WO2022091803A1 - Method for producing semiconductor element, semiconductor element, and semiconductor device - Google Patents

Method for producing semiconductor element, semiconductor element, and semiconductor device Download PDF

Info

Publication number
WO2022091803A1
WO2022091803A1 PCT/JP2021/038102 JP2021038102W WO2022091803A1 WO 2022091803 A1 WO2022091803 A1 WO 2022091803A1 JP 2021038102 W JP2021038102 W JP 2021038102W WO 2022091803 A1 WO2022091803 A1 WO 2022091803A1
Authority
WO
WIPO (PCT)
Prior art keywords
mask
gan layer
semiconductor
manufacturing
layer
Prior art date
Application number
PCT/JP2021/038102
Other languages
French (fr)
Japanese (ja)
Inventor
克典 東
高吉 藤田
克明 正木
雄一郎 林
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to JP2022559002A priority Critical patent/JPWO2022091803A1/ja
Publication of WO2022091803A1 publication Critical patent/WO2022091803A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/20Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/47Schottky barrier electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/868PIN diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/872Schottky diodes

Definitions

  • the present disclosure relates to a method for manufacturing a semiconductor device, a semiconductor device, and a semiconductor device.
  • Patent Document 1 describes a GaN-based SBD (Schottky Barrier Diode) in which a GaN-based semiconductor is manufactured by an ELO (Epitaxial Lateral Overgrown) method using a mask made of SiO 2 .
  • the method for manufacturing a semiconductor element is a step of providing a first mask having a part open on the surface of the substrate and a step of forming a second mask so as to cover a part of the first mask.
  • the first mask includes a step of covering the first mask from the surface of the substrate exposed from the opening and epitaxially growing the second mask so as to expose the second mask to grow the first semiconductor layer. Includes a donor element in the first semiconductor layer, and the second mask does not contain a donor element in the first semiconductor layer.
  • the semiconductor device according to one embodiment is manufactured by the above-mentioned method for manufacturing a semiconductor device.
  • the semiconductor device includes a semiconductor device manufactured by the above-mentioned method for manufacturing a semiconductor device.
  • FIG. 1 is a schematic cross-sectional view for explaining a method for manufacturing a semiconductor device according to an embodiment.
  • FIG. 2 is a process diagram for explaining a method for manufacturing a semiconductor device according to an embodiment.
  • FIG. 3 is a process diagram for explaining an example of a growth mask manufacturing process included in the method for manufacturing a semiconductor device according to an embodiment.
  • FIG. 4 is a process diagram for explaining a method for manufacturing a semiconductor device according to an embodiment.
  • FIG. 5 is a schematic cross-sectional view for explaining a method for manufacturing a semiconductor element and the semiconductor element according to the embodiment.
  • FIG. 6 is a top view including a configuration in which a plurality of semiconductor elements are arranged in parallel.
  • FIG. 1 is a schematic cross-sectional view for explaining a method for manufacturing a semiconductor device according to an embodiment.
  • FIG. 2 is a process diagram for explaining a method for manufacturing a semiconductor device according to an embodiment.
  • FIG. 3 is a process diagram for explaining an example of a growth mask
  • FIG. 7 is a schematic cross-sectional view for explaining the semiconductor device according to the first modification of the embodiment.
  • FIG. 8 is a schematic cross-sectional view for explaining the semiconductor element according to the second modification of the embodiment.
  • FIG. 9 is a process diagram for explaining a method for manufacturing a semiconductor device according to the second modification of the embodiment.
  • the ELO method is carried out to grow flat crystals in a state where n + -type layers that are auto-doped on the mask are associated and the entire surface of the mask is covered to obtain Si.
  • the semiconductor element 1 is a power semiconductor used in a switching circuit of a power converter such as an inverter and a converter.
  • FIG. 1 is a schematic cross-sectional view for explaining a method of manufacturing the semiconductor element 1 according to the embodiment.
  • FIG. 2 is a process diagram for explaining the manufacturing method of the semiconductor element 1 according to the embodiment.
  • the first mask 21 is formed on the surface 11a of the base substrate (board) 11
  • the second mask 23 is formed on the surface 21a of the first mask 21.
  • the semiconductor layer 31 is formed on the surface 23a of the second mask 23.
  • the semiconductor layer 31 has an n + GaN layer 32 which is a first semiconductor layer, an n ⁇ GaN layer 33 which is a second semiconductor layer, and an n + GaN layer 34 which is a third semiconductor layer. ..
  • a first mask 21 made of, for example, SiO 2 is formed on the surface 11a of the GaN layer on the surface of the substrate 11 shown in FIG. 1 (step ST11) (first step). More specifically, a first mask 21 having a part of opening is provided on the surface 11a of the substrate 11. In other words, a first mask 21 having an opening 21s at least in a part thereof is provided on the surface 11a of the substrate 11.
  • the back surface of the surface layer of the substrate 11 opposite to the front surface 11a of the GaN layer may be supported by other than GaN such as a silicon substrate (not shown).
  • the substrate that supports the back surface of the GaN layer on the surface of the substrate 11 may be, for example, a sapphire substrate or a SiC (Silicon Carbide) substrate.
  • the first mask 21 contains an element that becomes a donor in the semiconductor layer 31.
  • the first mask 21 may be amorphous.
  • the first mask 21 has an opening 21s at least in part.
  • the thickness d1 of the first mask 21 is thinner than the thickness d2 of the GaN layer 32.
  • the sum of the thickness d1 of the first mask 21 and the thickness d3 of the second mask 23 may be thicker or thinner than the thickness d2 of the GaN layer 32.
  • the sum of the thickness d1 of the first mask 21 and the thickness d3 of the second mask 23 is thinner than the sum of the thickness d2 of the GaN layer 32 and the thickness d4 of the GaN layer 33.
  • the sum of the thickness d1 of the first mask 21 and the thickness d3 of the second mask 23 is thicker than the thickness d2 of the GaN layer 32.
  • the surface 21a of the first mask 21 is closer to the substrate 11 than the surface 32b of the GaN layer 32.
  • the surface 23a of the second mask 23 is separated from the surface 11a of the substrate 11 from the surface 32b of the GaN layer 32.
  • the step 24 is formed by the first mask 21 and the second mask 23. The step 24 is formed so as to face the opening 21s and the opening 23s.
  • a second mask 23 made of, for example, AlOx is formed on the surface 21a of the first mask 21 (step ST12) (second step). More specifically, the second mask 23 is formed so as to cover a part of the first mask 21. In other words, the second mask 23 is provided so as to cover at least a part of the surface 21a of the first mask 21.
  • the second mask 23 does not contain an element that becomes a donor in the semiconductor layer 31.
  • a material containing no Si such as AlON, W, and GaO may be used in addition to AlOx.
  • the second mask 23 covers at least a part of the surface 21a of the first mask 21.
  • the second mask 23 is arranged to include a position (hereinafter, referred to as “separation position”) P for separating the plurality of semiconductor elements 1 into individual pieces. In other words, the second mask 23 is arranged at a position including between the adjacent semiconductor elements 1.
  • the width w in the lateral direction orthogonal to the stacking direction of the second mask 23 may be, for example, 20 ⁇ m or more and 100 ⁇ m or less. If the width w is smaller than 20 ⁇ m, dry etching may not be properly performed in step ST46 described later. When the width w is larger than 100 ⁇ m, debris is generated on the second mask 23 when the ELO method is carried out in step ST13 described later.
  • the thickness d3 of the second mask 23 in the stacking direction is such that the surface 23a of the second mask 23 is separated from the surface 11a of the substrate 11 from the surface 33a of the GaN layer 33. It may have such a thickness. In other words, the sum of the thickness d1 of the first mask 21 and the thickness d3 of the second mask 23 may be thicker than the thickness d2 of the GaN layer 32.
  • the thickness d3 of the second mask 23 in the stacking direction may be, for example, 3 ⁇ m or more.
  • the peripheral portion of the semiconductor layer 31 is executed by executing the ELO method in step ST13.
  • the step is transferred to.
  • the thickness d3 in the stacking direction of the second mask 23 is such that the surface 23a of the second mask 23 is the surface 32b of the GaN layer 32 and the surface 11a of the substrate 11.
  • the thickness may be about the same.
  • the sum of the thickness d1 of the first mask 21 and the thickness d3 of the second mask 23 may be as thick as the thickness d2 of the GaN layer 32.
  • the thickness d3 in the stacking direction of the second mask 23 may be thinner than when the semiconductor element 1 having the mesa structure or trench structure is manufactured. ..
  • the thickness d3 of the second mask 23 in the stacking direction may be, for example, 1 ⁇ m or less.
  • FIG. 3 is a process diagram for explaining an example of a growth mask making process included in the manufacturing method of the semiconductor element 1 according to the embodiment.
  • An example of a growth mask making step including the first step and the second step will be described in detail with reference to FIG.
  • the process of step ST21 to step ST28 corresponds to step ST11 and step ST12.
  • a first mask 21 made of SiO 2 is formed on the surface 11a of the GaN layer on the surface of the substrate 11 (step ST21). More specifically, the first mask 21 is provided so as to cover the entire surface of the substrate 11 on the surface 11a.
  • the second mask 23 is formed on the surface 21a of the first mask 21 (step ST22). More specifically, the second mask 23 is provided so as to cover the entire surface of the first mask 21 on the surface 21a.
  • a resist mask 22 is formed on the surface 23a of the second mask 23 (step ST23). More specifically, the resist mask 22 is provided so as to cover a part of the surface 23a of the second mask 23.
  • the resist mask 22 is a photo on the surface 23a of the second mask 23 so as to cover the portion where the second mask 23 is not wet-etched in step S24, in other words, the portion where the second mask 23 is arranged after the execution of step S28.
  • the pattern is arranged using lithography.
  • a plurality of resist masks 22 are arranged at intervals on the surface 23a of the second mask 23.
  • the thickness d5 of the resist mask 22 is thicker than the thickness d3 of the second mask 23.
  • step ST24 Wet etching the second mask 23 (step ST24). More specifically, a part of the second mask 23 is wet-etched until the first mask 21 is exposed. At this time, since the resist mask 22 is present, the second mask 23 located below the resist mask 22 is not wet-etched. As a result, the side surface 21d of the first mask 21 and the side surface 23d of the second mask 23 are generated. By forming the side surface 21d of the first mask 21, the surface 21a'which is one step lower than the surface 21a is formed.
  • Etching the resist mask 22 (step ST25). More specifically, the resist mask 22 located on the surface 23a of the second mask 23 is etched. As a result, the surface 23a of the second mask 23 is exposed.
  • a resist pattern 25 having an opening 25s is formed on the surface 21a of the first mask 21 and the surface 23a of the second mask 23 (step ST26). More specifically, the resist pattern 25 is formed so as to cover the surface 21a'and the side surface 21d of the first mask 21 and the surface 23a and the side surface 23d of the second mask 23. At this time, the upper surface 25a of the resist pattern 25 becomes substantially flat.
  • step ST27 Wet etching the first mask 21 (step ST27). More specifically, the first mask 21 exposed in the opening 25s of the resist pattern 25 is wet-etched until the substrate 11 is exposed.
  • step ST28 Wet etching the resist pattern 25 (step ST28). More specifically, the resist pattern 25 located on the first mask 21 and the second mask 23 is wet-etched. As a result, the resist pattern 25 on the first mask 21 and the second mask 23 is removed, and a part of the surface 21a'of the first mask and the surface 23a of the second mask 23 are exposed.
  • the thickness d1 of the first mask 21 should be thicker than the thickness d3 of the second mask 23.
  • step ST24 While performing step ST24, the first mask 21 is wet-etched, and the thickness d1 becomes thinner than that of step ST23.
  • the growth mask is formed, and at the separation position P, the second mask 23 formed on the first mask 21 is exposed.
  • the surface 11a of the substrate 11 in the portion corresponding to the opening 21s is exposed from the opening 21s of the first mask 21.
  • the surfaces 11a located at both ends of the substrate 11 may be covered with the first mask 21.
  • the entire side surface or the back surface of the substrate 11 may be covered with the first mask 21.
  • the entire surface excluding the opening 21s may be covered with the first mask 21.
  • the GaN layer as the semiconductor layer 31 is formed from the surface 11a of the substrate 11 exposed from the opening 21s by using the above-mentioned ELO technique (step ST13) (third step). More specifically, as shown in FIG. 1, the semiconductor element 1 having the semiconductor layer 31 is formed by covering the first mask 21 from the surface 11a exposed from the opening 21s, and epitaxially growing the semiconductor so as to expose the second mask 23. Produce (third step).
  • the first mask 21 is covered and epitaxially grown so as to expose the second mask 23, and the first semiconductor is formed.
  • the GaN layer 32 which is a layer, is grown. More specifically, using ELO technology, in an epitaxial device (not shown), a high impurity concentration n + is used to cover the first mask 21 from the surface 11a of the substrate 11 exposed from the opening 21s and expose the second mask 23.
  • the type GaN layer 32 is epitaxially grown. In the present embodiment, the shape of the step 24 is transferred to the surface 32a of the GaN layer 32 of the semiconductor layer 31.
  • the GaN layer 32 first grows in the vertical direction from the surface 11a exposed from the opening 21s, and then grows in the horizontal direction so as to fill the step 24. As a result, the surface 32b of the GaN layer 32 becomes substantially flat.
  • the GaN layer 32 is auto-doped with impurities from the material constituting the first mask 21.
  • the impurity is Si (Silicon)
  • the GaN layer 32 is a highly concentrated n + semiconductor layer.
  • the doping amount of n-type impurities is controlled so that the electron carrier concentration is 10 18 cm -3 or more.
  • the GaN layer 32 stops epitaxial growth before associating.
  • the GaN layer 32 When the GaN layer 32 is formed, the entire surface of the first mask 21 provided on the substrate 11 is covered with the GaN layer 32 and the second mask 23. This reduces autodoping from the first mask 21 during ELO growth.
  • the GaN layer 33 which is the second semiconductor layer is grown. More specifically, in order to obtain a desired impurity concentration profile, the low impurity concentration GaN layer 33 is epitaxially grown so as to cover the GaN layer 32.
  • the GaN layer 33 first grows in the vertical direction from the surface 32b of the GaN layer 32, and then grows in the horizontal direction so as to fill the step 24. As a result, the surface 33b of the GaN layer 33 is also substantially flat.
  • the GaN layer 33 stops epitaxial growth before associating.
  • the GaN layer 33 is an n-semiconductor layer.
  • the doping amount of the n-type impurity is controlled in the GaN layer 33 so that the electron carrier concentration is less than 10 17 cm -3 . Since the GaN layer 33 is not in contact with the first mask 21 during epitaxial growth, autodoping is reduced. Further, since the first mask 21 is covered with the GaN layer 32 and the second mask 23, the autodoping of the GaN layer 33 is reduced.
  • the GaN layer 34 having a high impurity concentration is epitaxially grown so as to cover the GaN layer 33.
  • the GaN layer 34 first grows in the vertical direction from the surface 33b of the GaN layer 33, and then grows in the horizontal direction. As a result, the upper surface 34a of the GaN layer 34 is also substantially flat.
  • the GaN layer 34 stops epitaxial growth before associating.
  • the GaN layer 34 is an n + semiconductor layer.
  • the doping amount of n-type impurities is controlled so that the electron carrier concentration is 10 19 cm -3 or more. This high-concentration layer has low electrical resistance, and the electrical resistance of the joint with the electrode metal attached in the subsequent step can be lowered.
  • the semiconductor element 1 having the GaN layer 32 and the GaN layer 33 of the semiconductor layer 31 to which the shape of the step 24 is transferred is manufactured.
  • the semiconductor layer 31 is formed on the substrate 11, and the GaN layer 32 which is an n + type semiconductor layer, the GaN layer 33 which is an n ⁇ type semiconductor layer, and the GaN layer 34 which is an n + type semiconductor layer are laminated from the surface. Epitaxially grown to.
  • the semiconductor layers 31 are not associated with each other, so that the second mask 23 is exposed at the separation position P.
  • FIG. 4 is a process diagram for explaining the manufacturing method of the semiconductor device 2 according to the embodiment.
  • FIG. 5 is a schematic cross-sectional view for explaining the manufacturing method of the semiconductor element 1 and the semiconductor element 1 according to the embodiment. Steps ST41 to ST46 are performed after performing steps ST11 to ST13.
  • the semiconductor layer 31 of the semiconductor element 1 is attached to the support substrate 51 (step ST41). More specifically, the upper surface 34a of the GaN layer 34, which is the back surface 31b of the semiconductor layer 31 on the opposite side to the substrate 11, is bonded to the support substrate 51. As the bonding, the electrical resistance of the connection may be reduced by using a metal-based bonding or a direct bonding.
  • the back surface electrode 61 is formed on the support substrate 51 (step ST42). More specifically, the back surface electrode 61 is formed on the upper surface of the support substrate 51 by, for example, sputtering.
  • the back surface electrode 61 is, for example, an Al layer plated with Ti, Ni, or Au.
  • the back surface electrode 61 may be formed after the top surface electrode metal film 43, which will be described later, is formed. When the step of raising the temperature is included, the influence on the back surface electrode 61 can be avoided by performing step ST42 at the end.
  • the support substrate 51 may be a semiconductor having a high impurity concentration so as to have low electrical resistance.
  • step ST43 Remove the mask by wet etching (step ST43). More specifically, the second mask 23 and the first mask 21 exposed at the separation position P are melted by wet etching.
  • the semiconductor layer 31 is peeled off from the substrate 11 in a state where the upper surface 34a of the GaN layer 34, which is the back surface 31b of the semiconductor layer 31, is bonded to the support substrate 51 (step ST44). More specifically, the semiconductor layer 31 is peeled from the substrate 11 by cracking the crystal in the vicinity of the opening 21s with ultrasonic waves or the like.
  • step ST45 After peeling, it is turned upside down with the semiconductor element 1 (step ST45).
  • step ST46 Perform dry etching (step ST46). More specifically, the GaN layer 32 is melted by dry etching.
  • the dry-etched semiconductor element 1 has a mesa structure.
  • the step between the surfaces 32a and the surface 32c shown in FIG. 5 may be 0.5 ⁇ m or less, or may be about 0.1 ⁇ m.
  • the level difference between the surface 32b and the surface 32c shown in FIG. 5 may be about 0.5 ⁇ m or more and 10 ⁇ m or less.
  • step ST46 the surface 32a of the GaN layer 32 of the semiconductor layer 31 in contact with the first mask 21 and the second mask 23 is dry-etched to transfer the step 24.
  • the step of the GaN layer 32 is transferred to form a step 33c that is one step lower than the surface 33a of the GaN layer 33 and a step 33d that is one step lower than the step 33c.
  • a mesa structure or a trench structure is formed in the GaN layer 33 by transferring the step.
  • a case where the step 33c is used as a mesa structure is illustrated as an example.
  • step ST46 instead of dry etching the surface 32a of the GaN layer 32, the surface 32a of the GaN layer 32 may be polished to transfer the step 24. By polishing, damage to the semiconductor layer 31 can be reduced.
  • the electric field applied to the end of the electrode can be relaxed, so an element with high withstand voltage can be manufactured.
  • the semiconductor device 1 can be used, for example, as an SBD having a Schottky junction.
  • the manufacturing process described above is carried out simultaneously and in parallel so as to simultaneously manufacture a plurality of semiconductor elements 1 as shown in FIG. That is, a plurality of openings 21s are formed in the first mask 21. By associating one semiconductor element 1 with one opening 21s, a plurality of semiconductor elements 1 are simultaneously manufactured. In FIG. 1, a plurality of semiconductor elements 1 to be manufactured are arranged in parallel.
  • FIG. 6 is a top view including a configuration in which a plurality of semiconductor elements 1 are arranged in parallel. Specifically, as shown in FIG. 6, a common back surface electrode 61 is die-bonded to one electrode pad 201 on the mounting substrate 200, and each top surface electrode metal film is bonded to another electrode pad 202 by a bonding wire 52. Connecting.
  • the plurality of semiconductor elements 1 are manufactured so as to be arranged side by side in a certain direction.
  • the semiconductor element 1 has a long shape in a direction substantially orthogonal to the direction in which the semiconductor elements 1 are arranged in a plan view. By arranging the semiconductor elements 1 in line with such a shape, the junction area of the diode can be increased.
  • the semiconductor element 1 manufactured in this way can be used as various semiconductor devices 2 according to the application.
  • the second mask 23 that does not contain the element that becomes the donor or acceptor in the semiconductor layer 31 is superimposed on at least a part of the first mask 21 that contains the element that becomes the donor or acceptor in the semiconductor layer 31. Deploy.
  • the lateral end portion of the first mask 21 is covered with the second mask 23.
  • the epitaxial growth can be stopped before the GaN layer 32 is associated.
  • the occurrence of autodoping from the first mask 21 to the GaN layer 33 can be reduced.
  • the manufacturing time can be shortened and the labor required for manufacturing can be reduced.
  • the second mask 23 formed on the first mask 21 is exposed at the separation position P.
  • the second mask 23 and the first mask 21 can be removed from the separation position P by wet etching.
  • the semiconductor element 1 can be manufactured without performing dry etching for removing the first mask and the second mask 23 at the time of manufacturing. Since the present embodiment does not require dry etching for removing the first mask and the second mask 23, damage to the semiconductor can be reduced. Further, the present embodiment can reduce the occurrence of defects caused by dry etching for removing the first mask and the second mask 23.
  • the width w of the second mask 23 is, for example, 20 ⁇ m or more and 100 ⁇ m or less.
  • dry etching can be appropriately performed in step ST46.
  • the second mask 23 is arranged including a position where the plurality of semiconductor elements 1 are separated into individual pieces. According to this embodiment, since the semiconductor layer 31 does not associate at the separation position P, the plurality of semiconductor elements 1 can be easily separated into individual pieces.
  • the semiconductor element 1 in which the mesa structure or the trench structure is formed can be manufactured by transferring the step 24 of the first mask 21.
  • FIG. 7 is a schematic cross-sectional view for explaining the semiconductor element 1 according to the modified example 1 of the embodiment.
  • the semiconductor element 1 has a JBS (Junction Barrier Schottky) structure in which a pn junction and a Schottky junction are combined, which is connected to the anode. More specifically, the semiconductor device 1 according to the modification 1 is provided with a Schottky metal film (not shown) which is a metal layer (barrier metal), and a Schottky junction between the GaN layer 33 and the Schottky metal film is provided.
  • JBS Joint Barrier Schottky
  • the semiconductor device 1 manufactured by the manufacturing method according to the modified example 1 has a JBS structure formed on the surface 33a of the GaN layer 33.
  • the semiconductor device 2 includes such a semiconductor element 1.
  • Steps ST11 and ST12 are performed in the same manner as in the embodiment.
  • Steps ST41 to ST45 are performed in the same manner as in the embodiment.
  • a GaN layer as a semiconductor layer 31 is formed from the surface 11a of the substrate 11 exposed from the opening 21s (step ST13). More specifically, first, as in the embodiment, the n + type GaN layer 32 having a high impurity concentration is epitaxially grown.
  • the GaN layer 35 having a low impurity concentration is epitaxially grown so as to cover the GaN layer 32.
  • the GaN layer 35 first grows in the vertical direction from the surface 32b of the GaN layer 32 exposed from the opening 23s, and then grows in the horizontal direction so as to fill the step 24.
  • the GaN layer 35 is a p + type semiconductor layer.
  • the doping amount of the p-type impurity is controlled in the GaN layer 35 so that the hole carrier concentration is 10 18 cm -3 or more.
  • the surface 35b of the GaN layer 35 is substantially flat.
  • the GaN layer 35 has, for example, a thickness d6 of about 20 nm or more.
  • the subsequent GaN layer 33 first grows in the vertical direction from the surface 35b of the exposed GaN layer 35, and then grows in the horizontal direction so as to fill the step 24.
  • the GaN layer 34 first grows in the vertical direction from the surface 33b of the exposed GaN layer 33, and then grows in the horizontal direction.
  • step ST46 Dry etching the entire GaN layer 32 and a part of the GaN layer 35 (step ST46). More specifically, the entire surface of the surface 32a of the GaN layer 32 of the semiconductor layer 31 and a part of the GaN layer 35 in contact with the first mask 21 are dry-etched. Specifically, the GaN layer 32 and the GaN layer 35 are melted by at least either dry etching or wet etching. When the GaN layer 32 and the GaN layer 35 are wet-etched, the thickness d6 of the GaN layer 32 and the GaN layer 35 may be reduced to 1 ⁇ m or less. As a result, the GaN layer 35 formed on the surface 33a of the GaN layer 33 is removed except for a part.
  • the remaining GaN layer 35 is arranged in a rectangular frame shape on the surface 33a of the GaN layer 33.
  • the remaining GaN layers 35 are arranged in a triple nested manner, but the present invention is not limited to this, and one or more may be arranged.
  • the outer GaN layer 35 may be formed to be wider than the inner GaN layer 35.
  • the entire GaN layer 32 and a part of the GaN layer 35 may be polished. More specifically, the entire surface of the surface 32a of the GaN layer 32 of the semiconductor layer 31 and a part of the GaN layer 35 may be polished in contact with the first mask 21. Specifically, the GaN layer 32 is polished until the GaN layer 35 is exposed. After that, a part of the GaN layer 35 is masked and the GaN layer 35 is dry-etched. As a result, since the GaN layer 35 is thinner than the GaN layer 32, the etching rate becomes low and damage to the semiconductor layer 31 can be reduced without taking time.
  • the JBS structure can be formed by removing the entire GaN layer 32 of the semiconductor layer 31 and a part of the GaN layer 35 in contact with the first mask 21.
  • the electric field applied to the end of the electrode can be relaxed by forming the field plate.
  • the semiconductor element 1 having an increased surge withstand current can be manufactured.
  • the semiconductor element 1 having an increased withstand voltage can be manufactured.
  • FIG. 8 is a schematic cross-sectional view for explaining the semiconductor element 1 according to the second modification of the embodiment.
  • FIG. 9 is a process diagram for explaining a method of manufacturing the semiconductor device 2 according to the second modification of the embodiment.
  • the semiconductor device 1 according to the second modification has a JBS structure and a FLR (Field Limiting Ring) structure.
  • the semiconductor device 1 manufactured by the manufacturing method according to the modification 2 has an FLR structure formed on the surface 33a of the GaN layer 33.
  • the semiconductor device 2 includes such a semiconductor element 1.
  • the semiconductor element 1 does not have a mesa structure but has an FLR structure.
  • the sum of the thickness d1 of the first mask 21 and the thickness d3 of the second mask 23 may be about the same as the thickness d2 of the GaN layer 32.
  • the thickness d3 of the second mask 23 in the stacking direction may be, for example, 1 ⁇ m or less.
  • the semiconductor element 1 shown in FIG. 9 executes the same process as the semiconductor element 1 of the modification 1 from step ST11 to step ST45.
  • the GaN layer 35 remaining after the execution of step ST46 is arranged in a quadruple nested manner.
  • the inner triple GaN layer 35 forms a JBS structure and the outer GaN layer 35 forms an FLR structure.
  • JBS and FLR structures are not limited to this.
  • a Schottky metal film 41 to be Schottky bonded is formed on the surface 33a of the exposed GaN layer 33 (step ST47).
  • the Schottky metal film 41 covers the intermediate portion of the surface 33a of the exposed GaN layer 33 and the GaN layer 35 arranged in the intermediate portion of the surface 33a of the GaN layer 33.
  • the Schottky metal film 41 is arranged so as to cover the inner GaN layer 35 and the surface 33a of the GaN layer 33 exposed between them.
  • a Schottky junction between the GaN layer 33 and the Schottky metal film 41 is provided.
  • the Schottky metal film 41 is not arranged on the peripheral edge of the surface 33a of the GaN layer 33, in other words, on the portion forming the FLR structure.
  • the shotkey metal film 41 is, for example, Ni, Al, Pd, or the like.
  • the insulating film 42 which is an insulating layer, is formed (step ST48).
  • the insulating film 42 is arranged so as to cover the peripheral portion of the surface 33a of the exposed GaN layer 33 and the GaN layer 35 arranged on the peripheral portion of the surface 33a of the GaN layer 33.
  • step ST48 the insulating film 42 is arranged except for the intermediate portion of the surface 33a of the GaN layer 33.
  • the insulating film 42 is arranged outside the Schottky metal film 41. As a result, the pn junction is not connected to the anode.
  • the top electrode metal film 43 is formed on the Schottky metal film 41 and the insulating film 42 (step ST49).
  • the top electrode metal film 43 is arranged so as to cover the GaN layer 35 covered with the Schottky metal film 41. Further, the top electrode metal film 43 forms a so-called field plate on the insulating film 42.
  • the top electrode metal film 43 is arranged on the outer GaN layer 35 covered with the insulating film 42 and the inner GaN layer 35 covered with the Schottky metal film 41, respectively.
  • the FLR structure is formed by covering the outer GaN layer 35 with the insulating film 42 and the top electrode metal film 43.
  • the top electrode metal films 43 are separated from each other and are not in contact with each other.
  • the electric field applied to the end of the electrode can be relaxed, making it a device with high withstand voltage.
  • the field plate may be separated from the top electrode.
  • the GaN layer 35 of the semiconductor layer 31 in contact with the first mask 21 can be removed by dry etching to form the JBS structure and the FLR structure.
  • the semiconductor element 1 having an increased withstand voltage can be manufactured.
  • the shape of the step 24 may have an inclination or may have rounded corners.
  • the shape may have two or more steps. Further, the step is not limited to a step that rises upward from the opening 21s toward the outside in the radial direction, and a step that descends downward can also be implemented. Therefore, a convex shape can be formed by forming a shape that once goes up and goes down. A trench structure can also be formed by transferring the convex shapes of the first mask 21 and the second mask 23. Therefore, the mesa structure may be a trench structure. Further, one or a plurality of trench structures and a mesa structure at the outermost edge can be formed from the center of the semiconductor element 1 toward the outside in the radial direction.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Led Devices (AREA)

Abstract

This method for producing a semiconductor element comprises: a step for providing, on the surface (11a) of a substrate (11), a first mask (21), a part of which is open; a step for forming a second mask (23) to cover a part of the first mask (21); and a step for epitaxially growing a GaN layer (32) from the surface (11a) of the substrate (11), which is exposed by the opening, so that the GaN layer (32) covers the first mask (21) while the second mask (23) is exposed. The first mask (21) contains an element that serves as a donor for the GaN layer (32), and the second mask (23) does not contain an element that serves as a donor for the GaN layer (32).

Description

半導体素子の製造方法、半導体素子及び半導体装置Manufacturing method of semiconductor element, semiconductor element and semiconductor device
 本開示は、半導体素子の製造方法、半導体素子及び半導体装置に関する。 The present disclosure relates to a method for manufacturing a semiconductor device, a semiconductor device, and a semiconductor device.
 特許文献1には、GaN系半導体をSiOからなるマスクを用いて、ELO(Epitaxial Lateral OverGrowth)法で作製するGaN系SBD(Schottky Barrier Diode)が記載されている。 Patent Document 1 describes a GaN-based SBD (Schottky Barrier Diode) in which a GaN-based semiconductor is manufactured by an ELO (Epitaxial Lateral Overgrown) method using a mask made of SiO 2 .
特許第4638958号公報Japanese Patent No. 4638958
 1つの態様に係る半導体素子の製造方法は、基板の表面に、一部が開口している第1マスクを設ける工程と、前記第1マスクの一部を覆うように第2マスクを形成する工程と、前記開口から露出する前記基板の表面から、前記第1マスクを覆い、前記第2マスクを露出させるようにエピタキシャル成長させて、第1半導体層を成長する工程と、を含み、前記第1マスクは、前記第1半導体層におけるドナーとなる元素を含み、前記第2マスクは、前記第1半導体層におけるドナーとなる元素を含まない。 The method for manufacturing a semiconductor element according to one aspect is a step of providing a first mask having a part open on the surface of the substrate and a step of forming a second mask so as to cover a part of the first mask. The first mask includes a step of covering the first mask from the surface of the substrate exposed from the opening and epitaxially growing the second mask so as to expose the second mask to grow the first semiconductor layer. Includes a donor element in the first semiconductor layer, and the second mask does not contain a donor element in the first semiconductor layer.
 1つの態様に係る半導体素子は、上記の半導体素子の製造方法により製造される。 The semiconductor device according to one embodiment is manufactured by the above-mentioned method for manufacturing a semiconductor device.
 1つの態様に係る半導体装置は、上記の半導体素子の製造方法により製造された半導体素子を含む。 The semiconductor device according to one embodiment includes a semiconductor device manufactured by the above-mentioned method for manufacturing a semiconductor device.
図1は、実施形態に係る半導体素子の製造方法を説明するための断面模式図である。FIG. 1 is a schematic cross-sectional view for explaining a method for manufacturing a semiconductor device according to an embodiment. 図2は、実施形態に係る半導体素子の製造方法を説明するための工程図である。FIG. 2 is a process diagram for explaining a method for manufacturing a semiconductor device according to an embodiment. 図3は、実施形態に係る半導体素子の製造方法に含まれる成長マスク作成工程の一例を説明するための工程図である。FIG. 3 is a process diagram for explaining an example of a growth mask manufacturing process included in the method for manufacturing a semiconductor device according to an embodiment. 図4は、実施形態に係る半導体装置の製造方法を説明するための工程図である。FIG. 4 is a process diagram for explaining a method for manufacturing a semiconductor device according to an embodiment. 図5は、実施形態に係る半導体素子の製造方法及び半導体素子を説明するための断面模式図である。FIG. 5 is a schematic cross-sectional view for explaining a method for manufacturing a semiconductor element and the semiconductor element according to the embodiment. 図6は、複数の半導体素子を並列配置した構成を含む上面図である。FIG. 6 is a top view including a configuration in which a plurality of semiconductor elements are arranged in parallel. 図7は、実施形態の変形例1に係る半導体素子を説明するための断面模式図である。FIG. 7 is a schematic cross-sectional view for explaining the semiconductor device according to the first modification of the embodiment. 図8は、実施形態の変形例2に係る半導体素子を説明するための断面模式図である。FIG. 8 is a schematic cross-sectional view for explaining the semiconductor element according to the second modification of the embodiment. 図9は、実施形態の変形例2に係る半導体装置の製造方法を説明するための工程図である。FIG. 9 is a process diagram for explaining a method for manufacturing a semiconductor device according to the second modification of the embodiment.
 従来のELO技術を用いた製造方法においては、マスク中のSiが結晶中に取り込まれる、オートドープが発生する可能性がある。Siは、GaN系半導体の中で、n型ドープ材となるので、1016/cm台以下の低いドープ濃度を実現することが困難である。 In the manufacturing method using the conventional ELO technique, there is a possibility that autodoping may occur in which Si in the mask is incorporated into the crystal. Since Si is an n-type doping material among GaN-based semiconductors, it is difficult to realize a low doping concentration of 10 16 / cm 3 units or less.
 低いドープ濃度を実現する方法として、ELO法を実施して、マスク上でオートドープされるn+型の層を会合させマスクの全面を覆った状態で、フラットな結晶を成長させることによって、Siがドープしないn-型の層を形成する方法がある。この方法では、n+型の層を会合させるために、製造に時間を要する。 As a method for achieving a low dope concentration, the ELO method is carried out to grow flat crystals in a state where n + -type layers that are auto-doped on the mask are associated and the entire surface of the mask is covered to obtain Si. There is a method of forming an n-type layer that is not doped. In this method, it takes time to manufacture in order to associate the n + type layers.
 以下に実施形態に係る半導体素子の製造方法、半導体素子及び半導体装置について説明する。半導体素子1は、インバータ及びコンバータのような電力変換器のスイッチング回路に使用されるパワー半導体である。 The method for manufacturing a semiconductor element, the semiconductor element, and the semiconductor device according to the embodiment will be described below. The semiconductor element 1 is a power semiconductor used in a switching circuit of a power converter such as an inverter and a converter.
[実施形態]
(製造方法)
 図1は、実施形態に係る半導体素子1の製造方法を説明するための断面模式図である。図2は、実施形態に係る半導体素子1の製造方法を説明するための工程図である。図1に示すように、半導体素子1は、製造工程において、ベース基板(基板)11の表面11aに第1マスク21が形成され、第1マスク21の表面21aに第2マスク23が形成され、第2マスク23の表面23aに半導体層31が形成される。本実施形態では、半導体層31は、第1半導体層であるnGaN層32と、第2半導体層であるnGaN層33と、第3半導体層であるnGaN層34とを有する。
[Embodiment]
(Production method)
FIG. 1 is a schematic cross-sectional view for explaining a method of manufacturing the semiconductor element 1 according to the embodiment. FIG. 2 is a process diagram for explaining the manufacturing method of the semiconductor element 1 according to the embodiment. As shown in FIG. 1, in the semiconductor element 1, in the manufacturing process, the first mask 21 is formed on the surface 11a of the base substrate (board) 11, and the second mask 23 is formed on the surface 21a of the first mask 21. The semiconductor layer 31 is formed on the surface 23a of the second mask 23. In the present embodiment, the semiconductor layer 31 has an n + GaN layer 32 which is a first semiconductor layer, an n GaN layer 33 which is a second semiconductor layer, and an n + GaN layer 34 which is a third semiconductor layer. ..
(成長マスク作成工程)
 まず、図1に示す基板11表層のGaN層の表面11aに例えばSiOによる第1マスク21を形成する(ステップST11)(第1工程)。より詳しくは、基板11の表面11aに、一部が開口している第1マスク21を設ける。言い換えると、基板11の表面11a上に少なくとも一部に開口部21sを有する第1マスク21を設ける。
(Growth mask making process)
First, a first mask 21 made of, for example, SiO 2 is formed on the surface 11a of the GaN layer on the surface of the substrate 11 shown in FIG. 1 (step ST11) (first step). More specifically, a first mask 21 having a part of opening is provided on the surface 11a of the substrate 11. In other words, a first mask 21 having an opening 21s at least in a part thereof is provided on the surface 11a of the substrate 11.
 基板11表層のGaN層の表面11aと反対側の裏面は、図示しないシリコン基板等のGaN以外で支持されていてもよい。基板11表層のGaN層の裏面を支持する基板は、例えばサファイア基板又はSiC(Silicon Carbide)基板であってもよい。 The back surface of the surface layer of the substrate 11 opposite to the front surface 11a of the GaN layer may be supported by other than GaN such as a silicon substrate (not shown). The substrate that supports the back surface of the GaN layer on the surface of the substrate 11 may be, for example, a sapphire substrate or a SiC (Silicon Carbide) substrate.
 第1マスク21は、半導体層31におけるドナーとなる元素を含む。第1マスク21の材料としてはSiOの他にSiN、AlSiO等を用いてもよい。第1マスク21は、アモルファス状のものであってもよい。第1マスク21は、少なくとも一部に開口部21sを有する。 The first mask 21 contains an element that becomes a donor in the semiconductor layer 31. As the material of the first mask 21, SiN, AlSiO, or the like may be used in addition to SiO 2 . The first mask 21 may be amorphous. The first mask 21 has an opening 21s at least in part.
 第1マスク21の厚さd1は、GaN層32の厚さd2より薄い。第1マスク21の厚さd1と第2マスク23の厚さd3との合計は、GaN層32の厚さd2より厚くても薄くてもよい。第1マスク21の厚さd1と第2マスク23の厚さd3との合計は、GaN層32の厚さd2とGaN層33の厚さd4との合計より薄い。本実施形態では、第1マスク21の厚さd1と第2マスク23の厚さd3との合計は、GaN層32の厚さd2より厚い。第1マスク21の表面21aは、GaN層32の表面32bより基板11に近い。本実施形態では、第2マスク23の表面23aは、GaN層32の表面32bより基板11の表面11aから離れている。第1マスク21と第2マスク23とによって、段差24が形成される。段差24は、開口部21s及び開口部23sに面して形成される。 The thickness d1 of the first mask 21 is thinner than the thickness d2 of the GaN layer 32. The sum of the thickness d1 of the first mask 21 and the thickness d3 of the second mask 23 may be thicker or thinner than the thickness d2 of the GaN layer 32. The sum of the thickness d1 of the first mask 21 and the thickness d3 of the second mask 23 is thinner than the sum of the thickness d2 of the GaN layer 32 and the thickness d4 of the GaN layer 33. In the present embodiment, the sum of the thickness d1 of the first mask 21 and the thickness d3 of the second mask 23 is thicker than the thickness d2 of the GaN layer 32. The surface 21a of the first mask 21 is closer to the substrate 11 than the surface 32b of the GaN layer 32. In the present embodiment, the surface 23a of the second mask 23 is separated from the surface 11a of the substrate 11 from the surface 32b of the GaN layer 32. The step 24 is formed by the first mask 21 and the second mask 23. The step 24 is formed so as to face the opening 21s and the opening 23s.
 第1マスク21の表面21aに例えばAlOxによる第2マスク23を形成する(ステップST12)(第2工程)。より詳しくは、第1マスク21の一部を覆うように第2マスク23を形成する。言い換えると、第1マスク21の表面21a上の少なくとも一部を覆うように第2マスク23を設ける。 A second mask 23 made of, for example, AlOx is formed on the surface 21a of the first mask 21 (step ST12) (second step). More specifically, the second mask 23 is formed so as to cover a part of the first mask 21. In other words, the second mask 23 is provided so as to cover at least a part of the surface 21a of the first mask 21.
 第2マスク23は、半導体層31におけるドナーとなる元素を含まない。第2マスク23の材料としてはAlOxの他にAlON、W、GaO等のSiを含まない材料を用いてもよい。第2マスク23は、第1マスク21の表面21a上の少なくとも一部を覆う。第2マスク23は、複数の半導体素子1を個片に分離する位置(以下、「分離位置」という)Pを含んで配置されている。言い換えると、第2マスク23は、隣り合う半導体素子1の間を含む位置に配置されている。 The second mask 23 does not contain an element that becomes a donor in the semiconductor layer 31. As the material of the second mask 23, a material containing no Si such as AlON, W, and GaO may be used in addition to AlOx. The second mask 23 covers at least a part of the surface 21a of the first mask 21. The second mask 23 is arranged to include a position (hereinafter, referred to as “separation position”) P for separating the plurality of semiconductor elements 1 into individual pieces. In other words, the second mask 23 is arranged at a position including between the adjacent semiconductor elements 1.
 第2マスク23の積層方向と直交する横方向の幅wは、例えば20μm以上100μm以下であってもよい。幅wが20μmより小さい場合、後述するステップST46においてドライエッチングが適切に実施できないおそれがある。幅wが100μmより大きい場合、後述するステップST13においてELO法を実施する際に、第2マスク23上にデブリが発生する。 The width w in the lateral direction orthogonal to the stacking direction of the second mask 23 may be, for example, 20 μm or more and 100 μm or less. If the width w is smaller than 20 μm, dry etching may not be properly performed in step ST46 described later. When the width w is larger than 100 μm, debris is generated on the second mask 23 when the ELO method is carried out in step ST13 described later.
 メサ構造又はトレンチ構造を有する半導体素子1を製造する場合、第2マスク23の積層方向の厚さd3は、第2マスク23の表面23aがGaN層33の表面33aより基板11の表面11aから離れるような厚さを有してもよい。言い換えると、第1マスク21の厚さd1と第2マスク23の厚さd3との合計は、GaN層32の厚さd2より厚くてもよい。第2マスク23の積層方向の厚さd3は、例えば、3μm以上であってもよい。第1マスク21の厚さd1と第2マスク23の厚さd3との合計が、GaN層32の厚さd2より厚い場合、ステップST13においてELO法を実行することにより、半導体層31の周縁部に段差が転写される。 When manufacturing a semiconductor element 1 having a mesa structure or a trench structure, the thickness d3 of the second mask 23 in the stacking direction is such that the surface 23a of the second mask 23 is separated from the surface 11a of the substrate 11 from the surface 33a of the GaN layer 33. It may have such a thickness. In other words, the sum of the thickness d1 of the first mask 21 and the thickness d3 of the second mask 23 may be thicker than the thickness d2 of the GaN layer 32. The thickness d3 of the second mask 23 in the stacking direction may be, for example, 3 μm or more. When the sum of the thickness d1 of the first mask 21 and the thickness d3 of the second mask 23 is thicker than the thickness d2 of the GaN layer 32, the peripheral portion of the semiconductor layer 31 is executed by executing the ELO method in step ST13. The step is transferred to.
 メサ構造又はトレンチ構造を有さない半導体素子1を製造する場合、第2マスク23の積層方向の厚さd3は、第2マスク23の表面23aがGaN層32の表面32bと基板11の表面11aから同程度となる厚さでよい。言い換えると、第1マスク21の厚さd1と第2マスク23の厚さd3との合計は、GaN層32の厚さd2と同程度の厚さでよい。メサ構造又はトレンチ構造を有さない半導体素子1を製造する場合、第2マスク23の積層方向の厚さd3は、メサ構造又はトレンチ構造を有する半導体素子1を製造する場合に比べて薄くてよい。第2マスク23の積層方向の厚さd3は、例えば、1μm以下であってもよい。 When the semiconductor element 1 having no mesa structure or trench structure is manufactured, the thickness d3 in the stacking direction of the second mask 23 is such that the surface 23a of the second mask 23 is the surface 32b of the GaN layer 32 and the surface 11a of the substrate 11. The thickness may be about the same. In other words, the sum of the thickness d1 of the first mask 21 and the thickness d3 of the second mask 23 may be as thick as the thickness d2 of the GaN layer 32. When the semiconductor element 1 having no mesa structure or trench structure is manufactured, the thickness d3 in the stacking direction of the second mask 23 may be thinner than when the semiconductor element 1 having the mesa structure or trench structure is manufactured. .. The thickness d3 of the second mask 23 in the stacking direction may be, for example, 1 μm or less.
(成長マスク作成工程の一例)
 図3は、実施形態に係る半導体素子1の製造方法に含まれる成長マスク作成工程の一例を説明するための工程図である。図3を用いて、第1工程と第2工程とを含む成長マスク作成工程の一例について詳しく説明する。ステップST21ないしステップST28の工程が、ステップST11及びステップST12に対応する。
(Example of growth mask making process)
FIG. 3 is a process diagram for explaining an example of a growth mask making process included in the manufacturing method of the semiconductor element 1 according to the embodiment. An example of a growth mask making step including the first step and the second step will be described in detail with reference to FIG. The process of step ST21 to step ST28 corresponds to step ST11 and step ST12.
 基板11表層のGaN層の表面11aにSiOによる第1マスク21を形成する(ステップST21)。より詳しくは、基板11の表面11a上の全面を覆うように第1マスク21を設ける。 A first mask 21 made of SiO 2 is formed on the surface 11a of the GaN layer on the surface of the substrate 11 (step ST21). More specifically, the first mask 21 is provided so as to cover the entire surface of the substrate 11 on the surface 11a.
 第2マスク23を第1マスク21の表面21a上に形成する(ステップST22)。より詳しくは、第1マスク21の表面21a上の全面を覆うように第2マスク23を設ける。 The second mask 23 is formed on the surface 21a of the first mask 21 (step ST22). More specifically, the second mask 23 is provided so as to cover the entire surface of the first mask 21 on the surface 21a.
 第2マスク23の表面23aにレジストマスク22を形成する(ステップST23)。より詳しくは、第2マスク23の表面23a上の一部を覆うようにレジストマスク22を設ける。レジストマスク22は、第2マスク23の表面23a上において、ステップS24において第2マスク23をウエットエッチングしない部分、言い換えると、ステップS28の実行後に第2マスク23が配置される部分を覆うようにフォトリソグラフィを用いてパターン配置される。第2マスク23の表面23a上には、複数のレジストマスク22が間隔を空けて配置される。レジストマスク22の厚さd5は、第2マスク23の厚さd3より厚い。 A resist mask 22 is formed on the surface 23a of the second mask 23 (step ST23). More specifically, the resist mask 22 is provided so as to cover a part of the surface 23a of the second mask 23. The resist mask 22 is a photo on the surface 23a of the second mask 23 so as to cover the portion where the second mask 23 is not wet-etched in step S24, in other words, the portion where the second mask 23 is arranged after the execution of step S28. The pattern is arranged using lithography. A plurality of resist masks 22 are arranged at intervals on the surface 23a of the second mask 23. The thickness d5 of the resist mask 22 is thicker than the thickness d3 of the second mask 23.
 第2マスク23をウエットエッチングする(ステップST24)。より詳しくは、第1マスク21が露出するまで、第2マスク23の一部をウエットエッチングする。このとき、レジストマスク22があるため、レジストマスク22の下部に位置する第2マスク23は、ウエットエッチングされない。これによって、第1マスク21の側面21d、第2マスク23の側面23dが生じる。第1マスク21の側面21dが形成されることにより、表面21aより一段低い表面21a´が形成される。 Wet etching the second mask 23 (step ST24). More specifically, a part of the second mask 23 is wet-etched until the first mask 21 is exposed. At this time, since the resist mask 22 is present, the second mask 23 located below the resist mask 22 is not wet-etched. As a result, the side surface 21d of the first mask 21 and the side surface 23d of the second mask 23 are generated. By forming the side surface 21d of the first mask 21, the surface 21a'which is one step lower than the surface 21a is formed.
 レジストマスク22をエッチングする(ステップST25)。より詳しくは、第2マスク23の表面23a上に位置するレジストマスク22をエッチングする。これによって、第2マスク23の表面23aは露出する。 Etching the resist mask 22 (step ST25). More specifically, the resist mask 22 located on the surface 23a of the second mask 23 is etched. As a result, the surface 23a of the second mask 23 is exposed.
 第1マスク21の表面21aと第2マスク23の表面23aに開口部25sを持つレジストパターン25を形成する(ステップST26)。より詳しくは、第1マスク21の表面21a′と側面21d、第2マスク23の表面23aと側面23dを覆うようにレジストパターン25を形成する。このとき、レジストパターン25の上面25aはほぼ平坦となる。 A resist pattern 25 having an opening 25s is formed on the surface 21a of the first mask 21 and the surface 23a of the second mask 23 (step ST26). More specifically, the resist pattern 25 is formed so as to cover the surface 21a'and the side surface 21d of the first mask 21 and the surface 23a and the side surface 23d of the second mask 23. At this time, the upper surface 25a of the resist pattern 25 becomes substantially flat.
 第1マスク21をウエットエッチングする(ステップST27)。より詳しくは、基板11が露出するまで、レジストパターン25の開口部25sにおいて露出する第1マスク21をウエットエッチングする。 Wet etching the first mask 21 (step ST27). More specifically, the first mask 21 exposed in the opening 25s of the resist pattern 25 is wet-etched until the substrate 11 is exposed.
 レジストパターン25をウエットエッチングする(ステップST28)。より詳しくは、第1マスク21、第2マスク23上に位置するレジストパターン25をウエットエッチングする。これにより、第1マスク21、第2マスク23上のレジストパターン25は除去され、第1マスクの表面21a´の一部と第2マスク23の表面23aが露出する。 Wet etching the resist pattern 25 (step ST28). More specifically, the resist pattern 25 located on the first mask 21 and the second mask 23 is wet-etched. As a result, the resist pattern 25 on the first mask 21 and the second mask 23 is removed, and a part of the surface 21a'of the first mask and the surface 23a of the second mask 23 are exposed.
 ステップST22を行った後、第1マスク21の厚さd1は第2マスク23の厚さd3より厚くなるほうがよい。 After performing step ST22, the thickness d1 of the first mask 21 should be thicker than the thickness d3 of the second mask 23.
 ステップST24を行っている間に、第1マスク21がウエットエッチングされて、ステップST23に比べて厚さd1が薄くなる。 While performing step ST24, the first mask 21 is wet-etched, and the thickness d1 becomes thinner than that of step ST23.
 このようにして、成長マスクが形成されて、分離位置Pにおいては、第1マスク21上に形成された第2マスク23が露出する。第1マスク21の開口部21sから、開口部21sに対応する部分の基板11の表面11aが露出する。なお、基板11の両端に位置する表面11aが第1マスク21に覆われていてもよい。また、基板11の側面又は裏面の全体が第1マスク21に覆われていてもよい。後述する気相成長法において用いる原料ガスに接触しうる面のうち、開口部21sを除く全体が、第1マスク21に覆われていてもよい。 In this way, the growth mask is formed, and at the separation position P, the second mask 23 formed on the first mask 21 is exposed. The surface 11a of the substrate 11 in the portion corresponding to the opening 21s is exposed from the opening 21s of the first mask 21. The surfaces 11a located at both ends of the substrate 11 may be covered with the first mask 21. Further, the entire side surface or the back surface of the substrate 11 may be covered with the first mask 21. Of the surfaces that can come into contact with the raw material gas used in the vapor phase growth method described later, the entire surface excluding the opening 21s may be covered with the first mask 21.
(半導体層成長工程)
 次に、図2に戻って、上述したELO技術を用いて開口部21sから露出する基板11の表面11aから半導体層31としてのGaN層を形成する(ステップST13)(第3工程)。より詳しくは、図1に示すように、開口部21sから露出する表面11aから第1マスク21を覆い、第2マスク23を露出させるように半導体をエピタキシャル成長させ、半導体層31を有する半導体素子1を作製する(第3工程)。
(Semiconductor layer growth process)
Next, returning to FIG. 2, the GaN layer as the semiconductor layer 31 is formed from the surface 11a of the substrate 11 exposed from the opening 21s by using the above-mentioned ELO technique (step ST13) (third step). More specifically, as shown in FIG. 1, the semiconductor element 1 having the semiconductor layer 31 is formed by covering the first mask 21 from the surface 11a exposed from the opening 21s, and epitaxially growing the semiconductor so as to expose the second mask 23. Produce (third step).
 具体的には、まず、図1に示すように、開口部21sから露出する基板11の表面11aから、第1マスク21を覆い、第2マスク23を露出させるようにエピタキシャル成長させて、第1半導体層であるGaN層32を成長する。より詳しくは、ELO技術を用いて、図示しないエピタキシャル装置において、開口部21sから露出する基板11の表面11aから第1マスク21を覆い、第2マスク23を露出させるように、高不純物濃度のn+型のGaN層32をエピタキシャル成長させる。本実施形態では、半導体層31のGaN層32の面32aには、段差24の形状が転写される。GaN層32は、開口部21sから露出する表面11aから、まず縦方向に成長し、その後、段差24を埋めるように横方向に成長させる。これによりGaN層32の表面32bは、ほぼ平坦となる。GaN層32は、結晶成長時、第1マスク21を構成する材料から、不純物がオートドープされる。不純物がSi(Silicon)であるとき、GaN層32は、高濃度にドーピングされたn+半導体層である。GaN層32は、1018cm-3以上の電子キャリア濃度となるよう、n型不純物のドープ量がコントロールされる。GaN層32は、会合する前にエピタキシャル成長を停止させる。 Specifically, first, as shown in FIG. 1, from the surface 11a of the substrate 11 exposed from the opening 21s, the first mask 21 is covered and epitaxially grown so as to expose the second mask 23, and the first semiconductor is formed. The GaN layer 32, which is a layer, is grown. More specifically, using ELO technology, in an epitaxial device (not shown), a high impurity concentration n + is used to cover the first mask 21 from the surface 11a of the substrate 11 exposed from the opening 21s and expose the second mask 23. The type GaN layer 32 is epitaxially grown. In the present embodiment, the shape of the step 24 is transferred to the surface 32a of the GaN layer 32 of the semiconductor layer 31. The GaN layer 32 first grows in the vertical direction from the surface 11a exposed from the opening 21s, and then grows in the horizontal direction so as to fill the step 24. As a result, the surface 32b of the GaN layer 32 becomes substantially flat. During crystal growth, the GaN layer 32 is auto-doped with impurities from the material constituting the first mask 21. When the impurity is Si (Silicon), the GaN layer 32 is a highly concentrated n + semiconductor layer. In the GaN layer 32, the doping amount of n-type impurities is controlled so that the electron carrier concentration is 10 18 cm -3 or more. The GaN layer 32 stops epitaxial growth before associating.
 GaN層32が形成されると、基板11上に設けられた第1マスク21は、GaN層32及び第2マスク23で全面が覆われる。これにより、ELO成長時に、第1マスク21からのオートドープが低減される。 When the GaN layer 32 is formed, the entire surface of the first mask 21 provided on the substrate 11 is covered with the GaN layer 32 and the second mask 23. This reduces autodoping from the first mask 21 during ELO growth.
 第1半導体層であるGaN層32を成長する工程の後に、第2半導体層であるGaN層33を成長する。より詳しくは、さらに所望の不純物濃度プロファイルを得るため、GaN層32を覆うように低不純物濃度のGaN層33をエピタキシャル成長させる。GaN層33は、GaN層32の表面32bから、まず縦方向に成長し、その後、段差24を埋めるように横方向に成長させる。これによりGaN層33の表面33bも、ほぼ平坦となる。GaN層33は、会合する前にエピタキシャル成長を停止させる。GaN層33は、n-半導体層である。GaN層33は、1017cm-3未満の電子キャリア濃度となるよう、n型不純物のドープ量が、コントロールされる。GaN層33は、エピタキシャル成長時に、第1マスク21と接していないので、オートドープが低減される。また第1マスク21が、GaN層32及び第2マスク23で覆われているので、GaN層33のオートドープが低減される。 After the step of growing the GaN layer 32 which is the first semiconductor layer, the GaN layer 33 which is the second semiconductor layer is grown. More specifically, in order to obtain a desired impurity concentration profile, the low impurity concentration GaN layer 33 is epitaxially grown so as to cover the GaN layer 32. The GaN layer 33 first grows in the vertical direction from the surface 32b of the GaN layer 32, and then grows in the horizontal direction so as to fill the step 24. As a result, the surface 33b of the GaN layer 33 is also substantially flat. The GaN layer 33 stops epitaxial growth before associating. The GaN layer 33 is an n-semiconductor layer. The doping amount of the n-type impurity is controlled in the GaN layer 33 so that the electron carrier concentration is less than 10 17 cm -3 . Since the GaN layer 33 is not in contact with the first mask 21 during epitaxial growth, autodoping is reduced. Further, since the first mask 21 is covered with the GaN layer 32 and the second mask 23, the autodoping of the GaN layer 33 is reduced.
 さらにGaN層33を覆うように、高不純物濃度のGaN層34をエピタキシャル成長させる。GaN層34は、GaN層33の表面33bから、まず縦方向に成長し、その後、横方向に成長させる。これによりGaN層34の上面34aも、ほぼ平坦となる。GaN層34は、会合する前にエピタキシャル成長を停止させる。GaN層34は、n+半導体層である。GaN層34は、1019cm-3以上の電子キャリア濃度となるよう、n型不純物のドープ量が、コントロールされる。この高濃度の層は、電気抵抗が低く、その後の工程で付ける電極金属との接合部の電気抵抗を低くできる。 Further, the GaN layer 34 having a high impurity concentration is epitaxially grown so as to cover the GaN layer 33. The GaN layer 34 first grows in the vertical direction from the surface 33b of the GaN layer 33, and then grows in the horizontal direction. As a result, the upper surface 34a of the GaN layer 34 is also substantially flat. The GaN layer 34 stops epitaxial growth before associating. The GaN layer 34 is an n + semiconductor layer. In the GaN layer 34, the doping amount of n-type impurities is controlled so that the electron carrier concentration is 10 19 cm -3 or more. This high-concentration layer has low electrical resistance, and the electrical resistance of the joint with the electrode metal attached in the subsequent step can be lowered.
 以上のようにして、図5に示すように、段差24の形状が転写された半導体層31のGaN層32及びGaN層33を有する半導体素子1を作製する。半導体層31は、基板11の上に作成され、表面から、n+型半導体層であるGaN層32、n-型半導体層であるGaN層33、及びn+型半導体層であるGaN層34を積層方向にエピタキシャル成長される。 As described above, as shown in FIG. 5, the semiconductor element 1 having the GaN layer 32 and the GaN layer 33 of the semiconductor layer 31 to which the shape of the step 24 is transferred is manufactured. The semiconductor layer 31 is formed on the substrate 11, and the GaN layer 32 which is an n + type semiconductor layer, the GaN layer 33 which is an n− type semiconductor layer, and the GaN layer 34 which is an n + type semiconductor layer are laminated from the surface. Epitaxially grown to.
 半導体層31が形成されると、半導体層31が会合していないので、第2マスク23は、分離位置Pにおいて露出している。 When the semiconductor layer 31 is formed, the semiconductor layers 31 are not associated with each other, so that the second mask 23 is exposed at the separation position P.
 つづいて、図4、図5を参照して、半導体素子1を含む半導体装置2の製造方法を説明する。図4は、実施形態に係る半導体装置2の製造方法を説明するための工程図である。図5は、実施形態に係る半導体素子1の製造方法及び半導体素子1を説明するための断面模式図である。ステップST41ないしステップST46は、ステップST11ないしステップST13を行った後に行われる。 Subsequently, a method of manufacturing the semiconductor device 2 including the semiconductor element 1 will be described with reference to FIGS. 4 and 5. FIG. 4 is a process diagram for explaining the manufacturing method of the semiconductor device 2 according to the embodiment. FIG. 5 is a schematic cross-sectional view for explaining the manufacturing method of the semiconductor element 1 and the semiconductor element 1 according to the embodiment. Steps ST41 to ST46 are performed after performing steps ST11 to ST13.
 支持基板51に、半導体素子1の半導体層31を貼り付ける(ステップST41)。より詳しくは、基板11に対する反対側の半導体層31の裏面31bであるGaN層34の上面34aを支持基板51に接合する。接合は、金属を介した接合や、直接接合を用い接続の電気抵抗を低減してもよい。 The semiconductor layer 31 of the semiconductor element 1 is attached to the support substrate 51 (step ST41). More specifically, the upper surface 34a of the GaN layer 34, which is the back surface 31b of the semiconductor layer 31 on the opposite side to the substrate 11, is bonded to the support substrate 51. As the bonding, the electrical resistance of the connection may be reduced by using a metal-based bonding or a direct bonding.
 支持基板51に裏面電極61を形成する(ステップST42)。より詳しくは、支持基板51の上面に裏面電極61を例えばスパッタ等で形成する。裏面電極61は、例えば、Al層にTi、Ni、Auめっきを施したものである。なお、裏面電極61の形成は、後述する上面電極金属膜43が形成された後に形成されてもよい。温度を上げる工程が含まれる場合等に、ステップST42を最後に行うことで、裏面電極61への影響を避けることができる。 The back surface electrode 61 is formed on the support substrate 51 (step ST42). More specifically, the back surface electrode 61 is formed on the upper surface of the support substrate 51 by, for example, sputtering. The back surface electrode 61 is, for example, an Al layer plated with Ti, Ni, or Au. The back surface electrode 61 may be formed after the top surface electrode metal film 43, which will be described later, is formed. When the step of raising the temperature is included, the influence on the back surface electrode 61 can be avoided by performing step ST42 at the end.
 又は、予め裏面電極61が配置された支持基板51を用いてもよい。支持基板51は、低電気抵抗となるよう、高不純物濃度の半導体であってもよい。 Alternatively, a support substrate 51 on which the back surface electrode 61 is arranged in advance may be used. The support substrate 51 may be a semiconductor having a high impurity concentration so as to have low electrical resistance.
 ウエットエッチングによってマスクを除去する(ステップST43)。より詳しくは、分離位置Pにおいて露出している第2マスク23及び第1マスク21をウエットエッチングで溶解させる。 Remove the mask by wet etching (step ST43). More specifically, the second mask 23 and the first mask 21 exposed at the separation position P are melted by wet etching.
 半導体層31の裏面31bであるGaN層34の上面34aを支持基板51に接合した状態で半導体層31を基板11から剥離する(ステップST44)。より詳しくは、超音波等で開口部21sの近傍の結晶に亀裂を入れることで、基板11から半導体層31を剥離する。 The semiconductor layer 31 is peeled off from the substrate 11 in a state where the upper surface 34a of the GaN layer 34, which is the back surface 31b of the semiconductor layer 31, is bonded to the support substrate 51 (step ST44). More specifically, the semiconductor layer 31 is peeled from the substrate 11 by cracking the crystal in the vicinity of the opening 21s with ultrasonic waves or the like.
 剥離した後、半導体素子1と上下反転させる(ステップST45)。 After peeling, it is turned upside down with the semiconductor element 1 (step ST45).
 ドライエッチングをする(ステップST46)。より詳しくは、GaN層32をドライエッチングで溶解させる。本実施形態では、ドライエッチングされた半導体素子1は、メサ構造を有する。 Perform dry etching (step ST46). More specifically, the GaN layer 32 is melted by dry etching. In the present embodiment, the dry-etched semiconductor element 1 has a mesa structure.
 図1、図5等では、説明のため、全ての段差を大きく描いた。図5に示す面32aと面32cの段差は0.5μm以下であってもよく、0.1μm程度であってもよい。図5に示す面32bと面32cの段差は、0.5μm以上10μm以下程度であってもよい。 In Fig. 1, Fig. 5, etc., all the steps are drawn large for the sake of explanation. The step between the surfaces 32a and the surface 32c shown in FIG. 5 may be 0.5 μm or less, or may be about 0.1 μm. The level difference between the surface 32b and the surface 32c shown in FIG. 5 may be about 0.5 μm or more and 10 μm or less.
 ステップST46において、第1マスク21及び第2マスク23に接した、半導体層31のGaN層32の面32aをドライエッチングして、段差24を転写する。これにより、GaN層32の段差が転写されて、GaN層33の面33aに対し、周囲に一段下がった段差33c及び、段差33cから一段下がった段差33dが形成されている。GaN層33は、段差を転写することによってメサ構造又はトレンチ構造が形成される。本実施形態では、一例として段差33cをメサ構造として利用する場合を図示する。 In step ST46, the surface 32a of the GaN layer 32 of the semiconductor layer 31 in contact with the first mask 21 and the second mask 23 is dry-etched to transfer the step 24. As a result, the step of the GaN layer 32 is transferred to form a step 33c that is one step lower than the surface 33a of the GaN layer 33 and a step 33d that is one step lower than the step 33c. A mesa structure or a trench structure is formed in the GaN layer 33 by transferring the step. In this embodiment, a case where the step 33c is used as a mesa structure is illustrated as an example.
 また、ステップST46において、GaN層32の面32aをドライエッチングする代わりに、GaN層32の面32aを研磨して、段差24を転写してもよい。研磨することで、半導体層31へのダメージを低減できる。 Further, in step ST46, instead of dry etching the surface 32a of the GaN layer 32, the surface 32a of the GaN layer 32 may be polished to transfer the step 24. By polishing, damage to the semiconductor layer 31 can be reduced.
 メサ段差を形成することにより、電極端部に加わる電界を緩和できるため、耐圧の高い素子を作製できる。 By forming a mesa step, the electric field applied to the end of the electrode can be relaxed, so an element with high withstand voltage can be manufactured.
 以上により半導体素子1が製造される。半導体素子1は例えばショットキー接合を有するSBDとして使用可能である。 From the above, the semiconductor element 1 is manufactured. The semiconductor device 1 can be used, for example, as an SBD having a Schottky junction.
 以上説明した製造プロセスを、図1に示すように複数の半導体素子1を同時に製造するように同時並行して実施する。すなわち、第1マスク21に複数の開口部21sを形成する。一の開口部21sに対し一の半導体素子1を対応させることによって、複数の半導体素子1を同時に作製する。図1では、作製する複数の半導体素子1が並列に配置される構成となっている。 The manufacturing process described above is carried out simultaneously and in parallel so as to simultaneously manufacture a plurality of semiconductor elements 1 as shown in FIG. That is, a plurality of openings 21s are formed in the first mask 21. By associating one semiconductor element 1 with one opening 21s, a plurality of semiconductor elements 1 are simultaneously manufactured. In FIG. 1, a plurality of semiconductor elements 1 to be manufactured are arranged in parallel.
 各半導体素子1は、分離位置Pにおいて個片に分離して半導体装置2としてもよい。大容量化が必要な場合には、一例として、図1に示すように複数の半導体素子1で支持基板51及び裏面電極61を共有したまま、図6に示すように実装して半導体装置2として利用してもよい。図6は、複数の半導体素子1を並列配置した構成を含む上面図である。具体的には、図6に示すように、共通の裏面電極61を実装基板200上の一の電極パッド201にダイボンディングし、個々の上面電極金属膜をボンディングワイヤ52により他の電極パッド202に接続する。このように実装基板200を実装することで、複数のダイオードを並列接続して大容量化し利用することができる。このとき、複数の半導体素子1を一定方向に並べて配置するように製造する。半導体素子1は、平面視で、半導体素子1が並ぶ方向に対する略直交方向に長尺な形状とする。半導体素子1をこのような形状と並びとすることで、ダイオードの接合面積を大きくできる。このように製造された半導体素子1は、用途に合わせて様々な半導体装置2として利用可能である。 Each semiconductor element 1 may be separated into individual pieces at the separation position P to form the semiconductor device 2. When it is necessary to increase the capacity, as an example, as shown in FIG. 1, a plurality of semiconductor elements 1 share the support substrate 51 and the back surface electrode 61, and the semiconductor device 2 is mounted as shown in FIG. You may use it. FIG. 6 is a top view including a configuration in which a plurality of semiconductor elements 1 are arranged in parallel. Specifically, as shown in FIG. 6, a common back surface electrode 61 is die-bonded to one electrode pad 201 on the mounting substrate 200, and each top surface electrode metal film is bonded to another electrode pad 202 by a bonding wire 52. Connecting. By mounting the mounting board 200 in this way, a plurality of diodes can be connected in parallel to increase the capacity and use them. At this time, the plurality of semiconductor elements 1 are manufactured so as to be arranged side by side in a certain direction. The semiconductor element 1 has a long shape in a direction substantially orthogonal to the direction in which the semiconductor elements 1 are arranged in a plan view. By arranging the semiconductor elements 1 in line with such a shape, the junction area of the diode can be increased. The semiconductor element 1 manufactured in this way can be used as various semiconductor devices 2 according to the application.
(効果)
 以上により、本実施形態では、半導体層31におけるドナー又はアクセプタとなる元素を含む第1マスク21の少なくとも一部に重ねて、半導体層31におけるドナー又はアクセプタとなる元素を含まない第2マスク23を配置する。本実施形態では、第1マスク21の横方向の端部が、第2マスク23で覆われている。本実施形態によれば、GaN層32が会合する前にエピタキシャル成長を停止できる。また、本実施形態によれば、第1マスク21が第2マスク23及びGaN層32で覆われることにより、第1マスク21からGaN層33へのオートドープの発生を低減できる。このような本実施形態によれば、n+型の層を会合させる必要がないため、製造時間を短縮し、製造に要する手間を削減できる。
(effect)
As described above, in the present embodiment, the second mask 23 that does not contain the element that becomes the donor or acceptor in the semiconductor layer 31 is superimposed on at least a part of the first mask 21 that contains the element that becomes the donor or acceptor in the semiconductor layer 31. Deploy. In the present embodiment, the lateral end portion of the first mask 21 is covered with the second mask 23. According to this embodiment, the epitaxial growth can be stopped before the GaN layer 32 is associated. Further, according to the present embodiment, since the first mask 21 is covered with the second mask 23 and the GaN layer 32, the occurrence of autodoping from the first mask 21 to the GaN layer 33 can be reduced. According to this embodiment, since it is not necessary to associate the n + type layers, the manufacturing time can be shortened and the labor required for manufacturing can be reduced.
 本実施形態では、分離位置Pにおいて、第1マスク21上に形成された第2マスク23が露出する。本実施形態では、マスク除去の際に、ウエットエッチングによって、分離位置Pから第2マスク23及び第1マスク21を除去できる。このように、本実施形態によれば、半導体素子1の製造時に、第1マスク及び第2マスク23の除去のためのドライエッチングを実施せずに製造できる。本実施形態は、第1マスク及び第2マスク23の除去のためのドライエッチングを要しないので、半導体に与えるダメージを低減できる。また、本実施形態は、第1マスク及び第2マスク23の除去のためのドライエッチングに起因する不良の発生を低減できる。 In the present embodiment, the second mask 23 formed on the first mask 21 is exposed at the separation position P. In the present embodiment, when removing the mask, the second mask 23 and the first mask 21 can be removed from the separation position P by wet etching. As described above, according to the present embodiment, the semiconductor element 1 can be manufactured without performing dry etching for removing the first mask and the second mask 23 at the time of manufacturing. Since the present embodiment does not require dry etching for removing the first mask and the second mask 23, damage to the semiconductor can be reduced. Further, the present embodiment can reduce the occurrence of defects caused by dry etching for removing the first mask and the second mask 23.
 本実施形態では、第2マスク23の幅wは、例えば20μm以上100μm以下である。本実施形態では、分離位置Pにおいて、第1マスク21及び第2マスク23を除去した後、ステップST46においてドライエッチングを適切に実施できる。本実施形態では、ステップST13においてELO法を実施する際に、第2マスク23上にデブリが発生することを抑制できる。 In the present embodiment, the width w of the second mask 23 is, for example, 20 μm or more and 100 μm or less. In the present embodiment, after removing the first mask 21 and the second mask 23 at the separation position P, dry etching can be appropriately performed in step ST46. In the present embodiment, it is possible to suppress the generation of debris on the second mask 23 when the ELO method is carried out in step ST13.
 本実施形態では、第2マスク23は、複数の半導体素子1を個片に分離する位置を含んで配置されている。本実施形態によれば、分離位置Pにおいて半導体層31が会合しないので、複数の半導体素子1を個片に容易に分離できる。 In the present embodiment, the second mask 23 is arranged including a position where the plurality of semiconductor elements 1 are separated into individual pieces. According to this embodiment, since the semiconductor layer 31 does not associate at the separation position P, the plurality of semiconductor elements 1 can be easily separated into individual pieces.
 本実施形態によれば、第1マスク21の段差24を転写することによってメサ構造又はトレンチ構造が形成された半導体素子1を製造できる。 According to this embodiment, the semiconductor element 1 in which the mesa structure or the trench structure is formed can be manufactured by transferring the step 24 of the first mask 21.
[変形例1]
 図7を参照して、実施形態の変形例1について説明する。図7は、実施形態の変形例1に係る半導体素子1を説明するための断面模式図である。半導体素子1は、アノードに接続された、pn接合とショットキー接合とを組み合わせたJBS(Junction Barrier Schottky)構造を有する。より詳しくは、変形例1に係る半導体素子1は、金属層(バリアメタル)である図示しないショットキー金属膜を設けてGaN層33とショットキー金属膜とのショットキー接合を設ける。
[Modification 1]
A modified example 1 of the embodiment will be described with reference to FIG. 7. FIG. 7 is a schematic cross-sectional view for explaining the semiconductor element 1 according to the modified example 1 of the embodiment. The semiconductor element 1 has a JBS (Junction Barrier Schottky) structure in which a pn junction and a Schottky junction are combined, which is connected to the anode. More specifically, the semiconductor device 1 according to the modification 1 is provided with a Schottky metal film (not shown) which is a metal layer (barrier metal), and a Schottky junction between the GaN layer 33 and the Schottky metal film is provided.
 図7に示すように、変形例1に係る製造方法によって製造された半導体素子1は、GaN層33の面33a上にJBS構造が形成されている。半導体装置2は、このような半導体素子1を含む。 As shown in FIG. 7, the semiconductor device 1 manufactured by the manufacturing method according to the modified example 1 has a JBS structure formed on the surface 33a of the GaN layer 33. The semiconductor device 2 includes such a semiconductor element 1.
 図7を参照して、半導体素子1を含む半導体装置2の製造方法を説明する。ステップST11、ステップST12は、実施形態と同様に行う。ステップST41ないしステップST45は、実施形態と同様に行う。 A method of manufacturing the semiconductor device 2 including the semiconductor element 1 will be described with reference to FIG. 7. Steps ST11 and ST12 are performed in the same manner as in the embodiment. Steps ST41 to ST45 are performed in the same manner as in the embodiment.
 ELO技術を用いて開口部21sから露出する基板11の表面11aから半導体層31としてのGaN層を形成する(ステップST13)。より詳しくは、まず、実施形態と同様に、高不純物濃度のn+型のGaN層32をエピタキシャル成長させる。 Using the ELO technique, a GaN layer as a semiconductor layer 31 is formed from the surface 11a of the substrate 11 exposed from the opening 21s (step ST13). More specifically, first, as in the embodiment, the n + type GaN layer 32 having a high impurity concentration is epitaxially grown.
 GaN層32を覆うように低不純物濃度のGaN層35をエピタキシャル成長させる。GaN層35は、開口部23sから露出するGaN層32の表面32bから、まず縦方向に成長し、その後、段差24を埋めるように横方向に成長させる。GaN層35は、p+型半導体層である。GaN層35は、1018cm-3以上のホールキャリア濃度となるよう、p型不純物のドープ量がコントロールされる。GaN層35の表面35bは、ほぼ平坦となる。GaN層35は、例えば20nm程度以上の厚さd6を有する。 The GaN layer 35 having a low impurity concentration is epitaxially grown so as to cover the GaN layer 32. The GaN layer 35 first grows in the vertical direction from the surface 32b of the GaN layer 32 exposed from the opening 23s, and then grows in the horizontal direction so as to fill the step 24. The GaN layer 35 is a p + type semiconductor layer. The doping amount of the p-type impurity is controlled in the GaN layer 35 so that the hole carrier concentration is 10 18 cm -3 or more. The surface 35b of the GaN layer 35 is substantially flat. The GaN layer 35 has, for example, a thickness d6 of about 20 nm or more.
 続くGaN層33は、露出するGaN層35の表面35bから、まず縦方向に成長し、その後、段差24を埋めるように横方向に成長させる。 The subsequent GaN layer 33 first grows in the vertical direction from the surface 35b of the exposed GaN layer 35, and then grows in the horizontal direction so as to fill the step 24.
 さらにGaN層34は、露出するGaN層33の表面33bから、まず縦方向に成長し、その後、横方向に成長させる。 Further, the GaN layer 34 first grows in the vertical direction from the surface 33b of the exposed GaN layer 33, and then grows in the horizontal direction.
 GaN層32の全体及びGaN層35の一部をドライエッチングする(ステップST46)。より詳しくは、第1マスク21に接した、半導体層31のGaN層32の面32aの全面及び、GaN層35の一部をドライエッチングする。具体的には、GaN層32及びGaN層35をドライエッチング又はウエットエッチングの少なくともどちらかで溶解させる。なお、GaN層32及びGaN層35をウエットエッチングする場合には、GaN層32及びGaN層35の厚さd6を1μm以下に薄くてもよい。これにより、GaN層33の面33a上に形成されたGaN層35が一部を残して除去される。変形例1では、残ったGaN層35は、GaN層33の面33aに矩形の枠状に配置されている。変形例1では、残ったGaN層35は、三重の入れ子状に配置されているがこれに限定されず、1つ以上配置されていればよい。残ったGaN層35のうち、外側のGaN層35は、内側のGaN層35に比べて幅が広く形成されていてもよい。 Dry etching the entire GaN layer 32 and a part of the GaN layer 35 (step ST46). More specifically, the entire surface of the surface 32a of the GaN layer 32 of the semiconductor layer 31 and a part of the GaN layer 35 in contact with the first mask 21 are dry-etched. Specifically, the GaN layer 32 and the GaN layer 35 are melted by at least either dry etching or wet etching. When the GaN layer 32 and the GaN layer 35 are wet-etched, the thickness d6 of the GaN layer 32 and the GaN layer 35 may be reduced to 1 μm or less. As a result, the GaN layer 35 formed on the surface 33a of the GaN layer 33 is removed except for a part. In the first modification, the remaining GaN layer 35 is arranged in a rectangular frame shape on the surface 33a of the GaN layer 33. In the first modification, the remaining GaN layers 35 are arranged in a triple nested manner, but the present invention is not limited to this, and one or more may be arranged. Of the remaining GaN layer 35, the outer GaN layer 35 may be formed to be wider than the inner GaN layer 35.
 GaN層32の全体及びGaN層35の一部をドライエッチングする代わりに、GaN層32の全体及びGaN層35の一部を研磨してもよい。より詳しくは、第1マスク21に接した、半導体層31のGaN層32の面32aの全面及び、GaN層35の一部を研磨してもよい。具体的には、GaN層35が露出するまで、GaN層32を研磨する。その後、GaN層35の一部をマスクし、GaN層35をドライエッチングする。これにより、GaN層35は、GaN層32より薄いので、エッチングレートが低くなり時間をかけずに半導体層31へのダメージを低減できる。 Instead of dry etching the entire GaN layer 32 and a part of the GaN layer 35, the entire GaN layer 32 and a part of the GaN layer 35 may be polished. More specifically, the entire surface of the surface 32a of the GaN layer 32 of the semiconductor layer 31 and a part of the GaN layer 35 may be polished in contact with the first mask 21. Specifically, the GaN layer 32 is polished until the GaN layer 35 is exposed. After that, a part of the GaN layer 35 is masked and the GaN layer 35 is dry-etched. As a result, since the GaN layer 35 is thinner than the GaN layer 32, the etching rate becomes low and damage to the semiconductor layer 31 can be reduced without taking time.
 以上により、第1マスク21に接した、半導体層31のGaN層32の全体及びGaN層35の一部を残して除去して、JBS構造を形成できる。変形例1では、フィールドプレートを形成することにより、電極端部に加わる電界を緩和できる。変形例1によれば、サージ耐量電流を高めた半導体素子1を製造できる。変形例1によれば、耐圧性を高めた半導体素子1を製造できる。 From the above, the JBS structure can be formed by removing the entire GaN layer 32 of the semiconductor layer 31 and a part of the GaN layer 35 in contact with the first mask 21. In the first modification, the electric field applied to the end of the electrode can be relaxed by forming the field plate. According to the first modification, the semiconductor element 1 having an increased surge withstand current can be manufactured. According to the first modification, the semiconductor element 1 having an increased withstand voltage can be manufactured.
[変形例2]
 図8、図9を参照して、実施形態の変形例2について説明する。図8は、実施形態の変形例2に係る半導体素子1を説明するための断面模式図である。図9は、実施形態の変形例2に係る半導体装置2の製造方法を説明するための工程図である。変形例2に係る半導体素子1は、JBS構造及びFLR(Field Limiting Ring)構造を有する。
[Modification 2]
A modified example 2 of the embodiment will be described with reference to FIGS. 8 and 9. FIG. 8 is a schematic cross-sectional view for explaining the semiconductor element 1 according to the second modification of the embodiment. FIG. 9 is a process diagram for explaining a method of manufacturing the semiconductor device 2 according to the second modification of the embodiment. The semiconductor device 1 according to the second modification has a JBS structure and a FLR (Field Limiting Ring) structure.
 図8に示すように、変形例2に係る製造方法によって製造された半導体素子1は、GaN層33の面33a上にFLR構造が形成されている。半導体装置2は、このような半導体素子1を含む。半導体素子1は、メサ構造を有しておらず、FLR構造を有する。 As shown in FIG. 8, the semiconductor device 1 manufactured by the manufacturing method according to the modification 2 has an FLR structure formed on the surface 33a of the GaN layer 33. The semiconductor device 2 includes such a semiconductor element 1. The semiconductor element 1 does not have a mesa structure but has an FLR structure.
 変形例2において、第1マスク21の厚さd1と第2マスク23の厚さd3との合計は、GaN層32の厚さd2と同程度の厚さでよい。第2マスク23の積層方向の厚さd3は、例えば、1μm以下であってもよい。 In the second modification, the sum of the thickness d1 of the first mask 21 and the thickness d3 of the second mask 23 may be about the same as the thickness d2 of the GaN layer 32. The thickness d3 of the second mask 23 in the stacking direction may be, for example, 1 μm or less.
 図9に示す半導体素子1は、ステップST11からステップST45までは、変形例1の半導体素子1と同様の工程を実行する。 The semiconductor element 1 shown in FIG. 9 executes the same process as the semiconductor element 1 of the modification 1 from step ST11 to step ST45.
 変形例2では、ステップST46の実施後に残ったGaN層35は、四重の入れ子状に配置されている。例えば、内側の三重のGaN層35はJBS構造を形成し、外側のGaN層35はFLR構造を形成する。JBS構造及びFLR構造の例はこれに限定されない。 In the second modification, the GaN layer 35 remaining after the execution of step ST46 is arranged in a quadruple nested manner. For example, the inner triple GaN layer 35 forms a JBS structure and the outer GaN layer 35 forms an FLR structure. Examples of JBS and FLR structures are not limited to this.
 露出するGaN層33の面33aにショットキー接合するショットキー金属膜41を形成する(ステップST47)。ショットキー金属膜41により、露出するGaN層33の面33aの中間部、及び、GaN層33の面33aの中間部に配置されたGaN層35が覆われる。ショットキー金属膜41は、内側のGaN層35及びその間に露出するGaN層33の面33aを覆って配置される。GaN層33とショットキー金属膜41とのショットキー接合が設けられる。ショットキー金属膜41は、GaN層33の面33aの周縁部、言い換えると、FLR構造を形成する部分には配置されない。 A Schottky metal film 41 to be Schottky bonded is formed on the surface 33a of the exposed GaN layer 33 (step ST47). The Schottky metal film 41 covers the intermediate portion of the surface 33a of the exposed GaN layer 33 and the GaN layer 35 arranged in the intermediate portion of the surface 33a of the GaN layer 33. The Schottky metal film 41 is arranged so as to cover the inner GaN layer 35 and the surface 33a of the GaN layer 33 exposed between them. A Schottky junction between the GaN layer 33 and the Schottky metal film 41 is provided. The Schottky metal film 41 is not arranged on the peripheral edge of the surface 33a of the GaN layer 33, in other words, on the portion forming the FLR structure.
 ショットキー金属膜41は、例えばNi、Al、Pdなどである。 The shotkey metal film 41 is, for example, Ni, Al, Pd, or the like.
 絶縁層である絶縁膜42を形成する(ステップST48)。絶縁膜42は、露出するGaN層33の面33aの周縁部、及び、GaN層33の面33aの周縁部に配置されたGaN層35を覆って配置される。 The insulating film 42, which is an insulating layer, is formed (step ST48). The insulating film 42 is arranged so as to cover the peripheral portion of the surface 33a of the exposed GaN layer 33 and the GaN layer 35 arranged on the peripheral portion of the surface 33a of the GaN layer 33.
 ステップST48において、絶縁膜42は、GaN層33の面33aの中間部を除いて配置される。絶縁膜42は、ショットキー金属膜41より外側に配置される。これにより、pn接合は、アノードに接続されない。 In step ST48, the insulating film 42 is arranged except for the intermediate portion of the surface 33a of the GaN layer 33. The insulating film 42 is arranged outside the Schottky metal film 41. As a result, the pn junction is not connected to the anode.
 ショットキー金属膜41上及び絶縁膜42上に上面電極金属膜43を形成する(ステップST49)。上面電極金属膜43は、ショットキー金属膜41によって覆われたGaN層35を覆って配置される。また、上面電極金属膜43は、絶縁膜42上で所謂フィールドプレートを形成する。上面電極金属膜43は、絶縁膜42によって覆われた外側のGaN層35と、ショットキー金属膜41によって覆われた内側のGaN層35とにそれぞれ配置される。変形例2では、絶縁膜42及び上面電極金属膜43によって外側のGaN層35が覆われることによって、FLR構造が形成されている。上面電極金属膜43同士は、離間しており接触していない。 The top electrode metal film 43 is formed on the Schottky metal film 41 and the insulating film 42 (step ST49). The top electrode metal film 43 is arranged so as to cover the GaN layer 35 covered with the Schottky metal film 41. Further, the top electrode metal film 43 forms a so-called field plate on the insulating film 42. The top electrode metal film 43 is arranged on the outer GaN layer 35 covered with the insulating film 42 and the inner GaN layer 35 covered with the Schottky metal film 41, respectively. In the second modification, the FLR structure is formed by covering the outer GaN layer 35 with the insulating film 42 and the top electrode metal film 43. The top electrode metal films 43 are separated from each other and are not in contact with each other.
 フィールドプレートを形成することにより、電極端部に加わる電界を緩和できるため、耐圧の高いデバイスになる。フィールドプレートは、上部電極と分離してもよい。 By forming a field plate, the electric field applied to the end of the electrode can be relaxed, making it a device with high withstand voltage. The field plate may be separated from the top electrode.
 以上により、第1マスク21に接した、半導体層31のGaN層35をドライエッチングで一部を残して除去して、JBS構造及びFLR構造を形成できる。このようにして、変形例2によれば、耐圧性を高めた半導体素子1を製造できる。 From the above, the GaN layer 35 of the semiconductor layer 31 in contact with the first mask 21 can be removed by dry etching to form the JBS structure and the FLR structure. In this way, according to the modification 2, the semiconductor element 1 having an increased withstand voltage can be manufactured.
 本出願の開示する実施形態は、発明の要旨及び範囲を逸脱しない範囲で変更することができる。さらに、本出願の開示する実施形態及びその変形例は、適宜組み合わせることができる。 The embodiments disclosed in this application can be changed without departing from the gist and scope of the invention. Further, the embodiments disclosed in the present application and variations thereof can be combined as appropriate.
 添付の請求項に係る技術を完全かつ明瞭に開示するために特徴的な実施形態に関し記載してきた。しかし、添付の請求項は、上記実施形態に限定されるべきものでなく、本明細書に示した基礎的事項の範囲内で当該技術分野の当業者が創作しうるすべての変形例及び代替可能な構成を具現化するように構成されるべきである。 A characteristic embodiment has been described in order to completely and clearly disclose the technique according to the attached claim. However, the attached claims are not limited to the above embodiments, and all modifications and alternatives that can be created by those skilled in the art within the scope of the basic matters shown in the present specification are possible. It should be configured to embody a unique configuration.
 また、段差24の形状は、傾斜を有してもよいし、角部を丸めてもよい。 Further, the shape of the step 24 may have an inclination or may have rounded corners.
 なお、以上の実施形態に拘わらず、形状は、段差が2箇所以上あるものであってもよい。また、開口部21sから径方向の外側に向かって上へ上がる段差に限定されず、下へ下がる段差も実施できる。したがって、一旦上へ上がって下へ下がる形状とすることで凸な形状も形成できる。第1マスク21及び第2マスク23の凸な形状を転写することで、トレンチ構造も形成できる。したがって、上記メサ構造は、トレンチ構造としてもよい。また、半導体素子1の中心から径方向の外側に向かって1又は複数のトレンチ構造と、最外縁のメサ構造とを形成することもできる。 Regardless of the above embodiment, the shape may have two or more steps. Further, the step is not limited to a step that rises upward from the opening 21s toward the outside in the radial direction, and a step that descends downward can also be implemented. Therefore, a convex shape can be formed by forming a shape that once goes up and goes down. A trench structure can also be formed by transferring the convex shapes of the first mask 21 and the second mask 23. Therefore, the mesa structure may be a trench structure. Further, one or a plurality of trench structures and a mesa structure at the outermost edge can be formed from the center of the semiconductor element 1 toward the outside in the radial direction.
 1 半導体素子
 2 半導体装置
 11 基板
 11a 表面
 21 第1マスク
 21d 側面
 21s 開口部
 22 レジストマスク
 23 第2マスク
 23d 側面
 23s 開口部
 24 段差
 25 レジストパターン
 25s 開口部
 31 半導体層
 31b 裏面
 32 GaN層(第1半導体層)
 33 GaN層(第2半導体層)
 34 GaN層(第3半導体層)
 51 支持基板
 61 裏面電極
 200 実装基板
 201 電極パッド
 202 電極パッド
1 Semiconductor element 2 Semiconductor device 11 Substrate 11a Surface 21 First mask 21d Side surface 21s Opening 22 Resist mask 23 Second mask 23d Side surface 23s Opening 24 Step 25 Resist pattern 25s Opening 31 Semiconductor layer 31b Back side 32 GaN layer (1st Semiconductor layer)
33 GaN layer (second semiconductor layer)
34 GaN layer (third semiconductor layer)
51 Support board 61 Back side electrode 200 Mounting board 201 Electrode pad 202 Electrode pad

Claims (13)

  1.  基板の表面に、一部が開口している第1マスクを設ける工程と、
     前記第1マスクの一部を覆うように第2マスクを形成する工程と、
     前記開口から露出する前記基板の表面から、前記第1マスクを覆い、前記第2マスクを露出させるようにエピタキシャル成長させて、第1半導体層を成長する工程と、
     を含み、
     前記第1マスクは、前記第1半導体層におけるドナーとなる元素を含み、
     前記第2マスクは、前記第1半導体層におけるドナーとなる元素を含まない、
     半導体素子の製造方法。
    The process of providing a first mask with a partial opening on the surface of the substrate, and
    The step of forming the second mask so as to cover a part of the first mask, and
    A step of covering the first mask from the surface of the substrate exposed from the opening and epitaxially growing the second mask so as to expose the second mask to grow the first semiconductor layer.
    Including
    The first mask contains an element that becomes a donor in the first semiconductor layer.
    The second mask does not contain an element that becomes a donor in the first semiconductor layer.
    Manufacturing method for semiconductor devices.
  2.  前記第1半導体層を成長する工程の後に、第2半導体層を成長する工程、をさらに含み、
     前記第1半導体層は、n+型半導体層であり、
     前記第2半導体層は、n-型半導体層である、請求項1に記載の半導体素子の製造方法。
    After the step of growing the first semiconductor layer, a step of growing a second semiconductor layer is further included.
    The first semiconductor layer is an n + type semiconductor layer, and is an n + type semiconductor layer.
    The method for manufacturing a semiconductor element according to claim 1, wherein the second semiconductor layer is an n-type semiconductor layer.
  3.  前記第2マスクの積層方向と直交する横方向の幅は、20μm以上100μm以下である、請求項1または請求項2に記載の半導体素子の製造方法。 The method for manufacturing a semiconductor element according to claim 1 or 2, wherein the width in the lateral direction orthogonal to the stacking direction of the second mask is 20 μm or more and 100 μm or less.
  4.  前記第2マスクは、複数の前記半導体素子を個片に分離する位置を含んで配置されている、請求項1から請求項3のいずれか一項に記載の半導体素子の製造方法。 The method for manufacturing a semiconductor element according to any one of claims 1 to 3, wherein the second mask is arranged including a position for separating the plurality of the semiconductor elements into individual pieces.
  5.  ショットキー接合を設ける、請求項1から請求項4のいずれか一項に記載の半導体素子の製造方法。 The method for manufacturing a semiconductor device according to any one of claims 1 to 4, wherein a Schottky junction is provided.
  6.  JBS構造を有している、請求項1から請求項4のいずれか一項に記載の半導体素子の製造方法。 The method for manufacturing a semiconductor device according to any one of claims 1 to 4, which has a JBS structure.
  7.  メサ構造を有する、請求項5または請求項6に記載の半導体素子の製造方法。 The method for manufacturing a semiconductor device according to claim 5 or 6, which has a mesa structure.
  8.  前記第2マスクの積層方向の厚さは、3μm以上である、請求項7に記載の半導体素子の製造方法。 The method for manufacturing a semiconductor element according to claim 7, wherein the thickness of the second mask in the stacking direction is 3 μm or more.
  9.  FLRを有する、請求項5または請求項6に記載の半導体素子の製造方法。 The method for manufacturing a semiconductor device according to claim 5 or 6, which has FLR.
  10.  前記第2マスクの積層方向の厚さは、1μm以下である、請求項9に記載の半導体素子の製造方法。 The method for manufacturing a semiconductor device according to claim 9, wherein the thickness of the second mask in the stacking direction is 1 μm or less.
  11.  n+型半導体のドープ濃度は、1018/cm以上である、請求項1から請求項10のいずれか一項に記載の半導体素子の製造方法。 The method for manufacturing a semiconductor device according to any one of claims 1 to 10, wherein the doping concentration of the n + type semiconductor is 10 18 / cm 3 or more.
  12.  請求項1から請求項11のいずれか一項に記載の半導体素子の製造方法により製造された半導体素子。 A semiconductor device manufactured by the method for manufacturing a semiconductor device according to any one of claims 1 to 11.
  13.  請求項1から請求項11のいずれか一項に記載の半導体素子の製造方法により製造された半導体素子を含む半導体装置。 A semiconductor device including a semiconductor device manufactured by the method for manufacturing a semiconductor device according to any one of claims 1 to 11.
PCT/JP2021/038102 2020-10-28 2021-10-14 Method for producing semiconductor element, semiconductor element, and semiconductor device WO2022091803A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022559002A JPWO2022091803A1 (en) 2020-10-28 2021-10-14

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-180941 2020-10-28
JP2020180941 2020-10-28

Publications (1)

Publication Number Publication Date
WO2022091803A1 true WO2022091803A1 (en) 2022-05-05

Family

ID=81382554

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/038102 WO2022091803A1 (en) 2020-10-28 2021-10-14 Method for producing semiconductor element, semiconductor element, and semiconductor device

Country Status (2)

Country Link
JP (1) JPWO2022091803A1 (en)
WO (1) WO2022091803A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003234546A (en) * 2002-02-07 2003-08-22 Nec Corp Semiconductor multilayer film, semiconductor element using the film, and manufacturing method thereof
JP2008546181A (en) * 2005-05-17 2008-12-18 アンバーウェーブ システムズ コーポレイション Lattice-mismatched semiconductor structure with low dislocation defect density and related device manufacturing method
JP2012119409A (en) * 2010-11-30 2012-06-21 Nippon Telegr & Teleph Corp <Ntt> Semiconductor element, semiconductor optical element, and semiconductor integrated element
JP2019204833A (en) * 2018-05-22 2019-11-28 日本電信電話株式会社 Optical device structure and manufacturing method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003234546A (en) * 2002-02-07 2003-08-22 Nec Corp Semiconductor multilayer film, semiconductor element using the film, and manufacturing method thereof
JP2008546181A (en) * 2005-05-17 2008-12-18 アンバーウェーブ システムズ コーポレイション Lattice-mismatched semiconductor structure with low dislocation defect density and related device manufacturing method
JP2012119409A (en) * 2010-11-30 2012-06-21 Nippon Telegr & Teleph Corp <Ntt> Semiconductor element, semiconductor optical element, and semiconductor integrated element
JP2019204833A (en) * 2018-05-22 2019-11-28 日本電信電話株式会社 Optical device structure and manufacturing method thereof

Also Published As

Publication number Publication date
JPWO2022091803A1 (en) 2022-05-05

Similar Documents

Publication Publication Date Title
JP6844163B2 (en) Silicon carbide semiconductor device
JP5303819B2 (en) Semiconductor device and manufacturing method thereof
US20150318436A1 (en) Method for separating growth substrate, method for manufacturing light-emitting diode, and light-emitting diode manufactured using methods
JP5346430B2 (en) Semiconductor device and manufacturing method thereof
US9257574B2 (en) Diode and method of manufacturing diode
WO2022091803A1 (en) Method for producing semiconductor element, semiconductor element, and semiconductor device
JP6428900B1 (en) Diode element and method for manufacturing diode element
CN113394281A (en) GaN-based HEMT device based on substrate conductive hole and preparation method thereof
JP5362187B2 (en) Semiconductor element
WO2022025080A1 (en) Manufacturing method for semiconductor element, semiconductor element and semiconductor device
US9735290B2 (en) Semiconductor device
WO2021220690A1 (en) Method for producing semiconductor element, and semiconductor device
WO2022131059A1 (en) Method for manufacturing semiconductor element, semiconductor element, and semiconductor device
WO2022209778A1 (en) Semiconductor element, semiconductor device, and method for manufacturing semiconductor element
JP2020202404A (en) Semiconductor device and manufacturing method thereof
US20220359196A1 (en) Method for manufacturing semiconductor element, and semiconductor device
JP3879697B2 (en) Semiconductor device
JP3144527B2 (en) Method for manufacturing semiconductor device having high concentration pn junction surface
WO2021131808A1 (en) Method for producing semiconductor element, and semiconductor device
WO2022190567A1 (en) Semiconductor element and semiconductor device
US10615292B2 (en) High voltage silicon carbide Schottky diode flip chip array
JP5580872B2 (en) Semiconductor element
JP3803611B2 (en) Semiconductor substrate, semiconductor element, and method for manufacturing semiconductor element
JP2009043952A (en) Method of manufacturing semiconductor device
KR102261735B1 (en) Hetero-junction transistor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21885922

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022559002

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21885922

Country of ref document: EP

Kind code of ref document: A1