降圧コンバータ322の出力電圧VOUTが正常範囲に含まれるか否かを示す二値信号である。この構成では、VSHORT=VTH×(R31+R32)/R32が、正常範囲のしきい値(下限)となる。 FIG. 16 is a circuit diagram of the abnormality detection circuit 370 according to the embodiment. The abnormality detection circuit 370 includes a comparison circuit 372 and a signal processing unit 374. The comparison circuit 372 includes resistors R31 and R32 and a voltage comparator COMP1. The output voltage V OUT of the buck converter 322 is divided by a voltage divider circuit including resistors R31 and R32. The voltage comparator COMP1 compares the output voltage V OUT'after voltage division with a predetermined threshold voltage VTH , and generates a detection signal S DET indicating the comparison result. The detection signal S DET is a binary signal indicating whether or not the output voltage V OUT of the buck converter 322 is included in the normal range. In this configuration, VSHORT = VTH × (R31 + R32) / R32 is the threshold value (lower limit) in the normal range.
 たとえば、正常時は、VOUT>VSHORTであり、このときの検出信号SDETはハイを維持する。ショート異常が生ずると、パルス調光信号PWM_DIMがオフレベルになるたびに、VOUT<VSHORTとなり、検出信号SDETがローとなる。比較回路372によって二値化することで、マイクロコントローラやロジック回路を用いたデジタル信号処理により、ショート異常の判定がしやすくなる。 For example, in the normal state, V OUT > V SHORT , and the detection signal S DET at this time keeps high. When a short-circuit abnormality occurs, every time the pulse dimming signal PWM_DIM becomes an off level, V OUT <V SHORT becomes V OUT <V SHORT, and the detection signal S DET becomes low. By binarizing with the comparison circuit 372, it becomes easy to determine a short circuit abnormality by digital signal processing using a microcontroller or a logic circuit.
 信号処理部374は、検出信号SDETにもとづいて、ショート異常の有無を判定し、異常を検出すると、フェイル信号FAILをアサートする。具体的には信号処理部374は、検出信号SDETが所定レベル(ロー)となったこと、つまりシリーズスイッチ323のオフ期間において降圧コンバータ322の出力電圧VOUTが、所定のしきい値VSHORTを下回ることを異常判定の条件とする。 The signal processing unit 374 determines the presence or absence of a short-circuit abnormality based on the detection signal S DET , and when the abnormality is detected, asserts the fail signal FAIL. Specifically, in the signal processing unit 374, the detection signal S DET reaches a predetermined level (low), that is, the output voltage V OUT of the buck converter 322 becomes a predetermined threshold value V SHORT during the off period of the series switch 323. It is a condition of abnormality judgment that it is less than.
 信号処理部374は、マイクロコントローラとソフトウェアの組み合わせで実装することができる。この場合において、PWM信号生成部310と信号処理部374を、同じマイクロコントローラに実装してもよい。なお信号処理部374をハードウェアロジック回路で構成してもよい。 The signal processing unit 374 can be implemented by combining a microcontroller and software. In this case, the PWM signal generation unit 310 and the signal processing unit 374 may be mounted on the same microcontroller. The signal processing unit 374 may be configured by a hardware logic circuit.
 図17は、半導体光源212のIV特性を示す図である。横軸は半導体光源212の両端間電圧VLEDを、縦軸は電流を示す。正常範囲の下限しきい値VSHORTは、半導体光源212の点灯開始電圧VMINより高く、半導体光源212の点灯時の順方向電圧Vより低く定めるとよい。 FIG. 17 is a diagram showing the IV characteristics of the semiconductor light source 212. The horizontal axis represents the voltage V LED between both ends of the semiconductor light source 212, and the vertical axis represents the current. The lower limit threshold V SHORT in the normal range may be set higher than the lighting start voltage V MIN of the semiconductor light source 212 and lower than the forward voltage VF when the semiconductor light source 212 is lit.
 なお、降圧コンバータ322の動作開始の直後は、出力電圧VOUTは0Vであるから、出力電圧VOUTにもとづく異常判定はできない。そこで異常検出回路370による異常検出は、降圧コンバータ322の動作開始後、出力電圧VOUTが所定電圧を超えるまでの間、無効化される。 Immediately after the start of operation of the buck converter 322, the output voltage V OUT is 0 V, so that an abnormality cannot be determined based on the output voltage V OUT . Therefore, the abnormality detection by the abnormality detection circuit 370 is invalidated after the operation of the buck converter 322 is started until the output voltage V OUT exceeds a predetermined voltage.
 続いて、異常検出回路370による判定処理の具体例を説明する。 Subsequently, a specific example of the determination process by the abnormality detection circuit 370 will be described.
(判定処理1)
 図18は、異常検出回路370の判定処理1を説明する図である。図18にはショート異常時の波形が示される。図3に示したように、車両用灯具100は、走査光学系220を備える。パルス調光信号PWM_DIMは、走査と走査の区切れ目において所定期間(ブランク期間TBLANKという)、シリーズスイッチ323がオフするように生成される。たとえば走査光学系220が、複数のブレードミラー224を備える場合、ブレードミラーとブレードミラーの隙間を、ブランク期間TBLANKとすることができる。
(Judgment process 1)
FIG. 18 is a diagram illustrating the determination process 1 of the abnormality detection circuit 370. FIG. 18 shows the waveform at the time of short circuit abnormality. As shown in FIG. 3, the vehicle lamp 100 includes a scanning optical system 220. The pulse dimming signal PWM_DIM is generated so that the series switch 323 is turned off for a predetermined period (referred to as blank period TBLANK ) at the break between scans. For example, when the scanning optical system 220 includes a plurality of blade mirrors 224, the gap between the blade mirrors can be set as a blank period TBLANK .
 たとえば走査周波数が200Hzの場合、走査周期TSCANは5msとなる。またPWM周波数を20kHzとした場合、PWM周期は50μsである。ブランク期間TBLANKはPWM周期50μsよりも長く定めるとよく、たとえば70μsであるとする。 For example, when the scanning frequency is 200 Hz, the scanning period TSCAN is 5 ms. When the PWM frequency is 20 kHz, the PWM cycle is 50 μs. The blank period TBLANK may be set longer than the PWM cycle of 50 μs, for example 70 μs.
 異常検出回路370は、ブランク期間TBLANKにおける降圧コンバータ322の出力電圧VOUTにもとづいてシリーズスイッチ323の異常を検出する。異常検出回路370は、ブランク期間TBLANKにおいて、出力電圧VOUTがしきい値VSHORTを下回ると仮判定状態とする。そして、所定数の走査にわたり、仮判定状態が成立すると、本判定してもよい。 The abnormality detection circuit 370 detects an abnormality of the series switch 323 based on the output voltage V OUT of the step-down converter 322 in the blank period TBLANK . The abnormality detection circuit 370 sets a tentative determination state when the output voltage V OUT falls below the threshold value V SHORT in the blank period TBLANK . Then, when the provisional determination state is established over a predetermined number of scans, the final determination may be performed.
 具体的には、信号処理部374は、位置検出信号S4にもとづいて、ブランク期間TBLANKの位置を取得し、ブランク期間TBLANK中に、検出信号SDETが所定レベル(ロー)に遷移したことを、ショート異常の判定条件とする。ブランク期間TBLANKにおいて検出信号SDETがローとなる仮判定状態が、所定数回M、成立すると、フェイル信号FAILをアサートする。たとえば信号処理部374は、カウンタを含み、ブランク期間TBLANKの検出信号SDETがローとなるたびに、カウンタをカウントアップさせる。そして、カウント値が所定値Mに達すると、フェイル信号FAILをアサートする。カウント値が所定値Mに達する前に、ローの検出信号SDETが検出できない場合には、カウンタをリセットしてもよい。つまり、判定処理1では、図18の検出信号SDETのうち、ハッチングを付す部分のみに着目して、ショート異常を検出するものである。 Specifically, the signal processing unit 374 acquires the position of the blank period TBLANK based on the position detection signal S4, and the detection signal SDET transitions to a predetermined level (low) during the blank period TBLANK . Is a condition for determining a short circuit abnormality. When the provisional determination state in which the detection signal S DET becomes low in the blank period TBLANK is established several times M a predetermined number of times, the fail signal FAIL is asserted. For example, the signal processing unit 374 includes a counter, and counts up the counter each time the detection signal S DET of the blank period TBLANK becomes low. Then, when the count value reaches a predetermined value M, the fail signal FAIL is asserted. If the low detection signal S DET cannot be detected before the count value reaches the predetermined value M, the counter may be reset. That is, in the determination process 1, the short-circuit abnormality is detected by focusing only on the hatched portion of the detection signal S DET in FIG.
 判定処理1の利点を説明する。ブランク期間TBLANKを設けないとすると、パルス調光信号PWM_DIMがローに遷移しない限り、ショート異常を検出できない。第1判定処理では、ブランク期間TBLANKを挿入することで、1走査に1回、必ず異常判定の機会が与えられる。これにより、ショート異常を短時間で確実に検出できる。 The advantages of the determination process 1 will be described. If the blank period TBLANK is not provided, the short circuit abnormality cannot be detected unless the pulse dimming signal PWM_DIM transitions to low. In the first determination process, by inserting the blank period TBLANK , an opportunity for abnormality determination is always given once per scan. This makes it possible to reliably detect a short circuit abnormality in a short time.
 PWM減光の区間、検出信号SDETのロー区間は、50μsよりも短い狭パルスとなる。したがってPWM減光区間の検出信号SDETを利用しようとすると、高速な信号処理部374が必要となる。またパルス調光信号PWM_DIMのデューティサイクルが大きいと(ロー区間が短いと)、出力電圧VOUTがしきい値VSHORTを下回らない場合も発生しうる。PWM周期よりも長いブランク期間TBLANKでは、出力電圧VOUTは確実にしきい値VSHORTを下回るため、ローレベルの検出信号SDETを発生させることができ、安定的に、ショート異常を検出できる。 The PWM dimming section and the low section of the detection signal S DET are narrow pulses shorter than 50 μs. Therefore, in order to use the detection signal S DET in the PWM dimming section, a high-speed signal processing unit 374 is required. Further, when the duty cycle of the pulse dimming signal PWM_DIM is large (when the low section is short), the output voltage V OUT may not fall below the threshold value V SHORT . In the blank period TBLANK longer than the PWM cycle, the output voltage V OUT surely falls below the threshold value V SHORT , so that a low-level detection signal S DET can be generated, and a short-circuit abnormality can be detected stably.
(判定処理2)
 図19は、異常検出回路370の判定処理2を説明する図である。図19にはショート異常時の波形が示される。なお、判定処理2において、ブランク期間TBLANKは必須ではない。
(Judgment process 2)
FIG. 19 is a diagram illustrating the determination process 2 of the abnormality detection circuit 370. FIG. 19 shows the waveform at the time of short circuit abnormality. In the determination process 2, the blank period TBLANK is not essential.
 判定処理2では、異常検出回路370は、検出信号SDETを常時監視し、検出信号SDETが直流信号でない状態(DC状態)、言い換えるとパルス信号である状態(パルス状態)が、所定の判定時間τDET、持続すると、異常状態と本判定してフェイル信号FAILをアサートする。 In the determination process 2, the abnormality detection circuit 370 constantly monitors the detection signal S DET , and a state in which the detection signal S DET is not a DC signal (DC state), in other words, a pulse signal (pulse state) is a predetermined determination. If the time τ DET continues , it is determined that the condition is abnormal and the fail signal FAIL is asserted.
 たとえば信号処理部374は、検出信号SDETがパルス状態であるかDC状態であるかを示す仮判定信号DC/PULSEを生成する。検出信号SDETが所定時間以上連続してハイである状態をDC状態、それ以外をパルス状態としてもよい。信号処理部374は、仮判定信号DC/PULSEが、パルス状態を示すハイである期間が、所定の判定時間τDET持続すると、異常状態と本判定してフェイル信号FAILをアサートする。信号処理部374は、マイクロコントローラのタイマーリソースを利用して実装してもよい。 For example, the signal processing unit 374 generates a provisional determination signal DC / PULSE indicating whether the detection signal S DET is in the pulse state or the DC state. A state in which the detection signal S DET is continuously high for a predetermined time or longer may be a DC state, and a state in which the detection signal S DET is continuously high may be a pulse state. When the temporary determination signal DC / PULSE is high indicating the pulse state for a predetermined determination time τ DET , the signal processing unit 374 determines that the temporary determination signal DC / PULSE is an abnormal state and asserts the fail signal FAIL. The signal processing unit 374 may be implemented by using the timer resource of the microcontroller.
 判定処理1は、ブランク期間TBLANKとのタイミング同期が必要であったのに対して、判定処理2は、タイミング同期が不要であるという利点がある。 The determination process 1 requires timing synchronization with the blank period TBLANK , whereas the determination process 2 has an advantage that timing synchronization is not required.
(判定処理3)
 図20は、異常検出回路370の判定処理3を説明する図である。図20にはショート異常時の波形が示される。なお、判定処理3において、ブランク期間TBLANKは必須ではない。
(Judgment process 3)
FIG. 20 is a diagram illustrating the determination process 3 of the abnormality detection circuit 370. FIG. 20 shows the waveform at the time of short circuit abnormality. In the determination process 3, the blank period TBLANK is not essential.
 判定処理3では、異常検出回路370は、検出信号SDETを常時監視し、検出信号SDETがローに遷移した回数、言い換えると検出信号SDET上に生じたローパルスの個数、言い換えると検出信号SDETのネガティブエッジの個数をカウントし、カウント値が所定のしきい値Kを超えると、異常状態と本判定する。 In the determination process 3, the abnormality detection circuit 370 constantly monitors the detection signal S DET , the number of times the detection signal S DET transitions to low, in other words, the number of low pulses generated on the detection signal S DET , in other words, the detection signal S. The number of negative edges of the DET is counted, and when the count value exceeds a predetermined threshold value K, it is determined as an abnormal state.
 ある観点から見ると、判定処理1~3のいくつかは、降圧コンバータ322の出力電圧VOUTが一定でないことが、所定時間持続したことを異常判定の条件としていると捉えることができる。また別の観点から見ると、判定処理1~3のいくつかは、降圧コンバータ322の出力電圧VOUTがスイッチングする状態が、所定の判定時間にわたり持続することを異常判定の条件としているものと解される。 From a certain point of view, some of the determination processes 1 to 3 can be regarded as a condition for abnormality determination that the output voltage V OUT of the buck converter 322 is not constant and lasts for a predetermined time. From another point of view, it is understood that some of the determination processes 1 to 3 require that the switching state of the output voltage V OUT of the buck converter 322 lasts for a predetermined determination time as a condition for abnormality determination. Will be done.
(判定処理4)
 実施形態では、出力電圧VOUTを2値化した上で、異常判定を行ったがその限りでない。たとえば高速なA/Dコンバータによって、出力電圧VOUTの波形を取り込み、波形にもとづいて、異常の有無を判定してもよい。
(Judgment process 4)
In the embodiment, the abnormality determination is performed after binarizing the output voltage V OUT , but this is not the case. For example, a high-speed A / D converter may capture a waveform of an output voltage V OUT , and the presence or absence of an abnormality may be determined based on the waveform.
(ブレードミラーの形状)
 図21は、走査光学系220の構成例を示す図である。走査光学系220は、モータ222および複数のブレードミラー224を備える。この例ではブレードミラー224は2枚である。ブレードミラー224_1,224_2は、モータ222のロータ(回転軸)に、間隔(以下、ミラー間隔という)226_1,226_2を空けて取り付けられている。図21の走査光学系220では、2つのミラー間隔226_1,226_2は不均一であり、d1>d2となっている。
(Shape of blade mirror)
FIG. 21 is a diagram showing a configuration example of the scanning optical system 220. The scanning optical system 220 includes a motor 222 and a plurality of blade mirrors 224. In this example, the number of blade mirrors 224 is two. The blade mirrors 224_1224_2 are attached to the rotor (rotating shaft) of the motor 222 with a gap (hereinafter referred to as mirror spacing) 226_1.226_2. In the scanning optical system 220 of FIG. 21, the distance between the two mirrors 226_1, 226_2 is non-uniform, and d1> d2.
 ミラー間隔226_1,226_2は、半導体光源212の出射光を反射することができない。またブレードミラーの端部は中央に比べてミラーの精度が低い可能性がある。そこで、半導体光源212の光軸がミラー間隔226_i(i=1,2)を横切る期間を含むように、ブランク期間TBLANKiを定め、ブランク期間TBLANKiにおいて、半導体光源212を消灯する。その結果、ミラー間隔226_1に対応するブランク期間TBLANK1は、ミラー間隔226_2に対応するブランク期間TBLANK2よりも長い。
 TBLANK1>TBLANK2
The mirror spacing 226_1,226_2 cannot reflect the emitted light of the semiconductor light source 212. Also, the edge of the blade mirror may be less accurate than the center. Therefore, the blank period TBLANKi is set so as to include the period in which the optical axis of the semiconductor light source 212 crosses the mirror interval 226_i (i = 1, 2), and the semiconductor light source 212 is turned off in the blank period TBLANKi . As a result, the blank period TBLANK1 corresponding to the mirror interval 226_1 is longer than the blank period TBLANK2 corresponding to the mirror interval 226_1.
T BLANK1 > T BLANK2
 図22は、2つのブレード間隔に対応するブランク期間TBALNKを示す図である。BMは、半導体光源の光軸(ビームスポット)を示す。ブレードミラーが2枚の場合、モータ222の1回転の周期TROT中に、2回の走査周期TSCANが含まれる。モータが回転する度に、長いブランク期間TBLANK1と短いブランク期間TBLANK2が交互に発生する。 FIG. 22 is a diagram showing a blank period T BALNK corresponding to the distance between the two blades. BM indicates the optical axis (beam spot) of the semiconductor light source. When there are two blade mirrors, two scanning cycles T SCAN are included in the cycle TROT of one rotation of the motor 222. Each time the motor rotates, a long blank period TBLANK1 and a short blank period TBLANK2 are alternately generated.
 この構成によると、複数のブレードミラーの間隔を不均一化することで、長いブランク期間TBLANK1と短いブランク期間TBLANK2を意図的に作り出すことができる。これにより、長いブランク期間TBLANK1と、短いブランク期間TBLANK2とで、車両用灯具に異なる処理を実行させることができるようになり、信号処理のスケジューリングを最適化しやすくなる。 According to this configuration, a long blank period TBLANK1 and a short blank period TBLANK2 can be intentionally created by making the spacing between the plurality of blade mirrors non-uniform. As a result, it becomes possible to cause the vehicle lamp to perform different processing in the long blank period TBLANK1 and the short blank period TBLANK2 , and it becomes easy to optimize the scheduling of signal processing.
 以下、信号処理の具体例を説明する。 Hereinafter, a specific example of signal processing will be described.
・ショート異常検出
 上述のシリーズスイッチのショート異常検出の判定処理1で説明したように、半導体光源のブランク期間TBLANKを利用して、ショート異常検出を行う場合を考える。ブランク期間TBLANKは、モータの回転数に反比例して、ブランク期間が短くなるため、走査周波数を高めるほどショート異常検出が難しくなる。この場合に、複数のブランク期間TBLANK1,TBLANK2のうち、一方TBLANK2を短くする代わりに、他方TBLANK1を長くすることで、長い方のブランク期間TBLANK1を利用して、ショート異常検出を確実に行うことが可能となる。
-Short anomaly detection As described in the determination process 1 for short abnormality detection of the series switch described above, consider a case where short anomaly detection is performed by using the blank period TBLANK of the semiconductor light source. In the blank period TBLANK , the blank period is shortened in inverse proportion to the rotation speed of the motor. Therefore, the higher the scanning frequency, the more difficult it is to detect a short circuit abnormality. In this case, of the plurality of blank periods T BLANK1 and T BLANK2 , one of the T BLANK 2 is shortened, and the other T BLANK 1 is lengthened, so that the longer blank period T BLANK 1 is used to detect a short abnormality. It will be possible to do it reliably.
 車両用灯具のマイクロコントローラ304は、さまざまなタスク(処理)を実行する。マイクロコントローラ304は、複数のミラーの間隔のうち最も広い間隔に対応する最も長いブランク期間TBLANK1において、所定の処理を実行してもよい。たとえば、マイクロコントローラ304は、長いブランク期間TBLANK1に、相対的に重たいタスクを実行し、短いブランク期間TBLANK2に、相対的に軽いタスクを実行してもよい。 The microcontroller 304 for vehicle lighting performs various tasks (processes). The microcontroller 304 may perform a predetermined process in the longest blank period TBLANK1 corresponding to the widest spacing of the plurality of mirrors. For example, the microcontroller 304 may perform a relatively heavy task during a long blank period TBLANK1 and a relatively light task during a short blank period TBLANK2 .
 あるいは、モータの1回転ごとに1回の割合で、実行すべきタスクが存在する場合には、そのタスクを長いブランク期間TBLANK1において実行するようにしてもよい。 Alternatively, if there is a task to be executed at a rate of once for each rotation of the motor, the task may be executed in the long blank period TBLANK1 .
(ブランク期間の区別について)
 ミラー間隔を不均一化する場合、長いブランク期間と、短いブランク期間を区別して検出する必要がある。
(Regarding the distinction between blank periods)
When making the mirror spacing non-uniform, it is necessary to distinguish between long blank periods and short blank periods.
 一般的にはロータ側に永久磁石が設けられるモータの場合、モータの回転情報は、ホール素子を利用して取得することができる。多くのアプリケーションで、モータの極数は4極あるいはそれより極数が多いものが使用されるのが一般的である。図23(a)は、4極モータにおける位置検出を説明する図である。H+,H-は、ホール信号を、FG信号は、ホール信号の比較結果を示す。 Generally, in the case of a motor provided with a permanent magnet on the rotor side, the rotation information of the motor can be acquired by using a Hall element. In many applications, it is common to use a motor with four or more poles. FIG. 23A is a diagram illustrating position detection in a 4-pole motor. H + and H- indicate the hall signal, and the FG signal indicates the comparison result of the hall signal.
 4極モータの場合、ホール素子の出力H+(FG信号)は、モータの1回転内で同じ波形を2回繰り返す。したがって、ホール信号H+やFB信号にもとづいて、長いブランク期間と短いブランク期間を区別することができない。 In the case of a 4-pole motor, the output H + (FG signal) of the Hall element repeats the same waveform twice within one rotation of the motor. Therefore, it is not possible to distinguish between a long blank period and a short blank period based on the Hall signal H + or the FB signal.
 そこで、長いブランク期間と短いブランク期間を区別するために、2極モータを用いてもよい。図23(b)は、2極モータにおける回転検出を説明する図である。2極モータを用いることで、FG信号の周期が、モータの回転周期と一致するため、FG信号のエッジの位置にもとづいて、ブランク期間TBLANK1,TBLANK2を区別して検出することが可能となる。 Therefore, a two-pole motor may be used to distinguish between a long blank period and a short blank period. FIG. 23B is a diagram illustrating rotation detection in a two-pole motor. By using a two-pole motor, the cycle of the FG signal matches the rotation cycle of the motor, so it is possible to distinguish between the blank periods TBLANK1 and TBLANK2 based on the position of the edge of the FG signal. ..
 なお、ブランク期間TBLANK1,TBLANK2の検出方法はこれに限定されない。たとえば、半導体光源212とは別に、常時点灯する位置検出用光源と、位置検出用光源の出射光を検出する受光素子を、ブレードミラーを挟み込むように対向して設けてもよい。位置検出用光源の出射光がブレードミラーにより遮られる期間は、受光素子の出力はゼロとなり、位置検出用光源の出射光がミラー間隔を通過する期間は、受光素子の出力が非ゼロとなる。この受光素子の出力が非ゼロとなる時間の長さは、ミラー間隔の幅d1,d2に応じて異なるため、ブランク期間TBLANK1,TBLANK2を区別することが可能となる。 The method for detecting the blank periods T BLANK 1 and T BLANK 2 is not limited to this. For example, apart from the semiconductor light source 212, a position detection light source that is always lit and a light receiving element that detects the emitted light of the position detection light source may be provided facing each other so as to sandwich the blade mirror. The output of the light receiving element becomes zero during the period when the emitted light of the position detecting light source is blocked by the blade mirror, and the output of the light receiving element becomes non-zero during the period when the emitted light of the position detecting light source passes through the mirror interval. Since the length of time during which the output of the light receiving element becomes non-zero differs depending on the widths d1 and d2 of the mirror interval, it is possible to distinguish between the blank periods TBLNK1 and TBLANK2 .
 あるいは、モータのロータあるいはブレードに、位置検出用磁石を1個、追加し、ホール素子によって、位置検出用磁石の磁界を検出するようにしてもよい。 Alternatively, one position detection magnet may be added to the rotor or blade of the motor, and the magnetic field of the position detection magnet may be detected by the Hall element.
(オーバーシュートの抑制)
 シリーズスイッチによるPWM調光を行う場合、シリーズスイッチのターンオン直後に、駆動電流ILEDがオーバーシュートする場合がある。駆動電流ILEDがオーバーシュートすると、シリーズスイッチのオン時間が短い領域で、PWM調光のデューティサイクルと光量の線形性が失われ、階調制御ができなくなる。
(Suppression of overshoot)
When PWM dimming is performed by the series switch, the drive current I LED may overshoot immediately after the turn-on of the series switch. When the drive current I LED overshoots, the duty cycle of PWM dimming and the linearity of the amount of light are lost in the region where the on-time of the series switch is short, and gradation control becomes impossible.
 図24は、図8のLEDドライバ320AにおけるPWM調光にともなう駆動電流ILEDのオーバーシュートを説明する図である。時刻t~tのパルス調光信号PWM_DIMがオンレベル(ハイ)の間、半導体光源212には駆動電流ILEDが供給され、半導体光源212の電圧降下VLEDは、順方向電圧Vとなる。 FIG. 24 is a diagram illustrating overshoot of the drive current I LED due to PWM dimming in the LED driver 320A of FIG. While the pulse dimming signal PWM_DIM from time t 0 to t 1 is on level (high), the drive current I LED is supplied to the semiconductor light source 212, and the voltage drop V LED of the semiconductor light source 212 is the forward voltage VF . Become.
 時刻tにパルス調光信号PWM_DIMがオフレベル(ロー)に遷移すると、シリーズスイッチ323は直ちにオフする。一方、出力回路326のインダクタL1に蓄えられたエネルギーは、電流信号(コイル電流)Iとして出力回路326の出力キャパシタC1に供給され(ハッチングを付す)、出力キャパシタC1が充電される。その結果、出力キャパシタC1の電圧は、Vよりも、ΔVだけ高くなる。 When the pulse dimming signal PWM_DIM transitions to the off level (low) at time t1, the series switch 323 is immediately turned off. On the other hand, the energy stored in the inductor L1 of the output circuit 326 is supplied to the output capacitor C1 of the output circuit 326 as a current signal (coil current) IL (with hatching), and the output capacitor C1 is charged. As a result, the voltage of the output capacitor C1 is higher than VF by ΔV .
 時刻tにパルス調光信号PWM_DIMがオンレベル(ハイ)に遷移すると、シリーズスイッチ323がオンする。このとき、出力キャパシタC1の電圧は、V+ΔVからVに向かって低下する。つまり電位差ΔVに相当する電荷(ハッチングを付す)が、出力キャパシタC1からの放電電流は、シリーズスイッチ323を介して半導体光源212に流れ込む。半導体光源212に流れる駆動電流ILEDは、出力回路326のインダクタL1に流れる定電流Iと、出力キャパシタC1の放電電流IDISの合計となる。つまり出力キャパシタC1の余剰電荷(Q=ΔV×C1)に起因する放電電流が、駆動電流ILEDのオーバーシュートを引き起こす。 When the pulse dimming signal PWM_DIM transitions to the on level (high) at time t 2 , the series switch 323 turns on. At this time, the voltage of the output capacitor C1 decreases from VF + ΔV toward VF. That is, the electric charge (with hatching) corresponding to the potential difference ΔV, the discharge current from the output capacitor C1 flows into the semiconductor light source 212 via the series switch 323. The drive current I LED flowing through the semiconductor light source 212 is the sum of the constant current IL flowing through the inductor L1 of the output circuit 326 and the discharge current I DIS of the output capacitor C1. That is, the discharge current caused by the surplus charge (Q = ΔV × C1) of the output capacitor C1 causes the overshoot of the drive current I LED .
 以下、シリーズスイッチによる駆動電流ILEDのオーバーシュートを抑制する技術を説明する。 Hereinafter, a technique for suppressing overshoot of the drive current I LED by the series switch will be described.
 図25は、一実施形態に係るLEDドライバ320Dの回路図である。LEDドライバ320Dは、PWM信号(パルス調光信号)PWM_DIMに応じた間欠的な駆動電流ILEDを半導体光源212に供給する。LEDドライバ320Dは、降圧コンバータ322D、シリーズスイッチ323、ドライバ回路324を備える。 FIG. 25 is a circuit diagram of the LED driver 320D according to the embodiment. The LED driver 320D supplies an intermittent drive current I LED corresponding to the PWM signal (pulse dimming signal) PWM_DIM to the semiconductor light source 212. The LED driver 320D includes a buck converter 322D, a series switch 323, and a driver circuit 324.
 降圧コンバータ322Dは、出力回路326、コンバータコントローラ328に加えて、オーバーシュート抑制回路350を備える。 The buck converter 322D includes an overshoot suppression circuit 350 in addition to the output circuit 326 and the converter controller 328.
 オーバーシュート抑制回路350には、パルス調光信号PWM_DIMが入力されている。オーバーシュート抑制回路350は、シリーズスイッチ323がターンオンした直後の駆動電流ILEDのオーバーシュートが抑制されるように、パルス調光信号PWM_DIMと同期して、出力回路326およびコンバータコントローラ328の少なくとも一方に作用する。図中、破線(i)は、出力回路326に作用する機能あるいは構成を、破線(ii)は、コンバータコントローラ328に作用する機能あるいは構成を概念的に示している。「作用する」とは、あるノードの電圧を強制的に変化させること、回路素子の回路定数を変化させることなどを含みうる。 A pulse dimming signal PWM_DIM is input to the overshoot suppression circuit 350. The overshoot suppression circuit 350 is connected to at least one of the output circuit 326 and the converter controller 328 in synchronization with the pulse dimming signal PWM_DIM so that the overshoot of the drive current I LED immediately after the series switch 323 is turned on is suppressed. It works. In the figure, the broken line (i) conceptually shows the function or configuration acting on the output circuit 326, and the broken line (ii) conceptually shows the function or configuration acting on the converter controller 328. "Acting" may include forcibly changing the voltage of a certain node, changing the circuit constant of a circuit element, and the like.
 パルス調光信号PWM_DIMと同期して動作するオーバーシュート抑制回路350を設けることにより、シリーズスイッチ323のターンオン直後の駆動電流ILEDのオーバーシュートを抑制できる。 By providing the overshoot suppression circuit 350 that operates in synchronization with the pulse dimming signal PWM_DIM, it is possible to suppress the overshoot of the drive current I LED immediately after the turn-on of the series switch 323.
 以下、オーバーシュート抑制回路350の構成例を説明する。 Hereinafter, a configuration example of the overshoot suppression circuit 350 will be described.
(実施例1)
 実施例1では、オーバーシュート抑制回路350は、パルス調光信号PWM_DIMと同期して、出力回路326の出力キャパシタC1を放電し、降圧コンバータ322の出力電圧VOUTを強制的に変化させる。
(Example 1)
In the first embodiment, the overshoot suppression circuit 350 discharges the output capacitor C1 of the output circuit 326 in synchronization with the pulse dimming signal PWM_DIM, and forcibly changes the output voltage V OUT of the buck converter 322.
 図26は、実施例1に係るLEDドライバ320Daの回路図である。この実施例1において、オーバーシュート抑制回路350aは、出力回路326の出力ライン327と接続されている。オーバーシュート抑制回路350aは、シリーズスイッチ323のオフ期間の間、出力キャパシタC1を放電し、降圧コンバータ322の出力電圧VOUTを、シリーズスイッチ323のオン期間における降圧コンバータ322の出力電圧VOUTよりも低下させる。 FIG. 26 is a circuit diagram of the LED driver 320Da according to the first embodiment. In the first embodiment, the overshoot suppression circuit 350a is connected to the output line 327 of the output circuit 326. The overshoot suppression circuit 350a discharges the output capacitor C1 during the off period of the series switch 323, and makes the output voltage V OUT of the buck converter 322 higher than the output voltage V OUT of the buck converter 322 during the on period of the series switch 323. Decrease.
 図27は、図26のLEDドライバ320Daの動作波形図である。一点鎖線の駆動電流ILED’および出力電圧VOUT’は、オーバーシュート抑制回路350aを設けないときの波形(図24)を示す。 FIG. 27 is an operation waveform diagram of the LED driver 320Da of FIG. 26. The drive current I LED'and the output voltage V OUT ' of the alternate long and short dash line show the waveform (FIG. 24) when the overshoot suppression circuit 350a is not provided.
 パルス調光信号PWM_DIMがオンレベルである期間t~t、出力電圧VOUTはVとなる。 During the period t 0 to t 1 when the pulse dimming signal PWM_DIM is on level, the output voltage V OUT becomes VF.
 時刻tにパルス調光信号PWM_DIMがオフレベルに遷移する。オーバーシュート抑制回路350Daは、パルス調光信号PWM_DIMがオフレベル(ロー)となると、出力キャパシタC1を強制的に放電し、出力電圧VOUTを、破線の電圧レベルよりも強制的に低下させる。オフ期間中に、降圧コンバータ322Dの出力電圧VOUTを低下させておくことで、ターンオン直後に、出力キャパシタC1からの放電電流を減らすことができ、駆動電流ILEDのオーバーシュートを防止できる。また、オフ期間における出力電圧VOUTの電圧レベルVLOWを、Vより低く定めると、ターンオン直後に、降圧コンバータ322Dのコイル電流Iの一部が、出力回路326の出力キャパシタC1の充電に使われるため、これによりオーバーシュートをさらに抑制できる。 At time t1, the pulse dimming signal PWM_DIM transitions to the off level. The overshoot suppression circuit 350Da forcibly discharges the output capacitor C1 when the pulse dimming signal PWM_DIM becomes an off level (low), and forcibly lowers the output voltage V OUT below the voltage level of the broken line. By lowering the output voltage V OUT of the buck converter 322D during the off period, the discharge current from the output capacitor C1 can be reduced immediately after the turn-on, and the overshoot of the drive current I LED can be prevented. If the voltage level V LOW of the output voltage V OUT during the off period is set lower than VF, a part of the coil current IL of the buck converter 322D is used to charge the output capacitor C1 of the output circuit 326 immediately after the turn-on. As it is used, this can further suppress overshoot.
 図28は、オーバーシュート抑制回路350aの構成例を示す回路図である。オーバーシュート抑制回路350aは、第1キャパシタC11、第1スイッチSW11、第2スイッチSW12、スイッチコントローラ352を含む。第1キャパシタC11の第1端は接地される。オーバーシュート抑制回路350aは、パルス調光信号PWM_DIMがオンレベルであるとき、第1キャパシタC11の電荷を初期化し、パルス調光信号PWM_DIMがオフレベルであるとき、第1キャパシタC11の第2端を出力ライン327と接続する。 FIG. 28 is a circuit diagram showing a configuration example of the overshoot suppression circuit 350a. The overshoot suppression circuit 350a includes a first capacitor C11, a first switch SW11, a second switch SW12, and a switch controller 352. The first end of the first capacitor C11 is grounded. The overshoot suppression circuit 350a initializes the charge of the first capacitor C11 when the pulse dimming signal PWM_DIM is on level, and sets the second end of the first capacitor C11 when the pulse dimming signal PWM_DIM is off level. Connect to the output line 327.
 第1スイッチSW11は、キャパシタC11の第2端と出力ライン327の間に設けられ、第2スイッチSW12は、キャパシタC11の第2端と接地の間に設けられる。スイッチコントローラ352は、パルス調光信号PWM_DIMがオンレベルのとき、第1スイッチSW11をオフ、第2スイッチSW12をオンとし、パルス調光信号PWM_DIMがオフレベルのとき、第1スイッチSW11をオン、第2スイッチSW12をオフとする。 The first switch SW11 is provided between the second end of the capacitor C11 and the output line 327, and the second switch SW12 is provided between the second end of the capacitor C11 and the ground. The switch controller 352 turns off the first switch SW11 and turns on the second switch SW12 when the pulse dimming signal PWM_DIM is on level, and turns on the first switch SW11 when the pulse dimming signal PWM_DIM is off level. 2 Switch SW12 is turned off.
 図29は、図28のオーバーシュート抑制回路350aの動作波形図である。VC11は第1キャパシタC11の電圧を示す。パルス調光信号PWM_DIMがオンレベルの期間、第2スイッチSW12がオンとなり、第1キャパシタC11の電圧VC11が0Vとなる。パルス調光信号PWM_DIMがオフレベルの期間、第1スイッチSW11がオンとなり、第1キャパシタC11が出力キャパシタC1と接続され、出力キャパシタC1から第1キャパシタC11に電荷が転送される。これにより、出力キャパシタC1に発生する出力電圧VOUTが低下する。以上が図28のオーバーシュート抑制回路350aの動作波形図である。 FIG. 29 is an operation waveform diagram of the overshoot suppression circuit 350a of FIG. 28. VC11 indicates the voltage of the first capacitor C11 . During the period when the pulse dimming signal PWM_DIM is on level, the second switch SW12 is turned on, and the voltage VC11 of the first capacitor C11 becomes 0V. During the period when the pulse dimming signal PWM_DIM is off level, the first switch SW11 is turned on, the first capacitor C11 is connected to the output capacitor C1, and the charge is transferred from the output capacitor C1 to the first capacitor C11. As a result, the output voltage V OUT generated in the output capacitor C1 is reduced. The above is the operation waveform diagram of the overshoot suppression circuit 350a of FIG. 28.
 図30は、図28のオーバーシュート抑制回路350aの変形例(350a’)の回路図である。このオーバーシュート抑制回路350a’は、図28のオーバーシュート抑制回路350aに加えて、定電圧源354を含む。定電圧源354は、所定の電圧VADJを生成する。第2スイッチSW12は、第1キャパシタC11の第2端と定電圧源354の出力ノードの間に設けられる。 FIG. 30 is a circuit diagram of a modification (350a') of the overshoot suppression circuit 350a of FIG. 28. The overshoot suppression circuit 350a'includes a constant voltage source 354 in addition to the overshoot suppression circuit 350a of FIG. 28. The constant voltage source 354 produces a predetermined voltage V ADJ . The second switch SW12 is provided between the second end of the first capacitor C11 and the output node of the constant voltage source 354.
 図31は、図30のオーバーシュート抑制回路350a’の動作波形図である。パルス調光信号PWM_DIMがオンレベルの期間、第2スイッチSW12がオンとなり、第1キャパシタC11の電圧VC11が定電圧VADJとなる。パルス調光信号PWM_DIMがオフレベルの期間、第1スイッチSW11がオンとなり、第1キャパシタC11が出力キャパシタC1と接続され、出力キャパシタC1から第1キャパシタC11に電荷が転送される。これにより、出力キャパシタC1に発生する出力電圧VOUTが低下する。低下後の電圧レベルVLOW’は、定電圧VADJに応じて調整することができる。 FIG. 31 is an operation waveform diagram of the overshoot suppression circuit 350a'of FIG. 30. During the period when the pulse dimming signal PWM_DIM is on level, the second switch SW12 is turned on, and the voltage VC11 of the first capacitor C11 becomes the constant voltage VADJ. During the period when the pulse dimming signal PWM_DIM is off level, the first switch SW11 is turned on, the first capacitor C11 is connected to the output capacitor C1, and the charge is transferred from the output capacitor C1 to the first capacitor C11. As a result, the output voltage V OUT generated in the output capacitor C1 is reduced. The reduced voltage level V LOW'can be adjusted according to the constant voltage V ADJ .
(実施例2) (Example 2)
 図32は、実施例2に係るLEDドライバ320Dbの回路図である。実施例2では、実施例1と同様に、オーバーシュート抑制回路350bは、パルス調光信号PWM_DIMと同期して、出力キャパシタC1から電荷を強制的に放電するが、その放電のタイミングが異なる。 FIG. 32 is a circuit diagram of the LED driver 320Db according to the second embodiment. In the second embodiment, as in the first embodiment, the overshoot suppression circuit 350b forcibly discharges the electric charge from the output capacitor C1 in synchronization with the pulse dimming signal PWM_DIM, but the timing of the discharge is different.
 実施例2に係るLEDドライバ320Dbは、図26のLEDドライバ320Daと同様に構成できる。LEDドライバ320Dbは、オーバーシュート抑制回路350bを備える。 The LED driver 320Db according to the second embodiment can be configured in the same manner as the LED driver 320Da in FIG. The LED driver 320Db includes an overshoot suppression circuit 350b.
 オーバーシュート抑制回路350bは、シリーズスイッチ323のターンオンの直後、出力キャパシタC1を強制的に放電する。 The overshoot suppression circuit 350b forcibly discharges the output capacitor C1 immediately after the series switch 323 is turned on.
 図33は、実施例2に係るLEDドライバ320Dbの動作波形図である。一点鎖線の駆動電流ILED’は、オーバーシュート抑制回路350bを設けないときの波形(図24)を示す。 FIG. 33 is an operation waveform diagram of the LED driver 320Db according to the second embodiment. The drive current I LED'of the alternate long and short dash line shows the waveform (FIG. 24) when the overshoot suppression circuit 350b is not provided.
 時刻t~tのパルス調光信号PWM_DIMがオンレベル(ハイ)の間、半導体光源212には駆動電流ILEDが供給され、半導体光源212の電圧降下VLEDは、順方向電圧Vとなる。 While the pulse dimming signal PWM_DIM from time t 0 to t 1 is on level (high), the drive current I LED is supplied to the semiconductor light source 212, and the voltage drop V LED of the semiconductor light source 212 is the forward voltage VF . Become.
 時刻tにパルス調光信号PWM_DIMがオフレベル(ロー)に遷移すると、シリーズスイッチ323は直ちにオフする。一方、出力回路326のインダクタL1に蓄えられたエネルギーは、電流信号(コイル電流)Iとして出力回路326の出力キャパシタC1に供給され(ハッチングを付す)、出力キャパシタC1が充電される。その結果、出力キャパシタC1の電圧は、Vよりも、ΔVだけ高くなる。 When the pulse dimming signal PWM_DIM transitions to the off level (low) at time t1, the series switch 323 is immediately turned off. On the other hand, the energy stored in the inductor L1 of the output circuit 326 is supplied to the output capacitor C1 of the output circuit 326 as a current signal (coil current) IL (with hatching), and the output capacitor C1 is charged. As a result, the voltage of the output capacitor C1 is higher than VF by ΔV .
 時刻tにパルス調光信号PWM_DIMがオンレベル(ハイ)に遷移すると、シリーズスイッチ323がオンすると、出力キャパシタC1の電圧は、V+ΔVから、Vに向かって減少し、余剰電荷Q=ΔV×Cが、放電電流として放出される。 When the pulse dimming signal PWM_DIM transitions to the on level ( high ) at time t2, and when the series switch 323 is turned on, the voltage of the output capacitor C1 decreases from VF + ΔV toward VF, and the surplus charge Q = ΔV × C is emitted as a discharge current.
 このとき、オーバーシュート抑制回路350bは、出力キャパシタC1を強制的に放電する。オーバーシュート抑制回路350bは、シリーズスイッチ323のターンオン直後に、シンク電流ISINKを吸い込む電流源と把握することも可能である。これにより、半導体光源212に供給される電流の一部が、オーバーシュート抑制回路350bに流れ込むため、駆動電流ILEDのオーバーシュートを抑制できる。 At this time, the overshoot suppression circuit 350b forcibly discharges the output capacitor C1. The overshoot suppression circuit 350b can also be grasped as a current source that sucks in the sink current ISINK immediately after the turn-on of the series switch 323. As a result, a part of the current supplied to the semiconductor light source 212 flows into the overshoot suppression circuit 350b, so that the overshoot of the drive current I LED can be suppressed.
 図28に戻る。オーバーシュート抑制回路350bは、図28のオーバーシュート抑制回路350aと同様に構成される。ただしスイッチコントローラ352によるスイッチの制御が逆である。具体的には、オーバーシュート抑制回路350bのスイッチコントローラ352は、パルス調光信号PWM_DIMがオフレベルのとき、第1スイッチSW11をオフ、第2スイッチSW12をオンとし、パルス調光信号PWM_DIMがオンレベルのとき、第1スイッチSW11をオン、第2スイッチSW12をオフとする。 Return to Fig. 28. The overshoot suppression circuit 350b is configured in the same manner as the overshoot suppression circuit 350a of FIG. 28. However, the control of the switch by the switch controller 352 is reversed. Specifically, the switch controller 352 of the overshoot suppression circuit 350b turns off the first switch SW11 and turns on the second switch SW12 when the pulse dimming signal PWM_DIM is off level, and the pulse dimming signal PWM_DIM is on level. At this time, the first switch SW11 is turned on and the second switch SW12 is turned off.
 図34は、実施例2に係るオーバーシュート抑制回路350bの動作波形図である。パルス調光信号PWM_DIMがオフレベルの間、第2スイッチSW12が放電され、第1キャパシタC11の電圧VC11がゼロとなる。またパルス調光信号PWM_DIMがオフレベルの間、出力キャパシタC1は、Vfよりも高い電圧レベルをとる。 FIG. 34 is an operation waveform diagram of the overshoot suppression circuit 350b according to the second embodiment. While the pulse dimming signal PWM_DIM is off level, the second switch SW12 is discharged and the voltage VC11 of the first capacitor C11 becomes zero. Further, while the pulse dimming signal PWM_DIM is off level, the output capacitor C1 takes a voltage level higher than Vf.
 パルス調光信号PWM_DIMがオンレベルに遷移すると、出力キャパシタC1と第1キャパシタC11が接続され、電荷の移動が発生する。このときに、出力キャパシタC1から第1キャパシタC11に移動する電荷がシンク電流ISINKであり、このシンク電流ISINKよって出力キャパシタC1が放電される。 When the pulse dimming signal PWM_DIM transitions to the on-level, the output capacitor C1 and the first capacitor C11 are connected, and charge transfer occurs. At this time, the electric charge that moves from the output capacitor C1 to the first capacitor C11 is the sink current ISINK , and the output capacitor C1 is discharged by this sink current ISINK .
 なお、実施例2の変形例として、図30のオーバーシュート抑制回路350b’を用いてもよい。この場合、電圧VADJに応じて、シンク電流ISINKの量を調節できる。 As a modification of the second embodiment, the overshoot suppression circuit 350b'in FIG. 30 may be used. In this case, the amount of sink current ISINK can be adjusted according to the voltage V ADJ .
(実施例3)
 図35は、実施例3に係るLEDドライバ320Dcの回路図である。オーバーシュート抑制回路350cは、パルス調光信号PWM_DIMと同期して、コンバータコントローラ328に作用し、コンバータコントローラ328が生成するスイッチングトランジスタMHのデューティサイクルと相関を有する内部信号を変化させる。
(Example 3)
FIG. 35 is a circuit diagram of the LED driver 320Dc according to the third embodiment. The overshoot suppression circuit 350c acts on the converter controller 328 in synchronization with the pulse dimming signal PWM_DIM to change the internal signal having a correlation with the duty cycle of the switching transistor MH generated by the converter controller 328.
 コンバータコントローラ328は、エラーアンプ360、パルス幅変調器362、ドライバ364を含む。エラーアンプ360は、降圧コンバータ322の出力電流IOUTの検出値Vcsと目標値Vrefの誤差を増幅し、誤差信号Verrを生成する。パルス幅変調器362は、誤差信号Verrに応じたデューティサイクルを有するパルス信号Spwmを生成する。ドライバ364は、パルス信号Spwmに応じて、スイッチングトランジスタMHおよび同期整流トランジスタMLを駆動する。 The converter controller 328 includes an error amplifier 360, a pulse width modulator 362, and a driver 364. The error amplifier 360 amplifies the error between the detected value Vcs of the output current I OUT of the buck converter 322 and the target value Vref, and generates an error signal Verr. The pulse width modulator 362 generates a pulse signal Spwm having a duty cycle corresponding to the error signal Verr. The driver 364 drives the switching transistor MH and the synchronous rectifying transistor ML according to the pulse signal Spwm.
 オーバーシュート抑制回路350cは、コンバータコントローラ328に含まれるエラーアンプ360の出力信号、言い換えるとパルス幅変調器362の入力信号を、内部信号とすることができる。 The overshoot suppression circuit 350c can use the output signal of the error amplifier 360 included in the converter controller 328, in other words, the input signal of the pulse width modulator 362 as an internal signal.
 オーバーシュート抑制回路350cは、シリーズスイッチ323のオフ期間、内部信号である誤差電圧Verrを強制的に低下させる。 The overshoot suppression circuit 350c forcibly lowers the error voltage Verr, which is an internal signal, during the off period of the series switch 323.
 以上がLEDドライバ320Dcの構成である。続いてその動作を説明する。図36は、図35のLEDドライバ320Dcの動作波形図である。一点鎖線は、オーバーシュート抑制回路350cを設けないときの動作を示す。 The above is the configuration of the LED driver 320Dc. Next, the operation will be described. FIG. 36 is an operation waveform diagram of the LED driver 320Dc of FIG. 35. The alternate long and short dash line indicates the operation when the overshoot suppression circuit 350c is not provided.
 時刻t~tのパルス調光信号PWM_DIMがオンレベル(ハイ)の間、半導体光源212には駆動電流ILEDが供給され、出力電圧VOUTは順方向電圧Vとなる。 While the pulse dimming signal PWM_DIM from time t 0 to t 1 is on level (high), the drive current I LED is supplied to the semiconductor light source 212, and the output voltage V OUT becomes the forward voltage VF.
 時刻tにパルス調光信号PWM_DIMがオフレベル(ロー)に遷移すると、シリーズスイッチ323は直ちにオフする。一方、出力回路326のインダクタL1に蓄えられたエネルギーは、電流信号(コイル電流)Iとして出力回路326の出力キャパシタC1に供給され、出力キャパシタC1が充電される。その結果、出力キャパシタC1の電圧は、Vよりも、ΔVだけ高くなる。 When the pulse dimming signal PWM_DIM transitions to the off level (low) at time t1, the series switch 323 is immediately turned off. On the other hand, the energy stored in the inductor L1 of the output circuit 326 is supplied to the output capacitor C1 of the output circuit 326 as a current signal (coil current) IL, and the output capacitor C1 is charged. As a result, the voltage of the output capacitor C1 is higher than VF by ΔV .
 パルス調光信号PWM_DIMがオフレベルとなると、オーバーシュート抑制回路350cは、誤差電圧Verrを強制的に低下させる。 When the pulse dimming signal PWM_DIM becomes an off level, the overshoot suppression circuit 350c forcibly lowers the error voltage Verr.
 時刻tにパルス調光信号PWM_DIMがオンレベルに遷移する。このとき、出力キャパシタC1の余剰な電荷C1×ΔVが、放電電流IDISとして放出される。 At time t2, the pulse dimming signal PWM_DIM transitions to the on-level. At this time, the excess charge C1 × ΔV of the output capacitor C1 is discharged as the discharge current I DIS .
 一方、時刻tにパルス調光信号PWM_DIMがオンレベルに遷移したときに、誤差電圧Verrが低くなっているため、コイル電流Iの増加速度が、遅くなる。つまり、シリーズスイッチ323のターンオン直後は、コイル電流Iが少なくなる。その結果、コイル電流Iと出力キャパシタC1の放電電流IDISの合計である駆動電流ILEDのオーバーシュートが抑制される。 On the other hand, when the pulse dimming signal PWM_DIM transitions to the on - level at time t2, the error voltage Verr becomes low, so that the rate of increase of the coil current IL slows down. That is, immediately after the turn-on of the series switch 323, the coil current IL decreases. As a result, overshoot of the drive current I LED , which is the sum of the coil current IL and the discharge current I DIS of the output capacitor C1, is suppressed.
 図10の制御IC340を用いる場合、図10のトランスコンダクタンスアンプ330、サンプルホールド回路332、および抵抗Rc,キャパシタCcが、エラーアンプ360と把握される。また図10のオン時間制御部334はパルス幅変調器362と把握できる。したがって、オーバーシュート抑制回路350cは、図10のVcピンの電圧を内部信号として変化させればよい。 When the control IC 340 of FIG. 10 is used, the transconductance amplifier 330, the sample hold circuit 332, the resistor Rc, and the capacitor Cc of FIG. 10 are grasped as the error amplifier 360. Further, the on-time control unit 334 of FIG. 10 can be grasped as a pulse width modulator 362. Therefore, the overshoot suppression circuit 350c may change the voltage of the Vc pin in FIG. 10 as an internal signal.
 図37は、実施例3に係るオーバーシュート抑制回路350cの構成例を示す回路図である。上述のように、制御IC340は、Vcピンを有し、Vcピンには、フィードバックキャパシタCcが外付けされている。 FIG. 37 is a circuit diagram showing a configuration example of the overshoot suppression circuit 350c according to the third embodiment. As described above, the control IC 340 has a Vc pin, and a feedback capacitor Cc is externally attached to the Vc pin.
 オーバーシュート抑制回路350cは、第2キャパシタC12、第3スイッチSW13、第4スイッチSW14、スイッチコントローラ356を含む。第2キャパシタC12の第1端は接地される。第3スイッチSW13は、第2キャパシタC12の第2端とエラーアンプの出力であるVcピンの間に設けられる。第4スイッチSW14は、第2キャパシタC12の第2端と、接地の間に設けられる。 The overshoot suppression circuit 350c includes a second capacitor C12, a third switch SW13, a fourth switch SW14, and a switch controller 356. The first end of the second capacitor C12 is grounded. The third switch SW13 is provided between the second end of the second capacitor C12 and the Vc pin which is the output of the error amplifier. The fourth switch SW14 is provided between the second end of the second capacitor C12 and the ground.
 スイッチコントローラ356は、パルス調光信号PWM_DIMと同期して、第3スイッチSW13および第4スイッチSW14を相補的にスイッチングする。具体的には、スイッチコントローラ356は、パルス調光信号PWM_DIMがオンレベルであるとき、第3スイッチSW13をオフ、第4スイッチSW14をオンとして、第2キャパシタC12の電荷を初期化する。スイッチコントローラ356は、パルス調光信号PWM_DIMがオフレベルであるとき、第3スイッチSW13をオン、第4スイッチSW14をオフとして、第2キャパシタC12の第2端をエラーアンプの出力、すなわち制御IC340のVcピンと接続する。 The switch controller 356 complementaryly switches the third switch SW13 and the fourth switch SW14 in synchronization with the pulse dimming signal PWM_DIM. Specifically, the switch controller 356 initializes the charge of the second capacitor C12 by turning off the third switch SW13 and turning on the fourth switch SW14 when the pulse dimming signal PWM_DIM is on level. When the pulse dimming signal PWM_DIM is at the off level, the switch controller 356 turns on the third switch SW13 and turns off the fourth switch SW14, and outputs the second end of the second capacitor C12 to the output of the error amplifier, that is, the control IC 340. Connect with Vc pin.
 図38は、図37のオーバーシュート抑制回路350cの変形例(350c’)の回路図である。このオーバーシュート抑制回路350c’は、図37のオーバーシュート抑制回路350cに加えて、定電圧源358を含む。定電圧源358は、所定の電圧VADJを生成する。第4スイッチSW14は、第2キャパシタC12の第2端と定電圧源358の出力ノードの間に設けられる。 FIG. 38 is a circuit diagram of a modification (350c') of the overshoot suppression circuit 350c of FIG. 37. The overshoot suppression circuit 350c'includes a constant voltage source 358 in addition to the overshoot suppression circuit 350c of FIG. 37. The constant voltage source 358 produces a predetermined voltage V ADJ . The fourth switch SW14 is provided between the second end of the second capacitor C12 and the output node of the constant voltage source 358.
 この変形例によれば、電圧VADJの電圧レベルに応じて、誤差電圧Vcの低下幅を制御できる。 According to this modification, the amount of decrease in the error voltage Vc can be controlled according to the voltage level of the voltage VADJ .
(実施例4)
 図39は、実施例4に係るLEDドライバ320Ddの回路図である。実施例4に係るオーバーシュート抑制回路350dは、実施例3と同様に、パルス調光信号PWM_DIMと同期して、内部信号Verrを強制的に低下させるが、その動作タイミングが異なる。具体的には、オーバーシュート抑制回路350dは、シリーズスイッチ323のターンオン直後に、シンク電流ISINKを生成し、内部信号Verrを低下させる。
(Example 4)
FIG. 39 is a circuit diagram of the LED driver 320Dd according to the fourth embodiment. Similar to the third embodiment, the overshoot suppression circuit 350d according to the fourth embodiment forcibly lowers the internal signal Verr in synchronization with the pulse dimming signal PWM_DIM, but the operation timing thereof is different. Specifically, the overshoot suppression circuit 350d generates a sink current ISINK immediately after the turn-on of the series switch 323, and lowers the internal signal Verr.
 図40は、図39のLEDドライバ320Ddの動作波形図である。一点鎖線は、オーバーシュート抑制回路350dを設けないときの動作を示す。 FIG. 40 is an operation waveform diagram of the LED driver 320Dd of FIG. 39. The alternate long and short dash line indicates the operation when the overshoot suppression circuit 350d is not provided.
 時刻t~tのパルス調光信号PWM_DIMがオンレベル(ハイ)の間、半導体光源212には駆動電流ILEDが供給され、出力電圧VOUTは順方向電圧Vとなる。 While the pulse dimming signal PWM_DIM from time t 0 to t 1 is on level (high), the drive current I LED is supplied to the semiconductor light source 212, and the output voltage V OUT becomes the forward voltage VF.
 時刻tにパルス調光信号PWM_DIMがオフレベル(ロー)に遷移すると、シリーズスイッチ323は直ちにオフする。一方、出力回路326のインダクタL1に蓄えられたエネルギーは、電流信号(コイル電流)Iとして出力回路326の出力キャパシタC1に供給され、出力キャパシタC1が充電される。その結果、出力キャパシタC1の電圧は、Vよりも、ΔVだけ高くなる。 When the pulse dimming signal PWM_DIM transitions to the off level (low) at time t1, the series switch 323 is immediately turned off. On the other hand, the energy stored in the inductor L1 of the output circuit 326 is supplied to the output capacitor C1 of the output circuit 326 as a current signal (coil current) IL, and the output capacitor C1 is charged. As a result, the voltage of the output capacitor C1 is higher than VF by ΔV .
 時刻tにパルス調光信号PWM_DIMがオンレベルに遷移する。このとき、出力キャパシタC1の余剰な電荷C1×ΔVが、放電電流IDISとして放出される。 At time t2, the pulse dimming signal PWM_DIM transitions to the on-level. At this time, the excess charge C1 × ΔV of the output capacitor C1 is discharged as the discharge current I DIS .
 一方、時刻tにパルス調光信号PWM_DIMがオンレベルに遷移すると、誤差電圧Verrが強制的に低下させられる。これにより、コイル電流Iの増加速度が、遅くなる。つまり、シリーズスイッチ323のターンオン直後は、コイル電流Iが少なくなる。その結果、コイル電流Iと出力キャパシタC1の放電電流IDISの合計である駆動電流ILEDのオーバーシュートが抑制される。 On the other hand, when the pulse dimming signal PWM_DIM transitions to the on - level at time t2, the error voltage Verr is forcibly lowered. As a result, the rate of increase of the coil current IL slows down. That is, immediately after the turn-on of the series switch 323, the coil current IL decreases. As a result, overshoot of the drive current I LED , which is the sum of the coil current IL and the discharge current I DIS of the output capacitor C1, is suppressed.
 オーバーシュート抑制回路350dは、図37のオーバーシュート抑制回路350cあるいは図38のオーバーシュート抑制回路350c’と同様に構成することができ、スイッチSW13とS14を、実施例3と逆相で動作させればよい。 The overshoot suppression circuit 350d can be configured in the same manner as the overshoot suppression circuit 350c of FIG. 37 or the overshoot suppression circuit 350c'of FIG. 38, and the switches SW13 and S14 can be operated in the opposite phase to that of the third embodiment. Just do it.
 すなわち、オーバーシュート抑制回路350dのスイッチコントローラ356は、パルス調光信号PWM_DIMがオフレベルであるとき、第3スイッチSW13をオフ、第4スイッチSW14をオンとして、第2キャパシタC12の電荷を初期化する。またスイッチコントローラ356は、パルス調光信号PWM_DIMがオンレベルであるとき、第3スイッチSW13をオン、第4スイッチSW14をオフとして、第2キャパシタC12の第2端をエラーアンプの出力、すなわち制御IC340のVcピンと接続する。これにより、シリーズスイッチ323のターンオン直後に、内部信号である誤差電圧Verrを低下させることができる。 That is, the switch controller 356 of the overshoot suppression circuit 350d initializes the charge of the second capacitor C12 by turning off the third switch SW13 and turning on the fourth switch SW14 when the pulse dimming signal PWM_DIM is at the off level. .. Further, the switch controller 356 turns on the third switch SW13 and turns off the fourth switch SW14 when the pulse dimming signal PWM_DIM is on level, and outputs the second end of the second capacitor C12 to the output of the error amplifier, that is, the control IC 340. Connect to the Vc pin of. As a result, the error voltage Verr, which is an internal signal, can be reduced immediately after the turn-on of the series switch 323.
 図24~図40を参照して説明したオーバーシュート抑制機能付きのLEDドライバ320Dは、スキャン方式の車両用灯具と好適に組み合わせることができるが、それに限定されない。たとえばアレイ型の車両用灯具において、PWM調光の周波数を数kHz~数十kHzと高く設定した場合には、シリーズスイッチによりPWM調光することが有効であり、その際に、駆動電流ILEDのオーバーシュートを抑制するために、LEDドライバ320Dを用いることができる。 The LED driver 320D with an overshoot suppression function described with reference to FIGS. 24 to 40 can be suitably combined with, but is not limited to, a scanning type vehicle lamp. For example, in an array type vehicle lighting equipment, when the frequency of PWM dimming is set as high as several kHz to several tens of kHz, it is effective to perform PWM dimming with a series switch, and at that time, the drive current I LED . The LED driver 320D can be used to suppress the overshoot.
 実施の形態は、本発明の原理、応用を示しているにすぎず、実施の形態には、請求の範囲に規定された本発明の思想を逸脱しない範囲において、多くの変形例や配置の変更が認められる。 The embodiments merely show the principles and applications of the present invention, and the embodiments include many modifications and arrangement changes within a range that does not deviate from the ideas of the present invention defined in the claims. Is recognized.
 本開示は、自動車などに用いられる車両用灯具に関する。 This disclosure relates to lighting fixtures for vehicles used in automobiles and the like.
S1…センサ情報、S2…車両情報、S3…配光パターン情報、S4…位置検出信号、PWM_DIM…パルス調光信号、100…車両用灯具、200…走査型光源、210…光源ユニット、212…半導体光源、220…走査光学系、222…モータ、224…ブレードミラー、226…ミラー間隔、230…投影光学系、300…点灯回路、302…位置検出器、310…PWM信号生成部、320…LEDドライバ、322…降圧コンバータ、323…シリーズスイッチ、324…ドライバ回路、326…出力回路、328…コンバータコントローラ、330…トランスコンダクタンスアンプ、332…サンプルホールド回路、334…オン時間制御部、336…ゲートドライバ、340…制御IC、350…オーバーシュート抑制回路、370…異常検出回路、400…配光コントローラ、900…仮想鉛直スクリーン。 S1 ... Sensor information, S2 ... Vehicle information, S3 ... Light distribution pattern information, S4 ... Position detection signal, PWM_DIM ... Pulse dimming signal, 100 ... Vehicle optics, 200 ... Scanning light source, 210 ... Light source unit, 212 ... Semiconductor Light source, 220 ... scanning optical system, 222 ... motor, 224 ... blade mirror, 226 ... mirror spacing, 230 ... projection optical system, 300 ... lighting circuit, 302 ... position detector, 310 ... PWM signal generator, 320 ... LED driver 322 ... Step-down converter, 323 ... Series switch, 324 ... Driver circuit, 326 ... Output circuit, 328 ... Converter controller, 330 ... Transconductance amplifier, 332 ... Sample hold circuit, 334 ... On-time control unit, 336 ... Gate driver, 340 ... control IC, 350 ... overshoot suppression circuit, 370 ... abnormality detection circuit, 400 ... light distribution controller, 900 ... virtual vertical screen.

Claims (40)

  1.  半導体光源を含み、前記半導体光源の出射光を走査する走査型光源と、
     前記走査型光源の走査と同期して、各走査位置における前記半導体光源の光量をパルス変調により多階調で調光可能な点灯回路と、
     を備え、
     前記点灯回路は、
     前記半導体光源と直列に設けられるシリーズスイッチと、
     前記シリーズスイッチと前記半導体光源の直列接続回路と接続される定電流出力の降圧コンバータと、
     目的配光が得られるようにパルス変調されたパルス調光信号にもとづいて前記シリーズスイッチを駆動するドライバ回路と、
     を備えることを特徴とする車両用灯具。
    A scanning light source that includes a semiconductor light source and scans the emitted light of the semiconductor light source,
    A lighting circuit that can adjust the amount of light of the semiconductor light source at each scanning position in multiple gradations by pulse modulation in synchronization with the scanning of the scanning type light source.
    Equipped with
    The lighting circuit is
    A series switch provided in series with the semiconductor light source,
    A constant current output buck converter connected to the series switch and the series connection circuit of the semiconductor light source, and
    A driver circuit that drives the series switch based on a pulse dimming signal pulse-modulated so that the desired light distribution can be obtained.
    A vehicle lighting fixture characterized by being equipped with.
  2.  前記走査型光源は、前記半導体光源を複数個、含んでおり、
     前記点灯回路は、前記半導体光源ごとに設けられることを特徴とする請求項1に記載の車両用灯具。
    The scanning light source includes a plurality of the semiconductor light sources.
    The vehicle lamp according to claim 1, wherein the lighting circuit is provided for each semiconductor light source.
  3.  前記降圧コンバータは、
     スイッチングトランジスタを含む出力回路と、
     前記シリーズスイッチのオン期間における前記降圧コンバータの出力電流の検出値が、所定の目標値に近づくように、前記スイッチングトランジスタをスイッチング駆動するコンバータコントローラと、
     を含むことを特徴とする請求項1または2に記載の車両用灯具。
    The buck converter
    An output circuit including a switching transistor and
    A converter controller that switches and drives the switching transistor so that the detected value of the output current of the buck converter during the on period of the series switch approaches a predetermined target value.
    The vehicle lamp according to claim 1 or 2, wherein the lamp comprises the above.
  4.  前記コンバータコントローラは、前記シリーズスイッチのオフ期間の間、前記スイッチングトランジスタのスイッチング駆動を停止することを特徴とする請求項3に記載の車両用灯具。 The vehicle lamp according to claim 3, wherein the converter controller stops the switching drive of the switching transistor during the off period of the series switch.
  5.  前記出力回路は、前記スイッチングトランジスタに加えて同期整流トランジスタを含み、前記コンバータコントローラは、前記シリーズスイッチのオフ期間の間、前記スイッチングトランジスタと前記同期整流トランジスタをオフに固定することを特徴とする請求項3に記載の車両用灯具。 The output circuit includes a synchronous rectifying transistor in addition to the switching transistor, and the converter controller is characterized in that the switching transistor and the synchronous rectifying transistor are fixed off during the off period of the series switch. The vehicle lighting equipment according to Item 3.
  6.  半導体光源と、
     前記半導体光源の光量をパルス変調により多階調で調光可能な点灯回路と、
     を備え、
     前記点灯回路は、
     前記半導体光源と直列に設けられるシリーズスイッチと、
     前記シリーズスイッチと前記半導体光源の直列接続回路と接続される定電流出力の降圧コンバータと、
     パルス変調されたパルス調光信号にもとづいて前記シリーズスイッチを駆動するドライバ回路と、
     を備え、
     前記降圧コンバータは、
     スイッチングトランジスタおよび出力キャパシタを含む出力回路と、
     前記シリーズスイッチのオン期間における前記降圧コンバータの出力電流の検出値が、所定の目標値に近づくように、前記スイッチングトランジスタをフィードバック制御するコンバータコントローラと、
     前記半導体光源に流れる駆動電流の前記シリーズスイッチがターンオンした直後のオーバーシュートが抑制されるように、前記パルス調光信号と同期して、前記出力回路および前記コンバータコントローラの少なくとも一方に作用するオーバーシュート抑制回路と、
     を備えることを特徴とする車両用灯具。
    With a semiconductor light source
    A lighting circuit that can adjust the amount of light from the semiconductor light source in multiple gradations by pulse modulation.
    Equipped with
    The lighting circuit is
    A series switch provided in series with the semiconductor light source,
    A constant current output buck converter connected to the series switch and the series connection circuit of the semiconductor light source, and
    A driver circuit that drives the series switch based on a pulse-modulated pulse dimming signal,
    Equipped with
    The buck converter
    An output circuit that includes a switching transistor and an output capacitor,
    A converter controller that feedback-controls the switching transistor so that the detected value of the output current of the buck converter during the on period of the series switch approaches a predetermined target value.
    Overshoot acting on at least one of the output circuit and the converter controller in synchronization with the pulse dimming signal so that the overshoot of the drive current flowing through the semiconductor light source immediately after the series switch is turned on is suppressed. Suppression circuit and
    A vehicle lighting fixture characterized by being equipped with.
  7.  前記オーバーシュート抑制回路は、前記パルス調光信号と同期して、前記出力キャパシタを放電することを特徴とする請求項6に記載の車両用灯具。 The vehicle lamp according to claim 6, wherein the overshoot suppression circuit discharges the output capacitor in synchronization with the pulse dimming signal.
  8.  前記オーバーシュート抑制回路は、前記シリーズスイッチのオフ期間の間、前記出力キャパシタを放電することを特徴とする請求項7に記載の車両用灯具。 The vehicle lamp according to claim 7, wherein the overshoot suppression circuit discharges the output capacitor during the off period of the series switch.
  9.  前記オーバーシュート抑制回路は、第1端が接地された第1キャパシタを含み、前記パルス調光信号が前記シリーズスイッチのオンを指示するオンレベルであるとき、前記第1キャパシタの電荷を初期化し、前記パルス調光信号が前記シリーズスイッチのオフを指示するオフレベルであるとき、前記第1キャパシタの第2端を前記出力キャパシタと接続することを特徴とする請求項8に記載の車両用灯具。 The overshoot suppression circuit includes a first capacitor whose first end is grounded and initializes the charge of the first capacitor when the pulse dimming signal is on level indicating the on level of the series switch. The vehicle lamp according to claim 8, wherein the second end of the first capacitor is connected to the output capacitor when the pulse dimming signal is at an off level indicating the off of the series switch.
  10.  前記オーバーシュート抑制回路は、前記シリーズスイッチのターンオンの直後、前記出力キャパシタから電流をシンクすることを特徴とする請求項6または7に記載の車両用灯具。 The vehicle lamp according to claim 6 or 7, wherein the overshoot suppression circuit sinks a current from the output capacitor immediately after the turn-on of the series switch.
  11.  前記オーバーシュート抑制回路は、第1端が接地された第1キャパシタを含み、前記パルス調光信号が前記シリーズスイッチのオフを指示するオフレベルであるとき、前記第1キャパシタの電荷を初期化し、前記パルス調光信号が前記シリーズスイッチのオンを指示するオフレベルであるとき、前記第1キャパシタの第2端を前記出力キャパシタと接続することを特徴とする請求項7に記載の車両用灯具。 The overshoot suppression circuit initializes the charge of the first capacitor when the first end includes a grounded first capacitor and the pulse dimming signal is at an off level indicating the series switch to be off. The vehicle lamp according to claim 7, wherein the second end of the first capacitor is connected to the output capacitor when the pulse dimming signal is at an off level indicating the on of the series switch.
  12.  前記オーバーシュート抑制回路は、
     前記第1キャパシタの第2端と前記降圧コンバータの出力ラインの間に設けられた第1スイッチと、
     前記第1キャパシタの前記第2端と定電圧ノードの間に設けられた第2スイッチと、
     を含むことを特徴とする請求項11に記載の車両用灯具。
    The overshoot suppression circuit is
    A first switch provided between the second end of the first capacitor and the output line of the buck converter,
    A second switch provided between the second end of the first capacitor and the constant voltage node,
    11. The vehicle lighting fixture according to claim 11.
  13.  前記定電圧ノードは接地ラインであることを特徴とする請求項12に記載の車両用灯具。 The vehicle lamp according to claim 12, wherein the constant voltage node is a grounding line.
  14.  前記定電圧ノードは、定電圧源の出力であることを特徴とする請求項12に記載の車両用灯具。 The vehicle lamp according to claim 12, wherein the constant voltage node is an output of a constant voltage source.
  15.  前記オーバーシュート抑制回路は、前記コンバータコントローラに作用し、前記コンバータコントローラが生成する前記スイッチングトランジスタのデューティサイクルと相関を有する内部信号を変化させることを特徴とする請求項6に記載の車両用灯具。 The vehicle lamp according to claim 6, wherein the overshoot suppression circuit acts on the converter controller and changes an internal signal having a correlation with the duty cycle of the switching transistor generated by the converter controller.
  16.  前記オーバーシュート抑制回路は、前記シリーズスイッチのオフ期間、前記内部信号を強制的に低下させることを特徴とする請求項15に記載の車両用灯具。 The vehicle lamp according to claim 15, wherein the overshoot suppression circuit forcibly lowers the internal signal during the off period of the series switch.
  17.  前記コンバータコントローラは、
     前記降圧コンバータの出力電流の前記検出値と前記目標値の誤差に応じた誤差信号を生成するエラーアンプと、
     前記エラーアンプの出力と接続されるフィードバックキャパシタと、
     前記フィードバックキャパシタの電圧に応じたデューティサイクルを有するパルス信号を生成するパルス変調器と、
     を含み、
     前記オーバーシュート抑制回路は、第1端が接地された第2キャパシタを含み、前記パルス調光信号が前記シリーズスイッチのオンを指示するオンレベルであるとき、前記第2キャパシタの電荷を初期化し、前記パルス調光信号が前記シリーズスイッチのオフを指示するオフレベルであるとき、前記第2キャパシタの第2端を前記エラーアンプの出力と接続することを特徴とする請求項6、15、16のいずれかに記載の車両用灯具。
    The converter controller is
    An error amplifier that generates an error signal according to an error between the detected value of the output current of the buck converter and the target value, and an error amplifier.
    The feedback capacitor connected to the output of the error amplifier and
    A pulse modulator that generates a pulse signal having a duty cycle corresponding to the voltage of the feedback capacitor, and
    Including
    The overshoot suppression circuit includes a second capacitor whose first end is grounded and initializes the charge of the second capacitor when the pulse dimming signal is on level indicating the on level of the series switch. 13. Vehicle lighting fixtures listed in either.
  18.  前記オーバーシュート抑制回路は、前記シリーズスイッチのターンオン直後、前記内部信号を強制的に低下させることを特徴とする請求項15に記載の車両用灯具。 The vehicle lighting device according to claim 15, wherein the overshoot suppression circuit forcibly lowers the internal signal immediately after the turn-on of the series switch.
  19.  前記コンバータコントローラは、
     前記降圧コンバータの出力電流の前記検出値と前記目標値の誤差に応じた誤差信号を生成するエラーアンプと、
     前記エラーアンプの出力と接続されるフィードバックキャパシタと、
     前記フィードバックキャパシタの電圧に応じたデューティサイクルを有するパルス信号を生成するパルス変調器と、
     を含み、
     前記オーバーシュート抑制回路は、第1端が接地された第2キャパシタを含み、前記パルス調光信号が、前記シリーズスイッチのオフを指示するオフレベルであるとき、前記第2キャパシタの電荷を初期化し、前記パルス調光信号が、前記シリーズスイッチのオンを指示するオンレベルであるとき、前記第2キャパシタの第2端を前記エラーアンプの出力と接続することを特徴とする請求項6、15、18のいずれかに記載の車両用灯具。
    The converter controller is
    An error amplifier that generates an error signal according to an error between the detected value of the output current of the buck converter and the target value, and an error amplifier.
    The feedback capacitor connected to the output of the error amplifier and
    A pulse modulator that generates a pulse signal having a duty cycle corresponding to the voltage of the feedback capacitor, and
    Including
    The overshoot suppression circuit includes a second capacitor whose first end is grounded and initializes the charge of the second capacitor when the pulse dimming signal is at an off level indicating the series switch to be off. 6, 15, wherein the second end of the second capacitor is connected to the output of the error amplifier when the pulse dimming signal is on level indicating the on level of the series switch. The vehicle lighting fixture according to any one of 18.
  20.  前記オーバーシュート抑制回路は、
     前記第2キャパシタの第2端と前記エラーアンプの前記出力の間に設けられた第3スイッチと、
     前記第2キャパシタの前記第2端と定電圧ノードの間に設けられた第4スイッチと、
     を含むことを特徴とする請求項17または19に記載の車両用灯具。
    The overshoot suppression circuit is
    A third switch provided between the second end of the second capacitor and the output of the error amplifier,
    A fourth switch provided between the second end of the second capacitor and the constant voltage node,
    The vehicle lamp according to claim 17 or 19, wherein the lamp comprises the above.
  21.  前記定電圧ノードは接地ラインであることを特徴とする請求項20に記載の車両用灯具。 The vehicle lamp according to claim 20, wherein the constant voltage node is a grounding line.
  22.  前記定電圧ノードは、定電圧源の出力であることを特徴とする請求項20に記載の車両用灯具。 The vehicle lamp according to claim 20, wherein the constant voltage node is an output of a constant voltage source.
  23.  半導体光源の光量をパルス変調により多階調で調光可能な点灯回路であって、
     前記半導体光源と直列に設けられるシリーズスイッチと、
     前記シリーズスイッチと前記半導体光源の直列接続回路と接続される定電流出力の降圧コンバータと、
     パルス変調されたパルス調光信号にもとづいて前記シリーズスイッチを駆動するドライバ回路と、
     を備え、
     前記降圧コンバータは、
     スイッチングトランジスタを含む出力回路と、
     前記シリーズスイッチのオン期間における前記降圧コンバータの出力電流の検出値が、所定の目標値に近づくように、前記スイッチングトランジスタをフィードバック制御するコンバータコントローラと、
     前記半導体光源に流れる駆動電流の前記シリーズスイッチがターンオンした直後のオーバーシュートが抑制されるように、前記パルス調光信号と同期して、前記出力回路および前記コンバータコントローラの少なくとも一方に作用するオーバーシュート抑制回路と、
     を備えることを特徴とする点灯回路。
    It is a lighting circuit that can adjust the amount of light of a semiconductor light source in multiple gradations by pulse modulation.
    A series switch provided in series with the semiconductor light source,
    A constant current output buck converter connected to the series switch and the series connection circuit of the semiconductor light source, and
    A driver circuit that drives the series switch based on a pulse-modulated pulse dimming signal,
    Equipped with
    The buck converter
    An output circuit including a switching transistor and
    A converter controller that feedback-controls the switching transistor so that the detected value of the output current of the buck converter during the on period of the series switch approaches a predetermined target value.
    Overshoot acting on at least one of the output circuit and the converter controller in synchronization with the pulse dimming signal so that the overshoot of the drive current flowing through the semiconductor light source immediately after the series switch is turned on is suppressed. Suppression circuit and
    A lighting circuit characterized by being provided with.
  24.  半導体光源と、
     前記半導体光源の光量をパルス変調により多階調で調光可能な点灯回路と、
     を備え、
     前記点灯回路は、
     前記半導体光源と直列に設けられるシリーズスイッチと、
     前記シリーズスイッチと前記半導体光源の直列接続回路と接続され、(i)前記シリーズスイッチのオン期間において定電流を出力し、(ii)前記シリーズスイッチのオフ期間においてスイッチング動作を停止し、直前のオン期間と実質的に同じ出力電圧を維持する降圧コンバータと、
     パルス変調されたパルス調光信号にもとづいて前記シリーズスイッチを駆動するドライバ回路と、
     前記シリーズスイッチのオフ期間における前記降圧コンバータの前記出力電圧が正常範囲から逸脱すると、前記シリーズスイッチの異常と判定する異常検出回路と、
     を備えることを特徴とする車両用灯具。
    With a semiconductor light source
    A lighting circuit that can adjust the amount of light from the semiconductor light source in multiple gradations by pulse modulation.
    Equipped with
    The lighting circuit is
    A series switch provided in series with the semiconductor light source,
    It is connected to the series connection circuit of the series switch and the semiconductor light source, (i) outputs a constant current during the on period of the series switch, (ii) stops the switching operation during the off period of the series switch, and turns on immediately before. With a buck converter that maintains substantially the same output voltage as the period,
    A driver circuit that drives the series switch based on a pulse-modulated pulse dimming signal,
    An abnormality detection circuit that determines that the series switch is abnormal when the output voltage of the buck converter deviates from the normal range during the off period of the series switch.
    A vehicle lighting fixture characterized by being equipped with.
  25.  前記異常検出回路は、前記シリーズスイッチのオフ期間において前記降圧コンバータの前記出力電圧が、所定のしきい値を下回ることを異常判定の条件とすることを特徴とする請求項24に記載の車両用灯具。 24. The vehicle according to claim 24, wherein the abnormality detection circuit is characterized in that the output voltage of the buck converter is below a predetermined threshold value during the off period of the series switch, which is a condition for determining the abnormality. Lighting equipment.
  26.  前記所定のしきい値は、前記半導体光源の点灯開始電圧より高く、前記半導体光源の点灯時の順方向電圧より低いことを特徴とする請求項25に記載の車両用灯具。 The vehicle lamp according to claim 25, wherein the predetermined threshold value is higher than the lighting start voltage of the semiconductor light source and lower than the forward voltage when the semiconductor light source is lit.
  27.  前記半導体光源の出射光を走査する走査光学系をさらに備え、
     前記パルス調光信号は、走査と走査の区切れ目において所定期間、前記シリーズスイッチがオフするように生成され、
     前記異常検出回路は、前記所定期間における前記降圧コンバータの前記出力電圧にもとづいて前記シリーズスイッチの異常を検出することを特徴とする請求項25または26に記載の車両用灯具。
    Further, a scanning optical system for scanning the emitted light of the semiconductor light source is provided.
    The pulse dimming signal is generated so that the series switch is turned off for a predetermined period of time at the scan-scan break.
    The vehicle lamp according to claim 25 or 26, wherein the abnormality detection circuit detects an abnormality of the series switch based on the output voltage of the buck converter in the predetermined period.
  28.  前記異常検出回路は、
     前記所定期間において、前記出力電圧が前記しきい値を下回ると仮判定状態とし、
     所定数の走査にわたり前記仮判定状態が成立すると、本判定することを特徴とする請求項27に記載の車両用灯具。
    The abnormality detection circuit is
    If the output voltage falls below the threshold value in the predetermined period, a provisional determination state is set.
    The vehicle lamp according to claim 27, wherein when the provisional determination state is established over a predetermined number of scans, the determination is made.
  29.  前記異常検出回路は、
     前記降圧コンバータの前記出力電圧を前記しきい値と比較し、前記降圧コンバータの前記出力電圧が前記しきい値より低いときに所定レベルとなる検出信号を生成する比較回路と、
     前記所定期間において前記検出信号が前記所定レベルとなると、前記仮判定状態とし、前記所定数の走査にわたり前記仮判定状態が成立すると、本判定する信号処理部と、
     を含むことを特徴とする請求項28に記載の車両用灯具。
    The abnormality detection circuit is
    A comparison circuit that compares the output voltage of the buck converter with the threshold value and generates a detection signal that becomes a predetermined level when the output voltage of the buck converter is lower than the threshold value.
    When the detection signal reaches the predetermined level in the predetermined period, the provisional determination state is set, and when the provisional determination state is established over the predetermined number of scans, the signal processing unit for the determination is performed.
    28. The vehicle lighting fixture according to claim 28.
  30.  前記異常検出回路は、前記降圧コンバータの出力電圧が一定でないことを異常判定の条件とすることを特徴とする請求項24に記載の車両用灯具。 The vehicle lamp according to claim 24, wherein the abnormality detection circuit is characterized in that the output voltage of the buck converter is not constant as a condition for determining an abnormality.
  31.  前記異常検出回路は、前記降圧コンバータの出力電圧がスイッチングする状態が、所定の判定時間にわたり持続することを異常判定の条件とすることを特徴とする請求項24に記載の車両用灯具。 The vehicle lamp according to claim 24, wherein the abnormality detection circuit is characterized in that the state in which the output voltage of the buck converter is switched is maintained for a predetermined determination time as a condition for abnormality determination.
  32.  前記異常検出回路は、
     前記降圧コンバータの前記出力電圧を前記しきい値と比較し、前記降圧コンバータの前記出力電圧が前記しきい値より低いときに所定レベルとなる検出信号を生成する比較回路と、
     前記検出信号がパルス信号である状態が所定時間持続すると、異常状態と本判定する信号処理部と、
     を含むことを特徴とする請求項30または31に記載の車両用灯具。
    The abnormality detection circuit is
    A comparison circuit that compares the output voltage of the buck converter with the threshold value and generates a detection signal that becomes a predetermined level when the output voltage of the buck converter is lower than the threshold value.
    When the state in which the detection signal is a pulse signal continues for a predetermined time, the signal processing unit that determines this as an abnormal state and
    30 or 31 for a vehicle according to claim 30 or 31.
  33.  前記異常検出回路は、
     前記降圧コンバータの前記出力電圧を前記しきい値と比較し、前記降圧コンバータの前記出力電圧が前記しきい値より低いときに所定レベルとなる検出信号を生成する比較回路と、
     前記検出信号が前記所定レベルに遷移した回数をカウントし、カウント値が所定のしきい値を超えると、異常状態と本判定する信号処理部と、
     を含むことを特徴とする請求項30または31に記載の車両用灯具。
    The abnormality detection circuit is
    A comparison circuit that compares the output voltage of the buck converter with the threshold value and generates a detection signal that becomes a predetermined level when the output voltage of the buck converter is lower than the threshold value.
    A signal processing unit that counts the number of times the detection signal has transitioned to the predetermined level and determines that it is in an abnormal state when the count value exceeds a predetermined threshold value.
    30 or 31 for a vehicle according to claim 30 or 31.
  34.  前記異常検出回路による異常検出は、前記降圧コンバータの動作開始後、前記出力電圧が所定電圧を超えるまでの間、無効化されることを特徴とする請求項24から33のいずれかに記載の車両用灯具。 The vehicle according to any one of claims 24 to 33, wherein the abnormality detection by the abnormality detection circuit is invalidated after the operation of the buck converter is started until the output voltage exceeds a predetermined voltage. Lighting equipment.
  35.  半導体光源の光量をパルス変調により多階調で調光可能な点灯回路であって、
     前記半導体光源と直列に設けられるシリーズスイッチと、
     前記シリーズスイッチと前記半導体光源の直列接続回路と接続され、(i)前記シリーズスイッチのオン期間において定電流を出力し、(ii)前記シリーズスイッチのオフ期間においてスイッチング動作を停止し、直前のオン期間と実質的に同じ出力電圧を維持する降圧コンバータと、
     パルス変調されたパルス調光信号にもとづいて前記シリーズスイッチを駆動するドライバ回路と、
     前記シリーズスイッチのオフ期間における前記降圧コンバータの前記出力電圧が正常範囲から逸脱すると、前記シリーズスイッチの異常と判定する異常検出回路と、
     を備えることを特徴とする点灯回路。
    It is a lighting circuit that can adjust the amount of light of a semiconductor light source in multiple gradations by pulse modulation.
    A series switch provided in series with the semiconductor light source,
    It is connected to the series connection circuit of the series switch and the semiconductor light source, (i) outputs a constant current during the on period of the series switch, (ii) stops the switching operation during the off period of the series switch, and turns on immediately before. With a buck converter that maintains substantially the same output voltage as the period,
    A driver circuit that drives the series switch based on a pulse-modulated pulse dimming signal,
    An abnormality detection circuit that determines that the series switch is abnormal when the output voltage of the buck converter deviates from the normal range during the off period of the series switch.
    A lighting circuit characterized by being provided with.
  36.  半導体光源、モータ、および前記モータのロータに互いに間隔を隔てて取り付けられた複数のミラーを含み、前記半導体光源の出射光を前記複数のミラーによって反射して走査する走査型光源と、
     前記走査型光源の走査と同期して前記半導体光源に供給する駆動電流を制御し、前記半導体光源の光量を制御する点灯回路と、
     を備え、
     前記点灯回路は、前記半導体光源の光軸が前記複数のミラーの間隔を横切る複数のブランク期間において、前記半導体光源を消灯するものであり、前記複数のミラーの間隔は不均一であることを特徴とする車両用灯具。
    A scanning light source that includes a semiconductor light source, a motor, and a plurality of mirrors attached to the rotor of the motor at intervals from each other, and reflects and scans the emitted light of the semiconductor light source by the plurality of mirrors.
    A lighting circuit that controls the drive current supplied to the semiconductor light source in synchronization with the scanning of the scanning light source and controls the amount of light of the semiconductor light source.
    Equipped with
    The lighting circuit turns off the semiconductor light source during a plurality of blank periods in which the optical axis of the semiconductor light source crosses the distance between the plurality of mirrors, and the distance between the plurality of mirrors is non-uniform. Light source for vehicles.
  37.  前記半導体光源の光軸が、前記複数のミラーの間隔を通過する区間、オフレベルとなるパルス調光信号を生成するパルス調光信号生成部をさらに備え、
     前記点灯回路は、
     前記半導体光源と直列に設けられるシリーズスイッチと、
     前記シリーズスイッチと前記半導体光源の直列接続回路と接続され、(i)前記シリーズスイッチのオン期間において定電流を出力し、(ii)前記シリーズスイッチのオフ期間においてスイッチング動作を停止し、直前のオン期間と実質的に同じ出力電圧を維持する降圧コンバータと、
     前記パルス調光信号にもとづいて前記シリーズスイッチを駆動するドライバ回路と、
     前記複数のミラーの間隔のうち最も広い間隔に対応する最も長い前記ブランク期間において、前記降圧コンバータの前記出力電圧が正常範囲から逸脱すると、前記シリーズスイッチの異常と判定する異常検出回路と、
     を備えることを特徴とする請求項36に記載の車両用灯具。
    The optical axis of the semiconductor light source further includes a pulse dimming signal generation unit that generates an off-level pulse dimming signal in a section where the optical axis passes through the space between the plurality of mirrors.
    The lighting circuit is
    A series switch provided in series with the semiconductor light source,
    It is connected to the series connection circuit of the series switch and the semiconductor light source, (i) outputs a constant current during the on period of the series switch, (ii) stops the switching operation during the off period of the series switch, and turns on immediately before. With a buck converter that maintains substantially the same output voltage as the period,
    A driver circuit that drives the series switch based on the pulse dimming signal,
    An abnormality detection circuit that determines that the series switch is abnormal when the output voltage of the buck converter deviates from the normal range in the longest blank period corresponding to the widest interval among the plurality of mirrors.
    36. The vehicle lighting fixture according to claim 36.
  38.  前記モータは2極モータであり、前記点灯回路は、ホール信号にもとづいて前記モータの回転位置を検出することを特徴とする請求項36または37に記載の車両用灯具。 The vehicle lamp according to claim 36 or 37, wherein the motor is a two-pole motor, and the lighting circuit detects a rotational position of the motor based on a hall signal.
  39.  マイクロコントローラを備え、
     前記マイクロコントローラは、前記複数のミラーの間隔のうち最も広い間隔に対応する最も長い前記ブランク期間において、所定の処理を実行することを特徴とする請求項36から38のいずれかに記載の車両用灯具。
    Equipped with a microcontroller,
    The vehicle according to any one of claims 36 to 38, wherein the microcontroller performs a predetermined process in the longest blank period corresponding to the widest spacing of the plurality of mirrors. Lighting equipment.
  40.  前記ミラーの枚数は2枚であることを特徴とする請求項36から39のいずれかに記載の車両用灯具。 The vehicle lamp according to any one of claims 36 to 39, wherein the number of mirrors is two.
PCT/JP2021/039106 2020-10-29 2021-10-22 Vehicle lamp fitting and lighting circuit WO2022091973A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022559092A JPWO2022091973A1 (en) 2020-10-29 2021-10-22

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2020-181835 2020-10-29
JP2020181834 2020-10-29
JP2020181835 2020-10-29
JP2020-181834 2020-10-29
JP2020-193797 2020-11-20
JP2020-193798 2020-11-20
JP2020193798 2020-11-20
JP2020193797 2020-11-20

Publications (1)

Publication Number Publication Date
WO2022091973A1 true WO2022091973A1 (en) 2022-05-05

Family

ID=81383892

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/039106 WO2022091973A1 (en) 2020-10-29 2021-10-22 Vehicle lamp fitting and lighting circuit

Country Status (2)

Country Link
JP (1) JPWO2022091973A1 (en)
WO (1) WO2022091973A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116887479A (en) * 2023-08-01 2023-10-13 广州威博智能科技股份有限公司 Three-way electrodeless rectification automobile double-lamp driving circuit

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008205357A (en) * 2007-02-22 2008-09-04 Koito Mfg Co Ltd Light emitting apparatus
WO2016167250A1 (en) * 2015-04-17 2016-10-20 株式会社小糸製作所 Vehicle lamp
JP2016213017A (en) * 2015-05-01 2016-12-15 ローム株式会社 Drive circuit for light source and control circuit thereof, method for driving light source, lighting system, and electronic apparatus
JP2017021970A (en) * 2015-07-09 2017-01-26 パナソニックIpマネジメント株式会社 Lighting device, luminaire and vehicle using the same
JP2017062883A (en) * 2015-09-24 2017-03-30 株式会社デンソー Light source driving device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008205357A (en) * 2007-02-22 2008-09-04 Koito Mfg Co Ltd Light emitting apparatus
WO2016167250A1 (en) * 2015-04-17 2016-10-20 株式会社小糸製作所 Vehicle lamp
JP2016213017A (en) * 2015-05-01 2016-12-15 ローム株式会社 Drive circuit for light source and control circuit thereof, method for driving light source, lighting system, and electronic apparatus
JP2017021970A (en) * 2015-07-09 2017-01-26 パナソニックIpマネジメント株式会社 Lighting device, luminaire and vehicle using the same
JP2017062883A (en) * 2015-09-24 2017-03-30 株式会社デンソー Light source driving device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116887479A (en) * 2023-08-01 2023-10-13 广州威博智能科技股份有限公司 Three-way electrodeless rectification automobile double-lamp driving circuit
CN116887479B (en) * 2023-08-01 2023-12-26 广州威博智能科技股份有限公司 Three-way electrodeless rectification automobile double-lamp driving circuit

Also Published As

Publication number Publication date
JPWO2022091973A1 (en) 2022-05-05

Similar Documents

Publication Publication Date Title
CN107960069B (en) Lamp for vehicle
CN110430637B (en) Lighting circuit for vehicle lamp and light source
EP0979597B1 (en) Traffic signals
JP6820909B2 (en) Vehicle lighting fixtures and their lighting circuits
JP6916668B2 (en) Lighting circuit for vehicle lighting equipment and light source
CN109114518B (en) Vehicle lamp
CN108800036B (en) Vehicle lamp
US10874009B2 (en) Load driving apparatus
WO2022091973A1 (en) Vehicle lamp fitting and lighting circuit
CN109041348A (en) Adaptive circuit module, the LED drive circuit with controllable silicon dimmer and method
JP2020095816A (en) Lighting circuit and vehicle lighting
KR20180126372A (en) Vehicular lamp
US20130154503A1 (en) Method to control a lighting current of a lighting device
WO2022131303A1 (en) Vehicle lamp and illumination method
WO2022091974A1 (en) Vehicle lamp
WO2020250933A1 (en) Vehicle lamp
WO2022131302A1 (en) Vehicle lamp
JP7250621B2 (en) vehicle lamp
CN209897315U (en) Vehicle lamp
JP6889612B2 (en) Lighting circuit for vehicle lamps and light sources
JP6956513B2 (en) Motor drive circuit and vehicle lighting
JP2021154879A (en) Lighting fixture system for vehicle, light distribution controller, light distribution control method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21886091

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022559092

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21886091

Country of ref document: EP

Kind code of ref document: A1