WO2022209392A1 - Method for purifying hydrolyzable organic solvent, and method for producing resin for purifying hydrolyzable organic solvent - Google Patents

Method for purifying hydrolyzable organic solvent, and method for producing resin for purifying hydrolyzable organic solvent Download PDF

Info

Publication number
WO2022209392A1
WO2022209392A1 PCT/JP2022/006402 JP2022006402W WO2022209392A1 WO 2022209392 A1 WO2022209392 A1 WO 2022209392A1 JP 2022006402 W JP2022006402 W JP 2022006402W WO 2022209392 A1 WO2022209392 A1 WO 2022209392A1
Authority
WO
WIPO (PCT)
Prior art keywords
exchange resin
resin
organic solvent
cation exchange
hydrolyzable organic
Prior art date
Application number
PCT/JP2022/006402
Other languages
French (fr)
Japanese (ja)
Inventor
郁 貫井
智子 ▲高▼田
幸福 山下
Original Assignee
オルガノ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オルガノ株式会社 filed Critical オルガノ株式会社
Priority to JP2023510631A priority Critical patent/JPWO2022209392A1/ja
Publication of WO2022209392A1 publication Critical patent/WO2022209392A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J39/00Cation exchange; Use of material as cation exchangers; Treatment of material for improving the cation exchange properties
    • B01J39/04Processes using organic exchangers
    • B01J39/05Processes using organic exchangers in the strongly acidic form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J39/00Cation exchange; Use of material as cation exchangers; Treatment of material for improving the cation exchange properties
    • B01J39/04Processes using organic exchangers
    • B01J39/07Processes using organic exchangers in the weakly acidic form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J39/00Cation exchange; Use of material as cation exchangers; Treatment of material for improving the cation exchange properties
    • B01J39/08Use of material as cation exchangers; Treatment of material for improving the cation exchange properties
    • B01J39/16Organic material
    • B01J39/18Macromolecular compounds
    • B01J39/19Macromolecular compounds obtained otherwise than by reactions only involving unsaturated carbon-to-carbon bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J41/00Anion exchange; Use of material as anion exchangers; Treatment of material for improving the anion exchange properties
    • B01J41/04Processes using organic exchangers
    • B01J41/05Processes using organic exchangers in the strongly basic form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J41/00Anion exchange; Use of material as anion exchangers; Treatment of material for improving the anion exchange properties
    • B01J41/04Processes using organic exchangers
    • B01J41/07Processes using organic exchangers in the weakly basic form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J45/00Ion-exchange in which a complex or a chelate is formed; Use of material as complex or chelate forming ion-exchangers; Treatment of material for improving the complex or chelate forming ion-exchange properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J47/00Ion-exchange processes in general; Apparatus therefor
    • B01J47/02Column or bed processes
    • B01J47/04Mixed-bed processes

Definitions

  • the present invention relates to a method for purifying a hydrolyzable organic solvent and a method for producing a resin for purifying a hydrolyzable organic solvent.
  • the photoresist process includes the process of applying resist to a silicon wafer, the exposure process of irradiating short-wavelength light from a light source through a mask, the process of developing the photomask, the process of etching areas without resist, and the process of stripping the resist. including.
  • the resist applied to the wafer is a solvent obtained by dissolving an acid generator, a resin solution, and an additive in an organic solvent.
  • Organic solvents, PGME (propylene glycol monomethyl ether), cyclohexanone and the like are used.
  • the processing dimension requirements for the line width of semiconductors have become finer year by year. Reducing the line width of semiconductors promotes technology for miniaturization and high functionality of IT equipment. With the miniaturization of the line width of semiconductors, the light source used in the exposure process has increased from g-line and i-line levels to short-wavelength ArF, EUV, and X-rays. The amount of impurities is also set low. Among the impurities contained in the organic solvent, especially when a large amount of metal elements remain, the metal elements adhere to the wafer, leading to deterioration of the performance of the semiconductor. Therefore, metal elements are always listed as reduction items.
  • ester-based organic solvents such as PGMEA, which are used in semiconductor manufacturing, undergo hydrolysis and generate acids when they come into contact with moisture, acids, and alkalis. Therefore, in the purification of an ester-based organic solvent, a distillation method or a method using a chelate resin has been proposed as a method for removing metal impurities without generating an acid.
  • Patent Document 1 a chelate resin that has been washed with deionized water, a mineral acid solution, and optionally an ammonium hydroxide solution is washed with an organic solvent, mixed with a photoresist composition, heated and filtered. A method for reducing metal ions in a photoresist composition is described. However, according to this method, the removability of Fe, in particular, was insufficient.
  • Patent Document 2 a resin solution for forming a photoresist film is passed through a filter substrate in which an ion exchange group and/or a chelate group are immobilized on a polyolefin nonwoven fabric, and the liquid flow rate (SV value) is 10 h ⁇ 1 or less. A method is described in which the liquid is passed through by dropping it into the water.
  • Patent Document 2 describes only the Na concentration as the impurity concentration, and according to the studies of the present inventors, the removability of heavy metals such as Fe and Cr is inferior to the case of using a chelate resin. It became clear.
  • Patent Document 3 describes a method for removing metal impurities in a liquid to be treated, such as PGMEA, using a chelate resin containing a reduced amount of metal impurities with a mineral acid solution.
  • the present invention provides a method for producing a resin for refining a hydrolyzable organic solvent that can reduce the concentration of metal impurities in a hydrolyzable organic solvent while suppressing the production of acid, and a method for producing a hydrolyzable organic solvent using the resin.
  • An object of the present invention is to provide a method for purifying a decomposable organic solvent.
  • the inventors of the present invention conducted intensive studies and found that by using a cation exchange resin optionally mixed with a chelate resin, while suppressing the acid generation of the hydrolyzable organic solvent, only the chelate resin The inventors have found that it is possible to reduce the metal that cannot be completely removed, and have completed the present invention.
  • the present invention provides a method for purifying a hydrolyzable organic solvent, comprising a purification step of bringing a hydrolyzable organic solvent into contact with a cation exchange resin optionally mixed with a chelate resin to purify,
  • the present invention also provides a method for producing a resin for purifying a hydrolyzable organic solvent, comprising the step of optionally mixing a chelate resin with a cation exchange resin, wherein the cation exchange resin and any of the chelate resins are A method for producing a resin for purifying a hydrolyzable organic solvent, wherein the volume ratio of the cation exchange resin to the total amount of is 10 to 100%.
  • a method for producing a resin for refining a hydrolyzable organic solvent capable of reducing the concentration of metal impurities in the hydrolyzable organic solvent while suppressing the production of acid, and hydrolysis using the resin.
  • a method for purifying a decomposable organic solvent can be provided.
  • the method for producing a resin for purifying a hydrolyzable organic solvent according to the present invention has a step of optionally mixing a chelate resin with a cation exchange resin.
  • this step can also be said to be a step of preparing a cation exchange resin.
  • the method for purifying a hydrolyzable organic solvent according to the present invention has a purification step of bringing a hydrolyzable organic solvent into contact with a cation exchange resin optionally mixed with a chelate resin for purification.
  • the volume ratio of the cation exchange resin to the total amount of the cation exchange resin and optionally the chelate resin is 10-100%.
  • the hydrolyzable organic solvent which is the liquid to be purified in the present invention, is an ester organic solvent that produces an acid by hydrolysis.
  • the liquid to be purified in the present invention may be a mixed solvent in which two or more organic solvents including at least an ester organic solvent are mixed.
  • the liquid to be purified is not particularly limited, but PGMEA (propylene glycol monomethyl ether acetate), ethylene glycol monoethyl ether acetate, ethyl-3-ethoxypropyl acetate, ethyl lactate, butyl lactate, butyl acetate, isopentyl acetate.
  • PGME propylene glycol monomethyl ether
  • PGMEA or a mixed solvent of PGMEA/PGME is preferable.
  • the ratio of PGMEA in the mixed solvent of PGMEA/PGME is not particularly limited, and can be appropriately adjusted depending on the purpose.
  • the water concentration of the hydrolyzable organic solvent (before purification) used in the present invention is preferably 20 to 10000 mg/L from the viewpoint of suppressing hydrolysis and stabilizing metal refining performance.
  • the upper limit of the water concentration is preferably as low as possible, more preferably 5000 mg/L, even more preferably 1000 mg/L.
  • the water concentration can be measured by the Karl Fischer method using, for example, a Karl Fischer volumetric moisture meter (trade name: Aquacounter AQ-2200, manufactured by Hiranuma Sangyo Co., Ltd.).
  • Cation exchange resin The ion exchange resin is obtained, for example, by introducing a functional group into a copolymer having a three-dimensional network structure obtained by copolymerizing styrene and divinylbenzene (DVB) in the presence of a catalyst and a dispersant.
  • Cation exchange resins used in the present invention include strongly acidic cation exchange resins having sulfonic acid groups (--SO 3 H) and weakly acidic cation-exchange resins having carboxylic acid groups (--COOH).
  • the cation exchange resin is a transparent gel type resin with small pore diameters, and a macrolithicular type (MR type) or macroporous type (porous type, high porous type) having macropores with large pore diameters. Also called).
  • a strongly acidic cation exchange resin is preferably used from the viewpoint of metal removal.
  • the MR-type strongly acidic cation exchange resin is preferable from the viewpoint of the balance between suppression of acid generation and metal removal performance. From the viewpoint of more effectively suppressing the production of acid, a highly crosslinked gel-type strongly acidic cation exchange resin is preferred.
  • the highly crosslinked gel-type strongly acidic cation exchange resin is specifically a gel-type strongly acidic cation exchange resin having a degree of crosslinking of 16% to 24%.
  • the volume ratio of the cation exchange resin to the total amount of the cation exchange resin and any chelate resin described later is 10-100%, preferably 20-100%.
  • the ratio of 100% means that only the cation exchange resin is used.
  • the purification method of the present invention even when only a cation exchange resin is used, it is possible to reduce metal impurities in the liquid to be purified while suppressing the production of acid. From the viewpoint of more effectively suppressing the production of acid, it is preferable to use the cation exchange resin and the chelate resin in a mixed bed or multiple beds.
  • the volume ratio of the cation exchange resin to the total amount of the cation exchange resin and the chelate resin is preferably 10% to 50%, more preferably 10% to 33%.
  • Examples of the cation exchange resin used in the present invention include AMBERLITE (registered trademark) IRN99H (gel type strongly acidic cation exchange resin, trade name, manufactured by DuPont), AMBERLITE (registered trademark) CR99 K/350, TAPTEC ( Registered trademarks) HCRS Na (both gel-type strongly acidic cation exchange resins, trade name, manufactured by DuPont), AMBERJET (registered trademark) 1060H (gel-type strongly acidic cation exchange resins, trade name, Organo Corporation ), ORLITE (registered trademark) DS-1 (gel type strongly acidic cation exchange resin, trade name, manufactured by Organo Corporation), ORLITE (registered trademark) DS-4 (MR type strongly acidic cation exchange resin , trade name, manufactured by Organo Corporation), etc., but are not limited to these.
  • the hydrogen ion form As the ionic form of the cation exchange resin, the hydrogen ion form (H form) is preferable from the viewpoint of metal removal.
  • resins of other ion types for example, sodium ion type, potassium ion type, etc.
  • a chelate resin can optionally be mixed with the cation exchange resin.
  • the cation exchange resin and the chelate resin may be mixed bed or double bed. In either case, the effects of the present invention can be obtained.
  • a chelate resin is a resin having a functional group (chelate group) capable of forming a chelate (complex) with a metal ion.
  • the functional group is not particularly limited as long as it is a functional group capable of forming a chelate (complex) with metal ions.
  • Such functional groups include, for example, aminomethylphosphate groups, iminodiacetic acid groups, thiol groups and polyamine groups. From the viewpoint of selectivity for a plurality of metal species, the chelate resin preferably has an aminomethyl phosphate group or an iminodiacetic acid group as a functional group.
  • the ionic form of the chelate resin is preferably the H form.
  • Chelate resins include, for example, AMBERSEP (registered trademark) IRC747UPS (trade name, manufactured by DuPont, chelate group: aminomethyl phosphate group), AMBERSEP (registered trademark) IRC748 (trade name, manufactured by DuPont, chelate group: iminodi Acetate group), ORLITE (registered trademark) DS-21 (trade name, manufactured by Organo Corporation, chelate group: aminomethyl phosphate group), ORLITE (registered trademark) DS-22 (trade name, manufactured by Organo Corporation, Chelate group: iminodiacetic acid group), Diaion (registered trademark) CR11 (trade name, manufactured by Mitsubishi Chemical Corporation, chelate group: iminodiacetic acid group), S930 (trade name, manufactured by Purolite Co., Ltd., chelate group: iminodiacetic acid group), S950 (trade name, manufactured by Purolite Co., Ltd
  • the chelate resin used in the present invention is in the form of hydrogen ions, and the amount of total metal impurities eluted when hydrochloric acid having a concentration of 3% by mass is passed through the chelate resin at 25 times the volume ratio is 5 ⁇ g/mL-. R or less is preferred.
  • Such commercially available products can also be used as the chelate resin.
  • “25 times the volume ratio” means passing hydrochloric acid in a volume 25 times the volume of the chelate resin.
  • the unit “/mL-R” means "per mL volume of chelate resin in equilibrium with saturation".
  • the saturated equilibrium state refers to a state in which the chelate resin is brought into a saturated state by contacting the atmosphere with a relative humidity of 100% at 25° C.
  • the amount of total metal impurities per 1 mL volume of chelating resin is the amount of each eluted metal impurity ( ⁇ g/L), the volume of eluent used for elution (L), and the volume of chelating resin (mL ), it can be calculated by the following formula.
  • Amount of total metal impurities ( ⁇ g/mL ⁇ R) (amount of each metal impurity ( ⁇ g/L) ⁇ volume of eluent (L))/volume of chelating resin (mL)
  • the chelate resin having a total metal impurity content of 5 ⁇ g/mL-R or less can be obtained, for example, by the method described in Patent Document 3. That is, it is a method of contacting a chelate resin with a mineral acid solution containing 1 mg/L or less of metal impurities and having a concentration of 5 mass % or more. As a result, the amount of all metal impurities (especially the amount of eluted metals such as Na, Ca, Mg, and Fe) eluted when hydrochloric acid having a concentration of 3% by mass is passed through the chelate resin in an amount 25 times the volume ratio is reduced to 5 ⁇ g/ It can be reduced to mL-R or less.
  • a hydrolyzable organic solvent containing a reduced amount of metal impurities By purifying a hydrolyzable organic solvent using such a chelate resin containing a reduced amount of metal impurities, a high-purity hydrolyzable organic solvent containing less metal impurities can be obtained.
  • a mineral acid solution hydrochloric acid, sulfuric acid, nitric acid, or the like can be used.
  • the above purification is performed using a Na-type chelate resin, the ionic form is converted to the H-type by carrying out the above-mentioned purification.
  • an anion exchange resin As described above, in the present invention, a mixture of a cation exchange resin and optionally a chelate resin is used, but an anion exchange resin can also be used in combination.
  • an anion exchange resin By using an anion exchange resin, the production of acid can be reliably suppressed. Therefore, for example, even if only a cation exchange resin is used, or if there is a concern about the production of acid, the combination of an anion exchange resin can be used to further suppress the production of acid. becomes.
  • the amount of the anion exchange resin used can be, for example, 0.1 to 100% by volume with respect to the total amount of the cation exchange resin and optional chelate resin.
  • Anion exchange resins include strongly basic anion exchange resins having quaternary ammonium bases and weakly basic anion exchange resins having primary to tertiary amino groups.
  • anion exchange resins include ORLITE (registered trademark) DS-2 (gel type strongly basic anion exchange resin, trade name, manufactured by Organo Corporation), DS-5 (MR type strongly basic anion exchange resin). Ion exchange resin, trade name, manufactured by Organo Co., Ltd.), DS-6 (MR-type weakly basic anion exchange resin, trade name, manufactured by Organo Co., Ltd.), etc., but are limited to these. is not. Among these, MR type anion exchange resins are preferred.
  • any chelate resin and any anion exchange resin (hereinafter collectively referred to as "ion exchange resin") for purification of the hydrolyzable organic solvent, if necessary
  • pretreatment may be performed to suppress water elution from the resin. That is, in the purification method according to the present invention, the cation exchange resin, any chelate resin, and any anion exchange resin are subjected to pretreatment to suppress water elution from the resin before the purification step. You may have a pretreatment process to carry out.
  • a hydrolyzable organic solvent to be purified is brought into contact with an ion exchange resin, or a pretreatment in which the ion exchange resin has a higher dielectric constant at 25 ° C. than the hydrolyzable organic solvent to be purified.
  • the hydrolyzable organic solvent to be purified is passed through a column filled with an ion exchange resin before being used for purification, and the column inlet and A method of continuing to flow until the water concentration in the solvent at the outlet reaches the same level can be mentioned.
  • the hydrolyzable organic solvent to be purified may be further passed through until the water concentration in the solvent at the inlet and the outlet of the column is approximately the same.
  • an alcohol such as methanol or ethanol having a dielectric constant of 20 or more at 25° C. is preferably used.
  • a heat-resistant container filled with an ion-exchange resin is placed inside a dryer and heated (dried) for several hours.
  • suitable temperature and time can be set at 50° C. to 120° C. for 1 hour to 24 hours depending on the type of ion exchange resin.
  • the drying method may be normal pressure, reduced pressure, or vacuum drying, but reduced pressure or vacuum drying is preferable from the viewpoint of short drying time and good efficiency.
  • the water content of the ion exchange resin can be calculated using the following formula.
  • Moisture content (mass%) ((mass of resin heated by dryer (g) - mass of resin completely dried with heat drying moisture meter (g)) / mass of resin heated by dryer (g)) x 100
  • the resin heated by the dryer is obtained by heating the resin as described above (water content is 10% by mass or less). Subsequently, the resin heat-treated by the dryer is stored and moved so as to avoid contamination of moisture from the air until it is measured by a heat drying type moisture meter. Then, the resin is placed on a heat drying moisture meter and completely dried at 105° C. for several minutes to several tens of minutes to obtain a completely dried resin on the heat drying moisture meter.
  • the heat drying moisture meter for example, MX-50 (trade name) manufactured by A&D can be used.
  • 5 g or more of the resin before drying is sampled before the measurement.
  • the method of bringing the hydrolyzable organic solvent into contact with the ion exchange resin is not particularly limited, but includes a batch processing method and a continuous liquid flow processing method using a column. Among them, the continuous liquid flow treatment method is preferable from the viewpoint of operability and efficiency.
  • the ion exchange resin is packed in a purification tower such as a column.
  • the height of the resin-packed bed in the refining tower is not particularly limited, and can be, for example, 100 to 1500 mm.
  • a hydrolyzable organic solvent is passed through at, for example, SV (space velocity, h ⁇ 1 ) of 2 to 20 and 2 to 100 BV.
  • BV Bed volume
  • the hydrolyzable organic solvent is preferably passed at SV2 to 20, more preferably at SV5 to 10.
  • the direction of liquid flow may be either downward flow or upward flow.
  • an ion exchange resin is charged into a reactor equipped with a stirrer.
  • a hydrolyzable organic solvent is charged into the reactor.
  • the volume ratio is not particularly limited, it is preferable to use 2 to 200 parts of the organic solvent to 1 part of the resin. After that, it is left for about 0.5 to 24 hours, for example.
  • the stirrer is operated to uniformly mix the resin and the organic solvent.
  • the stirring speed and stirring time may be appropriately determined according to the size of the reaction vessel, throughput, and the like.
  • the resin and the hydrolyzable organic solvent are separated by filtration or the like, thereby removing metal impurities and obtaining a purified hydrolyzable organic solvent.
  • the container such as the column used for the pretreatment can be used as it is. can be used to carry out a purification step by contacting a hydrolyzable organic solvent with an ion exchange resin.
  • the purification of the hydrolyzable organic solvent is performed in a continuous operation, that is, in the purification step, after starting purification (flowing) of the hydrolyzable organic solvent to be purified, until the purification is completed. Mainly, it is performed continuously without stopping in the middle. However, it is also possible to purify the hydrolyzable organic solvent by intermittent operation. When purification of a hydrolyzable organic solvent is performed intermittently, hydrolysis of the organic solvent progresses due to moisture from the outside or functional groups derived from the resin inside the test system, and moisture and acid are generated.
  • the purification method according to the present invention elutes from the outlet of a purification column filled with a cation exchange resin, an optional chelate resin, and an optional anion exchange resin after the start of the purification process. It is preferable to have a blowing step of discharging the hydrolyzable organic solvent for a certain period of time to the outside of a storage tank for storing the hydrolyzable organic solvent after purification.
  • the hydrolyzable organic solvent eluted from the outlet of the purification column is removed by an ion exchange resin (cation exchange resin , optional chelate resin and optional anion exchange resin), after discharging 0.5 BV or more to the outside of the storage tank, the refining process is restarted.
  • an ion exchange resin cation exchange resin , optional chelate resin and optional anion exchange resin
  • the amount of blowing in the blowing process (the amount of hydrolyzable organic solvent discharged to the outside of the system) is set in advance according to the operation stop time, the amount of water in the hydrolyzable organic solvent at the outlet of the refining tower, the acid concentration, the resistivity value, etc. You can also Alternatively, setting can be made by online monitoring to automatically stop the blowing process and switch to the refining process when a preset specific resistance value is reached. Even when the hydrolyzable organic solvent is purified by continuous operation, the blowing step can be carried out as necessary.
  • the production of acid from the hydrolyzable organic solvent is suppressed, so the pH of the hydrolyzable organic solvent after the purification process can be kept near neutral.
  • the pH of the hydrolyzable organic solvent after the purification step can be adjusted to 5-7.
  • the pH may be, for example, 4 or less.
  • the concentration of each metal in the hydrolyzable organic solvent can be reduced by 70% by mass or more, preferably by 80% by mass or more in the purification process.
  • the metal impurities contained in the hydrolyzable organic solvent include, for example, Li, Na, Mg, Al, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Sr, Ag, Cd, Sn, Ba, Pb and the like are included.
  • the methods for measuring metal concentration, acetic acid concentration, and water concentration are as follows.
  • Metal concentration Metal concentration (ng/L) was measured using Agilent 8900 triple quadrupole ICP-MS (trade name, manufactured by Agilent Technologies).
  • acetic acid concentration The acetic acid concentration (mass ppm) was measured using a capillary electrophoresis system (trade name: Agilent 7100, manufactured by Otsuka Electronics Co., Ltd.).
  • moisture concentration The water concentration was measured by the Karl Fischer method using a Karl Fischer volumetric moisture meter (trade name: Aquacounter AQ-2200, manufactured by Hiranuma Sangyo Co., Ltd.).
  • the amount of total metal impurities eluted when hydrochloric acid having a concentration of 3% by mass is passed through the chelate resin at a volume ratio of 25 times is 5 ⁇ g/mL-R or less.
  • PGMEA trade name: PM thinner, manufactured by Tokyo Ohka Kogyo Co., Ltd.
  • water in the resin can be removed by, for example, passing through methanol, which has a higher dielectric constant at 25° C. than PGMEA, in the above pretreatment instead of PGMEA.
  • PGMEA undiluted solution
  • PGMEA at the column outlet after purification were collected, and the Cr concentration, acetic acid concentration and water concentration were measured.
  • Table 1 shows the results.
  • the generated acetic acid it can be considered that up to 5 mg/L (absolute value) is within the measurement error range, that is, almost no acetic acid is generated. Also, the concentrations of Cr and acetic acid in the stock solution are different in each example, but this is due to different lots of the stock solution.
  • Examples 6 and 7 Comparison of Cr removal performance depending on the type of strongly acidic cation exchange resin
  • ORLITE registered trademark
  • DS-1 gel-type strongly acidic cation exchange resin, degree of cross-linking: standard
  • AMBERLITE AMBERLITE
  • CR99 K/350 gel-type strongly acidic cation exchange resin, degree of cross-linking: low, converted from K form to H form
  • PGMEA was prepared in the same manner as in Example 3. was purified.
  • PGMEA undiluted solution
  • PGMEA at the outlet of the column after purification were collected, and the Cr concentration and water concentration were measured. The results are shown in Table 2 together with Example 3.
  • DS-4 which is an MR-type strongly acidic cation exchange resin
  • DS-1 which is a gel-type strongly acidic cation exchange resin
  • gel-type small particle size strongly acidic cation exchange resin It was found that the metal removal performance is particularly excellent compared to CR99 K/350, which is an exchange resin.
  • Example 8 to 10 Comparison of acetic acid generation depending on the degree of cross-linking
  • AMBERLITE registered trademark
  • IRN99H crosslinking degree: high
  • ORLITE registered trademark
  • DS-1 crosslinking degree PGMEA was purified in the same manner as in Example 3, except that AMBERLITE® CR99 K/350 (degree of cross-linking: low, conversion of K form to H form) was used.
  • PGMEA undiluted solution
  • PGMEA at the column outlet after purification were collected, and the acetic acid concentration and water concentration were measured. Table 3 shows the results.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

Provided is a method for purifying a hydrolyzable organic solvent, the method making it possible to reduce the metal impurity concentration in the hydrolyzable organic solvent while suppressing the generation of acids. There is used a method for purifying a hydrolyzable organic solvent, the method being characterized by having a purification step for bringing a hydrolyzable organic solvent into contact with a cation exchange resin with which a chelate resin is mixed in a discretionary manner and purifying the hydrolyzable organic solvent, and moreover being characterized in that the volumetric ratio of the cation exchange resin relative to the total amount of the cation exchange resin and the discretionary chelate resin is 10-100%.

Description

加水分解性有機溶媒の精製方法および加水分解性有機溶媒精製用の樹脂の製造方法Method for purifying hydrolyzable organic solvent and method for producing resin for purifying hydrolyzable organic solvent
 本発明は、加水分解性有機溶媒の精製方法および加水分解性有機溶媒精製用の樹脂の製造方法に関する。 The present invention relates to a method for purifying a hydrolyzable organic solvent and a method for producing a resin for purifying a hydrolyzable organic solvent.
 半導体は、数百もの複雑な工程を経て製造されている。半導体の線幅は、フォトレジスト工程によって決定付けられる。フォトレジスト工程は、シリコンウェハにレジストを塗布する工程、光源から短波長の光をマスク越しに照射する露光工程、フォトマスクを現像する工程、レジストの無い部分をエッチングする工程、およびレジストの剥離工程を含む。ウェハに塗布するレジストは、酸発生剤や樹脂溶液、添加剤を有機溶媒に溶解させた溶剤であり、該有機溶媒としては、主成分としてPGMEA(プロピレングリコールモノメチルエーテルアセテート)、乳酸エチル等のエステル系有機溶媒や、PGME(プロピレングリコールモノメチルエーテル)、シクロヘキサノン等を含むものが使用される。 Semiconductors are manufactured through hundreds of complex processes. Semiconductor line widths are dictated by the photoresist process. The photoresist process includes the process of applying resist to a silicon wafer, the exposure process of irradiating short-wavelength light from a light source through a mask, the process of developing the photomask, the process of etching areas without resist, and the process of stripping the resist. including. The resist applied to the wafer is a solvent obtained by dissolving an acid generator, a resin solution, and an additive in an organic solvent. Organic solvents, PGME (propylene glycol monomethyl ether), cyclohexanone and the like are used.
 近年、半導体の線幅の加工寸法要求が年々微細になってきている。半導体の線幅を微細化することは、IT機器の小型化・高機能化技術を促進させる。半導体の線幅の微細化に伴い、露光工程で用いる光源としては、g線、i線レベルから、短波長のArF、EUV、X線の使用が増え、レジスト塗布周囲に用いられる有機溶媒中の不純物量も低く設定されている。有機溶媒に含まれる不純物の中でも、特に、金属元素が多く残存する場合には、該金属元素がウェハに付着して、半導体の性能低下につながる。そのため、金属元素は、低減項目として必ず挙げられる。 In recent years, the processing dimension requirements for the line width of semiconductors have become finer year by year. Reducing the line width of semiconductors promotes technology for miniaturization and high functionality of IT equipment. With the miniaturization of the line width of semiconductors, the light source used in the exposure process has increased from g-line and i-line levels to short-wavelength ArF, EUV, and X-rays. The amount of impurities is also set low. Among the impurities contained in the organic solvent, especially when a large amount of metal elements remain, the metal elements adhere to the wafer, leading to deterioration of the performance of the semiconductor. Therefore, metal elements are always listed as reduction items.
 一方で、半導体製造において用いられるPGMEA等のエステル系有機溶媒は、水分や酸、アルカリと接触することにより加水分解を起こし、酸を生成することが知られている。そのため、エステル系有機溶媒の精製においては、酸を発生させずに金属不純物を除去する方法として、蒸留法やキレート樹脂を用いる方法が提案されている。 On the other hand, it is known that ester-based organic solvents such as PGMEA, which are used in semiconductor manufacturing, undergo hydrolysis and generate acids when they come into contact with moisture, acids, and alkalis. Therefore, in the purification of an ester-based organic solvent, a distillation method or a method using a chelate resin has been proposed as a method for removing metal impurities without generating an acid.
 特許文献1には、脱イオン水と鉱酸溶液、そして任意に水酸化アンモニウム溶液を用いて洗浄したキレート樹脂を、有機溶媒で洗浄した後、フォトレジスト組成物を混合し、加温・フィルター濾過を行うことにより、フォトレジスト組成物中の金属イオンを低減させる方法が記載されている。しかしながら、この方法によれば、特にFeの除去性が不十分であった。 In Patent Document 1, a chelate resin that has been washed with deionized water, a mineral acid solution, and optionally an ammonium hydroxide solution is washed with an organic solvent, mixed with a photoresist composition, heated and filtered. A method for reducing metal ions in a photoresist composition is described. However, according to this method, the removability of Fe, in particular, was insufficient.
 特許文献2には、フォトレジスト膜形成用の樹脂溶液を、ポリオレフィン系の不織布にイオン交換基および/またはキレート基を固定化した濾過基材に、通液流量(SV値)を10h-1以下に落として通液する方法が記載されている。しかしながら、特許文献2には、不純物濃度としてNa濃度のみが記載されており、本発明者らの検討によれば、キレート樹脂を用いた場合と比べ、FeやCr等の重金属の除去性が劣ることが明らかとなった。 In Patent Document 2, a resin solution for forming a photoresist film is passed through a filter substrate in which an ion exchange group and/or a chelate group are immobilized on a polyolefin nonwoven fabric, and the liquid flow rate (SV value) is 10 h −1 or less. A method is described in which the liquid is passed through by dropping it into the water. However, Patent Document 2 describes only the Na concentration as the impurity concentration, and according to the studies of the present inventors, the removability of heavy metals such as Fe and Cr is inferior to the case of using a chelate resin. It became clear.
 特許文献3には、鉱酸溶液によって含有金属不純物量を低減したキレート樹脂を用いて、PGMEA等の被処理液中の金属不純物を除去する方法が記載されている。しかしながら、本発明者らがさらに検討を行ったところ、精製対象の被処理液によっては、FeやCr等の重金属を十分に除去しきれない場合があることが明らかとなった。 Patent Document 3 describes a method for removing metal impurities in a liquid to be treated, such as PGMEA, using a chelate resin containing a reduced amount of metal impurities with a mineral acid solution. However, as a result of further investigation by the present inventors, it became clear that heavy metals such as Fe and Cr may not be sufficiently removed depending on the liquid to be purified.
特表2000-501201号公報Japanese Patent Publication No. 2000-501201 特開2013-061426号公報JP 2013-061426 A 特開2019-141800号公報Japanese Patent Application Laid-Open No. 2019-141800
 したがって、本発明は、酸の生成を抑制しつつ、加水分解性有機溶媒中の金属不純物濃度を低減させることが可能な加水分解性有機溶媒精製用の樹脂の製造方法および該樹脂を用いた加水分解性有機溶媒の精製方法を提供することを目的とする。 Therefore, the present invention provides a method for producing a resin for refining a hydrolyzable organic solvent that can reduce the concentration of metal impurities in a hydrolyzable organic solvent while suppressing the production of acid, and a method for producing a hydrolyzable organic solvent using the resin. An object of the present invention is to provide a method for purifying a decomposable organic solvent.
 上記問題に鑑みて、本発明者らが鋭意検討した結果、任意にキレート樹脂を混合した陽イオン交換樹脂を用いることにより、加水分解性有機溶媒の酸生成を抑制しつつ、キレート樹脂のみによっては除去しきれない金属を低減することが可能であることを見出し、本発明を完成させるに至った。 In view of the above problems, the inventors of the present invention conducted intensive studies and found that by using a cation exchange resin optionally mixed with a chelate resin, while suppressing the acid generation of the hydrolyzable organic solvent, only the chelate resin The inventors have found that it is possible to reduce the metal that cannot be completely removed, and have completed the present invention.
 すなわち、本発明は、加水分解性有機溶媒の精製方法であって、任意にキレート樹脂を混合した陽イオン交換樹脂に、加水分解性有機溶媒を接触させて精製する精製工程を有し、前記陽イオン交換樹脂および任意の前記キレート樹脂の合計量に対する前記陽イオン交換樹脂の体積割合が10~100%であることを特徴とする、加水分解性有機溶媒の精製方法である。 That is, the present invention provides a method for purifying a hydrolyzable organic solvent, comprising a purification step of bringing a hydrolyzable organic solvent into contact with a cation exchange resin optionally mixed with a chelate resin to purify, A method for purifying a hydrolyzable organic solvent, wherein the volume ratio of the cation exchange resin to the total amount of the ion exchange resin and the optional chelate resin is 10 to 100%.
 また、本発明は、加水分解性有機溶媒精製用の樹脂の製造方法であって、陽イオン交換樹脂に任意にキレート樹脂を混合する工程を有し、前記陽イオン交換樹脂および任意の前記キレート樹脂の合計量に対する前記陽イオン交換樹脂の体積割合が10~100%であることを特徴とする、加水分解性有機溶媒精製用の樹脂の製造方法である。 The present invention also provides a method for producing a resin for purifying a hydrolyzable organic solvent, comprising the step of optionally mixing a chelate resin with a cation exchange resin, wherein the cation exchange resin and any of the chelate resins are A method for producing a resin for purifying a hydrolyzable organic solvent, wherein the volume ratio of the cation exchange resin to the total amount of is 10 to 100%.
 本発明によれば、酸の生成を抑制しつつ、加水分解性有機溶媒中の金属不純物濃度を低減させることが可能な加水分解性有機溶媒精製用の樹脂の製造方法および該樹脂を用いた加水分解性有機溶媒の精製方法を提供することができる。 According to the present invention, a method for producing a resin for refining a hydrolyzable organic solvent capable of reducing the concentration of metal impurities in the hydrolyzable organic solvent while suppressing the production of acid, and hydrolysis using the resin. A method for purifying a decomposable organic solvent can be provided.
 本発明に係る加水分解性有機溶媒精製用の樹脂の製造方法は、陽イオン交換樹脂に任意にキレート樹脂を混合する工程を有する。なお、キレート樹脂を用いず、陽イオン交換樹脂のみを用いる場合、該工程は、陽イオン交換樹脂を用意する工程とも言える。また、本発明に係る加水分解性有機溶媒の精製方法は、任意にキレート樹脂を混合した陽イオン交換樹脂に、加水分解性有機溶媒を接触させて精製する精製工程を有する。前記陽イオン交換樹脂および任意の前記キレート樹脂の合計量に対する前記陽イオン交換樹脂の体積割合は10~100%である。 The method for producing a resin for purifying a hydrolyzable organic solvent according to the present invention has a step of optionally mixing a chelate resin with a cation exchange resin. In addition, when only a cation exchange resin is used without using a chelate resin, this step can also be said to be a step of preparing a cation exchange resin. Further, the method for purifying a hydrolyzable organic solvent according to the present invention has a purification step of bringing a hydrolyzable organic solvent into contact with a cation exchange resin optionally mixed with a chelate resin for purification. The volume ratio of the cation exchange resin to the total amount of the cation exchange resin and optionally the chelate resin is 10-100%.
 (加水分解性有機溶媒)
 本発明における精製対象液である加水分解性有機溶媒は、加水分解によって酸を生じるエステル系有機溶媒である。なお、本発明における精製対象液は、少なくともエステル系有機溶媒を含む2種以上の有機溶媒を混合した混合溶媒でもよい。精製対象液としては、特に限定されるものではないが、PGMEA(プロピレングリコールモノメチルエーテルアセテート)、エチレングリコールモノエチルエーテルアセテート、エチル-3-エトキシプロピルアセテート、乳酸エチル、乳酸ブチル、酢酸ブチル、酢酸イソペンチル等のエステル系有機溶媒や、これらエステル系有機溶媒とPGME(プロピレングリコールモノメチルエーテル)、シクロヘキサノン等との混合溶媒が挙げられる。これらの中でも、PGMEAまたはPGMEA/PGMEの混合溶媒が好ましい。PGMEA/PGMEの混合溶媒中におけるPGMEAの割合は、特に限定されるものではなく、目的に応じて適宜、調整することができる。
(Hydrolyzable organic solvent)
The hydrolyzable organic solvent, which is the liquid to be purified in the present invention, is an ester organic solvent that produces an acid by hydrolysis. The liquid to be purified in the present invention may be a mixed solvent in which two or more organic solvents including at least an ester organic solvent are mixed. The liquid to be purified is not particularly limited, but PGMEA (propylene glycol monomethyl ether acetate), ethylene glycol monoethyl ether acetate, ethyl-3-ethoxypropyl acetate, ethyl lactate, butyl lactate, butyl acetate, isopentyl acetate. and mixed solvents of these ester organic solvents with PGME (propylene glycol monomethyl ether), cyclohexanone and the like. Among these, PGMEA or a mixed solvent of PGMEA/PGME is preferable. The ratio of PGMEA in the mixed solvent of PGMEA/PGME is not particularly limited, and can be appropriately adjusted depending on the purpose.
 本発明において用いる加水分解性有機溶媒(精製前)の水分濃度は、加水分解の抑制および金属精製性能の安定の点から、20~10000mg/Lであることが好ましい。前記水分濃度の上限値は低い方が好ましく、5000mg/Lがより好ましく、1000mg/Lがさらに好ましい。なお、水分濃度は、例えば、カールフィッシャー容量法水分計(商品名:Aquacounter AQ-2200、平沼産業(株)製)を用いて、カールフィッシャー法により測定することができる。 The water concentration of the hydrolyzable organic solvent (before purification) used in the present invention is preferably 20 to 10000 mg/L from the viewpoint of suppressing hydrolysis and stabilizing metal refining performance. The upper limit of the water concentration is preferably as low as possible, more preferably 5000 mg/L, even more preferably 1000 mg/L. The water concentration can be measured by the Karl Fischer method using, for example, a Karl Fischer volumetric moisture meter (trade name: Aquacounter AQ-2200, manufactured by Hiranuma Sangyo Co., Ltd.).
 (陽イオン交換樹脂)
 イオン交換樹脂は、例えば、スチレンとジビニルベンゼン(DVB)を、触媒と分散剤との共存下において共重合させて得られる三次元網目構造を有する共重合体に、官能基を導入して得られる。本発明において用いる陽イオン交換樹脂としては、スルホン酸基(-SOH)を有する強酸性陽イオン交換樹脂およびカルボン酸基(-COOH)を有する弱酸性陽イオン交換樹脂が挙げられる。また、陽イオン交換樹脂は、樹脂の有する細孔の径が小さく透明なゲル型および細孔の径が大きいマクロポアを有するマクロリテキュラー型(MR型)またはマクロポーラス型(ポーラス型、ハイポーラス型とも呼ばれる)のいずれであってもよい。本発明においては、金属除去の観点から、強酸性陽イオン交換樹脂が好ましく用いられる。中でも、酸の生成の抑制と金属除去性能とのバランスの観点からは、MR型強酸性陽イオン交換樹脂が好ましい。また、酸の生成をより効果的に抑制する観点からは、高架橋のゲル型強酸性陽イオン交換樹脂が好ましい。なお、高架橋のゲル型強酸性陽イオン交換樹脂とは、具体的には、16%~24%の架橋度を有するゲル型強酸性陽イオン交換樹脂である。
(cation exchange resin)
The ion exchange resin is obtained, for example, by introducing a functional group into a copolymer having a three-dimensional network structure obtained by copolymerizing styrene and divinylbenzene (DVB) in the presence of a catalyst and a dispersant. . Cation exchange resins used in the present invention include strongly acidic cation exchange resins having sulfonic acid groups (--SO 3 H) and weakly acidic cation-exchange resins having carboxylic acid groups (--COOH). In addition, the cation exchange resin is a transparent gel type resin with small pore diameters, and a macrolithicular type (MR type) or macroporous type (porous type, high porous type) having macropores with large pore diameters. Also called). In the present invention, a strongly acidic cation exchange resin is preferably used from the viewpoint of metal removal. Among them, the MR-type strongly acidic cation exchange resin is preferable from the viewpoint of the balance between suppression of acid generation and metal removal performance. From the viewpoint of more effectively suppressing the production of acid, a highly crosslinked gel-type strongly acidic cation exchange resin is preferred. The highly crosslinked gel-type strongly acidic cation exchange resin is specifically a gel-type strongly acidic cation exchange resin having a degree of crosslinking of 16% to 24%.
 陽イオン交換樹脂および後述する任意のキレート樹脂の合計量に対する陽イオン交換樹脂の体積割合は、10~100%、好ましくは、20~100%である。ここで、該割合が100%であるとは、陽イオン交換樹脂のみを用いることを意味する。本発明に係る精製方法によれば、陽イオン交換樹脂のみを用いた場合であっても、酸の生成を抑制しつつ、精製対象液中の金属不純物を低減させることが可能である。酸の生成をより効果的に抑制する観点からは、陽イオン交換樹脂とキレート樹脂とを混床または複床で用いることが好ましい。その場合において、陽イオン交換樹脂およびのキレート樹脂の合計量に対する陽イオン交換樹脂の体積割合は、10%~50%であることが好ましく、10%~33%であることがより好ましい。 The volume ratio of the cation exchange resin to the total amount of the cation exchange resin and any chelate resin described later is 10-100%, preferably 20-100%. Here, the ratio of 100% means that only the cation exchange resin is used. According to the purification method of the present invention, even when only a cation exchange resin is used, it is possible to reduce metal impurities in the liquid to be purified while suppressing the production of acid. From the viewpoint of more effectively suppressing the production of acid, it is preferable to use the cation exchange resin and the chelate resin in a mixed bed or multiple beds. In that case, the volume ratio of the cation exchange resin to the total amount of the cation exchange resin and the chelate resin is preferably 10% to 50%, more preferably 10% to 33%.
 本発明で用いる陽イオン交換樹脂としては、例えば、AMBERLITE(登録商標) IRN99H(ゲル型の強酸性陽イオン交換樹脂、商品名、デュポン社製)、AMBERLITE(登録商標) CR99 K/350、TAPTEC(登録商標) HCRS Na(いずれもゲル型の強酸性陽イオン交換樹脂、商品名、デュポン社製)、AMBERJET(登録商標) 1060H(ゲル型の強酸性陽イオン交換樹脂、商品名、オルガノ(株)製)、ORLITE(登録商標) DS-1(ゲル型の強酸性陽イオン交換樹脂、商品名、オルガノ(株)製)、ORLITE(登録商標) DS-4(MR型の強酸性陽イオン交換樹脂、商品名、オルガノ(株)製)等が挙げられるが、これらに限定されるものではない。陽イオン交換樹脂のイオン形としては、金属除去の観点から、水素イオン形(H形)が好ましい。なお、他のイオン形(例えば、ナトリウムイオン形、カリウムイオン形等)の樹脂を用いる場合は、予め、公知の方法によりH形に変換して用いることが好ましい。 Examples of the cation exchange resin used in the present invention include AMBERLITE (registered trademark) IRN99H (gel type strongly acidic cation exchange resin, trade name, manufactured by DuPont), AMBERLITE (registered trademark) CR99 K/350, TAPTEC ( Registered trademarks) HCRS Na (both gel-type strongly acidic cation exchange resins, trade name, manufactured by DuPont), AMBERJET (registered trademark) 1060H (gel-type strongly acidic cation exchange resins, trade name, Organo Corporation ), ORLITE (registered trademark) DS-1 (gel type strongly acidic cation exchange resin, trade name, manufactured by Organo Corporation), ORLITE (registered trademark) DS-4 (MR type strongly acidic cation exchange resin , trade name, manufactured by Organo Corporation), etc., but are not limited to these. As the ionic form of the cation exchange resin, the hydrogen ion form (H form) is preferable from the viewpoint of metal removal. When using resins of other ion types (for example, sodium ion type, potassium ion type, etc.), it is preferable to convert them to H type in advance by a known method before use.
 (キレート樹脂)
 本発明においては、前記陽イオン交換樹脂に、任意にキレート樹脂を混合することができる。キレート樹脂を混合する場合、陽イオン交換樹脂およびキレート樹脂は、混床としてもよく、複床としてもよい。いずれの場合であっても、本発明の効果を得ることができる。キレート樹脂は、金属イオンとキレート(錯体)を形成することができる官能基(キレート基)を有する樹脂である。該官能基は、金属イオンとキレート(錯体)を形成することができる官能基であればよく、特に限定されない。該官能基としては、例えば、アミノメチルリン酸基、イミノ二酢酸基、チオール基およびポリアミン基が挙げられる。複数の金属種に対する選択性等の観点から、キレート樹脂としては、アミノメチルリン酸基またはイミノ二酢酸基を官能基として有するものが好ましい。
(chelate resin)
In the present invention, a chelate resin can optionally be mixed with the cation exchange resin. When the chelate resin is mixed, the cation exchange resin and the chelate resin may be mixed bed or double bed. In either case, the effects of the present invention can be obtained. A chelate resin is a resin having a functional group (chelate group) capable of forming a chelate (complex) with a metal ion. The functional group is not particularly limited as long as it is a functional group capable of forming a chelate (complex) with metal ions. Such functional groups include, for example, aminomethylphosphate groups, iminodiacetic acid groups, thiol groups and polyamine groups. From the viewpoint of selectivity for a plurality of metal species, the chelate resin preferably has an aminomethyl phosphate group or an iminodiacetic acid group as a functional group.
 キレート樹脂のイオン形はH形であることが好ましい。キレート樹脂としては、例えば、AMBERSEP(登録商標) IRC747UPS(商品名、デュポン社製、キレート基:アミノメチルリン酸基)、AMBERSEP(登録商標) IRC748(商品名、デュポン社製、キレート基:イミノ二酢酸基)、ORLITE(登録商標) DS-21(商品名、オルガノ(株)製、キレート基:アミノメチルリン酸基)、ORLITE(登録商標) DS-22(商品名、オルガノ(株)製、キレート基:イミノ二酢酸基)、ダイヤイオン(登録商標) CR11(商品名、三菱ケミカル(株)製、キレート基:イミノ二酢酸基)、S930(商品名、ピュロライト(株)製、キレート基:イミノ二酢酸基)、S950(商品名、ピュロライト(株)製、キレート基:アミノリン酸基)等が挙げられるが、これらに限定されるものではない。なお、上記樹脂のイオン形がナトリウムイオン形(Na形)である場合は、公知の方法により、イオン形をNa形からH形に変換して用いることができる。 The ionic form of the chelate resin is preferably the H form. Chelate resins include, for example, AMBERSEP (registered trademark) IRC747UPS (trade name, manufactured by DuPont, chelate group: aminomethyl phosphate group), AMBERSEP (registered trademark) IRC748 (trade name, manufactured by DuPont, chelate group: iminodi Acetate group), ORLITE (registered trademark) DS-21 (trade name, manufactured by Organo Corporation, chelate group: aminomethyl phosphate group), ORLITE (registered trademark) DS-22 (trade name, manufactured by Organo Corporation, Chelate group: iminodiacetic acid group), Diaion (registered trademark) CR11 (trade name, manufactured by Mitsubishi Chemical Corporation, chelate group: iminodiacetic acid group), S930 (trade name, manufactured by Purolite Co., Ltd., chelate group: iminodiacetic acid group), S950 (trade name, manufactured by Purolite Co., Ltd., chelate group: aminophosphoric acid group), etc., but not limited thereto. When the ion form of the resin is sodium ion form (Na form), it can be used by converting the ion form from Na form to H form by a known method.
 本発明において用いるキレート樹脂は、水素イオン形であり、かつ、該キレート樹脂に濃度3質量%の塩酸を体積比25倍量で通過させたときに溶出する全金属不純物量が、5μg/mL-R以下であることが好ましい。キレート樹脂として、そのような市販品を用いることもできる。ここで、「体積比25倍量」とは、キレート樹脂の体積に対して25倍の体積の塩酸を通過させることを意味する。単位「/mL-R」は、「飽和平衡状態におけるキレート樹脂の体積1mL当たり」を意味する。なお、飽和平衡状態とは、キレート樹脂を、25℃で相対湿度100%の大気に30分間以上接触させることにより、飽和状態にした状態をいう。「塩酸に通過させ」るとは、キレート樹脂に塩酸を通過させることのほか、キレート樹脂を塩酸中に浸漬すること等も含む。キレート樹脂の体積1mL当たりの全金属不純物量(μg/mL-R)は、溶出した各金属不純物量(μg/L)、溶出に用いた溶離液の体積(L)およびキレート樹脂の体積(mL)から、下式により算出することができる。
   全金属不純物量(μg/mL-R)=(各金属不純物量(μg/L)×溶離液の体積(L))/キレート樹脂の体積(mL)
The chelate resin used in the present invention is in the form of hydrogen ions, and the amount of total metal impurities eluted when hydrochloric acid having a concentration of 3% by mass is passed through the chelate resin at 25 times the volume ratio is 5 μg/mL-. R or less is preferred. Such commercially available products can also be used as the chelate resin. Here, "25 times the volume ratio" means passing hydrochloric acid in a volume 25 times the volume of the chelate resin. The unit "/mL-R" means "per mL volume of chelate resin in equilibrium with saturation". The saturated equilibrium state refers to a state in which the chelate resin is brought into a saturated state by contacting the atmosphere with a relative humidity of 100% at 25° C. for 30 minutes or more. "Passing through hydrochloric acid" includes not only passing hydrochloric acid through the chelating resin, but also immersing the chelating resin in hydrochloric acid. The amount of total metal impurities per 1 mL volume of chelating resin (μg/mL-R) is the amount of each eluted metal impurity (μg/L), the volume of eluent used for elution (L), and the volume of chelating resin (mL ), it can be calculated by the following formula.
Amount of total metal impurities (μg/mL−R)=(amount of each metal impurity (μg/L)×volume of eluent (L))/volume of chelating resin (mL)
 なお、上記全金属不純物量が、5μg/mL-R以下であるキレート樹脂は、例えば、特許文献3に記載されている方法により得ることができる。すなわち、キレート樹脂に、含有金属不純物量が1mg/L以下であり、かつ濃度が5質量%以上の鉱酸溶液を接触させることにより精製する方法である。これにより、キレート樹脂に、濃度3質量%の塩酸を体積比25倍量で通過させたときに溶出する全金属不純物量(特にNa、Ca、Mg、Fe等の溶出金属量)を、5μg/mL-R以下に低減することができる。このような含有金属不純物量を低減したキレート樹脂を用いて加水分解性有機溶媒の精製を行うことにより、含有金属不純物のより少ない高純度の加水分解性有機溶媒を得ることができる。前記鉱酸溶液としては、塩酸、硫酸、硝酸等を用いることができる。なお、Na形のキレート樹脂を用いて上記の精製を行う場合、上記の精製を実施することにより、イオン形がH形に変換される。 The chelate resin having a total metal impurity content of 5 μg/mL-R or less can be obtained, for example, by the method described in Patent Document 3. That is, it is a method of contacting a chelate resin with a mineral acid solution containing 1 mg/L or less of metal impurities and having a concentration of 5 mass % or more. As a result, the amount of all metal impurities (especially the amount of eluted metals such as Na, Ca, Mg, and Fe) eluted when hydrochloric acid having a concentration of 3% by mass is passed through the chelate resin in an amount 25 times the volume ratio is reduced to 5 μg/ It can be reduced to mL-R or less. By purifying a hydrolyzable organic solvent using such a chelate resin containing a reduced amount of metal impurities, a high-purity hydrolyzable organic solvent containing less metal impurities can be obtained. As the mineral acid solution, hydrochloric acid, sulfuric acid, nitric acid, or the like can be used. When the above purification is performed using a Na-type chelate resin, the ionic form is converted to the H-type by carrying out the above-mentioned purification.
 (陰イオン交換樹脂)
 上述したように、本発明においては、陽イオン交換樹脂と、任意にキレート樹脂とを混合して用いるが、さらに、陰イオン交換樹脂を組み合わせて用いることもできる。陰イオン交換樹脂を用いることにより、酸の生成を確実に抑制することができる。そのため、例えば、陽イオン交換樹脂のみを用いる場合や、その他酸の生成が懸念される場合等であっても、陰イオン交換樹脂を組み合わせて用いることにより、酸の生成をより抑制した精製が可能となる。陰イオン交換樹脂を用いる場合、該陰イオン交換樹脂の使用量は、陽イオン交換樹脂および任意のキレート樹脂の合計量に対して、例えば、0.1~100体積%とすることができる。
(Anion exchange resin)
As described above, in the present invention, a mixture of a cation exchange resin and optionally a chelate resin is used, but an anion exchange resin can also be used in combination. By using an anion exchange resin, the production of acid can be reliably suppressed. Therefore, for example, even if only a cation exchange resin is used, or if there is a concern about the production of acid, the combination of an anion exchange resin can be used to further suppress the production of acid. becomes. When an anion exchange resin is used, the amount of the anion exchange resin used can be, for example, 0.1 to 100% by volume with respect to the total amount of the cation exchange resin and optional chelate resin.
 陰イオン交換樹脂としては、第4級アンモニウム塩基を有する強塩基性陰イオン交換樹脂および第1級~第3級アミノ基を有する弱塩基性陰イオン交換樹脂が挙げられる。陰イオン交換樹脂としては、例えば、ORLITE(登録商標) DS-2(ゲル型の強塩基性陰イオン交換樹脂、商品名、オルガノ(株)製)、DS-5(MR型の強塩基性陰イオン交換樹脂、商品名、オルガノ(株)製)、DS-6(MR型の弱塩基性陰イオン交換樹脂、商品名、オルガノ(株)製)等が挙げられるが、これらに限定されるものではない。これらの中でも、MR型の陰イオン交換樹脂が好ましい。 Anion exchange resins include strongly basic anion exchange resins having quaternary ammonium bases and weakly basic anion exchange resins having primary to tertiary amino groups. Examples of anion exchange resins include ORLITE (registered trademark) DS-2 (gel type strongly basic anion exchange resin, trade name, manufactured by Organo Corporation), DS-5 (MR type strongly basic anion exchange resin). Ion exchange resin, trade name, manufactured by Organo Co., Ltd.), DS-6 (MR-type weakly basic anion exchange resin, trade name, manufactured by Organo Co., Ltd.), etc., but are limited to these. is not. Among these, MR type anion exchange resins are preferred.
 陽イオン交換樹脂、任意のキレート樹脂および任意の陰イオン交換樹脂(以下、これらをまとめて「イオン交換樹脂」ともいう)に対して、加水分解性有機溶媒の精製に用いる前に、必要に応じて、樹脂からの水分溶出を抑制するための前処理を行ってもよい。すなわち、本発明に係る精製方法は、前記精製工程の前に、陽イオン交換樹脂および任意のキレート樹脂および任意の陰イオン交換樹脂に対し、該樹脂からの水分溶出を抑制するための前処理を行う前処理工程を有していてもよい。 Before using the cation exchange resin, any chelate resin and any anion exchange resin (hereinafter collectively referred to as "ion exchange resin") for purification of the hydrolyzable organic solvent, if necessary In addition, pretreatment may be performed to suppress water elution from the resin. That is, in the purification method according to the present invention, the cation exchange resin, any chelate resin, and any anion exchange resin are subjected to pretreatment to suppress water elution from the resin before the purification step. You may have a pretreatment process to carry out.
 前処理の方法としては、例えば、イオン交換樹脂に精製対象の加水分解性有機溶媒を接触させる、またはイオン交換樹脂に精製対象の加水分解性有機溶媒よりも25℃における比誘電率が大きい前処理用有機溶媒を接触させる方法が挙げられる。具体的には、精製に使用する前のイオン交換樹脂を充填したカラムに、精製対象の加水分解性有機溶媒を通液して、カラムの入口と出口の該溶媒中の水分濃度が同程度になるまで通液を続ける方法が挙げられる。また、精製に使用する前のイオン交換樹脂を充填したカラムに、精製対象の加水分解性有機溶媒よりも25℃における比誘電率が大きい前処理用有機溶媒を通液して、カラムの入口と出口の溶媒中の水分濃度が同程度になるまで通液を続ける方法が挙げられる。この場合、前処理用有機溶媒を通液した後、さらに精製対象の加水分解性有機溶媒を、カラムの入口と出口の溶媒中の水分濃度が同程度になるまで通液してもよい。前処理用有機溶媒としては、25℃における比誘電率が20以上であるメタノールやエタノール等のアルコールが好ましく用いられる。 As a pretreatment method, for example, a hydrolyzable organic solvent to be purified is brought into contact with an ion exchange resin, or a pretreatment in which the ion exchange resin has a higher dielectric constant at 25 ° C. than the hydrolyzable organic solvent to be purified. a method of contacting with an organic solvent for Specifically, a hydrolyzable organic solvent to be purified is passed through a column filled with an ion-exchange resin before being used for purification, and the water concentration in the solvent at the inlet and outlet of the column is approximately the same. A method of continuing to pass the liquid until it becomes In addition, a pretreatment organic solvent having a higher dielectric constant at 25 ° C. than the hydrolyzable organic solvent to be purified is passed through a column filled with an ion exchange resin before being used for purification, and the column inlet and A method of continuing to flow until the water concentration in the solvent at the outlet reaches the same level can be mentioned. In this case, after the pretreatment organic solvent is passed through, the hydrolyzable organic solvent to be purified may be further passed through until the water concentration in the solvent at the inlet and the outlet of the column is approximately the same. As the pretreatment organic solvent, an alcohol such as methanol or ethanol having a dielectric constant of 20 or more at 25° C. is preferably used.
 また、樹脂からの水分溶出を抑制するための他の前処理の方法として、イオン交換樹脂を充填した耐熱容器を乾燥機内部に設置して数時間加温(乾燥)処理する方法が挙げられる。乾燥条件は、イオン交換樹脂の種類に応じて、50℃~120℃において1時間~24時間のうち、適切な温度および時間を設定することができる。この処理を行うことにより、イオン交換樹脂中の含水率を10質量%以下まで低減することができる。乾燥方法は、常圧、減圧および真空乾燥のいずれでもよいが、乾燥時間が短く効率が良い点から、減圧または真空乾燥が好ましい。なお、イオン交換樹脂の含水率は、下記計算式を用いて算出することができる。
   含水率(質量%)=((乾燥機によって加温処理した樹脂の質量(g)-加熱乾燥式水分計で完全乾燥した樹脂の質量(g))/乾燥機によって加温処理した樹脂の質量(g))×100
As another pretreatment method for suppressing the elution of water from the resin, there is a method in which a heat-resistant container filled with an ion-exchange resin is placed inside a dryer and heated (dried) for several hours. As the drying conditions, suitable temperature and time can be set at 50° C. to 120° C. for 1 hour to 24 hours depending on the type of ion exchange resin. By performing this treatment, the water content in the ion exchange resin can be reduced to 10% by mass or less. The drying method may be normal pressure, reduced pressure, or vacuum drying, but reduced pressure or vacuum drying is preferable from the viewpoint of short drying time and good efficiency. Incidentally, the water content of the ion exchange resin can be calculated using the following formula.
Moisture content (mass%) = ((mass of resin heated by dryer (g) - mass of resin completely dried with heat drying moisture meter (g)) / mass of resin heated by dryer (g)) x 100
 ここで、上記式中、乾燥機によって加温処理した樹脂は、樹脂を上記のとおり加温処理することにより得られる(含水率は10質量%以下)。続いて、該乾燥機によって加温処理した樹脂を、加熱乾燥式水分計で測定するまで、空気中からの水分の混入を避けるように保管・移動する。そして、加熱乾燥式水分計上に、該樹脂を設置して、さらに105℃で数分~数十分間、樹脂を完全乾燥させることにより、加熱乾燥式水分計で完全乾燥した樹脂が得られる。加熱乾燥式水分計としては、例えば、A&D社製のMX-50(商品名)を用いることができる。なお、測定の正確性を高めるため、乾燥前の樹脂は5g以上採取して測定を行う。 Here, in the above formula, the resin heated by the dryer is obtained by heating the resin as described above (water content is 10% by mass or less). Subsequently, the resin heat-treated by the dryer is stored and moved so as to avoid contamination of moisture from the air until it is measured by a heat drying type moisture meter. Then, the resin is placed on a heat drying moisture meter and completely dried at 105° C. for several minutes to several tens of minutes to obtain a completely dried resin on the heat drying moisture meter. As the heat drying moisture meter, for example, MX-50 (trade name) manufactured by A&D can be used. In addition, in order to improve the accuracy of the measurement, 5 g or more of the resin before drying is sampled before the measurement.
 加水分解性有機溶媒をイオン交換樹脂に接触させる方法は、特に制限されないが、バッチ処理方法およびカラムによる連続通液処理方法が挙げられる。このうち、操作性や効率の観点から、連続通液処理方法が好ましい。 The method of bringing the hydrolyzable organic solvent into contact with the ion exchange resin is not particularly limited, but includes a batch processing method and a continuous liquid flow processing method using a column. Among them, the continuous liquid flow treatment method is preferable from the viewpoint of operability and efficiency.
 連続通液処理方法において、イオン交換樹脂はカラム等の精製塔に充填される。精製塔の樹脂充填層高は特に限定されず、例えば100~1500mmとすることができる。次いで、加水分解性有機溶媒を、例えばSV(空間速度、h-1)2~20にて、2~100BV通液する。ここで、BV(Bed volume)は、樹脂量に対する通液する溶媒の流量倍数を表す。加水分解性有機溶媒の通液は、金属除去の観点から、SV2~20にて行うことが好ましく、SV5~10にて行うことがより好ましい。通液の方向は、下向流または上向流のいずれであってもよい。このようにして通液することにより、加水分解性有機溶媒中の金属不純物がイオン交換樹脂に吸着され、除去される。 In the continuous liquid flow treatment method, the ion exchange resin is packed in a purification tower such as a column. The height of the resin-packed bed in the refining tower is not particularly limited, and can be, for example, 100 to 1500 mm. Then, a hydrolyzable organic solvent is passed through at, for example, SV (space velocity, h −1 ) of 2 to 20 and 2 to 100 BV. Here, BV (Bed volume) represents the multiple of the flow rate of the solvent to the resin amount. From the viewpoint of metal removal, the hydrolyzable organic solvent is preferably passed at SV2 to 20, more preferably at SV5 to 10. The direction of liquid flow may be either downward flow or upward flow. By passing the liquid in this manner, metal impurities in the hydrolyzable organic solvent are adsorbed to the ion exchange resin and removed.
 次にバッチ処理方法について説明する。まず、イオン交換樹脂を、撹拌機を備えた反応槽内に充填する。次に、加水分解性有機溶媒を該反応槽内に充填する。容積比としては、特に限定はされないが、樹脂量1に対して有機溶媒2~200が好適である。その後、例えば0.5~24時間程度放置する。放置後、撹拌機を作動させて樹脂と有機溶媒を均一に混合する。撹拌速度および撹拌時間は、反応槽の大きさや処理量等により適宜決定すればよい。撹拌終了後、濾過等を行い、樹脂と加水分解性有機溶媒を分離することによって、金属不純物が除去され、精製された加水分解性有機溶媒を得ることができる。 Next, I will explain the batch processing method. First, an ion exchange resin is charged into a reactor equipped with a stirrer. Next, a hydrolyzable organic solvent is charged into the reactor. Although the volume ratio is not particularly limited, it is preferable to use 2 to 200 parts of the organic solvent to 1 part of the resin. After that, it is left for about 0.5 to 24 hours, for example. After standing, the stirrer is operated to uniformly mix the resin and the organic solvent. The stirring speed and stirring time may be appropriately determined according to the size of the reaction vessel, throughput, and the like. After stirring is completed, the resin and the hydrolyzable organic solvent are separated by filtration or the like, thereby removing metal impurities and obtaining a purified hydrolyzable organic solvent.
 なお、イオン交換樹脂について、加水分解性有機溶媒の精製に用いる前に、上述した樹脂からの水分溶出を抑制するための前処理を実施する場合は、前処理に用いたカラム等の容器をそのまま使用して、イオン交換樹脂に加水分解性有機溶媒を接触させて精製する工程を行うことができる。 Regarding the ion-exchange resin, if the pretreatment for suppressing the elution of water from the resin is performed before using it for purification of the hydrolyzable organic solvent, the container such as the column used for the pretreatment can be used as it is. can be used to carry out a purification step by contacting a hydrolyzable organic solvent with an ion exchange resin.
 本発明に係る精製方法は、加水分解性有機溶媒の精製を連続運転にて行う、すなわち、精製工程において、精製対象の加水分解性有機溶媒の精製(通液)を開始した後、精製終了まで通液を途中で停止することなく連続して行うことを主とするものである。ただし、加水分解性有機溶媒の精製を間欠運転にて行うことも可能である。加水分解性有機溶媒の精製を間欠運転にて行う場合は、試験系内部に、外部由来の水分または樹脂由来の官能基によって有機溶媒の加水分解が進行し、水分や酸が発生してしまうことがある。そのため、間欠運転にて行う場合は、本発明に係る精製方法は、精製工程の開始後、陽イオン交換樹脂、任意のキレート樹脂および任意の陰イオン交換樹脂を充填した精製塔の出口から溶出する前記加水分解性有機溶媒を、一定時間、精製後の前記加水分解性有機溶媒を貯留するための貯留槽外へ排出するブロー工程を有することが好ましい。例えば、精製工程開始後、加水分解性有機溶媒の通液を30分間以上停止する場合、ブロー工程として、精製塔の出口から溶出する前記加水分解性有機溶媒を、イオン交換樹脂(陽イオン交換樹脂、任意のキレート樹脂および任意の陰イオン交換樹脂)量に対して0.5BV以上、貯留槽外へ排出した後、精製工程を再開する。ブロー工程を設けることにより、運転停止中に発生した水分や酸を低減することができる。ブロー工程におけるブロー量(系外へ排出する加水分解性有機溶媒の量)は、運転停止時間や精製塔出口における加水分解性有機溶媒中の水分量、酸濃度および比抵抗値などにより事前に設定することもできる。あるいは、あらかじめ設定した比抵抗値に達した場合にブロー工程を自動停止して精製工程に切り替えるオンライン監視による設定を行うこともできる。なお、加水分解性有機溶媒の精製を連続運転にて行う場合においても、必要に応じて、上記ブロー工程を実施することができる。 In the purification method according to the present invention, the purification of the hydrolyzable organic solvent is performed in a continuous operation, that is, in the purification step, after starting purification (flowing) of the hydrolyzable organic solvent to be purified, until the purification is completed. Mainly, it is performed continuously without stopping in the middle. However, it is also possible to purify the hydrolyzable organic solvent by intermittent operation. When purification of a hydrolyzable organic solvent is performed intermittently, hydrolysis of the organic solvent progresses due to moisture from the outside or functional groups derived from the resin inside the test system, and moisture and acid are generated. There is Therefore, when performing intermittent operation, the purification method according to the present invention elutes from the outlet of a purification column filled with a cation exchange resin, an optional chelate resin, and an optional anion exchange resin after the start of the purification process. It is preferable to have a blowing step of discharging the hydrolyzable organic solvent for a certain period of time to the outside of a storage tank for storing the hydrolyzable organic solvent after purification. For example, when the flow of the hydrolyzable organic solvent is stopped for 30 minutes or more after the start of the purification step, the hydrolyzable organic solvent eluted from the outlet of the purification column is removed by an ion exchange resin (cation exchange resin , optional chelate resin and optional anion exchange resin), after discharging 0.5 BV or more to the outside of the storage tank, the refining process is restarted. By providing the blowing process, it is possible to reduce the moisture and acid generated during shutdown. The amount of blowing in the blowing process (the amount of hydrolyzable organic solvent discharged to the outside of the system) is set in advance according to the operation stop time, the amount of water in the hydrolyzable organic solvent at the outlet of the refining tower, the acid concentration, the resistivity value, etc. You can also Alternatively, setting can be made by online monitoring to automatically stop the blowing process and switch to the refining process when a preset specific resistance value is reached. Even when the hydrolyzable organic solvent is purified by continuous operation, the blowing step can be carried out as necessary.
 本発明に係る精製方法によれば、加水分解性有機溶媒からの酸の生成が抑制されるため、精製工程後の加水分解性有機溶媒のpHを中性付近に保つことができる。具体的には、精製工程後の加水分解性有機溶媒のpHを5~7とすることができる。ただし、加水分解性有機溶媒の種類によっては、pHが例えば4以下となる場合もある。 According to the purification method of the present invention, the production of acid from the hydrolyzable organic solvent is suppressed, so the pH of the hydrolyzable organic solvent after the purification process can be kept near neutral. Specifically, the pH of the hydrolyzable organic solvent after the purification step can be adjusted to 5-7. However, depending on the type of hydrolyzable organic solvent, the pH may be, for example, 4 or less.
 本発明に係る精製方法によれば、精製工程において、加水分解性有機溶媒中の各金属濃度を、70質量%以上、好ましくは80質量%以上低減することができる。なお、加水分解性有機溶媒中に含まれる金属不純物としては、例えば、Li、Na、Mg、Al、K、Ca、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、As、Sr、Ag、Cd、Sn、Ba、Pb等が挙げられる。 According to the purification method of the present invention, the concentration of each metal in the hydrolyzable organic solvent can be reduced by 70% by mass or more, preferably by 80% by mass or more in the purification process. The metal impurities contained in the hydrolyzable organic solvent include, for example, Li, Na, Mg, Al, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Sr, Ag, Cd, Sn, Ba, Pb and the like are included.
 以下、実施例により、本発明を具体的に説明するが、本発明は、これらの実施例に限定されるものではない。 The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples.
 金属濃度、酢酸濃度および水分濃度の測定方法は、以下のとおりである。 The methods for measuring metal concentration, acetic acid concentration, and water concentration are as follows.
 (金属濃度)
 金属濃度(ng/L)は、Agilent 8900 トリプル四重極ICP-MS(商品名、アジレント・テクノロジー(株)製)を用いて測定した。
(metal concentration)
Metal concentration (ng/L) was measured using Agilent 8900 triple quadrupole ICP-MS (trade name, manufactured by Agilent Technologies).
 (酢酸濃度)
 酢酸濃度(質量ppm)は、キャピラリ電気泳動システム(商品名:Agilent 7100、大塚電子(株)製)を用いて測定した。
(acetic acid concentration)
The acetic acid concentration (mass ppm) was measured using a capillary electrophoresis system (trade name: Agilent 7100, manufactured by Otsuka Electronics Co., Ltd.).
 (水分濃度)
 水分濃度は、カールフィッシャー容量法水分計(商品名:Aquacounter AQ-2200、平沼産業(株)製)を用いて、カールフィッシャー法により測定した。
(moisture concentration)
The water concentration was measured by the Karl Fischer method using a Karl Fischer volumetric moisture meter (trade name: Aquacounter AQ-2200, manufactured by Hiranuma Sangyo Co., Ltd.).
 (イオン交換樹脂)
 以下の例において用いた各イオン交換樹脂の詳細は、次のとおりである。
 ・ORLITE(登録商標) DS-21(商品名、オルガノ(株)製):キレート樹脂、キレート基:アミノメチルリン酸基
 ・ORLITE(登録商標) DS-4(商品名、オルガノ(株)製):MR型の強酸性陽イオン交換樹脂、イオン交換基:スルホン酸基
 ・ORLITE(登録商標) DS-1(商品名、オルガノ(株)製):ゲル型の強酸性陽イオン交換樹脂、イオン交換基:スルホン酸基、架橋度:標準的
 ・AMBERLITE(登録商標) CR99 K/350(商品名、デュポン社製):ゲル型の強酸性陽イオン交換樹脂、架橋度:低い
 ・AMBERLITE(登録商標) IRN99H(商品名、デュポン社製):ゲル型の強酸性陽イオン交換樹脂、架橋度:高い
 ・ORLITE(登録商標) DS-6(商品名、オルガノ(株)製):MR型の弱塩基性陰イオン交換樹脂
(Ion exchange resin)
Details of each ion exchange resin used in the following examples are as follows.
・ORLITE (registered trademark) DS-21 (trade name, manufactured by Organo Corporation): chelate resin, chelate group: aminomethyl phosphate group ・ORLITE (registered trademark) DS-4 (trade name, manufactured by Organo Corporation) : MR type strongly acidic cation exchange resin, ion exchange group: sulfonic acid group ORLITE (registered trademark) DS-1 (trade name, manufactured by Organo Co., Ltd.): gel type strongly acidic cation exchange resin, ion exchange Group: sulfonic acid group, degree of cross-linking: standard ・AMBERLITE (registered trademark) CR99 K/350 (trade name, manufactured by DuPont): gel-type strongly acidic cation exchange resin, degree of cross-linking: low ・AMBERLITE (registered trademark) IRN99H (trade name, manufactured by DuPont): gel-type strongly acidic cation exchange resin, degree of cross-linking: high ORLITE (registered trademark) DS-6 (trade name, manufactured by Organo Corporation): MR-type weakly basic anion exchange resin
[比較例1、実施例1~5:混床割合の比較]
 (PGMEAの精製)
 PFA樹脂製カラム(内径:16mm、高さ:300mm)に、キレート樹脂であるORLITE(登録商標) DS-21およびMR型強酸性陽イオン交換樹脂であるORLITE(登録商標) DS-4を、それぞれ表1に示す陽イオン交換樹脂の混床割合(体積比)で、合計36mLとなるように充填した。なお、上記キレート樹脂に、濃度3質量%の塩酸を体積比25倍量で通過させたときに溶出する全金属不純物量が5μg/mL-R以下であることは確認している。そこへ、前処理として、PGMEA(商品名:PMシンナー、東京応化工業(株)製)をSV5にて、カラム入口とカラム出口のPGMEA中の水分濃度が同等レベルになるまで通液し、樹脂中の水分を除去した。なお、上記前処理において、PGMEAの代わりに、PGMEAよりも25℃における比誘電率が大きい、例えばメタノールを通液することによっても、樹脂中の水分を除去することができることも確認済みである。
 続いて、前処理を行った後の樹脂に、PGMEAをSV5で20BV通液し、精製工程を行った。精製前のPGMEA(原液)および精製後のカラム出口のPGMEAを採取し、Cr濃度、酢酸濃度および水分濃度を測定した。結果を表1に示す。なお、発生した酢酸について、5mg/L(絶対値)までは測定誤差範囲内、すなわち、酢酸の発生はほぼないものと考えることができる。また、各例において、原液中のCrおよび酢酸濃度が異なるが、これは、原液のロットの違いによるものである。
[Comparative Example 1, Examples 1 to 5: Comparison of Mixed Bed Ratio]
(Purification of PGMEA)
ORLITE (registered trademark) DS-21, which is a chelate resin, and ORLITE (registered trademark) DS-4, which is an MR-type strongly acidic cation exchange resin, were added to a PFA resin column (inner diameter: 16 mm, height: 300 mm). The mixed bed ratio (volume ratio) of the cation exchange resin shown in Table 1 was filled so that the total volume was 36 mL. It has been confirmed that the amount of total metal impurities eluted when hydrochloric acid having a concentration of 3% by mass is passed through the chelate resin at a volume ratio of 25 times is 5 μg/mL-R or less. As a pretreatment, PGMEA (trade name: PM thinner, manufactured by Tokyo Ohka Kogyo Co., Ltd.) was passed through the column at SV5 until the water concentration in the PGMEA at the column inlet and the column outlet reached the same level, and the resin was Removed the water inside. It has also been confirmed that water in the resin can be removed by, for example, passing through methanol, which has a higher dielectric constant at 25° C. than PGMEA, in the above pretreatment instead of PGMEA.
Subsequently, 20 BV of PGMEA at SV5 was passed through the pretreated resin to carry out a purification step. PGMEA (undiluted solution) before purification and PGMEA at the column outlet after purification were collected, and the Cr concentration, acetic acid concentration and water concentration were measured. Table 1 shows the results. Regarding the generated acetic acid, it can be considered that up to 5 mg/L (absolute value) is within the measurement error range, that is, almost no acetic acid is generated. Also, the concentrations of Cr and acetic acid in the stock solution are different in each example, but this is due to different lots of the stock solution.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、陽イオン交換樹脂の混床割合が10%~100%である実施例1~5においては、精製後のPGMEA中のCr濃度が15ng/L未満となり、酢酸の生成を抑制しつつ、効率良く金属除去を行うことができた。特に、キレート樹脂と陽イオン交換樹脂を混床で用いた実施例1~4では、酢酸の発生をほぼ抑制することができた。一方で、陽イオン交換樹脂の混床割合が0%、すなわちキレート樹脂のみを用いた比較例1では、精製したPGMEA中のCr除去率が55%であり、十分に金属除去ができていないことが分かった。 As shown in Table 1, in Examples 1 to 5 in which the mixed bed ratio of the cation exchange resin was 10% to 100%, the Cr concentration in the PGMEA after purification was less than 15 ng/L, and the production of acetic acid was suppressed. It was possible to efficiently remove the metal while suppressing it. In particular, in Examples 1 to 4 in which the chelate resin and the cation exchange resin were used in a mixed bed, the generation of acetic acid could be substantially suppressed. On the other hand, in Comparative Example 1 in which the mixed bed ratio of the cation exchange resin was 0%, that is, only the chelate resin was used, the Cr removal rate in the purified PGMEA was 55%, indicating that sufficient metal removal was not achieved. I found out.
[実施例6~7:強酸性陽イオン交換樹脂の種類によるCrの除去性能の比較]
 キレート樹脂と混合する強酸性陽イオン交換樹脂(混床割合:25体積%)として、それぞれORLITE(登録商標) DS-1(ゲル型の強酸性陽イオン交換樹脂、架橋度:標準的)およびAMBERLITE(登録商標) CR99 K/350(ゲル型の強酸性陽イオン交換樹脂、架橋度:低い、K形をH形に変換したもの)を用いたこと以外は、実施例3と同様の方法でPGMEAの精製を行った。精製前のPGMEA(原液)および精製後のカラム出口のPGMEAを採取し、Cr濃度および水分濃度を測定した。結果を実施例3と併せて表2に示す。
[Examples 6 and 7: Comparison of Cr removal performance depending on the type of strongly acidic cation exchange resin]
ORLITE (registered trademark) DS-1 (gel-type strongly acidic cation exchange resin, degree of cross-linking: standard) and AMBERLITE, respectively, were used as strongly acidic cation exchange resins (mixed bed ratio: 25% by volume) to be mixed with the chelate resin. (Registered Trademark) CR99 K/350 (gel-type strongly acidic cation exchange resin, degree of cross-linking: low, converted from K form to H form), PGMEA was prepared in the same manner as in Example 3. was purified. PGMEA (undiluted solution) before purification and PGMEA at the outlet of the column after purification were collected, and the Cr concentration and water concentration were measured. The results are shown in Table 2 together with Example 3.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、MR型の強酸性陽イオン交換樹脂であるDS-4は、ゲル型の強酸性陽イオン交換樹脂であるDS-1や、ゲル型の小粒径の強酸性陽イオン交換樹脂であるCR99 K/350と比べて、金属除去性能が特に優れていることが分かった。 As shown in Table 2, DS-4, which is an MR-type strongly acidic cation exchange resin, DS-1, which is a gel-type strongly acidic cation exchange resin, and gel-type small particle size strongly acidic cation exchange resin It was found that the metal removal performance is particularly excellent compared to CR99 K/350, which is an exchange resin.
[実施例8~10:架橋度の違いによる酢酸発生の比較]
 キレート樹脂と混合するゲル型の強酸性陽イオン交換樹脂(混床割合:25体積%)として、それぞれAMBERLITE(登録商標)IRN99H(架橋度:高い)、ORLITE(登録商標)DS-1(架橋度:標準的)およびAMBERLITE(登録商標)CR99 K/350(架橋度:低い、K形をH形に変換したもの)を用いたこと以外は、実施例3と同様の方法でPGMEAの精製を行った。精製前のPGMEA(原液)および精製後のカラム出口のPGMEAを採取し、酢酸濃度および水分濃度を測定した。結果を表3に示す。
[Examples 8 to 10: Comparison of acetic acid generation depending on the degree of cross-linking]
As gel-type strongly acidic cation exchange resins (mixed bed ratio: 25% by volume) to be mixed with the chelate resin, AMBERLITE (registered trademark) IRN99H (crosslinking degree: high), ORLITE (registered trademark) DS-1 (crosslinking degree PGMEA was purified in the same manner as in Example 3, except that AMBERLITE® CR99 K/350 (degree of cross-linking: low, conversion of K form to H form) was used. rice field. PGMEA (undiluted solution) before purification and PGMEA at the column outlet after purification were collected, and the acetic acid concentration and water concentration were measured. Table 3 shows the results.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表3に示すように、ゲル型の強酸性陽イオン交換樹脂の中でも、高架橋の樹脂を用いた場合には、酢酸の発生が確実に抑制されることが分かった。 As shown in Table 3, among gel-type strongly acidic cation exchange resins, it was found that the generation of acetic acid was reliably suppressed when highly crosslinked resins were used.
[参考例1:陰イオン交換樹脂による酢酸の低減]
 樹脂として、MR型の弱塩基性陰イオン交換樹脂であるORLITE(登録商標)DS-6のみを用いた以外は、実施例3と同様の方法でPGMEAの精製を行った。精製前のPGMEA(原液)および精製後のカラム出口のPGMEAを採取し、酢酸濃度を測定した。結果を表4に示す。
[Reference Example 1: Reduction of acetic acid by anion exchange resin]
Purification of PGMEA was performed in the same manner as in Example 3, except that only ORLITE (registered trademark) DS-6, which is an MR type weakly basic anion exchange resin, was used as the resin. PGMEA (undiluted solution) before purification and PGMEA at the column outlet after purification were collected, and the acetic acid concentration was measured. Table 4 shows the results.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表4に示すように、原液中に含まれる酢酸は、陰イオン交換樹脂を用いることにより除去できることが分かった。したがって、本発明に係る陽イオン交換樹脂および任意のキレート樹脂に対し、さらに、陰イオン交換樹脂を組み合わせて用いることにより、酢酸の発生を確実に抑制した加水分解性有機溶媒の精製が可能であることが明らかとなった。
 
As shown in Table 4, it was found that acetic acid contained in the stock solution can be removed by using an anion exchange resin. Therefore, by using the anion exchange resin in combination with the cation exchange resin and any chelate resin according to the present invention, it is possible to purify a hydrolyzable organic solvent that reliably suppresses the generation of acetic acid. It became clear.

Claims (10)

  1.  加水分解性有機溶媒の精製方法であって、任意にキレート樹脂を混合した陽イオン交換樹脂に、加水分解性有機溶媒を接触させて精製する精製工程を有し、前記陽イオン交換樹脂および任意の前記キレート樹脂の合計量に対する前記陽イオン交換樹脂の体積割合が10~100%であることを特徴とする、加水分解性有機溶媒の精製方法。 A method for purifying a hydrolyzable organic solvent, comprising a purification step of bringing a hydrolyzable organic solvent into contact with a cation exchange resin optionally mixed with a chelate resin to purify, wherein the cation exchange resin and any A method for purifying a hydrolyzable organic solvent, wherein the volume ratio of the cation exchange resin to the total amount of the chelate resin is 10 to 100%.
  2.  精製前の前記加水分解性有機溶媒中の水分濃度が20~10000mg/Lである、請求項1に記載の精製方法。 The purification method according to claim 1, wherein the water concentration in the hydrolyzable organic solvent before purification is 20 to 10000 mg/L.
  3.  前記精製工程の前に、前記陽イオン交換樹脂および任意の前記キレート樹脂に対し、該樹脂からの水分溶出を抑制するための前処理を行う前処理工程を有し、該前処理が、前記陽イオン交換樹脂および任意の前記キレート樹脂に、前記加水分解性有機溶媒よりも25℃における比誘電率が大きい前処理用有機溶媒を接触させる方法、または、乾燥機により前記陽イオン交換樹脂および任意の前記キレート樹脂の含水率を10質量%以下に低減させる方法である、請求項1または2に記載の精製方法。 Prior to the purification step, the cation exchange resin and the optional chelate resin are pretreated to suppress water elution from the resin, wherein the pretreatment is the positive reaction. A method of contacting an ion exchange resin and any of the chelate resins with a pretreatment organic solvent having a higher dielectric constant at 25° C. than that of the hydrolyzable organic solvent, or a method of contacting the cation exchange resin and any of the cation exchange resins with a dryer. 3. The purification method according to claim 1, wherein the water content of the chelate resin is reduced to 10% by mass or less.
  4.  前記陽イオン交換樹脂および任意の前記キレート樹脂に、さらに、陰イオン交換樹脂を組み合わせて用いる、請求項1~3のいずれか1項に記載の精製方法。 The purification method according to any one of claims 1 to 3, wherein an anion exchange resin is used in combination with the cation exchange resin and any of the chelate resins.
  5.  前記陽イオン交換樹脂が強酸性陽イオン交換樹脂である、請求項1~4のいずれか1項に記載の精製方法。 The purification method according to any one of claims 1 to 4, wherein the cation exchange resin is a strongly acidic cation exchange resin.
  6.  前記強酸性陽イオン交換樹脂がMR型強酸性陽イオン交換樹脂である、請求項5に記載の精製方法。 The purification method according to claim 5, wherein the strongly acidic cation exchange resin is an MR-type strongly acidic cation exchange resin.
  7.  前記強酸性陽イオン交換樹脂が、16%~24%の架橋度を有するゲル型強酸性陽イオン交換樹脂である、請求項5に記載の精製方法。 The purification method according to claim 5, wherein the strongly acidic cation exchange resin is a gel-type strongly acidic cation exchange resin having a degree of cross-linking of 16% to 24%.
  8.  前記精製工程において、前記加水分解性有機溶媒中の各金属濃度を80質量%以上低減する、請求項1~7のいずれか1項に記載の精製方法。 The purification method according to any one of claims 1 to 7, wherein in the purification step, the concentration of each metal in the hydrolyzable organic solvent is reduced by 80% by mass or more.
  9.  前記精製工程の開始後、前記陽イオン交換樹脂、任意の前記キレート樹脂および任意の陰イオン交換樹脂を充填した精製塔の出口から溶出する前記加水分解性有機溶媒を、一定時間、精製後の前記加水分解性有機溶媒を貯留するための貯留槽外へ排出するブロー工程を有する、請求項1~8のいずれか1項に記載の精製方法。 After starting the purification step, the hydrolyzable organic solvent eluted from the outlet of the purification column filled with the cation exchange resin, the optional chelate resin and the optional anion exchange resin is treated for a certain period of time with the The purification method according to any one of claims 1 to 8, comprising a blowing step of discharging the hydrolyzable organic solvent out of a storage tank for storing.
  10.  加水分解性有機溶媒精製用の樹脂の製造方法であって、陽イオン交換樹脂に任意にキレート樹脂を混合する工程を有し、前記陽イオン交換樹脂および任意の前記キレート樹脂の合計量に対する前記陽イオン交換樹脂の体積割合が10~100%であることを特徴とする、加水分解性有機溶媒精製用の樹脂の製造方法。
     
    A method for producing a resin for purifying a hydrolyzable organic solvent, comprising the step of optionally mixing a chelate resin with a cation exchange resin, and A method for producing a resin for purifying a hydrolyzable organic solvent, characterized in that the ion exchange resin has a volume ratio of 10 to 100%.
PCT/JP2022/006402 2021-03-31 2022-02-17 Method for purifying hydrolyzable organic solvent, and method for producing resin for purifying hydrolyzable organic solvent WO2022209392A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023510631A JPWO2022209392A1 (en) 2021-03-31 2022-02-17

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021061044 2021-03-31
JP2021-061044 2021-03-31

Publications (1)

Publication Number Publication Date
WO2022209392A1 true WO2022209392A1 (en) 2022-10-06

Family

ID=83458822

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/006402 WO2022209392A1 (en) 2021-03-31 2022-02-17 Method for purifying hydrolyzable organic solvent, and method for producing resin for purifying hydrolyzable organic solvent

Country Status (3)

Country Link
JP (1) JPWO2022209392A1 (en)
TW (1) TW202302499A (en)
WO (1) WO2022209392A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH075683A (en) * 1993-02-25 1995-01-10 Mitsubishi Chem Corp Production of high purity photosensitive resin composition
US20030150814A1 (en) * 2000-05-17 2003-08-14 Joachim Bader Method for separating alkali metal ions from alkoxylates
JP2004181351A (en) * 2002-12-03 2004-07-02 Japan Organo Co Ltd Method for refining non-aqueous liquid material
JP2007117781A (en) * 2005-10-24 2007-05-17 Japan Organo Co Ltd Ion exchange resin, ion exchange resin column, method for reducing metallic impurity content contained in ion exchange resin, purification apparatus and purification method
JP2013000725A (en) * 2011-06-21 2013-01-07 Nomura Micro Sci Co Ltd Method of operating water purification system, and the water purification system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH075683A (en) * 1993-02-25 1995-01-10 Mitsubishi Chem Corp Production of high purity photosensitive resin composition
US20030150814A1 (en) * 2000-05-17 2003-08-14 Joachim Bader Method for separating alkali metal ions from alkoxylates
JP2004181351A (en) * 2002-12-03 2004-07-02 Japan Organo Co Ltd Method for refining non-aqueous liquid material
JP2007117781A (en) * 2005-10-24 2007-05-17 Japan Organo Co Ltd Ion exchange resin, ion exchange resin column, method for reducing metallic impurity content contained in ion exchange resin, purification apparatus and purification method
JP2013000725A (en) * 2011-06-21 2013-01-07 Nomura Micro Sci Co Ltd Method of operating water purification system, and the water purification system

Also Published As

Publication number Publication date
JPWO2022209392A1 (en) 2022-10-06
TW202302499A (en) 2023-01-16

Similar Documents

Publication Publication Date Title
CA3009750C (en) Purification process for hydrolysable organic solvent
TWI773881B (en) Production method and production device for chelate resin, and method for refining liquid to be processed
JP2019509882A (en) Purification process for hydrophilic organic solvents
JP5717997B2 (en) Method for producing aqueous tetraalkylammonium salt solution
WO2019207995A1 (en) Method for removing metal in liquid and h-type chelate resin mixed with anion exchange resin
WO2022091605A1 (en) Method for purifying organic solvent
WO2022209392A1 (en) Method for purifying hydrolyzable organic solvent, and method for producing resin for purifying hydrolyzable organic solvent
WO2013062100A1 (en) Method for producing tetraalkylammonium salt solution
WO2023210370A1 (en) Organic solvent purification method and purification apparatus
WO2022030380A1 (en) Polar organic solvent purification method, polar organic solvent purification device, analysis method and purified polar organic solvent production method
JP4081503B2 (en) Mixed bed type ion exchange resin
CN114072232A (en) Method for purifying organic solvents
KR102346921B1 (en) Mixed bed ion exchange resin comprising anion exchange resin and cation exchange resin, method for preparing the same and method for purifying hydrogen peroxide solution using the same
TW202229176A (en) Method and device for refining liquid to be processed containing tetraalkylammonium ions
JP7441286B2 (en) Method for purifying high-purity alkylene glycol monoalkyl ether carboxylic acid ester used in photoresist process
JP2005296839A (en) Method and apparatus for making ultrapure water, and cleaning electronic components and members using the same
JP2003334550A (en) Ultrapure water and production method therefor
WO2022209233A1 (en) Dry ion exchange resin manufacturing method and manufacturing device, and treated liquid purifying method and purifying device
TW202306646A (en) Refining method and refining device for non-aqueous liquid, and production method and pretreatment device for ion exchange resin
JP2534861B2 (en) Method for producing high-purity hydrazine hydrate
JPH01119344A (en) Method for decreasing eluate of cation-exchange resin of high acidity

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22779619

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023510631

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22779619

Country of ref document: EP

Kind code of ref document: A1