WO2022091605A1 - Method for purifying organic solvent - Google Patents

Method for purifying organic solvent Download PDF

Info

Publication number
WO2022091605A1
WO2022091605A1 PCT/JP2021/033511 JP2021033511W WO2022091605A1 WO 2022091605 A1 WO2022091605 A1 WO 2022091605A1 JP 2021033511 W JP2021033511 W JP 2021033511W WO 2022091605 A1 WO2022091605 A1 WO 2022091605A1
Authority
WO
WIPO (PCT)
Prior art keywords
exchanger
organic solvent
type
treatment step
ion exchange
Prior art date
Application number
PCT/JP2021/033511
Other languages
French (fr)
Japanese (ja)
Inventor
智子 高田
Original Assignee
オルガノ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オルガノ株式会社 filed Critical オルガノ株式会社
Publication of WO2022091605A1 publication Critical patent/WO2022091605A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J39/00Cation exchange; Use of material as cation exchangers; Treatment of material for improving the cation exchange properties
    • B01J39/04Processes using organic exchangers
    • B01J39/05Processes using organic exchangers in the strongly acidic form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J41/00Anion exchange; Use of material as anion exchangers; Treatment of material for improving the anion exchange properties
    • B01J41/04Processes using organic exchangers
    • B01J41/05Processes using organic exchangers in the strongly basic form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J41/00Anion exchange; Use of material as anion exchangers; Treatment of material for improving the anion exchange properties
    • B01J41/04Processes using organic exchangers
    • B01J41/07Processes using organic exchangers in the weakly basic form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J45/00Ion-exchange in which a complex or a chelate is formed; Use of material as complex or chelate forming ion-exchangers; Treatment of material for improving the complex or chelate forming ion-exchange properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J47/00Ion-exchange processes in general; Apparatus therefor
    • B01J47/02Column or bed processes
    • B01J47/04Mixed-bed processes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C41/00Preparation of ethers; Preparation of compounds having groups, groups or groups
    • C07C41/01Preparation of ethers
    • C07C41/34Separation; Purification; Stabilisation; Use of additives
    • C07C41/36Separation; Purification; Stabilisation; Use of additives by solid-liquid treatment; by chemisorption
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C41/00Preparation of ethers; Preparation of compounds having groups, groups or groups
    • C07C41/01Preparation of ethers
    • C07C41/34Separation; Purification; Stabilisation; Use of additives
    • C07C41/40Separation; Purification; Stabilisation; Use of additives by change of physical state, e.g. by crystallisation
    • C07C41/42Separation; Purification; Stabilisation; Use of additives by change of physical state, e.g. by crystallisation by distillation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C43/00Ethers; Compounds having groups, groups or groups
    • C07C43/02Ethers
    • C07C43/03Ethers having all ether-oxygen atoms bound to acyclic carbon atoms
    • C07C43/04Saturated ethers
    • C07C43/13Saturated ethers containing hydroxy or O-metal groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B63/00Purification; Separation; Stabilisation; Use of additives
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B63/00Purification; Separation; Stabilisation; Use of additives
    • C07B63/02Purification; Separation; Stabilisation; Use of additives by treatment giving rise to a chemical modification

Definitions

  • the present invention relates to a method for purifying an organic solvent for obtaining a high-purity organic solvent having a reduced metal impurity content.
  • ICP-MS is used for trace metal analysis in organic solvents.
  • the standard solution to which the metal is added at a known concentration is diluted with a blank solution of the same organic solvent as the measurement target in several steps, and a calibration curve is obtained. create.
  • the metal concentration in the organic solvent to be measured is set so as to be included in the calibration curve concentration range.
  • Such a method is called an absolute calibration curve method, and it is important that the blank liquid does not contain the metal to be measured. This is because if the metal concentration in the blank liquid is high, the background concentration becomes high and the lower limit of quantification rises.
  • the content of metal impurities in the blank liquid used for trace metal analysis in organic solvents by ICP-MS is required to be 1 ppt or less.
  • IPA isopropyl alcohol
  • Patent Document 1 describes a method for removing an ionic contaminant from a hydrolyzable organic solvent, wherein the hydrolyzable organic solvent is used as a cation exchange resin and an anion.
  • the anion exchange resin is selected from a weakly basic anion exchange resin, which comprises contacting with a mixed bed of an ion exchange resin containing an ion exchange resin.
  • Patent Document 2 describes a method for removing an ionic contaminant from a hydrophilic organic solvent, wherein the method uses the hydrophilic organic solvent as a cationic ion exchange resin and an anionic ion exchange.
  • the hydrophilic organic solvent as a cationic ion exchange resin and an anionic ion exchange.
  • a cationic ion exchange resin in which the cation exchange resin has a water retention capacity of 40 to 55% by weight.
  • Both the cationic ion exchange resin and the anionic ion exchange resin have a porosity of 0.001 to 0.1 cm 3 / g and an average pore size of 0.001 to 1.7 nm. And a method having a BET surface area of 0.001-10 m 2 / g is disclosed.
  • the organic solvent is purified by contacting the organic solvent with a mixed bed of an ion exchange resin containing a cation exchange resin and an anion exchange resin.
  • Patent Document 1 and Patent Document 2 can remove metal impurities in an organic solvent, higher purity may be required. That is, there is a demand for a method for purifying an organic solvent having excellent removability of metal impurities.
  • the ion exchange resin contains water, even if the organic solvent is purified using the ion exchange resin, the water will be mixed in the obtained treatment liquid.
  • a high-purity organic solvent is required, even a small amount of water causes a problem of contamination as an impurity.
  • the diffusion rate of metal impurities in an organic solvent is low, and the reaction rate of the ion exchange reaction with an ion exchange resin is also low. Therefore, removal of ionic metal impurities in an organic solvent can be performed by ion exchange.
  • the liquid passing rate to the ion exchange resin must be set low, so that there is a problem that the purification efficiency is low.
  • a first object of the present invention is to provide a method for purifying an organic solvent having excellent removability of metal impurities and water in the organic solvent.
  • a second object of the present invention is to provide a method for purifying an organic solvent, which is excellent in removing metal impurities and water in an organic solvent and has high purification efficiency.
  • the present inventors performed an ion exchange treatment step in which the organic solvent to be treated is brought into contact with the ion exchange resin, and then the treatment liquid in the ion exchange treatment step.
  • the distillation step of distilling it was found that the removal property of ionic metal impurities is enhanced and the metal fine particles and water which could not be removed by the ion exchange resin can be removed, and the present invention is completed. I arrived.
  • the present invention (1) comprises an ion exchange treatment step of bringing the organic solvent to be treated into contact with the ion exchange resin.
  • the present invention provides a method for purifying an organic solvent, which is characterized by having.
  • the present invention (2) provides the method for purifying an organic solvent according to (1), which comprises contacting the organic solvent to be treated with at least an H-type cation exchanger in the ion exchange treatment step. Is.
  • the present invention (3) is characterized in that the ion exchange treatment step includes a treatment step of bringing the organic solvent to be treated into contact with the H-type strongly acidic cation exchanger and the anion exchanger (2). It provides a method for purifying an organic solvent.
  • the ion exchange treatment step is carried out.
  • the first treatment step of bringing the organic solvent to be treated into contact with the H-type cation exchanger (1) The second treatment step of contacting the treatment liquid of the first treatment step with the anion exchanger (2) and the H-type strong acid cation exchanger (3),
  • the present invention provides a method for purifying an organic solvent according to (2), which is characterized by having.
  • the treatment liquid of the first treatment step is passed through a mixed bed of the anion exchanger (2) and the H-type strong acid cation exchanger (3).
  • the present invention provides a method for purifying an organic solvent according to (4), which comprises performing a treatment step.
  • the treatment liquid of the first treatment step is first contacted with the anion exchanger (2) and then with the H-type strongly acidic cation exchanger (3).
  • the present invention provides the method for purifying an organic solvent according to (4), which comprises performing the second treatment step.
  • the present invention (7) provides a method for purifying an organic solvent according to any one of (4) to (6), wherein the H-type cation exchanger (1) is an H-type chelate exchanger. It is a thing.
  • the present invention (8) is a method for purifying an organic solvent according to any one of (4) to (6), wherein the H-type cation exchanger (1) is an H-type strongly acidic cation exchanger. It is to provide.
  • the present invention has a treatment step of bringing the organic solvent to be treated into contact with a mixed bed of an H-type chelate exchanger, an anion exchanger (2) and an H-type strongly acidic cation exchanger (3). It provides a method for purifying an organic solvent according to (2).
  • the present invention it is possible to provide a method for purifying an organic solvent having excellent removability of metal impurities and water in the organic solvent. Further, according to the present invention, it is possible to provide a method for purifying an organic solvent which is excellent in removing metal impurities and water in an organic solvent and has high purification efficiency.
  • the method for purifying an organic solvent of the present invention comprises an ion exchange treatment step of bringing the organic solvent to be treated into contact with an ion exchanger.
  • the method for purifying an organic solvent of the present invention includes at least an ion exchange treatment step and a distillation step.
  • the ion exchange treatment step is a step of bringing the organic solvent to be treated into contact with the ion exchanger.
  • the organic solvent to be treated according to the method for purifying an organic solvent of the present invention is not particularly limited, and is, for example, alcohols such as isopropyl alcohol, methanol and ethanol, ketones such as cyclohexanenone, methylisobutylketone, acetone and methylethylketone. Examples thereof include alkene-based organic solvents such as 2,4-diphenyl-4-methyl-1-pentene and 2-phenyl-1-propene, N-methylpyrrolidone, and mixed organic solvents thereof.
  • the organic solvent to be treated may be either a polar organic solvent or a non-polar organic solvent, and a polar organic solvent is preferable.
  • the polar organic solvent may be a protonic polar organic solvent or an aprotic polar organic solvent.
  • the organic solvent to be treated includes monovalent ionic metal impurities such as Na, K and Li as metal impurities and divalent or higher valences such as Cr, As, Ca, Cu, Fe, Mg, Mn, Ni, Pb and Zn. It contains ionic metal impurities and.
  • the content of each metal impurity in the organic solvent to be treated is not particularly limited, but is usually about 100 mass ppb to 20 mass pt.
  • Examples of the ion exchanger according to the method for purifying an organic solvent of the present invention include an H-type cation exchanger and an anion exchanger.
  • Examples of the H-type cation exchanger include an H-type chelate exchanger and an H-type strongly acidic cation exchanger.
  • Examples of the anion exchanger include a strong basic anion exchanger and a weakly basic anion exchanger.
  • the H-type chelate exchanger is obtained by contacting a metal ion-type chelate exchanger such as Na-type, Ca-type, or Mg-type with a mineral acid to treat it with an acid and convert it into H-type. That is, the H-type chelate exchanger is a mineral acid contact-treated product of the metal ion-type chelate exchanger.
  • the functional group of the H-type chelate exchanger is not particularly limited as long as it can coordinate with a metal ion to form a chelate, and is, for example, an iminodiacetic acid group, an aminomethylphosphate group, or an iminopropionic acid.
  • Examples thereof include a functional group having an amino group such as a group, a thiol group and the like.
  • a functional group having an amino group is preferable in that the removability of a large number of polyvalent metal ions is high, and an iminodiacetic acid group, an aminomethylphosphate group, and an iminopropionic acid are preferable. Groups are particularly preferred.
  • H-type chelate exchanger examples include granular H-type chelate exchange resins.
  • the substrate of the H-type chelate exchange resin include a styrene-divinylbenzene copolymer.
  • the H-type chelate exchange resin may have any of a gel-type structure, a macroporous-type structure, and a porous-type structure.
  • the exchange capacity of the H-type chelate exchange resin is preferably 0.5 to 2.5 eq / L-R, and particularly preferably 1.0 to 2.5 eq / L-R.
  • the average particle size (harmonic mean diameter) of the H-type chelate exchange resin is not particularly limited, but is preferably 300 to 1000 ⁇ m, and particularly preferably 500 to 800 ⁇ m.
  • the average particle size of the H-type chelate exchange resin is a value measured by a laser diffraction type particle size distribution measuring device.
  • the H-shaped organic porous chelate exchanger is an organic porous body into which a functional group having a chelating ability, for example, a functional group having a chelating ability mentioned above is introduced.
  • the exchange volume in the H-shaped organic porous chelate exchanger is preferably 0.3 to 2 mg equivalent / mL (water-wet state), and particularly preferably 1 to 2 mg equivalent / mL (water-wet state).
  • the H-type chelate exchanger can be obtained by contacting a metal ion-type chelate exchanger such as Na-type, Ca-type, or Mg-type with a mineral acid and treating it with an acid.
  • a metal ion-type chelate exchanger such as Na-type, Ca-type, or Mg-type
  • Examples of the mineral acid to be brought into contact with the metal ion-type chelate exchanger include hydrochloric acid, sulfuric acid, and nitric acid. Of these, hydrochloric acid and sulfuric acid are preferable as the mineral acid from the viewpoint of safety. Further, in the case of conversion from Ca form, hydrochloric acid is preferable because there is a risk of precipitation of calcium sulfate.
  • the concentration of mineral acid is preferably 0.1 to 6N, particularly preferably 1 to 4N.
  • the method of contacting the mineral acid with the metal ion type chelate exchanger is not particularly limited, and the contact mode, contact temperature, contact time, etc. are appropriately selected.
  • the H-type chelate exchanger converted into H-form is washed with water to remove excess mineral acid. Since it is bonded by hydrogen bond with mineral acid or the like, excess mineral acid cannot be completely removed by washing with water. Therefore, the mineral acid used for the acid treatment remains in the H-type chelate exchanger.
  • metal ion type chelate exchange resins CR-10 and CR-11 manufactured by Mitsubishi Chemical Corporation, Duolite C-467 manufactured by Sumika Chemtex Co., Ltd., MC-700 manufactured by Sumitomo Chemical Corporation, and Lanxess Co., Ltd.
  • examples thereof include Revachit TP207, Revachit TP208, Revachit TP260, S930 and S950 manufactured by Purolite, and DS-21 and DS-22 manufactured by Organo.
  • the H-type strong acid cation exchanger is a strong acid cation exchange group such as a sulfonic acid group converted into an H-type.
  • the H-type strong acid cation exchange resin examples include granular strong acid cation exchange resins.
  • the substrate of the H-type strong acid cation exchange resin is a styrene-divinylbenzene copolymer.
  • the H-type strong acid cation exchange resin may have any of a gel-type structure, a macroporous-type structure, and a porous-type structure.
  • the wet ion exchange capacity of the H-type strong acid cation exchange resin is preferably 0.5 (eq / L-R) or more, and particularly preferably 1.0 (eq / L-R) or more. Further, the wet ion exchange capacity of the H-type strong acid cation exchange resin is preferably higher, and is appropriately selected.
  • the harmonic mean diameter of the H-type strong acid cation exchange resin is preferably 200 to 900 ⁇ m, particularly preferably 300 to 600 ⁇ m.
  • the H-type strong acid cation exchange resin include Amberlite IR120B, IR124, 200CT252, Amberjet 1020, 1024, 1060 and 1220 manufactured by Dow Chemical Co., Ltd., Diaion SK104, SK1B, SK110, SK112 manufactured by Mitsubishi Chemical Co., Ltd.
  • the H-type organic porous strong acid cation exchanger is an organic porous body into which a strongly acidic cation exchange group, for example, the strong acid cation exchange group mentioned above is introduced.
  • the exchange capacity in the H-shaped organic porous strongly acidic cation exchanger is preferably 1 to 3 mg equivalent / mL (dry state), and particularly preferably 1.5 to 3 mg equivalent / mL (dry state).
  • the anion exchanger includes a strong basic anion exchanger having a strong basic anion exchange group as an anion exchange group and a weak basic anion exchanger having a weak basic anion exchange group as an anion exchange group.
  • Examples of the strong basic anion exchange group related to the strong basic anion exchanger include OH-type quaternary ammonium groups.
  • Examples of the weak basic anion exchange group according to the weak basic anion exchanger include a tertiary amino group, a secondary amino group, a primary amino group, a polyamine group and the like.
  • a carbonate-type or bicarbonate-type anion exchanger having a low basicity may be used as a solvent in which decomposition or a chemical reaction occurs.
  • the anion exchange body examples include granular anion exchange resins.
  • the substrate of the anion exchange resin is a styrene-divinylbenzene copolymer.
  • the anion exchange resin may have any of a gel structure, a macroporous structure, and a porous structure.
  • the ion exchange capacity of the anion exchange resin in a wet state is preferably 0.5 to 2 (eq / L-R), particularly preferably 0.9 to 2 (eq / L-R).
  • the harmonic mean diameter of the anion exchange resin is preferably 200 to 900 ⁇ m, particularly preferably 300 to 800 ⁇ m.
  • anion exchange resin examples include Amberlite IRA900, 402, 96SB, 98, Amberjet 4400, 4002, 4010 manufactured by Dow Chemical Corporation, Diaion UBA120, PA306S, PA308, PA312, PA316, PA318L manufactured by Mitsubishi Chemical Corporation.
  • examples of the anion exchanger include an organic porous anion exchanger.
  • the organic porous anion exchanger is an organic porous body into which an anion exchange group, for example, a strong basic anion exchange group or a weak basic anion exchange group mentioned above is introduced.
  • the exchange volume in the organic porous anion exchanger is preferably 1 to 6 mg equivalent / mL (dry state), and particularly preferably 2 to 5 mg equivalent / mL (dry state).
  • the organic solvent to be treated is brought into contact with at least an H-type cation exchanger, preferably an H-type strongly acidic cation exchanger.
  • the H-type cation exchanger and the H-type strong acid cation exchanger related to the ion exchange treatment step are the above-mentioned H-type cation exchanger and H-type strong acid cation exchanger.
  • the ion exchange treatment step of the first embodiment includes a treatment step of bringing the organic solvent to be treated into contact with the H-type strongly acidic cation exchanger and the anion exchanger. ..
  • the anion exchanger according to the ion exchange treatment step (1) may be a strong basic anion exchanger or a weakly basic anion exchanger.
  • the H-type strong acid cation exchanger, anion exchanger, strongly basic anion exchanger, and weakly basic anion exchanger according to the ion exchange treatment step (1) are the above-mentioned H-type strong acid cation exchanger, anion exchanger, It is a strongly basic anion exchanger and a weakly basic anion exchanger.
  • the method of contacting the organic solvent to be treated with the H-type strongly acidic cation exchanger and the anion exchanger is not particularly limited, and for example, (i) the organic solvent to be treated is H.
  • a method of passing a liquid through a mixed bed of a strongly acidic cation exchanger and an anion exchanger, (ii) the organic solvent to be treated is composed of an H-type strongly acidic cation exchanger layer on the front stage side and an anion exchanger layer on the rear stage side.
  • Method of passing liquid through a double bed (iii) First, the organic solvent to be treated is passed through a single bed of the H-type strongly acidic cation exchanger in the previous stage, and then the treated liquid is passed through the single bed of the anion exchanger in the latter stage. Method of passing liquid through the floor, (iv) First, the organic solvent to be treated is passed through a single bed of the anion exchanger in the previous stage, and then the treated liquid is passed through the single bed of the H-type strongly acidic cation exchanger in the subsequent stage.
  • the organic solvent to be treated is applied to a double bed in which two or more sets of repeating units of the single bed of the H-type strongly acidic cation exchanger in the first stage and the single bed of the anion exchanger in the second stage are repeated.
  • Method of passing liquid (vi) The organic solvent to be treated is passed through a double bed in which two or more sets of repeating units of the single bed of the anion exchanger in the first stage and the single bed of the H-type strongly acidic cation exchanger in the second stage are repeated.
  • the method of liquid is mentioned.
  • the mixed bed of the H-type strong acid cation exchanger and the anion exchanger consists of a mixture of the H-type strong acid cation exchanger and the anion exchanger.
  • the H-type strong acid cation exchanger is an H-type strong acid organic porous cation exchanger
  • a shape cut out to an arbitrary size for example, a cubic H-type strong acid organic porous cation exchange having a side of about 3 mm to about 10 mm.
  • the anion exchanger is an organic porous strong acid anion exchanger
  • a cubic organic porous anion exchanger having a shape cut out to an arbitrary size for example, a side of about 3 mm to about 10 mm is used.
  • the liquid passage rate (SV) when the organic solvent to be treated is passed through the H-type strong acid cation exchanger and the anion exchanger is not particularly limited and is appropriately selected. It is preferably 0.1 to 50h -1 , particularly preferably 2 to 30h -1 , and even more preferably 4 to 25h -1 .
  • the temperature at which the organic solvent to be treated is passed through the H-type strong acid cation exchanger and the anion exchanger is not particularly limited and is appropriately selected, but is usually 0 to 50. °C.
  • the second form of the ion exchange treatment step (hereinafter, also referred to as the ion exchange treatment step (2)). Is the first treatment step of bringing the organic solvent to be treated into contact with the H-type chelate exchanger (1a), and The second treatment step of contacting the treatment liquid of the first treatment step with the anion exchanger (2) and the H-type strong acid cation exchanger (3), Have.
  • the H-type chelate exchanger, anion exchanger, and H-type strong acid cation exchanger according to the ion exchange treatment step (2) are the above-mentioned H-type chelate exchanger, anion exchanger, and H-type strong acid cation exchanger.
  • the first treatment step according to the ion exchange treatment step (2) is a step of bringing the organic solvent to be treated into contact with the H-type chelate exchanger (1a).
  • the organic solvent to be treated is brought into contact with the H-type chelate exchanger (1a), whereby the organic solvent to be treated is transferred to the H-type chelate exchanger (1a).
  • the treatment is performed to remove mainly a divalent or higher valent metal and a part of the monovalent metal in the organic solvent to be treated.
  • the liquid passage rate (SV) when the organic solvent to be treated is passed through the H-type chelate exchanger (1a) is not particularly limited and is appropriately selected. However, it is preferably 0.1 to 50 h -1 , particularly preferably 2 to 30 h -1 , and even more preferably 4 to 25 h -1 .
  • the temperature at which the organic solvent to be treated is passed through the H-type chelate exchanger (1a) is not particularly limited and is appropriately selected, but is usually selected. It is 0 to 50 ° C. Further, depending on the type of the organic solvent to be treated, the organic solvent to be treated may be passed through the H-type chelate exchanger (1a) at 0 to 80 ° C. in the first treatment step.
  • the second treatment step according to the ion exchange treatment step (2) is a step of bringing the treatment liquid of the first treatment step into contact with the anion exchanger (2) and the H-type strong acid cation exchanger (3).
  • the treatment liquid of the first treatment step is brought into contact with the anion exchanger (2) and the H-type strong acid cation exchanger (3) to be treated organic.
  • the solvent was treated with the anion exchanger (2) and the H-type strong acid cation exchanger (3), and the balance of the monovalent metal that could not be completely removed by the H-type chelate exchanger (1a) in the first treatment step.
  • the mineral acid released from the H-type chelate exchanger (1a) are removed.
  • NaOH is used as a regenerating agent for the regeneration of the anion exchanger, but if it is sufficiently washed after the regeneration, NaOH hardly remains in the anion exchanger.
  • the H-type strong acid cation exchanger (3) in the second treatment step can remove Na.
  • (SV) is not particularly limited and may be appropriately selected, but is preferably 0.1 to 100 h -1 , particularly preferably 2 to 50 h -1 .
  • the temperature at which the treatment liquid of the first treatment step is passed through the anion exchanger (2) and the H-type strong acid cation exchanger (3) is set. It is not particularly limited and is appropriately selected, but is usually 0 to 50 ° C. Further, depending on the type of the organic solvent to be treated, in the second treatment step, the treatment liquid of the first treatment step is applied to the anion exchanger (2) and the H-type strong acid cation exchanger (3) at 0 to 80 ° C. It may pass liquid.
  • the anion exchanger (2) when the treatment liquid of the first treatment step is passed through the anion exchanger (2) and the H-type strong acid cation exchanger (3) at 60 to 80 ° C., the anion exchanger (2). ), When the strong basic anion exchanger (2a) is used, the strongly basic anion exchanger (2a) is easily decomposed. Therefore, the weak basic anion exchanger (2b) is used as the anion exchanger (2). ..
  • the method of contacting the treatment liquid of the first step with the anion exchanger (2) and the H-type strongly acidic cation exchanger (3) is not particularly limited, and is, for example, (i). ) A method of passing the organic solvent to be treated through a mixed bed of the anion exchanger (2) and the H-type strongly acidic cation exchanger (3), (ii) the organic solvent to be treated is passed through the anion exchanger (2) on the front stage side. ) Method of passing liquid through a double bed consisting of a layer and an H-type strongly acidic cation exchanger (3) layer on the subsequent stage, (iii) First, the organic solvent to be treated is applied to the single bed of the anion exchanger (2) in the previous stage.
  • the treatment liquid is passed through a single bed of the H-type strongly acidic cation exchanger (3) in the subsequent stage.
  • a method of passing the liquid through the single bed of the cation exchanger (3) and then passing the treated liquid through the single bed of the anion exchanger (2) in the subsequent stage, (v) the organic solvent to be treated is passed through the anion in the previous stage.
  • the mixed bed of the anion exchanger (2) and the H-type strong acid cation exchanger (3) consists of a mixture of the anion exchanger (2) and the H-type strong acid cation exchanger (3).
  • the anion exchanger (2) is an organic porous anion exchanger
  • a cubic organic porous anion exchanger having a shape cut out to an arbitrary size, for example, a side of about 3 mm to about 10 mm is used.
  • the H-type strongly acidic cation exchanger (3) is an organic porous strong acid cation exchanger, it has a shape cut out to an arbitrary size, for example, a cubic organic porous strong acid having a side of about 3 mm to about 10 mm.
  • a sex cation exchanger is used.
  • the third form of the ion exchange treatment step (hereinafter, also referred to as an ion exchange treatment step (3)) is a first treatment step in which the organic solvent to be treated is brought into contact with the H-type strong acid cation exchanger (1b).
  • the H-type strong acid cation exchanger and anion exchanger according to the ion exchange treatment step (3) are the above-mentioned H-type strong acid cation exchanger and anion exchanger.
  • the first treatment step according to the ion exchange treatment step (3) is a step of bringing the organic solvent to be treated into contact with the H-type strongly acidic cation exchanger (1b).
  • the organic solvent to be treated is brought into contact with the H-type strong acid cation exchanger (1b) to change the H-type strong acid cation exchanger.
  • the treatment in (1b) removes a part of the divalent or higher valent metal and a part of the monovalent metal in the organic solvent to be treated.
  • the liquid passage rate (SV) when the organic solvent to be treated is passed through the H-type strong acid cation exchanger (1b) is not particularly limited and is appropriately limited. Although selected, it is preferably 0.1 to 100 h -1 , particularly preferably 2 to 50 h -1 .
  • the temperature at which the organic solvent to be treated is passed through the H-type strong acid cation exchanger (1b) is not particularly limited and may be appropriately selected. Usually, it is 0 to 50 ° C. Further, depending on the type of the organic solvent to be treated, the organic solvent to be treated may be passed through the H-type strongly acidic cation exchanger (1b) at 0 to 80 ° C. in the first treatment step.
  • the second treatment step according to the ion exchange treatment step (3) is a step of bringing the treatment liquid of the first treatment step into contact with the anion exchanger (2) and the H-type strong acid cation exchanger (3).
  • the H-type strong acid cation exchanger (1b) used in the first treatment step and the H-type strong acid cation exchanger (3) used in the second treatment step are of the same type. It may be a strong acid cation exchanger or a different type of H-type strong acid cation exchanger.
  • the treatment liquid of the first treatment step is brought into contact with the anion exchanger (2) and the H-type strongly acidic cation exchanger (3) to be treated organic.
  • the solvent was treated with the anion exchanger (2) and the H-type strongly acidic cation exchanger (3), and in the first treatment step, the divalent or higher valence that could not be completely removed by the H-type strongly acidic cation exchanger (1b). Remove the metal remnants and the monovalent metal remnants.
  • the anion exchanger removes metals that may have metal ions in the anion form such as Cr and As, and acids such as mineral acids and organic acids.
  • the organic solvent to be treated is once brought into contact with the H-type strong acid cation exchanger and then again brought into contact with the H-type strong acid cation exchanger.
  • (SV) is not particularly limited and may be appropriately selected, but is preferably 0.1 to 100 h -1 , particularly preferably 2 to 50 h -1 .
  • the temperature at which the treatment liquid of the first treatment step is passed through the anion exchanger (2) and the H-type strong acid cation exchanger (3) is set. It is not particularly limited and is appropriately selected, but is usually 0 to 50 ° C. Further, depending on the type of the organic solvent to be treated, in the second treatment step, the treatment liquid of the first treatment step is applied to the anion exchanger (2) and the H-type strong acid cation exchanger (3) at 0 to 80 ° C. It may pass liquid.
  • the anion exchanger (2) when the treatment liquid of the first treatment step is passed through the anion exchanger (2) and the H-type strong acid cation exchanger (3) at 0 to 80 ° C., the anion exchanger (2). ), When the strong basic anion exchanger (2a) is used, the strongly basic anion exchanger (2a) is easily decomposed. Therefore, the weak basic anion exchanger (2b) is used as the anion exchanger (2). ..
  • the method of contacting the treatment liquid of the first step with the anion exchanger (2) and the H-type strongly acidic cation exchanger (3) is not particularly limited, and is, for example, (i). ) A method of passing the organic solvent to be treated through a mixed bed of the anion exchanger (2) and the H-type strongly acidic cation exchanger (3), (ii) the organic solvent to be treated is passed through the anion exchanger (2) on the front stage side. ) Method of passing liquid through a double bed consisting of a layer and an H-type strongly acidic cation exchanger (3) layer on the subsequent stage, (iii) First, the organic solvent to be treated is applied to the single bed of the anion exchanger (2) in the previous stage.
  • the treatment liquid is passed through a single bed of the H-type strongly acidic cation exchanger (3) in the subsequent stage.
  • a method of passing the liquid through the single bed of the cation exchanger (3) and then passing the treated liquid through the single bed of the anion exchanger (2) in the subsequent stage, (v) the organic solvent to be treated is passed through the anion in the previous stage.
  • the mixed bed of the anion exchanger (2) and the H-type strong acid cation exchanger (3) consists of a mixture of the anion exchanger (2) and the H-type strong acid cation exchanger (3).
  • the anion exchanger (2) is an organic porous anion exchanger
  • a cubic organic porous anion exchanger having a shape cut out to an arbitrary size, for example, a side of about 3 mm to about 10 mm is used.
  • the H-type strongly acidic cation exchanger (3) is an organic porous strong acid cation exchanger, it has a shape cut out to an arbitrary size, for example, a cubic organic porous strong acid having a side of about 3 mm to about 10 mm.
  • a sex cation exchanger is used.
  • the organic solvent to be treated is an H-type chelate exchanger (1a), an anion exchanger (2) and an H-form. It has a treatment step (3) in which the strongly acidic cation exchanger (3) is brought into contact with the mixed bed.
  • the H-type chelate exchanger, anion exchanger, and H-type strong acid cation exchanger according to the ion exchange treatment step (4) are the above-mentioned H-type chelate exchanger, anion exchanger, and H-type strong acid cation exchanger.
  • the ion exchange treatment step (4) is a step of bringing the organic solvent to be treated into contact with a mixed bed of the H-type chelate exchanger (1a), the anion exchanger (2) and the H-type strongly acidic cation exchanger (3). ..
  • the mixed bed of the H-type chelate exchanger (1a), the anion exchanger (2) and the H-type strong acid cation exchanger (3) according to the ion exchange treatment step (4) is the H-type chelate exchanger (1a) and the anion. It consists of a mixture of the exchanger (2) and the H-type strong acid cation exchanger (3).
  • the H-type chelate exchanger (1a) is an H-type organic porous chelate exchanger, it has a shape cut out to an arbitrary size, for example, a cubic H-shaped organic porous body having a side of about 3 mm to about 10 mm. A strong acid chelate exchanger is used.
  • the anion exchanger (2) is an organic porous anion exchanger
  • a cubic organic porous anion exchanger having a shape cut out to an arbitrary size, for example, a side of about 3 mm to about 10 mm is used.
  • the H-type strongly acidic cation exchanger (3) is an organic porous strong acid cation exchanger, it has a shape cut out to an arbitrary size, for example, a cubic organic porous strong acid having a side of about 3 mm to about 10 mm.
  • a sex cation exchanger is used.
  • the organic solvent to be treated is brought into contact with a mixed bed of the H-type chelate exchanger (1a), the anion exchanger (2) and the H-type strongly acidic cation exchanger (3).
  • the organic solvent to be treated is treated with a mixed bed of an H-type chelate exchanger (1a), an anion exchanger (2) and an H-type strongly acidic cation exchanger (3), and a divalent or higher metal in the organic solvent to be treated is treated. And the monovalent metal.
  • the anion exchanger (2) removes the mineral acid released from the H-type chelate exchanger (1a) into the organic solvent to be treated.
  • the ion exchange treatment step (4) when the organic solvent to be treated is passed through the mixed bed of the H-type chelate exchanger (1a), the anion exchanger (2) and the H-type strongly acidic cation exchanger (3).
  • the liquid passing speed (SV) is not particularly limited and is appropriately selected, but is preferably 0.1 to 50h -1 , particularly preferably 2 to 30h -1 , and even more preferably 4 to 25h -1 .
  • the organic solvent to be treated is passed through the mixed bed (3) of the H-type chelate exchanger (1a), the anion exchanger (2) and the H-type strongly acidic cation exchanger (3).
  • the temperature is not particularly limited and may be appropriately selected, but is usually 0 to 50 ° C. Further, depending on the type of the organic solvent to be treated, in the ion exchange treatment step (4), at 0 to 80 ° C., an H-type chelate exchanger (1a), an anion exchanger (2) and an H-type strong acid cation exchanger ( The organic solvent to be treated may be passed through the mixed bed of 3).
  • the organic solvent to be treated is added to the mixed bed of the H-type chelate exchanger (1a), the anion exchanger (2) and the H-type strong acid cation exchanger (3) at 0 to 80 ° C.
  • the strongly basic anion exchanger (2a) is easily decomposed, so that the anion exchanger (2) is used.
  • Weakly basic anion exchanger (2b) is used.
  • the ratio of the volume of the anion exchanger (2) to the volume of the H-type chelate exchanger (1a) ((volume of the anion exchanger (2) / H).
  • the volume) ⁇ 100) of the shaped chelate exchanger (1a) is preferably 0.1 to 99.0% by volume, more preferably 0.1 to 70.0% by volume, and particularly preferably 0.1 to 50.0. By volume.
  • the volume ratio of the strongly acidic cation exchanger (3) to the volume of the H-type chelate exchanger (1a) ((strongly acidic cation exchanger (3)).
  • Volume / volume of H-type chelate exchanger (1a)) ⁇ 100) is preferably 0.1 to 99.0% by volume, more preferably 0.1 to 70.0% by volume, and particularly preferably 0.1. It is ⁇ 50.0% by volume.
  • Ion exchangers are introduced as the H-type cation exchanger (H-type chelate exchanger (1a), strong acid cation exchanger (1b)), anion exchanger (2) and H-type strongly acidic cation exchanger (3).
  • the substrate to be formed may be an organic porous body.
  • the organic porous body according to the present invention will be described below.
  • An H-type chelate exchange group, a strongly acidic cation group or an anion exchange group is introduced into the organic porous ion exchanger. That is, the one in which the H-type chelate exchange group is introduced into the organic porous body is the H-type organic porous chelate exchanger (1a), and the H-type strongly acidic cation exchange group is introduced into the organic porous body. Is an H-shaped organic porous strongly acidic cation exchanger (1b) or (3), and one in which an anion exchange group is introduced into the organic porous body is organic porous. It is an anion exchanger.
  • the functional groups introduced into the organic porous ion exchanger are the above-mentioned H-type cation exchanger (H-type chelate exchanger (1a), strongly acidic cation exchanger (1b)), anion exchanger (2). Alternatively, it is the same as the functional group introduced into the H-type strongly acidic cation exchanger (3).
  • the organic porous ion exchanger is composed of, for example, a continuous skeleton phase and a continuous pore phase, the thickness of the continuous skeleton is 1 to 100 ⁇ m, the average diameter of the continuous pores is 1 to 1000 ⁇ m, and the total pore volume is 0.5. It is ⁇ 50 mL / g, and an ion exchange group (chelate exchange group, H-type strongly acidic cation exchange group or anion exchange group) is introduced, and the ion exchange capacity per weight in a dry state is 1 to 6 mg equivalent / g. Therefore, an organic porous ion exchanger in which ion exchange groups are uniformly distributed in the organic porous ion exchanger (hereinafter, also referred to as an organic porous ion exchanger of the first form) can be mentioned.
  • the organic porous ion exchanger of the first form has a continuous cell structure in which bubble-shaped macropores overlap each other and the overlapping portion has an opening with an average diameter of 1 to 1000 ⁇ m, and the total pore volume is 1 to 50 mL. / G, an ion exchange group is introduced, the ion exchange capacity per weight in a dry state is 1 to 6 mg equivalent / g, and the ion exchange group is uniformly distributed in the organic porous ion exchanger. Examples thereof include organic porous ion exchangers.
  • the organic porous ion exchanger of the first form is a continuous macropore structure in which bubble-shaped macropores overlap each other and the overlapping portion has an opening with an average diameter of 30 to 300 ⁇ m, and the total pore volume is 0. .5 to 10 ml / g, cation exchange group or anion exchange group is introduced, the ion exchange capacity per weight in the dry state is 1 to 6 mg equivalent / g, and the ion exchange group is an organic porous ion exchanger.
  • organic porous ion exchanger of the first form all of the organic porous ion exchangers into which an ion exchange group (chelate exchange group, H-type strongly acidic cation exchange group or anion exchange group) is introduced.
  • a three-dimensionally continuous skeleton composed of an aromatic vinyl polymer containing 0.1 to 5.0 mol% of crosslinked structural units in the structural units and having an average thickness of 1 to 60 ⁇ m, and an average diameter of 10 between the skeletons. It is a co-continuous structure consisting of three-dimensionally continuous pores of up to 200 ⁇ m, has a total pore volume of 0.5 to 10 mL / g, has an introduced cation exchange group, and has a dry weight. Examples thereof include an organic porous ion exchanger in which the ion exchange capacity per hit is 1 to 6 mg equivalent / g and the ion exchange groups are uniformly distributed in the organic porous ion exchanger.
  • the distillation step is a step of distilling the treatment liquid of the ion exchange treatment step obtained by performing the ion exchange treatment step.
  • the method of distilling the treatment liquid of the ion exchange treatment step is not particularly limited, and in the case of simple distillation, a method of distilling the treatment liquid of the ion exchange treatment step using a boiling type distillation apparatus, non-distillation. Examples thereof include a method of distilling the treatment liquid in the ion exchange treatment step using a boiling type distillation apparatus.
  • a distillation method precision distillation, vacuum distillation or vacuum distillation may be used.
  • precision distillation is preferable because of its high separation and purification performance.
  • the wetted portion of the distillation apparatus is formed or coated with a fluororesin such as a copolymer of tetrafluoroethylene and perfluoroalkoxyethylene (PFA) or polytetrafluoroethylene (PTFE) in that there is no metal elution. Is preferable.
  • a fluororesin such as a copolymer of tetrafluoroethylene and perfluoroalkoxyethylene (PFA) or polytetrafluoroethylene (PTFE) in that there is no metal elution.
  • PFA perfluoroalkoxyethylene
  • PTFE polytetrafluoroethylene
  • the distillation conditions in the distillation step are appropriately selected depending on the type of organic solvent, boiling point, impurity concentration before distillation, impurity reduction target concentration after distillation, and the like.
  • distillation apparatus When using an organic solvent that may be decomposed or denatured by heat, it is desirable to use a non-boiling distillation apparatus to perform distillation at a low temperature below the boiling point of the organic solvent over a long period of time. Distillation may be carried out by lowering the boiling point of the solvent by using vacuum distillation.
  • the removal property of metal impurities is enhanced by performing a distillation step after the ion exchange treatment step. Further, in the method for purifying an organic solvent of the present invention, even if water is mixed in the organic solvent from the ion exchanger used in the ion exchange treatment step, the water can be removed in the distillation step, so that the water content is high. Has excellent removability.
  • metal fine particles are not ions, the metal fine particles cannot be removed when purification is performed using only an ion exchange resin.
  • metal fine particles can be removed in the distillation step, so that the removability of metal impurities is improved.
  • organic solvent by-products produced or left in the production process, for example, in the production of propylene glycol monomethyl ether acetate (PGMEA) in the production of propylene glycol monomethyl ether (PGME) and in the production of isopropyl alcohol (IPA).
  • PMEA propylene glycol monomethyl ether acetate
  • IPA isopropyl alcohol
  • It may contain by-products such as acetone and organic impurities such as eluents from resin members used in organic solvent production or purification equipment.
  • organic impurities can be removed in the distillation step, so that the removal property of the organic impurities is improved.
  • the ionic metal impurities are removed when the organic solvent is purified using only the ion exchange resin. In order to increase the rate, it is necessary to slow down the flow rate of the organic solvent through the ion exchange resin.
  • the ion exchange treatment step is performed by increasing the flow rate of the organic solvent to the ion exchanger.
  • the amount of ionic metal impurities removed in the ion exchange treatment step is reduced by distillation in the subsequent distillation step to remove the ionic metal impurities.
  • the amount of reduced removability of ionic metal impurities due to the increased liquid passing rate of the organic solvent through the ion exchanger can be covered by the distillation step. Therefore, in the method for purifying an organic solvent of the present invention, the amount of reduced ionic metal impurities removal property can be covered by the distillation step by increasing the flow rate of the organic solvent through the ion exchanger. Since the liquid passing rate of the organic solvent through the ion exchanger in the ion exchange treatment step can be increased, the method for purifying the organic solvent of the present invention can obtain a high-purity organic solvent with high purification efficiency.
  • the ion exchange treatment step uses an H-type chelate exchanger as the H-type cation exchanger in the forms of the ion exchange treatment steps (2) and (4).
  • This H-type chelate exchanger has a poor removal rate with a strong acid cation exchange resin, and further removes divalent or higher metals such as Cr which may have an anionic form in an organic solvent. Highly sex. Therefore, among the methods for purifying the organic solvent of the present invention, in the ion exchange treatment step, the forms of the ion exchange treatment steps (2) and (4) have high removability of divalent or higher metals such as Cr.
  • the content of each metal in the purified organic solvent obtained by the method for purifying the organic solvent of the present invention is appropriately selected depending on the intended use of the purified organic solvent, and all of them are preferably 10 ng / L or less. That is, the content of each metal having a valence of 2 or more in the purified organic solvent obtained by the method for purifying the organic solvent of the present invention is appropriately selected depending on the use of the organic solvent after purification, and all of them are preferably 10 ng / L or less.
  • the content of the monovalent metal is appropriately selected depending on the use of the organic solvent after purification, and is preferably 10 ng / L or less in each case.
  • the purified organic solvent obtained by performing the method for purifying an organic solvent of the present invention can be used for trace metal analysis. It is suitably used as a diluting solvent for a standard solution (blank solution for a calibration beam) used for preparing a calibration beam, a solvent for diluting a sample, and a solvent for cleaning an instrument or an analyzer.
  • the ion exchange treatment step is a combination of a cation exchanger and an anion exchanger in the forms of the ion exchange treatment steps (1), (2), (3) and (4).
  • the purified organic solvent obtained by the method for purifying the organic solvent of the present invention include a diluting solvent, a dissolving solvent, a cleaning solvent, a drying solvent and the like in the semiconductor manufacturing process.
  • Organic solvent to be treated 1 As the organic solvent 1 to be treated, a commercially available propylene glycol monomethyl ether (PGME EL grade, manufactured by Showa Denko) was hermetically stored in a metal container, and a sample having an increased metal concentration was used. The content of each metal impurity is shown in Table 1.
  • PGME EL grade manufactured by Showa Denko
  • Example 1 (Ion exchange processing process) H-type chelate exchange resin (DS-21), OH-type strong basic anion exchange resin (DS-2), and H-type strong acid cation exchange resin (DS-1) in a volume ratio of 3: 1: 1. 50 mL of the mixed mixture was packed in a column having an inner diameter of 16 mm and a height of 300 mm (H-type C / OH-type A / H-type K mixed bed 1). Next, the organic solvent 1 to be treated was passed through the H-type C / OH-type A / H-type K mixed bed 1 with SV5h -1 , and when 20 BV (20 times the resin volume) was passed, 1000 mL of the treated liquid was obtained. rice field.
  • -H-type chelate exchange resin H-type aminophosphate-type chelate resin, manufactured by Organo Corporation, Orlite DS-21, cation exchange capacity 1.8 eq / L-resin, harmonic mean diameter 500 ⁇ m -OH type strong basic anion exchange resin (DS-2): manufactured by Organo Corporation, anion exchange capacity 1.0 eq / L-resin-H type strong acid cation exchange resin (DS-1): manufactured by Organo Corporation, cation exchange capacity 2.0eq / L-resin
  • the treatment liquid in the ion exchange treatment step was distilled under the conditions of 70 ° C. and 18 hours using a non-boiling type distillation apparatus (Evapoclean, manufactured by Ias Inc.) to obtain 100 mL of the treatment liquid.
  • Comparative Example 1 The ion exchange treatment step was carried out in the same manner as in Example 1 to obtain 1000 mL of the treatment liquid. Then, the metal content of the obtained treatment liquid was measured. The results are shown in Table 1. Moreover, when the water content was measured, the water content was 320 mass ppm. That is, in Comparative Example 1, the ion exchange treatment step was performed and the distillation step was not performed.
  • Comparative Example 2 The organic solvent 1 to be treated was distilled under the conditions of 80 ° C. for 18 hours using a non-boiling type distillation apparatus (Evapoclean, manufactured by Ias Inc.) to obtain 100 mL of a treated liquid. Then, the metal content of the obtained treatment liquid was measured. The results are shown in Table 1. Moreover, when the water content was measured, the water content was 280 ppm. That is, in Comparative Example 2, the distillation step was performed and the ion exchange treatment step was not performed.
  • Evapoclean non-boiling type distillation apparatus
  • Example 1 From the results of Example 1 and Comparative Examples 1 and 2, by combining ion exchange resin purification and distillation, the concentration of metal impurities can be reduced to a lower concentration than the purification of each of ion exchange resin purification and distillation purification alone. was completed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Treatment Of Water By Ion Exchange (AREA)
  • Treatment Of Liquids With Adsorbents In General (AREA)

Abstract

A method for purifying an organic solvent characterized by having an ion exchange treatment step for bringing an organic solvent to be treated into contact with an ion exchange resin and a distillation step for distilling the treated liquid of the ion exchange treatment step. According to the present invention, a method for purifying an organic solvent having an excellent ability to remove metal impurities and moisture in the organic solvent can be provided.

Description

有機溶媒の精製方法Method for purifying organic solvent
 本発明は、金属不純物含有量が低減された高純度の有機溶媒を得るための有機溶媒の精製方法に関する。 The present invention relates to a method for purifying an organic solvent for obtaining a high-purity organic solvent having a reduced metal impurity content.
 有機溶媒中の微量金属分析には、ICP-MSが用いられる。ICP-MSで、測定対象の有機溶媒中の金属を分析する場合、金属が既知濃度で添加された標準液を、測定対象と同種の有機溶媒のブランク液で数段階に希釈し、検量線を作成する。このとき、測定対象の有機溶媒中の金属濃度が、検量線濃度範囲に含まれるように設定する。このような方法は、絶対検量線法と呼ばれ、ブランク液中に測定対象の金属が含まれないことが重要である。ブランク液中の金属濃度が高いと、バックグラウンド濃度が高くなってしまい、定量下限値が上がってしまうためである。 ICP-MS is used for trace metal analysis in organic solvents. When analyzing a metal in an organic solvent to be measured by ICP-MS, the standard solution to which the metal is added at a known concentration is diluted with a blank solution of the same organic solvent as the measurement target in several steps, and a calibration curve is obtained. create. At this time, the metal concentration in the organic solvent to be measured is set so as to be included in the calibration curve concentration range. Such a method is called an absolute calibration curve method, and it is important that the blank liquid does not contain the metal to be measured. This is because if the metal concentration in the blank liquid is high, the background concentration becomes high and the lower limit of quantification rises.
 このようなことから、ICP-MSによる有機溶媒中の微量金属分析に用いられるブランク液中の金属不純物含有量は、1ppt以下であることが求められる。 For these reasons, the content of metal impurities in the blank liquid used for trace metal analysis in organic solvents by ICP-MS is required to be 1 ppt or less.
 また、半導体製造工程では、洗浄に使用されるイソプロピルアルコール(IPA)に含まれている金属不純物は、ウェハー上で悪影響を及ぼす可能性が高いため、IPA中の不純物含有量をpptレベル又は1ppt以下まで低減する必要がある。 Further, in the semiconductor manufacturing process, metal impurities contained in isopropyl alcohol (IPA) used for cleaning are likely to have an adverse effect on the wafer, so that the impurity content in the IPA is set to the ppt level or 1 ppt or less. Need to be reduced to.
 有機溶媒を精製する方法としては、例えば、特許文献1に、加水分解性有機溶媒からイオン性汚染物質を除去するための方法であって、前記加水分解性有機溶媒を、陽イオン交換樹脂及び陰イオン交換樹脂を含むイオン交換樹脂の混床と接触させることを含み、前記陰イオン交換樹脂が、弱塩基性陰イオン交換樹脂から選択される方法が開示されている。 As a method for purifying an organic solvent, for example, Patent Document 1 describes a method for removing an ionic contaminant from a hydrolyzable organic solvent, wherein the hydrolyzable organic solvent is used as a cation exchange resin and an anion. Disclosed discloses a method in which the anion exchange resin is selected from a weakly basic anion exchange resin, which comprises contacting with a mixed bed of an ion exchange resin containing an ion exchange resin.
 また、特許文献2には、親水性有機溶媒からイオン性汚染物質を除去するための方法であって、前記方法が、前記親水性有機溶媒を、陽イオン性イオン交換樹脂及び陰イオン性イオン交換樹脂を含むイオン交換樹脂の混床と接触させることを含み、(a)前記陽イオン性イオン交換樹脂が、40~55重量%の保水力を有する水素(H)型強酸陽イオン性イオン交換樹脂であり、(b)前記陽イオン性イオン交換樹脂及び前記陰イオン性イオン交換樹脂の両方が、0.001~0.1cm/gの多孔性、0.001~1.7nmの平均孔径、及び0.001~10m/gのBET表面積を有する方法が開示されている。 Further, Patent Document 2 describes a method for removing an ionic contaminant from a hydrophilic organic solvent, wherein the method uses the hydrophilic organic solvent as a cationic ion exchange resin and an anionic ion exchange. Including contacting with a mixed bed of an ion exchange resin containing a resin, (a) the hydrogen (H) type strong acid cation exchange resin in which the cation exchange resin has a water retention capacity of 40 to 55% by weight. (B) Both the cationic ion exchange resin and the anionic ion exchange resin have a porosity of 0.001 to 0.1 cm 3 / g and an average pore size of 0.001 to 1.7 nm. And a method having a BET surface area of 0.001-10 m 2 / g is disclosed.
 特許文献1及び特許文献2では、有機溶媒を、陽イオン交換樹脂及び陰イオン交換樹脂を含むイオン交換樹脂の混床と接触させることにより、有機溶媒の精製が行われている。 In Patent Document 1 and Patent Document 2, the organic solvent is purified by contacting the organic solvent with a mixed bed of an ion exchange resin containing a cation exchange resin and an anion exchange resin.
特表2019-509165号公報Special Table 2019-509165 Gazette 特表2019-509882号公報Special Table 2019-509882 Gazette
 ところが、特許文献1及び特許文献2に記載の方法では、有機溶媒中の金属不純物の除去が行えるものの、更なる高純度が求められる場合がある。つまり、更に、金属不純物の除去性に優れる有機溶媒の精製方法が求められている。 However, although the methods described in Patent Document 1 and Patent Document 2 can remove metal impurities in an organic solvent, higher purity may be required. That is, there is a demand for a method for purifying an organic solvent having excellent removability of metal impurities.
 また、イオン交換樹脂は、水分を含んでいるため、イオン交換樹脂を用いて、有機溶媒の精製を行っても、得られる処理液中に水分が混入してしまう。高純度の有機溶媒が求められる場合には、微量の水分でも、不純物としての混入の問題が生じる。 Further, since the ion exchange resin contains water, even if the organic solvent is purified using the ion exchange resin, the water will be mixed in the obtained treatment liquid. When a high-purity organic solvent is required, even a small amount of water causes a problem of contamination as an impurity.
 また、不純物除去とは別に、有機溶媒中では金属不純物の拡散速度が小さく、またイオン交換樹脂とのイオン交換反応の反応速度も小さいため、有機溶媒中のイオン性金属不純物の除去を、イオン交換樹脂を用いて行う場合においては、水溶液中のイオン性金属不純物を除去する場合に比べ、イオン交換樹脂に対する通液速度を小さく設定する必要がある。例えば、強酸性カチオン交換樹脂を用いた処理の場合、水中と同じ流速で同じ金属除去率を得ることは難しい。 In addition to removing impurities, the diffusion rate of metal impurities in an organic solvent is low, and the reaction rate of the ion exchange reaction with an ion exchange resin is also low. Therefore, removal of ionic metal impurities in an organic solvent can be performed by ion exchange. In the case of using a resin, it is necessary to set the liquid passing rate to the ion exchange resin to be smaller than in the case of removing the ionic metal impurities in the aqueous solution. For example, in the case of a treatment using a strongly acidic cation exchange resin, it is difficult to obtain the same metal removal rate at the same flow rate as in water.
 そのため、有機溶媒中のイオン性金属不純物を、イオン交換樹脂を用いて精製するために、イオン交換樹脂への通液速度を小さく設定しなければならないため、精製効率が低いという問題があった。 Therefore, in order to purify the ionic metal impurities in the organic solvent using the ion exchange resin, the liquid passing rate to the ion exchange resin must be set low, so that there is a problem that the purification efficiency is low.
 従って、本発明の第一の目的は、有機溶媒中の金属不純物及び水分の除去性に優れる有機溶媒の精製方法を提供することにある。また、本発明の第二の目的は、有機溶媒中の金属不純物及び水分の除去性に優れ、且つ、精製効率が高い有機溶媒の精製方法を提供することにある。 Therefore, a first object of the present invention is to provide a method for purifying an organic solvent having excellent removability of metal impurities and water in the organic solvent. A second object of the present invention is to provide a method for purifying an organic solvent, which is excellent in removing metal impurities and water in an organic solvent and has high purification efficiency.
 このような技術背景のもと、本発明者らは、鋭意検討を重ねた結果、被処理有機溶媒を、イオン交換樹脂に接触させるイオン交換処理工程を行った後、イオン交換処理工程の処理液を、蒸留する蒸留工程を行うことにより、イオン性金属不純物の除去性が高まると共に、イオン交換樹脂では除去できなかった金属微粒子及び水分の除去も可能となることを見出し、本発明を完成させるに至った。 Against such a technical background, as a result of diligent studies, the present inventors performed an ion exchange treatment step in which the organic solvent to be treated is brought into contact with the ion exchange resin, and then the treatment liquid in the ion exchange treatment step. By performing the distillation step of distilling, it was found that the removal property of ionic metal impurities is enhanced and the metal fine particles and water which could not be removed by the ion exchange resin can be removed, and the present invention is completed. I arrived.
 すなわち、本発明(1)は、被処理有機溶媒を、イオン交換樹脂に接触させるイオン交換処理工程と、
 該イオン交換処理工程の処理液を、蒸留する蒸留工程と、
を有することを特徴とする有機溶媒の精製方法を提供するものである。
That is, the present invention (1) comprises an ion exchange treatment step of bringing the organic solvent to be treated into contact with the ion exchange resin.
A distillation step of distilling the treatment liquid of the ion exchange treatment step and
The present invention provides a method for purifying an organic solvent, which is characterized by having.
 また、本発明(2)は、前記イオン交換処理工程において、前記被処理有機溶媒を、少なくともH形カチオン交換体に接触させることを特徴とする(1)の有機溶媒の精製方法を提供するものである。 Further, the present invention (2) provides the method for purifying an organic solvent according to (1), which comprises contacting the organic solvent to be treated with at least an H-type cation exchanger in the ion exchange treatment step. Is.
 また、本発明(3)は、前記イオン交換処理工程が、前記被処理有機溶媒を、H形強酸性カチオン交換体及びアニオン交換体に接触させる処理工程を有することを特徴とする(2)の有機溶媒の精製方法を提供するものである。 Further, the present invention (3) is characterized in that the ion exchange treatment step includes a treatment step of bringing the organic solvent to be treated into contact with the H-type strongly acidic cation exchanger and the anion exchanger (2). It provides a method for purifying an organic solvent.
 また、本発明(4)は、前記イオン交換処理工程が、
 前記被処理有機溶媒を、H形カチオン交換体(1)に接触させる第一処理工程と、
 該第一処理工程の処理液を、アニオン交換体(2)及びH形強酸性カチオン交換体(3)に接触させる第二処理工程と、
を有することを特徴とする(2)の有機溶媒の精製方法を提供するものである。
Further, in the present invention (4), the ion exchange treatment step is carried out.
In the first treatment step of bringing the organic solvent to be treated into contact with the H-type cation exchanger (1),
The second treatment step of contacting the treatment liquid of the first treatment step with the anion exchanger (2) and the H-type strong acid cation exchanger (3),
The present invention provides a method for purifying an organic solvent according to (2), which is characterized by having.
 また、本発明(5)は、前記第一処理工程の処理液を、前記アニオン交換体(2)と前記H形強酸性カチオン交換体(3)の混床に通液することより、前記第二処理工程を行うことを特徴とする(4)の有機溶媒の精製方法を提供するものである。 Further, in the present invention (5), the treatment liquid of the first treatment step is passed through a mixed bed of the anion exchanger (2) and the H-type strong acid cation exchanger (3). (2) The present invention provides a method for purifying an organic solvent according to (4), which comprises performing a treatment step.
 また、本発明(6)は、前記第一処理工程の処理液を、先に、前記アニオン交換体(2)に接触させ、次いで、前記H形強酸性カチオン交換体(3)に接触させることにより、前記第二処理工程を行うことを特徴とする(4)の有機溶媒の精製方法を提供するものである。 Further, in the present invention (6), the treatment liquid of the first treatment step is first contacted with the anion exchanger (2) and then with the H-type strongly acidic cation exchanger (3). The present invention provides the method for purifying an organic solvent according to (4), which comprises performing the second treatment step.
 また、本発明(7)は、前記H形カチオン交換体(1)が、H形キレート交換体であることを特徴とする(4)~(6)いずれかの有機溶媒の精製方法を提供するものである。 Further, the present invention (7) provides a method for purifying an organic solvent according to any one of (4) to (6), wherein the H-type cation exchanger (1) is an H-type chelate exchanger. It is a thing.
 また、本発明(8)は、前記H形カチオン交換体(1)が、H形強酸性カチオン交換体であることを特徴とする(4)~(6)いずれかの有機溶媒の精製方法を提供するものである。 Further, the present invention (8) is a method for purifying an organic solvent according to any one of (4) to (6), wherein the H-type cation exchanger (1) is an H-type strongly acidic cation exchanger. It is to provide.
 また、本発明(9)は、被処理有機溶媒を、H形キレート交換体とアニオン交換体(2)とH形強酸性カチオン交換体(3)の混床に接触させる処理工程を有することを特徴とする(2)の有機溶媒の精製方法を提供するものである。 Further, the present invention (9) has a treatment step of bringing the organic solvent to be treated into contact with a mixed bed of an H-type chelate exchanger, an anion exchanger (2) and an H-type strongly acidic cation exchanger (3). It provides a method for purifying an organic solvent according to (2).
 本発明によれば、有機溶媒中の金属不純物及び水分の除去性に優れる有機溶媒の精製方法を提供することができる。また、本発明によれば、有機溶媒中の金属不純物及び水分の除去性に優れ、且つ、精製効率が高い有機溶媒の精製方法を提供することができる。 According to the present invention, it is possible to provide a method for purifying an organic solvent having excellent removability of metal impurities and water in the organic solvent. Further, according to the present invention, it is possible to provide a method for purifying an organic solvent which is excellent in removing metal impurities and water in an organic solvent and has high purification efficiency.
 本発明の有機溶媒の精製方法は、被処理有機溶媒を、イオン交換体に接触させるイオン交換処理工程と、
 該イオン交換処理工程の処理液を、蒸留する蒸留工程と、
を有することを特徴とする有機溶媒の精製方法である。
The method for purifying an organic solvent of the present invention comprises an ion exchange treatment step of bringing the organic solvent to be treated into contact with an ion exchanger.
A distillation step of distilling the treatment liquid of the ion exchange treatment step and
It is a method for purifying an organic solvent, which is characterized by having.
 本発明の有機溶媒の精製方法は、少なくとも、イオン交換処理工程と、蒸留工程と、を有する。 The method for purifying an organic solvent of the present invention includes at least an ion exchange treatment step and a distillation step.
 イオン交換処理工程は、被処理有機溶媒をイオン交換体に接触させる工程である。 The ion exchange treatment step is a step of bringing the organic solvent to be treated into contact with the ion exchanger.
 本発明の有機溶媒の精製方法に係る被処理有機溶媒としては、特に制限されないが、例えば、イソプロピルアルコール、メタノール、エタノール等のアルコール類、シクロヘキサンノン、メチルイソブチルケトン、アセトン、メチルエチルケトン等のケトン類、2,4-ジフェニル-4-メチル-1-ペンテン、2-フェニル-1-プロペン等のアルケン系有機溶媒、N-メチルピロリドン及びこれらの混合有機溶媒が挙げられる。被処理有機溶媒としては、極性有機溶媒及び非極性有機溶媒のいずれであってもよく、極性有機溶媒が好ましい。また、極性有機溶媒としては、プロトン性の極性有機溶媒であっても、非プロトン性の極性有機溶媒であってもよい。 The organic solvent to be treated according to the method for purifying an organic solvent of the present invention is not particularly limited, and is, for example, alcohols such as isopropyl alcohol, methanol and ethanol, ketones such as cyclohexanenone, methylisobutylketone, acetone and methylethylketone. Examples thereof include alkene-based organic solvents such as 2,4-diphenyl-4-methyl-1-pentene and 2-phenyl-1-propene, N-methylpyrrolidone, and mixed organic solvents thereof. The organic solvent to be treated may be either a polar organic solvent or a non-polar organic solvent, and a polar organic solvent is preferable. The polar organic solvent may be a protonic polar organic solvent or an aprotic polar organic solvent.
 被処理有機溶媒は、金属不純物として、Na、K、Li等の1価のイオン性金属不純物と、Cr、As、Ca、Cu、Fe、Mg、Mn、Ni、Pb、Zn等の2価以上のイオン性金属不純物と、を含有する。 The organic solvent to be treated includes monovalent ionic metal impurities such as Na, K and Li as metal impurities and divalent or higher valences such as Cr, As, Ca, Cu, Fe, Mg, Mn, Ni, Pb and Zn. It contains ionic metal impurities and.
 被処理有機溶媒中の各金属不純物の含有量は、特に制限されないが、通常、100質量ppb~20質量ppt程度である。 The content of each metal impurity in the organic solvent to be treated is not particularly limited, but is usually about 100 mass ppb to 20 mass pt.
 本発明の有機溶媒の精製方法に係るイオン交換体としては、H形カチオン交換体、アニオン交換体が挙げられる。H形カチオン交換体としては、H形キレート交換体、H形強酸性カチオン交換体が挙げられる。アニオン交換体としては、強塩基性アニオン交換体、弱塩基性アニオン交換体が挙げられる。 Examples of the ion exchanger according to the method for purifying an organic solvent of the present invention include an H-type cation exchanger and an anion exchanger. Examples of the H-type cation exchanger include an H-type chelate exchanger and an H-type strongly acidic cation exchanger. Examples of the anion exchanger include a strong basic anion exchanger and a weakly basic anion exchanger.
 H形キレート交換体は、Na形、Ca形、Mg形等の金属イオン形のキレート交換体を、鉱酸と接触させることにより、酸処理されて、H形に変換されたものである。つまり、H形キレート交換体は、金属イオン形のキレート交換体の鉱酸接触処理物である。 The H-type chelate exchanger is obtained by contacting a metal ion-type chelate exchanger such as Na-type, Ca-type, or Mg-type with a mineral acid to treat it with an acid and convert it into H-type. That is, the H-type chelate exchanger is a mineral acid contact-treated product of the metal ion-type chelate exchanger.
 H形キレート交換体が有する官能基は、金属イオンに配位してキレートを形成することができるものであれば、特に制限されず、例えば、イミノジ酢酸基、アミノメチルリン酸基、イミノプロピオン酸基等のアミノ基を有する官能基、チオール基等が挙げられる。これらのうち、キレート交換体の官能基としては、多数の多価金属イオンの除去性が高くなる点で、アミノ基を有する官能基が好ましく、イミノジ酢酸基、アミノメチルリン酸基、イミノプロピオン酸基が特に好ましい。 The functional group of the H-type chelate exchanger is not particularly limited as long as it can coordinate with a metal ion to form a chelate, and is, for example, an iminodiacetic acid group, an aminomethylphosphate group, or an iminopropionic acid. Examples thereof include a functional group having an amino group such as a group, a thiol group and the like. Of these, as the functional group of the chelate exchanger, a functional group having an amino group is preferable in that the removability of a large number of polyvalent metal ions is high, and an iminodiacetic acid group, an aminomethylphosphate group, and an iminopropionic acid are preferable. Groups are particularly preferred.
 H形キレート交換体としては、粒状のH形キレート交換樹脂が挙げられる。H形キレート交換樹脂の基体としては、スチレン-ジビニルベンゼン共重合体が挙げられる。H形キレート交換樹脂は、ゲル形構造、マクロポーラス形構造、ポーラス形構造のいずれの構造でもよい。H形キレート交換樹脂の交換容量は、好ましくは0.5~2.5eq/L-R、特に好ましくは1.0~2.5eq/L-Rである。H形キレート交換樹脂の平均粒径(調和平均径)は、特に制限されないが、好ましくは300~1000μm、特に好ましくは500~800μmである。なお、H形キレート交換樹脂の平均粒径は、レーザ回折式粒度分布測定装置により測定される値である。 Examples of the H-type chelate exchanger include granular H-type chelate exchange resins. Examples of the substrate of the H-type chelate exchange resin include a styrene-divinylbenzene copolymer. The H-type chelate exchange resin may have any of a gel-type structure, a macroporous-type structure, and a porous-type structure. The exchange capacity of the H-type chelate exchange resin is preferably 0.5 to 2.5 eq / L-R, and particularly preferably 1.0 to 2.5 eq / L-R. The average particle size (harmonic mean diameter) of the H-type chelate exchange resin is not particularly limited, but is preferably 300 to 1000 μm, and particularly preferably 500 to 800 μm. The average particle size of the H-type chelate exchange resin is a value measured by a laser diffraction type particle size distribution measuring device.
 また、H形キレート交換体としては、H形の有機多孔質キレート交換体が挙げられる。H形の有機多孔質キレート交換体は、キレート能有する官能基、例えば、上記に挙げられているキレート能を有する官能基が導入されている有機多孔質体である。H形の有機多孔質キレート交換体中の交換容量は、好ましくは0.3~2mg当量/mL(水湿潤状態)、特に好ましくは1~2mg当量/mL(水湿潤状態)である。 Further, as the H-type chelate exchanger, an H-type organic porous chelate exchanger can be mentioned. The H-shaped organic porous chelate exchanger is an organic porous body into which a functional group having a chelating ability, for example, a functional group having a chelating ability mentioned above is introduced. The exchange volume in the H-shaped organic porous chelate exchanger is preferably 0.3 to 2 mg equivalent / mL (water-wet state), and particularly preferably 1 to 2 mg equivalent / mL (water-wet state).
 H形キレート交換体は、Na形、Ca形、Mg形等の金属イオン形のキレート交換体を鉱酸と接触させて酸処理することにより、得られる。金属イオン形のキレート交換体に接触させる鉱酸としては、塩酸、硫酸、硝酸が挙げられる。これらのうち、鉱酸としては、安全性の点で、塩酸、硫酸が好ましい。また、Ca形からの変換の場合は、硫酸カルシウムの析出の恐れがあるので塩酸が好ましい。鉱酸の濃度は、好ましくは0.1~6N、特に好ましくは1~4Nである。 The H-type chelate exchanger can be obtained by contacting a metal ion-type chelate exchanger such as Na-type, Ca-type, or Mg-type with a mineral acid and treating it with an acid. Examples of the mineral acid to be brought into contact with the metal ion-type chelate exchanger include hydrochloric acid, sulfuric acid, and nitric acid. Of these, hydrochloric acid and sulfuric acid are preferable as the mineral acid from the viewpoint of safety. Further, in the case of conversion from Ca form, hydrochloric acid is preferable because there is a risk of precipitation of calcium sulfate. The concentration of mineral acid is preferably 0.1 to 6N, particularly preferably 1 to 4N.
 金属イオン形のキレート交換体に鉱酸を接触させる方法としては、特に制限されず、接触様式、接触温度、接触時間等は適宜選択される。 The method of contacting the mineral acid with the metal ion type chelate exchanger is not particularly limited, and the contact mode, contact temperature, contact time, etc. are appropriately selected.
 金属イオン形のキレート交換体に鉱酸を接触させた後、H形に変換されたH形キレート交換体を水洗し、余分な鉱酸の除去を行うが、キレート交換体中の官能基が、鉱酸との水素結合等により結合しているため、水洗では余分な鉱酸を完全に除去することができない。そのため、H形キレート交換体中には、酸処理に用いた鉱酸が残留している。 After contacting the metal ion-type chelate exchanger with mineral acid, the H-type chelate exchanger converted into H-form is washed with water to remove excess mineral acid. Since it is bonded by hydrogen bond with mineral acid or the like, excess mineral acid cannot be completely removed by washing with water. Therefore, the mineral acid used for the acid treatment remains in the H-type chelate exchanger.
 例えば、金属イオン形のキレート交換樹脂としては、三菱化学社製のCR-10、CR-11、住化ケムテックス社製のデュオライトC-467、住友化学社製のMC-700、ランクセス社製のレバチットTP207、レバチットTP208、レバチットTP260、ピュロライト社製のS930、S950、オルガノ製のDS-21、DS-22が挙げられる。 For example, as metal ion type chelate exchange resins, CR-10 and CR-11 manufactured by Mitsubishi Chemical Corporation, Duolite C-467 manufactured by Sumika Chemtex Co., Ltd., MC-700 manufactured by Sumitomo Chemical Corporation, and Lanxess Co., Ltd. Examples thereof include Revachit TP207, Revachit TP208, Revachit TP260, S930 and S950 manufactured by Purolite, and DS-21 and DS-22 manufactured by Organo.
 H形強酸性カチオン交換体は、スルホン酸基等の強酸性カチオン交換基がH形に変換されたものである。 The H-type strong acid cation exchanger is a strong acid cation exchange group such as a sulfonic acid group converted into an H-type.
 H形強酸性カチオン交換体としては、粒状の強酸性カチオン交換樹脂が挙げられる。H形強酸性カチオン交換樹脂の基体は、スチレン-ジビニルベンゼン共重合体である。H形強酸性カチオン交換樹脂は、ゲル形構造、マクロポーラス形構造、ポーラス形構造のいずれの構造でもよい。H形強酸性カチオン交換樹脂の湿潤状態のイオン交換容量は、好ましくは0.5(eq/L-R)以上、特に好ましくは1.0(eq/L-R)以上である。また、H形強酸性カチオン交換樹脂の湿潤状態のイオン交換容量は、高いほど好ましく、適宜選択される。H形強酸性カチオン交換樹脂の調和平均径は、好ましくは200~900μm、特に好ましくは300~600μmである。H形強酸性カチオン交換樹脂としては、例えば、ダウケミカル社製のアンバーライトIR120B、IR124、200CT252、アンバージェット1020、1024、1060、1220、三菱ケミカル社製のダイヤイオンSK104、SK1B、SK110、SK112、PK208、PK212L、PK216、PK218、PK220、PK228、UBK08、UBK10、UBK12、オルガノ製のDS-1、DS-4、ピュロライト社製のC100、C100E、C120E、C100x10、C100x12MB、C150、C160、SGC650、レバチット社製のモノプラスS108H、SP112、S1668等が挙げられる。 Examples of the H-type strong acid cation exchange resin include granular strong acid cation exchange resins. The substrate of the H-type strong acid cation exchange resin is a styrene-divinylbenzene copolymer. The H-type strong acid cation exchange resin may have any of a gel-type structure, a macroporous-type structure, and a porous-type structure. The wet ion exchange capacity of the H-type strong acid cation exchange resin is preferably 0.5 (eq / L-R) or more, and particularly preferably 1.0 (eq / L-R) or more. Further, the wet ion exchange capacity of the H-type strong acid cation exchange resin is preferably higher, and is appropriately selected. The harmonic mean diameter of the H-type strong acid cation exchange resin is preferably 200 to 900 μm, particularly preferably 300 to 600 μm. Examples of the H-type strong acid cation exchange resin include Amberlite IR120B, IR124, 200CT252, Amberjet 1020, 1024, 1060 and 1220 manufactured by Dow Chemical Co., Ltd., Diaion SK104, SK1B, SK110, SK112 manufactured by Mitsubishi Chemical Co., Ltd. PK208, PK212L, PK216, PK218, PK220, PK228, UBK08, UBK10, UBK12, Organo DS-1, DS-4, Purolite C100, C100E, C120E, C100x10, C100x12MB, C150, C160, SGC650 Examples thereof include Monoplus S108H, SP112, and S1668 manufactured by the same company.
 また、H形強酸性カチオン交換体としては、H形の有機多孔質強酸性カチオン交換体が挙げられる。H形の有機多孔質強酸性カチオン交換体は、強酸性カチオン交換基、例えば、上記で挙げられている強酸性カチオン交換基が導入されている有機多孔質体である。H形の有機多孔質強酸性カチオン交換体中の交換容量は、好ましくは1~3mg当量/mL(乾燥状態)、特に好ましくは1.5~3mg当量/mL(乾燥状態)である。 Further, as the H-type strong acid cation exchanger, an H-type organic porous strong acid cation exchanger can be mentioned. The H-type organic porous strong acid cation exchanger is an organic porous body into which a strongly acidic cation exchange group, for example, the strong acid cation exchange group mentioned above is introduced. The exchange capacity in the H-shaped organic porous strongly acidic cation exchanger is preferably 1 to 3 mg equivalent / mL (dry state), and particularly preferably 1.5 to 3 mg equivalent / mL (dry state).
 アニオン交換体は、アニオン交換基として強塩基性アニオン交換基を有する強塩基性アニオン交換体と、アニオン交換基として弱塩基性アニオン交換基を有する弱塩基性アニオン交換体とがある。 The anion exchanger includes a strong basic anion exchanger having a strong basic anion exchange group as an anion exchange group and a weak basic anion exchanger having a weak basic anion exchange group as an anion exchange group.
 強塩基性アニオン交換体に係る強塩基性アニオン交換基としては、OH形の四級アンモニウム基等が挙げられる。また、弱塩基性アニオン交換体に係る弱塩基性アニオン交換基としては、三級アミノ基、二級アミノ基、一級アミノ基、ポリアミン基等が挙げられる。他にも塩基度の高いOH形のアニオン交換体では、分解又は化学反応が起こるような溶媒には、塩基度が低い炭酸塩形又は重炭酸塩形のアニオン交換体を用いても良い。 Examples of the strong basic anion exchange group related to the strong basic anion exchanger include OH-type quaternary ammonium groups. Examples of the weak basic anion exchange group according to the weak basic anion exchanger include a tertiary amino group, a secondary amino group, a primary amino group, a polyamine group and the like. In addition, in the OH-type anion exchanger having a high basicity, a carbonate-type or bicarbonate-type anion exchanger having a low basicity may be used as a solvent in which decomposition or a chemical reaction occurs.
 アニオン交換体としては、粒状のアニオン交換樹脂が挙げられる。アニオン交換樹脂の基体は、スチレン-ジビニルベンゼン共重合体である。アニオン交換樹脂は、ゲル形構造、マクロポーラス形構造、ポーラス形構造のいずれの構造でもよい。アニオン交換樹脂の湿潤状態のイオン交換容量は、好ましくは0.5~2(eq/L-R)、特に好ましくは0.9~2(eq/L-R)である。アニオン交換樹脂の調和平均径は、好ましくは200~900μm、特に好ましくは300~800μmである。アニオン交換樹脂としては、例えば、ダウケミカル社製のアンバーライトIRA900、402、96SB、98、アンバージェット4400、4002、4010、三菱ケミカル社製のダイヤイオンUBA120、PA306S、PA308、PA312、PA316、PA318L、WA21J、WA30、オルガノ社製のDS-2、DS-5、DS-6、ピュロライト社製のA400、A600、SGA550、A500、A501P、A502PS、A503、A100、A103S、A110、A111S、A133S、レバチット社製のモノプラスM500、M800、MP62WS、MP64等が挙げられる。 Examples of the anion exchange body include granular anion exchange resins. The substrate of the anion exchange resin is a styrene-divinylbenzene copolymer. The anion exchange resin may have any of a gel structure, a macroporous structure, and a porous structure. The ion exchange capacity of the anion exchange resin in a wet state is preferably 0.5 to 2 (eq / L-R), particularly preferably 0.9 to 2 (eq / L-R). The harmonic mean diameter of the anion exchange resin is preferably 200 to 900 μm, particularly preferably 300 to 800 μm. Examples of the anion exchange resin include Amberlite IRA900, 402, 96SB, 98, Amberjet 4400, 4002, 4010 manufactured by Dow Chemical Corporation, Diaion UBA120, PA306S, PA308, PA312, PA316, PA318L manufactured by Mitsubishi Chemical Corporation. WA21J, WA30, DS-2, DS-5, DS-6 manufactured by Organo, A400, A600, SGA550, A500, A501P, A502PS, A503, A100, A103S, A110, A111S, A133S, Rebatit manufactured by Purolite. Monoplus M500, M800, MP62WS, MP64, etc.
 また、アニオン交換体としては、有機多孔質アニオン交換体が挙げられる。有機多孔質アニオン交換体は、アニオン交換基、例えば、上記に挙げられている強塩基性アニオン交換基や弱塩基性アニオン交換基が導入されている有機多孔質体である。有機多孔質アニオン交換体中の交換容量は、好ましくは1~6mg当量/mL(乾燥状態)、特に好ましくは2~5mg当量/mL(乾燥状態)である。 Further, examples of the anion exchanger include an organic porous anion exchanger. The organic porous anion exchanger is an organic porous body into which an anion exchange group, for example, a strong basic anion exchange group or a weak basic anion exchange group mentioned above is introduced. The exchange volume in the organic porous anion exchanger is preferably 1 to 6 mg equivalent / mL (dry state), and particularly preferably 2 to 5 mg equivalent / mL (dry state).
 イオン交換処理工程では、被処理有機溶媒を、少なくともH形カチオン交換体、好ましくはH形強酸性カチオン交換体に接触させる。 In the ion exchange treatment step, the organic solvent to be treated is brought into contact with at least an H-type cation exchanger, preferably an H-type strongly acidic cation exchanger.
 イオン交換処理工程に係るH形カチオン交換体、H形強酸性カチオン交換体は、上述したH形カチオン交換体、H形強酸性カチオン交換体である。 The H-type cation exchanger and the H-type strong acid cation exchanger related to the ion exchange treatment step are the above-mentioned H-type cation exchanger and H-type strong acid cation exchanger.
 第一の形態のイオン交換処理工程(以下、イオン交換処理工程(1)とも記載する。)は、被処理有機溶媒を、H形強酸性カチオン交換体及びアニオン交換体に接触させる処理工程を有する。イオン交換処理工程(1)に係るアニオン交換体は、強塩基性アニオン交換体であってもよいし、弱塩基性アニオン交換体であってもよい。 The ion exchange treatment step of the first embodiment (hereinafter, also referred to as an ion exchange treatment step (1)) includes a treatment step of bringing the organic solvent to be treated into contact with the H-type strongly acidic cation exchanger and the anion exchanger. .. The anion exchanger according to the ion exchange treatment step (1) may be a strong basic anion exchanger or a weakly basic anion exchanger.
 イオン交換処理工程(1)に係るH形強酸性カチオン交換体、アニオン交換体、強塩基性アニオン交換体、弱塩基性アニオン交換体は、上述したH形強酸性カチオン交換体、アニオン交換体、強塩基性アニオン交換体、弱塩基性アニオン交換体である。 The H-type strong acid cation exchanger, anion exchanger, strongly basic anion exchanger, and weakly basic anion exchanger according to the ion exchange treatment step (1) are the above-mentioned H-type strong acid cation exchanger, anion exchanger, It is a strongly basic anion exchanger and a weakly basic anion exchanger.
 イオン交換処理工程(1)において、被処理有機溶媒を、H形強酸性カチオン交換体及びアニオン交換体に接触させる方法としては、特に制限されず、例えば、(i)被処理有機溶媒を、H形強酸性カチオン交換体とアニオン交換体の混床に通液する方法、(ii)被処理有機溶媒を、前段側のH形強酸性カチオン交換体層と後段側のアニオン交換体層とからなる複床に通液する方法、(iii)先ず、被処理有機溶媒を、前段のH形強酸性カチオン交換体の単床に通液し、次いで、その処理液を、後段のアニオン交換体の単床に通液する方法、(iv)先ず、被処理有機溶媒を、前段のアニオン交換体の単床に通液し、次いで、その処理液を、後段のH形強酸性カチオン交換体の単床に通液する方法、(v)被処理有機溶媒を、前段のH形強酸性カチオン交換体の単床及び後段のアニオン交換体の単床の繰り返し単位が2組以上繰り返されている複床に通液する方法、(vi)被処理有機溶媒を、前段のアニオン交換体の単床及び後段のH形強酸性カチオン交換体の単床の繰り返し単位が2組以上繰り返されている複床に通液する方法が挙げられる。H形強酸性カチオン交換体とアニオン交換体の混床は、H形強酸性カチオン交換体とアニオン交換体の混合物からなる。H形強酸性カチオン交換体がH形強酸性有機多孔質カチオン交換体の場合任意の大きさに切り出された形状、例えば、一辺3mm程度から10mm程度の立方体のH形強酸性有機多孔質カチオン交換体を用いる。また、アニオン交換体が有機多孔質強酸性アニオン交換体の場合は、任意の大きさに切り出された形状、例えば、一辺3mm程度から10mm程度の立方体の有機多孔質アニオン交換体を用いる。 In the ion exchange treatment step (1), the method of contacting the organic solvent to be treated with the H-type strongly acidic cation exchanger and the anion exchanger is not particularly limited, and for example, (i) the organic solvent to be treated is H. A method of passing a liquid through a mixed bed of a strongly acidic cation exchanger and an anion exchanger, (ii) the organic solvent to be treated is composed of an H-type strongly acidic cation exchanger layer on the front stage side and an anion exchanger layer on the rear stage side. Method of passing liquid through a double bed, (iii) First, the organic solvent to be treated is passed through a single bed of the H-type strongly acidic cation exchanger in the previous stage, and then the treated liquid is passed through the single bed of the anion exchanger in the latter stage. Method of passing liquid through the floor, (iv) First, the organic solvent to be treated is passed through a single bed of the anion exchanger in the previous stage, and then the treated liquid is passed through the single bed of the H-type strongly acidic cation exchanger in the subsequent stage. (V) The organic solvent to be treated is applied to a double bed in which two or more sets of repeating units of the single bed of the H-type strongly acidic cation exchanger in the first stage and the single bed of the anion exchanger in the second stage are repeated. Method of passing liquid, (vi) The organic solvent to be treated is passed through a double bed in which two or more sets of repeating units of the single bed of the anion exchanger in the first stage and the single bed of the H-type strongly acidic cation exchanger in the second stage are repeated. The method of liquid is mentioned. The mixed bed of the H-type strong acid cation exchanger and the anion exchanger consists of a mixture of the H-type strong acid cation exchanger and the anion exchanger. When the H-type strong acid cation exchanger is an H-type strong acid organic porous cation exchanger A shape cut out to an arbitrary size, for example, a cubic H-type strong acid organic porous cation exchange having a side of about 3 mm to about 10 mm. Use the body. When the anion exchanger is an organic porous strong acid anion exchanger, a cubic organic porous anion exchanger having a shape cut out to an arbitrary size, for example, a side of about 3 mm to about 10 mm is used.
 イオン交換処理工程(1)において、H形強酸性カチオン交換体及びアニオン交換体に被処理有機溶媒を通液するときの通液速度(SV)は、特に制限されず、適宜選択されるが、好ましくは0.1~50h-1、特に好ましくは2~30h-1、更に好ましくは4~25h-1である。 In the ion exchange treatment step (1), the liquid passage rate (SV) when the organic solvent to be treated is passed through the H-type strong acid cation exchanger and the anion exchanger is not particularly limited and is appropriately selected. It is preferably 0.1 to 50h -1 , particularly preferably 2 to 30h -1 , and even more preferably 4 to 25h -1 .
 イオン交換処理工程(1)において、H形強酸性カチオン交換体及びアニオン交換体に被処理有機溶媒を通液するときの温度は、特に制限されず、適宜選択されるが、通常、0~50℃である。 In the ion exchange treatment step (1), the temperature at which the organic solvent to be treated is passed through the H-type strong acid cation exchanger and the anion exchanger is not particularly limited and is appropriately selected, but is usually 0 to 50. ℃.
 第二の形態のイオン交換処理工程(以下、イオン交換処理工程(2)とも記載する。)
は、被処理有機溶媒を、H形キレート交換体(1a)に接触させる第一処理工程と、
 該第一処理工程の処理液を、アニオン交換体(2)及びH形強酸性カチオン交換体(3)に接触させる第二処理工程と、
を有する。
The second form of the ion exchange treatment step (hereinafter, also referred to as the ion exchange treatment step (2)).
Is the first treatment step of bringing the organic solvent to be treated into contact with the H-type chelate exchanger (1a), and
The second treatment step of contacting the treatment liquid of the first treatment step with the anion exchanger (2) and the H-type strong acid cation exchanger (3),
Have.
 イオン交換処理工程(2)に係るH形キレート交換体、アニオン交換体、H形強酸性カチオン交換体は、上述したH形キレート交換体、アニオン交換体、H形強酸性カチオン交換体である。 The H-type chelate exchanger, anion exchanger, and H-type strong acid cation exchanger according to the ion exchange treatment step (2) are the above-mentioned H-type chelate exchanger, anion exchanger, and H-type strong acid cation exchanger.
 イオン交換処理工程(2)に係る第一処理工程は、被処理有機溶媒を、H形キレート交換体(1a)に接触させる工程である。 The first treatment step according to the ion exchange treatment step (2) is a step of bringing the organic solvent to be treated into contact with the H-type chelate exchanger (1a).
 イオン交換処理工程(2)に係る第一処理工程では、被処理有機溶媒を、H形キレート交換体(1a)に接触させることにより、被処理有機溶媒を、H形キレート交換体(1a)で処理し、被処理有機溶媒中の主に2価以上の金属と、1価の金属の一部を除去する。 In the first treatment step according to the ion exchange treatment step (2), the organic solvent to be treated is brought into contact with the H-type chelate exchanger (1a), whereby the organic solvent to be treated is transferred to the H-type chelate exchanger (1a). The treatment is performed to remove mainly a divalent or higher valent metal and a part of the monovalent metal in the organic solvent to be treated.
 イオン交換処理工程(2)に係る第一処理工程において、H形キレート交換体(1a)に被処理有機溶媒を通液するときの通液速度(SV)は、特に制限されず、適宜選択されるが、好ましくは0.1~50h-1、特に好ましくは2~30h-1、更に好ましくは4~25h-1である。 In the first treatment step according to the ion exchange treatment step (2), the liquid passage rate (SV) when the organic solvent to be treated is passed through the H-type chelate exchanger (1a) is not particularly limited and is appropriately selected. However, it is preferably 0.1 to 50 h -1 , particularly preferably 2 to 30 h -1 , and even more preferably 4 to 25 h -1 .
 イオン交換処理工程(2)に係る第一処理工程において、H形キレート交換体(1a)に被処理有機溶媒を通液するときの温度は、特に制限されず、適宜選択されるが、通常、0~50℃である。また、被処理有機溶媒の種類によっては、第一処理工程において、0~80℃で、H形キレート交換体(1a)に被処理有機溶媒を通液することもある。 In the first treatment step according to the ion exchange treatment step (2), the temperature at which the organic solvent to be treated is passed through the H-type chelate exchanger (1a) is not particularly limited and is appropriately selected, but is usually selected. It is 0 to 50 ° C. Further, depending on the type of the organic solvent to be treated, the organic solvent to be treated may be passed through the H-type chelate exchanger (1a) at 0 to 80 ° C. in the first treatment step.
 イオン交換処理工程(2)に係る第二処理工程は、第一処理工程の処理液を、アニオン交換体(2)及びH形強酸性カチオン交換体(3)に接触させる工程である。 The second treatment step according to the ion exchange treatment step (2) is a step of bringing the treatment liquid of the first treatment step into contact with the anion exchanger (2) and the H-type strong acid cation exchanger (3).
 イオン交換処理工程(2)に係る第二処理工程では、第一処理工程の処理液を、アニオン交換体(2)及びH形強酸性カチオン交換体(3)に接触させることにより、被処理有機溶媒を、アニオン交換体(2)及びH形強酸性カチオン交換体(3)で処理し、第一処理工程で、H形キレート交換体(1a)で除去しきれなかった1価の金属の残部と、H形キレート交換体(1a)から放出される鉱酸と、を除去する。また、アニオン交換体の再生には、再生剤としてNaOHが用いられるが、再生後十分に洗浄すれば、アニオン交換体中に、NaOHが残留するようなことはほとんどない。第二処理工程では、もし、アニオン交換体(2)の再生後の洗浄が悪く、再生剤に使用したNaOHの残留物が、アニオン交換体(2)から溶出するようなことがあったとしても、第二処理工程におけるH形強酸性カチオン交換体(3)が、Naを除去することができる。 In the second treatment step according to the ion exchange treatment step (2), the treatment liquid of the first treatment step is brought into contact with the anion exchanger (2) and the H-type strong acid cation exchanger (3) to be treated organic. The solvent was treated with the anion exchanger (2) and the H-type strong acid cation exchanger (3), and the balance of the monovalent metal that could not be completely removed by the H-type chelate exchanger (1a) in the first treatment step. And the mineral acid released from the H-type chelate exchanger (1a) are removed. Further, NaOH is used as a regenerating agent for the regeneration of the anion exchanger, but if it is sufficiently washed after the regeneration, NaOH hardly remains in the anion exchanger. In the second treatment step, even if the cleaning of the anion exchanger (2) after regeneration is poor and the NaOH residue used in the regenerator may elute from the anion exchanger (2). , The H-type strong acid cation exchanger (3) in the second treatment step can remove Na.
 イオン交換処理工程(2)に係る第二処理工程において、アニオン交換体(2)及びH形強酸性カチオン交換体(3)に、第一処理工程の処理液を通液するときの通液速度(SV)は、特に制限されず、適宜選択されるが、好ましくは0.1~100h-1、特に好ましくは2~50h-1である。 In the second treatment step according to the ion exchange treatment step (2), the liquid passing rate when the treatment liquid of the first treatment step is passed through the anion exchanger (2) and the H-type strong acid cation exchanger (3). (SV) is not particularly limited and may be appropriately selected, but is preferably 0.1 to 100 h -1 , particularly preferably 2 to 50 h -1 .
 イオン交換処理工程(2)に係る第二処理工程において、アニオン交換体(2)及びH形強酸性カチオン交換体(3)に、第一処理工程の処理液を通液するときの温度は、特に制限されず、適宜選択されるが、通常、0~50℃である。また、被処理有機溶媒の種類によっては、第二処理工程において、0~80℃で、アニオン交換体(2)及びH形強酸性カチオン交換体(3)に、第一処理工程の処理液を通液することもある。第二処理工程において、60~80℃で、アニオン交換体(2)及びH形強酸性カチオン交換体(3)に、第一処理工程の処理液を通液する場合は、アニオン交換体(2)として、強塩基性アニオン交換体(2a)を用いると、強塩基性アニオン交換体(2a)が分解し易いため、アニオン交換体(2)として、弱塩基性アニオン交換体(2b)を用いる。 In the second treatment step according to the ion exchange treatment step (2), the temperature at which the treatment liquid of the first treatment step is passed through the anion exchanger (2) and the H-type strong acid cation exchanger (3) is set. It is not particularly limited and is appropriately selected, but is usually 0 to 50 ° C. Further, depending on the type of the organic solvent to be treated, in the second treatment step, the treatment liquid of the first treatment step is applied to the anion exchanger (2) and the H-type strong acid cation exchanger (3) at 0 to 80 ° C. It may pass liquid. In the second treatment step, when the treatment liquid of the first treatment step is passed through the anion exchanger (2) and the H-type strong acid cation exchanger (3) at 60 to 80 ° C., the anion exchanger (2). ), When the strong basic anion exchanger (2a) is used, the strongly basic anion exchanger (2a) is easily decomposed. Therefore, the weak basic anion exchanger (2b) is used as the anion exchanger (2). ..
 イオン交換処理工程(2)において、第一工程の処理液を、アニオン交換体(2)及びH形強酸性カチオン交換体(3)に接触させる方法としては、特に制限されず、例えば、(i)被処理有機溶媒を、アニオン交換体(2)とH形強酸性カチオン交換体(3)の混床に通液する方法、(ii)被処理有機溶媒を、前段側のアニオン交換体(2)層と後段側のH形強酸性カチオン交換体(3)層とからなる複床に通液する方法、(iii)先ず、被処理有機溶媒を、前段のアニオン交換体(2)の単床に通液し、次いで、その処理液を、後段のH形強酸性カチオン交換体(3)の単床に通液する方法、(iv)先ず、被処理有機溶媒を、前段のH形強酸性カチオン交換体(3)の単床に通液し、次いで、その処理液を、後段のアニオン交換体(2)の単床に通液する方法、(v)被処理有機溶媒を、前段のアニオン交換体(2)の単床及び後段のH形強酸性カチオン交換体(3)の単床の繰り返し単位が2組以上繰り返されている複床に通液する方法、(vi)被処理有機溶媒を、前段のH形強酸性カチオン交換体(3)の単床及び後段のアニオン交換体(2)の単床の繰り返し単位が2組以上繰り返されている複床に通液する方法が挙げられる。アニオン交換体(2)とH形強酸性カチオン交換体(3)の混床は、アニオン交換体(2)とH形強酸性カチオン交換体(3)の混合物からなる。アニオン交換体(2)が有機多孔質アニオン交換体の場合は、任意の大きさに切り出された形状、例えば、一辺3mm程度から10mm程度の立方体の有機多孔質アニオン交換体を用いる。また、H形強酸性カチオン交換体(3)が有機多孔質強酸性カチオン交換体の場合は、任意の大きさに切り出された形状、例えば、一辺3mm程度から10mm程度の立方体の有機多孔質強酸性カチオン交換体を用いる。 In the ion exchange treatment step (2), the method of contacting the treatment liquid of the first step with the anion exchanger (2) and the H-type strongly acidic cation exchanger (3) is not particularly limited, and is, for example, (i). ) A method of passing the organic solvent to be treated through a mixed bed of the anion exchanger (2) and the H-type strongly acidic cation exchanger (3), (ii) the organic solvent to be treated is passed through the anion exchanger (2) on the front stage side. ) Method of passing liquid through a double bed consisting of a layer and an H-type strongly acidic cation exchanger (3) layer on the subsequent stage, (iii) First, the organic solvent to be treated is applied to the single bed of the anion exchanger (2) in the previous stage. Then, the treatment liquid is passed through a single bed of the H-type strongly acidic cation exchanger (3) in the subsequent stage. A method of passing the liquid through the single bed of the cation exchanger (3) and then passing the treated liquid through the single bed of the anion exchanger (2) in the subsequent stage, (v) the organic solvent to be treated is passed through the anion in the previous stage. A method of passing liquid through a single bed of the exchanger (2) and a double bed in which two or more sets of repeating units of the single bed of the H-type strongly acidic cation exchanger (3) in the subsequent stage are repeated, (vi) organic solvent to be treated. Is passed through a double bed in which two or more sets of repeating units of the single bed of the H-type strongly acidic cation exchanger (3) in the first stage and the single bed of the anion exchanger (2) in the second stage are repeated. .. The mixed bed of the anion exchanger (2) and the H-type strong acid cation exchanger (3) consists of a mixture of the anion exchanger (2) and the H-type strong acid cation exchanger (3). When the anion exchanger (2) is an organic porous anion exchanger, a cubic organic porous anion exchanger having a shape cut out to an arbitrary size, for example, a side of about 3 mm to about 10 mm is used. When the H-type strongly acidic cation exchanger (3) is an organic porous strong acid cation exchanger, it has a shape cut out to an arbitrary size, for example, a cubic organic porous strong acid having a side of about 3 mm to about 10 mm. A sex cation exchanger is used.
 第三の形態のイオン交換処理工程(以下、イオン交換処理工程(3)とも記載する。)は、被処理有機溶媒を、H形強酸性カチオン交換体(1b)に接触させる第一処理工程と、
 該第一処理工程の処理液を、アニオン交換体(2)及びH形強酸性カチオン交換体(3)に接触させる第二処理工程と、
を有する。
The third form of the ion exchange treatment step (hereinafter, also referred to as an ion exchange treatment step (3)) is a first treatment step in which the organic solvent to be treated is brought into contact with the H-type strong acid cation exchanger (1b). ,
The second treatment step of contacting the treatment liquid of the first treatment step with the anion exchanger (2) and the H-type strong acid cation exchanger (3),
Have.
 イオン交換処理工程(3)に係るH形強酸性カチオン交換体、アニオン交換体は、上述したH形強酸性カチオン交換体、アニオン交換体である。 The H-type strong acid cation exchanger and anion exchanger according to the ion exchange treatment step (3) are the above-mentioned H-type strong acid cation exchanger and anion exchanger.
 イオン交換処理工程(3)に係る第一処理工程は、被処理有機溶媒を、H形強酸性カチオン交換体(1b)に接触させる工程である。 The first treatment step according to the ion exchange treatment step (3) is a step of bringing the organic solvent to be treated into contact with the H-type strongly acidic cation exchanger (1b).
 イオン交換処理工程(3)に係る第一処理工程では、被処理有機溶媒を、H形強酸性カチオン交換体(1b)に接触させることにより、被処理有機溶媒を、H形強酸性カチオン交換体(1b)で処理し、被処理有機溶媒中の2価以上の金属の一部と、1価の金属の一部を除去する。 In the first treatment step according to the ion exchange treatment step (3), the organic solvent to be treated is brought into contact with the H-type strong acid cation exchanger (1b) to change the H-type strong acid cation exchanger. The treatment in (1b) removes a part of the divalent or higher valent metal and a part of the monovalent metal in the organic solvent to be treated.
 イオン交換処理工程(3)に係る第一処理工程において、H形強酸性カチオン交換体(1b)に被処理有機溶媒を通液するときの通液速度(SV)は、特に制限されず、適宜選択されるが、好ましくは0.1~100h-1、特に好ましくは2~50h-1である。 In the first treatment step according to the ion exchange treatment step (3), the liquid passage rate (SV) when the organic solvent to be treated is passed through the H-type strong acid cation exchanger (1b) is not particularly limited and is appropriately limited. Although selected, it is preferably 0.1 to 100 h -1 , particularly preferably 2 to 50 h -1 .
 イオン交換処理工程(3)に係る第一処理工程において、H形強酸性カチオン交換体(1b)に被処理有機溶媒を通液するときの温度は、特に制限されず、適宜選択されるが、通常、0~50℃である。また、被処理有機溶媒の種類によっては、第一処理工程において、0~80℃で、H形強酸性カチオン交換体(1b)に被処理有機溶媒を通液することもある。 In the first treatment step according to the ion exchange treatment step (3), the temperature at which the organic solvent to be treated is passed through the H-type strong acid cation exchanger (1b) is not particularly limited and may be appropriately selected. Usually, it is 0 to 50 ° C. Further, depending on the type of the organic solvent to be treated, the organic solvent to be treated may be passed through the H-type strongly acidic cation exchanger (1b) at 0 to 80 ° C. in the first treatment step.
 イオン交換処理工程(3)に係る第二処理工程は、第一処理工程の処理液を、アニオン交換体(2)及びH形強酸性カチオン交換体(3)に接触させる工程である。 The second treatment step according to the ion exchange treatment step (3) is a step of bringing the treatment liquid of the first treatment step into contact with the anion exchanger (2) and the H-type strong acid cation exchanger (3).
 イオン交換処理工程(3)では、第一処理工程で用いるH形強酸性カチオン交換体(1b)と、第二処理工程で用いるH形強酸性カチオン交換体(3)は、同じ種類のH形強酸性カチオン交換体であってもよいし、異なる種類のH形強酸性カチオン交換体であってもよい。 In the ion exchange treatment step (3), the H-type strong acid cation exchanger (1b) used in the first treatment step and the H-type strong acid cation exchanger (3) used in the second treatment step are of the same type. It may be a strong acid cation exchanger or a different type of H-type strong acid cation exchanger.
 イオン交換処理工程(3)に係る第二処理工程では、第一処理工程の処理液を、アニオン交換体(2)及びH形強酸性カチオン交換体(3)に接触させることにより、被処理有機溶媒を、アニオン交換体(2)及びH形強酸性カチオン交換体(3)で処理し、第一処理工程で、H形強酸性カチオン交換体(1b)で除去しきれなかった2価以上の金属の残部と1価の金属の残部とを除去する。また、第二処理工程において、アニオン交換体は、CrやAsなどのアニオン形態の金属イオンを有する可能性のある金属や、鉱酸や有機酸などの酸を除去する。 In the second treatment step according to the ion exchange treatment step (3), the treatment liquid of the first treatment step is brought into contact with the anion exchanger (2) and the H-type strongly acidic cation exchanger (3) to be treated organic. The solvent was treated with the anion exchanger (2) and the H-type strongly acidic cation exchanger (3), and in the first treatment step, the divalent or higher valence that could not be completely removed by the H-type strongly acidic cation exchanger (1b). Remove the metal remnants and the monovalent metal remnants. Further, in the second treatment step, the anion exchanger removes metals that may have metal ions in the anion form such as Cr and As, and acids such as mineral acids and organic acids.
 そして、イオン交換処理工程(3)では、被処理有機溶媒を、一旦、H形強酸性カチオン交換体に接触させた後、再度、H形強酸性カチオン交換体に接触させるという2段階以上の接触を行うことにより、被処理有機溶媒を、同じ量のH形強酸性カチオン交換体に接触させた場合に比べ、2価以上の金属の除去率が高くなる。 Then, in the ion exchange treatment step (3), the organic solvent to be treated is once brought into contact with the H-type strong acid cation exchanger and then again brought into contact with the H-type strong acid cation exchanger. By performing the above, the removal rate of the divalent or higher metal becomes higher than in the case where the organic solvent to be treated is brought into contact with the same amount of the H-type strong acid cation exchanger.
 イオン交換処理工程(3)に係る第二処理工程において、アニオン交換体(2)及びH形強酸性カチオン交換体(3)に、第一処理工程の処理液を通液するときの通液速度(SV)は、特に制限されず、適宜選択されるが、好ましくは0.1~100h-1、特に好ましくは2~50h-1である。 In the second treatment step according to the ion exchange treatment step (3), the liquid passing rate when the treatment liquid of the first treatment step is passed through the anion exchanger (2) and the H-type strong acid cation exchanger (3). (SV) is not particularly limited and may be appropriately selected, but is preferably 0.1 to 100 h -1 , particularly preferably 2 to 50 h -1 .
 イオン交換処理工程(3)に係る第二処理工程において、アニオン交換体(2)及びH形強酸性カチオン交換体(3)に、第一処理工程の処理液を通液するときの温度は、特に制限されず、適宜選択されるが、通常、0~50℃である。また、被処理有機溶媒の種類によっては、第二処理工程において、0~80℃で、アニオン交換体(2)及びH形強酸性カチオン交換体(3)に、第一処理工程の処理液を通液することもある。第二処理工程において、0~80℃で、アニオン交換体(2)及びH形強酸性カチオン交換体(3)に、第一処理工程の処理液を通液する場合は、アニオン交換体(2)として、強塩基性アニオン交換体(2a)を用いると、強塩基性アニオン交換体(2a)が分解し易いため、アニオン交換体(2)として、弱塩基性アニオン交換体(2b)を用いる。 In the second treatment step according to the ion exchange treatment step (3), the temperature at which the treatment liquid of the first treatment step is passed through the anion exchanger (2) and the H-type strong acid cation exchanger (3) is set. It is not particularly limited and is appropriately selected, but is usually 0 to 50 ° C. Further, depending on the type of the organic solvent to be treated, in the second treatment step, the treatment liquid of the first treatment step is applied to the anion exchanger (2) and the H-type strong acid cation exchanger (3) at 0 to 80 ° C. It may pass liquid. In the second treatment step, when the treatment liquid of the first treatment step is passed through the anion exchanger (2) and the H-type strong acid cation exchanger (3) at 0 to 80 ° C., the anion exchanger (2). ), When the strong basic anion exchanger (2a) is used, the strongly basic anion exchanger (2a) is easily decomposed. Therefore, the weak basic anion exchanger (2b) is used as the anion exchanger (2). ..
 イオン交換処理工程(3)において、第一工程の処理液を、アニオン交換体(2)及びH形強酸性カチオン交換体(3)に接触させる方法としては、特に制限されず、例えば、(i)被処理有機溶媒を、アニオン交換体(2)とH形強酸性カチオン交換体(3)の混床に通液する方法、(ii)被処理有機溶媒を、前段側のアニオン交換体(2)層と後段側のH形強酸性カチオン交換体(3)層とからなる複床に通液する方法、(iii)先ず、被処理有機溶媒を、前段のアニオン交換体(2)の単床に通液し、次いで、その処理液を、後段のH形強酸性カチオン交換体(3)の単床に通液する方法、(iv)先ず、被処理有機溶媒を、前段のH形強酸性カチオン交換体(3)の単床に通液し、次いで、その処理液を、後段のアニオン交換体(2)の単床に通液する方法、(v)被処理有機溶媒を、前段のアニオン交換体(2)の単床及び後段のH形強酸性カチオン交換体(3)の単床の繰り返し単位が2組以上繰り返されている複床に通液する方法、(vi)被処理有機溶媒を、前段のH形強酸性カチオン交換体(3)の単床及び後段のアニオン交換体(2)の単床の繰り返し単位が2組以上繰り返されている複床に通液する方法が挙げられる。アニオン交換体(2)とH形強酸性カチオン交換体(3)の混床は、アニオン交換体(2)とH形強酸性カチオン交換体(3)の混合物からなる。アニオン交換体(2)が有機多孔質アニオン交換体の場合は、任意の大きさに切り出された形状、例えば、一辺3mm程度から10mm程度の立方体の有機多孔質アニオン交換体を用いる。また、H形強酸性カチオン交換体(3)が有機多孔質強酸性カチオン交換体の場合は、任意の大きさに切り出された形状、例えば、一辺3mm程度から10mm程度の立方体の有機多孔質強酸性カチオン交換体を用いる。 In the ion exchange treatment step (3), the method of contacting the treatment liquid of the first step with the anion exchanger (2) and the H-type strongly acidic cation exchanger (3) is not particularly limited, and is, for example, (i). ) A method of passing the organic solvent to be treated through a mixed bed of the anion exchanger (2) and the H-type strongly acidic cation exchanger (3), (ii) the organic solvent to be treated is passed through the anion exchanger (2) on the front stage side. ) Method of passing liquid through a double bed consisting of a layer and an H-type strongly acidic cation exchanger (3) layer on the subsequent stage, (iii) First, the organic solvent to be treated is applied to the single bed of the anion exchanger (2) in the previous stage. Then, the treatment liquid is passed through a single bed of the H-type strongly acidic cation exchanger (3) in the subsequent stage. A method of passing the liquid through the single bed of the cation exchanger (3) and then passing the treated liquid through the single bed of the anion exchanger (2) in the subsequent stage, (v) the organic solvent to be treated is passed through the anion in the previous stage. A method of passing liquid through a single bed of the exchanger (2) and a double bed in which two or more sets of repeating units of the single bed of the H-type strongly acidic cation exchanger (3) in the subsequent stage are repeated, (vi) organic solvent to be treated. Is passed through a double bed in which two or more sets of repeating units of the single bed of the H-type strongly acidic cation exchanger (3) in the first stage and the single bed of the anion exchanger (2) in the second stage are repeated. .. The mixed bed of the anion exchanger (2) and the H-type strong acid cation exchanger (3) consists of a mixture of the anion exchanger (2) and the H-type strong acid cation exchanger (3). When the anion exchanger (2) is an organic porous anion exchanger, a cubic organic porous anion exchanger having a shape cut out to an arbitrary size, for example, a side of about 3 mm to about 10 mm is used. When the H-type strongly acidic cation exchanger (3) is an organic porous strong acid cation exchanger, it has a shape cut out to an arbitrary size, for example, a cubic organic porous strong acid having a side of about 3 mm to about 10 mm. A sex cation exchanger is used.
 第四の形態のイオン交換処理工程(以下、イオン交換処理工程(4)とも記載する。)は、被処理有機溶媒を、H形キレート交換体(1a)とアニオン交換体(2)とH形強酸性カチオン交換体(3)の混床に接触させる処理工程(3)を有する。 In the ion exchange treatment step of the fourth embodiment (hereinafter, also referred to as an ion exchange treatment step (4)), the organic solvent to be treated is an H-type chelate exchanger (1a), an anion exchanger (2) and an H-form. It has a treatment step (3) in which the strongly acidic cation exchanger (3) is brought into contact with the mixed bed.
 イオン交換処理工程(4)に係るH形キレート交換体、アニオン交換体、H形強酸性カチオン交換体は、上述したH形キレート交換体、アニオン交換体、H形強酸性カチオン交換体である。 The H-type chelate exchanger, anion exchanger, and H-type strong acid cation exchanger according to the ion exchange treatment step (4) are the above-mentioned H-type chelate exchanger, anion exchanger, and H-type strong acid cation exchanger.
 イオン交換処理工程(4)は、被処理有機溶媒を、H形キレート交換体(1a)とアニオン交換体(2)とH形強酸性カチオン交換体(3)の混床に接触させる工程である。 The ion exchange treatment step (4) is a step of bringing the organic solvent to be treated into contact with a mixed bed of the H-type chelate exchanger (1a), the anion exchanger (2) and the H-type strongly acidic cation exchanger (3). ..
 イオン交換処理工程(4)に係るH形キレート交換体(1a)とアニオン交換体(2)とH形強酸性カチオン交換体(3)の混床は、H形キレート交換体(1a)とアニオン交換体(2)とH形強酸性カチオン交換体(3)の混合物からなる。なお、H形キレート交換体(1a)がH形の有機多孔質キレート交換体の場合は、任意の大きさに切り出された形状、例えば、一辺3mm程度から10mm程度の立方体のH形の有機多孔質強酸性キレート交換体を用いる。アニオン交換体(2)が有機多孔質アニオン交換体の場合は、任意の大きさに切り出された形状、例えば、一辺3mm程度から10mm程度の立方体の有機多孔質アニオン交換体を用いる。また、H形強酸性カチオン交換体(3)が有機多孔質強酸性カチオン交換体の場合は、任意の大きさに切り出された形状、例えば、一辺3mm程度から10mm程度の立方体の有機多孔質強酸性カチオン交換体を用いる。 The mixed bed of the H-type chelate exchanger (1a), the anion exchanger (2) and the H-type strong acid cation exchanger (3) according to the ion exchange treatment step (4) is the H-type chelate exchanger (1a) and the anion. It consists of a mixture of the exchanger (2) and the H-type strong acid cation exchanger (3). When the H-type chelate exchanger (1a) is an H-type organic porous chelate exchanger, it has a shape cut out to an arbitrary size, for example, a cubic H-shaped organic porous body having a side of about 3 mm to about 10 mm. A strong acid chelate exchanger is used. When the anion exchanger (2) is an organic porous anion exchanger, a cubic organic porous anion exchanger having a shape cut out to an arbitrary size, for example, a side of about 3 mm to about 10 mm is used. When the H-type strongly acidic cation exchanger (3) is an organic porous strong acid cation exchanger, it has a shape cut out to an arbitrary size, for example, a cubic organic porous strong acid having a side of about 3 mm to about 10 mm. A sex cation exchanger is used.
 イオン交換処理工程(4)では、被処理有機溶媒を、H形キレート交換体(1a)とアニオン交換体(2)とH形強酸性カチオン交換体(3)の混床に接触させることにより、被処理有機溶媒を、H形キレート交換体(1a)とアニオン交換体(2)とH形強酸性カチオン交換体(3)の混床で処理し、被処理有機溶媒中の2価以上の金属と、1価の金属と、を除去する。また、処理工程(3)では、被処理有機溶媒に、H形キレート交換体(1a)から放出される鉱酸を、アニオン交換体(2)が除去する。 In the ion exchange treatment step (4), the organic solvent to be treated is brought into contact with a mixed bed of the H-type chelate exchanger (1a), the anion exchanger (2) and the H-type strongly acidic cation exchanger (3). The organic solvent to be treated is treated with a mixed bed of an H-type chelate exchanger (1a), an anion exchanger (2) and an H-type strongly acidic cation exchanger (3), and a divalent or higher metal in the organic solvent to be treated is treated. And the monovalent metal. Further, in the treatment step (3), the anion exchanger (2) removes the mineral acid released from the H-type chelate exchanger (1a) into the organic solvent to be treated.
 イオン交換処理工程(4)において、H形キレート交換体(1a)とアニオン交換体(2)とH形強酸性カチオン交換体(3)の混床に、被処理有機溶媒を通液するときの通液速度(SV)は、特に制限されず、適宜選択されるが、好ましくは0.1~50h-1、特に好ましくは2~30h-1、更に好ましくは4~25h-1である。 In the ion exchange treatment step (4), when the organic solvent to be treated is passed through the mixed bed of the H-type chelate exchanger (1a), the anion exchanger (2) and the H-type strongly acidic cation exchanger (3). The liquid passing speed (SV) is not particularly limited and is appropriately selected, but is preferably 0.1 to 50h -1 , particularly preferably 2 to 30h -1 , and even more preferably 4 to 25h -1 .
 イオン交換処理工程(4)において、H形キレート交換体(1a)とアニオン交換体(2)とH形強酸性カチオン交換体(3)の混床(3)に、被処理有機溶媒を通液するときの温度は、特に制限されず、適宜選択されるが、通常、0~50℃である。また、被処理有機溶媒の種類によっては、イオン交換処理工程(4)において、0~80℃で、H形キレート交換体(1a)とアニオン交換体(2)とH形強酸性カチオン交換体(3)の混床に、被処理有機溶媒を通液することもある。イオン交換処理工程(4)において、0~80℃で、H形キレート交換体(1a)とアニオン交換体(2)とH形強酸性カチオン交換体(3)の混床に、被処理有機溶媒を通液する場合は、アニオン交換体(2)として、強塩基性アニオン交換体(2a)を用いると、強塩基性アニオン交換体(2a)が分解し易いため、アニオン交換体(2)として、弱塩基性アニオン交換体(2b)を用いる。 In the ion exchange treatment step (4), the organic solvent to be treated is passed through the mixed bed (3) of the H-type chelate exchanger (1a), the anion exchanger (2) and the H-type strongly acidic cation exchanger (3). The temperature is not particularly limited and may be appropriately selected, but is usually 0 to 50 ° C. Further, depending on the type of the organic solvent to be treated, in the ion exchange treatment step (4), at 0 to 80 ° C., an H-type chelate exchanger (1a), an anion exchanger (2) and an H-type strong acid cation exchanger ( The organic solvent to be treated may be passed through the mixed bed of 3). In the ion exchange treatment step (4), the organic solvent to be treated is added to the mixed bed of the H-type chelate exchanger (1a), the anion exchanger (2) and the H-type strong acid cation exchanger (3) at 0 to 80 ° C. When passing a liquid, if a strongly basic anion exchanger (2a) is used as the anion exchanger (2), the strongly basic anion exchanger (2a) is easily decomposed, so that the anion exchanger (2) is used. , Weakly basic anion exchanger (2b) is used.
 イオン交換処理工程(2)又はイオン交換処理工程(4)では、H形キレート交換体(1a)の体積に対するアニオン交換体(2)の体積の割合((アニオン交換体(2)の体積/H形キレート交換体(1a)の体積)×100)は、好ましくは0.1~99.0体積%、より好ましくは0.1~70.0体積%、特に好ましくは0.1~50.0体積%である。 In the ion exchange treatment step (2) or the ion exchange treatment step (4), the ratio of the volume of the anion exchanger (2) to the volume of the H-type chelate exchanger (1a) ((volume of the anion exchanger (2) / H). The volume) × 100) of the shaped chelate exchanger (1a) is preferably 0.1 to 99.0% by volume, more preferably 0.1 to 70.0% by volume, and particularly preferably 0.1 to 50.0. By volume.
 イオン交換処理工程(2)又はイオン交換処理工程(4)では、H形キレート交換体(1a)の体積に対する強酸性カチオン交換体(3)の体積の割合((強酸性カチオン交換体(3)の体積/H形キレート交換体(1a)の体積)×100)は、好ましくは0.1~99.0体積%、より好ましくは0.1~70.0体積%、特に好ましくは0.1~50.0体積%である。 In the ion exchange treatment step (2) or the ion exchange treatment step (4), the volume ratio of the strongly acidic cation exchanger (3) to the volume of the H-type chelate exchanger (1a) ((strongly acidic cation exchanger (3)). Volume / volume of H-type chelate exchanger (1a)) × 100) is preferably 0.1 to 99.0% by volume, more preferably 0.1 to 70.0% by volume, and particularly preferably 0.1. It is ~ 50.0% by volume.
 H形カチオン交換体(H形キレート交換体(1a)、強酸性カチオン交換体(1b))、アニオン交換体(2)及びH形強酸性カチオン交換体(3)としては、イオン交換基が導入される基体が、有機多孔質体であってもよい。本発明に係る有機多孔質体を以下に説明する。 Ion exchangers are introduced as the H-type cation exchanger (H-type chelate exchanger (1a), strong acid cation exchanger (1b)), anion exchanger (2) and H-type strongly acidic cation exchanger (3). The substrate to be formed may be an organic porous body. The organic porous body according to the present invention will be described below.
 有機多孔質イオン交換体には、H形キレート交換基、強酸性カチオン基又はアニオン交換基が導入されている。つまり、有機多孔質体にH形キレート交換基が導入されているものは、H形の有機多孔質キレート交換体(1a)であり、また、有機多孔質体にH形の強酸性カチオン交換基が導入されているものは、H形の有機多孔質強酸性カチオン交換体(1b)又は(3)であり、また、有機多孔質体にアニオン交換基が導入されているものは、有機多孔質アニオン交換体である。なお、有機多孔質イオン交換体に導入されている官能基は、上述したH形カチオン交換体(H形キレート交換体(1a)、強酸性カチオン交換体(1b))、アニオン交換体(2)又はH形強酸性カチオン交換体(3)に導入されている官能基と同様である。 An H-type chelate exchange group, a strongly acidic cation group or an anion exchange group is introduced into the organic porous ion exchanger. That is, the one in which the H-type chelate exchange group is introduced into the organic porous body is the H-type organic porous chelate exchanger (1a), and the H-type strongly acidic cation exchange group is introduced into the organic porous body. Is an H-shaped organic porous strongly acidic cation exchanger (1b) or (3), and one in which an anion exchange group is introduced into the organic porous body is organic porous. It is an anion exchanger. The functional groups introduced into the organic porous ion exchanger are the above-mentioned H-type cation exchanger (H-type chelate exchanger (1a), strongly acidic cation exchanger (1b)), anion exchanger (2). Alternatively, it is the same as the functional group introduced into the H-type strongly acidic cation exchanger (3).
 有機多孔質イオン交換体としては、例えば、連続骨格相と連続空孔相からなり、連続骨格の厚みは1~100μm、連続空孔の平均直径は1~1000μm、全細孔容積は0.5~50mL/gであり、イオン交換基(キレート交換基、H形強酸性カチオン交換基又はアニオン交換基)が導入されており、乾燥状態での重量当たりのイオン交換容量が1~6mg当量/gであり、イオン交換基が有機多孔質イオン交換体中に均一に分布している有機多孔質イオン交換体(以下、第一の形態の有機多孔質イオン交換体とも記載する。)が挙げられる。 The organic porous ion exchanger is composed of, for example, a continuous skeleton phase and a continuous pore phase, the thickness of the continuous skeleton is 1 to 100 μm, the average diameter of the continuous pores is 1 to 1000 μm, and the total pore volume is 0.5. It is ~ 50 mL / g, and an ion exchange group (chelate exchange group, H-type strongly acidic cation exchange group or anion exchange group) is introduced, and the ion exchange capacity per weight in a dry state is 1 to 6 mg equivalent / g. Therefore, an organic porous ion exchanger in which ion exchange groups are uniformly distributed in the organic porous ion exchanger (hereinafter, also referred to as an organic porous ion exchanger of the first form) can be mentioned.
 第一の形態の有機多孔質イオン交換体としては、気泡状のマクロポア同士が重なり合い、この重なる部分が平均直径1~1000μmの開口となる連続気泡構造を有し、全細孔容積が1~50mL/gであり、イオン交換基が導入されており、乾燥状態での重量当りのイオン交換容量が1~6mg当量/gであり、イオン交換基が有機多孔質イオン交換体中に均一に分布している有機多孔質イオン交換体が挙げられる。 The organic porous ion exchanger of the first form has a continuous cell structure in which bubble-shaped macropores overlap each other and the overlapping portion has an opening with an average diameter of 1 to 1000 μm, and the total pore volume is 1 to 50 mL. / G, an ion exchange group is introduced, the ion exchange capacity per weight in a dry state is 1 to 6 mg equivalent / g, and the ion exchange group is uniformly distributed in the organic porous ion exchanger. Examples thereof include organic porous ion exchangers.
 また、第一の形態の有機多孔質イオン交換体としては、気泡状のマクロポア同士が重なり合い、この重なる部分が平均直径30~300μmの開口となる連続マクロポア構造体であり、全細孔容積が0.5~10ml/g、カチオン交換基又はアニオン交換基が導入されており、乾燥状態での重量当りのイオン交換容量が1~6mg当量/gであり、イオン交換基が有機多孔質イオン交換体中に均一に分布しており、且つ、連続マクロポア構造体(乾燥体)の切断面のSEM画像において、断面に表れる骨格部面積が、画像領域中25~50%である有機多孔質イオン交換体が挙げられる。 The organic porous ion exchanger of the first form is a continuous macropore structure in which bubble-shaped macropores overlap each other and the overlapping portion has an opening with an average diameter of 30 to 300 μm, and the total pore volume is 0. .5 to 10 ml / g, cation exchange group or anion exchange group is introduced, the ion exchange capacity per weight in the dry state is 1 to 6 mg equivalent / g, and the ion exchange group is an organic porous ion exchanger. An organic porous ion exchanger that is uniformly distributed in the image and has a skeleton area of 25 to 50% in the image region in the SEM image of the cut surface of the continuous macropore structure (dried body). Can be mentioned.
 また、第一の形態の有機多孔質イオン交換体としては、前記有機多孔質イオン交換体が、イオン交換基(キレート交換基、H形強酸性カチオン交換基又はアニオン交換基)が導入された全構成単位中、架橋構造単位を0.1~5.0モル%含有する芳香族ビニルポリマーからなる平均太さが1~60μmの三次元的に連続した骨格と、その骨格間に平均直径が10~200μmの三次元的に連続した空孔とからなる共連続構造体であり、全細孔容積が0.5~10mL/gであり、カチオン交換基が導入されており、乾燥状態での重量当りのイオン交換容量が1~6mg当量/gであり、イオン交換基が有機多孔質イオン交換体中に均一に分布している有機多孔質イオン交換体が挙げられる。 Further, as the organic porous ion exchanger of the first form, all of the organic porous ion exchangers into which an ion exchange group (chelate exchange group, H-type strongly acidic cation exchange group or anion exchange group) is introduced. A three-dimensionally continuous skeleton composed of an aromatic vinyl polymer containing 0.1 to 5.0 mol% of crosslinked structural units in the structural units and having an average thickness of 1 to 60 μm, and an average diameter of 10 between the skeletons. It is a co-continuous structure consisting of three-dimensionally continuous pores of up to 200 μm, has a total pore volume of 0.5 to 10 mL / g, has an introduced cation exchange group, and has a dry weight. Examples thereof include an organic porous ion exchanger in which the ion exchange capacity per hit is 1 to 6 mg equivalent / g and the ion exchange groups are uniformly distributed in the organic porous ion exchanger.
 蒸留工程は、イオン交換処理工程を行い得られるイオン交換処理工程の処理液を、蒸留する工程である。 The distillation step is a step of distilling the treatment liquid of the ion exchange treatment step obtained by performing the ion exchange treatment step.
 蒸留工程において、イオン交換処理工程の処理液を蒸留する方法としては、特に制限されず、単蒸留であれば、沸騰型の蒸留装置を用いてイオン交換処理工程の処理液を蒸留する方法、非沸騰型の蒸留装置を用いてイオン交換処理工程の処理液を蒸留する方法が挙げられる。蒸留方法として、精密蒸留や減圧または真空蒸留を用いても良い。蒸留方法としては、分離精製の性能の高さから、精密蒸留が好ましい。 In the distillation step, the method of distilling the treatment liquid of the ion exchange treatment step is not particularly limited, and in the case of simple distillation, a method of distilling the treatment liquid of the ion exchange treatment step using a boiling type distillation apparatus, non-distillation. Examples thereof include a method of distilling the treatment liquid in the ion exchange treatment step using a boiling type distillation apparatus. As the distillation method, precision distillation, vacuum distillation or vacuum distillation may be used. As the distillation method, precision distillation is preferable because of its high separation and purification performance.
 蒸留装置の接液部は、金属溶出がない点で、テトラフルオロエチレンとパーフルオロアルコキシエチレンとの共重合体(PFA)、ポリテトラフルオロエチレン(PTFE)等のフッ素樹脂で形成又はコーティングされていることが好ましい。除去又は測定対象への金属溶出が無ければ、接液部の材質は石英等の鉱物で形成又はコーティングされても良い。 The wetted portion of the distillation apparatus is formed or coated with a fluororesin such as a copolymer of tetrafluoroethylene and perfluoroalkoxyethylene (PFA) or polytetrafluoroethylene (PTFE) in that there is no metal elution. Is preferable. The material of the wetted portion may be formed or coated with a mineral such as quartz as long as there is no metal elution to the object to be removed or measured.
 蒸留工程における蒸留条件は、有機溶媒の種類、沸点、蒸留前の不純物濃度や蒸留後の不純物低減目標濃度等により、適宜選択される。 The distillation conditions in the distillation step are appropriately selected depending on the type of organic solvent, boiling point, impurity concentration before distillation, impurity reduction target concentration after distillation, and the like.
熱による分解や変性が起きる可能性がある有機溶媒を用いる場合は、非沸騰型蒸留装置を用いて有機溶媒の沸点以下の低い温度で時間をかけて蒸留を行うことが望ましい。減圧蒸留を用いて、溶媒の沸点を下げて蒸留しても良い。 When using an organic solvent that may be decomposed or denatured by heat, it is desirable to use a non-boiling distillation apparatus to perform distillation at a low temperature below the boiling point of the organic solvent over a long period of time. Distillation may be carried out by lowering the boiling point of the solvent by using vacuum distillation.
 本発明の有機溶媒の精製方法は、イオン交換処理工程の後に、蒸留工程を行うことにより、金属不純物の除去性が高くなる。また、本発明の有機溶媒の精製方法では、例え、イオン交換処理工程で用いたイオン交換体から、水が有機溶媒に混入したとしても、蒸留工程で、水を除去することができるので、水分の除去性に優れる。 In the method for purifying an organic solvent of the present invention, the removal property of metal impurities is enhanced by performing a distillation step after the ion exchange treatment step. Further, in the method for purifying an organic solvent of the present invention, even if water is mixed in the organic solvent from the ion exchanger used in the ion exchange treatment step, the water can be removed in the distillation step, so that the water content is high. Has excellent removability.
 加えて、金属微粒子は、イオンではないために、イオン交換樹脂のみで精製を行う場合には、金属微粒子を除去することができない。それに対して、本発明の有機溶媒の精製方法では、蒸留工程で、金属微粒子を除去することができるので、金属不純物の除去性が高くなる。 In addition, since the metal fine particles are not ions, the metal fine particles cannot be removed when purification is performed using only an ion exchange resin. On the other hand, in the method for purifying an organic solvent of the present invention, metal fine particles can be removed in the distillation step, so that the removability of metal impurities is improved.
 また、有機溶媒中には、その製造工程で生成又は残留した副生成物、例えば、プロピレングリコールモノメチルエーテル(PGME)の製造におけるプロピレングリコールモノメチルエーテルアセテート(PGMEA)や、イソプロピルアルコール(IPA)の製造におけるアセトン等の副生成物、有機溶媒の製造装置又は精製装置で用いられている樹脂部材からの溶出物のような有機不純物が含まれることがある。本発明の有機溶媒の精製方法では、蒸留工程で、そのような有機不純物を除去することができるので、有機不純物の除去性が高くなる。 Further, in the organic solvent, by-products produced or left in the production process, for example, in the production of propylene glycol monomethyl ether acetate (PGMEA) in the production of propylene glycol monomethyl ether (PGME) and in the production of isopropyl alcohol (IPA). It may contain by-products such as acetone and organic impurities such as eluents from resin members used in organic solvent production or purification equipment. In the method for purifying an organic solvent of the present invention, such organic impurities can be removed in the distillation step, so that the removal property of the organic impurities is improved.
 また、有機溶媒中では金属不純物の拡散速度が小さく、イオン交換樹脂とのイオン交換反応の反応速度も小さいため、イオン交換樹脂のみで有機溶媒の精製を行う場合には、イオン性金属不純物の除去率を高くするには、イオン交換樹脂への有機溶媒の通液速度を遅くする必要がある。それに対して、本発明の有機溶媒の精製方法では、イオン交換処理工程の後に蒸留工程があるので、イオン交換処理工程で、イオン交換体への有機溶媒の通液速度を高くすることにより、イオン性金属不純物の除去性が低くなったとしても、イオン交換処理工程でイオン性金属不純物の除去量が低くなった分を、後の蒸留工程での蒸留で、イオン性金属不純物を除去することにより、イオン交換処理工程で、イオン交換体への有機溶媒の通液速度を高くしたために、イオン性金属不純物の除去性が低くなった分を、蒸留工程でカバーすることができる。そのため、本発明の有機溶媒の精製方法では、イオン交換体への有機溶媒の通液速度を高くすることにより、イオン性金属不純物の除去性が低くなった分を、蒸留工程でカバーできる範囲で、イオン交換処理工程におけるイオン交換体への有機溶媒の通液速度を高くすることができるため、本発明の有機溶媒の精製方法は、高純度の有機溶媒を高い精製効率で得ることができる。 In addition, since the diffusion rate of metal impurities is low in the organic solvent and the reaction rate of the ion exchange reaction with the ion exchange resin is also low, the ionic metal impurities are removed when the organic solvent is purified using only the ion exchange resin. In order to increase the rate, it is necessary to slow down the flow rate of the organic solvent through the ion exchange resin. On the other hand, in the method for purifying an organic solvent of the present invention, since there is a distillation step after the ion exchange treatment step, the ion exchange treatment step is performed by increasing the flow rate of the organic solvent to the ion exchanger. Even if the removal of ionic metal impurities is low, the amount of ionic metal impurities removed in the ion exchange treatment step is reduced by distillation in the subsequent distillation step to remove the ionic metal impurities. In the ion exchange treatment step, the amount of reduced removability of ionic metal impurities due to the increased liquid passing rate of the organic solvent through the ion exchanger can be covered by the distillation step. Therefore, in the method for purifying an organic solvent of the present invention, the amount of reduced ionic metal impurities removal property can be covered by the distillation step by increasing the flow rate of the organic solvent through the ion exchanger. Since the liquid passing rate of the organic solvent through the ion exchanger in the ion exchange treatment step can be increased, the method for purifying the organic solvent of the present invention can obtain a high-purity organic solvent with high purification efficiency.
 本発明の有機溶媒の精製方法のうち、イオン交換処理工程が、イオン交換処理工程(2)及び(4)の形態は、H形カチオン交換体として、H形キレート交換体を用いている。このH形キレート交換体は、強酸性カチオン交換樹脂では除去率が悪く、更に、一部は有機溶媒中で陰イオン形態を有している可能性があるCr等の2価以上の金属の除去性が高い。そのため、本発明の有機溶媒の精製方法のうち、イオン交換処理工程が、イオン交換処理工程(2)及び(4)の形態は、Cr等の2価以上の金属の除去性が高くなる。 Among the methods for purifying an organic solvent of the present invention, the ion exchange treatment step uses an H-type chelate exchanger as the H-type cation exchanger in the forms of the ion exchange treatment steps (2) and (4). This H-type chelate exchanger has a poor removal rate with a strong acid cation exchange resin, and further removes divalent or higher metals such as Cr which may have an anionic form in an organic solvent. Highly sex. Therefore, among the methods for purifying the organic solvent of the present invention, in the ion exchange treatment step, the forms of the ion exchange treatment steps (2) and (4) have high removability of divalent or higher metals such as Cr.
 本発明の有機溶媒の精製方法を行い得られる精製有機溶媒中の各金属含有量は、精製後の有機溶媒の用途により適宜選択され、好ましくはいずれも10ng/L以下である。つまり、本発明の有機溶媒の精製方法を行い得られる精製有機溶媒中の2価以上の各金属の含有量は、精製後の有機溶媒の用途により適宜選択され、好ましくはいずれも10ng/L以下であり、且つ、1価の金属の含有量は、精製後の有機溶媒の用途により適宜選択され、好ましくはいずれも10ng/L以下である。 The content of each metal in the purified organic solvent obtained by the method for purifying the organic solvent of the present invention is appropriately selected depending on the intended use of the purified organic solvent, and all of them are preferably 10 ng / L or less. That is, the content of each metal having a valence of 2 or more in the purified organic solvent obtained by the method for purifying the organic solvent of the present invention is appropriately selected depending on the use of the organic solvent after purification, and all of them are preferably 10 ng / L or less. The content of the monovalent metal is appropriately selected depending on the use of the organic solvent after purification, and is preferably 10 ng / L or less in each case.
 更に、本発明の有機溶媒の精製方法によれば、1ng/L以下の不純物レベルの精製が可能となるので、本発明の有機溶媒の精製方法を行い得られる精製有機溶媒は、微量金属分析のための検量線調製のために用いる標準液の希釈用溶媒(検量線用ブランク液)、サンプルの希釈用溶媒、器具や分析装置の洗浄用溶媒として、好適に用いられる。本発明の有機溶媒の精製方法のうち、イオン交換処理工程が、イオン交換処理工程(1)、(2)、(3)及び(4)の形態は、カチオン交換体とアニオン交換体の組み合わせなので、イオン性金属不純物に加え、酸及びアニオン類を除去できるので、イオンクロマトグラフ法に用いられる検量線用ブランク液としても、好適に用いられる。本発明の有機溶媒の精製方法を行い得られる精製有機溶媒の用途としては、半導体製造工程における希釈用溶媒、溶解用溶媒、洗浄用溶媒、乾燥用溶媒などが挙げられる。 Further, according to the method for purifying an organic solvent of the present invention, purification at an impurity level of 1 ng / L or less is possible. Therefore, the purified organic solvent obtained by performing the method for purifying an organic solvent of the present invention can be used for trace metal analysis. It is suitably used as a diluting solvent for a standard solution (blank solution for a calibration beam) used for preparing a calibration beam, a solvent for diluting a sample, and a solvent for cleaning an instrument or an analyzer. Among the methods for purifying an organic solvent of the present invention, the ion exchange treatment step is a combination of a cation exchanger and an anion exchanger in the forms of the ion exchange treatment steps (1), (2), (3) and (4). Since acids and anions can be removed in addition to ionic metal impurities, it is also suitably used as a blank liquid for calibration lines used in the ion chromatograph method. Examples of the use of the purified organic solvent obtained by the method for purifying the organic solvent of the present invention include a diluting solvent, a dissolving solvent, a cleaning solvent, a drying solvent and the like in the semiconductor manufacturing process.
 以下、本発明を実施例に基づき詳細に説明する。ただし、本発明は、以下の実施例に制限されるものではない。 Hereinafter, the present invention will be described in detail based on examples. However, the present invention is not limited to the following examples.
<被処理有機溶媒1>
 被処理有機溶媒1として、市販のプロピレングリコールモノメチルエーテル(PGME ELグレード、昭和電工製)を金属製容器に密閉保管し、金属濃度を増加させたサンプルを用いた。各金属不純物含有量を表1に示す。
<Organic solvent to be treated 1>
As the organic solvent 1 to be treated, a commercially available propylene glycol monomethyl ether (PGME EL grade, manufactured by Showa Denko) was hermetically stored in a metal container, and a sample having an increased metal concentration was used. The content of each metal impurity is shown in Table 1.
(実施例1) 
(イオン交換処理工程)
 H形キレート交換樹脂(DS-21)と、OH形強塩基性アニオン交換樹脂(DS-2)と、H形強酸性カチオン交換樹脂(DS-1)を、体積割合で3:1:1で混合した混合物50mLを、内径16mm、高さ300mmのカラムに充填した(H形C/OH形A/H型K混床1)。
 次いで、H形C/OH形A/H型K混床1に被処理有機溶媒1をSV5h-1で通液し、20BV(樹脂体積の20倍量)通液したところで、処理液を1000mL得た。
・H形キレート交換樹脂:H形のアミノリン酸形キレート樹脂、オルガノ社製、オルライトDS-21、カチオン交換容量1.8eq/L-樹脂、調和平均径500μm
・OH形強塩基性アニオン交換樹脂(DS-2):オルガノ社製、アニオン交換容量1.0eq/L-樹脂
・H形強酸性カチオン交換樹脂(DS-1):オルガノ社製、カチオン交換容量2.0eq/L-樹脂
(Example 1)
(Ion exchange processing process)
H-type chelate exchange resin (DS-21), OH-type strong basic anion exchange resin (DS-2), and H-type strong acid cation exchange resin (DS-1) in a volume ratio of 3: 1: 1. 50 mL of the mixed mixture was packed in a column having an inner diameter of 16 mm and a height of 300 mm (H-type C / OH-type A / H-type K mixed bed 1).
Next, the organic solvent 1 to be treated was passed through the H-type C / OH-type A / H-type K mixed bed 1 with SV5h -1 , and when 20 BV (20 times the resin volume) was passed, 1000 mL of the treated liquid was obtained. rice field.
-H-type chelate exchange resin: H-type aminophosphate-type chelate resin, manufactured by Organo Corporation, Orlite DS-21, cation exchange capacity 1.8 eq / L-resin, harmonic mean diameter 500 μm
-OH type strong basic anion exchange resin (DS-2): manufactured by Organo Corporation, anion exchange capacity 1.0 eq / L-resin-H type strong acid cation exchange resin (DS-1): manufactured by Organo Corporation, cation exchange capacity 2.0eq / L-resin
(蒸留工程)
 次いで、イオン交換処理工程の処理液を、非沸騰型蒸留装置(Evapoclean、株式会社イアス社製)を用いて、70℃、18時間の条件で蒸留を行い、処理液を100mL得た。
(Distillation process)
Next, the treatment liquid in the ion exchange treatment step was distilled under the conditions of 70 ° C. and 18 hours using a non-boiling type distillation apparatus (Evapoclean, manufactured by Ias Inc.) to obtain 100 mL of the treatment liquid.
(分析)
 次いで、得られた処理液の金属含有量を測定した。その結果を表1に示す。また、水分含有量を測定したところ、水分含有量は300ppmであった。
<水分測定>
 Aquacounter AQ-2200(平沼産業株式会社製)を用いて、水分含有量を測定した。
(analysis)
Then, the metal content of the obtained treatment liquid was measured. The results are shown in Table 1. Moreover, when the water content was measured, the water content was 300 ppm.
<Moisture measurement>
The water content was measured using Aquacounter AQ-2200 (manufactured by Hiranuma Sangyo Co., Ltd.).
(比較例1)
 実施例1と同様にして、イオン交換処理工程を行い、処理液を1000mL得た。
 次いで、得られた処理液の金属含有量を測定した。その結果を表1に示す。また、水分含有量を測定したところ、水分含有量は320質量ppmであった。
 つまり、比較例1では、イオン交換処理工程を行い、蒸留工程を行わなかった。
(Comparative Example 1)
The ion exchange treatment step was carried out in the same manner as in Example 1 to obtain 1000 mL of the treatment liquid.
Then, the metal content of the obtained treatment liquid was measured. The results are shown in Table 1. Moreover, when the water content was measured, the water content was 320 mass ppm.
That is, in Comparative Example 1, the ion exchange treatment step was performed and the distillation step was not performed.
(比較例2)
 被処理有機溶媒1を、非沸騰型蒸留装置(Evapoclean、株式会社イアス社製)を用いて、80℃、18時間の条件で蒸留を行い、処理液を100mL得た。
 次いで、得られた処理液の金属含有量を測定した。その結果を表1に示す。また、水分含有量を測定したところ、水分含有量は280ppmであった。
 つまり、比較例2では、蒸留工程を行い、イオン交換処理工程を行わなかった。
(Comparative Example 2)
The organic solvent 1 to be treated was distilled under the conditions of 80 ° C. for 18 hours using a non-boiling type distillation apparatus (Evapoclean, manufactured by Ias Inc.) to obtain 100 mL of a treated liquid.
Then, the metal content of the obtained treatment liquid was measured. The results are shown in Table 1. Moreover, when the water content was measured, the water content was 280 ppm.
That is, in Comparative Example 2, the distillation step was performed and the ion exchange treatment step was not performed.
 実施例1、比較例1及び2の結果から、イオン交換樹脂精製と蒸留を組み合わせることで、イオン交換樹脂精製、蒸留精製のそれぞれ単独の精製よりも、金属不純物濃度をより低濃度まで低減することができた。 From the results of Example 1 and Comparative Examples 1 and 2, by combining ion exchange resin purification and distillation, the concentration of metal impurities can be reduced to a lower concentration than the purification of each of ion exchange resin purification and distillation purification alone. Was completed.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001

Claims (9)

  1.  被処理有機溶媒を、イオン交換体に接触させるイオン交換処理工程と、
     該イオン交換処理工程の処理液を、蒸留する蒸留工程と、
    を有することを特徴とする有機溶媒の精製方法。
    An ion exchange treatment step in which the organic solvent to be treated is brought into contact with the ion exchanger,
    A distillation step of distilling the treatment liquid of the ion exchange treatment step and
    A method for purifying an organic solvent, which comprises.
  2.  前記イオン交換処理工程において、前記被処理有機溶媒を、少なくともH形カチオン交換体に接触させることを特徴とする請求項1記載の有機溶媒の精製方法。 The method for purifying an organic solvent according to claim 1, wherein in the ion exchange treatment step, the organic solvent to be treated is brought into contact with at least an H-type cation exchanger.
  3.  前記イオン交換処理工程が、前記被処理有機溶媒を、H形強酸性カチオン交換体及びアニオン交換体に接触させる処理工程を有することを特徴とする請求項2記載の有機溶媒の精製方法。 The method for purifying an organic solvent according to claim 2, wherein the ion exchange treatment step includes a treatment step of bringing the organic solvent to be treated into contact with an H-type strong acid cation exchanger and an anion exchanger.
  4.  前記イオン交換処理工程が、
     前記被処理有機溶媒を、H形カチオン交換体(1)に接触させる第一処理工程と、
     該第一処理工程の処理液を、アニオン交換体(2)及びH形強酸性カチオン交換体(3)に接触させる第二処理工程と、
    を有することを特徴とする請求項2記載の有機溶媒の精製方法。
    The ion exchange processing step
    In the first treatment step of bringing the organic solvent to be treated into contact with the H-type cation exchanger (1),
    The second treatment step of contacting the treatment liquid of the first treatment step with the anion exchanger (2) and the H-type strong acid cation exchanger (3),
    2. The method for purifying an organic solvent according to claim 2.
  5.  前記第一処理工程の処理液を、前記アニオン交換体(2)と前記H形強酸性カチオン交換体(3)の混床に通液することより、前記第二処理工程を行うことを特徴とする請求項4記載の有機溶媒の精製方法。 The second treatment step is characterized by passing the treatment liquid of the first treatment step through a mixed bed of the anion exchanger (2) and the H-type strong acid cation exchanger (3). 4. The method for purifying an organic solvent according to claim 4.
  6.  前記第一処理工程の処理液を、先に、前記アニオン交換体(2)に接触させ、次いで、前記H形強酸性カチオン交換体(3)に接触させることにより、前記第二処理工程を行うことを特徴とする請求項4記載の有機溶媒の精製方法。 The second treatment step is performed by first contacting the treatment liquid of the first treatment step with the anion exchanger (2) and then contacting the H-type strongly acidic cation exchanger (3). The method for purifying an organic solvent according to claim 4, wherein the organic solvent is purified.
  7.  前記H形カチオン交換体(1)が、H形キレート交換体であることを特徴とする請求項4~6いずれか1項記載の有機溶媒の精製方法。 The method for purifying an organic solvent according to any one of claims 4 to 6, wherein the H-type cation exchanger (1) is an H-type chelate exchanger.
  8.  前記H形カチオン交換体(1)が、H形強酸性カチオン交換体であることを特徴とする請求項4~6いずれか1項記載の有機溶媒の精製方法。 The method for purifying an organic solvent according to any one of claims 4 to 6, wherein the H-type cation exchanger (1) is an H-type strongly acidic cation exchanger.
  9.  被処理有機溶媒を、H形キレート交換体とアニオン交換体(2)とH形強酸性カチオン交換体(3)の混床に接触させる処理工程を有することを特徴とする請求項2記載の有機溶媒の精製方法。 The organic according to claim 2, further comprising a treatment step of bringing the organic solvent to be treated into contact with a mixed bed of an H-type chelate exchanger, an anion exchanger (2) and an H-type strongly acidic cation exchanger (3). Solvent purification method.
PCT/JP2021/033511 2020-10-27 2021-09-13 Method for purifying organic solvent WO2022091605A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-179724 2020-10-27
JP2020179724A JP2022070585A (en) 2020-10-27 2020-10-27 Method for purifying organic solvent

Publications (1)

Publication Number Publication Date
WO2022091605A1 true WO2022091605A1 (en) 2022-05-05

Family

ID=81382312

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/033511 WO2022091605A1 (en) 2020-10-27 2021-09-13 Method for purifying organic solvent

Country Status (3)

Country Link
JP (1) JP2022070585A (en)
TW (1) TW202225131A (en)
WO (1) WO2022091605A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024075406A1 (en) * 2022-10-06 2024-04-11 オルガノ株式会社 Method for producing cation exchange resin and method for refining organic acid solution
JP7421019B1 (en) 2022-10-06 2024-01-23 オルガノ株式会社 Method for producing cation exchange resin and method for purifying organic acid solution

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54133495A (en) * 1978-04-10 1979-10-17 Asahi Chem Ind Co Ltd Recovering method for liquid phase oxidation catalyst
JPH07208166A (en) * 1994-01-11 1995-08-08 Tokyo Kaken:Kk Regenerating method of engine cooling waste liquid
JPH11171508A (en) * 1997-12-11 1999-06-29 Sumitomo Chem Co Ltd Purification of aqueous hydrogen peroxide
JP2005232093A (en) * 2004-02-20 2005-09-02 Ever Clean Kk Method for recovering high-purity ethylene glycol
JP2016036038A (en) * 2010-06-07 2016-03-17 セントラル硝子株式会社 Chemical solution for formation of protective film

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54133495A (en) * 1978-04-10 1979-10-17 Asahi Chem Ind Co Ltd Recovering method for liquid phase oxidation catalyst
JPH07208166A (en) * 1994-01-11 1995-08-08 Tokyo Kaken:Kk Regenerating method of engine cooling waste liquid
JPH11171508A (en) * 1997-12-11 1999-06-29 Sumitomo Chem Co Ltd Purification of aqueous hydrogen peroxide
JP2005232093A (en) * 2004-02-20 2005-09-02 Ever Clean Kk Method for recovering high-purity ethylene glycol
JP2016036038A (en) * 2010-06-07 2016-03-17 セントラル硝子株式会社 Chemical solution for formation of protective film

Also Published As

Publication number Publication date
JP2022070585A (en) 2022-05-13
TW202225131A (en) 2022-07-01

Similar Documents

Publication Publication Date Title
WO2022091605A1 (en) Method for purifying organic solvent
US11759774B2 (en) Purification process for hydrophilic organic solvent
WO2019207995A1 (en) Method for removing metal in liquid and h-type chelate resin mixed with anion exchange resin
WO2020217911A1 (en) Method for purifying organic solvent, and device for purifying organic solvent
JP2021001124A (en) Non-aqueous solvent purifying method
EP3397386A1 (en) Purification process for hydrolysable organic solvent
JP4467488B2 (en) Condensate demineralization method and condensate demineralization apparatus
JP4943377B2 (en) Condensate demineralization method and condensate demineralization apparatus
JP3248205B2 (en) Ion exchange resin for ultrapure water production, method for producing the same, and method for producing ultrapure water using the same
WO2022030380A1 (en) Polar organic solvent purification method, polar organic solvent purification device, analysis method and purified polar organic solvent production method
TW202311217A (en) Processes for purifying glycol ethers
CN114072232A (en) Method for purifying organic solvents
WO2021140764A1 (en) Method for purifying non-aqueous solvent, and method for pretreating ion exchange resin for purification of non-aqueous solvent
WO2023210370A1 (en) Organic solvent purification method and purification apparatus
WO2022209392A1 (en) Method for purifying hydrolyzable organic solvent, and method for producing resin for purifying hydrolyzable organic solvent
WO2022209391A1 (en) Method and apparatus for purifying non-aqueous liquid, and ion exchange resin production method and pretreatment apparatus
JP7248090B1 (en) Method for removing impurities from organic solvent
JP2023009490A (en) Adjustment method of cation exchange resin

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21885724

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21885724

Country of ref document: EP

Kind code of ref document: A1