WO2022089798A1 - Verfahren zum betrieb eines funkortungssystems, funkortungssystem und basisstation - Google Patents

Verfahren zum betrieb eines funkortungssystems, funkortungssystem und basisstation Download PDF

Info

Publication number
WO2022089798A1
WO2022089798A1 PCT/EP2021/070390 EP2021070390W WO2022089798A1 WO 2022089798 A1 WO2022089798 A1 WO 2022089798A1 EP 2021070390 W EP2021070390 W EP 2021070390W WO 2022089798 A1 WO2022089798 A1 WO 2022089798A1
Authority
WO
WIPO (PCT)
Prior art keywords
transponder
radio
radio signals
antennas
base stations
Prior art date
Application number
PCT/EP2021/070390
Other languages
English (en)
French (fr)
Inventor
Georg Michel
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Publication of WO2022089798A1 publication Critical patent/WO2022089798A1/de

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/18Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using ultrasonic, sonic, or infrasonic waves
    • G01S5/22Position of source determined by co-ordinating a plurality of position lines defined by path-difference measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S1/00Beacons or beacon systems transmitting signals having a characteristic or characteristics capable of being detected by non-directional receivers and defining directions, positions, or position lines fixed relatively to the beacon transmitters; Receivers co-operating therewith
    • G01S1/02Beacons or beacon systems transmitting signals having a characteristic or characteristics capable of being detected by non-directional receivers and defining directions, positions, or position lines fixed relatively to the beacon transmitters; Receivers co-operating therewith using radio waves
    • G01S1/08Systems for determining direction or position line
    • G01S1/38Systems for determining direction or position line using comparison of [1] the phase of the envelope of the change of frequency, due to Doppler effect, of the signal transmitted by an antenna moving, or appearing to move, in a cyclic path with [2] the phase of a reference signal, the frequency of this reference signal being synchronised with that of the cyclic movement, or apparent cyclic movement, of the antenna
    • G01S1/40Systems for determining direction or position line using comparison of [1] the phase of the envelope of the change of frequency, due to Doppler effect, of the signal transmitted by an antenna moving, or appearing to move, in a cyclic path with [2] the phase of a reference signal, the frequency of this reference signal being synchronised with that of the cyclic movement, or apparent cyclic movement, of the antenna the apparent movement of the antenna being produced by cyclic sequential energisation of fixed antennas
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/74Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems
    • G01S13/76Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems wherein pulse-type signals are transmitted
    • G01S13/765Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems wherein pulse-type signals are transmitted with exchange of information between interrogator and responder

Definitions

  • the present invention relates to a method for operating a radio location system, in particular a real-time locating system (RTLS), a radio location system for carrying out the method, and a base station for a radio location system.
  • RTLS real-time locating system
  • Radio-based locating devices can be based, for example, on RFID tags (radio-frequency identification), which are attached to objects in order to identify or locate them.
  • RFID tags include a memory unit whose content can be read using an RFID reader, but can also be changed. At least one identifier is usually stored in each case in RFID tags.
  • RFID readers send out a request signal by generating an alternating electromagnetic field.
  • this electromagnetic alternating field is used to supply energy, in particular to passively operated RFID tags that do not have their own energy source.
  • the electromagnetic alternating field is modulated by RFID tags to transmit a response signal, for example by load modulation or by varying their antenna impedance.
  • Radio location systems for industrial automation systems must meet special requirements in terms of reliable data transmission, authenticity of transmitted data and insensitivity to sources of interference. Since industrial automation systems are used to monitor, control and regulate technical processes, especially in the When it comes to production, process and building automation, faulty, manipulated or incorrectly configured radio location systems can have serious consequences, and in the worst case, an automation system can come to a standstill.
  • DE 102009008174 A1 discloses a method for determining the distance, speed and direction of movement of an RFID transponder, in which the RFID transponder is queried in the usual way using an RFID reader.
  • the RFID reader emits a phase-wise modulated supply carrier signal.
  • a radar module emits a radar signal at the same time, which is received and reflected by the RFID transponder.
  • the utility carrier signal and the radar signal have different frequencies.
  • the reflected radar signal is in turn received by the radar module.
  • a position of the RFID transponder is determined from the reflected received radar signal.
  • the radar signal is transmitted in particular when no interrogation data are modulated onto the supply carrier signal.
  • EP 3031 039 A1 describes an RFID-based position detection system with an RFID tag attached to an object to be detected, which can be woken up from a low-energy mode by means of a low-frequency wake-up signal.
  • the wake-up signal includes position information that is assigned to an RFID reader that detects the RFID tag using the wake-up signal. After waking up the RFID tag by receiving the wake-up signal, the RFID tag generates a high-frequency response signal that includes an identification code of the RFID tag and the position information transmitted by means of the wake-up signal.
  • a radio location system is known from the earlier European patent application with the application file number 20183193.0, in which a position of a transponder is determined by means of several base stations of the radio location system using radio signal reception time differences in a first operating mode or using radio signal propagation times in a second operating mode is determined. To determine its position, the transponder broadcasts a message to the base stations. The base stations receiving the message each determine a received signal strength of a transponder signal used to transmit the message. An evaluation device determines a number of base stations that have received the transponder signal with a received signal strength above a predetermined minimum signal strength and accordingly switches the base stations to the first or to the second operating mode.
  • a method for determining the location of an RF tag is known from WO 2012/148721 A1, in which direction-exact bearing signals are sent to the RF tag to be located by means of a plurality of spatially offset beacon nodes.
  • the beacon nodes are equipped with multiple antennas and send frames with beacon symbols. Each beacon symbol is switched cyclically to a different antenna.
  • the beacon symbols cover distances of different lengths and thus lead to phase shifts within the frames received by the RF tag.
  • the angle at which the RF tag is visible from the respective beacon node can be estimated from the phase shifts and using known positions of the antennas. On this basis, an Angle of Arrival (AoA) position determination of the RF tag takes place.
  • AoA does not require the base stations to be synchronized, but it does require precise alignment of the base stations and multiple receiving antennas per base station.
  • the disadvantage of AoA is that the accuracy decreases with increasing distance.
  • TDOA time difference of arrival
  • TWR two-way ranging
  • base stations of radio location systems In many countries, it is illegal for base stations of radio location systems to transmit UWB signals outdoors, particularly for time synchronization purposes. For this reason, base stations are synchronized either via wired connections or using separate radio transmission technologies, for example in the 2.4 GHz ISM band.
  • the present invention is therefore based on the object of creating a TDOA-based method for operating a radio location system that enables precise location of a large number of transponders and can be used outdoors with little effort, in particular without synchronization of base stations can be used, as well as specifying suitable means or realizations for carrying out the method.
  • a position of at least one transponder is determined using a plurality of unsynchronized base stations of the radio location system.
  • the base stations are each arranged at a predetermined or known position.
  • the radio location system is preferably an at least RFID-based, UWB-based or 2.4 GHz ISM band-based real-time locating system.
  • At least two transponder antennas which are at a distance from one another send radio signals alternately at predetermined time intervals.
  • the radio signals are two-way ranging radio signals.
  • the distance between the two transponder antennas can be determined according to two-way ranging (TWR).
  • the base stations determine radio signal reception time differences between the radio signals received by the transponder antennas on the basis of the radio signals transmitted by the two transponder antennas and on the basis of the distance between the two transponder antennas.
  • the position of the at least one transponder is determined on the basis of these radio signal reception time differences, specifically in accordance with the Time Difference of Arrival (TDOA).
  • TDOA Time Difference of Arrival
  • the base stations do not need to be synchronized with each other, since the determined radio signal reception time differences can be used to set up a system of equations, which can be used to calculate the positions of the two transponder antennas. Preferably, therefore, only send Both transponder antennas receive radio signals, while the base stations only receive radio signals.
  • a first transponder antenna is surrounded by a first transponder, while a second transponder antenna is surrounded by a second transponder.
  • the time intervals at which the two transponder antennas alternately transmit the radio signals are specified by the signal propagation times between the two transponders and by the signal processing times within the respective transponder.
  • the two transponders can determine the distance from one another by means of two-way ranging and transmit radio signals containing the determined distance values.
  • the unsynchronized base stations determine the respective radio signal reception time differences on the basis of radio signals exchanged between the transponders during the determination of the distance and using the determined distance values.
  • a possible application of the first variant is, for example, locating vehicles with UWB radio keys in an outdoor area.
  • a UWB radio key communicates with a vehicle and exchanges radio signals with it according to Two-way Ranging (TWR)
  • TWR Two-way Ranging
  • the two transponder antennas are comprised of the same transponder and are at a distance from one another that is known or made known to the base stations.
  • the two transponder antennas send the Radio signals alternately at time intervals known or made known to the base stations.
  • a position of the transponder and its spatial alignment can thus be determined on the basis of the radio signals transmitted by the two transponder antennas and by means of the unsynchronized base stations.
  • the radio location system is provided for carrying out a method according to the preceding explanations and comprises a plurality of unsynchronized base stations, each arranged at a predetermined position, for determining a position of at least one transponder and at least two transponder antennas which are spaced apart from one another.
  • the transponder antennas are designed and set up to transmit radio signals alternately at predetermined time intervals.
  • the radio signals are two-way ranging radio signals.
  • the base stations are designed and set up to determine radio signal reception time differences between the radio signals received by the transponder antennas according to the time difference of arrival based on the radio signals transmitted by the two transponder antennas and on the basis of the distance between the two transponder antennas , The position of the at least one transponder being determined on the basis of the radio signal reception time differences.
  • the base station according to the invention for a radio location system is designed and set up to determine a position of a transponder together with other unsynchronized base stations and to receive radio signals transmitted alternately at predetermined time intervals from at least two transponder antennas that are at a distance from one another. catch.
  • the radio signals are two-way ranging radio signals.
  • the base station is designed for this and directed, on the basis of the radio signals sent by the two transponder antennas and based on the distance between the two transponder antennas to determine radio signal reception time differences between the radio signals received by the transponder antennas according to the time difference of arrival, with the Position of the at least one transponder is to be determined based on the radio signal reception time differences.
  • FIG. 1 radio location system with multiple base stations for an industrial automation system
  • FIG. 2 shows a schematic representation of an exchange of radio signals within the radio location system according to FIG. 1 for locating RTLS transponders by unsynchronized base stations.
  • the radio location system shown in FIG or known positions are arranged.
  • positions of RTLS transponders 201-203, which are attached to objects to be located are detected using radio signal propagation times or using radio signal reception time differences.
  • a first RTLS transponder 201 is used, for example, to monitor piece goods 401 on a conveyor belt, the drive 501 of which is controlled by a first programmable logic controller 601 .
  • a second RTLS transponder 202 is fastened in the present exemplary embodiment to a vehicle part 402 which is transported and assembled in a vehicle production line by a robot 502.
  • the robot is controlled by a second programmable logic controller 602 which, like the first programmable logic controller 601 , is connected to a central monitoring and control unit 600 .
  • the monitoring and control unit 600 projects and monitors, among other things, the programmable logic controllers 601, 602 and the radio location system.
  • the radio location system is also used to monitor the position of an autonomous vehicle 403 with which production goods are transported to the vehicle production line.
  • a third RTLS transponder 203 is arranged on the autonomous vehicle 403 for locating.
  • the radio positioning system can, for example, include additional components for positioning based on GPS, WLAN or inertial sensors. Several or all of these components can be integrated into the RTLS transponders 201-203 and base stations 101-105 of the radio location system.
  • the base stations 101-105 are connected to an evaluation device, designed as a gateway 100, of the radio location system.
  • the RTLS transponders 201-203 preferably each transmit an object identifier assigned to the object to be located in each case to the base stations 101-105.
  • the base stations 101-105 send datagrams 301-305, which include, in particular, recorded signal propagation time information, signal reception time information, information about signal reception time differences or measured signal strength values of received transponder signals or object identifiers, to the gateway 100 for evaluation.
  • the gateway 100 of the radio location system in turn transmits the detected positions of the RTLS transponders 201-203 including the object identifiers to the monitoring and control unit 600.
  • the monitoring and control unit 600 is configured to display a graphical representation of the transmitted positions RTLS transponders 201-203 to process or to validate location information assigned to the RTLS transponders 201-203 in the monitoring and control unit 600 based on the transmitted positions of the RTLS transponders 201-203 including the object identifiers.
  • At least two transponder antennas 211-212 at a distance d from one another transmit radio signals 300 alternately at predetermined time intervals for locating RTLS transponders by unsynchronized base stations 101-103.
  • These radio signals 300 can in particular be TWR radio signals , which are exchanged to determine the distance between the two antennas 211-212.
  • the two transponder antennas 211-212 are assigned to different RTLS transponders.
  • a possible application of this variant is locating vehicles with UWB radio keys in an outdoor area.
  • a first transponder antenna 211 is integrated into the UWB radio key, while a second transponder antenna 212 is arranged on the vehicle side. If the UWB radio key communicates with the vehicle and exchanges radio signals 300 with the vehicle in accordance with two-way ranging (TWR), the radio signals 300 can be detected by unsynchronized base stations 101-103 in the outside area and used to determine the positions of the UWB radio key and the vehicle are evaluated.
  • TWR two-way ranging
  • a first transponder antenna 211 may be comprised of the RTLS transponder 203, which is arranged on the autonomous vehicle 403 shown in FIG. 1, while a second transponder antenna 212 on the Vehicle part 402 attached RTLS transponder 202 is included. According to the explanations below, both the position of the autonomous vehicle 403 and the position of the vehicle part 402 can be determined simultaneously.
  • the RTLS transponders assigned to the two transponder antennas 211-212 determine the distance between themselves by means of two-way ranging (TWR) and transmit radio signals 300 comprising determined distance values, which are transmitted by the base stations 101-103 can be detected.
  • the base stations 101-103 determine on the basis of the radio signals 300 exchanged between the RTLS transponders during the determination of the distance and on the basis of the determined distance values in each case radio signal reception time differences.
  • the time intervals at which the two transponder antennas 211-212 alternately transmit the radio signals 300 are specified by signal propagation times between the two transponders and by signal processing times within the respective RTLS transponder for carrying out two-way ranging (TWR).
  • the two transponder antennas 211-212 are encompassed by the same RTLS transponder.
  • the distance d between the two transponder antennas 211-212 is known a priori, in particular the base stations 101-103, and the two transponder antennas 211-212 transmit the radio signals 300 alternately in the base stations 101- 103 known time intervals.
  • both the position of the respective RTLS transponder and its spatial orientation can be determined simultaneously.
  • the base stations 101-103 determine radio signal reception time differences between the Transponder antennas 211-212 receive radio signals 300.
  • the position of the respective RTLS transponder is then calculated using the radio signal reception time differences determined by the base stations 101-103.
  • the position of the respective RTLS transponder is determined according to the time difference of arrival (TDOA).
  • TDOA time difference of arrival
  • a system of equations can be set up with which the positions of the two transponder antennas 211-212 can be calculated.
  • a calculation of two-dimensional coordinations X T1 , Y T1 or X T2 , Y T2 of the two transponder antennas 211-212 is described below.
  • the following explanations can be extended in an analogous manner to a calculation of three-dimensional coordinates.
  • the following equation applies to the distance d between the two transponder antennas 211-212 that can be determined using two-way ranging (TWR):
  • the system of equations comprising three equations for the radio signal reception time differences ⁇ Bi determined by the base stations 101-103 and the equation for the distance d between the transponder antennas form an overall system of equations of four equations for the four coordinations X T1 , Y T1 , X T2 , Y T2 of the two transponder antennas 211-212.
  • This overall system of equations can be solved, for example, by means of an approximation solution through error minimization.
  • the overall system of equations can also be solved analytically in analogy to the Kleusberg and Bancroft algorithms used in GPS localization.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

In einem Funkortungssystem wird eine Position zumindest eines Transponders mittels mehrerer Basisstationen (101-103) des Funkortungssystems ermittelt, wobei die Basisstationen jeweils an einer vorgegebenen Position angeordnet sind. Zumindest zwei einen Abstand (d) zueinander aufweisende Transponder-Antennen (211-212) senden in vorgegebenen Zeitabständen abwechselnd Funksignale (300). Die Basisstationen ermitteln auf Basis der von den beiden Transponder-Antennen gesendeten Funksignale und anhand des Abstands zwischen den beiden Transponder-Antennen jeweils Funksignal-Empfangszeitdifferenzen zwischen den von den Transponder-Antennen empfangenen Funksignalen. Die Position des zumindest einen Transponders wird anhand der Funksignal- Empfangszeitdifferenzen ermittelt.

Description

Beschreibung
Verfahren zum Betrieb eines Funkortungssystems, Funkor- tungssystem und Basisstation
Die vorliegende Erfindung betrifft ein Verfahren zum Betrieb eines Funkortungssystems, insbesondere eines Real-time Lo- cating System (RTLS), ein Funkortungssystem zur Durchführung des Verfahrens und eine Basisstation für ein Funkortungssys- tem.
Funkbasierte Ortungsvorrichtungen können beispielsweise auf RFID-Tags (radio-frequency identification) basieren, die zur Identifizierung oder Ortung von Gegenständen an diesen je- weils angebracht werden. RFID-Tags umfassen eine Speicherein- heit, deren Inhalt mittels eines RFID-Lesegeräts ausgelesen, aber auch verändert werden kann. Üblicherweise ist in RFID- Tags jeweils zumindest ein Identifikator gespeichert. Zum Auslesen von in RFID-Tags gespeicherten Informationen senden RFID-Lesegeräte jeweils durch Erzeugung eines elektro-magne- tischen Wechselfeldes ein Anfragesignal aus. Einerseits dient dieses elektro-magnetische Wechselfeld zur Energieversorgung insbesondere passiv betriebener RFID-Tags, die keine eigene Energiequelle aufweisen. Andererseits wird das elektro-magne- tische Wechselfeld durch RFID-Tags zur Übermittlung eines Antwortsignals moduliert, beispielsweise durch Lastmodulation oder Variierung ihrer Antennenimpedanz.
Funkortungssysteme für industrielle Automatisierungssysteme müssen besonderen Anforderungen hinsichtlich zuverlässiger Datenübermittlung, Authentizität übermittelter Daten und Un- empfindlichkeit gegenüber Störquellen genügen. Da industriel- le Automatisierungssysteme zur Überwachung, Steuerung und Re- gelung von technischen Prozessen dienen, insbesondere im Be- reich Fertigungs-, Prozess- und Gebäudeautomatisierung, kön- nen gestörte, manipulierte oder fehlerhaft konfigurierte Funkortungssysteme zu schwerwiegenden Auswirkungen führen, im ungünstigsten Fall zu einem Stillstand eines Automatisie- rungssystems.
Aus DE 102009008174 Al ist ein Verfahren zur Ermittlung von Entfernung, Geschwindigkeit und Bewegungsrichtung eines RFID- Transponders bekannt, bei dem der RFID-Transponder auf übli- che Weise mittels eines RFID-Lesegeräts abgefragt wird. Hier- zu sendet das RFID-Lesegerät ein phasenweise moduliertes Ver- sorgungsträgersignal aus. Ein Radarmodul sendet gleichzeitig ein Radarsignal aus, das vom RFID-Transponder empfangen und reflektiert wird. Das Versorgungsträgersignal und das Radar- signal weisen unterschiedliche Frequenzen auf. Das reflek- tierte Radarsignal wird wiederum vom Radarmodul empfangen.
Aus dem reflektierten empfangenen Radarsignal wird eine Posi- tion des RFID-Transponders ermittelt. Das Radarsignal wird insbesondere dann ausgesendet, wenn auf das Versorgungsträ- gersignal keine Abfragedaten aufmoduliert werden.
In EP 3031 039 Al ist ein RFID-basiertes Positionserfas- sungssystem mit einem an einem zu erfassenden Objekt ange- brachten RFID-Tag beschrieben, das mittels eines niederfre- quenten Wecksignals aus einem Niedrigenergiemodus geweckt werden kann. Das Wecksignal umfasst Positionsinformationen, die einem das RFID-Tag mittels des Wecksignals erfassenden RFID-Lesegerät zugeordnet sind. Nach Aufwecken des RFID-Tags durch Empfang des Wecksignals erzeugt das RFID-Tag ein hoch- frequentes Antwortsignal, das einen Identifizierungscode des RFID-Tags und die mittels des Wecksignals übermittelten Posi- tionsinformationen umfasst. Aus der älteren europäischen Patentanmeldung mit dem Anmelde- aktenzeichen 20183193.0 ist ein Funkortungssystem bekannt, bei dem eine Position eines Transponders mittels mehrerer Ba- sisstationen des Funkortungssystems anhand von Funksignal- Empfangszeitdifferenzen in einem ersten Betriebsmodus oder anhand von Funksignal-Laufzeiten in einem zweiten Betriebsmo- dus ermittelt wird. Zur Ermittlung seiner Position sendet der Transponder per Broadcast eine Nachricht an die Basisstatio- nen. Die Nachricht empfangende BasisStationen ermitteln je- weils eine Empfangssignalstärke eines zur Übermittlung der Nachricht verwendeten Transpondersignals. Eine Auswertevor- richtung ermittelt eine Anzahl der Basisstationen, die das Transpondersignal mit einer über einer vorgegebenen Mindest- signalstärke liegenden Empfangssignalstärke empfangen haben und versetzt die Basisstationen dementsprechend in den ersten oder in den zweiten Betriebsmodus.
Aus WO 2012/148721 Al ist ein Verfahren zur Bestimmung des Ortes eines RF-Tags bekannt, bei dem mittels mehrerer räum- lich versetzter Beacon-Knoten jeweils richtungsgenaue Pei- lungssignale an das zur ortende RF-Tag gesendet werden. Die Beacon-Knoten sind mit mehreren Antennen ausgestattet und senden Frames mit Beacon-Symbolen. Dabei wird jedes Beacon- Symbol zyklisch auf eine andere Antenne umgeschaltet. Die Beacon-Symbole legen unterschiedlich lange Distanzen zurück und führen somit zu Phasenverschiebungen innerhalb der vom RF-Tag empfangenen Frames. Aus den Phasenverschiebungen und anhand bekannter Positionen der Antennen kann jeweils Winkel abgeschätzt werden, unter dem das RF-Tag vom jeweiligen Bea- con-Knoten sichtbar ist. Auf dieser Basis erfolgt eine Angle of Arrival (AoA) Positionsermittlung des RF-Tags. AoA erfor- dert im Vergleich zu Time Difference of Arrival (TDOA) zwar keine Synchronisierung der BasisStationen, jedoch eine genaue Ausrichtung der Basisstationen sowie mehrere Empfangsantennen pro BasisStationen. Nachteilig bei AoA ist eine mit zunehmen- der Entfernung abnehmende Genauigkeit.
In auf Ultra-Breitband-Technik (UWB) basierenden Funkortungs- systemen können insbesondere Angle of Arrival (AoA - Ein- fallsrichtung), Time Difference of Arrival (TDOA) und Two-way Ranging (TWR) als Verfahren zur Positionsbestimmung unabhän- gig voneinander verwendet werden. Diese Verfahren weisen un- terschiedliche Anforderungen hinsichtlich verwendeter Hard- ware und räumlicher Anordnung der Hardware auf. TDOA ermög- licht eine Ortung einer Vielzahl von Transpondern gleichzei- tig, erfordert hierfür jedoch zumindest 3 üblicherweise syn- chronisierte BasisStationen. Dagegen wird für TWR grundsätz- lich nur eine Basisstation benötigt, um zumindest eine Dis- tanz zu einem zu ortenden Transponder zu ermitteln.
In vielen Ländern ist es regulatorisch unzulässig, dass Ba- sisstationen von FunkortungsSystemen in Außenbereichen insbe- sondere zur Zeitsynchronisation UWB-Signale senden. Aus die- sem Grund werden Basisstationen entweder über drahtgebundene Verbindungen oder mittels separater Funkübertragungstechnolo- gien, beispielsweise im 2,4 GHz ISM-Band, synchronisiert.
Der vorliegenden Erfindung liegt daher die Aufgabe zugrunde, ein TDOA-basiertes Verfahren zum Betrieb eines Funkortungs- systems zu schaffen, das eine genaue Ortung einer Vielzahl von Transpondern ermöglicht und mit geringem Aufwand, insbe- sondere ohne Synchronisierung von Basisstationen, in Außenbe- reichen genutzt werden kann, sowie zur Durchführung des Ver- fahrens geeignete Mittel bzw. Realisierungen anzugeben.
Diese Aufgabe wird erfindungsgemäß durch ein Verfahren mit den in Anspruch 1 angegebenen Merkmalen, durch ein Funkor- tungssystem mit den in Anspruch 9 angegebenen Merkmalen und durch eine Basisstation mit den in Anspruch 10 angegebenen Merkmalen gelöst. Vorteilhafte Weiterbildungen der vorliegen- den Erfindung sind in den abhängigen Ansprüchen angegeben.
Entsprechend dem erfindungsgemäßen Verfahren zum Betrieb ei- nes Funkortungssystems wird eine Position zumindest eines Transponders mittels mehrerer unsynchronisierter Basisstatio- nen des Funkortungssystems ermittelt. Dabei sind die Basis- stationen jeweils an einer vorgegebenen bzw. bekannten Posi- tion angeordnet. Vorzugsweise ist das Funkortungssystem ein zumindest RFID-basiertes, UWB-basiertes bzw. 2,4 GHz ISM- Band-basiertes Real-time Locating System.
Erfindungsgemäß senden zumindest zwei einen Abstand zueinan- der aufweisende Transponder-Antennen in vorgegebenen Zeitab- ständen abwechselnd Funksignale. Bei den Funksignalen handelt es sich um Two-way Ranging Funksignale. Anhand der von den beiden Transponder-Antennen gesendeten Funksignale kann der Abstand zwischen den beiden Transponder-Antennen somit ent- sprechend Two-way Ranging (TWR) ermittelt werden.
Die BasisStationen ermitteln erfindungsgemäß auf Basis der von den beiden Transponder-Antennen gesendeten Funksignale und anhand des Abstands zwischen den beiden Transponder- Antennen jeweils Funksignal-Empfangszeitdifferenzen zwischen den von den Transponder-Antennen empfangenen Funksignalen. Anhand dieser Funksignal-Empfangszeitdifferenzen wird die Po- sition des zumindest einen Transponders ermittelt, und zwar entsprechend Time Difference of Arrival (TDOA). Dabei ist keine Synchronisierung der BasisStationen untereinander er- forderlich, da sich mit den ermittelten Funksignal-Emp- fangszeitdifferenzen ein Gleichungssystem aufstellen lässt, anhand dessen die Positionen der beiden Transponder-Antennen berechnet werden können. Vorzugsweise senden somit nur die beiden Transponder-Antennen Funksignale, während die Basis- stationen Funksignale lediglich empfangen.
Entsprechend einer ersten Ausführungsvariante der vorliegen- den Erfindung ist eine erste Transponder-Antenne von einem ersten Transponder umfasst, während eine zweite Transponder- Antenne von einem zweiten Transponder umfasst ist. In diesem Fall sind die Zeitabstände, in denen die beiden Transponder- Antennen abwechselnd die Funksignale senden, durch Signal- laufzeiten zwischen den beiden Transpondern sowie durch Sig- nalverarbeitungszeiten innerhalb des jeweiligen Transponders vorgegeben. Insbesondere können die beiden Transponder unter- einander eine Abstandsermittlung mittels Two-Way-Ranging durchführen und ermittelte Abstandswerte umfassende Funksig- nale senden. Vorteilhafterweise ermitteln die unsynchroni- sierten BasisStationen auf Basis während der Abstandsermitt- lung zwischen den Transpondern ausgetauschter Funksignale und anhand der ermittelten Abstandswerte jeweils die Funksignal- Empfangszeitdifferenzen.
Eine mögliche Anwendung der ersten Ausführungsvariante ist beispielsweise eine Ortung von Fahrzeugen mit UWB-Funkschlüs- seln in einem Außenbereich. Sobald ein UWB-Funkschlüssel mit einem Fahrzeug kommuniziert und dabei Funksignale entspre- chend Two-way Ranging (TWR) mit diesem austauscht, können diese Funksignale durch unsynchronisierte Basisstationen im Außenbereich erfasst und zur Ermittlung der Positionen des UWB-Funkschlüssels und des Fahrzeugs ausgewertet werden.
Entsprechend einer zweiten Ausführungsvariante der vorliegen- den Erfindung sind die beiden Transponder-Antennen von dem- selben Transponder umfasst und weisen einen den Basisstatio- nen bekannten bzw. bekannt gemachten Abstand zueinander auf. In diesem Fall senden die beiden Transponder-Antennen die Funksignale abwechselnd in den BasisStationen bekannten bzw. bekannt gemachten Zeitabständen. Anhand der von den beiden Transponder-Antennen gesendeten Funksignale und mittels der unsynchronisierten Basisstationen kann somit eine Position des Transponders und seine räumliche Ausrichtung ermittelt werden.
Das erfindungsgemäße Funkortungssystem ist zur Durchführung eines Verfahrens entsprechend vorangehenden Ausführungen vor- gesehen und umfasst mehrere jeweils an einer vorgegebenen Po- sition angeordnete unsynchronisierte Basisstationen zur Er- mittlung einer Position zumindest eines Transponders sowie zumindest zwei einen Abstand zueinander aufweisende Transpon- der-Antennen. Die Transponder-Antennen sind dazu ausgestaltet und eingerichtet, in vorgegebenen Zeitabständen abwechselnd Funksignale zu senden. Dabei sind die Funksignale Two-way Ranging Funksignale. Erfindungsgemäß sind die BasisStationen dazu ausgestaltet und eingerichtet, auf Basis der von den beiden Transponder-Antennen gesendeten Funksignale und anhand des Abstands zwischen den beiden Transponder-Antennen jeweils Funksignal-Empfangszeitdifferenzen zwischen den von den Transponder-Antennen empfangenen Funksignalen entsprechend Time Difference of Arrival zu ermitteln, wobei die Position des zumindest einen Transponders anhand der Funksignal- Empfangszeitdifferenzen ermittelt wird.
Die erfindungsgemäße Basisstation für ein Funkortungssystem, ist dafür ausgestaltet und eingerichtet, zusammen mit weite- ren unsynchronisierten BasisStationen eine Position eines Transponders zu ermitteln sowie von zumindest zwei einen Ab- stand zueinander aufweisende Transponder-Antennen in vorgege- benen Zeitabständen abwechselnd gesendete Funksignale zu emp- fangen. Dabei sind die Funksignale Two-way Ranging Funksigna- le. Außerdem ist die Basisstation dafür ausgestaltet und ein- gerichtet, auf Basis der von den beiden Transponder-Antennen gesendeten Funksignale und anhand des Abstands zwischen den beiden Transponder-Antennen jeweils Funksignal-Empfangszeit- differenzen zwischen den von den Transponder-Antennen empfan- genen Funksignalen entsprechend Time Difference of Arrival zu ermitteln, wobei die Position des zumindest einen Transpon- ders anhand der Funksignal-Empfangszeitdifferenzen zu ermit- telt wird.
Die vorliegende Erfindung wird nachfolgend an einem Ausfüh- rungsbeispiel anhand der Zeichnung näher erläutert. Es zeigt
Figur 1 Funkortungssystem mit mehreren Basisstationen für ein industrielles Automatisierungssystem,
Figur 2 eine schematische Darstellung eines Austauschs von Funksignalen innerhalb des Funkortungssystems gemäß Figur 1 zur Ortung von RTLS-Transpondern durch un- synchronisierte Basisstationen.
Das in Figur 1 dargestellte Funkortungssystem ist im vorlie- genden Ausführungsbeispiel ein UWB- bzw. 2,4 GHz ISM-Band- basiertes Real-time Locating System (RTLS), das mehrere un- synchronisierte Basisstationen 101-105 umfasst, die jeweils an vorgegebenen bzw. bekannten Positionen angeordnet sind. Mittels der Basisstationen 101-105 werden anhand von Funksig- nallaufzeiten bzw. anhand von Funksignal-Empfangszeitdiffe- renzen Positionen von RTLS-Transpondern 201-203 erfasst, die an zu ortenden Gegenständen angebracht sind.
Mittels eines ersten RTLS-Transponders 201 wird beispielswei- se ein Stückgut 401 auf einem Transportband überwacht, dessen Antrieb 501 durch eine erste speicherprogrammierbare Steue- rung 601 gesteuert wird. Ein zweiter RTLS-Transponder 202 ist im vorliegenden Ausführungsbeispiel an einem Fahrzeugteil 402 befestigt, das in einer Fahrzeugfertigungslinie durch einen Roboter 502 transportiert und montiert wird. Der Roboter wird durch eine zweite speicherprogrammierbare Steuerung 602 ge- steuert, die ebenso wie die erste speicherprogrammierbare Steuerung 601 mit einer zentralen Überwachungs- und Steue- rungseinheit 600 verbunden ist. Durch die Überwachungs- und Steuerungseinheit 600 werden u.a. die speicherprogrammierba- ren Steuerungen 601, 602 und das Funkortungssystem projek- tiert bzw. überwacht.
Das Funkortungssystem dient im vorliegenden Ausführungsbei- spiel außerdem zur Überwachung der Position eines autonomen Fahrzeugs 403, mit denen Produktionsgüter zur Fahrzeugferti- gungslinie transportiert werden. An dem autonomen Fahrzeug 403 ist zur Ortung ein dritter RTLS-Transponder 203 angeord- net. Neben UWB- bzw. 2,4 GHz ISM-Band-Komponenten kann das Funkortungssystem beispielsweise zusätzliche Komponenten zur GPS-, WLAN- oder Inertialsensorik-basierten Ortung umfassen. Dabei können mehrere oder alle dieser Komponenten in die RTLS-Transponder 201-203 und Basisstationen 101-105 des Funk- ortungssystems integriert sein.
Die BasisStationen 101-105 sind mit einer als Gateway 100 ausgestalteten Auswertevorrichtung des Funkortungssystems verbunden. Die RTLS-Transponder 201-203 übermitteln vorzugs- weise jeweils einen dem jeweils zu ortenden Gegenstand zuge- ordneten Objektidentifikator an die BasisStationen 101-105. Auf dieser Basis senden die Basisstationen 101-105 Datagramme 301-305, die insbesondere erfasste Signallaufzeitinformatio- nen, Signalempfangszeitinformationen, Informationen über Sig- nalempfangszeitdifferenzen bzw. Signalstärkemesswerte von empfangenen TransponderSignalen bzw. Objektidentifikatoren umfassen, zur Auswertung an das Gateway 100. Das Gateway 100 des Funkortungssystems übermittelt wiederum die erfassten Positionen der RTLS-Transponder 201-203 ein- schließlich der Objektidentifikatoren an die Überwachungs- und Steuerungseinheit 600. Dementsprechend ist das Überwa- chungs- und Steuerungseinheit 600 dafür konfiguriert, eine graphische Darstellung der übermittelten Positionen der RTLS- Transponder 201-203 aufzubereiten bzw. anhand der übermittel- ten Positionen der RTLS-Transponder 201-203 einschließlich der Objektidentifikatoren den RTLS-Transpondern 201-203 im Überwachungs- und Steuerungseinheit 600 jeweils zugeordnete Ortsinformationen zu validieren.
Entsprechend der Darstellung in Figur 2 senden zumindest zwei einen Abstand d zueinander aufweisende Transponder-Antennen 211-212 zur Ortung von RTLS-Transpondern durch unsynchroni- sierte Basisstationen 101-103 in vorgegebenen Zeitabständen abwechselnd Funksignale 300. Diese Funksignale 300 können insbesondere TWR-Funksignale sein, die zur Abstandsermittlung zwischen den beiden Antennen 211-212 ausgetauscht werden.
Bei einer ersten AusführungsVariante sind die beiden Trans- ponder-Antennen 211-212 unterschiedlichen RTLS-Transpondern zugeordnet. Eine mögliche Anwendung dieser Ausführungsvarian- te ist eine Ortung von Fahrzeugen mit UWB-Funkschlüsseln in einem Außenbereich. Dabei ist eine erste Transponder-Antenne 211 in den UWB-Funkschlüssel integriert, während eine zweite Transponder-Antenne 212 fahrzeugseitig angeordnet ist. Wenn der UWB-Funkschlüssel mit dem Fahrzeug kommuniziert und Funk- signale 300 entsprechend Two-way Ranging (TWR) mit dem Fahr- zeug austauscht, können die Funksignale 300 durch unsynchro- nisierte Basisstationen 101-103 im Außenbereich erfasst und zur Ermittlung der Positionen des UWB-Funkschlüssels und des Fahrzeugs ausgewertet werden. Entsprechend einem anderen Anwendungsbeispiel für die erste Ausführungsvariante kann eine erste Transponder-Antenne 211 von dem RTLS-Transponder 203 umfasst sein, der an dem in Fi- gur 1 dargestellten autonomen Fahrzeug 403 angeordnet ist, während eine zweite Transponder-Antenne 212 von dem an dem Fahrzeugteil 402 befestigten RTLS-Transponder 202 umfasst ist. Entsprechend nachstehenden Ausführungen kann sowohl die Position des autonomen Fahrzeugs 403 als auch die Position des Fahrzeugteils 402 gleichzeitig ermittelt werden.
Entsprechend der ersten Ausführungsvariante führen die den beiden Transponder-Antennen 211-212 zugeordneten RTLS- Transponder untereinander eine Abstandsermittlung mittels Two-Way-Ranging (TWR) durch und senden ermittelte Abstands- werte umfassende Funksignale 300, die durch die Basisstatio- nen 101-103 erfasst werden können. Die Basisstationen 101-103 ermitteln auf Basis der während der Abstandsermittlung zwi- schen den RTLS-Transpondern ausgetauschten Funksignale 300 und anhand der ermittelten Abstandswerte jeweils Funksignal- Empfangszeitdifferenzen. Insbesondere sind die Zeitabstände, in denen die beiden Transponder-Antennen 211-212 abwechselnd die Funksignale 300 senden, durch Signallaufzeiten zwischen den beiden Transpondern sowie durch Signalverarbeitungszeiten innerhalb des jeweiligen RTLS-Transponders zur Durchführung von Two-way Ranging (TWR) vorgegeben.
Bei einer zweiten Ausführungsvariante sind die beiden Trans- ponder-Antennen 211-212 von demselben RTLS-Transponder um- fasst. In diesem Fall ist der Abstand d zwischen den beiden Transponder-Antennen 211-212 a priori bekannt, insbesondere den BasisStationen 101-103, und die beiden Transponder-Anten- nen 211-212 senden die Funksignale 300 abwechselnd in den Ba- sisstationen 101-103 bekannten Zeitabständen. Entsprechend nachstehenden Ausführungen kann damit sowohl die Position des jeweiligen RTLS-Transponders als auch seine räumliche Aus- richtung gleichzeitig ermittelt werden.
Allgemein, also bei beiden Ausführungsvarianten, ermitteln die BasisStationen 101-103 auf Basis der von den beiden Transponder-Antennen 211-212 gesendeten Funksignale 300 und anhand des Abstands d zwischen den beiden Transponder- Antennen 211-212 jeweils Funksignal-Empfangszeitdifferenzen zwischen den von den Transponder-Antennen 211-212 empfangenen Funksignalen 300. Die Position des bzw. der jeweiligen RTLS- Transponder wird dann anhand der durch die Basisstationen 101-103 jeweils ermittelten Funksignal-Empfangszeitdifferen- zen berechnet. Insbesondere wird die Position des bzw. der jeweiligen RTLS-Transponder entsprechend Time Difference of Arrival (TDOA) ermittelt wird. Zur Ortung senden nur die bei- den Transponder-Antennen 211-212 Funksignale, während die Ba- sisstationen 101-103 die Funksignale 300 lediglich empfangen. Details zur Positionsermittlung mittels TDOA sind beispiels- weise in Wikipedia unter Multilateration (https://en.wikipedia.org/wiki/Multilateration) beschrieben.
Anhand der ermittelten Funksignal-Empfangszeitdifferenzen kann ein Gleichungssystem aufgestellt werden, mit dem die Po- sitionen der beiden Transponder-Antennen 211-212 berechnet werden. Im Sinn einer vereinfachten Darstellung wird nachfol- gend eine Berechnung zweidimensionaler Koordinationen XT1, YT1 bzw. XT2, YT2 der beiden Transponder-Antennen 211-212 be- schrieben. Nachfolgende Ausführungen lassen sich in analoger Weise auf eine Berechnung dreidimensionaler Koordinaten er- weitern. Für den mittels Two-way Ranging (TWR) ermittelbaren Abstand d zwischen den beiden Transponder-Antennen 211-212 gilt folgen- de Gleichung:
Figure imgf000014_0001
Ausgehend von bekannten zweidimensionalen Koordinaten XB1, YB1, XB2, YB2, XB3, YB3 der in Figur 2 dargestellten Basisstati- onen 101-103 ergibt sich für die durch die Basisstationen 101-103 ermittelten Funksignal-Empfangszeitdifferenzen ΔBi, i=1...3 folgendes nichtlineares Gleichungssystem, anhand dessen die Koordinationen XT1, YT1, XT2, YT2 der beiden Transponder- Antennen 211-212 berechnet werden können:
Figure imgf000014_0002
Dabei ist c die Ausbreitungsgeschwindigkeit der von den Transponder-Antennen 211-212 gesendeten Funksignale 300. Die Funksignal-Empfangszeitdifferenzen ΔBi können durch die Ba- sisstationen 101-103 insbesondere unter Berücksichtigung von Laufzeitverzögerungen entsprechend jeweiligem Abstand plus Antwortzeitverzögerungen, die sich bei einer Anwendung von Two-way Ranging (TWR) ergeben, ermittelt werden.
Das drei Gleichungen umfassende Gleichungssystem für die durch die Basisstationen 101-103 ermittelten Funksignal- Empfangszeitdifferenzen ΔBi und die Gleichung für den Abstand d zwischen den Transponder-Antennen bilden ein Gesamtglei- chungssystem aus vier Gleichungen für die insgesamt vier Ko- ordinationen XT1, YT1, XT2, YT2 der beiden Transponder-Antennen 211-212. Dieses Gesamtgleichungssystem kann beispielsweise mittels einer Näherungslösung durch Fehlerminimierung gelöst werden. Das Gesamtgleichungssystem kann auch analytisch ge- löst in Analogie zu bei einer GPS-Ortung verwendeten Kleus- berg- und Bancroft-Algorithmen.

Claims

Patentansprüche
1. Verfahren zum Betrieb eines Funkortungssystems, bei dem
— eine Position zumindest eines Transponders (201-203) mit- tels mehrerer unsynchronisierter BasisStationen (101-105) des Funkortungssystems ermittelt wird, wobei die Basissta- tionen jeweils an einer vorgegebenen Position angeordnet sind,
— zumindest zwei einen Abstand (d) zseinander aufweisende Transponder-Antennen (211-212) in vorgegebenen Zeitabstän- den abwechselnd Funksignale (300) senden, wobei die Funk- signale (300) Two-way Ranging Funksignale sind,
— die Basisstationen auf Basis der von den beiden Transpon- der-Antennen gesendeten Funksignale und anhand des Abstands zwischen den beiden Transponder-Antennen jeweils Funksig- nal-Empfangszeitdifferenzen zwischen den von den Transpon- der-Antennen empfangenen Funksignalen entsprechend Time Difference of Arrival ermitteln,
— die Position des zumindest einen Transponders (201-203) an- hand der Funksignal-Empfangszeitdifferenzen ermittelt wird.
2. Verfahren nach Anspruch 1, bei dem anhand der von den beiden Transponder-Antennen (211- 212) gesendeten Funksignale (300) der Abstand (d) zwischen den beiden Transponder-Antennen insbesondere entsprechend Two-way Ranging ermittelt wird.
3. Verfahren nach einem der Ansprüche 1 oder 2, bei dem eine erste Transponder-Antenne von einem ersten Transponder umfasst ist, bei dem eine zweite Transponder- Antenne von einem zweiten Transponder umfasst ist und bei dem die Zeitabstände, in denen die beiden Transponder-Antennen abwechselnd die Funksignale senden, durch Signallaufzeiten zwischen den beiden Transpondern sowie durch Signalverarbei- tungszeiten innerhalb des jeweiligen Transponders vorgegeben sind.
4. Verfahren nach Anspruch 3, bei dem die beiden Transponder untereinander eine Abstandser- mittlung mittels Two-Way-Ranging durchführen und ermittelte Abstandswerte umfassende Funksignale senden und bei dem auf Basis während der Abstandsermittlung zwischen den Transpon- dern ausgetauschter Funksignale und anhand der ermittelten Abstandswerte jeweils die Funksignal-Empfangszeitdifferenzen ermittelt werden.
5. Verfahren nach einem der Ansprüche 1 oder 2, bei dem die beiden Transponder-Antennen von demselben Trans- ponder umfasst sind sowie einen den BasisStationen bekannten Abstand zueinander aufweisen und bei dem die beiden Transpon- der-Antennen die Funksignale abwechselnd in den Basisstatio- nen bekannten Zeitabständen senden.
6. Verfahren nach Anspruch 5, bei dem anhand der von den beiden Transponder-Antennen gesen- deten Funksignale eine Position des Transponders und seine räumliche Ausrichtung ermittelt werden.
7. Verfahren nach einem der Ansprüche 1 bis 6, bei dem nur die beiden Transponder-Antennen Funksignale sen- den und die Basisstationen Funksignale lediglich empfangen.
8. Verfahren nach einem der Ansprüche 1 bis 7, bei dem das Funkortungssystem ein zumindest RFID-basiertes, UWB-basiertes und/oder 2,4 GHz ISM-Band-basiertes Real-time Locating System ist.
9. Funkortungssystem zur Durchführung eines Verfahrens nach einem der Ansprüche 1 bis 8, wobei das Funkortungssystem
— mehrere jeweils an einer vorgegebenen Position angeordnete unsynchronisierte Basisstationen (101-105) zur Ermittlung einer Position zumindest eines Transponders (201-203) und
— zumindest zwei einen Abstand (d) zueinander aufweisende Transponder-Antennen (211-212) umfasst, die dazu ausgestal- tet und eingerichtet sind, in vorgegebenen Zeitabständen abwechselnd Funksignale (300) zu senden, wobei die Funksig- nale (300) Two-way Ranging Funksignale sind,
— wobei die Basisstationen dazu ausgestaltet und eingerichtet sind, auf Basis der von den beiden Transponder-Antennen ge- sendeten Funksignale und anhand des Abstands zwischen den beiden Transponder-Antennen jeweils Funksignal-Empfangs- zeitdifferenzen zwischen den von den Transponder-Antennen empfangenen Funksignalen entsprechend Time Difference of Arrival zu ermitteln, wobei die Position des zumindest ei- nen Transponders (201-203) anhand der Funksignal- Empfangszeitdifferenzen ermittelt wird.
10. Basisstation für ein Funkortungssystem, wobei die Basis- station dafür ausgestaltet und eingerichtet ist,
— zusammen mit weiteren unsynchronisierten Basisstationen ei- ne Position eines Transponders zu ermitteln,
— von zumindest zwei einen Abstand (d) zueinander aufweisende Transponder-Antennen (211-212) in vorgegebenen Zeitabstän- den abwechselnd gesendete Funksignale (300) zu empfangen, wobei die Funksignale (300) Two-way Ranging Funksignale sind,
— auf Basis der von den beiden Transponder-Antennen gesende- ten Funksignale und anhand des Abstands zwischen den beiden Transponder-Antennen jeweils Funksignal-Empfangszeit- differenzen zwischen den von den Transponder-Antennen emp- fangenen Funksignalen entsprechend Time Difference of Arri- val zu ermitteln, wobei die Position des zumindest einen Transponders (201-203) anhand der Funksignal- Empfangszeitdifferenzen ermittelt wird.
PCT/EP2021/070390 2020-10-30 2021-07-21 Verfahren zum betrieb eines funkortungssystems, funkortungssystem und basisstation WO2022089798A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP20204943.3 2020-10-30
EP20204943.3A EP3992659A1 (de) 2020-10-30 2020-10-30 Verfahren zum betrieb eines funkortungssystems, funkortungssystem und basisstation

Publications (1)

Publication Number Publication Date
WO2022089798A1 true WO2022089798A1 (de) 2022-05-05

Family

ID=73043064

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2021/070390 WO2022089798A1 (de) 2020-10-30 2021-07-21 Verfahren zum betrieb eines funkortungssystems, funkortungssystem und basisstation

Country Status (2)

Country Link
EP (1) EP3992659A1 (de)
WO (1) WO2022089798A1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4099043A1 (de) 2021-05-31 2022-12-07 Siemens Aktiengesellschaft Verfahren zur lokalisierung eines transponders für ein funkortungssystem, funkortungssystem und basisstation

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008027619A2 (en) * 2006-09-01 2008-03-06 Intermec Ip Corp. Rfid tag system with block coding, such as space-time block coding
DE102009008174A1 (de) 2009-02-10 2010-08-19 Siemens Aktiengesellschaft Verfahren und System zur Bestimmung der Entfernung, der Geschwindigkeit und/oder der Bewegungsrichtung eines RFID-Transponders
WO2012148721A1 (en) 2011-04-26 2012-11-01 Microchip Technology Incorporated Radio frequency tag location system and method
EP3031039A1 (de) 2013-08-09 2016-06-15 Martec S.p.A. System zur verfolgung der position von personen oder gegenständen in strukturen mit räumen zur aufnahme von personen oder objekten, wie schiffe, gebäude oder offshore-plattformen

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008027619A2 (en) * 2006-09-01 2008-03-06 Intermec Ip Corp. Rfid tag system with block coding, such as space-time block coding
DE102009008174A1 (de) 2009-02-10 2010-08-19 Siemens Aktiengesellschaft Verfahren und System zur Bestimmung der Entfernung, der Geschwindigkeit und/oder der Bewegungsrichtung eines RFID-Transponders
WO2012148721A1 (en) 2011-04-26 2012-11-01 Microchip Technology Incorporated Radio frequency tag location system and method
EP3031039A1 (de) 2013-08-09 2016-06-15 Martec S.p.A. System zur verfolgung der position von personen oder gegenständen in strukturen mit räumen zur aufnahme von personen oder objekten, wie schiffe, gebäude oder offshore-plattformen

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JAFARI AHMADREZA: "New TDOA based localization method for HDR systems", 2 March 2015 (2015-03-02), pages 1 - 127, XP055794191, Retrieved from the Internet <URL:https://tel.archives-ouvertes.fr/tel-01192940v2/document> [retrieved on 20210412] *

Also Published As

Publication number Publication date
EP3992659A1 (de) 2022-05-04

Similar Documents

Publication Publication Date Title
DE602005004605T2 (de) Objektlokalisierungssystem und -verfahren mit mehreren auflösungen
DE69116946T2 (de) Verfahren und Gerät zur Radioidentifizierung und Zielverfolgung
EP2845026B1 (de) Verfahren und anordnung zur relativen lageerkennung von stationen mittels funkortung
WO2007140999A2 (de) Konzept zur positions- oder lagebestimmung eines transponders in einem rfid -system
EP3219019B1 (de) Antennenvorrichtung, funkerkennungssystem und verfahren zum aussenden eines funksignals
WO2019048260A1 (de) Innenraum-ortungssystem mit energieverbrauchsgesteuerten mobilen sende-empfangseinheiten
WO2022089798A1 (de) Verfahren zum betrieb eines funkortungssystems, funkortungssystem und basisstation
WO2022002503A1 (de) Verfahren zum betrieb eines funkortungssystems, basisstation und auswertevorrichtung
EP1836654B1 (de) Verfahren zum orten eines rückstreubasierten transponders
DE102006049862A1 (de) Konzept zur Positionsbestimmung eines passiven Transponders in einem Funksystem
EP4330709A1 (de) Uwb-lokalisierung mit unabhängiger uwb-ankersynchronisation
EP3736596A1 (de) Zusatzmodul für ein gerät, servereinrichtung, lokalisierungsverfahren, computerprogramm und entsprechendes speichermedium
EP1122684B1 (de) Funk-Identifikationssystem und -verfahren
EP3414588A1 (de) Vorrichtung und verfahren zur positionsbestimmung eines senders relativ zu einem detektionsbereich
EP3273381B1 (de) Rfid-vorrichtung und verfahren zum kommunizieren mit mindestens einem rfid-transponder
DE102005036088A1 (de) Verfahren und Vorrichtung zum Orten eines Objekts
DE102012001899A1 (de) Rotations-Feld-Antennen-Modul, kurz RFA-Modul. Sternförmige Antenne mit Steuerungselektronik für die Erzeugung sich drehender elektromagnetischer Felder. Ein Verfahren zum Orten von beweglichen und stationären Objekten.
WO2022253520A1 (de) Verfahren zur lokalisierung eines transponders für ein funkortungssystem, funkortungssystem und basisstation
EP3290948B1 (de) Positionserfassungssensor und -system
EP1482323B1 (de) Verfahren und System zur Identifikation und Ortsbestimmung von Objekten
EP4328612A1 (de) Verfahren zum betrieb eines funkortungssystems, funkortungssystem und transponder
EP4123331A1 (de) Verfahren zum betrieb eines funkortungssystems, funkortungssystem, basisstation und transponder
WO2022229239A1 (de) Zuverlässige ortung einer uwb-mobileinheit
EP1764623A1 (de) Verfahren und Vorrichtung zur Abstandsbestimmung zwischen einem RFID Schreib-/Lesegerät und einem mobilen RFID-Datenspeicher
EP3798664A1 (de) Verfahren zum betrieb einer funkbasierten und/oder optischen objektidentifizierungsvorrichtung, objektidentifizierungssystem und objektidentifizierungsvorrichtung

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21752649

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21752649

Country of ref document: EP

Kind code of ref document: A1