WO2022091283A1 - Branch line coupler - Google Patents

Branch line coupler Download PDF

Info

Publication number
WO2022091283A1
WO2022091283A1 PCT/JP2020/040579 JP2020040579W WO2022091283A1 WO 2022091283 A1 WO2022091283 A1 WO 2022091283A1 JP 2020040579 W JP2020040579 W JP 2020040579W WO 2022091283 A1 WO2022091283 A1 WO 2022091283A1
Authority
WO
WIPO (PCT)
Prior art keywords
main waveguide
branch line
line coupler
coupling waveguides
waveguide
Prior art date
Application number
PCT/JP2020/040579
Other languages
French (fr)
Japanese (ja)
Inventor
素実 渡辺
拓真 西村
秀憲 湯川
伸一 山本
徹 高橋
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2020/040579 priority Critical patent/WO2022091283A1/en
Priority to JP2022558702A priority patent/JP7199615B2/en
Publication of WO2022091283A1 publication Critical patent/WO2022091283A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/12Coupling devices having more than two ports
    • H01P5/16Conjugate devices, i.e. devices having at least one port decoupled from one other port
    • H01P5/18Conjugate devices, i.e. devices having at least one port decoupled from one other port consisting of two coupled guides, e.g. directional couplers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/12Coupling devices having more than two ports
    • H01P5/16Conjugate devices, i.e. devices having at least one port decoupled from one other port
    • H01P5/19Conjugate devices, i.e. devices having at least one port decoupled from one other port of the junction type
    • H01P5/22Hybrid ring junctions

Definitions

  • This disclosure relates to a branch line coupler, which is one of the waveguide components.
  • a general branch line coupler In a general branch line coupler, two main waveguides having a rectangular cross-sectional shape are arranged so that their wide walls face each other, and these main waveguides are connected to a plurality of main waveguides having a rectangular cross-sectional shape. It has a structure connected by a waveguide.
  • the characteristics of the branch line coupler are determined by selecting the cross-sectional dimensions and length of each waveguide.
  • Non-Patent Document 1 describes a branch line coupler having a waveguide having a hexagonal cross section.
  • a three-dimensional (hereinafter referred to as 3D) printer is used for manufacturing the branch line coupler.
  • a 3D printer is a device that forms a desired shape by stacking powder materials in layers and firing them.
  • the branch line coupler is manufactured by laminating a powder material in the vertical direction from the port side on a horizontal plane using, for example, a 3D printer.
  • Non-Patent Document 1 When the branch line coupler described in Non-Patent Document 1 is laminated with a powder material from the port side along the tube axis direction of the main waveguide on a horizontal plane using a 3D printer, the coupling connecting the main waveguides is connected. A wall surface portion parallel to the horizontal plane is formed in the waveguide.
  • the wall surface portion of the coupling waveguide parallel to the horizontal plane has a problem of bending vertically downward due to its own weight before firing.
  • the cross-sectional shape of the coupling waveguide changes, so that the characteristics of the branch line coupler change from the design value.
  • the present disclosure solves the above-mentioned problems, and obtains a branch line coupler capable of reducing the occurrence of bending of a coupling waveguide even when powder materials are laminated along the tube axis direction of the main waveguide.
  • the purpose is.
  • the branch line coupler includes a first main waveguide, a second main waveguide provided in parallel with the first main waveguide, a first main waveguide, and a second main waveguide.
  • a plurality of coupling waveguides are provided side by side on facing surfaces of the main waveguide, and a plurality of coupling waveguides are provided so as to communicate and connect between the first main waveguide and the second main waveguide, and a plurality of couplings are provided.
  • Each of the waveguides has a constant shape and dimension in the cross section in the direction orthogonal to the tube axis direction, and is bent in a convex shape in the same direction.
  • a flexible coupling waveguide is bent by laminating a powder material from a horizontal plane along the tube axis direction of the main waveguide so that the convex side of the plurality of coupling waveguides is vertically upward.
  • the powder particles constituting the convex shape of the above overlap diagonally upward.
  • a portion in which adjacent powder particles support each other is formed. Therefore, the branch line coupler according to the present disclosure can be used as a coupling waveguide even if powder materials are laminated along the tube axis direction of the main waveguide. It is possible to reduce the occurrence of bending.
  • FIG. 1A is a perspective view showing the configuration of the branch line coupler according to the first embodiment
  • FIG. 1B is an arrow diagram showing a branch line coupler viewed from the direction of arrow A in FIG. 1A
  • FIG. 1C is a diagram. It is an arrow diagram which shows the branch line coupler seen from the arrow B direction of 1A.
  • FIG. 2A is a schematic view showing an outline of the laminated state of the powder particles constituting the coupling waveguide parallel to the horizontal plane
  • FIG. 2B is a schematic view showing the outline of the powder particles constituting the coupling waveguide according to the first embodiment. It is a schematic diagram which shows the outline of the laminated state.
  • FIG. 1A is a perspective view showing the configuration of the branch line coupler according to the first embodiment
  • FIG. 1B is an arrow diagram showing a branch line coupler viewed from the direction of arrow A in FIG. 1A
  • FIG. 1C is a diagram. It is an arrow diagram which shows the branch line coupler seen
  • FIG. 3A is a diagram showing the reflection characteristics at the first port of the branch line coupler
  • FIG. 3B is a diagram showing the passage characteristics between the first port and the second port of the branch line coupler
  • FIG. 3C is a diagram showing the coupling characteristics between the first port and the third port of the branch line coupler
  • FIG. 3D is a diagram showing the coupling characteristics between the first port and the fourth port of the branch line coupler. It is a figure which shows the isolation characteristic. It is a top view which shows the branch line coupler for reference which can obtain the ideal electrical property.
  • FIG. 5A is a perspective view showing the configuration of a modified example (1) of the branch line coupler according to the first embodiment
  • FIG. 5A is a perspective view showing the configuration of a modified example (1) of the branch line coupler according to the first embodiment
  • FIG. 5B is a modified example (1) of the branch line coupler seen from the arrow D direction of FIG. 5A.
  • 5C is a cross-sectional arrow diagram showing a modified example (1) of the branch line coupler cut along the EE line of FIG. 5A.
  • FIG. 6A is a perspective view showing the configuration of a modified example (2) of the branch line coupler according to the first embodiment
  • FIG. 6B is a modified example (2) of the branch line coupler seen from the arrow F direction of FIG. 6A
  • 6C is a partially enlarged view showing a portion surrounded by a broken line in FIG. 6B in the modified example (2) of the branch line coupler.
  • FIG. 6A is a perspective view showing the configuration of a modified example (2) of the branch line coupler according to the first embodiment
  • FIG. 6B is a modified example (2) of the branch line coupler seen from the arrow F direction of FIG. 6A
  • 6C is a partially enlarged view showing a portion surrounded by a broken line in FIG. 6
  • FIG. 7A is a perspective view showing the configuration of a modified example (3) of the branch line coupler according to the first embodiment
  • FIG. 7B is a modified example (3) of the branch line coupler seen from the arrow G direction of FIG. 7A.
  • FIG. 8A is a perspective view showing the configuration of a modified example (4) of the branch line coupler according to the first embodiment
  • FIG. 8B is a modified example (4) of the branch line coupler seen from the arrow H direction of FIG. 8A
  • 8C is an arrow diagram showing a modified example (4) of the branch line coupler seen from the direction of arrow I in FIG. 8A.
  • FIG. 9A is a perspective view showing the configuration of the modified example (5) of the branch line coupler according to the first embodiment
  • FIG. 9B is a modified example (5) of the branch line coupler seen from the arrow J direction of FIG. 9A. It is an arrow figure which shows. It is a top view which shows the modification (6) of the branch line coupler which concerns on Embodiment 1 as seen from the port side. It is a top view which shows the modification (7) of the branch line coupler which concerns on Embodiment 1 as seen from the port side.
  • FIG. 1A is a perspective view showing the configuration of the branch line coupler 1 according to the first embodiment.
  • FIG. 1B is an arrow diagram showing a branch line coupler 1 seen from the direction of arrow A in FIG. 1A.
  • FIG. 1C is an arrow diagram showing a branch line coupler 1 seen from the direction of arrow B in FIG. 1A.
  • the branch line coupler 1 is a waveguide component that functions as a 90 ° hybrid circuit having four ports 2a to 2d, and is a first main waveguide 2 and a second main waveguide. And the waveguides 4a to 4i for coupling are provided.
  • the first main waveguide 2 is a waveguide having a port 2a (first port) and a port 2b (second port).
  • the second main waveguide 3 is a waveguide having a port 2c (third port) and a port 2b (fourth port).
  • the first main waveguide 2 and the second main waveguide 3 are waveguides having the same structure and the same dimensions.
  • the first main waveguide 2 and the second main waveguide 3 are provided so as to face each other in parallel. For example, the distance between the first main waveguide 2 and the second main waveguide 3 facing each other is one-fourth of the wavelength ⁇ at the center frequency of the frequency band used.
  • the shape of the cross section of the first main waveguide 2 and the second main waveguide 3 in the direction orthogonal to the tube axis direction is, for example, a rectangle.
  • the side wall surface of the first main waveguide 2 and the second main waveguide 3 including the long side of the rectangular cross section in the direction orthogonal to the tube axis direction is the "wide wall surface", and the short side of the rectangular cross section. It is assumed that the side wall surface including is a "narrow wall surface".
  • the first main waveguide 2 and the second main waveguide 3 are arranged in parallel with their wide wall surfaces facing each other.
  • the coupling waveguides 4a to 4i are provided side by side on the wide wall surface where the first main waveguide 2 and the second main waveguide 3 face each other.
  • the first main waveguide 2 and the second main waveguide 3 are communicated and connected to each other.
  • the coupling waveguides 4a to 4i have a rectangular cross-sectional shape in a direction orthogonal to the tube axis direction, for example.
  • the side wall surface including the long side of the rectangular cross section is the "wide wall surface”
  • the side wall surface including the short side of the rectangular cross section is the "narrow wall surface”.
  • the distance between the adjacent coupling waveguides is about ⁇ / 4.
  • Each of the coupling waveguides 4a to 4i has a constant width of the narrow wall surface, that is, a constant cross-sectional area in the direction orthogonal to the tube axis direction. Further, each of the coupling waveguides 4a to 4i is bent in a convex shape in the same direction. For example, as shown in FIG. 1C, each of the coupling waveguides 4a to 4i is bent in an arc shape with the same curvature. That is, the wide wall surfaces of the coupling waveguides 4a to 4i are bent in the same direction, with the same curvature, in an arc shape.
  • each of the coupling waveguides 4a to 4i has a width equal to the width of the wide wall surface on which the first main waveguide 2 and the second main waveguide 3 face each other. ..
  • the width of the wide wall surface of the first main waveguide 2 and the second main waveguide 3 is the distance between the narrow wall surface seen from the direction of arrow B and the narrow wall surface seen from the direction opposite to the arrow B. be.
  • the width of each of the coupling waveguides 4a to 4i is the distance between the narrow wall surface seen from the direction of arrow B and the narrow wall surface seen from the direction opposite to the arrow B.
  • the first main waveguide 2, the second main waveguide and the coupling waveguides 4a to 4i are fired by stacking powder materials in the direction of arrow C from the ports 2a and 3b on a horizontal plane using a 3D printer. It is formed by.
  • the arrow C direction is a direction along the tube axis direction of the first main waveguide 2 and the second main waveguide 3.
  • the wall surface portion parallel to the horizontal plane is not formed in the coupling waveguides 4a to 4i, and the vertically upper portion is bent in a convex shape.
  • the wall surface portion is formed.
  • FIG. 2A is a schematic diagram showing an outline of a laminated state of powder particles pa constituting a coupling waveguide parallel to a horizontal plane.
  • FIG. 2B is a schematic diagram showing an outline of the laminated state of the powder particles pa constituting the coupling waveguides 4a to 4i.
  • the coupling waveguide bends vertically downward as indicated by the arrow C1 due to its own weight.
  • the coupling waveguides 4a to 4i as shown in FIG.
  • Coupling waveguide whose cross-sectional shape dimension in the direction orthogonal to the tube axis is not constant, for example, a coupling waveguide whose width of a narrow wall surface (when the cross-sectional shape is rectangular, the dimension in the short side direction of the rectangular cross section) is not constant. Is required to be designed in consideration of the characteristic impedance corresponding to this difference in cross section. On the other hand, since the shape and dimensions of the cross sections of the coupling waveguides 4a to 4i are constant, it is not necessary to consider the characteristic impedance according to the difference in the cross sections. Therefore, the branch line coupler 1 is easy to design and easily realizes desired electrical characteristics.
  • the width of the narrow wall surface of each of the coupling waveguides 4a to 4i is constant, but as shown in FIG. 1C, the coupling waveguide 4a and the coupling waveguide 4i are narrow.
  • the wall surface has the same width, and the width of the narrow wall surface of the coupling waveguides 4b to 4h is wider than the width of the narrow wall surface of the coupling waveguide 4a and the coupling waveguide 4i.
  • the transmission line realized by the coupling waveguide has different characteristic impedances and different path lengths along the center of the waveguide when the width of the narrow wall surface of the coupling waveguide is different. That is, the coupling waveguides having different widths of the narrow wall surface have different electrical lengths.
  • the width of each narrow wall surface of the coupling waveguides 4a to 4i keeps the distance between the first main waveguide 2 and the second main waveguide 3 facing each other at about ⁇ / 4. And it is designed to a value that can obtain the desired electrical characteristics.
  • At least two coupling waveguides are required to improve the electrical characteristics of the branch line coupler. As the number of coupling waveguides increases, the electrical properties of the branch line coupler improve.
  • the characteristic impedance of the branch line coupler depends on the width of the narrow wall surface of the coupling waveguide. Therefore, the width of the narrow wall surface of the coupling waveguides 4a to 4i is a width at which the branch line coupler 1 has a desired characteristic impedance value.
  • FIG. 3A is a diagram showing reflection characteristics at port 2a, which is the first port of the branch line coupler 1.
  • FIG. 3B is a diagram showing passage characteristics between port 2a and port 2b of the branch line coupler
  • FIG. 3C is a diagram showing coupling characteristics between port 2a and port 2c of the branch line coupler.
  • FIG. 3D is a diagram showing the isolation characteristics between the port 2a and the port 2d of the branch line coupler.
  • FIG. 4 is a top view showing a reference branch line coupler 100 from which ideal electrical characteristics can be obtained.
  • the horizontal axis is the normalized frequency F / F0.
  • the frequency F0 is the center frequency of the used frequency band at the time of designing the branch line coupler, and the frequency F is each frequency of the used frequency band.
  • the vertical axis is the S-parameter (amplitude value) at the normalized frequency F / F0.
  • the characteristic shown by the solid line is the characteristic of the branch line coupler 1 shown in FIGS. 1A, 1B and 1C, and the characteristic shown by the broken line is the characteristic of the branch line coupler 100 shown in FIG.
  • the branch line coupler 100 includes a first main waveguide 101, a second main waveguide 102, and coupling waveguides 103a to 103i.
  • the first main waveguide 101 and the second main waveguide 102 have the same structure and the same dimensions, and are provided so as to face each other in parallel.
  • the facing distance between the first main waveguide 101 and the second main waveguide 102 is one-fourth of the wavelength ⁇ at the center frequency F0.
  • the shape of the cross section of the first main waveguide 101 and the second main waveguide 102 in the direction orthogonal to the tube axis direction is rectangular.
  • the coupling waveguides 103a to 103i are provided side by side on the surface where the first main waveguide 101 and the second main waveguide 102 face each other, and the first main waveguide 101 and the second main waveguide 102 are provided side by side. It communicates with 102 and connects.
  • the coupling waveguides 103a to 103i have a rectangular cross-sectional shape in the direction orthogonal to the tube axis direction. On the wide wall surface of the first main waveguide 101 and the second main waveguide 102, the distance between the adjacent coupling waveguides is ⁇ / 4.
  • the coupling waveguides 103a to 103i are parallel to the horizontal plane.
  • a wall surface portion is formed.
  • the branch line coupler 100 is a virtual coupler assuming that the wall surface portions of the coupling waveguides 103a to 103i do not bend, and ideal electrical characteristics can be obtained as a branch line coupler.
  • the branch line coupler 1 when the powder material is laminated in the vertical direction from the horizontal plane using a 3D printer, the coupling waveguide does not need to be used to prevent the coupling waveguide from bending. The occurrence of bending of the tubes 4a to 4i is reduced. Further, since the branch line coupler 1 can be formed by laminating powder materials in the tube axis direction of the first main waveguide 2 and the second main waveguide 3, it is orthogonal to the tube axis direction of the main waveguide. It is easy to form a constant shape and dimension of the cross section in the direction of orthogonality. Therefore, the branch line coupler 1 is easy to design and easily forms a structure that realizes desired electrical characteristics by using a 3D printer.
  • the branch line coupler 1 includes nine coupling waveguides 4a to 4i is shown.
  • the number of coupling waveguides may be two or more, and the branch line coupler 1 includes a number of coupling waveguides corresponding to desired electrical characteristics.
  • FIG. 5A is a perspective view showing the configuration of the branch line coupler 1A, which is a modification (1) of the branch line coupler 1.
  • FIG. 5B is an arrow diagram showing the branch line coupler 1A seen from the direction of arrow D in FIG. 5A.
  • FIG. 5C is a cross-sectional arrow showing the branch line coupler 1A cut along the line EE of FIG. 5A.
  • the same components as those in FIGS. 1A, 1B and 1C are designated by the same reference numerals and description thereof will be omitted.
  • the coupling waveguides 5a to 5i are provided side by side on the wide wall surface where the first main waveguide 2 and the second main waveguide 3 face each other, and the first main waveguide 2 and the second main waveguide 2 are provided side by side. It is a waveguide that communicates with and connects to the tube 3. Further, the coupling waveguides 5a to 5i have a rectangular cross-sectional shape in the direction orthogonal to the tube axis direction, and the shape dimension of the cross section in the direction orthogonal to the tube axis direction is constant. Further, the wide wall surfaces of the coupling waveguides 5a to 5i are bent in the same direction, with the same curvature, in an arc shape.
  • each of the coupling waveguides 5a to 5i has a width different from the width of the wide wall surface on which the first main waveguide 2 and the second main waveguide 3 face each other.
  • the width of the wide wall surface of the first main waveguide 2 and the second main waveguide 3 is the distance between the narrow wall surface seen from the direction of arrow D and the narrow wall surface seen from the direction opposite to the arrow D. be.
  • the coupling waveguides 5a to 5i are all narrower than the width of the wide wall surface on which the first main waveguide 2 and the second main waveguide 3 face each other.
  • the coupling waveguides 5a, 5e and 5i have the same width and the widest
  • the coupling waveguides 5c and 5g have the same width and the next widest
  • the coupling waveguides 5b and 5d have the same width
  • 5f and 5h have the same width and are configured to be the narrowest.
  • each of the coupling waveguides 5a to 5i is not limited to a width equal to the width of the wide wall surface on which the first main waveguide 2 and the second main waveguide 3 face each other. , Different widths are allowed. By changing the widths of the coupling waveguides 5a to 5i, for example, it is possible to correct the parasitic component generated in the connection portion between the main waveguide and the coupling waveguide. By correcting the parasitic component, the electrical characteristics of the branch line coupler 1A can be improved.
  • FIG. 6A is a perspective view showing the configuration of the branch line coupler 1B, which is a modification (2) of the branch line coupler 1.
  • FIG. 6B is an arrow diagram showing the branch line coupler 1B seen from the direction of arrow F in FIG. 6A.
  • FIG. 6C is a partially enlarged view showing a portion of the branch line coupler 1B surrounded by a broken line in FIG. 6B.
  • the same components as those in FIGS. 1A, 1B and 1C are designated by the same reference numerals and description thereof will be omitted.
  • the coupling waveguides 6a to 6i are provided side by side on the wide wall surface where the first main waveguide 2 and the second main waveguide 3 face each other, and the first main waveguide 2 and the second main waveguide 2 are provided side by side. It is a waveguide that communicates with and connects to the tube 3. Further, the coupling waveguides 6a to 6i have a rectangular shape in the cross section in the direction orthogonal to the tube axis direction, and the shape dimension of the cross section in the direction orthogonal to the tube axis direction is constant. The wide wall surfaces of the coupling waveguides 6a to 6i are bent in the same direction and in an arc shape with the same curvature.
  • each of the coupling waveguides 6a to 6i is bent with a larger curvature than the coupling waveguides 4a to 4i. That is, the branch line coupler 1B includes coupling waveguides 6a to 6i that are bent at a curvature different from that of the branch line coupler 1. Even if powder materials are laminated in the vertical direction from the horizontal plane using a 3D printer to form the branch line coupler 1B, the wall surface portion parallel to the horizontal plane is not formed in the coupling waveguides 6a to 6i, and the wall surface portion is not formed vertically above. A wall surface portion that is bent in a convex shape is formed. As a result, the occurrence of bending of the coupling waveguides 6a to 6i is reduced.
  • the branch line coupler 1B includes coupling waveguides 6a to 6i having a large curvature, so that the distance between the first main waveguide 2 and the second main waveguide 3 is maintained at about ⁇ / 4. , It is possible to close the interval. Thereby, the branch line coupler 1B can realize the overall miniaturization. Further, each of the coupling waveguides 6a to 6i has the width of the wide wall surface on which the first main waveguide 2 and the second main waveguide 3 face each other, similarly to the coupling waveguides 5a to 5i. May be waveguides with different widths.
  • FIG. 7A is a perspective view showing the configuration of the branch line coupler 1C, which is a modification (3) of the branch line coupler 1.
  • FIG. 7B is an arrow diagram showing the branch line coupler 1C seen from the direction of arrow G in FIG. 7A.
  • the same components as those in FIGS. 1A, 1B and 1C are designated by the same reference numerals and description thereof will be omitted.
  • the coupling waveguides 7a to 7i are provided side by side on the wide wall surface where the first main waveguide 2 and the second main waveguide 3 face each other, and the first main waveguide 2 and the second main waveguide 2 are provided side by side. It is connected to the tube 3 in communication. Further, each of the coupling waveguides 7a to 7i has a rectangular cross-sectional shape in the direction orthogonal to the tube axis direction, and the shape and dimensions of the cross-section are constant, that is, the width of the narrow wall surface is constant.
  • Each of the coupling waveguides 7a to 7i is bent in an arc shape in the same direction, and the coupling waveguides 7a to 7i include those having different curvatures of the arcs.
  • the coupling waveguides 7a, 7c, 7e, 7g and 7i are bent in an arc shape having a large curvature, similar to the coupling waveguides 6a to 6i.
  • the coupling waveguides 7b, 7d, 7f and 7h are bent in an arc shape having a small curvature, similarly to the coupling waveguides 4a to 4i.
  • the transmission line realized by the coupling waveguide bent in an arc shape has different characteristic impedances and different path lengths along the center of the waveguide when the curvature of the arc is different. That is, the arc-shaped coupling waveguides having different curvatures have different electrical lengths. Therefore, in the branch line coupler 1C, the curvatures of the coupling waveguides 7a to 7i keep the distance between the first main waveguide 2 and the second main waveguide 3 facing each other at about ⁇ / 4. , Designed to a value that gives the desired electrical length.
  • the coupling waveguides 7a to 7i are a combination of arcuate coupling waveguides having different curvatures.
  • the branch line coupler 1C is provided with the coupling waveguides 7a to 7i, so that the distance between the first main waveguide 2 and the second main waveguide 3 is maintained at about ⁇ / 4, and the distance between them is maintained. It is possible to reduce the overall size.
  • each of the coupling waveguides 7a to 7i has the width of the wide wall surface on which the first main waveguide 2 and the second main waveguide 3 face each other, similarly to the coupling waveguides 5a to 5i. May be waveguides with different widths.
  • FIG. 8A is a perspective view showing the configuration of the branch line coupler 1D, which is a modification (4) of the branch line coupler 1.
  • 8B is an arrow diagram showing the branch line coupler 1D seen from the arrow H direction of FIG. 8A
  • FIG. 8C is an arrow diagram showing the branch line coupler 1D seen from the arrow I direction of FIG. 8A.
  • the same components as those in FIGS. 1A, 1B and 1C are designated by the same reference numerals and description thereof will be omitted.
  • the coupling waveguides 8a to 8i are provided side by side on the wide wall surface where the first main waveguide 2 and the second main waveguide 3 face each other, and the first main waveguide 2 and the second main waveguide 2 are provided side by side. It is a waveguide that communicates with and connects to the tube 3. Further, the coupling waveguides 8a to 8i have a rectangular shape in the cross section in the direction orthogonal to the tube axis direction, and the shape dimension of the cross section in the direction orthogonal to the tube axis direction is constant. Further, the wide wall surfaces of the coupling waveguides 8a to 8i are bent in the same direction and at the same angle in a triangular roof shape.
  • the first main waveguide 2, the second main waveguide and the coupling waveguides 8a to 8i are formed by stacking powder materials in the direction of arrow C on a horizontal plane and firing them using a 3D printer. As shown in FIGS. 8A and 8C, even if the powder materials are stacked in the direction of arrow C, the wall surface portion parallel to the horizontal plane is not formed in the coupling waveguides 8a to 8i, and the vertically upper portion is bent in a convex shape. The wall surface portion is formed.
  • the branch line coupler 1D when the powder materials are laminated in the vertical direction, the powder particles constituting the wall surface portion in which the vertical upper portion is bent in a convex shape are overlapped diagonally upward, and the adjacent powder particles support each other. The part is formed. Therefore, it is possible to reduce the occurrence of bending of the wall surface portions of the coupling waveguides 8a to 8i. Since the coupling waveguides 8a to 8i incline steeply as the bending angle of the triangular roof shape is reduced, the powder particles are diagonally upwardly overlapped even in the vicinity of the apex of the triangular roof, and the number of powder particles lying side by side is reduced. Therefore, the occurrence of bending is further suppressed.
  • the width of the narrow wall surface of each of the coupling waveguides 8a to 8i is constant, but as shown in FIG. 8C, the coupling waveguide 8a and the coupling waveguide 8i are narrow.
  • the wall surface has the same width, and the width of the narrow wall surface of the coupling waveguides 8b to 8h is wider than the width of the narrow wall surface of the coupling waveguide 8a and the coupling waveguide 8i.
  • each triangular roof shape of the coupling waveguides 8a to 8i is such that the distance between the first main waveguide 2 and the second main waveguide 3 is about ⁇ / 4. It is designed to maintain and obtain the desired electrical characteristics. Further, each of the coupling waveguides 8a to 8i has the width of the wide wall surface on which the first main waveguide 2 and the second main waveguide 3 face each other, similarly to the coupling waveguides 5a to 5i. May be waveguides with different widths.
  • FIG. 9A is a perspective view showing the configuration of the branch line coupler 1E, which is a modification (5) of the branch line coupler 1.
  • 9B is an arrow diagram showing the branch line coupler 1E seen from the direction of arrow J in FIG. 9A.
  • the same components as those in FIGS. 1A, 1B and 1C are designated by the same reference numerals and the description thereof will be omitted.
  • the coupling waveguides 9a to 9i are provided side by side on the wide wall surface where the first main waveguide 2 and the second main waveguide 3 face each other, and the first main waveguide 2 and the second main waveguide 2 are provided side by side. It is connected to the tube 3 in communication. Further, each of the coupling waveguides 9a to 9i has a rectangular cross-sectional shape in the direction orthogonal to the tube axis direction, and the shape and dimensions of the cross-section are constant, that is, the width of the narrow wall surface is constant.
  • Each of the coupling waveguides 9a to 9i is bent into a triangular roof shape in the same direction, and the coupling waveguides 9a to 9i include those having different angles of the triangular roof.
  • the coupling waveguides 9a, 9c, 9e, 9g and 9i are bent into a triangular roof shape having a large angle, similar to the coupling waveguides 8a to 8i.
  • the coupling waveguides 9b, 9d, 9f and 9h are bent into a triangular roof shape having a smaller angle than the coupling waveguides 8a to 8i.
  • the transmission line realized by the coupling waveguide bent into a triangular roof shape has different characteristic impedances and different electrical lengths when the angle of the triangular roof shape is different.
  • the angle of each triangular roof shape of the coupling waveguides 9a to 9i is such that the distance between the first main waveguide 2 and the second main waveguide 3 is about ⁇ / 4. It is designed to maintain and obtain the desired electrical characteristics.
  • each of the coupling waveguides 9a to 9i has the width of the wide wall surface on which the first main waveguide 2 and the second main waveguide 3 face each other, similarly to the coupling waveguides 5a to 5i. May be waveguides with different widths.
  • the coupling waveguides 9a to 9i are a combination of coupling waveguides having a triangular roof shape having different bending angles.
  • the branch line coupler 1E is provided with the coupling waveguides 9a to 9i, so that the distance between the first main waveguide 2 and the second main waveguide 3 is maintained at about ⁇ / 4, and the distance between them is maintained. It is possible to reduce the overall size.
  • each of the coupling waveguides 9a to 9i has the width of the wide wall surface on which the first main waveguide 2 and the second main waveguide 3 face each other, similarly to the coupling waveguides 5a to 5i. May be waveguides with different widths.
  • FIG. 10 is a plan view showing a state in which the branch line coupler 1F, which is a modification (6) of the branch line coupler 1, is viewed from the port side.
  • the branch line coupler 1F includes a first main waveguide 10, a second main waveguide 11, and coupling waveguides 4a to 4i.
  • the first main waveguide 10 and the second main waveguide 11 have a rectangular shape having rounded corners in a cross section in a direction orthogonal to the tube axis direction.
  • the first portion which is a rectangle with rounded corners at the four corners of the outer circumference, and the inner circumference thereof.
  • a second portion which is a rectangle with rounded corners, is provided.
  • the first main waveguide 10 and the second main waveguide 11 have a structure in which the first portion is fitted and connected to the second portion.
  • the branch line coupler 1F is effective when not all the waveguide components are formed by using a 3D printer, but some waveguide components are formed by cutting using an end mill.
  • the waveguide component formed by cutting with an end mill has a rectangular cross section with rounded corners as shown in FIG.
  • a first part (or a second part) is formed by using a 3D printer, a second part (or a first part) is formed by cutting using an end mill, and the first part is formed. Fits into the second portion.
  • the cross-sectional shape can be made the same at the connecting portion of the first portion and the second portion, so that the characteristics of the connecting portion can be easily matched, and the first portion and the second portion are connected. Even if the main waveguide is formed, it is difficult to deviate from the desired electrical characteristics.
  • FIG. 11 is a plan view showing a state in which the branch line coupler 1G, which is a modification (7) of the branch line coupler 1, is viewed from the port side.
  • the branch line coupler 1G includes a first main waveguide 12, a second main waveguide 13, and coupling waveguides 4a to 4i.
  • the first main waveguide 12 and the second main waveguide 13 have an elliptical cross-sectional shape in a direction orthogonal to the tube axis direction.
  • the coupling waveguides 4a to 4i are bent in the same direction, so that they are the same as the branch line coupler 1. Effect can be obtained.
  • the first main waveguide 12 and the first main waveguide 12 and the first main waveguide 12 and the first main waveguide 12 and the first main waveguide 12 and the first main waveguide 12 and the first main waveguide 12 and the second main waveguide are provided in place of the first main waveguide and the second main waveguide included in the branch line coupler 1 and 1A to 1E.
  • the one provided with the main waveguide 13 of 2 is also included.
  • the portion manufactured by using the 3D printer is a part.
  • the coupling waveguide is bent convexly in the same direction, but the coupling waveguide in the part manufactured by cutting is the opposite of the coupling waveguide in the portion manufactured using a 3D printer. It may or may not be bent in a convex shape in the direction. That is, in the branch line coupler according to the first embodiment, in addition to the configuration in which all the coupling waveguides are bent in a convex shape in the same direction, a part of the plurality of coupling waveguides is included. Also included is a configuration comprising a coupling waveguide that is convexly bent in the opposite direction or a coupling waveguide that is not bent.
  • the branch line coupler 1 As described above, in the branch line coupler 1 according to the first embodiment, the first main waveguide 2 and the second main waveguide from the horizontal plane are vertically above the convex side of the coupling waveguides 4a to 4i.
  • the powder particles constituting the convex shape of the bent coupling waveguides 4a to 4i are overlapped diagonally upward.
  • a portion in which adjacent powder particles support each other is formed, so that the branch line coupler 1 laminates the powder material along the tube axial direction of the first main waveguide 2 and the second main waveguide 3. Even so, it is possible to reduce the occurrence of bending of the coupling waveguides 4a to 4i.
  • the branch line coupler according to the present disclosure can be used, for example, in a high frequency circuit.
  • 1,1A-1G branch line coupler 2,10,12 first main waveguide, 3,11,13 second main waveguide, 4a-4i, 5a-5i, 6a-6i, 7a-7i, 8a ⁇ 8i, 9a ⁇ 9i Coupling waveguide.

Landscapes

  • Waveguides (AREA)

Abstract

This branch line coupler (1) comprises: a first main waveguide pipe (2); a second main waveguide pipe (3) provided in parallel with and facing the first main waveguide pipe (2); and a plurality of joining waveguide pipes (4a-4i) which are provided side by side on mutually facing surfaces of the first main waveguide pipe (2) and the second main waveguide pipe (3) and communicate between and connect the first main waveguide pipe (2) and the second main waveguide pipe (3). The plurality of joining waveguide pipes (4a-4i) each have a constant cross-sectional shape in a direction perpendicular to the pipe axial direction and are convexly bent in the same directions.

Description

ブランチラインカプラBranch line coupler
 本開示は、導波管コンポーネントの一つであるブランチラインカプラに関する。 This disclosure relates to a branch line coupler, which is one of the waveguide components.
 一般的なブランチラインカプラは、断面形状が矩形である2本の主導波管が互いの広壁面が対向するように配置され、これらの主導波管を、断面形状が矩形である複数の結合用導波管によって接続した構造を有する。ブランチラインカプラの特性は、各導波管の断面寸法および長さを選定することによって決定される。例えば、非特許文献1には、断面形状が六角形である導波管を有したブランチラインカプラが記載されている。 In a general branch line coupler, two main waveguides having a rectangular cross-sectional shape are arranged so that their wide walls face each other, and these main waveguides are connected to a plurality of main waveguides having a rectangular cross-sectional shape. It has a structure connected by a waveguide. The characteristics of the branch line coupler are determined by selecting the cross-sectional dimensions and length of each waveguide. For example, Non-Patent Document 1 describes a branch line coupler having a waveguide having a hexagonal cross section.
 ブランチラインカプラの製造には、例えば、3次元(以下、3Dと記載する)プリンタが用いられる。3Dプリンタは、粉末材料を層状に積み重ねて焼成することにより目的の形状を形成する装置である。ブランチラインカプラは、例えば、3Dプリンタを用いて、水平面上でポート側から鉛直方向に粉末材料を積層することにより製造される。 For example, a three-dimensional (hereinafter referred to as 3D) printer is used for manufacturing the branch line coupler. A 3D printer is a device that forms a desired shape by stacking powder materials in layers and firing them. The branch line coupler is manufactured by laminating a powder material in the vertical direction from the port side on a horizontal plane using, for example, a 3D printer.
 非特許文献1に記載されたブランチラインカプラを、3Dプリンタを用いて、水平面上でポート側から主導波管の管軸方向に沿って粉末材料を積層した場合、主導波管間を接続する結合用導波管には、水平面に平行な壁面部分が形成される。結合用導波管における、水平面に平行な壁面部分は、焼成前に自重によって鉛直下方に撓むという課題があった。このように結合用導波管の壁面部分が撓むと、結合用導波管の断面形状が変化するので、ブランチラインカプラの特性が設計値から変化してしまう。 When the branch line coupler described in Non-Patent Document 1 is laminated with a powder material from the port side along the tube axis direction of the main waveguide on a horizontal plane using a 3D printer, the coupling connecting the main waveguides is connected. A wall surface portion parallel to the horizontal plane is formed in the waveguide. The wall surface portion of the coupling waveguide parallel to the horizontal plane has a problem of bending vertically downward due to its own weight before firing. When the wall surface portion of the coupling waveguide is bent in this way, the cross-sectional shape of the coupling waveguide changes, so that the characteristics of the branch line coupler change from the design value.
 本開示は上記課題を解決するものであり、主導波管の管軸方向に沿って粉末材料を積層しても、結合用導波管の撓みの発生を軽減することができるブランチラインカプラを得ることを目的とする。 The present disclosure solves the above-mentioned problems, and obtains a branch line coupler capable of reducing the occurrence of bending of a coupling waveguide even when powder materials are laminated along the tube axis direction of the main waveguide. The purpose is.
 本開示に係るブランチラインカプラは、第1の主導波管と、第1の主導波管と平行に対向して設けられた第2の主導波管と、第1の主導波管と第2の主導波管とが対向する面に並んで設けられ、第1の主導波管と第2の主導波管との間を連通して接続する複数の結合用導波管とを備え、複数の結合用導波管のそれぞれは、管軸方向に直交する方向の断面の形状寸法が一定であり、同一方向に凸状に屈曲している。 The branch line coupler according to the present disclosure includes a first main waveguide, a second main waveguide provided in parallel with the first main waveguide, a first main waveguide, and a second main waveguide. A plurality of coupling waveguides are provided side by side on facing surfaces of the main waveguide, and a plurality of coupling waveguides are provided so as to communicate and connect between the first main waveguide and the second main waveguide, and a plurality of couplings are provided. Each of the waveguides has a constant shape and dimension in the cross section in the direction orthogonal to the tube axis direction, and is bent in a convex shape in the same direction.
 本開示によれば、複数の結合用導波管の凸側が鉛直上方になるように、水平面から主導波管の管軸方向に沿って粉末材料を積層することによって、屈曲した結合用導波管の凸状を構成する粉末粒子が斜め上方に向かって重なっていく。これにより、隣り合う粉末粒子同士が支え合う部分が形成されるので、本開示に係るブランチラインカプラは、主導波管の管軸方向に沿って粉末材料を積層しても、結合用導波管の撓みの発生を軽減することができる。 According to the present disclosure, a flexible coupling waveguide is bent by laminating a powder material from a horizontal plane along the tube axis direction of the main waveguide so that the convex side of the plurality of coupling waveguides is vertically upward. The powder particles constituting the convex shape of the above overlap diagonally upward. As a result, a portion in which adjacent powder particles support each other is formed. Therefore, the branch line coupler according to the present disclosure can be used as a coupling waveguide even if powder materials are laminated along the tube axis direction of the main waveguide. It is possible to reduce the occurrence of bending.
図1Aは、実施の形態1に係るブランチラインカプラの構成を示す斜視図であり、図1Bは、図1Aの矢印A方向からみたブランチラインカプラを示す矢示図であり、図1Cは、図1Aの矢印B方向からみたブランチラインカプラを示す矢示図である。1A is a perspective view showing the configuration of the branch line coupler according to the first embodiment, FIG. 1B is an arrow diagram showing a branch line coupler viewed from the direction of arrow A in FIG. 1A, and FIG. 1C is a diagram. It is an arrow diagram which shows the branch line coupler seen from the arrow B direction of 1A. 図2Aは、水平面に平行な結合用導波管を構成する粉末粒子の積層状態の概要を示す概要図であり、図2Bは、実施の形態1における結合用導波管を構成する粉末粒子の積層状態の概要を示す概要図である。FIG. 2A is a schematic view showing an outline of the laminated state of the powder particles constituting the coupling waveguide parallel to the horizontal plane, and FIG. 2B is a schematic view showing the outline of the powder particles constituting the coupling waveguide according to the first embodiment. It is a schematic diagram which shows the outline of the laminated state. 図3Aは、ブランチラインカプラの第1のポートにおける反射特性を示す図であり、図3Bは、ブランチラインカプラの第1のポートと第2のポートとの間の通過特性を示す図であり、図3Cは、ブランチラインカプラの第1のポートと第3のポートとの間の結合特性を示す図であり、図3Dは、ブランチラインカプラの第1のポートと第4のポートとの間のアイソレーション特性を示す図である。FIG. 3A is a diagram showing the reflection characteristics at the first port of the branch line coupler, and FIG. 3B is a diagram showing the passage characteristics between the first port and the second port of the branch line coupler. FIG. 3C is a diagram showing the coupling characteristics between the first port and the third port of the branch line coupler, and FIG. 3D is a diagram showing the coupling characteristics between the first port and the fourth port of the branch line coupler. It is a figure which shows the isolation characteristic. 理想的な電気特性が得られる参照用のブランチラインカプラを示す上面図である。It is a top view which shows the branch line coupler for reference which can obtain the ideal electrical property. 図5Aは、実施の形態1に係るブランチラインカプラの変形例(1)の構成を示す斜視図であり、図5Bは、図5Aの矢印D方向からみたブランチラインカプラの変形例(1)を示す矢示図であり、図5Cは、図5AのE-E線で切断されたブランチラインカプラの変形例(1)を示す断面矢示図である。FIG. 5A is a perspective view showing the configuration of a modified example (1) of the branch line coupler according to the first embodiment, and FIG. 5B is a modified example (1) of the branch line coupler seen from the arrow D direction of FIG. 5A. 5C is a cross-sectional arrow diagram showing a modified example (1) of the branch line coupler cut along the EE line of FIG. 5A. 図6Aは、実施の形態1に係るブランチラインカプラの変形例(2)の構成を示す斜視図であり、図6Bは、図6Aの矢印F方向からみたブランチラインカプラの変形例(2)を示す矢示図であり、図6Cは、ブランチラインカプラの変形例(2)における図6Bの破線で囲まれた部分を示す部分拡大図である。FIG. 6A is a perspective view showing the configuration of a modified example (2) of the branch line coupler according to the first embodiment, and FIG. 6B is a modified example (2) of the branch line coupler seen from the arrow F direction of FIG. 6A. 6C is a partially enlarged view showing a portion surrounded by a broken line in FIG. 6B in the modified example (2) of the branch line coupler. 図7Aは、実施の形態1に係るブランチラインカプラの変形例(3)の構成を示す斜視図であり、図7Bは、図7Aの矢印G方向からみたブランチラインカプラの変形例(3)を示す矢示図である。FIG. 7A is a perspective view showing the configuration of a modified example (3) of the branch line coupler according to the first embodiment, and FIG. 7B is a modified example (3) of the branch line coupler seen from the arrow G direction of FIG. 7A. It is an arrow figure which shows. 図8Aは、実施の形態1に係るブランチラインカプラの変形例(4)の構成を示す斜視図であり、図8Bは、図8Aの矢印H方向からみたブランチラインカプラの変形例(4)を示す矢示図であり、図8Cは、図8Aの矢印I方向からみたブランチラインカプラの変形例(4)を示す矢示図である。FIG. 8A is a perspective view showing the configuration of a modified example (4) of the branch line coupler according to the first embodiment, and FIG. 8B is a modified example (4) of the branch line coupler seen from the arrow H direction of FIG. 8A. 8C is an arrow diagram showing a modified example (4) of the branch line coupler seen from the direction of arrow I in FIG. 8A. 図9Aは、実施の形態1に係るブランチラインカプラの変形例(5)の構成を示す斜視図であり、図9Bは、図9Aの矢印J方向からみたブランチラインカプラの変形例(5)を示す矢示図である。9A is a perspective view showing the configuration of the modified example (5) of the branch line coupler according to the first embodiment, and FIG. 9B is a modified example (5) of the branch line coupler seen from the arrow J direction of FIG. 9A. It is an arrow figure which shows. ポート側からみた実施の形態1に係るブランチラインカプラの変形例(6)を示す平面図である。It is a top view which shows the modification (6) of the branch line coupler which concerns on Embodiment 1 as seen from the port side. ポート側からみた実施の形態1に係るブランチラインカプラの変形例(7)を示す平面図である。It is a top view which shows the modification (7) of the branch line coupler which concerns on Embodiment 1 as seen from the port side.
実施の形態1.
 図1Aは、実施の形態1に係るブランチラインカプラ1の構成を示す斜視図である。図1Bは、図1Aの矢印A方向からみたブランチラインカプラ1を示す矢示図である。図1Cは、図1Aの矢印B方向からみたブランチラインカプラ1を示す矢示図である。ブランチラインカプラ1は、図1Aに示すように、4つのポート2a~2dを有した90°ハイブリッド回路として機能する導波管コンポーネントであり、第1の主導波管2、第2の主導波管および結合用導波管4a~4iを備える。
Embodiment 1.
FIG. 1A is a perspective view showing the configuration of the branch line coupler 1 according to the first embodiment. FIG. 1B is an arrow diagram showing a branch line coupler 1 seen from the direction of arrow A in FIG. 1A. FIG. 1C is an arrow diagram showing a branch line coupler 1 seen from the direction of arrow B in FIG. 1A. As shown in FIG. 1A, the branch line coupler 1 is a waveguide component that functions as a 90 ° hybrid circuit having four ports 2a to 2d, and is a first main waveguide 2 and a second main waveguide. And the waveguides 4a to 4i for coupling are provided.
 第1の主導波管2は、ポート2a(第1のポート)およびポート2b(第2のポート)を有した導波管である。第2の主導波管3は、ポート2c(第3のポート)およびポート2b(第4のポート)を有した導波管である。第1の主導波管2および第2の主導波管3は、同一の構造および同一の寸法を有した導波管である。第1の主導波管2および第2の主導波管3は、平行に対向して設けられる。例えば、第1の主導波管2と第2の主導波管3とが対向する間隔は、使用周波数帯域の中心周波数における波長λの4分の1の距離である。 The first main waveguide 2 is a waveguide having a port 2a (first port) and a port 2b (second port). The second main waveguide 3 is a waveguide having a port 2c (third port) and a port 2b (fourth port). The first main waveguide 2 and the second main waveguide 3 are waveguides having the same structure and the same dimensions. The first main waveguide 2 and the second main waveguide 3 are provided so as to face each other in parallel. For example, the distance between the first main waveguide 2 and the second main waveguide 3 facing each other is one-fourth of the wavelength λ at the center frequency of the frequency band used.
 以下の説明において、第1の主導波管2および第2の主導波管3の管軸方向に直交する方向の断面の形状は、例えば、矩形である。また、第1の主導波管2および第2の主導波管3における、管軸方向に直交する方向の矩形断面の長辺を含んだ側壁面が「広壁面」であり、矩形断面の短辺を含んだ側壁面が「狭壁面」であるものとする。第1の主導波管2および第2の主導波管3は、平行に互いの広壁面を対向させて配置される。 In the following description, the shape of the cross section of the first main waveguide 2 and the second main waveguide 3 in the direction orthogonal to the tube axis direction is, for example, a rectangle. Further, the side wall surface of the first main waveguide 2 and the second main waveguide 3 including the long side of the rectangular cross section in the direction orthogonal to the tube axis direction is the "wide wall surface", and the short side of the rectangular cross section. It is assumed that the side wall surface including is a "narrow wall surface". The first main waveguide 2 and the second main waveguide 3 are arranged in parallel with their wide wall surfaces facing each other.
 結合用導波管4a~4iは、図1A、図1Bおよび図1Cに示すように、第1の主導波管2と第2の主導波管3とが対向する広壁面に並んで設けられ、第1の主導波管2と第2の主導波管3とを連通して接続する。以下の説明において、結合用導波管4a~4iは、例えば、管軸方向に直交する方向の断面の形状が矩形であるものとする。 As shown in FIGS. 1A, 1B and 1C, the coupling waveguides 4a to 4i are provided side by side on the wide wall surface where the first main waveguide 2 and the second main waveguide 3 face each other. The first main waveguide 2 and the second main waveguide 3 are communicated and connected to each other. In the following description, it is assumed that the coupling waveguides 4a to 4i have a rectangular cross-sectional shape in a direction orthogonal to the tube axis direction, for example.
 また、結合用導波管4a~4iのそれぞれは、矩形断面の長辺を含んだ側壁面が「広壁面」であり、矩形断面の短辺を含んだ側壁面が「狭壁面」であるものとする。第1の主導波管2および第2の主導波管3の広壁面において、隣り合う結合用導波管の間隔は、λ/4程度の間隔である。 Further, in each of the coupling waveguides 4a to 4i, the side wall surface including the long side of the rectangular cross section is the "wide wall surface", and the side wall surface including the short side of the rectangular cross section is the "narrow wall surface". And. On the wide wall surface of the first main waveguide 2 and the second main waveguide 3, the distance between the adjacent coupling waveguides is about λ / 4.
 結合用導波管4a~4iのそれぞれは、狭壁面の幅が一定、すなわち、管軸方向に直交する方向の断面の面積が一定である。さらに、結合用導波管4a~4iのそれぞれは、同一方向に凸状に屈曲している。例えば、図1Cに示すように、結合用導波管4a~4iのそれぞれは、同一の曲率で円弧状に屈曲している。すなわち、結合用導波管4a~4iのそれぞれの広壁面が、同一方向に、同一の曲率で、円弧状に屈曲している。 Each of the coupling waveguides 4a to 4i has a constant width of the narrow wall surface, that is, a constant cross-sectional area in the direction orthogonal to the tube axis direction. Further, each of the coupling waveguides 4a to 4i is bent in a convex shape in the same direction. For example, as shown in FIG. 1C, each of the coupling waveguides 4a to 4i is bent in an arc shape with the same curvature. That is, the wide wall surfaces of the coupling waveguides 4a to 4i are bent in the same direction, with the same curvature, in an arc shape.
 図1Bに示すように、結合用導波管4a~4iのそれぞれは、第1の主導波管2と第2の主導波管3とが対向する広壁面の幅と等しい幅を有している。第1の主導波管2および第2の主導波管3の広壁面の幅とは、矢印B方向からみた狭壁面と、矢印Bとは反対側の方向からみた狭壁面との間の距離である。同様に、結合用導波管4a~4iのそれぞれの幅は、矢印B方向からみた狭壁面と、矢印Bとは反対側の方向からみた狭壁面との間の距離である。 As shown in FIG. 1B, each of the coupling waveguides 4a to 4i has a width equal to the width of the wide wall surface on which the first main waveguide 2 and the second main waveguide 3 face each other. .. The width of the wide wall surface of the first main waveguide 2 and the second main waveguide 3 is the distance between the narrow wall surface seen from the direction of arrow B and the narrow wall surface seen from the direction opposite to the arrow B. be. Similarly, the width of each of the coupling waveguides 4a to 4i is the distance between the narrow wall surface seen from the direction of arrow B and the narrow wall surface seen from the direction opposite to the arrow B.
 第1の主導波管2、第2の主導波管および結合用導波管4a~4iは、3Dプリンタを用いて水平面上でポート2aおよび3b側から矢印C方向に粉末材料を積み重ねて焼成することにより形成される。矢印C方向は、第1の主導波管2および第2の主導波管3の管軸方向に沿った方向である。図1Aおよび図1Cに示すように、矢印C方向に粉末材料を積み重ねても、結合用導波管4a~4iには、水平面に平行な壁面部分は形成されず、鉛直上方が凸状に屈曲した壁面部分が形成される。 The first main waveguide 2, the second main waveguide and the coupling waveguides 4a to 4i are fired by stacking powder materials in the direction of arrow C from the ports 2a and 3b on a horizontal plane using a 3D printer. It is formed by. The arrow C direction is a direction along the tube axis direction of the first main waveguide 2 and the second main waveguide 3. As shown in FIGS. 1A and 1C, even if the powder materials are stacked in the direction of arrow C, the wall surface portion parallel to the horizontal plane is not formed in the coupling waveguides 4a to 4i, and the vertically upper portion is bent in a convex shape. The wall surface portion is formed.
 図2Aは、水平面に平行な結合用導波管を構成する粉末粒子paの積層状態の概要を示す概要図である。図2Bは、結合用導波管4a~4iを構成する粉末粒子paの積層状態の概要を示す概要図である。図2Aに示すように、屈曲していない、水平面に平行な結合用導波管の製造において、鉛直方向である矢印C方向に粉末材料を積層していくと、粉末粒子paは、水平面に平行に横並びになる。このため、結合用導波管は、自重によって、矢印C1で示す鉛直下方に撓んでしまう。これに対して、結合用導波管4a~4iでは、図2Bに示すように、矢印C方向に粉末材料を積層していくと、凸状を構成する粉末粒子paは、斜め上方に向かって重なっていく。これにより、破線で囲んで示すように、隣り合う粉末粒子pa同士が支え合う部分C2が形成される。このため、ブランチラインカプラ1は、鉛直方向に粉末材料を積層して形成しても、結合用導波管4a~4iの壁面部分の撓みの発生を軽減することが可能である。 FIG. 2A is a schematic diagram showing an outline of a laminated state of powder particles pa constituting a coupling waveguide parallel to a horizontal plane. FIG. 2B is a schematic diagram showing an outline of the laminated state of the powder particles pa constituting the coupling waveguides 4a to 4i. As shown in FIG. 2A, in the manufacture of a waveguide for coupling that is not bent and is parallel to the horizontal plane, when the powder material is laminated in the direction of arrow C, which is the vertical direction, the powder particles pa are parallel to the horizontal plane. Lying side by side. Therefore, the coupling waveguide bends vertically downward as indicated by the arrow C1 due to its own weight. On the other hand, in the coupling waveguides 4a to 4i, as shown in FIG. 2B, when the powder materials are laminated in the direction of arrow C, the powder particles pa forming the convex shape are obliquely upward. Overlapping. As a result, as shown by being surrounded by a broken line, a portion C2 in which adjacent powder particles pa are supported by each other is formed. Therefore, even if the branch line coupler 1 is formed by laminating powder materials in the vertical direction, it is possible to reduce the occurrence of bending of the wall surface portions of the coupling waveguides 4a to 4i.
 管軸に直交する方向の断面の形状寸法が一定でない結合用導波管、例えば狭壁面の幅(断面形状が矩形の場合、矩形断面の短辺方向の寸法)が一定でない結合用導波管は、この断面の違いに対応した特性インピーダンスを考慮した設計が必要となる。これに対して、結合用導波管4a~4iは、断面の形状寸法が一定であるので、この断面の違いに応じた特性インピーダンスを考慮する必要がない。このため、ブランチラインカプラ1は、設計が容易で所望の電気特性を実現しやすい。 Coupling waveguide whose cross-sectional shape dimension in the direction orthogonal to the tube axis is not constant, for example, a coupling waveguide whose width of a narrow wall surface (when the cross-sectional shape is rectangular, the dimension in the short side direction of the rectangular cross section) is not constant. Is required to be designed in consideration of the characteristic impedance corresponding to this difference in cross section. On the other hand, since the shape and dimensions of the cross sections of the coupling waveguides 4a to 4i are constant, it is not necessary to consider the characteristic impedance according to the difference in the cross sections. Therefore, the branch line coupler 1 is easy to design and easily realizes desired electrical characteristics.
 結合用導波管4a~4iの個々の結合用導波管は、狭壁面の幅が一定であるが、図1Cに示すように、結合用導波管4aと結合用導波管4iの狭壁面は、同じ幅であり、結合用導波管4b~4hの狭壁面の幅は、結合用導波管4aおよび結合用導波管4iの狭壁面の幅よりも広い幅になっている。 The width of the narrow wall surface of each of the coupling waveguides 4a to 4i is constant, but as shown in FIG. 1C, the coupling waveguide 4a and the coupling waveguide 4i are narrow. The wall surface has the same width, and the width of the narrow wall surface of the coupling waveguides 4b to 4h is wider than the width of the narrow wall surface of the coupling waveguide 4a and the coupling waveguide 4i.
 結合用導波管によって実現される伝送線路は、結合用導波管の狭壁面の幅が異なると、特性インピーダンスが異なり、導波管の中心に沿った経路長も異なるものとなる。すなわち、狭壁面の幅が異なる結合用導波管は、電気長が異なる。ブランチラインカプラ1において、結合用導波管4a~4iのそれぞれの狭壁面の幅は、第1の主導波管2と第2の主導波管3とが対向する間隔をλ/4程度に保ちかつ所望の電気特性が得られる値に設計されている。 The transmission line realized by the coupling waveguide has different characteristic impedances and different path lengths along the center of the waveguide when the width of the narrow wall surface of the coupling waveguide is different. That is, the coupling waveguides having different widths of the narrow wall surface have different electrical lengths. In the branch line coupler 1, the width of each narrow wall surface of the coupling waveguides 4a to 4i keeps the distance between the first main waveguide 2 and the second main waveguide 3 facing each other at about λ / 4. And it is designed to a value that can obtain the desired electrical characteristics.
 ブランチラインカプラの電気特性を向上させるためには、少なくとも2本以上の結合用導波管が必要である。結合用導波管の数が増えると、ブランチラインカプラの電気特性は向上する。ブランチラインカプラの特性インピーダンスは、結合用導波管の狭壁面の幅に依存する。このため、結合用導波管4a~4iの狭壁面の幅は、ブランチラインカプラ1が所望の特性インピーダンスの値となる幅である。 At least two coupling waveguides are required to improve the electrical characteristics of the branch line coupler. As the number of coupling waveguides increases, the electrical properties of the branch line coupler improve. The characteristic impedance of the branch line coupler depends on the width of the narrow wall surface of the coupling waveguide. Therefore, the width of the narrow wall surface of the coupling waveguides 4a to 4i is a width at which the branch line coupler 1 has a desired characteristic impedance value.
 図3Aは、ブランチラインカプラ1の第1のポートであるポート2aにおける反射特性を示す図である。図3Bは、ブランチラインカプラのポート2aとポート2bとの間の通過特性を示す図であり、図3Cは、ブランチラインカプラのポート2aとポート2cとの間の結合特性を示す図であり、図3Dは、ブランチラインカプラのポート2aとポート2dとの間のアイソレーション特性を示す図である。図4は、理想的な電気特性が得られる参照用のブランチラインカプラ100を示す上面図である。 FIG. 3A is a diagram showing reflection characteristics at port 2a, which is the first port of the branch line coupler 1. FIG. 3B is a diagram showing passage characteristics between port 2a and port 2b of the branch line coupler, and FIG. 3C is a diagram showing coupling characteristics between port 2a and port 2c of the branch line coupler. FIG. 3D is a diagram showing the isolation characteristics between the port 2a and the port 2d of the branch line coupler. FIG. 4 is a top view showing a reference branch line coupler 100 from which ideal electrical characteristics can be obtained.
 図3Aから図3Dにおいて、横軸は、正規化周波数F/F0である。周波数F0は、ブランチラインカプラの設計時における使用周波数帯域の中心周波数であり、周波数Fは、使用周波数帯域の各周波数である。縦軸は、正規化周波数F/F0におけるS-パラメータ(振幅値)である。実線で示す特性は、図1A、図1Bおよび図1Cに示したブランチラインカプラ1の特性であり、破線で示す特性は、図4に示すブランチラインカプラ100の特性である。 In FIGS. 3A to 3D, the horizontal axis is the normalized frequency F / F0. The frequency F0 is the center frequency of the used frequency band at the time of designing the branch line coupler, and the frequency F is each frequency of the used frequency band. The vertical axis is the S-parameter (amplitude value) at the normalized frequency F / F0. The characteristic shown by the solid line is the characteristic of the branch line coupler 1 shown in FIGS. 1A, 1B and 1C, and the characteristic shown by the broken line is the characteristic of the branch line coupler 100 shown in FIG.
 ブランチラインカプラ100は、図4に示すように、第1の主導波管101、第2の主導波管102および結合用導波管103a~103iを備える。第1の主導波管101と第2の主導波管102は、同一の構造および同一の寸法を有し、平行に対向して設けられる。第1の主導波管101と第2の主導波管102との対向間隔は、中心周波数F0における波長λの4分の1の距離である。第1の主導波管101および第2の主導波管102の管軸方向に直交する方向の断面の形状は、矩形である。 As shown in FIG. 4, the branch line coupler 100 includes a first main waveguide 101, a second main waveguide 102, and coupling waveguides 103a to 103i. The first main waveguide 101 and the second main waveguide 102 have the same structure and the same dimensions, and are provided so as to face each other in parallel. The facing distance between the first main waveguide 101 and the second main waveguide 102 is one-fourth of the wavelength λ at the center frequency F0. The shape of the cross section of the first main waveguide 101 and the second main waveguide 102 in the direction orthogonal to the tube axis direction is rectangular.
 結合用導波管103a~103iは、第1の主導波管101と第2の主導波管102とが対向する面に並んで設けられ、第1の主導波管101と第2の主導波管102とを連通して接続する。結合用導波管103a~103iは、管軸方向に直交する方向の断面形状が矩形である。第1の主導波管101および第2の主導波管102の広壁面において、隣り合う結合用導波管の間隔は、λ/4である。 The coupling waveguides 103a to 103i are provided side by side on the surface where the first main waveguide 101 and the second main waveguide 102 face each other, and the first main waveguide 101 and the second main waveguide 102 are provided side by side. It communicates with 102 and connects. The coupling waveguides 103a to 103i have a rectangular cross-sectional shape in the direction orthogonal to the tube axis direction. On the wide wall surface of the first main waveguide 101 and the second main waveguide 102, the distance between the adjacent coupling waveguides is λ / 4.
 3Dプリンタを用いて水平面から第1の主導波管101および第2の主導波管102の管軸方向に沿って粉末材料を積層すると、結合用導波管103a~103iには、水平面に平行な壁面部分が形成される。ただし、ブランチラインカプラ100は、結合用導波管103a~103iの上記壁面部分に撓みが発生しないと仮定した仮想のカプラであり、ブランチラインカプラとして理想的な電気特性が得られる。 When powder materials are laminated along the tube axis direction of the first main waveguide 101 and the second main waveguide 102 from the horizontal plane using a 3D printer, the coupling waveguides 103a to 103i are parallel to the horizontal plane. A wall surface portion is formed. However, the branch line coupler 100 is a virtual coupler assuming that the wall surface portions of the coupling waveguides 103a to 103i do not bend, and ideal electrical characteristics can be obtained as a branch line coupler.
 図3Aから図3Dのいずれにおいても、ブランチラインカプラ1の電気特性(実線)とブランチラインカプラ100の電気特性(破線)との間には、振幅値に差異がある。この差異は、ブランチラインカプラ1の結合用導波管4a~4iが同一方向に凸状に屈曲しているのに対して、ブランチラインカプラ100の結合用導波管103a~103iは屈曲していない、という構造上の差異に起因する。ただし、上記振幅値の差異は数dB程度に収まっており、ブランチラインカプラ1は、ブランチラインカプラ100の理想的な電気特性と同等の電気特性を有すると言える。 In any of FIGS. 3A to 3D, there is a difference in the amplitude value between the electrical characteristics (solid line) of the branch line coupler 1 and the electrical characteristics (broken line) of the branch line coupler 100. This difference is due to the fact that the coupling waveguides 4a to 4i of the branch line coupler 1 are bent convexly in the same direction, whereas the coupling waveguides 103a to 103i of the branch line coupler 100 are bent. This is due to the structural difference that there is no such thing. However, the difference in the amplitude values is within a few dB, and it can be said that the branch line coupler 1 has the same electrical characteristics as the ideal electrical characteristics of the branch line coupler 100.
 ブランチラインカプラ1では、3Dプリンタを用いて、水平面から鉛直方向に粉末材料を積層させた際に、結合用導波管が撓まないように抑えるサポート部材を用いなくても、結合用導波管4a~4iの撓みの発生が軽減される。また、ブランチラインカプラ1は、第1の主導波管2および第2の主導波管3の管軸方向に粉末材料を積層して形成することができるので、主導波管の管軸方向に直交する方向の断面の形状寸法を一定に形成しやすい。このため、ブランチラインカプラ1は、設計が容易でありかつ3Dプリンタを用いて所望の電気特性を実現する構造を形成しやすい。 In the branch line coupler 1, when the powder material is laminated in the vertical direction from the horizontal plane using a 3D printer, the coupling waveguide does not need to be used to prevent the coupling waveguide from bending. The occurrence of bending of the tubes 4a to 4i is reduced. Further, since the branch line coupler 1 can be formed by laminating powder materials in the tube axis direction of the first main waveguide 2 and the second main waveguide 3, it is orthogonal to the tube axis direction of the main waveguide. It is easy to form a constant shape and dimension of the cross section in the direction of orthogonality. Therefore, the branch line coupler 1 is easy to design and easily forms a structure that realizes desired electrical characteristics by using a 3D printer.
 これまでの説明では、ブランチラインカプラ1が9本の結合用導波管4a~4iを備える構成を示した。しかしながら、結合用導波管の本数は2本以上であればよく、ブランチラインカプラ1は、所望の電気特性に応じた本数の結合用導波管を備える。 In the explanation so far, the configuration in which the branch line coupler 1 includes nine coupling waveguides 4a to 4i is shown. However, the number of coupling waveguides may be two or more, and the branch line coupler 1 includes a number of coupling waveguides corresponding to desired electrical characteristics.
 図5Aは、ブランチラインカプラ1の変形例(1)であるブランチラインカプラ1Aの構成を示す斜視図である。図5Bは、図5Aの矢印D方向からみたブランチラインカプラ1Aを示す矢示図である。図5Cは、図5AのE-E線で切断されたブランチラインカプラ1Aを示す断面矢示図である。図5A、図5Bおよび図5Cにおいて、図1A、図1Bおよび図1Cと同一の構成要素には同一の符号を付して説明を省略する。 FIG. 5A is a perspective view showing the configuration of the branch line coupler 1A, which is a modification (1) of the branch line coupler 1. FIG. 5B is an arrow diagram showing the branch line coupler 1A seen from the direction of arrow D in FIG. 5A. FIG. 5C is a cross-sectional arrow showing the branch line coupler 1A cut along the line EE of FIG. 5A. In FIGS. 5A, 5B and 5C, the same components as those in FIGS. 1A, 1B and 1C are designated by the same reference numerals and description thereof will be omitted.
 結合用導波管5a~5iは、第1の主導波管2と第2の主導波管3とが対向する広壁面に並んで設けられ、第1の主導波管2と第2の主導波管3とを連通して接続する導波管である。また、結合用導波管5a~5iは、管軸方向に直交する方向の断面の形状が矩形であり、管軸方向に直交する方向の断面の形状寸法が一定である。さらに、結合用導波管5a~5iのそれぞれの広壁面が、同一方向に、同一の曲率で、円弧状に屈曲している。 The coupling waveguides 5a to 5i are provided side by side on the wide wall surface where the first main waveguide 2 and the second main waveguide 3 face each other, and the first main waveguide 2 and the second main waveguide 2 are provided side by side. It is a waveguide that communicates with and connects to the tube 3. Further, the coupling waveguides 5a to 5i have a rectangular cross-sectional shape in the direction orthogonal to the tube axis direction, and the shape dimension of the cross section in the direction orthogonal to the tube axis direction is constant. Further, the wide wall surfaces of the coupling waveguides 5a to 5i are bent in the same direction, with the same curvature, in an arc shape.
 図5Cに示すように、結合用導波管5a~5iのそれぞれは、第1の主導波管2と第2の主導波管3とが対向する広壁面の幅とは異なる幅を有している。第1の主導波管2および第2の主導波管3の広壁面の幅とは、矢印D方向からみた狭壁面と、矢印Dとは反対側の方向からみた狭壁面との間の距離である。結合用導波管5a~5iは、いずれも、第1の主導波管2と第2の主導波管3とが対向する広壁面の幅よりも狭い幅である。例えば、ブランチラインカプラ1Aは、結合用導波管5a、5eおよび5iが同一幅で最も広く、結合用導波管5cおよび5gが同一幅で次に広く、結合用導波管5b、5d、5fおよび5hが同一幅で最も狭く構成されている。 As shown in FIG. 5C, each of the coupling waveguides 5a to 5i has a width different from the width of the wide wall surface on which the first main waveguide 2 and the second main waveguide 3 face each other. There is. The width of the wide wall surface of the first main waveguide 2 and the second main waveguide 3 is the distance between the narrow wall surface seen from the direction of arrow D and the narrow wall surface seen from the direction opposite to the arrow D. be. The coupling waveguides 5a to 5i are all narrower than the width of the wide wall surface on which the first main waveguide 2 and the second main waveguide 3 face each other. For example, in the branch line coupler 1A, the coupling waveguides 5a, 5e and 5i have the same width and the widest, the coupling waveguides 5c and 5g have the same width and the next widest, and the coupling waveguides 5b and 5d have the same width. 5f and 5h have the same width and are configured to be the narrowest.
 なお、ブランチラインカプラ1Aにおいて、結合用導波管5a~5iのそれぞれは、第1の主導波管2と第2の主導波管3とが対向する広壁面の幅と等しい幅に限定されず、異なる幅が許容されている。結合用導波管5a~5iの幅を変更することにより、例えば、主導波管と結合用導波管との接続部分に発生する寄生成分を補正することができる。寄生成分を補正することにより、ブランチラインカプラ1Aの電気特性を向上させることができる。 In the branch line coupler 1A, each of the coupling waveguides 5a to 5i is not limited to a width equal to the width of the wide wall surface on which the first main waveguide 2 and the second main waveguide 3 face each other. , Different widths are allowed. By changing the widths of the coupling waveguides 5a to 5i, for example, it is possible to correct the parasitic component generated in the connection portion between the main waveguide and the coupling waveguide. By correcting the parasitic component, the electrical characteristics of the branch line coupler 1A can be improved.
 図6Aは、ブランチラインカプラ1の変形例(2)であるブランチラインカプラ1Bの構成を示す斜視図である。図6Bは、図6Aの矢印F方向からみたブランチラインカプラ1Bを示す矢示図である。図6Cは、ブランチラインカプラ1Bにおける図6Bの破線で囲まれた部分を示す部分拡大図である。図6A、図6Bおよび図6Cにおいて、図1A、図1Bおよび図1Cと同一の構成要素には同一の符号を付して説明を省略する。 FIG. 6A is a perspective view showing the configuration of the branch line coupler 1B, which is a modification (2) of the branch line coupler 1. FIG. 6B is an arrow diagram showing the branch line coupler 1B seen from the direction of arrow F in FIG. 6A. FIG. 6C is a partially enlarged view showing a portion of the branch line coupler 1B surrounded by a broken line in FIG. 6B. In FIGS. 6A, 6B and 6C, the same components as those in FIGS. 1A, 1B and 1C are designated by the same reference numerals and description thereof will be omitted.
 結合用導波管6a~6iは、第1の主導波管2と第2の主導波管3とが対向する広壁面に並んで設けられ、第1の主導波管2と第2の主導波管3とを連通して接続する導波管である。また、結合用導波管6a~6iは、管軸方向に直交する方向の断面の形状が矩形であり、管軸方向に直交する方向の断面の形状寸法が一定である。結合用導波管6a~6iのそれぞれの広壁面は、同一方向に、同一の曲率で円弧状に屈曲している。 The coupling waveguides 6a to 6i are provided side by side on the wide wall surface where the first main waveguide 2 and the second main waveguide 3 face each other, and the first main waveguide 2 and the second main waveguide 2 are provided side by side. It is a waveguide that communicates with and connects to the tube 3. Further, the coupling waveguides 6a to 6i have a rectangular shape in the cross section in the direction orthogonal to the tube axis direction, and the shape dimension of the cross section in the direction orthogonal to the tube axis direction is constant. The wide wall surfaces of the coupling waveguides 6a to 6i are bent in the same direction and in an arc shape with the same curvature.
 図6Cに示すように、結合用導波管6a~6iのそれぞれは、結合用導波管4a~4iよりも大きな曲率で屈曲している。すなわち、ブランチラインカプラ1Bは、ブランチラインカプラ1とは異なる曲率で屈曲している結合用導波管6a~6iを備える。3Dプリンタを用いて水平面から鉛直方向に粉末材料を積層してブランチラインカプラ1Bを形成しても、結合用導波管6a~6iには、水平面に平行な壁面部分は形成されず、鉛直上方が凸状に屈曲した壁面部分が形成される。これにより、結合用導波管6a~6iの撓みの発生が軽減される。 As shown in FIG. 6C, each of the coupling waveguides 6a to 6i is bent with a larger curvature than the coupling waveguides 4a to 4i. That is, the branch line coupler 1B includes coupling waveguides 6a to 6i that are bent at a curvature different from that of the branch line coupler 1. Even if powder materials are laminated in the vertical direction from the horizontal plane using a 3D printer to form the branch line coupler 1B, the wall surface portion parallel to the horizontal plane is not formed in the coupling waveguides 6a to 6i, and the wall surface portion is not formed vertically above. A wall surface portion that is bent in a convex shape is formed. As a result, the occurrence of bending of the coupling waveguides 6a to 6i is reduced.
 ブランチラインカプラ1Bは、曲率が大きな結合用導波管6a~6iを備えることで、第1の主導波管2と第2の主導波管3との間の距離をλ/4程度に保ちつつ、その間隔を詰めることが可能となる。これにより、ブランチラインカプラ1Bは、全体的な小型化を実現することができる。また、結合用導波管6a~6iのそれぞれは、結合用導波管5a~5iと同様に、第1の主導波管2と第2の主導波管3とが対向する広壁面の幅とは異なる幅を有する導波管であってもよい。 The branch line coupler 1B includes coupling waveguides 6a to 6i having a large curvature, so that the distance between the first main waveguide 2 and the second main waveguide 3 is maintained at about λ / 4. , It is possible to close the interval. Thereby, the branch line coupler 1B can realize the overall miniaturization. Further, each of the coupling waveguides 6a to 6i has the width of the wide wall surface on which the first main waveguide 2 and the second main waveguide 3 face each other, similarly to the coupling waveguides 5a to 5i. May be waveguides with different widths.
 図7Aは、ブランチラインカプラ1の変形例(3)であるブランチラインカプラ1Cの構成を示す斜視図である。図7Bは、図7Aの矢印G方向からみたブランチラインカプラ1Cを示す矢示図である。図7Aおよび図7Bにおいて、図1A、図1Bおよび図1Cと同一の構成要素には同一の符号を付して説明を省略する。 FIG. 7A is a perspective view showing the configuration of the branch line coupler 1C, which is a modification (3) of the branch line coupler 1. FIG. 7B is an arrow diagram showing the branch line coupler 1C seen from the direction of arrow G in FIG. 7A. In FIGS. 7A and 7B, the same components as those in FIGS. 1A, 1B and 1C are designated by the same reference numerals and description thereof will be omitted.
 結合用導波管7a~7iは、第1の主導波管2と第2の主導波管3とが対向する広壁面に並んで設けられ、第1の主導波管2と第2の主導波管3とを連通して接続する。また、結合用導波管7a~7iのそれぞれは、管軸方向に直交する方向の断面の形状が矩形であり、断面の形状寸法が一定、すなわち狭壁面の幅が一定である。 The coupling waveguides 7a to 7i are provided side by side on the wide wall surface where the first main waveguide 2 and the second main waveguide 3 face each other, and the first main waveguide 2 and the second main waveguide 2 are provided side by side. It is connected to the tube 3 in communication. Further, each of the coupling waveguides 7a to 7i has a rectangular cross-sectional shape in the direction orthogonal to the tube axis direction, and the shape and dimensions of the cross-section are constant, that is, the width of the narrow wall surface is constant.
 結合用導波管7a~7iのそれぞれは、同一方向に円弧状に屈曲しており、結合用導波管7a~7iには、円弧の曲率が異なるものが含まれる。例えば、図7Bに示すように、結合用導波管7a、7c、7e、7gおよび7iは、結合用導波管6a~6iと同様に、曲率が大きい円弧状に屈曲している。結合用導波管7b、7d、7fおよび7hは、結合用導波管4a~4iと同様に、曲率が小さい円弧状に屈曲している。 Each of the coupling waveguides 7a to 7i is bent in an arc shape in the same direction, and the coupling waveguides 7a to 7i include those having different curvatures of the arcs. For example, as shown in FIG. 7B, the coupling waveguides 7a, 7c, 7e, 7g and 7i are bent in an arc shape having a large curvature, similar to the coupling waveguides 6a to 6i. The coupling waveguides 7b, 7d, 7f and 7h are bent in an arc shape having a small curvature, similarly to the coupling waveguides 4a to 4i.
 円弧状に屈曲した結合用導波管によって実現される伝送線路は、円弧の曲率が異なると、特性インピーダンスが異なり、導波管の中心に沿った経路長も異なるものとなる。すなわち、曲率が異なる円弧状の結合用導波管は電気長が異なる。そこで、ブランチラインカプラ1Cにおいて、結合用導波管7a~7iのそれぞれの曲率は、第1の主導波管2と第2の主導波管3とが対向する間隔をλ/4程度に保ちつつ、所望の電気長が得られる値に設計される。 The transmission line realized by the coupling waveguide bent in an arc shape has different characteristic impedances and different path lengths along the center of the waveguide when the curvature of the arc is different. That is, the arc-shaped coupling waveguides having different curvatures have different electrical lengths. Therefore, in the branch line coupler 1C, the curvatures of the coupling waveguides 7a to 7i keep the distance between the first main waveguide 2 and the second main waveguide 3 facing each other at about λ / 4. , Designed to a value that gives the desired electrical length.
 結合用導波管7a~7iは、曲率が異なる円弧状の結合用導波管の組み合わせである。ブランチラインカプラ1Cは、結合用導波管7a~7iを備えることにより、第1の主導波管2と第2の主導波管3との間の距離をλ/4程度に保ちつつ、その間隔を詰めることができ、全体的な小型化を実現することが可能である。また、結合用導波管7a~7iのそれぞれは、結合用導波管5a~5iと同様に、第1の主導波管2と第2の主導波管3とが対向する広壁面の幅とは異なる幅を有する導波管であってもよい。 The coupling waveguides 7a to 7i are a combination of arcuate coupling waveguides having different curvatures. The branch line coupler 1C is provided with the coupling waveguides 7a to 7i, so that the distance between the first main waveguide 2 and the second main waveguide 3 is maintained at about λ / 4, and the distance between them is maintained. It is possible to reduce the overall size. Further, each of the coupling waveguides 7a to 7i has the width of the wide wall surface on which the first main waveguide 2 and the second main waveguide 3 face each other, similarly to the coupling waveguides 5a to 5i. May be waveguides with different widths.
 図8Aは、ブランチラインカプラ1の変形例(4)であるブランチラインカプラ1Dの構成を示す斜視図である。図8Bは、図8Aの矢印H方向からみたブランチラインカプラ1Dを示す矢示図であり、図8Cは、図8Aの矢印I方向からみたブランチラインカプラ1Dを示す矢示図である。図8A、図8Bおよび図7Cにおいて、図1A、図1Bおよび図1Cと同一の構成要素には同一の符号を付して説明を省略する。 FIG. 8A is a perspective view showing the configuration of the branch line coupler 1D, which is a modification (4) of the branch line coupler 1. 8B is an arrow diagram showing the branch line coupler 1D seen from the arrow H direction of FIG. 8A, and FIG. 8C is an arrow diagram showing the branch line coupler 1D seen from the arrow I direction of FIG. 8A. In FIGS. 8A, 8B and 7C, the same components as those in FIGS. 1A, 1B and 1C are designated by the same reference numerals and description thereof will be omitted.
 結合用導波管8a~8iは、第1の主導波管2と第2の主導波管3とが対向する広壁面に並んで設けられ、第1の主導波管2と第2の主導波管3とを連通して接続する導波管である。また、結合用導波管8a~8iは、管軸方向に直交する方向の断面の形状が矩形であり、管軸方向に直交する方向の断面の形状寸法が一定である。さらに、結合用導波管8a~8iのそれぞれの広壁面が、同一方向に同一の角度で三角屋根状に屈曲している。 The coupling waveguides 8a to 8i are provided side by side on the wide wall surface where the first main waveguide 2 and the second main waveguide 3 face each other, and the first main waveguide 2 and the second main waveguide 2 are provided side by side. It is a waveguide that communicates with and connects to the tube 3. Further, the coupling waveguides 8a to 8i have a rectangular shape in the cross section in the direction orthogonal to the tube axis direction, and the shape dimension of the cross section in the direction orthogonal to the tube axis direction is constant. Further, the wide wall surfaces of the coupling waveguides 8a to 8i are bent in the same direction and at the same angle in a triangular roof shape.
 第1の主導波管2、第2の主導波管および結合用導波管8a~8iは、3Dプリンタを用いて水平面上で矢印C方向に粉末材料を積み重ねて焼成することにより形成される。図8Aおよび図8Cに示すように、矢印C方向に粉末材料を積み重ねても、結合用導波管8a~8iには、水平面に平行な壁面部分は形成されず、鉛直上方が凸状に屈曲した壁面部分が形成される。 The first main waveguide 2, the second main waveguide and the coupling waveguides 8a to 8i are formed by stacking powder materials in the direction of arrow C on a horizontal plane and firing them using a 3D printer. As shown in FIGS. 8A and 8C, even if the powder materials are stacked in the direction of arrow C, the wall surface portion parallel to the horizontal plane is not formed in the coupling waveguides 8a to 8i, and the vertically upper portion is bent in a convex shape. The wall surface portion is formed.
 ブランチラインカプラ1Dは、鉛直方向に粉末材料を積層した際に、鉛直上方が凸状に屈曲した壁面部分を構成する粉末粒子が斜め上方に向かって重なっていき、隣り合う粉末粒子同士が支え合う部分が形成される。このため、結合用導波管8a~8iの壁面部分の撓みの発生を軽減することが可能である。なお、結合用導波管8a~8iは、三角屋根形状の屈曲角度を小さくするにつれて急峻に傾くので、三角屋根の頂点付近においても粉末粒子が斜め上方に重なり横並びになる粉末粒子同士が少なくなるので、さらに撓みの発生が抑えられる。 In the branch line coupler 1D, when the powder materials are laminated in the vertical direction, the powder particles constituting the wall surface portion in which the vertical upper portion is bent in a convex shape are overlapped diagonally upward, and the adjacent powder particles support each other. The part is formed. Therefore, it is possible to reduce the occurrence of bending of the wall surface portions of the coupling waveguides 8a to 8i. Since the coupling waveguides 8a to 8i incline steeply as the bending angle of the triangular roof shape is reduced, the powder particles are diagonally upwardly overlapped even in the vicinity of the apex of the triangular roof, and the number of powder particles lying side by side is reduced. Therefore, the occurrence of bending is further suppressed.
 結合用導波管8a~8iの個々の結合用導波管は、狭壁面の幅が一定であるが、図8Cに示すように、結合用導波管8aと結合用導波管8iの狭壁面は、同じ幅であり、結合用導波管8b~8hの狭壁面の幅は、結合用導波管8aおよび結合用導波管8iの狭壁面の幅よりも広い幅になっている。 The width of the narrow wall surface of each of the coupling waveguides 8a to 8i is constant, but as shown in FIG. 8C, the coupling waveguide 8a and the coupling waveguide 8i are narrow. The wall surface has the same width, and the width of the narrow wall surface of the coupling waveguides 8b to 8h is wider than the width of the narrow wall surface of the coupling waveguide 8a and the coupling waveguide 8i.
 ブランチラインカプラ1Dにおいて、結合用導波管8a~8iのそれぞれの三角屋根形状の角度は、第1の主導波管2と第2の主導波管3とが対向する間隔をλ/4程度に保ちかつ所望の電気特性が得られる値に設計される。また、結合用導波管8a~8iのそれぞれは、結合用導波管5a~5iと同様に、第1の主導波管2と第2の主導波管3とが対向する広壁面の幅とは異なる幅を有する導波管であってもよい。 In the branch line coupler 1D, the angle of each triangular roof shape of the coupling waveguides 8a to 8i is such that the distance between the first main waveguide 2 and the second main waveguide 3 is about λ / 4. It is designed to maintain and obtain the desired electrical characteristics. Further, each of the coupling waveguides 8a to 8i has the width of the wide wall surface on which the first main waveguide 2 and the second main waveguide 3 face each other, similarly to the coupling waveguides 5a to 5i. May be waveguides with different widths.
 図9Aは、ブランチラインカプラ1の変形例(5)であるブランチラインカプラ1Eの構成を示す斜視図である。図9Bは、図9Aの矢印J方向からみたブランチラインカプラ1Eを示す矢示図である。図9Aおよび図9Bにおいて、図1A、図1Bおよび図1Cと同一の構成要素には同一の符号を付して説明を省略する。 FIG. 9A is a perspective view showing the configuration of the branch line coupler 1E, which is a modification (5) of the branch line coupler 1. 9B is an arrow diagram showing the branch line coupler 1E seen from the direction of arrow J in FIG. 9A. In FIGS. 9A and 9B, the same components as those in FIGS. 1A, 1B and 1C are designated by the same reference numerals and the description thereof will be omitted.
 結合用導波管9a~9iは、第1の主導波管2と第2の主導波管3とが対向する広壁面に並んで設けられ、第1の主導波管2と第2の主導波管3とを連通して接続する。また、結合用導波管9a~9iのそれぞれは、管軸方向に直交する方向の断面の形状が矩形であり、断面の形状寸法が一定、すなわち狭壁面の幅が一定である。 The coupling waveguides 9a to 9i are provided side by side on the wide wall surface where the first main waveguide 2 and the second main waveguide 3 face each other, and the first main waveguide 2 and the second main waveguide 2 are provided side by side. It is connected to the tube 3 in communication. Further, each of the coupling waveguides 9a to 9i has a rectangular cross-sectional shape in the direction orthogonal to the tube axis direction, and the shape and dimensions of the cross-section are constant, that is, the width of the narrow wall surface is constant.
 結合用導波管9a~9iのそれぞれは、同一方向に三角屋根形状に屈曲しており、結合用導波管9a~9iには、三角屋根の角度が異なるものが含まれる。例えば、図9Bに示すように、結合用導波管9a、9c、9e、9gおよび9iは、結合用導波管8a~8iと同様に、角度が大きい三角屋根形状に屈曲している。結合用導波管9b、9d、9fおよび9hは、結合用導波管8a~8iよりも角度が小さい三角屋根形状に屈曲している。 Each of the coupling waveguides 9a to 9i is bent into a triangular roof shape in the same direction, and the coupling waveguides 9a to 9i include those having different angles of the triangular roof. For example, as shown in FIG. 9B, the coupling waveguides 9a, 9c, 9e, 9g and 9i are bent into a triangular roof shape having a large angle, similar to the coupling waveguides 8a to 8i. The coupling waveguides 9b, 9d, 9f and 9h are bent into a triangular roof shape having a smaller angle than the coupling waveguides 8a to 8i.
 三角屋根形状に屈曲した結合用導波管によって実現される伝送線路は、三角屋根形状の角度が異なると、特性インピーダンスが異なり、電気長が異なるものとなる。ブランチラインカプラ1Eにおいて、結合用導波管9a~9iのそれぞれの三角屋根形状の角度は、第1の主導波管2と第2の主導波管3とが対向する間隔をλ/4程度に保ちかつ所望の電気特性が得られる値に設計される。また、結合用導波管9a~9iのそれぞれは、結合用導波管5a~5iと同様に、第1の主導波管2と第2の主導波管3とが対向する広壁面の幅とは異なる幅を有する導波管であってもよい。 The transmission line realized by the coupling waveguide bent into a triangular roof shape has different characteristic impedances and different electrical lengths when the angle of the triangular roof shape is different. In the branch line coupler 1E, the angle of each triangular roof shape of the coupling waveguides 9a to 9i is such that the distance between the first main waveguide 2 and the second main waveguide 3 is about λ / 4. It is designed to maintain and obtain the desired electrical characteristics. Further, each of the coupling waveguides 9a to 9i has the width of the wide wall surface on which the first main waveguide 2 and the second main waveguide 3 face each other, similarly to the coupling waveguides 5a to 5i. May be waveguides with different widths.
 結合用導波管9a~9iは、屈曲角度が異なる三角屋根形状の結合用導波管の組み合わせである。ブランチラインカプラ1Eは、結合用導波管9a~9iを備えることにより、第1の主導波管2と第2の主導波管3との間の距離をλ/4程度に保ちつつ、その間隔を詰めることができ、全体的な小型化を実現することが可能である。また、結合用導波管9a~9iのそれぞれは、結合用導波管5a~5iと同様に、第1の主導波管2と第2の主導波管3とが対向する広壁面の幅とは異なる幅を有する導波管であってもよい。 The coupling waveguides 9a to 9i are a combination of coupling waveguides having a triangular roof shape having different bending angles. The branch line coupler 1E is provided with the coupling waveguides 9a to 9i, so that the distance between the first main waveguide 2 and the second main waveguide 3 is maintained at about λ / 4, and the distance between them is maintained. It is possible to reduce the overall size. Further, each of the coupling waveguides 9a to 9i has the width of the wide wall surface on which the first main waveguide 2 and the second main waveguide 3 face each other, similarly to the coupling waveguides 5a to 5i. May be waveguides with different widths.
 図10は、ブランチラインカプラ1の変形例(6)であるブランチラインカプラ1Fを、ポート側からみた様子を示す平面図である。ブランチラインカプラ1Fは、第1の主導波管10、第2の主導波管11および結合用導波管4a~4iを備えている。第1の主導波管10および第2の主導波管11は、図10に示すように、管軸方向に直交する方向の断面の形状が、四隅に丸みがある矩形形状である。 FIG. 10 is a plan view showing a state in which the branch line coupler 1F, which is a modification (6) of the branch line coupler 1, is viewed from the port side. The branch line coupler 1F includes a first main waveguide 10, a second main waveguide 11, and coupling waveguides 4a to 4i. As shown in FIG. 10, the first main waveguide 10 and the second main waveguide 11 have a rectangular shape having rounded corners in a cross section in a direction orthogonal to the tube axis direction.
 さらに、第1の主導波管10および第2の主導波管11のそれぞれの管軸方向のいずれかの位置には、外周の四隅に丸みがある矩形である第1の部分と、内周の四隅に丸みがある矩形である第2の部分とが設けられている。第1の主導波管10および第2の主導波管11は、第1の部分が第2の部分に嵌合されて接続される構造を有する。 Further, at any position in the axial direction of the first main waveguide 10 and the second main waveguide 11, the first portion, which is a rectangle with rounded corners at the four corners of the outer circumference, and the inner circumference thereof. A second portion, which is a rectangle with rounded corners, is provided. The first main waveguide 10 and the second main waveguide 11 have a structure in which the first portion is fitted and connected to the second portion.
 ブランチラインカプラ1Fは、3Dプリンタを用いて全ての導波管コンポーネントを形成するのではなく、一部の導波管コンポーネントを、エンドミルを用いた切削加工により形成する場合に有効である。エンドミルを用いた切削加工によって形成された導波管コンポーネントは、図10に示すように四隅に丸みがある矩形形状の断面となる。 The branch line coupler 1F is effective when not all the waveguide components are formed by using a 3D printer, but some waveguide components are formed by cutting using an end mill. The waveguide component formed by cutting with an end mill has a rectangular cross section with rounded corners as shown in FIG.
 そこで、3Dプリンタを用いて第1の部分(または第2の部分)を形成し、エンドミルを用いた切削加工によって第2の部分(または第1の部分)を形成して、第1の部分を第2の部分に嵌合する。これにより、第1の部分と第2の部分の接続部分で断面形状を同一にすることができるので、接続部分における特性の整合がとりやすくなり、第1の部分と第2の部分を接続して主導波管を形成しても、所望の電気特性から逸脱しにくくなる。 Therefore, a first part (or a second part) is formed by using a 3D printer, a second part (or a first part) is formed by cutting using an end mill, and the first part is formed. Fits into the second portion. As a result, the cross-sectional shape can be made the same at the connecting portion of the first portion and the second portion, so that the characteristics of the connecting portion can be easily matched, and the first portion and the second portion are connected. Even if the main waveguide is formed, it is difficult to deviate from the desired electrical characteristics.
 図11は、ブランチラインカプラ1の変形例(7)であるブランチラインカプラ1Gを、ポート側からみた様子を示す平面図である。ブランチラインカプラ1Gは、第1の主導波管12、第2の主導波管13および結合用導波管4a~4iを備えている。第1の主導波管12および第2の主導波管13は、図11に示すように、管軸方向に直交する方向の断面の形状が楕円形である。 FIG. 11 is a plan view showing a state in which the branch line coupler 1G, which is a modification (7) of the branch line coupler 1, is viewed from the port side. The branch line coupler 1G includes a first main waveguide 12, a second main waveguide 13, and coupling waveguides 4a to 4i. As shown in FIG. 11, the first main waveguide 12 and the second main waveguide 13 have an elliptical cross-sectional shape in a direction orthogonal to the tube axis direction.
 第1の主導波管12および第2の主導波管13の断面形状が楕円形であっても、結合用導波管4a~4iが同一方向に屈曲しているので、ブランチラインカプラ1と同様な効果が得られる。なお、実施の形態1に係るブランチラインカプラには、ブランチラインカプラ1および1A~1Eが備える第1の主導波管および第2の主導波管の代わりに、第1の主導波管12および第2の主導波管13を備えたものも含まれる。 Even if the cross-sectional shapes of the first main waveguide 12 and the second main waveguide 13 are elliptical, the coupling waveguides 4a to 4i are bent in the same direction, so that they are the same as the branch line coupler 1. Effect can be obtained. In the branch line coupler according to the first embodiment, the first main waveguide 12 and the first main waveguide 12 and the first main waveguide 12 and the first main waveguide 12 and the first main waveguide 12 and the first main waveguide 12 and the second main waveguide are provided in place of the first main waveguide and the second main waveguide included in the branch line coupler 1 and 1A to 1E. The one provided with the main waveguide 13 of 2 is also included.
 また、実施の形態1に係るブランチラインカプラを、3Dプリンタを用いて製作した部分とエンドミルを用いた切削加工によって製作した部分とを組み合わせて構成する場合、3Dプリンタを用いて製作した部分は、結合用導波管が同一の方向に凸状に屈曲しているが、切削加工によって製作した部分における結合用導波管は、3Dプリンタを用いて製作した部分における結合用導波管とは反対方向に凸状に屈曲していてもよいし、屈曲していなくてもよい。すなわち、実施の形態1に係るブランチラインカプラには、全ての結合用導波管が同一方向に凸状に屈曲している構成の他に、複数の結合用導波管のうち、一部に反対方向に凸状に屈曲している結合用導波管または屈曲していない結合用導波管を備える構成も含まれる。 Further, when the branch line coupler according to the first embodiment is configured by combining a portion manufactured by using a 3D printer and a portion manufactured by cutting using an end mill, the portion manufactured by using the 3D printer is a part. The coupling waveguide is bent convexly in the same direction, but the coupling waveguide in the part manufactured by cutting is the opposite of the coupling waveguide in the portion manufactured using a 3D printer. It may or may not be bent in a convex shape in the direction. That is, in the branch line coupler according to the first embodiment, in addition to the configuration in which all the coupling waveguides are bent in a convex shape in the same direction, a part of the plurality of coupling waveguides is included. Also included is a configuration comprising a coupling waveguide that is convexly bent in the opposite direction or a coupling waveguide that is not bent.
 以上のように、実施の形態1に係るブランチラインカプラ1は、結合用導波管4a~4iの凸側が鉛直上方になるように、水平面から第1の主導波管2および第2の主導波管3の管軸方向に沿って粉末材料を積層することにより、屈曲した結合用導波管4a~4iの凸状を構成する粉末粒子が斜め上方に向かって重なっていく。これにより、隣り合う粉末粒子同士が支え合う部分が形成されるので、ブランチラインカプラ1は、第1の主導波管2および第2の主導波管3の管軸方向に沿って粉末材料を積層しても、結合用導波管4a~4iの撓みの発生を軽減することができる。 As described above, in the branch line coupler 1 according to the first embodiment, the first main waveguide 2 and the second main waveguide from the horizontal plane are vertically above the convex side of the coupling waveguides 4a to 4i. By laminating the powder material along the tube axis direction of the tube 3, the powder particles constituting the convex shape of the bent coupling waveguides 4a to 4i are overlapped diagonally upward. As a result, a portion in which adjacent powder particles support each other is formed, so that the branch line coupler 1 laminates the powder material along the tube axial direction of the first main waveguide 2 and the second main waveguide 3. Even so, it is possible to reduce the occurrence of bending of the coupling waveguides 4a to 4i.
 なお、実施の形態の任意の構成要素の変形もしくは実施の形態の任意の構成要素の省略が可能である。 It is possible to modify any component of the embodiment or omit any component of the embodiment.
 本開示に係るブランチラインカプラは、例えば、高周波回路に利用可能である。 The branch line coupler according to the present disclosure can be used, for example, in a high frequency circuit.
 1,1A~1G ブランチラインカプラ、2,10,12 第1の主導波管、3,11,13 第2の主導波管、4a~4i,5a~5i,6a~6i,7a~7i,8a~8i,9a~9i 結合用導波管。 1,1A-1G branch line coupler, 2,10,12 first main waveguide, 3,11,13 second main waveguide, 4a-4i, 5a-5i, 6a-6i, 7a-7i, 8a ~ 8i, 9a ~ 9i Coupling waveguide.

Claims (13)

  1.  第1の主導波管と、
     前記第1の主導波管と平行に対向して設けられた第2の主導波管と、
     前記第1の主導波管と前記第2の主導波管とが対向する面に並んで設けられ、前記第1の主導波管と前記第2の主導波管との間を連通して接続する複数の結合用導波管と、
     を備え、
     複数の前記結合用導波管のそれぞれは、管軸方向に直交する方向の断面の形状寸法が一定であり、同一方向に凸状に屈曲していること
     を特徴とするブランチラインカプラ。
    The first main waveguide and
    A second main waveguide provided so as to face parallel to the first main waveguide,
    The first main waveguide and the second main waveguide are provided side by side on facing surfaces, and the first main waveguide and the second main waveguide are communicated and connected to each other. Multiple coupling waveguides and
    Equipped with
    A branch line coupler characterized in that each of the plurality of coupling waveguides has a constant cross-sectional shape dimension in a direction orthogonal to the tube axis direction and is bent convexly in the same direction.
  2.  前記第1の主導波管と前記第2の主導波管とが対向する面の間隔は、使用周波数帯域の中心周波数における波長の4分の1の距離であること
     を特徴とする請求項1に記載のブランチラインカプラ。
    The first aspect of claim 1 is characterized in that the distance between the surfaces of the first main waveguide and the second main waveguide facing each other is one-fourth of the wavelength at the center frequency of the frequency band used. The described branch line coupler.
  3.  前記第1の主導波管、前記第2の主導波管および複数の前記結合用導波管は、それぞれ断面の形状が矩形であること
     を特徴とする請求項1に記載のブランチラインカプラ。
    The branch line coupler according to claim 1, wherein the first main waveguide, the second main waveguide, and the plurality of coupling waveguides each have a rectangular cross-sectional shape.
  4.  前記第1の主導波管、前記第2の主導波管および複数の前記結合用導波管は、それぞれ断面の形状が楕円形であること
     を特徴とする請求項1に記載のブランチラインカプラ。
    The branch line coupler according to claim 1, wherein the first main waveguide, the second main waveguide, and the plurality of coupling waveguides each have an elliptical cross-sectional shape.
  5.  前記第1の主導波管および前記第2の主導波管は、管軸方向に直交する方向の断面の形状が、外周の四隅に丸みがある矩形である第1の部分と、内周の四隅に丸みがある矩形である第2の部分とを有し、
     前記第1の主導波管および前記第2の主導波管のそれぞれの管軸方向のいずれかの位置において、前記第1の部分が前記第2の部分に嵌合されて接続されていること
     を特徴とする請求項1に記載のブランチラインカプラ。
    The first main waveguide and the second main waveguide have a first portion in which the shape of the cross section in the direction orthogonal to the tube axis direction is a rectangle with rounded corners on the outer circumference and four corners on the inner circumference. Has a second part, which is a rounded rectangle,
    At any position in the axial direction of the first main waveguide and the second main waveguide, the first portion is fitted and connected to the second portion. The branch line coupler according to claim 1.
  6.  複数の前記結合用導波管は、円弧状に屈曲していること
     を特徴とする請求項1から請求項5のいずれか1項に記載のブランチラインカプラ。
    The branch line coupler according to any one of claims 1 to 5, wherein the plurality of coupling waveguides are bent in an arc shape.
  7.  複数の前記結合用導波管は、同一の曲率で屈曲していること
     を特徴とする請求項6に記載のブランチラインカプラ。
    The branch line coupler according to claim 6, wherein the plurality of coupling waveguides are bent with the same curvature.
  8.  複数の前記結合用導波管は、互いに異なる曲率で屈曲していること
     を特徴とする請求項6に記載のブランチラインカプラ。
    The branch line coupler according to claim 6, wherein the plurality of coupling waveguides are bent with different curvatures from each other.
  9.  複数の前記結合用導波管は、三角屋根状に屈曲していること
     を特徴とする請求項1から請求項5のいずれか1項に記載のブランチラインカプラ。
    The branch line coupler according to any one of claims 1 to 5, wherein the plurality of coupling waveguides are bent in a triangular roof shape.
  10.  複数の前記結合用導波管は、同一の角度で屈曲していること
     を特徴とする請求項9に記載のブランチラインカプラ。
    The branch line coupler according to claim 9, wherein the plurality of coupling waveguides are bent at the same angle.
  11.  複数の前記結合用導波管は、互いに異なる角度で屈曲していること
     を特徴とする請求項9に記載のブランチラインカプラ。
    The branch line coupler according to claim 9, wherein the plurality of coupling waveguides are bent at different angles from each other.
  12.  複数の前記結合用導波管のそれぞれは、前記第1の主導波管と前記第2の主導波管とが対向する面の幅と等しい幅を有すること
     を特徴とする請求項1に記載のブランチラインカプラ。
    The first aspect of claim 1, wherein each of the plurality of coupling waveguides has a width equal to the width of the surface on which the first main waveguide and the second main waveguide face each other. Branch line coupler.
  13.  複数の前記結合用導波管のそれぞれは、前記第1の主導波管と前記第2の主導波管とが対向する面の幅とは異なる幅を有すること
     を特徴とする請求項1に記載のブランチラインカプラ。
    The first aspect of claim 1, wherein each of the plurality of coupling waveguides has a width different from the width of the surface on which the first main waveguide and the second main waveguide face each other. Branch line coupler.
PCT/JP2020/040579 2020-10-29 2020-10-29 Branch line coupler WO2022091283A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2020/040579 WO2022091283A1 (en) 2020-10-29 2020-10-29 Branch line coupler
JP2022558702A JP7199615B2 (en) 2020-10-29 2020-10-29 branch line coupler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/040579 WO2022091283A1 (en) 2020-10-29 2020-10-29 Branch line coupler

Publications (1)

Publication Number Publication Date
WO2022091283A1 true WO2022091283A1 (en) 2022-05-05

Family

ID=81383835

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/040579 WO2022091283A1 (en) 2020-10-29 2020-10-29 Branch line coupler

Country Status (2)

Country Link
JP (1) JP7199615B2 (en)
WO (1) WO2022091283A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114725644A (en) * 2022-05-09 2022-07-08 电子科技大学 E-plane branch waveguide directional coupler with ultralow amplitude unevenness

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58119205A (en) * 1982-01-08 1983-07-15 Mitsubishi Electric Corp Waveguide coupling device
US5389901A (en) * 1993-03-23 1995-02-14 Itt Corporation Microwave amplitude equalizer circuit
JP2016076878A (en) * 2014-10-08 2016-05-12 古野電気株式会社 Branch line type directional decoupler
WO2017203568A1 (en) * 2016-05-23 2017-11-30 三菱電機株式会社 Waveguide device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58119205A (en) * 1982-01-08 1983-07-15 Mitsubishi Electric Corp Waveguide coupling device
US5389901A (en) * 1993-03-23 1995-02-14 Itt Corporation Microwave amplitude equalizer circuit
JP2016076878A (en) * 2014-10-08 2016-05-12 古野電気株式会社 Branch line type directional decoupler
WO2017203568A1 (en) * 2016-05-23 2017-11-30 三菱電機株式会社 Waveguide device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114725644A (en) * 2022-05-09 2022-07-08 电子科技大学 E-plane branch waveguide directional coupler with ultralow amplitude unevenness
CN114725644B (en) * 2022-05-09 2023-01-31 电子科技大学 E-surface branch waveguide directional coupler with ultralow amplitude unevenness

Also Published As

Publication number Publication date
JP7199615B2 (en) 2023-01-05
JPWO2022091283A1 (en) 2022-05-05

Similar Documents

Publication Publication Date Title
TWI411156B (en) Coupler with edge and broadside coupled sections
JP5946024B2 (en) Directional coupler
WO2017203568A1 (en) Waveguide device
WO2022091283A1 (en) Branch line coupler
JP6463092B2 (en) Matching and pattern control for dual-band coaxial antenna feeds
JP5566169B2 (en) Antenna device
JP2004274715A (en) Balanced-to-unbalanced transformer circuit and multilayer balanced-to-unbalanced transformer
CN102800994B (en) Cassegrain type metamaterial antenna
JP6230248B2 (en) Directional coupler
JP5343134B2 (en) Mode polarization converter
JP6792796B2 (en) 90 degree hybrid circuit
TWI394507B (en) Complementary-conducting-strip coupled line
JP2008004605A (en) Coil part
WO2022024318A1 (en) Waveguide coupler
JP6289770B2 (en) Phase shift circuit and power supply circuit
US12117250B2 (en) Heat exchanger with variable cross sectional flow path areas
US20110291770A1 (en) Microwave directional coupler
JP4929372B2 (en) Waveguide diplexer and waveguide
JP2014154593A (en) High frequency package
JP2011147081A (en) Waveguide connection method
JP4604431B2 (en) Multilayer directional coupler
JP5322223B2 (en) Right / left handed composite waveguide
JP2008271478A (en) 90° hybrid
JP6740068B2 (en) Antenna device
JP2009194605A (en) High frequency transmission circuit, distributor, distributed coupling type distributor, and resonance circuit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20959801

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022558702

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20959801

Country of ref document: EP

Kind code of ref document: A1