WO2022089498A1 - 一种拼接屏定位方法、装置、系统和电子设备 - Google Patents

一种拼接屏定位方法、装置、系统和电子设备 Download PDF

Info

Publication number
WO2022089498A1
WO2022089498A1 PCT/CN2021/126792 CN2021126792W WO2022089498A1 WO 2022089498 A1 WO2022089498 A1 WO 2022089498A1 CN 2021126792 W CN2021126792 W CN 2021126792W WO 2022089498 A1 WO2022089498 A1 WO 2022089498A1
Authority
WO
WIPO (PCT)
Prior art keywords
uwb
distance
screen
display screen
tags
Prior art date
Application number
PCT/CN2021/126792
Other languages
English (en)
French (fr)
Inventor
彭洪彬
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to US18/034,597 priority Critical patent/US20230393798A1/en
Priority to EP21885225.9A priority patent/EP4227793A1/en
Publication of WO2022089498A1 publication Critical patent/WO2022089498A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/14Digital output to display device ; Cooperation and interconnection of the display device with other functional units
    • G06F3/1423Digital output to display device ; Cooperation and interconnection of the display device with other functional units controlling a plurality of local displays, e.g. CRT and flat panel display
    • G06F3/1446Digital output to display device ; Cooperation and interconnection of the display device with other functional units controlling a plurality of local displays, e.g. CRT and flat panel display display composed of modules, e.g. video walls
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/021Services related to particular areas, e.g. point of interest [POI] services, venue services or geofences
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/023Services making use of location information using mutual or relative location information between multiple location based services [LBS] targets or of distance thresholds
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/025Services making use of location information using location based information parameters
    • H04W4/026Services making use of location information using location based information parameters using orientation information, e.g. compass
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2356/00Detection of the display position w.r.t. other display screens
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2370/00Aspects of data communication
    • G09G2370/04Exchange of auxiliary data, i.e. other than image data, between monitor and graphics controller
    • G09G2370/042Exchange of auxiliary data, i.e. other than image data, between monitor and graphics controller for monitor identification

Definitions

  • the present application relates to the technical field of intelligent terminals, and in particular, to a splicing screen positioning method, device, system and electronic equipment.
  • the size of the display device is limited.
  • the development of a single large screen to 75 inches has encountered a bottleneck; first, the cost remains high, and 100-200 inches has reached 100,000+; secondly, as the screen increases, transportation and installation are difficult. .
  • a feasible solution is to splicing the display screens of multiple display devices into a larger display screen.
  • display splicing has certain technical threshold requirements for construction, deployment, networking, etc.
  • the splicing screen technical solution is very difficult to implement. Generally, users cannot complete the deployment alone, and special technical personnel are required to come to support, which seriously hinders the splicing screen technology. promotion application.
  • the present application provides a splicing screen positioning method, device, system and electronic equipment, and the present application also provides a computer-readable storage medium.
  • the present application provides a splicing screen positioning method, including:
  • the distance and/or direction from the UWB base point device to the UWB tag is obtained, wherein multiple display screens are spliced into a splicing screen, and one UWB tag is installed on each of the display screens, and different The said display screen can be differentiated based on its installed UWB label;
  • the mutual positional relationship of the UWB tags is calculated, and each of the displays in the splicing screen is confirmed according to the mutual positional relationship of the UWB tags. position of the screen.
  • calculating the mutual positional relationship of the UWB tags according to the distance and/or direction from the UWB base point device to each of the UWB tags including:
  • the installation positions of the UWB labels on the plurality of display screens are the same.
  • the method further includes:
  • the horizontal/vertical screen status of the display screen in the splicing screen is confirmed.
  • the method further includes:
  • the UWB label is installed on a side of the longitudinal center line of the display screen that is inclined to the top of the display screen or a side that is inclined to the bottom of the display screen.
  • the distance and direction of each UWB label confirm the top orientation relationship of the adjacent display screens in the splicing screen, including:
  • the two display screens are in the same direction.
  • the UWB label is installed on a side of the longitudinal center line of the display screen that is inclined to the top of the display screen or a side that is inclined to the bottom of the display screen.
  • the distance and direction of each UWB label confirm the top orientation relationship of the adjacent display screens in the splicing screen, including:
  • the two display screens are in the same direction.
  • an embodiment of the present application provides a splicing screen positioning device, including:
  • a measurement result acquisition module which is used to acquire the distance and/or direction from the UWB base point device to the UWB tag, wherein the UWB base point device acquires the distance and/or the UWB tag based on UWB ranging and/or UWB direction finding technology Or direction, multiple display screens are spliced into a splicing screen, and a UWB label is installed on each of the display screens;
  • a positioning module configured to confirm the position of each of the display screens in the splicing screen according to the distance and/or direction of the UWB base point device to each of the UWB tags respectively.
  • an embodiment of the present application provides a splicing screen positioning system, including:
  • a UWB label which is used to be installed on multiple display screens spliced into a spliced screen, and one UWB label is installed on each of the display screens;
  • UWB base point device which is used to obtain the distance and/or direction to the UWB tag based on UWB ranging and/or UWB direction finding technology
  • a positioning module configured to confirm the position of each of the display screens in the splicing screen according to the distance and/or direction of the UWB base point device to each of the UWB tags respectively.
  • the present application provides an electronic device comprising a memory for storing computer program instructions and a processor for executing the program instructions, wherein when the computer program instructions are executed by the processor, The electronic device is triggered to execute the method steps described in the embodiments of the present application.
  • the present application provides a computer-readable storage medium, where a computer program is stored in the computer-readable storage medium, and when the computer-readable storage medium runs on a computer, causes the computer to execute the method of the embodiments of the present application.
  • the position of each display screen in the splicing screen can be confirmed in a simple manner, thereby realizing the display configuration of the splicing screen; compared with the prior art, the method according to an embodiment of the present application can greatly The implementation difficulty of the splicing screen technical solution is reduced, which is conducive to the promotion and application of the splicing screen technology.
  • Figure 1 shows a schematic diagram of the networking structure of a splicing screen application scenario
  • FIG. 2 is a schematic diagram of an application scenario according to an embodiment of the present application.
  • FIG. 3 is a schematic diagram of an application scenario according to an embodiment of the present application.
  • FIG. 4 is a schematic diagram of an application scenario according to an embodiment of the present application.
  • FIG. 5 is a schematic diagram of an application scenario according to an embodiment of the present application.
  • FIG. 6 shows a flowchart of a part of the method according to an embodiment of the present application.
  • FIG. 7 is a schematic diagram of an application scenario according to an embodiment of the present application.
  • FIG. 8 is a schematic diagram of an application scenario according to an embodiment of the present application.
  • FIG. 9 is a schematic diagram of an application scenario according to an embodiment of the present application.
  • FIG. 10 is a schematic diagram of an application scenario according to an embodiment of the present application.
  • FIG. 11 is a flowchart of a part of a method according to an embodiment of the present application.
  • FIG. 12 is a schematic diagram of an application scenario according to an embodiment of the present application.
  • FIG. 13 is a schematic diagram of an application scenario according to an embodiment of the present application.
  • FIG. 14 is a schematic diagram of an application scenario according to an embodiment of the present application.
  • FIG. 15 shows a flowchart of a part of the method according to an embodiment of the present application.
  • FIG. 16 is a schematic diagram of an application scenario according to an embodiment of the present application.
  • FIG. 17 is a schematic diagram of an application scenario according to an embodiment of the present application.
  • FIG. 18 is a flowchart showing an execution of an application scenario according to an embodiment of the present application.
  • the splicing screen control system is generally equipped with corresponding configuration software, and the physical connection needs to be connected according to the software design.
  • the splicing screen is manually arranged through software to realize the correspondence between each splicing screen and the corresponding channel; the physical port is manually adjusted to achieve the purpose of arranging the splicing screen.
  • Figure 1 shows a schematic diagram of the networking structure of a splicing screen application scenario.
  • the display screens 101 to 109 form a spliced screen
  • the image controller 110 outputs the image signals that need to be displayed on the spliced screen to the display screens 101 to 109 .
  • the image signal inputs of the display screens 101 to 109 are independent of each other.
  • the image controller 110 essentially divides the images to be displayed according to the number of the display screens 101 to 109 in the splicing screen, and obtains the images from the display screens 101 to 109 .
  • the image signal of the image to be displayed on each display screen is output, and then the image signal of the image to be displayed on each display screen is respectively output to the corresponding display screen.
  • the control terminal 120 is used to set the image controller 110 .
  • the current splicing screen is composed of 9 display screens in a 3*3 manner, and each display screen is horizontal.
  • the image controller 110 will divide the image to be displayed on the splicing screen into 9 images such as 111-119, and the 9 images (111-119) are respectively output by the output interfaces 121-129 of the image controller 110 , the display screens 101 to 109 are respectively connected to the output interfaces 121 to 129 of the image controller 110 .
  • the control terminal 120 needs to install professional software for splicing screen layout, and the user needs to set the relevant parameters of the splicing screen layout on the control terminal 120, and, according to the settings on the control terminal 120, the corresponding image
  • the physical connection between the controller 110 and the display screens 101-109 is installed.
  • the operation process of parameter setting and physical connection installation is complicated, which leads to high learning costs for users, and it is difficult for users to complete the installation by themselves, requiring professional on-site support.
  • manual operation errors may lead to repeated adjustments for many times.
  • a feasible solution is to set the corresponding relationship between the images (111-119) and the display screens 101-109 on the control terminal 120, (111-119) are bound one by one with the hardware identifiers (for example, display addresses) of the display screens 101-109, and the image controller 110 allocates them according to the corresponding relationship between the images (111-119) and the display screens 101-109 It has its own output interface, and outputs the images (111-119) to the display screens 101-109 respectively. In this way, when connecting the display screens 101 to 109 to the image controller 110, the technicians do not need to distinguish the specific interfaces of the images (111 to 119) output by the image controller 110, thereby greatly reducing the complexity of the installation of physical connections. degree.
  • a method for automatically positioning the display screen which automatically identifies the splicing method of the display screen in the splicing screen and the hardware identification of the display screen on the installation position of each display screen, Therefore, in the process of setting the image controller, it is not necessary to manually input the corresponding relationship between the segmented image and the hardware identification of the display screen.
  • Ultra Wide Band (UWB) technology is a wireless carrier communication technology. It does not use sinusoidal carriers, but uses nanosecond non-sinusoidal narrow pulses to transmit data, so it occupies a large spectrum range. width. UWB technology has the advantages of low system complexity, low power spectral density of transmitted signals, insensitivity to channel fading, low interception capability, and high positioning accuracy. It is especially suitable for high-speed wireless access in dense multipath places such as indoors.
  • the distance from the UWB device to the UWB tag can be measured by the Time of Arrival (TOA)/Time Difference of Arrival (TDOA) ranging technology, and the distance from the UWB device to the UWB tag can be measured by the Angle of Arrival (Angle of Arrival).
  • TOA Time of Arrival
  • TDOA Time Difference of Arrival
  • Angle of Arrival Angle of Arrival
  • AOA direction finding technology to obtain the direction angle of the UWB device pointing to the UWB tag.
  • display screen positioning is performed based on the UWB technology. Specifically, construct a UWB base point device and a plurality of UWB labels, and install the hardware identification of the UWB label on each display screen in the splicing screen with the identification of the UWB label installed on it, that is, the UWB label can be used to distinguish different displays. Measure the distance from the UWB device to each UWB tag and/or the direction angle pointing to each UWB tag, so as to calculate the mutual positional relationship of multiple UWB tags, and then determine the positional relationship between each display screen in the splicing screen to locate the splicing screen in the display.
  • an embodiment of the present application proposes a splicing screen positioning method, the method includes:
  • the distance and/or direction from the UWB base point device to the UWB tag is obtained.
  • multiple display screens are spliced into a splicing screen, and a UWB tag is installed on each display screen, and different display screens can be Distinguish based on its installed UWB label;
  • the mutual positional relationship of the UWB tags is calculated, and the position of each display screen in the splicing screen is confirmed according to the mutual positional relationship of the UWB tags.
  • the position of each display screen in the splicing screen can be confirmed in a simple manner, thereby realizing the display configuration of the splicing screen; compared with the prior art, the method according to an embodiment of the present application can greatly The implementation difficulty of the splicing screen technical solution is reduced, which is conducive to the promotion and application of the splicing screen technology.
  • the multiple display screens spliced into a spliced screen are the same in size, the display screens are rectangular, and the spliced screen is also rectangular.
  • 4 displays of the same size are spliced into a splicing screen in a 2*2 manner
  • 6 displays of the same size are spliced into a spliced screen in a 3*2 manner
  • 9 displays of the same size are spliced into a spliced screen in a 3*3 manner. splicing into a splicing screen.
  • the installation positions of the UWB tags are the same on the plurality of display screens spliced into a spliced screen.
  • a UWB label is installed at the upper right corner of each display screen, or a UWB label is installed at the center point of each display screen, or a UWB label is installed at a specific position on the center line of each display screen.
  • FIG. 2 is a schematic diagram of an application scenario according to an embodiment of the present application.
  • the display screens 201 to 209 form a splicing screen in a 3*3 manner
  • the UWB labels 211 to 219 are respectively installed on the display screens 201 to 209 .
  • the UWB base point device 220 acquires the distances and directions from the UWB base point device 220 to the UWB tags 211 to 219 based on the UWB ranging and UWB direction finding technologies. According to the distances and directions from the UWB base point device 220 to the UWB tags 211 to 219 respectively, the positional relationship between the UWB tags 211 to 219 can be confirmed.
  • FIG. 3 is a schematic diagram of an application scenario according to an embodiment of the present application.
  • the display screens 301 to 309 form a splicing screen in a 3*3 manner
  • the UWB labels 311 to 319 are respectively installed on the display screens 301 to 309 .
  • the direction of the UWB base point device 320 to the UWB tag 312 is a right deflection, and it can be confirmed that the UWB tag 212 is to the right of the UWB tag 211; the UWB base point device 320 to the UWB tag
  • the direction of 314 is downward deflection, it can be confirmed that the UWB tag 314 is below the UWB tag 311 .
  • the length of the third side can be calculated when the lengths of the two sides of the triangle and the included angle between the two sides are known. Then, when it is known that the distance from the UWB base point device to the two UWB tags (the length of the two sides) and the direction of the UWB base point device to the two UWB tags respectively (the angle pointed to is the angle between the two sides), The distance between the two UWB tags (the length of the third side) can be calculated.
  • FIG. 4 is a schematic diagram of an application scenario according to an embodiment of the present application. As shown in FIG.
  • the display screens 401 to 409 form a splicing screen in a 3*3 manner
  • the UWB labels 411 to 419 are respectively installed on the display screens 401 to 409 .
  • the distance from the UWB base point device 420 to the UWB tag 411 is a 4
  • the distance from the UWB base point device 420 to the UWB tag 412 is b 4
  • the angle A4 can be calculated from the directions of the UWB base point device 420 to the UWB tags 411 and 412, respectively.
  • the distance c 4 between the UWB tags 411 and 412 can be calculated according to a 4 , b 4 and the angle A 4 .
  • the UWB label forms a rectangle. Since the longest line segment in the rectangle is the diagonal of the rectangle, in the splicing screen, the two UWB tags with the longest distance are the UWB tags on the vertices of the rectangle formed by the UWB tags. Therefore, according to the distance and direction of the UWB base point device to each UWB tag, calculate the distance between two UWB tags, confirm the two pairs of UWB tags with the largest distance between the two UWB tags, and then locate the display on the four corners of the splicing screen. UWB label of the screen. Based on the UWB tags at the four corners, other UWB tags can be further positioned.
  • FIG. 5 is a schematic diagram of an application scenario according to an embodiment of the present application.
  • the display screens 501 to 509 form a splicing screen in a 3*3 manner
  • the UWB labels 511 to 519 are respectively installed on the display screens 501 to 509 .
  • the UWB tags 511, 513, 517 and 519 are located in the upper left corner, the UWB tag 513 is located in the upper right corner, the UWB tag 517 is located in the lower left corner, and the UWB tag 519 is located in the right corner. lower corner.
  • the UWB tags 512, 514, 515, 516 and 518 can be positioned according to the directions of the UWB base point devices to the UWB tags 512, 514, 515, 516 and 518 respectively. s position.
  • some display screens are not square in size, but have different lengths and widths. Therefore, when the display screen is placed in landscape orientation (the long side is horizontal) and the display screen is placed vertically (the short side is horizontal), the state of the display screen is also different. Then, under the condition that the number of display screens is unchanged and the relative position of the display screens is unchanged, there is also a difference in the status of the display screen between the splicing screen formed by the display screen placed in the horizontal screen and the splicing screen formed by the display screen placed in the vertical screen. .
  • the horizontal/vertical screen state of the display screen in the splicing screen is also identified.
  • the horizontal/vertical screen state of the display screen may be identified in a variety of different ways.
  • the landscape/portrait state of the display screen is identified based on the landscape/portrait state parameter input by the user.
  • an orientation sensor is installed on the display screen, and the horizontal/vertical screen state of the display screen is determined according to the recognition result of the orientation sensor.
  • the horizontal/vertical screen state of the display screen in the splicing screen is confirmed according to the distance and direction of the UWB base point device to each UWB tag respectively.
  • FIG. 6 shows a flowchart of a part of the method according to an embodiment of the present application. The process of identifying the horizontal/vertical state of the display screen is shown in Figure 6:
  • Step 610 calculate the distance between any two UWB labels according to the distance and direction of the UWB base point device to each UWB label;
  • Step 620 determine the two pairs of UWB tags with the longest spacing to determine the largest UWB tag quadrilateral
  • Step 630 calculate the side length of the maximum UWB label rectangle to determine the longest side/shortest side of the UWB label quadrilateral;
  • Step 640 Determine the direction of the longest side/shortest side of the UWB label quadrilateral, and determine the horizontal/vertical screen state of the display screen in the splicing screen according to the direction of the longest side/shortest side of the UWB label quadrilateral.
  • FIG. 7 is a schematic diagram of an application scenario according to an embodiment of the present application.
  • the display screens 701 to 709 form a splicing screen in a 3*3 manner
  • the UWB labels 711 to 719 are respectively installed on the display screens 701 to 709 .
  • Calculate the distance between any two UWB labels among the UWB labels 711 to 719 wherein the distance between the UWB labels 511 and 519 and the distance between the UWB labels 513 and 517 are the two largest distances.
  • the UWB labels 511 , 513 , 517 and 519 can be positioned as the UWB labels installed on the display screen at the four corners, respectively, forming the largest UWB label quadrilateral. Further, calculate the side length of the largest UWB label quadrilateral (the distance between 511 and 513, 511 and 517, 513 and 519, 517 and 519), the distance between 511 and 513, 517 and 519 is greater than the distance between 511 and 517, 513 and 519 , then 511-513 and 517-519 are the long sides of the largest UWB label quadrilateral. It is determined that 511 to 513 and 517 to 519 are in the horizontal direction, then the display screens 701 to 709 are in a horizontal screen state.
  • FIG. 8 is a schematic diagram of an application scenario according to an embodiment of the present application.
  • the direction indicated by the arrow in the display screen 801 shown in FIG. 8 points to the top of the display screen.
  • the top of the display screen defaults to the top of the screen.
  • FIG. 9 is a schematic diagram of an application scenario according to an embodiment of the present application.
  • the top orientation relationship of the two display screens shown at 910 is the same direction (the tops are both upward); the top orientation relationship of the two display screens shown at 920 is the same direction (the tops are both downward);
  • the top orientation relationship of the two display screens shown at 940 is opposite; the top orientation relationship of the two display screens shown at 940 is opposite; the top orientation relationship of the two display screens shown at 950 is the same direction (the tops are both to the left) ;
  • the top orientation relationship of the two display screens shown at 960 is the same direction (the tops are both rightwards); the top orientation relationship of the two display screens shown at 970 is the opposite direction; the top orientation relationship of the two display screens shown at 980 for the opposite.
  • FIG. 10 is a schematic diagram of an application scenario according to an embodiment of the present application.
  • the top orientation relationship of the two display screens shown at 1010 is the same direction (both the tops are upward); the top orientation relationship of the two display screens shown at 1020 is the same direction (the tops are both downward);
  • the top orientation relationship of the two display screens shown at 1050 is the opposite direction; the top orientation relationship of the two display screens shown at 1050 is the same direction (the tops are both to the left); the top orientation relationship of the two display screens shown at 1060 is the same direction (both the tops are rightwards); the top-facing relationship of the two display screens shown at 1070 is reverse.
  • the top-facing relationship of the display screen can be confirmed in various ways. For example, the top orientation relationship of the display screen is confirmed based on the display screen top orientation parameter entered by the user. For another example, an orientation sensor is installed on the display screen, and the top orientation of the display screen is determined according to the recognition result of the orientation sensor, thereby determining the top orientation relationship of the display screen.
  • the top orientation relationship of adjacent display screens in the splicing screen is confirmed.
  • the top orientation relationship includes the same direction, the opposite direction and the opposite direction; when the horizontal center lines of the two display screens are located on the same straight line, the top orientation relationship includes the same direction and the opposite direction.
  • the UWB label is installed on the side of the longitudinal center line of the display screen that is biased toward the top of the display screen or the side that is biased toward the bottom of the display screen. According to the distance from the UWB base point device to each UWB tag and direction, and confirm the top facing relationship of the adjacent display screens in the splicing screen.
  • FIG. 11 shows a flowchart of a part of the method according to an embodiment of the present application. Confirm the top-facing relationship of adjacent displays in the video wall, including:
  • Step 1110 calculate the distance between any two UWB labels according to the distance and direction of the UWB base point device to each UWB label;
  • Step 1120 determine the two pairs of UWB labels with the longest spacing to determine the maximum UWB label rectangle, and determine the shortest side of the maximum UWB label rectangle;
  • Step 1130 calculating the distance between two UWB labels adjacent to the same direction as the shortest side of the UWB label rectangle;
  • Step 1140 according to the distance between the two adjacent UWB labels, determine the top orientation relationship of the two adjacent display screens corresponding to the two adjacent UWB labels, wherein:
  • FIG. 12 is a schematic diagram of an application scenario according to an embodiment of the present application.
  • 1201 and 1202 are two adjacent display screens, and the arrow points to the top of the display screen.
  • 1211 and 1212 are UWB labels installed on the display screens 1201 and 1202 respectively, and the installation position of the UWB labels is the side of the vertical center line of the display screen which is offset to the top of the display screen.
  • the distance d 1210 between the UWB labels 1211 and 1212 is smaller than the height h 12 of the display screen, so it can be determined that the display screens 1201 and 1102 are opposite.
  • FIG. 13 is a schematic diagram of an application scenario according to an embodiment of the present application.
  • 1301 and 1302 are two adjacent display screens, and the arrow points to the top of the display screen.
  • 1311 and 1312 are UWB labels installed on the display screens 1301 and 1302, respectively, and the installation position of the UWB labels is the side of the vertical center line of the display screen that is deviated from the top of the display screen.
  • the distance d 1310 between the UWB labels 1311 and 1312 is greater than the height h 13 of the display screen, so it can be determined that the display screens 1301 and 1302 are opposite to each other.
  • FIG. 14 is a schematic diagram of an application scenario according to an embodiment of the present application.
  • 1401 and 1402 are two adjacent display screens, and the arrow points to the top of the display screen.
  • 1411 and 1412 are UWB labels installed on the display screens 1401 and 1402 respectively, and the installation position of the UWB labels is the side of the vertical center line of the display screen that is offset to the top of the display screen.
  • the distance d 1410 between the UWB labels 1411 and 1412 is greater than the height h 14 of the display screen, so it can be determined that the display screens 1401 and 1402 are opposite to each other.
  • FIG. 15 shows a flowchart of a part of the method according to an embodiment of the present application. Confirm the top-facing relationship of adjacent displays in the video wall, including:
  • Step 1510 calculate the distance between any two UWB tags according to the distance and direction of the UWB base point device to each UWB tag;
  • Step 1520 determine two pairs of UWB labels with the longest spacing to determine the largest UWB label rectangle, and determine the longest side of the UWB label rectangle;
  • Step 1530 calculate the spacing between two UWB labels adjacent to the same direction as the longest side of the UWB label rectangle;
  • Step 1540 according to the distance between the two adjacent UWB labels, determine the top orientation relationship of the two adjacent display screens corresponding to the adjacent two UWB labels, wherein:
  • the two display screens are in the same direction.
  • FIG. 16 is a schematic diagram of an application scenario according to an embodiment of the present application.
  • 1601 and 1602 are two adjacent display screens, and the arrow points to the top of the display screen.
  • 1611 and 1612 are UWB labels installed on the display screens 1601 and 1602 respectively, and the installation position of the UWB labels is the side of the vertical center line of the display screen which is offset to the top of the display screen.
  • the distance d 1610 between the UWB labels 1611 and 1612 is larger than the width l 16 of the display screen, so it can be judged that the display screens 1601 and 1602 are opposite to each other.
  • FIG. 17 is a schematic diagram of an application scenario according to an embodiment of the present application.
  • 1701 and 1702 are two adjacent display screens, and the arrow points to the top of the display screen.
  • 1711 and 1712 are UWB labels installed on the display screens 1701 and 1702, respectively, and the installation position of the UWB labels is the side of the vertical center line of the display screen that is deviated from the top of the display screen.
  • the distance d 1710 between the UWB labels 1711 and 1712 is equal to the width l 17 of the display screen, so it can be determined that the display screens 1701 and 1702 are in the same direction.
  • FIG. 18 is a flowchart showing an execution of an application scenario according to an embodiment of the present application. As shown in Figure 18, in the application scenario of a splicing screen according to an embodiment of the present application:
  • Step 1800 splicing the display screen and connecting the display screen to the image controller
  • Step 1801 the image controller identifies the physical identifier of the connected display screen on each signal output interface
  • Step 1810 the UWB base point device measures the distance and direction to the UWB tag on each display screen
  • Step 1811 confirm the position of each display screen in the splicing screen (confirm the physical identification of the display screen corresponding to the position of each display screen in the splicing screen), identify the horizontal/vertical screen of the display screen Status, identify the top orientation of the display;
  • Step 1820 configure the image segmentation configuration according to the position of each display screen in the splicing screen, identify the horizontal/vertical screen state of the display screen, and identify the top orientation relationship of the display screen;
  • Step 1830 according to the physical identifier of the connected display screen on each signal output interface of the image controller, and the physical identifier of the display screen corresponding to each display screen position in the splicing screen, confirm that the image controller recognizes the status of each signal output interface. output configuration.
  • the position of each display screen in the splicing screen can be automatically confirmed, the horizontal/vertical screen status of the display screen can be identified, and the top orientation relationship of the display screen can be identified without the need for the user to manually input settings.
  • the user only needs to access the video
  • the source can start the image display of the splicing screen, which greatly simplifies the difficulty of the splicing screen application.
  • an embodiment of the present application also proposes a splicing screen positioning device.
  • the splicing screen positioning device includes:
  • the measurement result acquisition module is used to acquire the distance and/or direction from the UWB base point device to the UWB tag, wherein the UWB base point device acquires the distance and/or direction to the UWB tag based on the UWB ranging and/or UWB direction finding technology, and more
  • the display screens are spliced into a splicing screen, and a UWB label is installed on each display screen;
  • the positioning module is used to confirm the position of each display screen in the splicing screen according to the distance and/or direction of the UWB base point device to each UWB tag respectively.
  • an embodiment of the present application also proposes a splicing screen positioning system.
  • the splicing screen positioning system includes:
  • UWB label which is used to be installed on multiple display screens spliced into a splicing screen, and a UWB label is installed on each display screen;
  • UWB base point device which is used to obtain the distance and/or direction to the UWB tag based on UWB ranging and/or UWB direction finding technology
  • the positioning module is used to confirm the position of each display screen in the splicing screen according to the distance and/or direction of the UWB base point device to each UWB tag respectively.
  • the improvement of a technology can be clearly distinguished from the improvement of hardware (for example, the improvement of circuit structures such as diodes, transistors, switches, etc.) or the improvement of software (for the improvement of the method flow).
  • improve the improvement of many method flows can be regarded as a direct improvement of the hardware circuit structure.
  • Designers almost get the corresponding hardware circuit structure by programming the improved method flow into the hardware circuit. Therefore, it cannot be said that the improvement of a method flow cannot be realized by hardware entity modules.
  • a Programmable Logic Device (such as a Field Programmable Gate Array (FPGA)) is an integrated circuit whose logical function is determined by an accessor programming the device.
  • PLD Programmable Logic Device
  • FPGA Field Programmable Gate Array
  • HDL Hardware Description Language
  • ABEL Advanced Boolean Expression Language
  • AHDL Altera Hardware Description Language
  • HDCal JHDL
  • Lava Lava
  • Lola MyHDL
  • PALASM RHDL
  • VHDL Very-High-Speed Integrated Circuit Hardware Description Language
  • Verilog Verilog
  • each module is divided into various modules and described respectively.
  • the division of each module is only a logical function division.
  • you can The functions of each module are implemented in the same one or more software and/or hardware.
  • the apparatuses proposed in the embodiments of the present application may be fully or partially integrated into a physical entity during actual implementation, or may be physically separated.
  • these modules can all be implemented in the form of software calling through processing elements; they can also all be implemented in hardware; some modules can also be implemented in the form of software calling through processing elements, and some modules can be implemented in hardware.
  • the detection module may be a separately established processing element, or may be integrated in a certain chip of the electronic device.
  • the implementation of other modules is similar.
  • all or part of these modules can be integrated together, and can also be implemented independently.
  • each step of the above-mentioned method or each of the above-mentioned modules can be completed by an integrated logic circuit of hardware in the processor element or an instruction in the form of software.
  • the above modules may be one or more integrated circuits configured to implement the above methods, such as: one or more specific integrated circuits (Application Specific Integrated Circuit, ASIC), or, one or more digital signal processors ( Digital Singnal Processor, DSP), or, one or more Field Programmable Gate Array (Field Programmable Gate Array, FPGA), etc.
  • ASIC Application Specific Integrated Circuit
  • DSP Digital Singnal Processor
  • FPGA Field Programmable Gate Array
  • these modules can be integrated together and implemented in the form of an on-chip device (System-On-a-Chip, SOC).
  • An embodiment of the present application also provides an electronic device, the electronic device includes a memory for storing computer program instructions and a processor for executing the program instructions, wherein when the computer program instructions are executed by the processor, the electronic device is triggered The device executes the method steps described in the embodiments of the present application.
  • the above-mentioned one or more computer programs are stored in the above-mentioned memory, and the above-mentioned one or more computer programs include instructions.
  • the above-mentioned instructions are executed by the above-mentioned device, the above-mentioned device is made to execute the application. The method steps described in the examples.
  • the processor of the electronic device may be an on-chip device SOC, and the processor may include a central processing unit (Central Processing Unit, CPU), and may further include other types of processors.
  • the processor of the electronic device may be a PWM control chip.
  • the involved processor may include, for example, a CPU, a DSP, a microcontroller, or a digital signal processor, and may also include a GPU, an embedded Neural-network Process Units (NPU, NPU) ) and an image signal processor (Image Signal Processing, ISP), the processor may also include necessary hardware accelerators or logic processing hardware circuits, such as ASICs, or one or more integrated circuits for controlling the execution of programs in the technical solution of the present application Wait. Furthermore, the processor may have the function of operating one or more software programs, which may be stored in a storage medium.
  • the memory of the electronic device may be a read-only memory (ROM), other types of static storage devices that can store static information and instructions, random access memory (random access memory) memory, RAM) or other types of dynamic storage devices that can store information and instructions, also can be electrically erasable programmable read-only memory (electrically erasable programmable read-only memory, EEPROM), compact disc read-only memory, CD-ROM) or other optical disk storage, optical disk storage (including compact disk, laser disk, optical disk, digital versatile disk, Blu-ray disk, etc.), magnetic disk storage medium or other magnetic storage device, or can also be used for portable or Any computer-readable medium that stores desired program code in the form of instructions or data structures and can be accessed by a computer.
  • ROM read-only memory
  • RAM random access memory
  • dynamic storage devices that can store information and instructions
  • EEPROM electrically erasable programmable read-only memory
  • CD-ROM compact disc read-only memory
  • optical disk storage including compact disk, laser disk, optical disk, digital versatile disk
  • a processor may be combined with a memory to form a processing device, which is more commonly an independent component.
  • the processor is used to execute program codes stored in the memory to implement the method described in the embodiment of the present application.
  • the memory can also be integrated in the processor, or be independent of the processor.
  • devices, apparatuses, systems, and modules described in the embodiments of the present application may be specifically implemented by computer chips or entities, or implemented by products with certain functions.
  • the embodiments of the present application may be provided as a method, an apparatus, a system, an apparatus or a computer program product. Accordingly, the present invention may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Furthermore, the present invention may take the form of a computer program product embodied on one or more computer-usable storage media having computer-usable program code embodied therein.
  • any function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer-readable storage medium.
  • the technical solution of the present application can be embodied in the form of a software product in essence, or the part that contributes to the prior art or the part of the technical solution.
  • the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in the various embodiments of the present application.
  • an embodiment of the present application further provides a computer-readable storage medium, where a computer program is stored in the computer-readable storage medium, and when it runs on a computer, the computer executes the method provided by the embodiment of the present application.
  • An embodiment of the present application further provides a computer program product, where the computer program product includes a computer program that, when running on a computer, causes the computer to execute the method provided by the embodiment of the present application.
  • These computer program instructions may also be stored in a computer-readable memory capable of directing a computer or other programmable data processing apparatus to function in a particular manner, such that the instructions stored in the computer-readable memory result in an article of manufacture comprising instruction means, the instructions
  • the apparatus implements the functions specified in the flow or flow of the flowcharts and/or the block or blocks of the block diagrams.
  • At least one of a, b, and c may represent: a, b, c, a and b, a and c, b and c or a and b and c, where a, b, c may be single, or Can be multiple.
  • the terms “comprising”, “comprising” or any other variations thereof are intended to cover non-exclusive inclusion, so that a process, method, commodity or device including a series of elements not only includes those elements, but also includes Other elements not expressly listed, or which are inherent to such a process, method, article of manufacture, or apparatus are also included.
  • an element qualified by the phrase “comprising a" does not preclude the presence of additional identical elements in the process, method, article of manufacture, or device that includes the element.
  • the application may be described in the general context of computer-executable instructions, such as program modules, being executed by a computer.
  • program modules include routines, programs, objects, components, data structures, etc. that perform particular tasks or implement particular abstract data types.
  • the application may also be practiced in distributed computing environments where tasks are performed by remote processing devices that are linked through a communications network.
  • program modules may be located in both local and remote computer storage media including storage devices.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • User Interface Of Digital Computer (AREA)
  • Controls And Circuits For Display Device (AREA)

Abstract

一种拼接屏定位方法、装置、系统和电子设备,包括:基于UWB测距以及UWB测向技术,获取UWB基点设备到UWB标签的距离和/或方向,其中,多台显示屏拼接成拼接屏,每台显示屏上安装一个UWB标签,不同的显示屏可以基于其安装的UWB标签进行区分;根据UWB基点设备分别到每个UWB标签的距离和/或方向,计算UWB标签的相互位置关系,根据UWB标签的相互位置关系确认拼接屏中各个显示屏的位置。可以简单方便地确认拼接屏中各个显示屏的位置,从而实现对拼接屏的显示配置。

Description

一种拼接屏定位方法、装置、系统和电子设备 技术领域
本申请涉及智能终端技术领域,特别涉及一种拼接屏定位方法、装置、系统和电子设备。
背景技术
随着多媒体技术的发展,用户场景需求被不断挖掘、释放,大屏显示技术在公安、消防、机场、部队等需求日趋增多。
在现有技术环境下,显示设备的尺寸是受限的。例如,针对液晶显示屏,单体大屏发展到75寸已碰到瓶颈;首先是成本居高不下,100-200寸已到10万+;其次随着屏幕增大,运输、安装等困难重重。这就使得,在某些应用场景中,显示设备的尺寸并不能满足应用场景需求。
为了满足应用场景需求,一种可行的方案是将多个显示设备的显示屏拼接为尺寸更大的显示屏。而显示屏拼接对施工、部署、组网等有一定的技术门槛要求,拼接屏技术方案存在很大的实施难度,一般用户无法独自完成部署,需要专门的技术人员上门支持,严重阻碍拼接屏技术的推广应用。
发明内容
针对现有技术下拼接屏技术方案存在很大的实施难度的问题,本申请提供了一种拼接屏定位方法、装置、系统和电子设备,本申请还提供一种计算机可读存储介质。
本申请实施例采用下述技术方案:
第一方面,本申请提供一种拼接屏定位方法,包括:
基于UWB测距以及UWB测向技术,获取UWB基点设备到UWB标签的距离和/或方向,其中,多台显示屏拼接成拼接屏,每台所述显示屏上安装一个所述UWB标签,不同的所述显示屏可以基于其安装的UWB标签进行区分;
根据所述UWB基点设备分别到每个所述UWB标签的距离和/或方向,计算所述UWB标签的相互位置关系,根据所述UWB标签的相互位置关系确认所述拼接屏中各个所述显示屏的位置。
在上述第一方面的一种实现方式中,根据所述UWB基点设备分别到每个所述UWB标签的距离和/或方向,计算所述UWB标签的相互位置关系,包括:
根据所述UWB基点设备分别到每个所述UWB标签的方向,确认所述UWB标签的相互位置关系。
在上述第一方面的一种实现方式中,多台所述显示屏上所述UWB标签的安装位置一致。
在上述第一方面的一种实现方式中,所述方法还包括:
根据所述UWB基点设备分别到每个所述UWB标签的距离和方向,确认所述拼接屏 中所述显示屏的横/竖屏状态。
在上述第一方面的一种实现方式中,根据所述UWB基点设备分别到每个所述UWB标签的距离和方向,确认所述拼接屏中所述显示屏的横/竖屏状态,包括:
根据所述UWB基点设备分别到每个所述UWB标签的距离以及方向计算任意两个所述UWB标签的间距;
确定间距最长的两对所述UWB标签以确定最大UWB标签四边形;
计算所述最大UWB标签矩形的边长以确定所述UWB标签四边形的最长边/最短边;
确定所述UWB标签四边形的最长边/最短边的方向,根据所述UWB标签四边形的最长边/最短边的方向确定所述拼接屏中所述显示屏的横/竖屏状态。
在上述第一方面的一种实现方式中,所述方法还包括:
根据所述UWB基点设备分别到每个所述UWB标签的距离以及方向,确认所述拼接屏中所述显示屏的顶部朝向关系。
在上述第一方面的一种实现方式中,所述UWB标签安装在所述显示屏的纵向中线上偏向显示屏顶部的一侧或偏向显示屏底部的一侧,根据所述UWB基点设备分别到每个所述UWB标签的距离以及方向,确认所述拼接屏中相邻的所述显示屏的顶部朝向关系,包括:
根据所述UWB基点设备分别到每个所述UWB标签的距离以及方向计算任意两个所述UWB标签的间距;
确定间距最长的两对所述UWB标签以确定最大UWB标签矩形;
计算所述最大UWB标签矩形的边长以确定所述UWB标签矩形的最短边;
计算与所述UWB标签矩形的最短边同向上相邻两个UWB标签的间距;
根据所述相邻两个UWB标签的间距判断所述相邻两个UWB标签对应的两个相邻显示屏的顶部朝向关系,其中:
当所述UWB标签偏向显示屏顶部的一侧时,当所述相邻两个UWB标签的间距小于所述显示屏的高度时,两个所述显示屏对向;
当所述UWB标签偏向显示屏顶部的一侧时,当所述相邻两个UWB标签的间距大于所述显示屏的高度时,两个所述显示屏逆向;
当所述UWB标签偏向显示屏底部的一侧时,当所述相邻两个UWB标签的间距小于所述显示屏的高度时,两个所述显示屏逆向;
当所述UWB标签偏向显示屏底部的一侧时,当所述相邻两个UWB标签的间距大于所述显示屏的高度时,两个所述显示屏对向;
当所述相邻两个UWB标签的间距等于所述显示屏的高度时,两个所述显示屏同向。
在上述第一方面的一种实现方式中,所述UWB标签安装在所述显示屏的纵向中线上偏向显示屏顶部的一侧或偏向显示屏底部的一侧,根据所述UWB基点设备分别到每个所述UWB标签的距离以及方向,确认所述拼接屏中相邻的所述显示屏的顶部朝向关系,包括:
根据所述UWB基点设备分别到每个所述UWB标签的距离以及方向计算任意两个所述UWB标签的间距;
确定间距最长的两对所述UWB标签以确定最大UWB标签矩形;
计算所述最大UWB标签矩形的边长以确定所述UWB标签矩形的最长边;
计算与所述UWB标签矩形的最长边同向上相邻两个UWB标签的间距;
根据所述相邻两个UWB标签的间距判断所述相邻两个UWB标签对应的两个相邻显示屏的顶部朝向关系,其中:
当所述相邻两个UWB标签的间距大于所述显示屏的宽度时,两个所述显示屏逆向;
当所述相邻两个UWB标签的间距等于所述显示屏的宽度时,两个所述显示屏同向。
第二方面,本申请一实施例提供一种拼接屏定位装置,包括:
测量结果获取模块,其用于获取UWB基点设备到UWB标签的距离和/或方向,其中,所述UWB基点设备基于UWB测距和/或UWB测向技术获取到所述UWB标签的距离和/或方向,多台显示屏拼接成拼接屏,每台所述显示屏上安装一个所述UWB标签;
定位模块,其用于根据所述UWB基点设备分别到每个所述UWB标签的距离和/或方向,确认所述拼接屏中各个所述显示屏的位置。
第三方面,本申请一实施例提供一种拼接屏定位系统,包括:
UWB标签,其用于安装在拼接成拼接屏的多台显示屏上,每台所述显示屏上安装一个所述UWB标签;
UWB基点设备,其用于基于UWB测距和/或UWB测向技术获取到所述UWB标签的距离和/或方向;
定位模块,其用于根据所述UWB基点设备分别到每个所述UWB标签的距离和/或方向,确认所述拼接屏中各个所述显示屏的位置。
第四方面,本申请提供了一种电子设备,所述电子设备包括用于存储计算机程序指令的存储器和用于执行程序指令的处理器,其中,当该计算机程序指令被该处理器执行时,触发所述电子设备执行如本申请实施例所述的方法步骤。
第五方面,本申请提供了一种计算机可读存储介质,计算机可读存储介质中存储有计算机程序,当其在计算机上运行时,使得计算机执行本申请实施例的方法。
根据本申请实施例所提出的上述技术方案,至少可以实现下述技术效果:
根据本申请一实施例的方法,可以简单方面的确认拼接屏中各个显示屏的位置,从而实现对拼接屏的显示配置;相较于现有技术,根据本申请一实施例的方法,可以大大降低拼接屏技术方案的实施难度,从而有利于拼接屏技术的推广应用。
附图说明
图1所示为一拼接屏应用场景的组网结构示意图;
图2所示为根据本申请一实施例的应用场景示意图;
图3所示为根据本申请一实施例的应用场景示意图;
图4所示为根据本申请一实施例的应用场景示意图;
图5所示为根据本申请一实施例的应用场景示意图;
图6所示为根据本申请一实施例的部分方法流程图;
图7所示为根据本申请一实施例的应用场景示意图;
图8所示为根据本申请一实施例的应用场景示意图;
图9所示为根据本申请一实施例的应用场景示意图;
图10所示为根据本申请一实施例的应用场景示意图;
图11所示为根据本申请一实施例的部分方法流程图;
图12所示为根据本申请一实施例的应用场景示意图;
图13所示为根据本申请一实施例的应用场景示意图;
图14所示为根据本申请一实施例的应用场景示意图;
图15所示为根据本申请一实施例的部分方法流程图;
图16所示为根据本申请一实施例的应用场景示意图;
图17所示为根据本申请一实施例的应用场景示意图;
图18所示为根据本申请一实施例的应用场景执行流程图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合本申请具体实施例及相应的附图对本申请技术方案进行清楚、完整地描述。显然,所描述的实施例仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请的实施方式部分使用的术语仅用于对本申请的具体实施例进行解释,而非旨在限定本申请。
在拼接屏技术方案中,拼接屏部分在物理安装拼接后,需要进行复杂的配置、连线。拼接屏控制系统一般配套对应的配置软件,物理连线需要根据软件设计进行对应连线。例如,通过软件人工完成对拼接屏进行编排,实现各拼接屏和对应通道的对应;手工调整物理端口,以达到编排拼接屏的目的。
图1所示为一拼接屏应用场景的组网结构示意图。如图1所示,显示屏101~109组成拼接屏,图像控制器110将需要拼接屏显示的图像信号输出到显示屏101~109。
一般的,显示屏101~109的图像信号输入是相互独立的,图像控制器110在实质上是将需要显示的图像,按照拼接屏中显示屏101~109的数量进行分割,获取显示屏101~109中每个显示屏需要显示的图像的图像信号,然后将每个显示屏需要显示的图像的图像信号通过分别输出到对应的显示屏。
为了使得显示屏101~109可以正确显示图像,使用控制端120设置图像控制器110。具体的,设定当前的拼接屏是由9个显示屏以3*3的方式组合而成,每个显示屏横屏。图像控制器110按照设定,会将需要在拼接屏上显示的图像分割为如111~119的9个图像,9个图像(111~119)分别由图像控制器110的输出接口121~129输出,显示屏101~109分别连接到图像控制器110的输出接口121~129。
在图1所示应用场景中,控制端120需要安装专业软件进行拼接屏编排,用户需要在控制端120上进行拼接屏编排的相关参数设置,并且,根据控制端120上的设置对应的进行图像控制器110与显示屏101~109间的物理连线安装。参数设置和物理连线安装的操作过程复杂,导致用户学习成本高,难以自行完成安装,需要专业人员上门支持。并且,在参数设置和物理连线安装的过程中,即使由专业人员操作,人工操作错误也可能导致多次反复调整。
为简化拼接屏方案实现过程中物理连线安装的操作复杂程度,一种可行的方案是,在 控制端120上设定图像(111~119)与显示屏101~109间的对应关系,将图像(111~119)与显示屏101~109的硬件标识(例如,显示屏地址)一一绑定,由图像控制器110根据图像(111~119)与显示屏101~109间的对应关系,调配自己的输出接口,将图像(111~119)分别输出到显示屏101~109。这样,技术人员在将显示屏101~109连接到图像控制器110上时,就不需要区分图像控制器110输出图像(111~119)的具体接口,从而大大降低了物理连线安装的操作复杂程度。
上述方案虽然大大降低了物理连线安装的操作复杂程度,但是,由于在设置图像控制器110是需要输入图像(111~119)与显示屏101~109的硬件标识间的对应关系,因此,在安装拼接屏时需要用户记录每一个显示屏安装位置上的显示屏的硬件标识,参数设置和物理连线安装的操作过程依然具备相当的复杂程度,用户任然难以自行完成安装,需要专业人员上门支持。
因此,进一步的,在本申请一实施例中,提出了一种自动进行显示屏定位的方法,自动识别拼接屏中显示屏的拼接方式以及每一个显示屏安装位置上的显示屏的硬件标识,从而在设置图像控制器的过程中不需要手工输入分割图像与显示屏的硬件标识间的对应关系。
进一步的,超宽带(Ultra Wide Band,UWB)技术是一种无线载波通信技术,它不采用正弦载波,而是利用纳秒级的非正弦波窄脉冲传输数据,因此其所占的频谱范围很宽。UWB技术具有系统复杂度低,发射信号功率谱密度低,对信道衰落不敏感,截获能力低,定位精度高等优点,尤其适用于室内等密集多径场所的高速无线接入。在UWB技术应用中,可以通过到达时间(Time of Arrival,TOA)/到达时间差(Time Difference of Arrival,TDOA)测距技术测量UWB设备到UWB标签的距离,并且,可以通过到达角度(Angle of Arrival,AOA)测向技术,获取UWB设备指向UWB标签的方向角。
因此,在本申请实施例的技术方案中,基于UWB技术进行显示屏定位。具体的,构造一个UWB基点设备以及多个UWB标签,在拼接屏中每一个显示屏上安装UWB标签显示屏的硬件标识与其上所安装的UWB标签的标识绑定,即,通过UWB标签可以区分不同的显示屏。测量UWB设备到每一个UWB标签的距离和/或指向每一个UWB标签的方向角,从而计算多个UWB标签的相互位置关系,进而确定拼接屏中各个显示屏相互间的位置关系以定位拼接屏中的显示屏。
具体的,本申请一实施例中提出了一种拼接屏定位方法,方法包括:
基于UWB测距以及UWB测向技术,获取UWB基点设备到UWB标签的距离和/或方向,其中,多台显示屏拼接成拼接屏,每台显示屏上安装一个UWB标签,不同的显示屏可以基于其安装的UWB标签进行区分;
根据UWB基点设备分别到每个UWB标签的距离和/或方向,计算UWB标签的相互位置关系,根据UWB标签的相互位置关系确认拼接屏中各个显示屏的位置。
根据本申请一实施例的方法,可以简单方面的确认拼接屏中各个显示屏的位置,从而实现对拼接屏的显示配置;相较于现有技术,根据本申请一实施例的方法,可以大大降低拼接屏技术方案的实施难度,从而有利于拼接屏技术的推广应用。
进一步的,在本申请实施例的应用场景中,拼接成拼接屏的多台显示屏在尺寸上一致,显示屏为矩形,拼接成的拼接屏也为矩形。例如,4个尺寸相同的显示屏采用2*2的方式 拼接成拼接屏、6个尺寸相同的显示屏采用3*2的方式拼接成拼接屏、9个尺寸相同的显示屏采用3*3的方式拼接成拼接屏。
进一步的,为了便于计算UWB标签相互位置关系,在本申请一实施例中,拼接成拼接屏的多台显示屏上,安装UWB标签的安装位置一致。例如,在每台显示屏的右上角安装UWB标签,或者,在每台显示屏的中心点安装UWB标签,或者,在每台显示屏的中心线上特定位置安装UWB标签。
图2所示为根据本申请一实施例的应用场景示意图。如图2所示,显示屏201~209以3*3的方式组成拼接屏,UWB标签211~219分别安装在显示屏201~209上。UWB基点设备220基于UWB测距以及UWB测向技术,获取UWB基点设备220分别到UWB标签211~219的距离以及方向。根据UWB基点设备220分别到UWB标签211~219的距离以及方向,即可确认UWB标签211~219相互间的位置关系。
在根据本申请实施例的具体应用场景中,可以采用多种不同的方法计算UWB标签相互间的位置关系。
例如,由于UWB标签位于同一个平面上,可以根据UWB基点设备分别到UWB标签的方向角,计算UWB标签相互间的位置关系。图3所示为根据本申请一实施例的应用场景示意图。如图3所示,显示屏301~309以3*3的方式组成拼接屏,UWB标签311~319分别安装在显示屏301~309上。以UWB标签311、312、314为例。以UWB基点设备320到UWB标签311的指向为基准,UWB基点设备320到UWB标签312的指向为向右偏转,即可确认UWB标签212在UWB标签211的右方;UWB基点设备320到UWB标签314的指向为向下偏转,即可确认UWB标签314在UWB标签311的下方。
又例如,在实际应用场景中,在已知三角形两条边的边长以及该两条边的夹角的情况下,即可计算第三边的长度。那么,当已知UWB基点设备分别到两个UWB标签的距离(两条边的边长)以及UWB基点设备分别到两个UWB标签的方向(指向的夹角为两条边的夹角),就可以计算两个UWB标签间的距离(第三边的边长)。图4所示为根据本申请一实施例的应用场景示意图。如图4所示,显示屏401~409以3*3的方式组成拼接屏,UWB标签411~419分别安装在显示屏401~409上。以UWB标签411、412为例,UWB基点设备420到UWB标签411的距离为a 4,UWB基点设备420到UWB标签412的距离为b 4。根据UWB基点设备420分别到UWB标签411以及412方向可以计算角A 4。根据a 4、b 4以及角A 4就可以计算UWB标签411以及412的间距c 4
进一步的,在拼接屏中,由于显示屏组成矩形,并且UWB标签在显示屏上的安装位置一致,因此,UWB标签构成矩形。由于在矩形中最长的线段为矩形的对角线,那么,在拼接屏中,间距最长的两个UWB标签即为UWB标签所构成矩形的矩形顶点上的UWB标签。因此,根据UWB基点设备分别到每个UWB标签的距离以及方向,计算两两UWB标签间的距离,确认两两UWB标签间的距离最大的两对UWB标签,就可以定位拼接屏上四角的显示屏的UWB标签。以四角的UWB标签为基点,就可以进一步定位其他的UWB标签。
图5所示为根据本申请一实施例的应用场景示意图。如图5所示,显示屏501~509以3*3的方式组成拼接屏,UWB标签511~519分别安装在显示屏501~509上。计算UWB标签511~519中任意两个UWB标签的间距,其中,UWB标签511与519的间距以及UWB 标签513与517的间距为最大的两个间距。因此可以定位UWB标签511、513、517以及519分别为处于四个角上的显示屏上所安装的UWB标签。进一步的,根据UWB基点设备分别到UWB标签511、513、517以及519的方向,即可确认UWB标签511位于左上角、UWB标签513位于右上角、UWB标签517位于左下角、UWB标签519位于右下角。进一步的,以UWB标签511、513、517以及519为基点,根据UWB基点设备分别到UWB标签512、514、515、516以及518的方向,即可定位UWB标签512、514、515、516以及518的位置。
进一步的,在实际应用场景中,某些显示屏的尺寸并不是正方形,其长度和宽度是不同的。因此,显示屏横屏放置(长边水平)和竖屏放置(短边水平)时,其显示画面的状态也是不同的。那么,在显示屏数量不变、显示屏相对位置不变的情况下,横屏放置的显示屏拼接成的拼接屏与竖屏放置的显示屏拼接成的拼接屏,也存在显示画面的状态区别。
针对上述情况,在本申请一实施例中,除了定位拼接屏中显示屏的位置,还识别拼接屏中显示屏的横/竖屏状态。具体的,在实际应用场景中,可以采用多种不同的方式识别显示屏的横/竖屏状态。例如,基于用户输入的横/竖屏状态参数识别显示屏的横/竖屏状态。又例如,在显示屏上安装方向传感器,根据方向传感器的识别结果确定显示屏的横/竖屏状态。
在本申请一实施例的拼接屏定位方法中,根据UWB基点设备分别到每个UWB标签的距离和方向,确认拼接屏中显示屏的横/竖屏状态。
具体的,图6所示为根据本申请一实施例的部分方法流程图。识别显示屏的横/竖屏状态的过程如图6所示:
步骤610,根据UWB基点设备分别到每个UWB标签的距离以及方向计算任意两个UWB标签的间距;
步骤620,确定间距最长的两对UWB标签以确定最大UWB标签四边形;
步骤630,计算最大UWB标签矩形的边长以确定UWB标签四边形的最长边/最短边;
步骤640,确定UWB标签四边形的最长边/最短边的方向,根据UWB标签四边形的最长边/最短边的方向确定拼接屏中显示屏的横/竖屏状态。
图7所示为根据本申请一实施例的应用场景示意图。如图7所示,显示屏701~709以3*3的方式组成拼接屏,UWB标签711~719分别安装在显示屏701~709上。计算UWB标签711~719中任意两个UWB标签的间距,其中,UWB标签511与519的间距以及UWB标签513与517的间距为最大的两个间距。因此可以定位UWB标签511、513、517以及519分别为处于四个角上的显示屏上所安装的UWB标签,构成最大UWB标签四边形。进一步的,计算最大UWB标签四边形的边长(511与513、511与517、513与519、517与519的间距),511与513、517与519的间距大于511与517、513与519的间距,则511~513、517~519为最大UWB标签四边形的长边。确定511~513、517~519为水平方向,则显示屏701~709为横屏状态。
进一步的,在实际应用场景中,显示屏存在顶部/底部的区分。图8所示为根据本申请一实施例的应用场景示意图。图8所示显示屏801中的箭头所示方向指向显示屏的顶部。一般的,在显示屏横屏放置时,显示画面默认显示屏的顶部为画面的上方。
那么,当两个显示屏的纵向中线位于同一直线上时,其顶部朝向关系就存在同向、逆 向以及对向三种关系。图9所示为根据本申请一实施例的应用场景示意图。在图9中,910所示的两个显示屏的顶部朝向关系为同向(顶部均向上);920所示的两个显示屏的顶部朝向关系为同向(顶部均向下);930所示的两个显示屏的顶部朝向关系为逆向;940所示的两个显示屏的顶部朝向关系为对向;950所示的两个显示屏的顶部朝向关系为同向(顶部均向左);960所示的两个显示屏的顶部朝向关系为同向(顶部均向右);970所示的两个显示屏的顶部朝向关系为逆向;980所示的两个显示屏的顶部朝向关系为对向。
当两个显示屏的横向中线位于同一直线上时,其顶部朝向关系就存在同向、逆向两种关系。图10所示为根据本申请一实施例的应用场景示意图。在图10中,1010所示的两个显示屏的顶部朝向关系为同向(顶部均向上);1020所示的两个显示屏的顶部朝向关系为同向(顶部均向下);1030所示的两个显示屏的顶部朝向关系为逆向;1050所示的两个显示屏的顶部朝向关系为同向(顶部均向左);1060所示的两个显示屏的顶部朝向关系为同向(顶部均向右);1070所示的两个显示屏的顶部朝向关系为逆向。
针对上述两个显示屏间存在的顶部朝向关系。在本申请一实施例中,为了确保图像在拼接屏上可以正确显示,不仅需要确定拼接屏中各个显示屏的位置,还要确认拼接屏中显示屏的顶部朝向关系。具体的,在实际应用场景中,可以采用多种不同的方式确认显示屏的顶部朝向关系。例如,基于用户输入的显示屏顶部朝向参数确认显示屏的顶部朝向关系。又例如,在显示屏上安装方向传感器,根据方向传感器的识别结果确定显示屏的顶部朝向,从而确定显示屏的顶部朝向关系。
具体的,在本申请一实施例的拼接屏定位方法中,根据UWB基点设备分别到每个UWB标签的距离以及方向,确认拼接屏中相邻的显示屏的顶部朝向关系,其中,当两个显示屏的纵向中线位于同一直线上时,顶部朝向关系包括同向、逆向以及对向;当两个显示屏的横向中线位于同一直线上时,顶部朝向关系包括同向以及逆向。
具体的,在本申请一实施例中,UWB标签安装在显示屏的纵向中线上偏向显示屏顶部的一侧或偏向显示屏底部的一侧,根据UWB基点设备分别到每个UWB标签的距离以及方向,确认拼接屏中相邻的所述显示屏的顶部朝向关系。
具体的,图11所示为根据本申请一实施例的部分方法流程图。确认拼接屏中相邻的显示屏的顶部朝向关系,包括:
步骤1110,根据UWB基点设备分别到每个UWB标签的距离以及方向计算任意两个UWB标签的间距;
步骤1120,确定间距最长的两对UWB标签以确定最大UWB标签矩形,确定最大UWB标签矩形的最短边;
步骤1130,计算与UWB标签矩形的最短边同向上相邻两个UWB标签的间距;
步骤1140,根据相邻两个UWB标签的间距判断所述相邻两个UWB标签对应的两个相邻显示屏的顶部朝向关系,其中:
当UWB标签偏向显示屏顶部的一侧时,当相邻两个UWB标签的间距小于显示屏的高度时,两个显示屏对向;
当UWB标签偏向显示屏顶部的一侧时,当相邻两个UWB标签的间距大于显示屏的高度时,两个显示屏逆向;
当UWB标签偏向显示屏底部的一侧时,当相邻两个UWB标签的间距小于显示屏的 高度时,两个显示屏逆向;
当UWB标签偏向显示屏底部的一侧时,当相邻两个UWB标签的间距大于显示屏的高度时,两个显示屏对向;
当相邻两个UWB标签的间距等于显示屏的高度时,两个显示屏同向。
图12所示为根据本申请一实施例的应用场景示意图。如图12所示,1201与1202为相邻的两个显示屏,箭头指向为显示屏顶部。1211与1212分别为安装在显示屏1201与1202上的UWB标签,UWB标签的安装位置为显示屏的纵向中线上偏向显示屏顶部的一侧。UWB标签1211与1212的间距d 1210小于显示屏的高度h 12,因此可以判断显示屏1201与1102对向。
图13所示为根据本申请一实施例的应用场景示意图。如图13所示,1301与1302为相邻的两个显示屏,箭头指向为显示屏顶部。1311与1312分别为安装在显示屏1301与1302上的UWB标签,UWB标签的安装位置为显示屏的纵向中线上偏向显示屏顶部的一侧。UWB标签1311与1312的间距d 1310大于显示屏的高度h 13,因此可以判断显示屏1301与1302逆向。
图14所示为根据本申请一实施例的应用场景示意图。如图14所示,1401与1402为相邻的两个显示屏,箭头指向为显示屏顶部。1411与1412分别为安装在显示屏1401与1402上的UWB标签,UWB标签的安装位置为显示屏的纵向中线上偏向显示屏顶部的一侧。UWB标签1411与1412的间距d 1410大于显示屏的高度h 14,因此可以判断显示屏1401与1402逆向。
具体的,图15所示为根据本申请一实施例的部分方法流程图。确认拼接屏中相邻的显示屏的顶部朝向关系,包括:
步骤1510,根据UWB基点设备分别到每个UWB标签的距离以及方向计算任意两个UWB标签的间距;
步骤1520,确定间距最长的两对UWB标签以确定最大UWB标签矩形,确定UWB标签矩形的最长边;
步骤1530,计算与UWB标签矩形的最长边同向上相邻两个UWB标签的间距;
步骤1540,根据相邻两个UWB标签的间距判断相邻两个UWB标签对应的两个相邻显示屏的顶部朝向关系,其中:
当相邻两个UWB标签的间距大于显示屏的宽度时,两个显示屏逆向;
当相邻两个UWB标签的间距等于显示屏的宽度时,两个显示屏同向。
图16所示为根据本申请一实施例的应用场景示意图。如图16所示,1601与1602为相邻的两个显示屏,箭头指向为显示屏顶部。1611与1612分别为安装在显示屏1601与1602上的UWB标签,UWB标签的安装位置为显示屏的纵向中线上偏向显示屏顶部的一侧。UWB标签1611与1612的间距d 1610大于显示屏的宽度l 16,因此可以判断显示屏1601与1602逆向。
图17所示为根据本申请一实施例的应用场景示意图。如图17所示,1701与1702为相邻的两个显示屏,箭头指向为显示屏顶部。1711与1712分别为安装在显示屏1701与1702上的UWB标签,UWB标签的安装位置为显示屏的纵向中线上偏向显示屏顶部的一侧。UWB标签1711与1712的间距d 1710等于显示屏的宽度l 17,因此可以判断显示屏1701 与1702同向。
图18所示为根据本申请一实施例的应用场景执行流程图。如图18所示,在根据本申请一实施例的拼接屏应用场景中:
步骤1800,拼接显示屏并将显示屏连接到图像控制器;
步骤1801,图像控制器识别各个信号输出接口上已连接的显示屏的物理标识;
步骤1810,UWB基点设备测量到每一个显示屏上的UWB标签的距离以及方向;
步骤1811,根据每个UWB标签的距离以及方向,确认拼接屏中各个显示屏的位置(确认拼接屏中每个显示屏位置上对应的显示屏的物理标识)、识别显示屏的横/竖屏状态、识别显示屏的顶部朝向关系;
步骤1820,根据拼接屏中各个显示屏的位置、识别显示屏的横/竖屏状态、识别显示屏的顶部朝向关系配置图像分割配置;
步骤1830,根据图像控制器各个信号输出接口上已连接的显示屏的物理标识,以及,拼接屏中每个显示屏位置上对应的显示屏的物理标识,确认图像控制器识别各个信号输出接口的输出配置。
根据本申请实施例的方法,无需用户手动输入设置,可以自动确认拼接屏中各个显示屏的位置、识别显示屏的横/竖屏状态、识别显示屏的顶部朝向关系,用户只需要接入视频源即可启动拼接屏图像显示,大大简化了拼接屏应用的难度。
进一步的,根据本申请实施例所提出的拼接屏定位方法,本申请一实施例还提出了一种拼接屏定位装置。拼接屏定位装置包括:
测量结果获取模块,其用于获取UWB基点设备到UWB标签的距离和/或方向,其中,UWB基点设备基于UWB测距和/或UWB测向技术获取到UWB标签的距离和/或方向,多台显示屏拼接成拼接屏,每台显示屏上安装一个UWB标签;
定位模块,其用于根据UWB基点设备分别到每个UWB标签的距离和/或方向,确认拼接屏中各个显示屏的位置。
进一步的,根据本申请实施例所提出的拼接屏定位方法,本申请一实施例还提出了一种拼接屏定位系统。拼接屏定位系统包括:
UWB标签,其用于安装在拼接成拼接屏的多台显示屏上,每台显示屏上安装一个UWB标签;
UWB基点设备,其用于基于UWB测距和/或UWB测向技术获取到UWB标签的距离和/或方向;
定位模块,其用于根据UWB基点设备分别到每个UWB标签的距离和/或方向,确认拼接屏中各个显示屏的位置。
进一步的,在某些技术方案中,对于一个技术的改进可以很明显地区分是硬件上的改进(例如,对二极管、晶体管、开关等电路结构的改进)还是软件上的改进(对于方法流程的改进)。然而,随着技术的发展,很多方法流程的改进已经可以视为硬件电路结构的直接改进。设计人员几乎都通过将改进的方法流程编程到硬件电路中来得到相应的硬件电路结构。因此,不能说一个方法流程的改进就不能用硬件实体模块来实现。例如,可编程逻辑器件(Programmable Logic Device,PLD)(例如现场可编程门阵列(Field Programmable Gate Array,FPGA))就是这样一种集成电路,其逻辑功能由访问方对器件 编程来确定。由设计人员自行编程来把一个数字装置“集成”在一片PLD上,而不需要请芯片制造厂商来设计和制作专用的集成电路芯片。而且,如今,取代手工地制作集成电路芯片,这种编程也多半改用“逻辑编译器(logic compiler)”软件来实现,它与程序开发撰写时所用的软件编译器相类似,而要编译之前的原始代码也得用特定的编程语言来撰写,此称之为硬件描述语言(Hardware Description Language,HDL),而HDL也并非仅有一种,而是有许多种,如ABEL(Advanced Boolean Expression Language)、AHDL(Altera Hardware Description Language)、Confluence、CUPL(Cornell University Programming Language)、HDCal、JHDL(Java Hardware Description Language)、Lava、Lola、MyHDL、PALASM、RHDL(Ruby Hardware Description Language)等,目前最普遍使用的是VHDL(Very-High-Speed Integrated Circuit Hardware Description Language)与Verilog。本领域技术人员也应该清楚,只需要将方法流程用上述几种硬件描述语言稍作逻辑编程并编程到集成电路中,就可以很容易得到实现该逻辑方法流程的硬件电路。
在本申请实施例的描述中,为了描述的方便,描述装置/系统时以功能分为各种模块分别描述,各个模块的划分仅仅是一种逻辑功能的划分,在实施本申请实施例时可以把各模块的功能在同一个或多个软件和/或硬件中实现。
具体的,本申请实施例所提出的装置在实际实现时可以全部或部分集成到一个物理实体上,也可以物理上分开。且这些模块可以全部以软件通过处理元件调用的形式实现;也可以全部以硬件的形式实现;还可以部分模块以软件通过处理元件调用的形式实现,部分模块通过硬件的形式实现。例如,检测模块可以为单独设立的处理元件,也可以集成在电子设备的某一个芯片中实现。其它模块的实现与之类似。此外这些模块全部或部分可以集成在一起,也可以独立实现。在实现过程中,上述方法的各步骤或以上各个模块可以通过处理器元件中的硬件的集成逻辑电路或者软件形式的指令完成。
例如,以上这些模块可以是被配置成实施以上方法的一个或多个集成电路,例如:一个或多个特定集成电路(Application Specific Integrated Circuit,ASIC),或,一个或多个数字信号处理器(Digital Singnal Processor,DSP),或,一个或者多个现场可编程门阵列(Field Programmable Gate Array,FPGA)等。再如,这些模块可以集成在一起,以片上装置(System-On-a-Chip,SOC)的形式实现。
本申请一实施例还提出了一种电子设备,电子设备包括用于存储计算机程序指令的存储器和用于执行程序指令的处理器,其中,当该计算机程序指令被该处理器执行时,触发电子设备执行如本申请实施例所述的方法步骤。
具体的,在本申请一实施例中,上述一个或多个计算机程序被存储在上述存储器中,上述一个或多个计算机程序包括指令,当上述指令被上述设备执行时,使得上述设备执行本申请实施例所述的方法步骤。
具体的,在本申请一实施例中,电子设备的处理器可以是片上装置SOC,该处理器中可以包括中央处理器(Central Processing Unit,CPU),还可以进一步包括其他类型的处理器。具体的,在本申请一实施例中,电子设备的处理器可以是PWM控制芯片。
具体的,在本申请一实施例中,涉及的处理器可以例如包括CPU、DSP、微控制器或数字信号处理器,还可包括GPU、嵌入式神经网络处理器(Neural-network Process Units,NPU)和图像信号处理器(Image Signal Processing,ISP),该处理器还可包括必要的硬 件加速器或逻辑处理硬件电路,如ASIC,或一个或多个用于控制本申请技术方案程序执行的集成电路等。此外,处理器可以具有操作一个或多个软件程序的功能,软件程序可以存储在存储介质中。
具体的,在本申请一实施例中,电子设备的存储器可以是只读存储器(read-only memory,ROM)、可存储静态信息和指令的其它类型的静态存储设备、随机存取存储器(random access memory,RAM)或可存储信息和指令的其它类型的动态存储设备,也可以是电可擦可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其它磁存储设备,或者还可以是能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何计算机可读介质。
具体的,在本申请一实施例中,处理器可以和存储器可以合成一个处理装置,更常见的是彼此独立的部件,处理器用于执行存储器中存储的程序代码来实现本申请实施例所述方法。具体实现时,该存储器也可以集成在处理器中,或者,独立于处理器。
进一步的,本申请实施例阐明的设备、装置、系统、模块,具体可以由计算机芯片或实体实现,或者由具有某种功能的产品来实现。
本领域内的技术人员应明白,本申请实施例可提供为方法、装置、系统、设备或计算机程序产品。因此,本发明可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本发明可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质上实施的计算机程序产品的形式。
在本申请所提供的几个实施例中,任一功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。
具体的,本申请一实施例中还提供一种计算机可读存储介质,该计算机可读存储介质中存储有计算机程序,当其在计算机上运行时,使得计算机执行本申请实施例提供的方法。
本申请一实施例还提供一种计算机程序产品,该计算机程序产品包括计算机程序,当其在计算机上运行时,使得计算机执行本申请实施例提供的方法。
本申请中的实施例描述是参照根据本申请实施例的方法、设备、装置、系统和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方 式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
还需要说明的是,本申请实施例中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示单独存在A、同时存在A和B、单独存在B的情况。其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项”及其类似表达,是指的这些项中的任意组合,包括单项或复数项的任意组合。例如,a,b和c中的至少一项可以表示:a,b,c,a和b,a和c,b和c或a和b和c,其中a,b,c可以是单个,也可以是多个。
本申请实施例中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、商品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、商品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、商品或者设备中还存在另外的相同要素。
本申请可以在由计算机执行的计算机可执行指令的一般上下文中描述,例如程序模块。一般地,程序模块包括执行特定任务或实现特定抽象数据类型的例程、程序、对象、组件、数据结构等等。也可以在分布式计算环境中实践本申请,在这些分布式计算环境中,由通过通信网络而被连接的远程处理设备来执行任务。在分布式计算环境中,程序模块可以位于包括存储设备在内的本地和远程计算机存储介质中。
本申请中的各个实施例均采用递进的方式描述,各个实施例之间相同相似的部分互相参见即可,每个实施例重点说明的都是与其他实施例的不同之处。尤其,对于装置实施例而言,由于其基本相似于方法实施例,所以描述的比较简单,相关之处参见方法实施例的部分说明即可。
本领域普通技术人员可以意识到,本申请实施例中描述的各模块及算法步骤,能够以电子硬件、计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的装置、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
以上所述,仅为本申请的具体实施方式,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。本申请的保护范围应以所述权利要求的保护范围为准。

Claims (12)

  1. 一种拼接屏定位方法,其特征在于,包括:
    基于UWB测距以及UWB测向技术,获取UWB基点设备到UWB标签的距离和/或方向,其中,多台显示屏拼接成拼接屏,每台所述显示屏上安装一个所述UWB标签,不同的所述显示屏可以基于其安装的UWB标签进行区分;
    根据所述UWB基点设备分别到每个所述UWB标签的距离和/或方向,计算所述UWB标签的相互位置关系,根据所述UWB标签的相互位置关系确认所述拼接屏中各个所述显示屏的位置。
  2. 根据权利要求1所述的方法,其特征在于,根据所述UWB基点设备分别到每个所述UWB标签的距离和/或方向,计算所述UWB标签的相互位置关系,包括:
    根据所述UWB基点设备分别到每个所述UWB标签的方向,确认所述UWB标签的相互位置关系。
  3. 根据权利要求1所述的方法,其特征在于,多台所述显示屏上所述UWB标签的安装位置一致。
  4. 根据权利要求1-3中任一项所述的方法,其特征在于,所述方法还包括:
    根据所述UWB基点设备分别到每个所述UWB标签的距离和方向,确认所述拼接屏中所述显示屏的横/竖屏状态。
  5. 根据权利要求4所述的方法,其特征在于,根据所述UWB基点设备分别到每个所述UWB标签的距离和方向,确认所述拼接屏中所述显示屏的横/竖屏状态,包括:
    根据所述UWB基点设备分别到每个所述UWB标签的距离以及方向计算任意两个所述UWB标签的间距;
    确定间距最长的两对所述UWB标签以确定最大UWB标签四边形;
    计算所述最大UWB标签矩形的边长以确定所述UWB标签四边形的最长边/最短边;
    确定所述UWB标签四边形的最长边/最短边的方向,根据所述UWB标签四边形的最长边/最短边的方向确定所述拼接屏中所述显示屏的横/竖屏状态。
  6. 根据权利要求1-3中任一项所述的方法,其特征在于,所述方法还包括:
    根据所述UWB基点设备分别到每个所述UWB标签的距离以及方向,确认所述拼接屏中所述显示屏的顶部朝向关系。
  7. 根据权利要求6所述的方法,其特征在于,所述UWB标签安装在所述显示屏的纵向中线上偏向显示屏顶部的一侧或偏向显示屏底部的一侧,根据所述UWB基点设备分别到每个所述UWB标签的距离以及方向,确认所述拼接屏中相邻的所述显示屏的顶部朝向关系,包括:
    根据所述UWB基点设备分别到每个所述UWB标签的距离以及方向计算任意两个所述UWB标签的间距;
    确定间距最长的两对所述UWB标签以确定最大UWB标签矩形;
    计算所述最大UWB标签矩形的边长以确定所述UWB标签矩形的最短边;
    计算与所述UWB标签矩形的最短边同向上相邻两个UWB标签的间距;
    根据所述相邻两个UWB标签的间距判断所述相邻两个UWB标签对应的两个相邻显示屏的顶部朝向关系,其中:
    当所述UWB标签偏向显示屏顶部的一侧时,当所述相邻两个UWB标签的间距小于所述显示屏的高度时,两个所述显示屏对向;
    当所述UWB标签偏向显示屏顶部的一侧时,当所述相邻两个UWB标签的间距大于所述显示屏的高度时,两个所述显示屏逆向;
    当所述UWB标签偏向显示屏底部的一侧时,当所述相邻两个UWB标签的间距小于所述显示屏的高度时,两个所述显示屏逆向;
    当所述UWB标签偏向显示屏底部的一侧时,当所述相邻两个UWB标签的间距大于所述显示屏的高度时,两个所述显示屏对向;
    当所述相邻两个UWB标签的间距等于所述显示屏的高度时,两个所述显示屏同向。
  8. 根据权利要求6所述的方法,其特征在于,所述UWB标签安装在所述显示屏的纵向中线上偏向显示屏顶部的一侧或偏向显示屏底部的一侧,根据所述UWB基点设备分别到每个所述UWB标签的距离以及方向,确认所述拼接屏中相邻的所述显示屏的顶部朝向关系,包括:
    根据所述UWB基点设备分别到每个所述UWB标签的距离以及方向计算任意两个所述UWB标签的间距;
    确定间距最长的两对所述UWB标签以确定最大UWB标签矩形;
    计算所述最大UWB标签矩形的边长以确定所述UWB标签矩形的最长边;
    计算与所述UWB标签矩形的最长边同向上相邻两个UWB标签的间距;
    根据所述相邻两个UWB标签的间距判断所述相邻两个UWB标签对应的两个相邻显示屏的顶部朝向关系,其中:
    当所述相邻两个UWB标签的间距大于所述显示屏的宽度时,两个所述显示屏逆向;
    当所述相邻两个UWB标签的间距等于所述显示屏的宽度时,两个所述显示屏同向。
  9. 一种拼接屏定位装置,其特征在于,包括:
    测量结果获取模块,其用于获取UWB基点设备到UWB标签的距离和/或方向,其中,所述UWB基点设备基于UWB测距和/或UWB测向技术获取到所述UWB标签的距离和/或方向,多台显示屏拼接成拼接屏,每台所述显示屏上安装一个所述UWB标签;
    定位模块,其用于根据所述UWB基点设备分别到每个所述UWB标签的距离和/或方向,确认所述拼接屏中各个所述显示屏的位置。
  10. 一种拼接屏定位系统,其特征在于,包括:
    UWB标签,其用于安装在拼接成拼接屏的多台显示屏上,每台所述显示屏上安装一个所述UWB标签;
    UWB基点设备,其用于基于UWB测距和/或UWB测向技术获取到所述UWB标签的距离和/或方向;
    定位模块,其用于根据所述UWB基点设备分别到每个所述UWB标签的距离和/或方向,确认所述拼接屏中各个所述显示屏的位置。
  11. 一种电子设备,其特征在于,所述电子设备包括用于存储计算机程序指令的存储器和用于执行程序指令的处理器,其中,当该计算机程序指令被该处理器执行时,触发所述电子设备执行如权利要求1-8中任一项所述的方法步骤。
  12. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有计算 机程序,当其在计算机上运行时,使得计算机执行如权利要求1-8中任一项所述的方法。
PCT/CN2021/126792 2020-10-30 2021-10-27 一种拼接屏定位方法、装置、系统和电子设备 WO2022089498A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US18/034,597 US20230393798A1 (en) 2020-10-30 2021-10-27 Splicing Display Positioning Method, Apparatus, and System, and Electronic Device
EP21885225.9A EP4227793A1 (en) 2020-10-30 2021-10-27 Positioning method, apparatus and system for tiled screen, and electronic device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011197857.9 2020-10-30
CN202011197857.9A CN114527947A (zh) 2020-10-30 2020-10-30 一种拼接屏定位方法、装置、系统和电子设备

Publications (1)

Publication Number Publication Date
WO2022089498A1 true WO2022089498A1 (zh) 2022-05-05

Family

ID=81381537

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/126792 WO2022089498A1 (zh) 2020-10-30 2021-10-27 一种拼接屏定位方法、装置、系统和电子设备

Country Status (4)

Country Link
US (1) US20230393798A1 (zh)
EP (1) EP4227793A1 (zh)
CN (1) CN114527947A (zh)
WO (1) WO2022089498A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101149673A (zh) * 2006-09-18 2008-03-26 联想(北京)有限公司 多显示器系统及自动识别调整多个显示器的相对位置的方法
CN104615282A (zh) * 2015-01-23 2015-05-13 广州视睿电子科技有限公司 一种适用于多屏幕切换的鼠标移动控制方法与系统
CN105824593A (zh) * 2016-03-09 2016-08-03 京东方科技集团股份有限公司 拼接屏显示系统及拼接显示方法
CN105975236A (zh) * 2016-06-20 2016-09-28 苏州佳世达电通有限公司 自动定位方法、自动定位的显示系统及显示装置
CN107479840A (zh) * 2017-07-29 2017-12-15 安徽博威康信息技术有限公司 一种用于电视墙的播放画面即时切换方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007514978A (ja) * 2003-12-19 2007-06-07 スピーチギア,インコーポレイティド 表示装置の位置の関数としての視覚データの表示
JP2015059948A (ja) * 2013-09-17 2015-03-30 ソニー株式会社 画像表示装置、情報処理装置、情報処理方法、プログラム、及び情報処理システム
US10338874B2 (en) * 2015-01-30 2019-07-02 Cirrus Systems, Inc. Modular display system with automatic locating features
KR101902715B1 (ko) * 2017-12-26 2018-09-28 주식회사 지오플랜코리아 Uwb 신호를 이용하는 태그 위치 식별 방법 및 그 태그 위치 식별 장치
CN114095905A (zh) * 2020-08-05 2022-02-25 华为技术有限公司 设备交互方法和电子设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101149673A (zh) * 2006-09-18 2008-03-26 联想(北京)有限公司 多显示器系统及自动识别调整多个显示器的相对位置的方法
CN104615282A (zh) * 2015-01-23 2015-05-13 广州视睿电子科技有限公司 一种适用于多屏幕切换的鼠标移动控制方法与系统
CN105824593A (zh) * 2016-03-09 2016-08-03 京东方科技集团股份有限公司 拼接屏显示系统及拼接显示方法
CN105975236A (zh) * 2016-06-20 2016-09-28 苏州佳世达电通有限公司 自动定位方法、自动定位的显示系统及显示装置
CN107479840A (zh) * 2017-07-29 2017-12-15 安徽博威康信息技术有限公司 一种用于电视墙的播放画面即时切换方法

Also Published As

Publication number Publication date
EP4227793A1 (en) 2023-08-16
CN114527947A (zh) 2022-05-24
US20230393798A1 (en) 2023-12-07

Similar Documents

Publication Publication Date Title
US11928286B2 (en) Electronic apparatus having a sensing unit to input a user command and a method thereof
KR20090033758A (ko) 프로젝터 및 상기 프로젝터의 멀티 프로젝션 제어 방법
KR102406530B1 (ko) 터치 패널, 전자 장치 및 정보 처리 방법
US11670200B2 (en) Orientated display method and apparatus for audio device, and audio device
CN110084797B (zh) 平面检测方法、装置、电子设备和存储介质
CN110096133A (zh) 红外手势识别装置及方法
WO2021218959A1 (zh) 一种机器人控制方法、装置、电子设备及存储介质
CN109343037A (zh) 光探测器安装误差检测装置、方法和终端设备
CN105387857A (zh) 导航方法及装置
US20190204982A1 (en) Touch control device, touch control method and electronic device
WO2022089498A1 (zh) 一种拼接屏定位方法、装置、系统和电子设备
CN106663207A (zh) 白板和文档图像检测方法和系统
KR102504325B1 (ko) 인셀 방식의 터치스크린에서 터치 입력을 처리하는 방법 및 그 전자칠판
KR20170007966A (ko) 측면 터치 조합을 이용한 스마트 디바이스 조작 방법 및 장치
CN109521980A (zh) 确定实体显示屏显示内容的方法、装置、介质及电子设备
CN110109662B (zh) 一种面向多模式物联网设备的程序可视化方法
CN110113712A (zh) 定位处理方法及装置
CN105828291A (zh) 一种无线传感网络高精度定位方法
Dixon et al. Faster and more accurate face detection on mobile robots using geometric constraints
CN113574496A (zh) 识别操作终端设备的手势的方法和终端设备
US20230237700A1 (en) Simultaneous localization and mapping using depth modeling
US11836293B2 (en) Method and an electronic device for 3D gesture interaction across nearby electronic devices
CN211499610U (zh) 一种新式双重感应智能交互rgb地砖灯
CN103697856B (zh) 一种利用体感设备测量对象高度的方法及装置
US20230418540A1 (en) Display Device Control

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21885225

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021885225

Country of ref document: EP

Effective date: 20230508

NENP Non-entry into the national phase

Ref country code: DE