WO2022089485A1 - 确定和调节可转导叶转角的方法、轴流压气机和燃气轮机 - Google Patents

确定和调节可转导叶转角的方法、轴流压气机和燃气轮机 Download PDF

Info

Publication number
WO2022089485A1
WO2022089485A1 PCT/CN2021/126705 CN2021126705W WO2022089485A1 WO 2022089485 A1 WO2022089485 A1 WO 2022089485A1 CN 2021126705 W CN2021126705 W CN 2021126705W WO 2022089485 A1 WO2022089485 A1 WO 2022089485A1
Authority
WO
WIPO (PCT)
Prior art keywords
steerable
vanes
row
angle
inlet
Prior art date
Application number
PCT/CN2021/126705
Other languages
English (en)
French (fr)
Inventor
林枫
王�琦
万新超
李冬
王廷
任兰学
张舟
洪青松
Original Assignee
中国船舶集团有限公司第七〇三研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国船舶集团有限公司第七〇三研究所 filed Critical 中国船舶集团有限公司第七〇三研究所
Publication of WO2022089485A1 publication Critical patent/WO2022089485A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/15Vehicle, aircraft or watercraft design
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • F04D27/02Surge control
    • F04D27/0246Surge control by varying geometry within the pumps, e.g. by adjusting vanes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/17Mechanical parametric or variational design
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/28Design optimisation, verification or simulation using fluid dynamics, e.g. using Navier-Stokes equations or computational fluid dynamics [CFD]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2113/00Details relating to the application field
    • G06F2113/08Fluids

Definitions

  • Embodiments of the present disclosure relate to a method of determining and adjusting the steerable vane rotation angle of an axial compressor, an axial compressor, and a gas turbine.
  • the technical performance and reliability of the compressor directly affect the realization of the safety and economic indicators of the marine gas turbine.
  • the ship's gas turbine needs to operate efficiently under non-design conditions while ensuring the performance of the design point, especially in low operating conditions.
  • the operating characteristics of such a wide range of variable working conditions make the gas turbine's low working condition stability problem very prominent when it is used as a marine power system for propulsion or power generation, and often becomes a bottleneck limiting the performance of the unit.
  • the performance and stability under non-design conditions put forward higher requirements. Therefore, in order to make the marine gas turbine have a wider stable working range and better performance under variable working conditions, it is often necessary to adopt various anti-surge and stabilization techniques to improve the surge margin index of its compressor under low working conditions.
  • the convertible guide vane technology is an important technical means to improve the performance of the compressor under non-design conditions.
  • the design technology for the anti-surge and stability expansion of the steerable guide vanes of the compressor is also constantly developing.
  • the number of samples of the angle combination scheme between the multi-row transduced blades has surged, which makes the compressor multi-row transduced blades more flexible.
  • the design of the joint control angle law brings more difficulties and challenges.
  • At least one embodiment of the present disclosure provides a method for determining and adjusting the turning angle of steerable vanes of a marine gas turbine axial flow compressor that can effectively improve the surge margin of the compressor (especially under low operating conditions), and a corresponding method with High surge margin axial compressors and gas turbines.
  • One embodiment of the present disclosure proposes a method for determining the rotation angle of steerable vanes of an axial compressor having one or more rows of steerable vanes, and the lower part of each row of steerable vanes is
  • the first stage has a row of buckets arranged adjacent to the row of transduced vanes, in the method:
  • the inlet relative airflow angle ⁇ 1 ′ of the next stage bucket is calculated according to the bucket peripheral speed U ′, the bucket inlet axial velocity C 1a ′ and the bucket inlet relative airflow angle ⁇ 1 ′ at the reduced rotational speed.
  • the absolute airflow angle ⁇ 1 ' at the inlet of the rotor blade after the rotation of the steerable guide vanes at the reduced rotational speed is calculated, and then the rotation angle ⁇ of the row of steerable guide vanes at the reduced rotational speed n' is obtained.
  • the rotation angle is calculated for each row of steerable guide vanes.
  • each row of steerable guide vanes is rotated by an angle according to steps (1) to (5). calculate.
  • the aerodynamic parameters of the compressor at the characteristic cross-sectional position of the next stage bucket of the jth row of rotatable guide vanes under the design point include: inlet axial velocity C 1a,j , peripheral velocity U j , inlet absolute velocity
  • the airflow angle ⁇ 1,j and the inlet relative airflow angle ⁇ 1,j , where the rotor blade peripheral speed U j ′ at the reduced rotational speed is obtained based on the following formula:
  • j is a positive integer.
  • the base degree is the following formula to obtain the axial velocity C 1a,j ′ of the next-stage bucket inlet of the j-th row of steerable guide vanes at reduced rotational speed:
  • ⁇ c,j is the correction coefficient of the axial velocity of the rotor blade inlet.
  • the rotation of the jth column of steerable vanes at the reduced rotational speed is obtained based on the following formula
  • the reduced rotational speed is obtained based on the following formula
  • the rotation angle ⁇ j of the j-th row of steerable vanes at the reduced rotational speed n' is obtained:
  • ⁇ j ⁇ 1,j ′ ⁇ 1,j .
  • the non-design operating conditions are low operating conditions.
  • Another embodiment of the present disclosure also provides a method for adjusting the rotation angle of a steerable vane of an axial flow compressor.
  • the axial flow compressor has one or more rows of steerable vanes, and the lower part of each row of steerable vanes is A row of buckets is adjacently arranged at the first stage, wherein the rotation angle of the steerable vane is adjusted based on the rotation angle of the steerable vane obtained by the method described in any of the foregoing embodiments.
  • the adjusting the turning angle of the transduced vanes based on the method according to any one of the foregoing embodiments comprises: controlling the turning angle of the transduced vanes in each column based on a look-up table, wherein the look-up table Including the corresponding relationship between the plurality of different folded rotational speeds and the turning angle of each row of steerable vanes, based on the method described in any one of the preceding embodiments, it is obtained that each row of the commutable guide vanes of the compressor is in a plurality of different folds. corner at RPM.
  • Yet another embodiment of the present disclosure also proposes an axial flow compressor, wherein the axial flow compressor includes one or more rows of steerable vanes, and is adjacently arranged at the next stage of each row of steerable vanes There is a row of moving blades, and the axial flow compressor further includes a control device, and the adjustment method described above for the control device controls the rotation angle of the rotatable guide vanes of the axial flow compressor.
  • Still another embodiment of the present disclosure also proposes a gas turbine comprising the axial flow compressor as described in the preceding item.
  • FIG. 1 is a flow diagram of an exemplary embodiment of an axial flow compressor according to at least one embodiment of the disclosure, showing rotatable guide vanes and buckets of the axial flow compressor;
  • FIG. 3 is a diagram showing the design principle and aerodynamic parameter definition of the rotation angle law of the steerable guide vane of the compressor according to at least one embodiment of the disclosure.
  • the method of at least one embodiment of the present disclosure is suitable for determining and adjusting the rotation angle of one or more rows of steerable vanes of an axial flow compressor.
  • FIG. 1 is a flow diagram of an exemplary embodiment of an axial flow compressor according to at least one embodiment of the present disclosure, illustrating a blade arrangement of the axial flow compressor.
  • the axial compressor is arranged with four rows of steerable vanes, and a row of buckets is arranged adjacent to the row of steerable vanes at the next stage of each row of steerable vanes.
  • the angle of rotation of each row of steerable vanes By adjusting the angle of rotation of each row of steerable vanes, the inlet angle of attack of the next stage of rotor blades can meet expectations.
  • At least one embodiment of the present disclosure provides a specific implementation of the method for designing the rotation angle law of steerable vanes under non-design conditions of a marine gas turbine axial flow compressor through the following steps:
  • the inlet relative airflow angle ⁇ 1 ′ of the next stage bucket is calculated according to the bucket peripheral speed U ′, the bucket inlet axial velocity C 1a ′ and the bucket inlet relative airflow angle ⁇ 1 ′ at the reduced rotational speed.
  • the absolute airflow angle ⁇ 1 ' at the inlet of the rotor blade after the rotation of the steerable guide vanes at the reduced rotational speed is calculated, and then the rotation angle ⁇ of the row of steerable guide vanes at the reduced rotational speed n' is obtained.
  • steps (1) to (5) do not necessarily need to be performed in the order described in the text, for example, step (3) and the like may be performed after step (4) is performed.
  • the relative airflow angle at the inlet of the next stage of the moving blade is consistent with the design point; it is also possible to select a certain positive/negative angle of attack value under non-design conditions according to different design ideas for the stabilization of the steerable guide vane.
  • the regulatory effect of the transduced leaf that is consistent with the design idea is obtained.
  • At least one embodiment of the present disclosure may also perform rotation angle calculation for each row of steerable vanes according to steps (1) to (5), to determine the application of each row of steerable vanes. turn angle.
  • the embodiments of the present disclosure may further include, given a plurality of additional reduced rotation speeds different from the reduced rotation speed n′, in the At each additional reduced rotational speed, the rotation angle of each row of steerable guide vanes is calculated according to steps (1) to (5).
  • Step 1 Select the characteristic section for the rotation angle calculation of the steerable vane.
  • the characteristic section usually selects the average radius position along the blade height, and the average radius value can be calculated by the arithmetic average method or the area weighted average method; it is also possible to select multiple characteristic sections along the blade height to calculate the steerable vane rotation angle, so as to adapt to different stall conditions (such as tip or blade root stall) to evaluate the value of the steerable blade rotation angle;
  • Step 2 Extract the main aerodynamic parameters of the compressor at the design point (the rotation angles of all steerable guide vanes are 0° at this time) at the position of the characteristic cross-section of the j-th row of steerable guide vanes adjacent to the rear vanes, including: inlet axial velocity C 1a,j , peripheral velocity U j , inlet absolute airflow angle ⁇ 1,j and inlet relative airflow angle ⁇ 1,j .
  • the above aerodynamic parameters can be obtained by full 3D CFD calculation under the entire compressor design point, or by quasi-3D through-flow design calculation of the compressor;
  • Step 3 According to the requirements, solve the compressor non-design operating condition reduced speed n′ and the compressor design point reduced speed n according to the requirements, and calculate the rotor blade peripheral speed U j ′ under the reduced speed.
  • the calculation method is as follows :
  • Step 4 Set a reduced flow value G' that is expected to be achieved by adjusting the rotation of the steerable guide vane at the reduced speed n', and combine the reduced flow value G at the compressor design point to calculate the jth column at the reduced speed.
  • the calculation method is as follows:
  • ⁇ c,j is the axial velocity correction coefficient of the rotor blade inlet, which is related to the total number of rows N of steerable vanes of the compressor, the sequence j of steerable vanes in this row, and the load coefficient ⁇ j of the next stage,
  • the degree of reaction ⁇ j is related, namely:
  • ⁇ c,j f(N, j , ⁇ j , ⁇ j )
  • ⁇ c,j the specific calculation method of ⁇ c,j is as follows:
  • Step 5 Calculate the rotation angle ⁇ j of the j-th row of steerable vanes at the reduced rotational speed n'. Given the expected inlet angle of attack ij of the next-stage bucket to be realized by adjusting the rotation of the j -th row of steerable vanes, obtain the inlet of the next-stage bucket after the j-th row of steerable vanes rotates at this reduced rotational speed
  • the relative airflow angle ⁇ 1,j ′ is calculated as follows:
  • step 3 can be performed after step 4 is performed.
  • Step 6 By analogy, according to the above steps, the rotation angle of each row of steerable guide vanes under each characteristic reduced speed is calculated respectively, and the rotation angle of each row of steerable guide vanes of the compressor at different reduced speeds is obtained, so as to design the compressor.
  • Each row of the machine can convert the rotation angle of the guide vane.
  • the non-design operating condition is a low operating condition.
  • the low working condition of the gas turbine refers to the partial working condition.
  • the operating conditions of gas turbines are extremely wide. Taking ship gas turbines as an example, the operating conditions range from 0.2 to 1.0 operating conditions, and the operating conditions below 0.6 are frequently used. Usually, the operating conditions below 0.6 are classified as low operating conditions.
  • Embodiments of the present disclosure also relate to a method of adjusting the angle of rotation of steerable vanes of an axial compressor having one or more rows of steerable vanes that are adjacent to the next stage of each row of steerable vanes A row of moving blades is arranged on the ground.
  • the Corner of the transduceable leaf In the method for adjusting the rotation angle of a steerable vane of an axial flow compressor, based on the rotation angle of the steerable vane obtained by the method for determining the rotation angle of a steerable vane according to any of the foregoing embodiments, the Corner of the transduceable leaf.
  • the adjusting the turning angle of the steerable vanes based on the determination method as described in any of the foregoing embodiments includes controlling the turning angle of the steerable vanes in each column based on a look-up table.
  • the look-up table is an array or data structure that replaces the runtime calculation with a query operation, and its specific form is not limited.
  • the look-up table includes a correspondence between a plurality of different reduced rotational speeds and the turning angle of each row of steerable vanes, based on the method for determining the turning angle of the steerable vanes described in any of the foregoing embodiments , to obtain the rotation angle of each row of inductable vanes of the compressor at the multiple different reduced rotational speeds.
  • Embodiments of the present disclosure also relate to an axial flow compressor comprising one or more rows of steerable vanes, wherein a row of movable vanes is adjacently arranged at the next stage of each row of steerable vanes leaf.
  • the axial flow compressor further includes a control device, wherein the control device is configured to control the rotation angle of the rotatable guide vanes of the axial flow compressor based on the method for controlling the rotation angle of the steerable guide vanes described in any of the foregoing embodiments.
  • the axial flow compressor is in particular an axial flow compressor used in a gas turbine of a ship.
  • Embodiments of the present disclosure also relate to a gas turbine comprising an axial flow compressor as described in any of the preceding embodiments.
  • the gas turbine is, in particular, a gas turbine used in a ship, for example, to which embodiments of the present disclosure are not limited.
  • the method for determining and adjusting the rotation angle of the steerable vane of an axial flow compressor proposed by at least one embodiment of the present disclosure provides a fast and effective way for the realization of the anti-surge and stabilization technology of the steerable vane of the compressor;
  • the rotation angle law of the compressor steerable vane obtained in at least one embodiment of the present disclosure can effectively improve the surge margin index of the compressor, especially the surge margin index under low working conditions, which is the bottleneck of marine gas turbines under low working conditions Provide technical support for problem solving.
  • At least one embodiment of the present disclosure provides a method for determining and adjusting the turning angle of a steerable guide vane of an axial flow compressor, which can quickly obtain a relatively ideal law of joint regulation of the turning angle of multiple rows of steerable guide vanes, and shortens the time required to adjust the turning angle of the steerable guide vanes through multiple rows.
  • a large number of samples for different angle combination schemes between the transducer blades The traditional design process of the rotation angle law of the transducer blades effectively reduces the resource and time consumption caused by a large number of 3D CFD calculations in the design process, and simplifies the work of designers. quantity, ideal for engineering design applications.
  • the method for determining and adjusting the rotation angle of the steerable vane of an axial flow compressor proposed in at least one embodiment of the present disclosure is not limited to the axial flow compressor of a marine gas turbine, but is also applicable to various industries with steerable vanes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Evolutionary Computation (AREA)
  • Mathematical Analysis (AREA)
  • Computer Hardware Design (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Algebra (AREA)
  • Computing Systems (AREA)
  • Mechanical Engineering (AREA)
  • Fluid Mechanics (AREA)
  • Automation & Control Theory (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Control Of Positive-Displacement Air Blowers (AREA)

Abstract

本公开提供一种船舶燃气轮机轴流压气机低工况可转导叶转角的确定和调节方法,提取压气机各列可转导叶相邻后排动叶特征截面位置处的气动参数,解压气机低工况折合转速与设计点折合转速,计算动叶圆周速度;设定一个折合流量值,计算出各列动叶进口轴向速度;给定下一级动叶的预期进口攻角,得到各列可转导叶转动后下一级动叶的进口相对气流角,求出各列可转导叶的转动角度,获得压气机可转导叶在不同折合转速下的转角规律。该方法能够有效提升压气机在低工况下的喘振裕度指标。

Description

确定和调节可转导叶转角的方法、轴流压气机和燃气轮机 技术领域
本公开的实施例涉及确定和调节轴流压气机可转导叶转角的方法、轴流压气机和燃气轮机。
背景技术
压气机作为船舶燃气轮机最为重要的三大核心部件之一,其技术性能和可靠性直接影响着船舶燃气轮机的安全性、经济性指标的实现。为了适应船舶航行过程中的技战术要求,船舶燃气轮机要在保证设计点性能的同时,还需要在非设计工况下高效运行,特别是在低工况下的宽裕度高效运行。这种大范围变工况下的运行特点,使燃气轮机在作为船舶动力系统推进或发电使用时的低工况稳定性问题十分突出,并往往成为机组性能的限制瓶颈,这就对船舶燃气轮机压气机在非设计工况下的性能与稳定性提出了更高的要求。因此,为了使船舶燃气轮机具有更宽的稳定工作范围与更优秀的变工况性能,往往需要采用各种防喘扩稳技术,提高其压气机在低工况下的喘振裕度指标。
在各种压气机防喘扩稳技术中,可转导叶技术是提高压气机非设计工况性能的重要技术手段。随着船舶燃气轮机对压气机低工况喘振裕度指标要求的不断提升,压气机的可转导叶防喘扩稳设计技术也在不断发展。同时,随着可转导叶列数的逐渐增加与可转导叶调控方式的日趋灵活,多列可转导叶之间的角度组合方案样本数量激增,这给压气机多列可转导叶的联合调控转角规律设计带来了更大的难度和挑战。
发明内容
本公开的至少一实施例提供能够有效提高压气机喘振裕度(特别是低工况下)的一种船舶燃气轮机轴流压气机可转导叶转角的确定方法、调节方法,以及相应的具有高喘振裕度的轴流压气机和燃气轮机。
本公开的一个实施例提出一种用于确定轴流压气机可转导叶转角的方法,所述轴流压气机具有一列或多列可转导叶,且在每一列可转导叶 的下一级具有与该列可转导叶相邻地布置的一列动叶,在该方法中:
(1)选择用于计算可转导叶转角的特征截面;
(2)选定一列可转导叶,获取压气机在设计点下该列可转导叶的下一级动叶的特征截面位置处的气动参数,包括:进口轴向速度C 1a、圆周速度U、进口绝对气流角α 1和进口相对气流角β 1
(3)基于压气机非设计工况折合转速n′与压气机设计点折合转速n,计算出该折合转速下的动叶圆周速度U′;
(4)给定在折合转速n′下通过该列可转导叶转动调节所预期达到的折合流量值G′,基于所述折合流量值G′与压气机设计点折合流量值G,计算出该折合转速下的动叶进口轴向速度C 1a′;
(5)给定通过该列可转导叶转动调节拟实现的下一级动叶的预期进口攻角i,并基于预期进口攻角i获得在该折合转速下可转导叶转动后所述下一级动叶的进口相对气流角β 1′,根据折合转速下的动叶圆周速度U′、动叶进口轴向速度C 1a′和动叶进口相对气流角β 1′,计算出在该折合转速下可转导叶转动后的动叶进口绝对气流角α 1′,进而求出该列可转导叶在该折合转速n′时的转动角度Δα。
优选地,例如,按照步骤(1)~(5)对每列可转导叶进行转动角度计算。
优选地,例如,给定不同于所述折合转速的多个附加的折合转速,在每个附加的折合转速下,分别按照步骤(1)~(5)对每列可转导叶进行转动角度计算。
优选地,例如,压气机在设计点下第j列可转导叶的下一级动叶的特征截面位置处的气动参数包括:进口轴向速度C 1a,j、圆周速度U j、进口绝对气流角α 1,j和进口相对气流角β 1,j,其中,基于如下公式获得折合转速下的动叶圆周速度U j′:
Figure PCTCN2021126705-appb-000001
j为正整数。
优选地,例如,基度如下公式,获得折合转速下第j列可转导叶的下一级动叶进口轴向速度C 1a,j′:
Figure PCTCN2021126705-appb-000002
其中δ c,j为动叶进口轴向速度修正系数。
优选地,例如,给定通过第j列可转导叶转动调节拟实现的下一级动叶的预期进口攻角i j,基于以下公式获得在该折合转速下第j列可转导叶转动后下一级动叶的进口相对气流角β 1,j′:
β 1,j′=β 1,j-i j
优选地,例如,根据折合转速下的动叶圆周速度U j′、动叶进口轴向速度C 1a,j′和动叶进口相对气流角β 1,j′,基于如下公式,获得在折合转速
下可转导叶转动后的动叶进口绝对气流角α 1,j′:
Figure PCTCN2021126705-appb-000003
优选地,例如,基于如下公式,获得第j列可转导叶在折合转速n′时的转动角度Δα j
Δα j=α 1,j′-α 1,j
优选地,所述非设计工况为低工况。
本公开的另一实施例还提出一种调节轴流压气机可转导叶转角的方法,所述轴流压气机具有一列或多列可转导叶,且在每一列可转导叶的下一级相邻地布置有一列动叶,其中,基于如前文任一项实施例所述的方法得到的可转导叶的转动角度调节可转导叶的转角。
优选地,例如,所述基于如前文任一项实施例所述的方法调节可转导叶的转角,包括:基于查找表控制所述每一列可转导叶的转角,其中,所述查找表包括所述多个不同的折合转速和每一列可转导叶的转角的对应关系,基于前文任一项实施例所述的方法,获得压气机的每一列可转导叶在多个不同的折合转速下的转角。
本公开的再一实施例还提出一种轴流压气机,其中,所述轴流压气机包括一列或多列可转导叶,且在每一列可转导叶的下一级相邻地布置有一列动叶,所述轴流压气机还包括控制装置,所述控制装置前文所述的调节方法控制轴流压气机可转导叶的转角。
本公开的还再一实施例还提出一种燃气轮机,其包括如前一项所述的轴流压气机。
附图说明
图1为本公开至少一实施例的轴流压气机的示例性实施例的通流图, 展示了轴流压气机的可转导叶和动叶;
图2为本公开至少一实施例提供的方法的流程图;
图3为本公开至少一实施例的压气机可转导叶转角规律设计原理及气动参数定义图。
具体实施方式
下面结合附图举例对本公开的实施例做更详细地描述:
本公开至少一实施例的方法适用于确定和调节轴流压气机的一列或多列可转导叶的转角。
参见图1,其为本公开至少一实施例所涉及的轴流压气机的示例性实施例的通流图,展示了轴流压气机的叶片布置。可以看出,轴流压气机布置有四列可转导叶,且在每一列可转导叶的下一级与该列可转导叶相邻地布置有一列动叶。通过调节每一列可转导叶的转角,可以实现下一级动叶的进口攻角满足预期。
结合图2-3,本公开至少一实施例提供的船舶燃气轮机轴流压气机非设计工况可转导叶转角规律设计方法的具体实施方式通过以下步骤实现:
(1)选择用于计算可转导叶转角的特征截面;
(2)选定一列可转导叶,获取压气机在设计点下该列可转导叶的下一级动叶的特征截面位置处的气动参数,包括:进口轴向速度C 1a、圆周速度U、进口绝对气流角α 1和进口相对气流角β 1
(3)基于压气机非设计工况折合转速n′与压气机设计点折合转速n,计算出该折合转速下的动叶圆周速度U′;
(4)给定在折合转速n′下通过该列可转导叶转动调节所预期达到的折合流量值G′,基于所述折合流量值G′与压气机设计点折合流量值G,计算出该折合转速下的动叶进口轴向速度C 1a′;
(5)给定通过该列可转导叶转动调节拟实现的下一级动叶的预期进口攻角i,并基于预期进口攻角i获得在该折合转速下可转导叶转动后所述下一级动叶的进口相对气流角β 1′,根据折合转速下的动叶圆周速度U′、动叶进口轴向速度C 1a′和动叶进口相对气流角β 1′,计算出在该折合转速下可转导叶转动后的动叶进口绝对气流角α 1′,进而求出该列可转导 叶在该折合转速n′时的转动角度Δα。
以上步骤(1)~(5)不必须按文字描述的先后顺序进行,例如可以在进行了步骤(4)之后再进行步骤(3)等。
步骤(5)中所述的“给定通过各列可转导叶转动调节拟实现的下一级动叶的预期进口攻角i”,通常情况下取i=0°,以保证可转导叶转动后下一级动叶进口相对气流角与设计点保持一致;也可以根据不同的可转导叶扩稳设计思路,在非设计工况下适当选取一定的正/负攻角值,以获得与设计思路相符的可转导叶调控效果。
对于不止一列可转导叶的情况,本公开的至少一实施例还可以按照步骤(1)~(5)对每列可转导叶进行转动角度计算,以确定每一列可转导叶的应转角度。
此外,根据本公开的至少一实施例,不仅应计算在某一这和转速下的每一列可转导叶的应转角度,而是,选取多个特征折合转速,分别在每个特征折合转速下计算每一列可转导叶的应转角度。也就是说,在前文已经基于非设计工况折合转速n′进行了转角计算之后,本公开的实施例还可以包括,给定不同于所述折合转速n′的多个附加的折合转速,在每个附加的折合转速下,分别按照步骤(1)~(5)对每列可转导叶进行转动角度计算。
对于j列可转导叶,本公开至少一实施例的具体实现步骤为:
步骤一:选择可转导叶转角计算的特征截面。特征截面通常选取沿叶高平均半径位置,平均半径值可采用算术平均方法或面积加权平均方法计算;也可以沿叶高选择多个特征截面进行可转导叶转角计算,以便针对不同失速情况(如叶顶或叶根失速)对可转导叶转角值进行评估;
步骤二:提取压气机在设计点下(此时所有可转导叶转角均为0°)第j列可转导叶相邻后排动叶特征截面位置处的主要气动参数,包括:进口轴向速度C 1a,j、圆周速度U j、进口绝对气流角α 1,j和进口相对气流角β 1,j。以上气动参数可以通过整个压气机设计点下的全三维CFD计算求解获得,也可以通过压气机的准三维通流设计计算获得;
步骤三:根据要求解可转导叶转动角度的压气机非设计工况折合转速n′与压气机设计点折合转速n,计算出该折合转速下的动叶圆周速度U j′,计算方法如下:
Figure PCTCN2021126705-appb-000004
步骤四:设定一个在该折合转速n′下,通过可转导叶转动调节所预期达到的折合流量值G′,结合压气机设计点折合流量值G,计算出该折合转速下第j列可转导叶后排动叶进口轴向速度C 1a,j′。在计算时应考虑到多列可转导叶同时动作对各列动叶进口轴向速度的联合调控效果所造成的影响作用,并加以修正。计算方法如下:
Figure PCTCN2021126705-appb-000005
上式中,δ c,j为动叶进口轴向速度修正系数,它与压气机的可转导叶总列数N、该列可转导叶序列j以及下一级的载荷系数ψ j、反动度Ω j相关,即:
δ c,j=f(N,j,ψ jj)
根据一优选实施方式,δ c,j的具体计算方法如下:
当j=1时,δ c,j=1;
当j>1时,
Figure PCTCN2021126705-appb-000006
根据不同压气机的可转导叶布置与负荷分配情况,可针对各列可转导叶依次设置不同的修正系数;
步骤五:求解第j列可转导叶在该折合转速n′时的转动角度Δα j。给定通过第j列可转导叶转动调节拟实现的下一级动叶的预期进口攻角i j,得到在该折合转速下第j列可转导叶转动后下一级动叶的进口相对气流角β 1,j′,计算方法如下:
β 1,j′=β 1,j-i j
根据该折合转速下的各列动叶圆周速度U j′、动叶进口轴向速度C 1a,j′和动叶进口相对气流角β 1,j′,计算出在该折合转速下可转导叶转动后的各列动叶进口绝对气流角α 1,j′,计算方法如下:
Figure PCTCN2021126705-appb-000007
进而求出第j列可转导叶在该折合转速n′时的转动角度Δα j,计算方法如下:
Δα j=α 1,j′-α 1,j
从而依次求得各列可转导叶在该折合转速下的转动角度。
同样地,以上步骤一~五不必须按文字描述的先后顺序进行,例如可以在进行了步骤四之后再进行步骤三等。
步骤六:以此类推,按照以上步骤分别进行各个特征折合转速下的各列可转导叶转动角度计算,得到压气机各列可转导叶在不同折合转速下的转动角度,从而设计出压气机的各列可转导叶转角规律。
根据一优选实施例,所述非设计工况为低工况。燃气轮机低工况即指部分工况。燃气轮机运行工况范围极为宽广,以船舶燃气轮机为例,工况范围涵盖0.2-1.0工况,且0.6工况以下使用频繁,通常将0.6工况以下归入低工况区间。
本公开的实施例还涉及调节轴流压气机可转导叶转角的方法,所述轴流压气机具有一列或多列可转导叶,且在每一列可转导叶的下一级相邻地布置有一列动叶。在该调节轴流压气机可转导叶转角的方法中,基于如前文任一实施例所述的可转导叶转角的确定方法所获得的所述可转导叶的转动角度,调节所述可转导叶的转角。
根据一具体实施例,所述基于如前文任一实施例所述的确定方法调节所述可转导叶的转角包括,基于查找表控制所述每一列可转导叶的转角。例如,查找表是用查询操作替换运行时计算的数组或者数据结构,其具体形式不限,可以通过事先计算而准备好该查找表以备用,例如存储在闪存中。在本公开的至少一实施例中,查找表包括多个不同的折合转速和每一列可转导叶的转角的对应关系,基于如前文任一实施例所述的可转导叶转角的确定方法,获得压气机的每一列可转导叶在所述多个不同的折合转速下的转角。
本公开的实施例还涉及一种轴流压气机,所述轴流压气机包括一列或多列可转导叶,其中,在每一列可转导叶的下一级相邻地布置有一列动叶。此外,所述轴流压气机还包括控制装置,其中,所述控制装置配置为基于前文任一实施例所述的可转导叶转角控制方法来控制轴流压气机可转导叶的转角。该轴流压气机特别是在船舶的燃气轮机中使用的轴流压气机。
本公开的实施例还涉及一种燃气轮机,包括如前文任一实施例所述 的轴流压气机。该燃气轮机特别例如是在船舶中使用的燃气轮机,本公开的实施例不限于此。
本公开的至少一个实施例的优势在于:
1、本公开至少一实施例所提出的轴流压气机可转导叶转角的确定方法和调节方法,为压气机可转导叶防喘扩稳技术的实现提供了一条快速有效的途径;通过本公开至少一实施例获得的压气机可转导叶转角规律,能够有效提升压气机的喘振裕度指标,特别是在低工况下的喘振裕度指标,为船舶燃气轮机低工况瓶颈问题的解决提供技术支撑。
2、本公开至少一实施例提供的轴流压气机可转导叶转角的确定方法和调节方法,能够快速地获得较为理想的多列可转导叶联合调控转角规律,缩短了通过多列可转导叶之间不同角度组合方案的大量样本数量筛选寻优的传统可转导叶转角规律设计过程,有效减少了设计过程中大量三维CFD计算所造成的资源与时间消耗,简化了设计人员工作量,非常适合工程设计应用。
3、本公开至少一实施例所提出的轴流压气机可转导叶转角的确定方法和调节方法,不仅局限于船舶燃气轮机轴流压气机,同样适用于各种带有可转导叶的工业用燃气轮机轴流压气机、航空发动机轴流压气机的可转导叶转角规律设计过程。
以上所述仅是本公开的示范性实施方式,而非用于限制本公开的发明的保护范围,本公开的发明的保护范围由所附的权利要求确定。

Claims (13)

  1. 一种用于确定轴流压气机可转导叶转角的方法,所述轴流压气机具有一列或多列可转导叶,且在每一列可转导叶的下一级具有与该列可转导叶相邻地布置的一列动叶,其特征在于:
    (1)选择用于计算可转导叶转角的特征截面;
    (2)选定一列可转导叶,获取压气机在设计点下该列可转导叶的下一级动叶的特征截面位置处的气动参数,包括:进口轴向速度C 1a、圆周速度U、进口绝对气流角α 1和进口相对气流角β 1
    (3)基于压气机非设计工况折合转速n′与压气机设计点折合转速n,计算出该折合转速下的动叶圆周速度U′;
    (4)给定在折合转速n′下通过该列可转导叶转动调节所预期达到的折合流量值G′,基于所述折合流量值G′与压气机设计点折合流量值G,计算出该折合转速下的动叶进口轴向速度C 1a′;
    (5)给定通过该列可转导叶转动调节拟实现的下一级动叶的预期进口攻角i,并基于预期进口攻角i获得在该折合转速下可转导叶转动后所述下一级动叶的进口相对气流角β 1′,根据折合转速下的动叶圆周速度U′、动叶进口轴向速度C 1a′和动叶进口相对气流角β 1′,计算出在该折合转速下可转导叶转
    动后的动叶进口绝对气流角α 1′,进而求出该列可转导叶在该折合转速n′时的转动角度Δα。
  2. 根据权利要求1所述的方法,其特征在于:按照步骤(1)~(5)对每列可转导叶进行转动角度计算。
  3. 根据权利要求2所述的方法,其特征在于:给定不同于所述折合转速的多个附加的折合转速,在每个附加的折合转速下,分别按照步骤(1)~(5)对每列可转导叶进行转动角度计算。
  4. 根据权利要求1所述的方法,其特征在于:压气机在设计点下第j列可转导叶的下一级动叶的特征截面位置处的气动参数包括:进口轴向速度C 1a,j、圆周速度U j、进口绝对气流角α 1,j和进口相对气流角β 1,j
    则基于如下公式获得折合转速下的动叶圆周速度U j′:
    Figure PCTCN2021126705-appb-100001
  5. 根据权利要求4所述的方法,其特征在于:基于如下公式,获得折合转速下第j列可转导叶的下一级动叶进口轴向速度C 1a,j′:
    Figure PCTCN2021126705-appb-100002
    其中δ c,j为动叶进口轴向速度修正系数,j为正整数。
  6. 根据权利要求5所述的方法,其特征在于:给定通过第j列可转导叶转动调节拟实现的下一级动叶的预期进口攻角i j,基于以下公式获得在该折合转速下第j列可转导叶转动后下一级动叶的进口相对气流角β 1,j′:
    β 1,j′=β 1,j-i j
  7. 根据权利要求6所述的方法,其特征在于:根据折合转速下的动叶圆周速度U j′、动叶进口轴向速度C 1a,j′和动叶进口相对气流角β 1,j′,基于如
    下公式,获得在折合转速下可转导叶转动后的动叶进口绝对气流角α 1,j′:
    Figure PCTCN2021126705-appb-100003
  8. 根据权利要求7所述的方法,其特征在于:基于如下公式,获得第j列可转导叶在折合转速n′时的转动角度Δα j
    Δα j=α 1,j′-α 1,j
  9. 根据权利要求1所述的方法,其特征在于:所述非设计工况为低工况。
  10. 一种调节轴流压气机可转导叶转角的方法,所述轴流压气机具有一 列或多列可转导叶,且在每一列可转导叶的下一级相邻地布置有一列动叶,所述方法包括:
    基于如权利要求1-9中任一项所述的方法获得的所述可转导叶的转动角度,调节所述可转导叶的转角。
  11. 根据权利要求10所述的方法,其特征在于:基于如权利要求1-9中任一项所述的方法获得的所述可转导叶的转动角度,调节所述可转导叶的转角,包括:
    基于查找表控制所述每一列可转导叶的转角,其中,所述查找表包括多个不同的折合转速和每一列可转导叶的转角的对应关系,基于如权利要求1-9中任一项所述的方法,获得压气机的每一列可转导叶在所述多个不同的折合转速下的转角。
  12. 一种轴流压气机,包括:
    一列或多列可转导叶,其中,在每一列可转导叶的下一级相邻地布置有一列动叶;以及
    控制装置,其中,所述控制装置配置为基于权利要求10或11所述的方法控制轴流压气机可转导叶的转角。
  13. 一种燃气轮机,包括如权利要求12所述的轴流压气机。
PCT/CN2021/126705 2020-10-27 2021-10-27 确定和调节可转导叶转角的方法、轴流压气机和燃气轮机 WO2022089485A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011161387.0A CN112464357B (zh) 2020-10-27 2020-10-27 一种船舶燃气轮机轴流压气机低工况可转导叶转角规律设计方法
CN202011161387.0 2020-10-27

Publications (1)

Publication Number Publication Date
WO2022089485A1 true WO2022089485A1 (zh) 2022-05-05

Family

ID=74834439

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/126705 WO2022089485A1 (zh) 2020-10-27 2021-10-27 确定和调节可转导叶转角的方法、轴流压气机和燃气轮机

Country Status (2)

Country Link
CN (1) CN112464357B (zh)
WO (1) WO2022089485A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115186443A (zh) * 2022-06-15 2022-10-14 中国船舶重工集团公司第七0三研究所 一种倒置浴盆载荷船用发电型燃气轮机多级动力涡轮气动设计方法
CN115186441A (zh) * 2022-06-15 2022-10-14 中国船舶重工集团公司第七0三研究所 一种递增载荷船用发电型燃气轮机多级动力涡轮气动设计方法
CN115680780A (zh) * 2022-10-13 2023-02-03 中国航发四川燃气涡轮研究院 涡轮叶片平面叶栅进口轴向速度控制方法
CN116561934A (zh) * 2023-07-10 2023-08-08 陕西空天信息技术有限公司 叶片性能角模型修正方法及装置、电子设备、存储介质
CN117569875A (zh) * 2024-01-16 2024-02-20 济南中科先行燃气轮机科技有限公司 一种燃气轮机转速匹配vsv可转导叶的结构及调节方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112464357B (zh) * 2020-10-27 2022-04-08 中国船舶重工集团公司第七0三研究所 一种船舶燃气轮机轴流压气机低工况可转导叶转角规律设计方法
CN113434965B (zh) * 2021-07-26 2022-07-01 中国船舶重工集团公司第七0三研究所 一种基于三维流场分析的船舶燃机压气机性能优化方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105402168A (zh) * 2015-11-26 2016-03-16 哈尔滨汽轮机厂有限责任公司 轴流压气机中可转导叶的设计方法
US20160215788A1 (en) * 2015-01-28 2016-07-28 MTU Aero Engines AG Gas turbine axial compressor
CN108223140A (zh) * 2017-12-06 2018-06-29 中国科学院工程热物理研究所 一种三轴式燃气轮机动力涡轮进口导叶控制规律优化方法
CN112464392A (zh) * 2020-10-27 2021-03-09 中国船舶重工集团公司第七0三研究所 一种压气机防喘扩稳的多列可转导/静叶联合调控转角规律设计方法
CN112464357A (zh) * 2020-10-27 2021-03-09 中国船舶重工集团公司第七0三研究所 一种船舶燃气轮机轴流压气机低工况可转导叶转角规律设计方法
CN112487566A (zh) * 2020-10-27 2021-03-12 中国船舶重工集团公司第七0三研究所 一种船舶燃气轮机多级轴流压气机多列可转导/静叶分式联合调控规律设计方法
CN112487565A (zh) * 2020-10-27 2021-03-12 中国船舶重工集团公司第七0三研究所 一种船舶燃气轮机多级轴流压气机多列可转导/静叶幂指数式联合调控规律设计方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201505113D0 (en) * 2015-03-26 2015-05-06 Rolls Royce Plc Variable inlet guide vane scheduling
CN110929357A (zh) * 2019-12-31 2020-03-27 中国船舶重工集团公司第七0三研究所 一种高性能舰船燃机压气机气动设计方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160215788A1 (en) * 2015-01-28 2016-07-28 MTU Aero Engines AG Gas turbine axial compressor
CN105402168A (zh) * 2015-11-26 2016-03-16 哈尔滨汽轮机厂有限责任公司 轴流压气机中可转导叶的设计方法
CN108223140A (zh) * 2017-12-06 2018-06-29 中国科学院工程热物理研究所 一种三轴式燃气轮机动力涡轮进口导叶控制规律优化方法
CN112464392A (zh) * 2020-10-27 2021-03-09 中国船舶重工集团公司第七0三研究所 一种压气机防喘扩稳的多列可转导/静叶联合调控转角规律设计方法
CN112464357A (zh) * 2020-10-27 2021-03-09 中国船舶重工集团公司第七0三研究所 一种船舶燃气轮机轴流压气机低工况可转导叶转角规律设计方法
CN112487566A (zh) * 2020-10-27 2021-03-12 中国船舶重工集团公司第七0三研究所 一种船舶燃气轮机多级轴流压气机多列可转导/静叶分式联合调控规律设计方法
CN112487565A (zh) * 2020-10-27 2021-03-12 中国船舶重工集团公司第七0三研究所 一种船舶燃气轮机多级轴流压气机多列可转导/静叶幂指数式联合调控规律设计方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JICHAO LI; FENG LIN; CHAOQUN NIE; JINGYI CHEN: "Automatic efficiency optimization of an axial compressor with adjustable inlet guide vanes", JOURNAL OF THERMAL SCIENCE, SP SCIENCE PRESS, HEIDELBERG, vol. 21, no. 2, 10 March 2012 (2012-03-10), Heidelberg , pages 120 - 126, XP035026562, ISSN: 1993-033X, DOI: 10.1007/s11630-012-0526-5 *
LIAO JI-XIANG, ET AL.: "Numerical Optimization of Combined Adjustment of Multi-Row Variable Inlet Guide Vane and Stators in a Multistage Axial-Flow Compressor", TUIJIN JISHU - JOURNAL OF PROPULSION TECHNOLOGY, GAI KAN BIANJIBU, BEIJING, CN, vol. 38, no. 2, 28 February 2017 (2017-02-28), CN , pages 334 - 340, XP055926338, ISSN: 1001-4055, DOI: 10.13675/j.cnki.tjjs.2017.02.012 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115186443A (zh) * 2022-06-15 2022-10-14 中国船舶重工集团公司第七0三研究所 一种倒置浴盆载荷船用发电型燃气轮机多级动力涡轮气动设计方法
CN115186441A (zh) * 2022-06-15 2022-10-14 中国船舶重工集团公司第七0三研究所 一种递增载荷船用发电型燃气轮机多级动力涡轮气动设计方法
CN115186443B (zh) * 2022-06-15 2023-06-13 中国船舶重工集团公司第七0三研究所 一种倒置浴盆载荷船用发电型燃气轮机多级动力涡轮气动设计方法
CN115680780A (zh) * 2022-10-13 2023-02-03 中国航发四川燃气涡轮研究院 涡轮叶片平面叶栅进口轴向速度控制方法
CN115680780B (zh) * 2022-10-13 2024-05-03 中国航发四川燃气涡轮研究院 涡轮叶片平面叶栅进口轴向速度控制方法
CN116561934A (zh) * 2023-07-10 2023-08-08 陕西空天信息技术有限公司 叶片性能角模型修正方法及装置、电子设备、存储介质
CN116561934B (zh) * 2023-07-10 2023-09-26 陕西空天信息技术有限公司 叶片性能角模型修正方法及装置、电子设备、存储介质
CN117569875A (zh) * 2024-01-16 2024-02-20 济南中科先行燃气轮机科技有限公司 一种燃气轮机转速匹配vsv可转导叶的结构及调节方法
CN117569875B (zh) * 2024-01-16 2024-05-14 济南中科先行燃气轮机科技有限公司 一种燃气轮机转速匹配vsv可转导叶的结构及调节方法

Also Published As

Publication number Publication date
CN112464357B (zh) 2022-04-08
CN112464357A (zh) 2021-03-09

Similar Documents

Publication Publication Date Title
WO2022089485A1 (zh) 确定和调节可转导叶转角的方法、轴流压气机和燃气轮机
RU2607712C1 (ru) Лопатка турбомашины, в частности для выполненного как единое целое моноколеса
US6071077A (en) Swept fan blade
US8047802B2 (en) Course of leading edges for turbomachine components
CN112464392B (zh) 一种压气机防喘扩稳的多列可转导/静叶联合调控转角规律设计方法
EP1828543A1 (en) Turbine wheel with backswept inducer
BR102013003836A2 (pt) Seção de aerofólio de um propulsor e dispositivo de propulsão
CN109815624A (zh) 一种考虑进气总压畸变影响的压气机稳定边界判断方法
Erdmenger et al. Impact of main and splitter blade leading edge contour on the performance of high pressure ratio centrifugal compressors
RU2651103C2 (ru) Компрессорный узел для турбомашины, турбомашина и способ управления решеткой предварительной закрутки компрессорного узла
CN114607641B (zh) 一种轴流风机的导叶结构和轴流风机
Yang et al. Design and test of a novel highly-loaded compressor
CN112487566B (zh) 一种船舶燃气轮机多级轴流压气机多列可转导/静叶分式联合调控规律设计方法
CN112487565B (zh) 一种船舶燃气轮机多级轴流压气机多列可转导/静叶幂指数式联合调控规律设计方法
LU503073B1 (en) Axial flow compressor, gas turbine and method for regulating rotation angle of rotatable guide vane
Foret et al. Experimental Investigation of a Transonic Compressor with Variable Stator Vanes in Tandem Arrangement
RU2810848C1 (ru) Способы установки и регулирования угла поворота поворотных направляющих лопаток, осевой компрессор и газовая турбина
Rodgers Flow ranges of 8.0: 1 pressure ratio centrifugal compressors for aviation applications
Tomita et al. A model for numerical simulation of variable stator axial flow compressors
Goswami et al. Effect of part sweep on axial flow compressor performance in the presence of circumferential casing grooves
AU2022333529B2 (en) Impeller for a duct
Zhang et al. The effect of radial skew angles of blade angle slots on the stability and performance of an axial flow compressor
Fabri et al. Effect of outer casing treatment and tip clearance on stall margin of a supersonic rotating cascade
Balsaraf et al. Effect of Leading Edge Stacking on the Aerodynamic Performance of a Multistage Axial Flow Compressor
Broszat et al. Validation of an Acoustically 3-D-Designed Turbine Exit Guide Vane

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21885212

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023107510

Country of ref document: RU

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21885212

Country of ref document: EP

Kind code of ref document: A1