WO2022091650A1 - 移動体挙動情報取得方法、移動体挙動情報取得装置及びプログラム - Google Patents

移動体挙動情報取得方法、移動体挙動情報取得装置及びプログラム Download PDF

Info

Publication number
WO2022091650A1
WO2022091650A1 PCT/JP2021/034796 JP2021034796W WO2022091650A1 WO 2022091650 A1 WO2022091650 A1 WO 2022091650A1 JP 2021034796 W JP2021034796 W JP 2021034796W WO 2022091650 A1 WO2022091650 A1 WO 2022091650A1
Authority
WO
WIPO (PCT)
Prior art keywords
value
velocity
azimuth
state
observed
Prior art date
Application number
PCT/JP2021/034796
Other languages
English (en)
French (fr)
Inventor
広毅 元垣内
大樹 神田
良樹 小畑
良 大野
Original Assignee
株式会社スマートドライブ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社スマートドライブ filed Critical 株式会社スマートドライブ
Priority to US17/793,919 priority Critical patent/US20230051377A1/en
Priority to JP2022507368A priority patent/JP7053087B1/ja
Publication of WO2022091650A1 publication Critical patent/WO2022091650A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/02Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to ambient conditions
    • B60W40/06Road conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/12Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to parameters of the vehicle itself, e.g. tyre models
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/16Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by evaluating the time-derivative of a measured speed signal
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/18Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration in two or more dimensions
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles

Definitions

  • the present invention relates to an information processing technique for acquiring information on the behavior of a moving object.
  • Patent Document 1 describes acceleration as vehicle behavior data collected from various sensors installed in the vehicle via a car navigation device.
  • a driving diagnosis system that generates statistical information based on time-series information is disclosed.
  • the moving body behavior information acquisition method is to acquire the observed value of the speed of the moving body based on the first interval, and to obtain the observed value of the acquired speed with the corresponding time information.
  • the value of the acceleration in the traveling direction is the value of the acceleration in the traveling direction
  • the value generated according to the first distribution is added to the value of the state of the velocity, which is the value of the acceleration in the traveling direction.
  • the displacement of the acceleration value per unit time in the traveling direction is based on the time information corresponding to the observed value of the velocity with respect to the state space model that follows the second distribution.
  • state value and “observed value” are used, and these mean the following.
  • State value A true value corresponding to some state in each information (for example, velocity) regarding the behavior of the moving object. Normally, it has the property that it is difficult to obtain the correct value from the outside due to the influence of noise and the like.
  • Observed value A value obtained by trying to acquire the above-mentioned state from the outside. Further, it is some value calculated based on these observed values without considering the influence of noise or the like (for example, a speed value calculated based on the observed value of position information without considering noise or the like). ..
  • FIG. 1 is a system configuration diagram of a mobile behavior information acquisition system according to one aspect of the first embodiment.
  • the observed value of the position information of the mobile body 1 is collected by the position information acquisition unit 110 included in the information processing device 100 carried by the passenger of the mobile body 1 and transmitted to the server 200.
  • the server 200 information on the behavior of the moving body 1 based on the observed value of the transmitted position information, for example, the state value of the velocity, the value of the acceleration in the traveling direction, the value of the angular velocity, and the value of the acceleration in the vertical direction are obtained. To be acquired.
  • FIG. 2 is a block diagram showing a functional configuration of the information processing apparatus 100 of FIG.
  • the information processing device 100 will be described as an example on the premise that it is a mobile terminal such as a smartphone or a tablet, but the information processing device 100 is not limited to these portable devices. For example, it may not be carried by a driver or a non-driver who rides on the moving body 1, but may be a device installed on the moving body such as a car navigation device or a drive recorder device.
  • the information processing unit 100 includes, for example, a position information acquisition unit 110, a communication unit 120, a display unit 130, and a storage unit 140, and these include, for example, information processing. It is a functional unit (functional block) of a processing unit (processing device) and a control unit (control device) (not shown) included in the device 100, and is configured to include a processor such as a CPU and an integrated circuit such as an ASIC.
  • a processor such as a CPU and an integrated circuit such as an ASIC.
  • the position information acquisition unit 110 acquires, for example, the observed values of the position information (for example, latitude / longitude information) of the information processing apparatus 100 based on the radio waves arriving from the GNSS satellite (for example, GPS satellite) in time series. It is preferable that the observation value of the position information is acquired at a predetermined time interval (for example, every second). That is, it is possible to acquire the observed value of the position information of the person carrying the information processing apparatus 100. In turn, the carrier of the information processing apparatus 100 can use the mobile body 1 to substantially acquire the observed value of the position information of the mobile body 1. The observed value of the acquired position information is associated with the time (current time) at which the position information was acquired and stored in the storage unit 140.
  • the position information acquisition unit 110 acquires the observed value of the position information by GPS, and also acquires the accuracy value indicating the accuracy of the position information (for example, the position accuracy such as 5m, 10m, 100m, DOP value, etc.). It may be that.
  • the observed value and the accuracy value of the acquired position information are associated with the current time and stored in the storage unit 140.
  • the method for acquiring the observed value of the position information by the position information acquisition unit 110 is not limited to the above, and any position information acquisition method may be applied.
  • the position information acquisition unit 110 receives radio waves including position information unique to the roadside unit emitted by the roadside unit installed on the side of the road when the mobile body 1 equipped with the information processing device 100 approaches. Therefore, the observed value of the position information of the information processing apparatus 100 may be acquired.
  • the communication unit 120 is configured to be able to communicate with a network NW such as the Internet.
  • Communication methods include a format for wired connection via a cable compliant with a predetermined communication standard such as Ethernet and USB (Universal Serial Bus), and a predetermined communication method such as Wi-Fi (registered trademark) and 5G (5th generation mobile communication system).
  • Various methods can be applied, such as a format for wirelessly connecting using wireless communication technology compliant with the above communication standard, and a format for connecting using short-range wireless communication such as Bluetooth (registered trademark).
  • the communication by the communication unit 120 is not particularly limited to the above.
  • the communication unit 120 transmits / receives information to / from the roadside unit installed on the side of the road, and the roadside unit transmits / receives information to the outside through the network NW to indirectly communicate with the server 200 or the like. It may be that.
  • the communication unit 120 stores the data received from the outside in the storage unit 140, and transmits the data such as the observed value of the position information stored in the storage unit 140 to the outside (for example, the server 200) via the network NW.
  • the display unit 130 is a display device including an LCD (Liquid Crystal Display), an OLED (Organic Electro-Luminescence Display), and the like, and is a control unit (not shown) according to information stored in the storage unit 140. Various displays are performed based on the display signal output from. It should be noted that a touch panel (not shown) integrally configured with the display unit 130 may be provided, and the touch panel may function as an input interface between the user and the information processing apparatus 100.
  • the storage unit 140 includes, for example, an HDD (Hard Disk Drive), an SSD (Solid State Drive), an EEPROM (Electrically Erasable Programmable Read-Only Memory), a ROM (Read-Only Memory), a RAM (Random Access Memory), and the like.
  • an HDD Hard Disk Drive
  • SSD Solid State Drive
  • EEPROM Electrically Erasable Programmable Read-Only Memory
  • ROM Read-Only Memory
  • RAM Random Access Memory
  • the storage unit 140 is not limited to the one built in the information processing device 100, and may be an external storage device connected by a digital input / output port or the like such as USB (Universal Serial Bus).
  • the clock unit 150 is a built-in clock of the information processing device 100, and outputs, for example, time information (timekeeping information) acquired based on a clock using a crystal oscillator.
  • the clock unit 150 may acquire time information via the communication unit 120 and the network NW in accordance with the NITZ (Network Identity and Time Zone) standard or the like.
  • NITZ Network Identity and Time Zone
  • the server 200 performs various processes based on the observed values of the position information transmitted from the information processing apparatus 100.
  • the processing performed by the server 200 includes, for example, a process of acquiring an observed value of velocity based on an observed value of position information, a process of acquiring an observed value of an azimuth angle based on an observed value of position information, and a process of acquiring an observed value of velocity. Processing to acquire the acceleration value in the traveling direction, processing to acquire the velocity state value from the velocity observation value, processing to acquire the angular velocity value from the azimuth angle observation value, processing to acquire the angular velocity value from the velocity state value and the angular velocity value in the vertical direction. The process of acquiring the value of the acceleration in. Details of these processes will be described later.
  • FIG. 3 is a block diagram showing a functional configuration of the server 200.
  • the server 200 is configured, for example, as a single server or as a distributed server composed of separate servers for each function.
  • the server 200 can also be configured as a distributed virtual server created in a cloud environment called a cloud server.
  • the server 200 has, for example, a velocity acquisition unit 220, an azimuth angle acquisition unit 230, a storage unit 240, a velocity and traveling direction acceleration acquisition unit 250, an angular velocity acquisition unit 260, and a vertical acceleration. It is configured to include an acquisition unit 270, an operation evaluation unit 280, and the like.
  • the speed acquisition unit 220 describes the observed value of the position information acquired and transmitted by the position information acquisition unit 110 of the information processing apparatus 100 stored in the storage unit 240 at a certain time (hereinafter referred to as time t).
  • the observation value of the position information and the cycle for acquiring the acceleration information from the time t (hereinafter referred to as "acceleration information acquisition cycle”.
  • the time when the acceleration information acquisition cycle is rotated by one cycle from the time t is defined as t + 1.
  • t + 2 t + 3 Two position information observation values of the past position information observation values acquired at the time before a predetermined number of cycles (for example, one cycle) are acquired, and between the two points.
  • the observed value of the velocity of the moving body 1 at time t in is acquired.
  • the acquired velocity observation value is associated with the time t and stored in the storage unit 240.
  • the "velocity" in the present embodiment is the magnitude of the velocity in the traveling direction of the moving body 1, and since it is not necessary to consider the vertical direction thereof, it is not retained as two-dimensional information. By combining with the azimuth angle information described later, the magnitude and direction of the velocity can be grasped.
  • the acquisition of the observed value of the speed of the moving body 1 may be performed by the information processing apparatus 100 instead of the server 200.
  • the observed value of the speed acquired by the information processing apparatus 100 is transmitted to the server 200, associated with the time t, and stored in the storage unit 240.
  • the azimuth angle calculation unit 230 has the same as the processing in the speed calculation unit 220, that is, the observation value of the position information stored in the storage unit 240 at the time t and a predetermined number of cycles (for example, in the acceleration information acquisition cycle from the time t). (1 cycle) Two of the observation values of the past position information acquired at the previous time are acquired, and the observation values of the azimuth angle are acquired based on the vector constructed by the two points.
  • the azimuth angle referred to here means, for example, the size of a horizontal angle measured in the direction clockwise with respect to true north.
  • the definition of the azimuth is not limited to this, and it may be based on an arbitrary direction (for example, just south), or it may be the size of a horizontal angle measured counterclockwise.
  • the observed value of the azimuth angle is associated with the time t and stored in the storage unit 240.
  • the storage unit 240 includes, for example, an HDD (Hard Disk Drive), an SSD (Solid State Drive), an EEPROM (Electrically Erasable Programmable Read-Only Memory), a ROM (Read-Only Memory), a RAM (Random Access Memory), and the like.
  • an HDD Hard Disk Drive
  • SSD Solid State Drive
  • EEPROM Electrically Erasable Programmable Read-Only Memory
  • ROM Read-Only Memory
  • RAM Random Access Memory
  • the storage unit 240 is not limited to the one built in the server 200, and may be an external storage device connected by a digital input / output port or the like such as USB (Universal Serial Bus).
  • the velocity and traveling direction acceleration acquisition unit 250 acquires the acceleration value and the velocity state value in the traveling direction of the moving body 1 based on the observed values of the velocity output and accumulated by the velocity acquisition unit 220 at each time. Then, it is stored in the storage unit 240 in association with the time information. The details of the process of acquiring the acceleration value and the velocity state value in the traveling direction will be described later.
  • the angular velocity acquisition unit 260 determines the angular velocity of the moving body 1 based on the azimuth angle observation values output and accumulated by the azimuth acquisition unit 230 at each time. The value is acquired and stored in the storage unit 240 in association with the time information. The details of this processing by the angular velocity acquisition unit 260 will be described later.
  • the vertical acceleration acquisition unit 270 is the direction perpendicular to the traveling direction of the moving body 1 based on the velocity value acquired by the velocity and traveling direction acceleration acquisition unit 250 and the angular velocity value acquired by the angular velocity acquisition unit 260.
  • the value of the acceleration in the above is acquired and stored in the storage unit 240 in association with the time information. The details of this processing by the vertical acceleration acquisition unit 270 will be described later.
  • the operation evaluation unit 280 evaluates the operation of the moving body 1 based on information on the behavior of the moving body 1, such as the value of the acceleration in the traveling direction and the value of the acceleration in the vertical direction. Specifically, for example, in the case of acceleration, whether or not the scalar value of the acceleration information acquired for each predetermined time unit exceeds a predetermined threshold value and whether or not the predetermined threshold value is continuously exceeded by a predetermined number is constant. It is judged and output whether the operation was safe or not from the viewpoint of whether the number of times that the threshold value was exceeded in time exceeded the predetermined number of times, or the safety / danger level was converted into a score and output. Output.
  • the magnitude of these threshold values may be changed according to the direction of the acceleration vector (front-back direction or left-right direction).
  • the threshold for the front may be set lower or higher than the threshold for the rear
  • the threshold for the left-right direction (sudden steering) may be lower or higher than the threshold for the front-rear direction (sudden start or sudden braking). It may be set, or it may be the same, of course.
  • FIG. 4 is a flowchart showing an example of a procedure for acquiring observed values of velocity and azimuth in the first embodiment and storing those values.
  • the processing in the flowchart of FIG. 4 is realized, for example, by the processing unit of the server 200 reading the code of the information processing program stored in the storage unit 240 into a RAM (not shown) and executing it.
  • Each symbol S in the flowchart of FIG. 4 means a step. Further, the flowchart described below is merely an example of the information processing procedure in the first embodiment, and other steps may be added or some steps may be deleted.
  • the information processing device 100 is assumed to be in a state in which the user holds the information processing device 100 and is on the moving body 1 (either as a driver or as a passenger, and the form thereof is not particularly limited).
  • the position information acquisition unit 110 acquires latitude / longitude information as position information from the GNSS satellite together with an accuracy value indicating the accuracy of the latitude / longitude information, and these acquired information. Is stored in the storage unit 140 of the information processing apparatus 100 in association with the time information related to the acquired time. After that, the set of the observed value of the stored position information, the accuracy value of the position information, and the time information is transmitted to the server 200. Then, the server 200 stores the observed value of the position information transmitted from the information processing apparatus 100 in the storage unit 240 (S1001).
  • the accuracy value of the position information at time t satisfies a predetermined condition (S1003). Specifically, the accuracy value indicates how accurately the position information at time t was acquired, and if the accuracy is low, the process of acquiring the speed and the acceleration in the traveling direction, which will be described later. , And, as it is inappropriate as a value used in the process of acquiring the angular velocity, it is intended to exclude the position information having a low accuracy value from these processes.
  • the accuracy value satisfies a predetermined condition (not limited, but as an example, the DOP value is equal to or less than a predetermined threshold value (for example, 5 m)) (S1003; Y), the observed value of the velocity or the azimuth angle. It is decided to proceed to the acquisition process, and if the predetermined conditions are not satisfied (S1003; N), it is considered that the accuracy of the position information at time t is not sufficient, and the observed values of these position information are discarded and the subsequent calculation process is not performed. , Step S1011.
  • a predetermined condition not limited, but as an example, the DOP value is equal to or less than a predetermined threshold value (for example, 5 m)) (S1003; Y)
  • a predetermined threshold value for example, 5 m
  • the velocity acquisition unit 220 receives the observed value of the position information at the time t and the past position information acquired one cycle before (or the time immediately before the accuracy value satisfies the condition) in the acceleration information acquisition cycle from the time t.
  • the observed value is acquired from the storage unit 240, and the observed value of the velocity at time t is acquired based on this information (S1005).
  • the azimuth acquisition unit 230 has the observed value of the position information at time t and the past position information acquired one cycle before (or the time immediately before the accuracy value satisfies the condition) in the acceleration information acquisition cycle.
  • the observed value of the azimuth angle at time t is acquired based on the observed value of (S1007).
  • step S1009 it is determined whether the observed value of the position information to be acquired remains, that is, whether the observed value of the target position information is stored in the storage unit 240. If it remains (S1009; Y), the time t is updated to t + 1 and the process from S1001 is repeated. If there is no remaining (S1009; N), the process for acquiring the observed value of this velocity and the acquisition of the observed value of the azimuth angle is terminated.
  • the order of the velocity observation value acquisition process in S1005 and the azimuth observation value acquisition process in S1007 does not matter. Further, S1005 and S1007 may be processed in parallel.
  • FIG. 5 is a flowchart showing a procedure example of the process of acquiring the acceleration value in the traveling direction and the acceleration value in the vertical direction of the moving body 1 at time t in the first embodiment.
  • the processing in the flowchart of FIG. 5 is realized by, for example, the processing unit of the server 200 reading the code of the information processing program stored in the storage unit 240 into a RAM (not shown) and executing the same as the processing shown in FIG. Will be done.
  • the velocity and traveling direction acceleration acquisition unit 250 and the angular velocity acquisition unit 260 retroactively record the velocity observation value and the azimuth observation value stored in the storage unit 240 by a predetermined number or a predetermined period from the time t. Acquire (S1101).
  • the velocity and traveling direction acceleration acquisition unit 250 performs a process of acquiring the acceleration value and the velocity state value in the traveling direction of the moving body 1 at time t (S1103).
  • the acquisition of the acceleration value and the acquisition of the velocity state value in the traveling direction of the moving body 1 are the displacement of the velocity state value per unit time as the acceleration value in the traveling direction.
  • This is done by setting a state-space model and solving it.
  • solving this state-space model an example of setting a linear model and applying a Kalman filter will be described below, but the solving method is not limited to this.
  • the filter to be applied is not limited to the Kalman filter, for example, a particle filter may be applied, and the model to be set is not limited to a linear one, and of course, it may be a non-linear model.
  • the displacement of the velocity state value per unit time is the acceleration value in the traveling direction.
  • the velocity state value includes an additive term that follows a Gaussian distribution with an average of 0 (for example, a value that takes into account the effects of noise, etc.).
  • the variation of the acceleration value in the traveling direction in the unit time follows a Gaussian distribution with an average of 0
  • the observed values of the acquired velocities are sequentially input to the state space model, so that the traveling direction is sequentially entered. It acquires the value of acceleration and the state value of velocity in.
  • the angular velocity acquisition unit 260 performs a process of acquiring the value of the angular velocity of the moving body 1 at time t based on the observed value of the azimuth angle acquired from the storage unit 240 in S1101 (S1105).
  • the displacement of the state value of the azimuth per unit time is the angular velocity value.
  • This is done by setting a state-space model to be solved and solving such a state-space model.
  • the case where a linear model is set and the Kalman filter is applied is described below.
  • the method of solving is not limited to this.
  • the filter to be applied is not limited to the Kalman filter, and for example, a particle filter may be applied, and the model to be set is not limited to a linear one, and of course, it may be a non-linear model.
  • the value of the angular velocity can be obtained by inputting the observed value of the azimuth angle observed in this model formula and estimating that the distribution of each additive term follows the Gaussian distribution with an average of 0.
  • the state value of the azimuth may also be obtained.
  • a state space model is set in which the displacement of the state value of the azimuth angle per unit time is the value of the angular velocity, and the azimuth is set. It is assumed that the observed angular velocity contains an additive term that follows a Gaussian distribution with an average of 0 in the state value of the azimuth angle, and that the variation of the angular velocity value in a unit time follows a Gaussian distribution with an average of 0. Then, by sequentially inputting the acquired observation values of the azimuth angle into the state space model, the values of the angular velocity and the like are sequentially acquired.
  • S1103 and S1105 may be processed in parallel.
  • the vertical acceleration acquisition unit 270 obtains the value of the acceleration in the direction perpendicular to the traveling direction of the moving body 1 (S1107).
  • the value of the acceleration in the vertical direction may be calculated from the acquired value of the acceleration in the traveling direction by using, for example, a trigonometric function.
  • a trigonometric function For example, a trigonometric function.
  • rounding errors in numerical calculation may adversely affect the final calculation result.
  • the value of the acceleration in the vertical direction can be obtained by using the equation of the number 3 that projects the state value of the velocity in the vertical direction based on the value of the angular velocity per unit time.
  • the above processing is solved by repeatedly inputting the observed values of velocity and azimuth, which are samples of a predetermined number or a predetermined period to be processed, into the state space model at each time t, t + 1, t + 2, ... Therefore, the acceleration value in the corresponding traveling direction, the velocity state value, the angular velocity value, and the acceleration value in the vertical direction can be obtained.
  • the radius of curvature r of the moving body 1 can be obtained.
  • This radius of curvature r is some analysis about the moving object, for example, determining whether or not the user holding the information processing apparatus 100 is riding as a driver, the degree of safe driving, and the user. It is useful when performing processing for determining what kind of moving object (for example, a vehicle type such as a sedan, a minivan, a bus, a small / medium / heavy truck) is used at the time of the observation.
  • the process of determining whether or not the user holding the information processing apparatus 100 is riding as a driver will be described using the radius of curvature r.
  • the moving body driven by the user is a right-hand drive.
  • the radius of curvature when the moving body passes through the curve is a numerical value based on the center of the moving body, but when the user who owns the information processing apparatus 100 is in the driver's seat or in the passenger seat, Since the numerical value is based on the position of the information processing apparatus 100, it is assumed that a deviation from the numerical value based on the central portion of the moving body will occur.
  • the user is the driver. For example, specifically, the following processing is performed.
  • a moving object driven by the user as a driver enters and passes through a certain curve, the value of the radius of curvature is obtained correspondingly.
  • Information about this curve for example, position information
  • the approach direction, the value of the acquired radius of curvature, and the driver are stored in association with each other.
  • the newly acquired value of the radius of curvature is compared with the value of the previously acquired radius of curvature, and if the values are approximately the same, it is determined that the user was the driver even when re-entering, and the values are approximately the same.
  • this curve is a curve to the right, the value of the radius of curvature acquired when the user is the driver is smaller than the value of the radius of curvature acquired when the user is the non-driver. Conversely, if this curve is a curve to the left, the radius of curvature value obtained when the user is the driver will be greater than the value of the radius of curvature obtained when the user is the non-driver. ..
  • the content of whether or not the determined user is a driver is valid in the period from the start to the stop of the moving engine, including the time of re-entry related to this determination.
  • the engine is stopped once and started again, it is possible that the driver or non-driver is not maintained. Therefore, it is preferable to reset the determined contents and make another determination.
  • These acquired information that is, the velocity state value, the acceleration value in the traveling direction, the angular velocity value, and the acceleration value in the vertical direction are stored in the storage unit 240.
  • other azimuth state values, radii of curvature, and the like that can be acquired may also be stored in the storage unit 240.
  • These accumulated information are used for various purposes, for example, in the operation evaluation process by the operation evaluation unit 280.
  • the difference between the first embodiment and the second embodiment is that in the first embodiment, the velocity and acceleration, as well as the azimuth angle and the angular velocity are used to construct the state space model, while the second embodiment.
  • a state space model using velocity, acceleration and acceleration, and a state space model using azimuth angle, angular velocity and angular acceleration are being constructed. That is, in the second embodiment, a state space model in which one layer is increased as compared with the first embodiment is used. Therefore, since the system configuration and the components included in each device are the same, in the following second embodiment, only the state space model used and the information processing procedure around it will be mentioned.
  • the differences between the first embodiment and the second embodiment, such as the acquisition process of the acceleration value and the velocity state value in the traveling direction, and the angular velocity value, will be described below. Further, in the second embodiment, the process of acquiring the acceleration value, the velocity state value, and the angular velocity value in the traveling direction of the moving body 1 at time t is similar to that of the first embodiment. This will be described with reference to the flowchart of FIG.
  • the velocity and traveling direction acceleration acquisition unit 250 and the angular velocity acquisition unit 260 retroactively record the velocity observation value and the azimuth observation value stored in the storage unit 240 by a predetermined number or a predetermined period from the time t. Acquire (S1101).
  • the velocity and traveling direction acceleration acquisition unit 250 performs a process of acquiring the acceleration value and the velocity state value in the traveling direction of the moving body 1 at time t (S1103).
  • the acquisition of the velocity state value and the acceleration value in the traveling direction of the moving body 1 is obtained, the displacement of the velocity state value per unit time is the acceleration value in the traveling direction, and the progress is performed.
  • This is done by setting a state space model in which the variation of the acceleration value in the direction per unit time is the value of the jerk in the traveling direction, and solving it.
  • a state space model in which the variation of the acceleration value in the direction per unit time is the value of the jerk in the traveling direction, and solving it.
  • the filter to be applied is not limited to the Kalman filter, and for example, a particle filter may be applied, and the model to be set is not limited to a linear one, and of course, it may be a non-linear model.
  • the displacement of the state value of velocity per unit time is the value of acceleration in the traveling direction.
  • a state space model in which the variation of the acceleration value in the traveling direction per unit time is the value of the jerk in the traveling direction is set, and the observed value of the velocity is a Gaussian distribution with an average of 0 in the state value of the velocity.
  • the jerk according to is included, and that the variation of the jerk value in the traveling direction in the unit time follows the Gaussian distribution with an average of 0, the observed value of the acquired velocity is used as a state space model.
  • the angular velocity acquisition unit 260 performs a process of acquiring the value of the angular velocity of the moving body 1 at time t from the information acquired from the storage unit 340 in S1101 (S1105).
  • the displacement of the state value of the azimuth angle per unit time is the angular velocity value.
  • it is performed by setting a state space model in which the variation of the value of the angular velocity per unit time is the value of the angular acceleration and solving it.
  • the filter to be applied is not limited to the Kalman filter, and for example, a particle filter may be applied, and the model to be set is not limited to a linear one, and of course, it may be a non-linear model.
  • the value of the angular velocity can be obtained by inputting the observed value of the azimuth angle observed in this model formula and estimating that the distribution of each additive term follows the Gaussian distribution with an average of 0. At the same time, the state value of the azimuth angle and the angular acceleration value may be obtained.
  • the displacement of the state value of the azimuth angle per unit time is the angular velocity value, and the angular velocity value per unit time.
  • the variation of is the value of angular acceleration
  • the observed value of the azimuth angle contains an additive term that follows a Gaussian distribution with an average of 0 in the state value of the azimuth angle.
  • the variation of the angular acceleration value in a unit time follows a Gaussian distribution with an average of 0
  • the observed values of the acquired velocities are sequentially input to the state space model, so that the angular velocity values in the traveling direction are sequentially input. Etc. are to be acquired.
  • S1103 and S1105 may be processed in parallel.
  • the vertical acceleration acquisition unit 370 obtains the value of the acceleration in the direction perpendicular to the traveling direction of the moving body 1 (S1107). Since the method of acquiring the acceleration value in the vertical direction is the same as that of the first embodiment, the description thereof will be omitted here.
  • the radius of curvature r of the moving body 1 can be obtained based on the obtained state value of the velocity and the value of the angular velocity. Since the method of calculating the radius of curvature r is the same as that of the first embodiment, the description thereof will be omitted.
  • These acquired information that is, the velocity state value, the acceleration value in the traveling direction, and the acceleration value in the vertical direction are stored in the storage unit 240.
  • the jerk value in the traveling direction, the azimuth state value, the angular acceleration value, and the radius of curvature, which can be acquired, may also be stored in the storage unit 240.
  • These accumulated information are used for various purposes, for example, in the operation evaluation process by the operation evaluation unit 280.
  • the position information acquisition unit 210 acquires the accuracy value together with the observed value of the position information, stores it in the storage unit 240 in association with the time information, and then the speed acquisition unit 220 or the azimuth acquisition unit 230 positions.
  • the observed value of the position information is used for processing by the speed acquisition unit 220 and the azimuth acquisition unit 230 depending on whether or not the accuracy value satisfies a predetermined condition. It is decided to decide whether to do it, but it is not limited to this content.
  • the observation value of the position information may not be transmitted to the server 200.
  • the server 200 after being transmitted to the server 200, it may not be stored in the storage unit 240.
  • the velocity calculation by the speed acquisition unit 220 and the azimuth angle calculation by the azimuth acquisition unit 230 are observed values of the position information regardless of whether the accuracy value of the corresponding position information satisfies a predetermined condition.
  • the velocity and traveling direction acceleration acquisition unit 250 and the angular velocity acquisition unit 260 acquire the observed values of the velocity and the azimuth angle of a predetermined number or a predetermined period from the storage unit 240 (S1101), at the corresponding time. If the associated and stored accuracy values do not satisfy the predetermined conditions, these information may not be acquired and may not be used for processing by the velocity and traveling direction acceleration acquisition unit 250 and the angular velocity acquisition unit 260. That is, the judgment result of whether or not the accuracy value satisfies the predetermined condition is reflected somewhere in the whole process as to whether or not to use the observation value of the corresponding position information or the observation value of the velocity and the azimuth angle.
  • the timing is not particularly limited.
  • each additive term follows a Gaussian distribution with an average of 0, but is not limited to this form.
  • at least one of each additive term may follow a Gaussian distribution with a non-zero mean, or it may follow any non-Gaussian distribution (eg, Cauchy distribution) of the mean.
  • the value and the type of distribution are not particularly limited.
  • information on the behavior of the moving body 1 is acquired by a state-space model with two layers of velocity-acceleration and azimuth angle-angular velocity
  • information on the behavior of the moving body 1 is to be acquired by a state-space model consisting of three layers of velocity-acceleration-acceleration and azimuth angle-angular acceleration-angular acceleration, but the number of layers in the state-space model is limited to this. I can't. That is, it is possible to acquire information on the behavior of the mobile body 1 by a state-space model composed of the nth layer (n is a natural number of 2 or more).
  • the first layer element is in the state of velocity
  • the k + 1 layer element corresponds to the result of differentiating the elements of the k layer
  • the displacement of the value of the k layer element per unit time is that of the k + 1 layer element.
  • n is a predetermined natural number of 2 or more
  • k is a natural number of 1 or more and less than n
  • the value generated according to the distribution in the state value of the velocity is added to obtain the observed value of the velocity.
  • the acceleration in the traveling direction of the moving body 1 is obtained by inputting the observed value of the velocity based on the corresponding time information.
  • the first layer element is in the azimuth state
  • the k + 1 layer element corresponds to the result of differentiating the k + 1 layer element
  • the displacement of the value of the k layer element per unit time is the k + 1 layer.
  • the value of the element, n is a predetermined natural number of 2 or more
  • k is a natural number of 1 or more and less than n
  • the value generated according to the distribution in the state value of the azimuth is added to observe the azimuth.
  • the value of the angular velocity is obtained by inputting the observed value of the azimuth based on the corresponding time information. Can be obtained.
  • the information processing apparatus 100 acquires the observed value of the position information, and the server 200 performs the processing up to the acquisition of the acceleration value and the like in the subsequent traveling direction.
  • the present invention is not limited to this, and for example, some or all of these processes may be performed by a device other than the server 200 (for example, a device such as a drive recorder installed in the mobile body 1).
  • the information processing apparatus 100 includes a speed acquisition unit 220, an azimuth angle acquisition unit 230, a storage unit 240, a speed and traveling direction acceleration acquisition unit 250, an angular velocity acquisition unit 260, and a functional unit corresponding to the vertical acceleration acquisition unit 270.
  • Each process may be performed by these collaborations, and the position of each functional unit is not particularly limited.
  • the calculation result may be presented to the user of the information processing apparatus 100 by transmitting the calculation result to the information processing apparatus 100 and outputting it to the display unit 130. ..
  • the operation evaluation is performed by the operation evaluation unit 280 using the acquired acceleration value in the traveling direction and the acceleration value in the vertical direction, but the information used is information on acceleration. Not limited to.
  • the velocity state value, the azimuth angle state value, the angular velocity value, the jerk value in the traveling direction, the angular acceleration value, the radius of curvature, etc. are output, and another kind of information (limited) from another device.
  • temperature information, humidity information, weather information, altitude information, driver's fatigue degree information, etc. may be acquired, and the operation evaluation may be performed including these information.
  • the operation evaluation is performed based on the information on the behavior of the moving body 1, but the method of utilizing the information on the behavior of the moving body 1 is not limited to this.
  • the means of transportation for determining what the moving body 1 is (passenger car, bicycle, bus, ship, walking), and further for determining whether it is a driver or a non-driver. You may do that.
  • the server 200 may have a functional unit for discriminating the corresponding means of transportation and discriminating the driver and non-driver, and may perform processing, or transmit the information to a device other than the server 200 and use the device.
  • the processing may be performed in the corresponding functional unit, and the form thereof is not particularly limited.
  • the information used as the position information is not limited to the above, and is not particularly limited as long as the information can specify the position that can be received from outside the moving body.
  • a beacon or the like including position information may be received and used as position information by processing it alone or in combination with GPS information.
  • the speed is acquired by the speed acquisition unit 220, but the speed is not limited to this.
  • the moving body 1 may include a vehicle speed pulse acquisition unit and a communication unit (not shown), and may or may not acquire the speed of the moving body 1 based on the vehicle speed pulse information acquired by the vehicle speed pulse acquisition unit.
  • the vehicle speed pulse information may be transmitted to the information processing device 100 or the server 200, and the speed of the moving body 1 may be calculated together with the observed value of the position information, and the form of speed acquisition is not particularly limited.
  • the cycle of acquiring position information is not particularly limited, but situations where violent vibration can occur, such as vibration caused by the engine and vibration caused by running on rough roads (transport vibration frequency), have an adverse effect on the acquisition of information on the behavior of the moving object. Is known to exert. Therefore, in order to avoid being affected by these transport vibration frequencies as much as possible, it is preferable to set the period of position information acquisition within a range that does not resonate with these frequencies.
  • truck transportation has the greatest influence of vibration in land transportation, air transportation, railroad, etc., which are means of transportation, and the transportation vibration frequency often occurs in the range of 2 Hz to 20 Hz.
  • the frequency of position information acquisition it is preferable to set to 20 Hz or more or 2 Hz or less. This has the effect of being less susceptible to the transport vibration frequency. Further, when the frequency is 2 Hz or less, the frequency of acquiring position information is reduced, and the frequency of corresponding processing is also reduced, so that there is an effect that power consumption can be suppressed.
  • the performance of the moving body including, but not limited to, suspension performance, tire performance, etc., is not limited to these, and wear according to the period of use of these devices.
  • the cycle of position information acquisition may be changed according to road conditions, load capacity, and the like.
  • the moving body 1 or the information processing apparatus 100 includes an acquisition unit (not shown), and the acquisition unit acquires information such as the performance of the moving body, road conditions, and the load capacity of the moving body, and according to the acquired information.
  • the cycle of acquiring position information may be changed. By doing so, it is possible to acquire position information with less noise depending on the situation.
  • the cycle for acquiring the observed value of the position information is the same as the acceleration information acquisition cycle, but the relationship between these two cycles is not particularly limited.
  • the cycle for acquiring the observed value of the position information is equal to or less than the acceleration information acquisition cycle. That is, it is preferable that the observed values of the two consecutive position information corresponding to the acquisition of the acceleration information are acquired at different times.
  • the acceleration information acquisition cycle is a natural number multiple of the cycle for acquiring the observed value of the position information.
  • the observed value of the acquired position information is stored in the storage unit 240 in S1001, and the observed value of the corresponding position information is stored in S1005 or S1007 based on the acceleration information acquisition cycle. It may be acquired from the storage unit 240 and processed.
  • the motion by the moving body is geometrically obtained, and the value of the acceleration in the vertical direction is obtained based on the information related to the traveling direction.
  • the acceleration in the vertical direction is obtained.
  • the calculation method of the value of is not limited to this.
  • the value of the acceleration in the vertical direction may be obtained based on the information related to the traveling direction.
  • the value of acceleration in the vertical direction can be obtained from Equation 7.
  • the motion by the moving body may be assumed as a motion that can be formulated in some way, and the method of the assumption is not particularly limited as long as it does not deviate from the nature of the motion by the moving body.
  • both the acceleration value and the velocity state value in the traveling direction are obtained, but only any one may be obtained depending on the application or the like. That is, among the acceleration value in the traveling direction, the acceleration value in the vertical direction, the velocity state value, the azimuth angle state value, the angular velocity value, the acceleration value in the traveling direction, the angular acceleration value, and the radius of curvature. You may ask for only arbitrary information.
  • the cycle for acquiring the velocity observation value (hereinafter referred to as the velocity observation value acquisition cycle) and the cycle for acquiring the azimuth observation value (hereinafter referred to as the azimuth observation value acquisition cycle) are as follows. It is supposed to be acquired at the same timing and at the same timing (that is, both values are acquired at time t, t + 1, ...), But the present invention is not limited to this. These two cycles do not have to be the same and do not have to be acquired at the same timing.
  • the velocity observation value acquisition cycle is equal to or longer than the azimuth observation value acquisition cycle.
  • the velocity observation value acquisition cycle is synchronized with the azimuth observation value acquisition cycle.
  • "synchronized" means that one period is a natural number multiple of the other period.

Abstract

移動体挙動情報取得方法は、移動体の速度の観測値を第1の間隔に基づいて取得することと、前記取得した速度の観測値を対応する時間情報と紐づけて記憶することと、速度の状態値の単位時間あたりの変位が進行方向における加速度の値であり、前記速度の状態値に、第1の分布に従い発生する値を加えたものが前記速度の観測値であり、前記進行方向における加速度の値の単位時間あたりの変位は、第2の分布に従う、とする状態空間モデルに対して、前記速度の観測値を対応する前記時間情報に基づいて入力することで、前記移動体の進行方向における加速度の値を取得することと、を含む。

Description

移動体挙動情報取得方法、移動体挙動情報取得装置及びプログラム
 本発明は、移動体の挙動に関する情報を取得する情報処理技術に関する。
 ユーザが利用する移動体(例えば、自動車、自転車、船舶等の機器のほか、概念としては徒歩も含みうる)についての情報、例えば、加速度、速度、角速度等を取得したい、また、これらの情報を何らかの分析に用いたいという需要がある。例えば、これら情報に基づいて運転評価をしたいという社会的需要があり、特許文献1には、車両に設置された各種センサ類からカーナビゲーション装置を介して収集された車両の挙動データとして、加速度に関する時系列情報を元に統計情報を生成する運転診断システムが開示されている。
特開2006-243856号公報
 移動体に設置された加速度センサから移動体の挙動に関するデータを取得しようとする場合、いくつかの問題がある。一つは、移動体の進行方向を常に正しく認識することが困難であることが挙げられる。進行方向認識のための一手法として、加速度値が実質0である静止状態から加速度値が一定値以上となる動作状態に遷移したことを契機に、その加速度が発生した方向を探知し、進行方向とする方法が挙げられる。しかしながら、この場合、バックで始動したり、ハンドルを切りつつ始動したりといったケースが発生しうるため、進行方向を常に正しく認識することができるとは限らないという問題があった。
 別の課題として、二輪車などの移動体においては、信号待ちなどの停止時において、運転者の片足を接地する必要があり、自然、車体が傾いた状態となってしまう。したがって、移動体に設けられたセンサ(加速度センサ等)における停止時の垂直方向と運転時の垂直方向とが対応せず、正確な垂直方向の判定が困難であり、対応して水平方向における加速度等の測定が困難であった。
 さらに別の課題として、移動体において各情報を取得するにあたっては、ノイズなどの影響を受けることにより、正確な値を取得することが困難であった。したがって、取得した値をそのまま分析に用いると、分析結果を適切に得ることができない恐れがあった。
 本発明の一態様によれば、移動体挙動情報取得方法は、移動体の速度の観測値を第1の間隔に基づいて取得することと、前記取得した速度の観測値を対応する時間情報と紐づけて記憶することと、速度の状態値の単位時間あたりの変位が進行方向における加速度の値であり、前記速度の状態値に、第1の分布に従い発生する値を加えたものが前記速度の観測値であり、前記進行方向における加速度の値の単位時間あたりの変位は、第2の分布に従う、とする状態空間モデルに対して、前記速度の観測値を対応する前記時間情報に基づいて入力することで、前記移動体の進行方向における加速度の値を取得することと、を含む。
 本発明に係る方法によれば、移動体の挙動に関する情報を適切に取得できるという効果を奏する。
第一の実施形態における移動体挙動情報取得システムのシステム構成図である。 第一の実施形態における情報処理装置100の概略構成を説明するブロック図である。 第一の実施形態におけるサーバ200の概略構成を説明するブロック図である。 第一の実施形態における速度及び方位角の観測値の取得、並びにそれら観測値の格納の手順例を示すフローチャートである。 第一の実施形態における時刻tにおける移動体1の進行方向における加速度の値、角速度の値、及び、垂直方向における加速度の値を取得する処理の手順例を示すフローチャートである。
 以下、本発明を実施するための形態の一例について図面を参照して説明する。
 なお、図面の説明において同一の要素には同一の符号を付して、重複する説明を省略する場合がある。
 また、これらの実施形態に記載されている構成要素はあくまで例示であり、本発明の範囲をそれらに限定する趣旨のものではない。
 また、本発明に係る以下説明において、「状態値」「観測値」という語句を用いるが、これらは以下を意味する。
 「状態値」…移動体の挙動に関する各情報(例えば、速度)における、何らかの状態に対応する真の値である。通常、ノイズなどの影響により外部からは正しい値を取得することが困難な性質を持つ。
 「観測値」…前記何らかの状態を外部から取得しようとして得られる値である。さらに、ノイズなどの影響を考慮せずに、これら観測値に基づいて算出された何らかの値(例えば、位置情報の観測値に基づいて、ノイズ等を考慮せずに算出した速度の値)である。
[第一の実施形態]
 以下、本発明の情報処理技術を実現するための第一の実施形態について説明する。
 第一の実施形態に記載の内容は、他の各実施形態や各実施例、他の各変形例のいずれにも適用可能である。
 図1は、第一の実施形態の一態様に係る移動体挙動情報取得システムのシステム構成図である。本システムでは、移動体1の乗車者が携帯する情報処理装置100が備える位置情報取得部110によって、移動体1の位置情報の観測値が収集され、サーバ200に送信される。サーバ200においては、送信された位置情報の観測値に基づいて移動体1の挙動に関する情報、例えば、速度の状態値、進行方向における加速度の値、角速度の値、及び垂直方向における加速度の値が取得される。
 図2は、図1の情報処理装置100の機能構成を示すブロック図である。情報処理装置100は、例として、スマートフォンやタブレット等の携帯端末であることを前提として説明するが、これら携帯可能なものに限定されない。例えば、移動体1に乗車する運転者や非運転者が携帯するものではなく、カーナビゲーション装置やドライブレコーダ装置等の移動体に据え付けられた装置であってもよい。情報処理装置100は、図2に示すように、例えば、位置情報取得部110と、通信部120と、表示部130と、及び記憶部140とを備えるものであり、これらは、例えば、情報処理装置100が備える不図示の処理部(処理装置)や制御部(制御装置)が有する機能部(機能ブロック)であり、CPU等のプロセッサーやASIC等の集積回路を有して構成される。
 位置情報取得部110は、例えば、GNSS衛星(例えばGPS衛星)から到来する電波に基づいて情報処理装置100の位置情報(例えば、緯度経度情報)の観測値を時系列的に取得する。この位置情報の観測値の取得は、所定時間間隔(例えば、1秒ごと)で行われることが好ましい。すなわち、情報処理装置100を携帯する人物の位置情報の観測値を取得することができる。転じて、情報処理装置100の携帯者が移動体1を利用することで、実質的に移動体1の位置情報の観測値を取得することができる。取得された位置情報の観測値は、当該位置情報を取得した時刻(現在時刻)と紐付けられて、記憶部140に格納される。
 ここで、位置情報取得部110は、GPSによる位置情報の観測値を取得すると共に、その位置情報の精度を示す精度値(例えば、5m、10m、100mといった位置精度、DOP値等)を取得することとしてもよい。この場合、取得された位置情報の観測値及び精度値が現在時刻と紐付けられて、記憶部140に格納される。
 なお、位置情報取得部110による位置情報の観測値の取得方式は、上記のものに限られず、任意の位置情報取得方式を適用してよい。例えば、道路脇に設置された路側機により発せられる当該路側機に固有の位置情報を含んだ電波を、情報処理装置100を搭載した移動体1が近接した際に位置情報取得部110が受信することで、情報処理装置100の位置情報の観測値を取得することとしてもよい。
 通信部120は、インターネット等のネットワークNWと通信可能に構成される。通信方式としては、イーサネットやUSB(Universal Serial Bus)等所定の通信規格に準拠したケーブルを介して有線接続する形式や、Wi-Fi(登録商標)や5G(第5世代移動通信システム)等所定の通信規格に準拠した無線通信技術を用いて無線接続する形式、Bluetooth(登録商標)等の近距離無線通信を利用して接続する形式等、種々の方式を適用可能である。
 また、通信部120による通信は上記のものに特に限られない。例えば、通信部120が道路脇に設置された路側機に対して情報の送受信を行い、その路側機がネットワークNWを通じて外部に情報の送受信を行うことで、間接的にサーバ200等と通信を行うこととしてもよい。
 通信部120は、外部から受信したデータを記憶部140に記憶するとともに、記憶部140に記憶された位置情報の観測値等のデータをネットワークNW経由で外部(例えばサーバ200)に送信する。
 表示部130は、LCD(Liquid Crystal Display)やOELD(Organic Electro-Luminescence Display)等を有して構成される表示装置であり、記憶部140に記憶された情報等にしたがって、不図示の制御部から出力される表示信号に基づいた各種の表示を行う。
 なお、表示部130と一体的に構成された不図示のタッチパネルを有し、このタッチパネルは、ユーザと情報処理装置100との間の入力インターフェースとして機能するようにしてもよい。
 記憶部140は、例えば、HDD(Hard Disk Drive)やSSD(Solid State Drive)、EEPROM(Electrically Erasable Programmable Read-Only Memory)、ROM(Read-Only Memory)、RAM(Random Access Memory)等を含み、情報処理装置100が処理する各種データ、制御プログラム等を記憶するほか、位置情報取得部110及び時計部150によって出力された時間情報に紐づけられた位置情報の観測値や、その他の機能部により出力された情報を記憶し蓄積する。なお、記憶部140は、情報処理装置100に内蔵されるものに限らず、USB(Universal Serial Bus)等のデジタル入出力ポート等によって接続された外付け型の記憶装置でもよい。
 時計部150は、情報処理装置100の内蔵時計であり、例えば、水晶発振器を利用したクロックに基づいて取得した時間情報(計時情報)を出力する。なお、時計部150は、NITZ(Network Identity and Time Zone)規格等に準じて、通信部120とネットワークNWとを介して時刻情報を取得するようにしてもよい。
 サーバ200は、情報処理装置100から送信された位置情報の観測値等に基づいて様々な処理を行う。サーバ200により行われる処理として、例えば、位置情報の観測値に基づいて速度の観測値を取得する処理、位置情報の観測値に基づいて方位角の観測値を取得する処理、速度の観測値から進行方向における加速度の値を取得する処理、速度の観測値から速度の状態値を取得する処理、方位角の観測値から角速度の値を取得する処理、速度の状態値と角速度の値から垂直方向における加速度の値を取得する処理、などが挙げられる。これらの処理の詳細については後述する。
 図3は、サーバ200の機能構成を示すブロック図である。サーバ200は、例えば単一のサーバとして、あるいは機能ごとに別々のサーバから構成される分散サーバとして構成される。クラウドサーバと呼ばれるクラウド環境に作られた分散型の仮想サーバとしてサーバ200を構成することもできる。
 サーバ200は、図3に示すように、例えば、速度取得部220と、方位角取得部230と、記憶部240と、速度および進行方向加速度取得部250と、角速度取得部260と、垂直方向加速度取得部270と、運転評価部280等を備えて構成される。これらは、例えば、サーバ200が備える不図示の処理部(処理装置)や制御部(制御装置)が有する機能部(機能ブロック)であり、CPU等のプロセッサーやASIC等の集積回路を有して構成される。
 速度取得部220は、記憶部240に格納されている、情報処理装置100の位置情報取得部110によって取得され送信されてきた位置情報の観測値について、ある時刻(以降、時刻tとする)における位置情報の観測値と、時刻tから加速度情報を取得する周期(以下、「加速度情報取得周期」という。なお、説明の便宜上、時刻tから加速度情報取得周期を1サイクル回した時刻をt+1とし、以降、t+2、t+3、…とする)において所定数のサイクル(例えば、1サイクル)前の時刻に取得した過去の位置情報の観測値の2つの位置情報の観測値を取得し、その2点間における移動体1の時刻tにおける速度の観測値を取得する。取得された速度の観測値は、時刻tと紐づけられて記憶部240に記憶される。
 なお、本実施形態における「速度」とは、移動体1の進行方向における速度の大きさであり、その垂直方向は考慮不要であることから、二次元情報としては保持しないものとする。後述する方位角情報と合わせることにより、速度の大きさ及び方向が把握可能となる。
 ここで、移動体1の速度の観測値の取得にあたっては、サーバ200ではなく、情報処理装置100において行われてもよい。その場合、情報処理装置100において取得された速度の観測値がサーバ200に送信され、時刻tと紐づけられて記憶部240に記憶される。
 方位角算出部230は、速度算出部220における処理と同様に、記憶部240に記憶されている、時刻tにおける位置情報の観測値と、時刻tから加速度情報取得周期において所定数のサイクル(例えば、1サイクル)前の時刻に取得した過去の位置情報の観測値の2つを取得し、その2点が構築するベクトルに基づいて、方位角の観測値を取得する。ここでいう方位角とは、例えば、真北を基準として右回りに当該方向を測った水平角の大きさを意味する。無論、方位角の定義はこれに限られず、任意の方向(例えば、真南)を基準としてもよいし、左回りに方向を測った水平角の大きさとしてもよい。方位角の観測値は、時刻tと紐づけられて記憶部240に記憶される。
 記憶部240は、例えば、HDD(Hard Disk Drive)やSSD(Solid State Drive)、EEPROM(Electrically Erasable Programmable Read-Only Memory)、ROM(Read-Only Memory)、RAM(Random Access Memory)等を含み、サーバ200が処理する各種データ、制御プログラム等を記憶するほか、速度取得部220及び方位角取得部230によって出力された各時刻における速度及び方位角の観測値や、その他の機能部により出力された情報を記憶し蓄積する。なお、記憶部240は、サーバ200に内蔵されるものに限らず、USB(Universal Serial Bus)等のデジタル入出力ポート等によって接続された外付け型の記憶装置でもよい。
 速度および進行方向加速度取得部250は、速度取得部220によって出力され蓄積された各時刻の速度の観測値に基づいて、移動体1の進行方向における加速度の値、及び、速度の状態値を取得し、時刻情報と紐づけて記憶部240に記憶する。進行方向における加速度の値及び速度の状態値を取得する処理の詳細については後述する。
 角速度取得部260は、速度および進行方向加速度取得部250における処理と類似して、方位角取得部230によって出力され蓄積された各時刻の方位角の観測値に基づいて、移動体1の角速度の値を取得し、時刻情報と紐づけて記憶部240に記憶する。角速度取得部260による本処理の詳細については後述する。
 垂直方向加速度取得部270は、速度および進行方向加速度取得部250によって取得された速度の値、及び、角速度取得部260によって取得された角速度の値に基づいて、移動体1の進行方向に対する垂直方向における加速度の値を取得し、時刻情報と紐づけて記憶部240に記憶する。垂直方向加速度取得部270による本処理の詳細については後述する。
 運転評価部280は、進行方向における加速度の値や、垂直方向における加速度の値等、移動体1の挙動に関する情報に基づいて、移動体1の運転評価を行う。具体的には、例えば加速度においては、所定時間単位毎に取得された加速度情報について、そのスカラー値が所定の閾値を超えているかどうか、所定の閾値を所定数連続して超えているかどうか、一定時間内にそれら閾値を超えた回数が所定回数を超えているかどうか、といった観点によりその運転が安全であったかそうでなかったかを判断し出力する、または、安全度・危険度をスコアに変換して出力する。この際、加速度ベクトルの方向(前後方向や左右方向)に応じてこれら閾値の大きさを変化させてもよい。例えば、後方に関する閾値よりも前方に関する閾値の方を低くまたは高く設定してもよいし、前後方向(急発進や急ブレーキ)に関する閾値よりも左右方向(急ハンドル)に関する閾値の方を低くまたは高く設定してもよいし、同一としてももちろんよい。
[情報処理の手順]
 図4は、第一の実施形態における速度及び方位角の観測値の取得、並びにそれら値の格納の手順例を示すフローチャートである。
 図4のフローチャートにおける処理は、例えばサーバ200の処理部が、記憶部240に格納された情報処理プログラムのコードを不図示のRAMに読み出して実行することにより実現される。
 図4のフローチャートにおける各記号Sは、ステップを意味する。
 また、以下説明するフローチャートは、あくまでも第一の実施形態における情報処理の手順の一例を示すものに過ぎず、他のステップを追加したり、一部のステップを削除したりしてもよい。
 前提として、ユーザが情報処理装置100を保持して移動体1に乗車(運転者として、または同乗者としてのどちらでもよく、その形態は特に限定されない)している状態とし、情報処理装置100の位置情報取得部110は、第一の実施形態では所定の周期で、位置情報としての緯度経度情報を、その緯度経度情報の精度を示す精度値とともにGNSS衛星から取得し、取得されたこれらの情報は、情報処理装置100の記憶部140に取得した時刻に関する時間情報と紐づけて格納される。その後、これら格納された位置情報の観測値、位置情報の精度値及び時間情報の組はサーバ200に送信される。そして、サーバ200は、情報処理装置100から送信された位置情報の観測値等を記憶部240に格納する(S1001)。
 次に、時刻tにおける位置情報の精度値が所定の条件を満たすかどうかを判断する(S1003)。具体的には、精度値が示すのは、時刻tにおける位置情報がどれだけの精度によって取得されたかについてであり、その精度が低いものであれば、後述する速度および進行方向加速度を取得する処理、並びに、角速度を取得する処理に用いる値として不適切であるとして、これら処理から精度値が低い位置情報を排除することを意図する。ここで、精度値が所定の条件を満たしている(限定でなく例として、DOP値が所定閾値(例えば、5m)以下である)ならば(S1003;Y)、速度や方位角の観測値の取得処理に進むこととし、所定の条件を満たしていないならば(S1003;N)、時刻tにおける位置情報の精度が十分でないとして、これら位置情報の観測値を破棄し以降の算出処理は行わず、ステップS1011へ進む。
 S1005において、速度取得部220は、時刻tにおける位置情報の観測値と、時刻tから加速度情報取得周期において1サイクル前(または精度値が条件を満たす直前の時刻)に取得した過去の位置情報の観測値を記憶部240から取得し、これら情報に基づいて、時刻tにおける速度の観測値を取得する(S1005)。
 同様に、S1007において、方位角取得部230は、時刻tにおける位置情報の観測値と、加速度情報取得周期において1サイクル前(または精度値が条件を満たす直前の時刻)に取得した過去の位置情報の観測値に基づいて、時刻tにおける方位角の観測値を取得する(S1007)。
 これら取得された速度及び方位角の観測値は、それぞれ、時刻tと紐付けられて、記憶部240に格納される(S1009)。
 ステップS1009が完了すると、取得すべき位置情報の観測値が残っているか、すなわち、対象となる位置情報の観測値が記憶部240に格納されているかを判断する。残っている場合は(S1009;Y)、時刻tをt+1に更新してS1001からの処理を繰り返す。残っていない場合(S1009;N)は、この速度の観測値の取得、及び、方位角の観測値の取得のための処理を終了する。
 なお、S1005における速度の観測値の取得処理と、S1007の方位角の観測値の取得処理の順番は問わない。また、S1005とS1007を並列に処理してもよい。
 図5は、第一の実施形態における、時刻tにおける移動体1の進行方向における加速度の値及び垂直方向における加速度の値を取得する処理の手順例を示すフローチャートである。
 図5のフローチャートにおける処理は、図4に示す処理と同様に、例えばサーバ200の処理部が、記憶部240に格納された情報処理プログラムのコードを不図示のRAMに読み出して実行することにより実現される。
 まず、速度および進行方向加速度取得部250及び角速度取得部260は、記憶部240に格納された速度の観測値及び方位角の観測値を、時刻tから所定数または所定期間分、過去に遡って取得する(S1101)。
 次に、速度および進行方向加速度取得部250は、時刻tにおける移動体1の進行方向における加速度の値及び速度の状態値を取得する処理を行う(S1103)。
 第一の実施形態においては、移動体1の進行方向における加速度の値の取得及び速度の状態値の取得を、速度の状態値の単位時間当たりの変位が進行方向における加速度の値であるとする状態空間モデルを設定し、それを解くことにより行う。この状態空間モデルを解くにあたり、線形的なモデルを設定しカルマンフィルタを適用する例を以下に説明するが、解く方法はこれに限られない。ここで、適用するフィルタはカルマンフィルタに限られず、例えば粒子フィルタを適用してもよいし、設定するモデルは線形的なものに限られず、非線形的なモデルとしてもよいのはもちろんである。
 速度の状態値及び進行方向における加速度の値の取得にあたり、まずは以下のように状態空間モデルを設定する。
Figure JPOXMLDOC01-appb-M000001
 このモデル式に速度の観測値を入力し、またそれぞれの加法項は平均0のガウス分布に従うと仮定し適用することで、進行方向xにおける加速度の値及び速度の状態値が求まる。
 すなわち、第一の実施形態におけるカルマンフィルタを用いた、進行方向における加速度の値及び速度の状態値を取得する処理を説明すると、速度の状態値の単位時間当たりの変位が進行方向における加速度の値であるとする状態空間モデルを設定し、速度の観測値には速度の状態値に平均0のガウス分布に従う加法項(例えば、ノイズなどの影響を考慮した値)が含まれたものであると想定し、また単位時間における進行方向における加速度の値の変異は平均0のガウス分布に従うと想定して、取得した速度の観測値を状態空間モデルに順次入力していくことによって、逐次的に進行方向における加速度の値及び速度の状態値を取得するものである。
 また、角速度取得部260は、S1101において記憶部240から取得した方位角の観測値に基づいて、時刻tにおける移動体1の角速度の値を取得する処理を行う(S1105)。
 前述した進行方向における加速度の値等を取得する処理と同様に、本発明においては、移動体1の角速度の値の取得にあたり、方位角の状態値の単位時間当たりの変位が角速度の値であるとする状態空間モデルを設定し、かかる状態空間モデルを解くことにより行う。この状態空間モデルを解くにあたり、上記の進行方向における加速度の値及び速度の状態値を取得する処理と同様に、第一の実施形態では、線形的なモデルを設定しカルマンフィルタを適用する場合を以下に説明するが、解く方法はこれに限られない。適用するフィルタはカルマンフィルタに限られず、例えば粒子フィルタを適用してもよいし、設定するモデルは線形的なものに限られず、非線形的なモデルとしてもよいのはもちろんである。
 方位角の状態値及び角速度の値の取得にあたり、まずは以下のように状態空間モデルを設定する。
Figure JPOXMLDOC01-appb-M000002
 このモデル式に観測された方位角の観測値を入力し、またそれぞれの加法項の分布が平均0のガウス分布に従うと推定することで、角速度の値が求まる。ここで、方位角の状態値も求めることとしてもよい。
 すなわち、第一の実施形態におけるカルマンフィルタを用いた角速度の値を取得する処理を説明すると、方位角の状態値の単位時間当たりの変位が角速度の値であるとする状態空間モデルを設定し、方位角の観測値には方位角の状態値に平均0のガウス分布に従う加法項が含まれたものであると想定し、また単位時間における角速度の値の変異は平均0のガウス分布に従うと想定して、取得した方位角の観測値を状態空間モデルに順次入力していくことによって、逐次的に角速度の値等を取得するものである。
 なお、S1103における進行方向における加速度の値を取得する処理と、S1105の角速度の値を取得する処理の順番は問わない。また、S1103とS1105を並列に処理してもよい。
 次に、垂直方向加速度取得部270は、移動体1の進行方向に対しての垂直方向における加速度の値を求める(S1107)。ここで、垂直方向における加速度の値は、取得された進行方向における加速度の値から、例えば三角関数を用いて算出してもよい。しかしながら、三角関数を用いて算出する場合、数値計算上の丸め誤差が最終的な算出結果に悪影響を及ぼしてしまう恐れがある。
 ここで、例えば数ミリ秒から数秒といった短時間単位での加速度の値を得られればよい前提であれば、移動体による運動が幾何学的に求められると仮定しても、その影響は大きくないと想定される。そこで、例えば、速度の状態値を単位時間あたりの角速度の値に基づいて垂直方向に射影する数3の式を用いることで、垂直方向における加速度の値を求めることができる。
Figure JPOXMLDOC01-appb-M000003
 以上の処理を、各時刻t、t+1、t+2、…について、処理対象とする所定数または所定期間のサンプルである速度の観測値及び方位角の観測値を繰り返し状態空間モデルに入力し解いていくことで、対応する進行方向における加速度の値、速度の状態値、角速度の値、及び、垂直方向における加速度の値を求めていくことができる。
 ここで、短時間の移動体による運動には円運動を仮定しても影響は大きくないと想定される。求められた速度の状態値及び角速度の値を以下の数4の第2式に入力することによって、移動体1の曲率半径rを求めることができる。この曲率半径rは、他の移動体に関する情報と同様に、移動体に関する何らかの分析、例えば、情報処理装置100を保持するユーザが運転手として乗車しているかどうかの判断、安全運転の度合い、ユーザがその観測時点においてどのような移動体(例えば、セダン、ミニバン、バス、小型・中型・大型トラックなどの車種)を利用しているかを判断する処理等を行う場合などに有用である。
Figure JPOXMLDOC01-appb-M000004
 曲率半径rを用いて、情報処理装置100を保持するユーザが運転手として乗車しているかどうかの判断に関する処理について説明する。
 前提として、ユーザが運転する移動体は右ハンドルであるとする。
 移動体がカーブを通過するときの曲率半径は、移動体の中心部を基準とした数値となるが、情報処理装置100を保有するユーザが運転席にいる場合、または助手席にいる場合においては、情報処理装置100の位置を基準とした数値となるため、移動体の中心部を基準とした数値とはズレが発生することが想定される。即ち、右カーブにおいて、ユーザが運転席にいる場合は、中心部を基準とした曲率半径の値よりも小さい曲率半径の値が取得されることが想定される。逆に、助手席にいる場合は、中心部を基準とした曲率半径の値よりも大きい曲率半径の値が取得されることが想定される。
 この想定を考慮してユーザが運転手としているかどうかを判断する。例えば、具体的には以下のような処理を行う。
 ユーザが運転手として運転する移動体があるカーブに進入し通過すると、対応して曲率半径の値が取得される。このカーブに関する情報(例えば、位置情報)、進入方向、取得された曲率半径の値、及び運転手であることを紐づけて記憶しておく。再度このカーブに同一の進入方向で進入して、新たな曲率半径の値を取得する。この新たに取得した曲率半径の値と、先に取得した曲率半径の値とを比較し、値が略同一であれば、再度進入した際もユーザは運転手であったと判定し、値が略同一とはいえないほど異なる場合は、ユーザは非運転手であったと判定する。
 なお、このカーブが右方向へのカーブである場合は、ユーザが運転手の際に取得される曲率半径の値は、ユーザが非運転手の際に取得される曲率半径の値より小さくなる。逆に、このカーブが左方向へのカーブである場合は、ユーザが運転手の際に取得される曲率半径の値は、ユーザが非運転手の際に取得される曲率半径の値より大きくなる。
 ここで、判定されたユーザが運転手かどうかの内容は、この判定に係る再度進入した時間を含む、移動体のエンジンが始動してから停止するまでの期間において有効とすることが好ましい。エンジンが一度停止して再度始動した場合においては、運転手または非運転手であることが維持されていない可能性があるため、判定された内容はリセットし、再度の判定をすることが好ましい。
 取得されたこれらの情報、すなわち、速度の状態値、進行方向における加速度の値、角速度の値、及び、垂直方向における加速度の値は、記憶部240に記憶される。ここで、他にも取得可能である方位角の状態値、曲率半径等も記憶部240に蓄積されることとしても良い。
 蓄積されたこれらの情報は様々な用途に用いられ、例えば、運転評価部280による運転評価処理に用いられる。
[第二の実施形態]
 次に、本発明の情報処理技術を実現するための第二の実施形態について説明する。
 第二の実施形態に記載の内容は、第一の実施形態の記載と同様に、他の各実施形態や各実施例、他の各変形例のいずれにも適用可能である。
 第一の実施形態と第二の実施形態との差異は、第一の実施形態においては速度及び加速度、並びに、方位角及び角速度を用いて状態空間モデルを構築している一方で、第二の実施形態においては、速度、加速度及び加加速度を用いた状態空間モデル、並びに、方位角、角速度及び角加速度を用いた状態空間モデルを構築しているところにある。すなわち、第二の実施形態では、第一の実施形態と比較して1つ層を増加させた状態空間モデルを用いる。
 従って、システム構成及び各装置が備える構成要素は同一であるため、以下の第二の実施形態の説明においては、用いられる状態空間モデル及びその周辺である情報処理の手順についてのみ触れることとする。
 [情報処理の手順]
 第二の実施形態における速度及び方位角の観測値の取得、並びにそれら値の格納の手順は、第一の実施形態における図4を参照した説明と同様であるので、その説明を省略する。
 第一の実施形態と第二の実施形態の差異点である、進行方向における加速度の値及び速度の状態値、並びに、角速度の値の取得処理等につき、以下説明する。
 また、第二の実施形態における、時刻tにおける移動体1の進行方向における加速度の値及び速度の状態値、並びに、角速度の値を取得する処理は、第一の実施形態と類似するため、同じく図5のフローチャートを用いて説明する。
 まず、速度および進行方向加速度取得部250及び角速度取得部260は、記憶部240に格納された速度の観測値及び方位角の観測値を、時刻tから所定数または所定期間分、過去に遡って取得する(S1101)。
 次に、速度および進行方向加速度取得部250は、時刻tにおける移動体1の進行方向における加速度の値及び速度の状態値を取得する処理を行う(S1103)。
 第二の実施形態においては、移動体1の速度の状態値及び進行方向における加速度の値の取得を、速度の状態値の単位時間当たりの変位が進行方向における加速度の値であり、及び、進行方向における加速度の値の単位時間当たりの変異が進行方向における加加速度の値であるとする状態空間モデルを設定し、それを解くことにより行う。この状態空間モデルを解くにあたり、第一の実施形態と同様に、線形的なモデルを設定しカルマンフィルタを適用する例を以下に説明するが、解く方法はこれに限られない。適用するフィルタはカルマンフィルタに限られず、例えば粒子フィルタを適用してもよいし、設定するモデルは線形的なものに限られず、非線形的なモデルとしてもよいのはもちろんである。
 速度の状態値及び進行方向における加速度の値の取得にあたり、まずは以下のように状態空間モデルを設定する。
Figure JPOXMLDOC01-appb-M000005
 このモデル式に速度の観測値を入力し、またそれぞれの加法項は平均0のガウス分布に従うと仮定し適用することで、進行方向xにおける加速度の値及び速度の状態値が求まる。ここで、進行方向における加加速度の値も求めることとしてもよい。
 すなわち、第二の実施形態におけるカルマンフィルタを用いた進行方向における加速度の値及び速度の状態値を取得する処理を説明すると、速度の状態値の単位時間当たりの変位が進行方向における加速度の値であり、及び、進行方向における加速度の値の単位時間当たりの変異が進行方向における加加速度の値であるとする状態空間モデルを設定し、速度の観測値には速度の状態値に平均0のガウス分布に従う加法項が含まれたものであると想定し、また単位時間における進行方向における加加速度の値の変異は平均0のガウス分布に従うと想定して、取得した速度の観測値を状態空間モデルに順次入力していくことによって、逐次的に進行方向における加速度の値等を取得するものである。
 一方で、角速度取得部260は、S1101にて記憶部340から取得した情報から、時刻tにおける移動体1の角速度の値を取得する処理を行う(S1105)。
 前述した進行方向における加速度の値を取得する処理と同様に、第二の実施形態においては、移動体1の角速度の値の取得にあたり、方位角の状態値の単位時間当たりの変位が角速度の値であり、及び、角速度の値の単位時間当たりの変異が角加速度の値であるとする状態空間モデルを設定し、それを解くことにより行う。この状態空間モデルを解くにあたり、上記の速度の状態値及び進行方向における加速度の値を取得する処理と同様に、線形的なモデルを設定しカルマンフィルタを適用する場合を以下に説明するが、解く方法はこれに限られない。適用するフィルタはカルマンフィルタに限られず、例えば粒子フィルタを適用してもよいし、設定するモデルは線形的なものに限られず、非線形的なモデルとしてもよいのはもちろんである。
 方位角の状態値及び角速度の値の取得にあたり、まずは以下のように状態空間モデルを設定する。
Figure JPOXMLDOC01-appb-M000006
 このモデル式に観測された方位角の観測値を入力し、またそれぞれの加法項の分布が平均0のガウス分布に従うと推定することで、角速度の値が求まる。また同時に、方位角の状態値や角加速度の値を求めることとしてもよい。
 すなわち、第二の実施形態におけるカルマンフィルタを用いた角速度の値を取得する処理を説明すると、方位角の状態値の単位時間当たりの変位が角速度の値であり、及び、角速度の値の単位時間当たりの変異が角加速度の値であるとする状態空間モデルを設定し、方位角の観測値には方位角の状態値に平均0のガウス分布に従う加法項が含まれたものであると想定し、また単位時間における角加速度の値の変異は平均0のガウス分布に従うと想定して、取得した速度の観測値を状態空間モデルに順次入力していくことによって、逐次的に進行方向における角速度の値等を取得するものである。
 なお、S1103における進行方向における加速度の値を取得する処理と、S1105の角速度の値を取得する処理の順番は問わない。また、S1103とS1105を並列に処理してもよい。
 次に、垂直方向加速度取得部370は、移動体1の進行方向に対しての垂直方向における加速度の値を求める(S1107)。垂直方向における加速度の値の取得方法は、第一の実施形態と同様であるため、ここではその説明を省略する。
 また、求められた速度の状態値及び角速度の値に基づいて、移動体1の曲率半径rを求めることができる。曲率半径rの算出方法は、第一の実施形態と同様であるため、その説明は省略する。
 取得されたこれらの情報、すなわち、速度の状態値、進行方向における加速度の値、及び、垂直方向における加速度の値は、記憶部240に記憶される。ここで、他にも取得可能である進行方向における加加速度の値、方位角の状態値、角加速度の値、及び、曲率半径も記憶部240に蓄積されることとしても良い。
 蓄積されたこれらの情報は様々な用途に用いられ、例えば、運転評価部280による運転評価処理に用いられる。
[本発明の作用・効果]
 本発明によれば、移動体の挙動に関する情報、例えば、進行方向における加速度の値、垂直方向における加速度の値、速度の状態値、方位角の状態値、角速度の値、進行方向における加加速度の値、角加速度の値、及び曲率半径のうち少なくとも一部を適切に取得することができる。
[変形例]
 上述の説明においては、位置情報取得部210が位置情報の観測値とともに精度値を取得し、時刻情報と紐づけて記憶部240に格納した後、速度取得部220または方位角取得部230が位置情報の観測値を記憶部240から抽出しようとしたときに、精度値が所定条件を満たしているか否かによって、当該位置情報の観測値を速度取得部220及び方位角取得部230による処理に使用するかどうかを判断することとしているが、この内容に限られない。
 例えば、位置情報取得部110が位置情報の観測値を取得した時点で、対応する精度値が所定条件を満たしていないならば、当該位置情報の観測値をサーバ200に送信しないこととしてもよい。または、サーバ200に送信された後、記憶部240に格納しないこととしてもよい。さらには、速度取得部220による速度の算出、及び方位角取得部230による方位角の算出は、対応する位置情報の精度値が所定条件を満たしているか否かにかかわらず当該位置情報の観測値を用いて行い、速度および進行方向加速度取得部250及び角速度取得部260が、記憶部240から所定数または所定期間の速度及び方位角の観測値を取得する際(S1101)において、対応する時刻に紐付けられて格納された精度値が所定の条件を満たしていなければ、これら情報を取得せず、速度および進行方向加速度取得部250及び角速度取得部260による処理に使用しないこととしてもよい。すなわち、精度値が所定の条件を満たしているかどうかの判断結果は、対応する位置情報の観測値または速度及び方位角の観測値を使用するかどうかについて全体の処理中のどこかで反映されれば良く、そのタイミングは特に限定されない。
 第一の実施形態における状態空間モデル、及び、第二の実施形態における状態空間モデルにおいて、それぞれの加法項は平均0のガウス分布に従うこととしているが、この形態に限られない。例えば、それぞれの加法項の少なくとも一方が、0ではない平均を持つガウス分布に従うこととしてもよく、また、ガウス分布ではない、任意の分布(例えば、コーシー分布)に従うこととしてもよく、平均値の値、及び分布の種類は特に限定されない。
 第一の実施形態においては、速度-加速度、及び、方位角-角速度の2層による状態空間モデルによって移動体1の挙動に関する情報を取得することとしており、また、第二の実施形態においては、速度-加速度-加加速度、及び、方位角-角速度-角加速度の3層による状態空間モデルによって移動体1の挙動に関する情報を取得することとしているが、状態空間モデルにおける層の数はこれに限られない。すなわち、第n層(nは2以上の自然数)で構成される状態空間モデルによって移動体1の挙動に関する情報を取得することが可能である。
 すなわち、第1層要素は速度の状態であり、第k+1層要素は、第k層の要素を微分した結果に相当し、第k層要素の値の単位時間あたりの変位が第k+1層要素の値であり、nは2以上の所定の自然数であり、kは1以上n未満の自然数であり、速度の状態値にある分布に従い発生する値を加えたものが前記速度の観測値であり、前記第n+1層要素の値の単位時間あたりの変位はある分布に従う、とする状態空間モデルにおいて、速度の観測値を対応する時間情報に基づいて入力することで、移動体1の進行方向における加速度の値や速度の状態値を取得することができる。
 同様に、第1層要素は方位角の状態であり、第k+1層要素は、第k層の要素を微分した結果に相当し、第k層要素の値の単位時間あたりの変位が第k+1層要素の値であり、nは2以上の所定の自然数であり、kは1以上n未満の自然数であり、方位角の状態値にある分布に従い発生する値を加えたものが前記方位角の観測値であり、前記第n+1層要素の値の単位時間あたりの変位はある分布に従う、とする状態空間モデルにおいて、方位角の観測値を対応する時間情報に基づいて入力することで、角速度の値を取得することができる。
 上述の説明によれば、位置情報の観測値の取得は情報処理装置100にて行い、以降の進行方向における加速度の値等の取得までの処理をサーバ200にて行う例を説明したが、これに限られず、例えば、これらの処理の一部または全ての処理をサーバ200以外の装置(例えば、移動体1に設置されたドライブレコーダー等の装置)にて行うこととしてもよい。
 例えば、情報処理装置100が速度取得部220、方位角取得部230、記憶部240、速度および進行方向加速度取得部250、角速度取得部260、及び垂直方向加速度取得部270に相当する機能部を備え、これらの協働により各処理を行うこととしてもよく、各機能部の位置は特に限定されない。
 また、運転評価スコアの算出処理を完了した後、その算出結果を情報処理装置100に送信し表示部130に出力することで、情報処理装置100の使用者に算出結果を提示することとしてもよい。
 更に、上述の説明によれば、取得された進行方向における加速度の値や垂直方向における加速度の値を用いて運転評価部280において運転評価が行われることとしているが、用いられる情報は加速度に関する情報に限定されない。例えば、速度の状態値、方位角の状態値、角速度の値、進行方向における加加速度の値、角加速度の値、曲率半径等が出力され、さらには別の装置から別の種類の情報(限定でなく例として、温度情報、湿度情報、天気情報、高度情報、運転者の疲労度情報、などが挙げられる)を取得し、これらの情報も含めて運転評価を行うこととしてもよい。
 更に、上述の説明によれば、移動体1の挙動に関する情報に基づいて運転評価を行うこととしているが、移動体1の挙動に関する情報の活用方法はこれに限られない。例えば、移動体1の挙動に関する情報に基づき、移動体1が何であるか(乗用車、自転車、バス、船舶、徒歩)を判別する移動手段判別、さらには運転者または非運転者かを判別するといったことを行ってもよい。この場合、サーバ200が対応する移動手段判別や運転者非運転者判別のための機能部を有して処理を行ってもよいし、サーバ200以外の装置にこれら情報を送信し、当該装置における対応する機能部において処理を行ってもよく、その形態は特に限定されない。
 なお、位置情報として用いるものは上記によるものに限らず、移動体外から受信可能である位置を特定できる情報であれば特に限定されない。例えば、位置情報を含んだビーコンなどを受信し、それを単独で、又は、GPS情報と合わせて処理することで位置情報として用いてもよい。
 更に、上述の説明によれば、速度取得部220によって速度を取得することとしているが、これに限られない。例えば、移動体1は不図示の車速パルス取得部及び通信部を備え、当該車速パルス取得部によって取得された車速パルス情報に基づいて移動体1の速度を取得してもよく、または、取得された車速パルス情報を情報処理装置100やサーバ200に送信し、位置情報の観測値と合わせて移動体1の速度を算出することとしてもよく、速度取得の形態は特に限定されない。
 なお、位置情報取得の周期は特に制限はないが、激しい振動が発生しうる状況、例えば、エンジンによる振動、悪路走行による振動(輸送振動周波数)が、移動体の挙動に関する情報の取得において悪影響を及ぼすことがわかっている。従って、これら輸送振動周波数の影響を極力受けないようにすべく、位置情報取得の周期をこれら周波数と共振しない範囲とすることが好ましい。この点、移動手段である陸送、空輸、鉄道などにおいて、もっとも振動による影響が大きいのがトラックの輸送であり、その輸送振動周波数は2Hzから20Hzの範囲での発生が多いことがわかっている。そこで、前記輸送振動周波数の影響を避けるべく、位置情報取得の周波数を20Hz以上または2Hz以下にすることが好ましい。こうすることによって、輸送振動周波数の影響を受けにくいという効果を奏する。また、2Hz以下とする場合、位置情報取得の頻度が小さくなり、対応して発生する処理の頻度も小さくなるので、電力消費を抑えられるという効果も奏する。
 なお、前述の通り、輸送振動周波数が加速度測定において悪影響を及ぼすことに鑑み、移動体の性能(サスペンション性能、タイヤ性能などを含むがこれらに限らない。また、これら機器の使用期間に応じた摩耗・性能劣化なども考慮することが好ましい)、道路状況、積載量などに応じて、位置情報取得の周期を変更可能としてもよい。例えば、移動体1または情報処理装置100は不図示の取得部を備え、当該取得部によって移動体の性能、道路状況、移動体における積載量などの情報を取得し、その取得した情報に応じて位置情報取得の周期を変化させることとしてもよい。こうすることによって、状況に応じてノイズの少ない位置情報取得をすることができるという効果を奏する。
 更に、上述の説明によれば、位置情報の観測値を取得する周期が加速度情報取得周期と同一であるとして説明したが、この2つの周期の関係は特に限定されない。例えば、位置情報の観測値を取得する周期が、加速度情報取得周期以下であることが好ましい。すなわち、加速度情報取得に対応する2つの連続する位置情報の観測値が異なる時刻において取得されていることが好ましい。さらには、加速度情報取得周期を、位置情報の観測値を取得する周期の自然数倍であることが好ましい。また、これら2つの周期が同一でない場合、S1001においては取得した位置情報の観測値を記憶部240に格納しておき、S1005またはS1007では、加速度情報取得周期に基づき対応する位置情報の観測値を記憶部240から取得し、処理することとしてもよい。
 更に、上述の説明によれば、移動体による運動が幾何学的に求められると仮定して、進行方向に係る情報に基づいて垂直方向における加速度の値を求めることとしているが、垂直方向における加速度の値の算出方法はこれに限られない。例えば、移動体による運動が等速円運動であると仮定して、進行方向に係る情報に基づいて垂直方向における加速度の値を求めることとしてもよい。この場合、数7により垂直方向における加速度の値を求めることができる。
Figure JPOXMLDOC01-appb-M000007
 このように、移動体による運動を何らかの定式化できる運動として仮定してよく、移動体による運動の性質を逸脱しない範囲であれば、その仮定の方法は特に限定されない。
 更に、上述の説明によれば、進行方向における加速度の値及び速度の状態値の両方を求めることとしているが、用途等に応じて、任意の一方のみを求めることとしてもよい。すなわち、進行方向における加速度の値、垂直方向における加速度の値、速度の状態値、方位角の状態値、角速度の値、進行方向における加加速度の値、角加速度の値、及び曲率半径のうち、任意の情報のみを求めることとしてもよい。
 更に、上述の説明によれば、速度の観測値の取得における周期(以降、速度観測値取得周期という)と、方位角の観測値の取得における周期(以降、方位角観測値取得周期という)が同一であり、かつ同じタイミングで取得することとしている(すなわち、時刻t、t+1、…において両方の値を取得している)が、これに限られない。これら2つの周期は同一でなくともよく、また同じタイミングで取得しなくともよい。
 ここで、例えば、速度観測値取得周期が方位角観測値取得周期以上であることが好ましい。このようにすることで、数3又は数7に基づいて垂直方向における加速度の値を取得する際、複数の連続する速度の状態値に対して掛け合わせる角速度の値又は角速度の値の正弦の値が同一となってしまうことを回避することができる。
 更に例えば、速度観測値取得周期が方位角観測値取得周期と同期していることが好ましい。ここで、同期しているとは、一方の周期が他方の周期の自然数倍であることを意味する。このようにすることで、数3又は数7に基づいて垂直方向における加速度の値を取得する際、連続する所定数の速度の状態値と1つの角速度の値が対応する、又は、1つの速度の状態値と連続する所定数の角速度の値が対応することとなり、時系列的に違和感の小さい垂直方向における加速度の値を取得することができる。
 以上、本発明について詳細に説明したが、本発明の範囲は上記の実施形態及び変形例に限定されない。また、上記の実施形態及び変形例は、本発明の主旨を逸脱しない範囲において、種々の改良及び変更が可能である。また、上記の実施形態及び変形例は、組合せ可能である。
 1   移動体
 100 情報処理装置
 110 位置情報取得部
 200 サーバ
 220 速度取得部
 230 方位角取得部
 240 記憶部
 250 速度および進行方向加速度取得部
 260 角速度取得部
 270 垂直方向加速度取得部
 280 運転評価部
 

Claims (25)

  1.  移動体の速度の観測値を第1の間隔に基づいて取得することと、
     前記取得した速度の観測値を対応する時間情報と紐づけて記憶することと、
      速度の状態値の単位時間あたりの変位が進行方向における加速度の値であり、
      前記速度の状態値に、第1の分布に従い発生する値を加えたものが前記速度の観測値であり、
      前記進行方向における加速度の値の単位時間あたりの変位は、第2の分布に従う、
     とする状態空間モデルに対して、前記速度の観測値を対応する前記時間情報に基づいて入力することで、前記移動体の進行方向における加速度の値を取得することと、
     を含む、移動体挙動情報取得方法。
  2.  前記第1の分布の平均値及び前記第2の分布の平均値の少なくとも1つは、0である、
     請求項1に記載の方法。
  3.  前記第1の分布及び前記第2の分布の少なくとも1つは、ガウス分布である、
     請求項1又は2に記載の方法。
  4.  前記移動体の位置情報の観測値を第2の間隔に基づいて取得することと、を更に含み、
     前記速度の観測値は、前記位置情報の観測値に基づいて取得される、
     請求項1乃至請求項3のいずれかに記載の方法。
  5.  前記第2の間隔の周期は、前記第1の間隔の周期以下である、
     請求項4に記載の方法。
  6.  前記位置情報の観測値を取得することは、当該位置情報の精度値を取得することを含み、
     前記速度の観測値を取得することは、対応する前記位置情報の精度値が所定の条件を満たす場合に行われる、
     請求項4又は5に記載の方法。
  7.  前記第2の間隔に対応する周波数は、20Hz以上または2Hz以下である、
     請求項4乃至請求項6のいずれかに記載の方法。
  8.  前記移動体の性能、道路状況、及び、前記移動体における積載量の少なくとも1つを取得することと、
     前記取得した移動体の性能、道路状況、及び、前記移動体における積載量の少なくとも1つに基づいて、前記第2の間隔を変更することと、
     を更に含む、請求項4乃至請求項6のいずれかに記載の方法。
  9.  前記進行方向における加速度の値を取得することは、前記速度の状態値を取得することを含む、
     請求項1乃至請求項8のいずれかに記載の方法。
  10.  移動体の速度の観測値を第1の間隔に基づいて取得することと、
     前記取得した速度の観測値を対応する第1の時間情報と紐づけて記憶することと、
      速度の状態値の単位時間あたりの変位が進行方向における加速度の値であり、
      前記速度の状態値に、第1の分布に従い発生する値を加えたものが前記速度の観測値であり、
      前記進行方向における加速度の値の単位時間あたりの変位は、第2の分布に従う、
     とする状態空間モデルに対して、前記速度の観測値を対応する前記第1の時間情報に基づいて入力することで、前記移動体の速度の状態値を取得することと、
     を含む、移動体挙動情報取得方法。
  11.  移動体の方位角の観測値を第3の間隔に基づいて取得することと、
     前記取得した方位角の観測値を対応する第2の時間情報と紐づけて記憶することと、
      方位角の状態値の単位時間あたりの変位が角速度の値であり、
      前記方位角の状態値に、第3の分布に従い発生する値を加えたものが前記方位角の観測値であり、
      前記角速度の値の単位時間あたりの変位は、第4の分布に従う、
     とする状態空間モデルに対して、前記方位角の観測値を対応する前記第2の時間情報に基づいて入力することで、前記移動体の角速度の値を取得することと、
     前記取得した速度の状態値を、前記取得した角速度の値に基づいて垂直方向に射影することで、前記移動体の前記垂直方向における加速度の値を取得することと、
     を含む、請求項10に記載の方法。
  12.  移動体の方位角の観測値を第3の間隔に基づいて取得することと、
     前記取得した方位角の観測値を対応する時間情報と紐づけて記憶することと、
      方位角の状態値の単位時間あたりの変位が角速度の値であり、
      前記方位角の状態値に、第3の分布に従い発生する値を加えたものが前記方位角の観測値であり、
      前記角速度の値の単位時間あたりの変位は、第4の分布に従う、
     とする状態空間モデルに対して、前記方位角の観測値を対応する前記第2の時間情報に基づいて入力することで、前記移動体の角速度の値を取得することと、
     前記取得した速度の状態値と、前記取得した角速度の値との積によって、前記移動体の垂直方向における加速度の値を取得することと、
     を含む、請求項10に記載の方法。
  13.  前記第1の間隔の周期は、前記第3の間隔の周期以上である、
     請求項11又は12に記載の方法。
  14.  前記第1の間隔の周期は前記第3の間隔の周期の自然数倍である、又は、前記第3の間隔の周期は前記第1の間隔の周期の自然数倍である、
     請求項11乃至請求項13に記載の方法。
  15.  移動体の方位角の観測値を第3の間隔に基づいて取得することと、
     前記取得した方位角の観測値を対応する時間情報と紐づけて記憶することと、
      方位角の状態値の単位時間あたりの変位が角速度の値であり、
      前記方位角の状態値に、第3の分布に従い発生する値を加えたものが前記方位角の観測値であり、
      前記角速度の値の単位時間あたりの変位は、第4の分布に従う、
     とする状態空間モデルに対して、前記方位角の観測値を対応する前記時間情報に基づいて入力することで、前記移動体の角速度の値を取得することと、
     を含む、移動体挙動情報取得方法。
  16.  移動体の速度の観測値を第1の間隔に基づいて取得することと、
     前記取得した速度の観測値を対応する時間情報と紐づけて記憶することと、
      第1層要素は速度の状態であり、
      第k+1層要素は、第k層の要素を微分した結果に相当し、
      前記第k層要素の値の単位時間あたりの変位が前記第k+1層要素の値であり、
      nは2以上の所定の自然数であり、
      kは1以上前記n未満の自然数であり、
      速度の状態値に、第1の分布に従い発生する値を加えたものが前記速度の観測値であり、
      前記第n+1層要素の値の単位時間あたりの変位は、第5の分布に従う、
     とする状態空間モデルに対して、前記速度の観測値を対応する前記時間情報に基づいて入力することで、前記移動体の進行方向における加速度の値及び前記速度の状態値のうち少なくとも1つを取得することと、
     を含む、移動体挙動情報取得方法。
  17.  移動体の方位角の観測値を第3の間隔に基づいて取得することと、
     前記取得した方位角の観測値を対応する時間情報と紐づけて記憶することと、
      第1層要素は方位角の状態であり、
      第k+1層要素は、第k層の要素を微分した結果に相当し、
      前記第k層要素の値の単位時間あたりの変位が前記第k+1層要素の値であり、
      nは2以上の所定の自然数であり、
      kは1以上前記n未満の自然数であり、
      方位角の状態値に、第3の分布に従い発生する値を加えたものが前記方位角の観測値であり、
      前記第n+1層要素の値の単位時間あたりの変位は、第6の分布に従う、
     とする状態空間モデルに対し、前記方位角の観測値を対応する前記時間情報に基づいて入力することで、前記移動体の角速度の値を取得することと、
     を含む、移動体挙動情報取得方法。
  18.  移動体の速度の観測値を第1の間隔に基づいて取得する速度観測値取得部と、
     前記取得した速度の観測値を対応する時間情報と紐づけて記憶する記憶部と、
      速度の状態値の単位時間あたりの変位が進行方向における加速度の値であり、
      前記速度の状態値に、第1の分布に従い発生する値を加えたものが前記速度の観測値であり、
      前記進行方向における加速度の値の単位時間あたりの変位は、第2の分布に従う、
     とする状態空間モデルに対して、前記速度の観測値を対応する前記時間情報に基づいて入力することで、前記移動体の進行方向における加速度の値及び前記移動体の速度の状態値のうち少なくとも1つを取得する、速度および進行方向加速度取得部と、
     を備える、移動体挙動情報取得装置。
  19.  移動体の方位角の観測値を第3の間隔に基づいて取得する方位角観測値取得部と、
     前記取得した方位角の観測値を対応する時間情報と紐づけて記憶する記憶部と、
      方位角の状態値の単位時間あたりの変位が角速度の値であり、
      前記方位角の状態値に、第3の分布に従い発生する値を加えたものが前記方位角の観測値であり、
      前記角速度の値の単位時間あたりの変位は、第4の分布に従う、
     とする状態空間モデルに対して、前記方位角の観測値を対応する前記時間情報に基づいて入力することで、前記移動体の角速度の値を取得する角速度取得部と、
     を備える、移動体挙動情報取得装置。
  20.  移動体の速度の観測値を第1の間隔に基づいて取得する速度観測値取得部と、
     前記取得した速度の観測値を対応する時間情報と紐づけて記憶する記憶部と、
      第1層要素は速度の状態であり、
      第k+1層要素は、第k層の要素を微分した結果に相当し、
      前記第k層要素の値の単位時間あたりの変位が前記第k+1層要素の値であり、
      nは2以上の所定の自然数であり、
      kは1以上前記n未満の自然数であり、
      速度の状態値に、第1の分布に従い発生する値を加えたものが前記速度の観測値であり、
      前記第n+1層要素の値の単位時間あたりの変位は、第5の分布に従う、
     とする状態空間モデルに対して、前記速度の観測値を対応する前記時間情報に基づいて入力することで、前記移動体の進行方向における加速度の値及び前記移動体の速度の状態値のうち少なくとも1つを取得する、速度および進行方向加速度取得部と、
     を備える、移動体挙動情報取得装置。
  21.  移動体の方位角の観測値を第3の間隔に基づいて取得する方位角観測値取得部と、
     前記取得した方位角の観測値を対応する時間情報と紐づけて記憶する記憶部と、
      第1層要素は方位角の状態であり、
      第k+1層要素は、第k層の要素を微分した結果に相当し、
      前記第k層要素の値の単位時間あたりの変位が前記第k+1層要素の値であり、
      nは2以上の所定の自然数であり、
      kは1以上前記n未満の自然数であり、
      前記方位角の状態値に、第3の分布に従い発生する値を加えたものが前記方位角の観測値であり、
      前記第n+1層要素の値の単位時間あたりの変位は、第6の分布に従う、
     とする状態空間モデルに対して、前記方位角の観測値を対応する前記時間情報に基づいて入力することで、前記移動体の角速度の値を取得する角速度取得部と、
     を備える、移動体挙動情報取得装置。
  22.  コンピュータに、
     移動体の速度の観測値を第1の間隔に基づいて取得することと、
     前記取得した速度の観測値を対応する時間情報と紐づけて記憶することと、
      速度の状態値の単位時間あたりの変位が進行方向における加速度の値であり、
      前記速度の状態値に、第1の分布に従い発生する値を加えたものが前記速度の観測値であり、
      前記進行方向における加速度の値の単位時間あたりの変位は、第2の分布に従う、
     とする状態空間モデルに対して、前記速度の観測値を対応する前記時間情報に基づいて入力することで、前記移動体の進行方向における加速度の値及び前記移動体の速度の状態値のうち少なくとも1つを取得することと、
     を実行させる、プログラム。
  23.  コンピュータに、
     移動体の方位角の観測値を第3の間隔に基づいて取得することと、
     前記取得した方位角の観測値を対応する時間情報と紐づけて記憶することと、
      方位角の状態値の単位時間あたりの変位が角速度の値であり、
      前記方位角の状態値に、第3の分布に従い発生する値を加えたものが前記方位角の観測値であり、
      前記角速度の値の単位時間あたりの変位は、第4の分布に従う、
     とする状態空間モデルに対して、前記方位角の観測値を対応する前記時間情報に基づいて入力することで、前記移動体の角速度の値を取得することと、
     を実行させる、プログラム。
  24.  コンピュータに、
     移動体の速度の観測値を第1の間隔に基づいて取得することと、
     前記取得した速度の観測値を対応する時間情報と紐づけて記憶することと、
      第1層要素は速度の状態であり、
      第k+1層要素は、第k層の要素を微分した結果に相当し、
      前記第k層要素の値の単位時間あたりの変位が前記第k+1層要素の値であり、
      nは2以上の所定の自然数であり、
      kは1以上前記n未満の自然数であり、
      前記速度の状態値に、第1の分布に従い発生する値を加えたものが前記速度の観測値であり、
      前記第n+1層要素の値の単位時間あたりの変位は、第5の分布に従う、
     とする状態空間モデルに対して、前記速度の観測値を対応する前記時間情報に基づいて入力することで、前記移動体の進行方向における加速度の値及び前記移動体の速度の状態値のうち少なくとも1つを取得することと、
     を実行させる、プログラム。
  25.  コンピュータに、
     移動体の方位角の観測値を第3の間隔に基づいて取得することと、
     前記取得した方位角の観測値を対応する時間情報と紐づけて記憶することと、
      第1層要素は方位角の状態であり、
      第k+1層要素は、第k層の要素を微分した結果に相当し、
      前記第k層要素の値の単位時間あたりの変位が前記第k+1層要素の値であり、
      nは2以上の所定の自然数であり、
      kは1以上前記n未満の自然数であり、
      前記方位角の状態値に、第3の分布に従い発生する値を加えたものが前記方位角の観測値であり、
      前記第n+1層要素の値の単位時間あたりの変位は、第6の分布に従う、
     とする状態空間モデルに対し、前記方位角の観測値を対応する前記時間情報に基づいて入力することで、前記移動体の角速度の値を取得することと、
     を実行させる、プログラム。
     
PCT/JP2021/034796 2020-10-30 2021-09-22 移動体挙動情報取得方法、移動体挙動情報取得装置及びプログラム WO2022091650A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/793,919 US20230051377A1 (en) 2020-10-30 2021-09-22 Mobility movemennt information acquiring method and mobility movement information acquiring apparatus
JP2022507368A JP7053087B1 (ja) 2020-10-30 2021-09-22 移動体挙動情報取得方法、移動体挙動情報取得装置及びプログラム

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2020183038 2020-10-30
JP2020-183038 2020-10-30
JP2021142298 2021-09-01
JP2021-142298 2021-09-01

Publications (1)

Publication Number Publication Date
WO2022091650A1 true WO2022091650A1 (ja) 2022-05-05

Family

ID=81382355

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/034796 WO2022091650A1 (ja) 2020-10-30 2021-09-22 移動体挙動情報取得方法、移動体挙動情報取得装置及びプログラム

Country Status (1)

Country Link
WO (1) WO2022091650A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017523382A (ja) * 2015-07-14 2017-08-17 エスゼット ディージェイアイ テクノロジー カンパニー リミテッドSz Dji Technology Co.,Ltd モバイルプラットフォームの運動を決定する方法、装置、及びシステム
CN108357498A (zh) * 2018-02-07 2018-08-03 北京新能源汽车股份有限公司 一种车辆状态参数确定方法、装置及汽车
JP2019121225A (ja) * 2018-01-09 2019-07-22 株式会社デンソーアイティーラボラトリ 画像認識システムおよびニューラルネットワークの学習方法
WO2020075825A1 (ja) * 2018-10-12 2020-04-16 洋紀 山本 動き推定装置、電子機器、制御プログラム及び動き推定方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017523382A (ja) * 2015-07-14 2017-08-17 エスゼット ディージェイアイ テクノロジー カンパニー リミテッドSz Dji Technology Co.,Ltd モバイルプラットフォームの運動を決定する方法、装置、及びシステム
JP2019121225A (ja) * 2018-01-09 2019-07-22 株式会社デンソーアイティーラボラトリ 画像認識システムおよびニューラルネットワークの学習方法
CN108357498A (zh) * 2018-02-07 2018-08-03 北京新能源汽车股份有限公司 一种车辆状态参数确定方法、装置及汽车
WO2020075825A1 (ja) * 2018-10-12 2020-04-16 洋紀 山本 動き推定装置、電子機器、制御プログラム及び動き推定方法

Similar Documents

Publication Publication Date Title
US10845381B2 (en) Methods and systems for pattern-based identification of a driver of a vehicle
US8315756B2 (en) Systems and methods of vehicular path prediction for cooperative driving applications through digital map and dynamic vehicle model fusion
JP5269024B2 (ja) 路面状況推定装置および路面状況推定方法
US9812007B2 (en) Map generation system, map generation device, map generation method, and program
JP7053087B1 (ja) 移動体挙動情報取得方法、移動体挙動情報取得装置及びプログラム
CN106053879A (zh) 通过数据融合的失效操作的车辆速度估计
CN104091079B (zh) 一种基于mems imu公交司机驾驶水平评定方法
KR20140119119A (ko) 드라이빙 거동에 대한 위험 인디케이터 계산 및 차량 궤적의 재구성을 위한 장치, 시스템 및 방법
EP3335051B1 (en) Velocity estimation
JP6796527B2 (ja) 車両状態監視装置、車両状態監視システム及び車両状態監視方法
US10977881B1 (en) Rules based analysis of vehicle sensor data for actions
US20190139404A1 (en) Method, device and system for wrong-way driver detection
CN116829974A (zh) 用于雷达的同步射程-变化率展开和离群值去除的系统和方法
CN111971218A (zh) 驾驶员轮廓分析和识别
US10769942B2 (en) Method, device and system for wrong-way driver detection
WO2022091650A1 (ja) 移動体挙動情報取得方法、移動体挙動情報取得装置及びプログラム
JP7318995B1 (ja) 移動体挙動情報取得方法、移動体挙動情報取得装置及びプログラム
US20200402396A1 (en) Method, device and system for wrong-way driver detection
CN116724248A (zh) 用于产生非模态长方体的系统和方法
CN116670536A (zh) 使用位置一致性进行距离变化率的解混叠的系统和方法
CN114646322A (zh) 用于更新导航地图的系统和方法
JP2019520648A (ja) 逆走ドライバを検出するための方法、装置、およびシステム
KR20230048324A (ko) 확장된 데드 레커닝 정확성
CN109102194B (zh) 一种基于全球定位系统与惯性传感器的驾驶行为评分方法
US10876843B2 (en) Method, device and system for wrong-way driver detection

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022507368

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21885769

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21885769

Country of ref document: EP

Kind code of ref document: A1