WO2022089268A1 - 信号接收装置和信号接收方法 - Google Patents

信号接收装置和信号接收方法 Download PDF

Info

Publication number
WO2022089268A1
WO2022089268A1 PCT/CN2021/124874 CN2021124874W WO2022089268A1 WO 2022089268 A1 WO2022089268 A1 WO 2022089268A1 CN 2021124874 W CN2021124874 W CN 2021124874W WO 2022089268 A1 WO2022089268 A1 WO 2022089268A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
analog
digital
linearly polarized
polarization
Prior art date
Application number
PCT/CN2021/124874
Other languages
English (en)
French (fr)
Inventor
张伟伟
李旭
王天祥
吕毅博
耿东玉
郑博方
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2022089268A1 publication Critical patent/WO2022089268A1/zh
Priority to US18/307,641 priority Critical patent/US20230261758A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2575Radio-over-fibre, e.g. radio frequency signal modulated onto an optical carrier
    • H04B10/25752Optical arrangements for wireless networks
    • H04B10/25758Optical arrangements for wireless networks between a central unit and a single remote unit by means of an optical fibre
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/61Coherent receivers
    • H04B10/614Coherent receivers comprising one or more polarization beam splitters, e.g. polarization multiplexed [PolMux] X-PSK coherent receivers, polarization diversity heterodyne coherent receivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/06Polarisation multiplex systems

Definitions

  • the present application relates to the field of communications, and more particularly, to a signal receiving apparatus and a signal receiving method.
  • Microwave and millimeter wave technologies have become the key technologies of current wireless communication systems.
  • Microwave photonic technology considers the use of light to solve problems in the electrical domain, and combines the dual advantages of microwave and optical communication, with ultra-wideband, low loss, anti-electromagnetic interference and cost. The lower advantages have been studied more and more widely.
  • microwave photonic zero-IF receivers In the field of microwave photonics technology, microwave photonic zero-IF receivers have low cost and small size, and are currently a highly integrated receiver.
  • the microwave photon zero-IF receiver in the prior art recovers the in-phase and quadrature (in-phase/quadrature, IQ) signals of the baseband signal by means of an analog circuit, and the method requires the orthogonal polarization state and phase difference of the light. Precise control is not easy to achieve, and the cost is high.
  • the present application provides a signal receiving device and a signal receiving method, which eliminates the need to precisely control the orthogonal polarization state of light when restoring a baseband signal, is easy to implement, and can reduce system costs.
  • a signal receiving device includes: an optical splitter, an optical signal processing module, a photodetector, an analog-to-digital converter, and a digital signal processor.
  • the optical splitter is used to receive the first polarization multiplexed optical signal from the remote device, divide the first polarization multiplexed optical signal into at least two channels, obtain at least two second polarization multiplexed optical signals, and divide the at least two polarization multiplexed optical signals into at least two channels.
  • the second polarization multiplexed optical signal is respectively input to at least two optical signal processing modules, and the first polarization multiplexed optical signal is obtained by modulating the radio frequency signal and the local oscillator signal respectively to two orthogonal polarization states of the optical carrier; the optical signal
  • the processing module is used to couple and process the second polarization multiplexed optical signal to obtain a linearly polarized optical signal, and input the linearly polarized optical signal to the photodetector;
  • the photodetector is used to convert the linearly polarized optical signal into an analog signal, and to
  • the analog signal is input to the analog-to-digital converter;
  • the analog-to-digital converter is used to perform analog-to-digital conversion on the analog signal to obtain a digital signal, and the digital signal is input to the digital signal processor;
  • the digital signal processor is used to process the digital signal to obtain a baseband signal .
  • the signal receiving device of the embodiment of the present application outputs at least three mutually independent analog signals, performs analog-to-digital conversion, and then inputs them to a digital signal processor for digital processing, and restores the IQ signal in the digital domain. Therefore, the circuit architecture Precise control of the orthogonal polarization states of light is not required, and the circuit architecture not only facilitates recovery of baseband signals, but also reduces system costs.
  • the above-mentioned remote device may include: an antenna, a bandpass filter, a low noise amplifier, an optoelectronic modulator, a local oscillator source, a laser, and an optical bandpass filter.
  • the antenna is used to receive the first radio frequency signal, and input the first radio frequency signal to the band-pass filter;
  • the band-pass filter is used to filter the first radio frequency signal to obtain the second radio frequency signal, and input the second radio frequency signal to a low frequency noise amplifier;
  • the low noise amplifier is used to amplify the second radio frequency signal to obtain the third radio frequency signal, and input the third radio frequency signal to a radio frequency input end of the photoelectric modulator;
  • the local oscillator source is used to generate a The local oscillator signal with the same signal frequency is input to the other radio frequency input end of the photoelectric modulator;
  • the laser is used to generate a fifth linearly polarized light signal, and the linearly polarized light signal is input to the photoelectric modulator.
  • the photoelectric modulator is used to divide the linearly polarized optical signal into upper and lower signals, and use the linearly polarized optical signal to perform optical domain modulation on the third radio frequency signal and the local oscillator signal respectively to obtain orthogonal polarization multiplexed light
  • the orthogonal polarization multiplexed light is input to the optical bandpass filter; the optical bandpass filter is used to filter the orthogonal polarization multiplexed light to obtain the upper sideband signal or the lower sideband signal of the orthogonal polarization multiplexed light, and the upper sideband signal is obtained.
  • the signal or the lower sideband signal is determined as the first polarization multiplexed optical signal.
  • the optical signal processing module may include: a polarizing beam splitter and a polarizer; the photodetector includes: a first photodetector, a second photodetector, and The third photodetector; the analog-to-digital converter includes: a first analog-to-digital converter, a second analog-to-digital converter, and a third analog-to-digital converter.
  • the polarization beam splitter is used to couple the second polarization multiplexed optical signal to the two main axes of the polarization beam splitter to obtain the first linearly polarized optical signal and the second linearly polarized optical signal, and the first linearly polarized optical signal is obtained.
  • the optical signal is input to the first photodetector, and the second linearly polarized optical signal is input to the second photodetector;
  • the polarizer is used to couple the second polarization multiplexed optical signal to the main axis of the polarizer to obtain a third linear polarization optical signal, and input the third linearly polarized optical signal to the third photodetector;
  • the first photodetector is used to convert the first linearly polarized optical signal into a first analog signal, and input the first analog signal to the first analog-digital signal a converter;
  • the second photodetector is used for converting the second linearly polarized light signal into a second analog signal, and the second analog signal is input to the second analog-to-digital converter;
  • the third photodetector is used for converting the third linearly polarized light signal is a third analog signal, and the third analog signal is input to the third analog-to-digital converter;
  • the first analog-to-digital converter is
  • three independent analog signals are output, and after analog-to-digital conversion, they are input to a digital signal processor for digital processing, and the IQ signal is recovered in the digital domain, so the circuit architecture does not need to correct the optical positive
  • the cross-polarization state is precisely controlled, and the circuit architecture not only facilitates the recovery of the baseband signal, but also reduces the system cost.
  • At least one of a first polarization controller and a first optical fiber is provided between the optical splitter and the above-mentioned polarized light beam splitter, and the first polarization controller Or the first optical fiber is used to adjust the polarization state of the second polarization multiplexed optical signal; and/or, at least one of a second polarization controller and a second optical fiber is provided between the above-mentioned optical splitter and the above-mentioned polarizer , the second polarization controller or the second optical fiber is used to adjust the polarization state of the second polarization multiplexed optical signal.
  • the optical signal processing module may include: a first polarized light beam splitter and a second polarized light beam splitter;
  • the photodetector includes: a first photodetector, The second photodetector, the third photodetector, and the fourth photodetector;
  • the analog-to-digital converter includes: a first analog-to-digital converter, a second analog-to-digital converter, a third analog-to-digital converter, and a fourth analog-to-digital converter device.
  • the first polarization beam splitter is used for coupling and outputting the second polarization multiplexed optical signal to the two main axes of the first polarization beam splitter to obtain the first linearly polarized optical signal and the second linearly polarized optical signal, and the The first linearly polarized light signal is input to the first photodetector, and the second linearly polarized light signal is input to the second photodetector; the second polarized light beam splitter is used for coupling and outputting the second polarization multiplexed light signal to the second polarized light
  • the third linearly polarized light signal and the fourth linearly polarized light signal are obtained, the third linearly polarized light signal is input to the third photodetector, and the fourth linearly polarized light signal is input to the fourth linearly polarized light signal.
  • the first photodetector is used for converting the first linearly polarized light signal into a first analog signal, and the first analog signal is input to the first analog-to-digital converter;
  • the second photodetector is used for converting the second linearly polarized light The signal is converted into a second analog signal, and the second analog signal is input to the second analog-to-digital converter;
  • the third photodetector is used to convert the third linearly polarized light signal into a third analog signal, and the third analog signal is input to the The third analog-to-digital converter;
  • the fourth photodetector is used for converting the fourth linearly polarized light signal into a fourth analog signal, and the fourth analog signal is input to the fourth analog-to-digital converter;
  • the first analog-to-digital converter is used for pairing The first analog signal is subjected to analog-to-digital conversion to obtain a first digital signal, and the first digital signal is input to the digital signal processor;
  • At least one of a first polarization controller and a first optical fiber is provided between the optical splitter and the above-mentioned first polarization beam splitter, and the first polarization
  • the controller or the first optical fiber is used to adjust the polarization state of the second polarization multiplexed optical signal; and/or, a first polarization controller and a first polarization controller are arranged between the above-mentioned optical splitter and the above-mentioned second polarization beam splitter
  • At least one of the optical fibers, the first polarization controller or the first optical fiber is used to adjust the polarization state of the second polarization multiplexed optical signal.
  • a second aspect provides a signal receiving method, comprising: receiving a first polarization multiplexed optical signal from a remote device, dividing the first polarization multiplexed optical signal into at least two paths, and obtaining at least two paths of second polarization multiplexed optical signals an optical signal; perform coupling processing on the second polarization multiplexed optical signal to obtain a linearly polarized optical signal; convert the linearly polarized optical signal into an analog signal, and perform analog-to-digital conversion on the analog signal to obtain a digital signal; process the digital signal, Obtain the baseband signal.
  • the above method may be performed by any possible implementation device of the above first aspect.
  • the signal receiving method of the embodiment of the present application obtains at least three mutually independent analog signals, converts them into digital signals for digital processing, and restores the IQ signal in the digital domain, so the signal receiving method does not need to correct the optical positive
  • the cross-polarization state is precisely controlled, and the recovery of the baseband signal is easy to achieve.
  • the above-mentioned coupling processing on the second polarization multiplexed optical signal to obtain a linearly polarized optical signal includes: combining at least two channels of the second polarization multiplexed optical signal One channel of the second polarization multiplexed optical signal is coupled and outputted to obtain the first linearly polarized optical signal and the second linearly polarized optical signal; the other channel of the second polarization multiplexed optical signal of the at least two channels of the second polarization multiplexed optical signal is coupled and outputted, A third linearly polarized light signal is obtained.
  • the above-mentioned converting the linearly polarized optical signal into an analog signal and performing analog-to-digital conversion on the analog signal to obtain a digital signal includes: converting the first linearly polarized optical signal into a first analog signal, and performing analog-to-digital conversion on the first analog signal , obtain a first digital signal; convert the second linearly polarized optical signal into a second analog signal, and perform analog-to-digital conversion on the second analog signal to obtain a second digital signal; convert the third linearly polarized optical signal into a third analog signal, and performing analog-to-digital conversion on the third analog signal to obtain a third digital signal.
  • the above-mentioned processing of the digital signal to obtain the baseband signal includes: processing the first digital signal, the second digital signal and the third digital signal to obtain the baseband signal.
  • the first linearly polarized optical signal and the first linearly polarized optical signal and the first linearly polarized optical signal are obtained by coupling and outputting one of the at least two second polarization multiplexed optical signals.
  • Two linearly polarized optical signals including: adjusting the polarization state of a second polarization multiplexed optical signal to obtain an adjusted optical signal; coupling and outputting the adjusted optical signal to obtain a first linearly polarized optical signal and a second linearly polarized optical signal Signal.
  • the above-mentioned coupling output of another second polarization multiplexed optical signal in the at least two second polarization multiplexed optical signals to obtain a third linearly polarized optical signal comprising: : adjust the polarization state of the other channel of the second polarization multiplexed optical signal to obtain another channel of adjusted optical signal; couple the other channel of the adjusted optical signal to output to obtain the third linearly polarized optical signal.
  • the above-mentioned coupling processing on the second polarization multiplexed optical signal to obtain a linearly polarized optical signal includes: combining at least two channels of the second polarization multiplexed optical signal One channel of the second polarization multiplexed optical signal is coupled and outputted to obtain the first linearly polarized optical signal and the second linearly polarized optical signal; the other channel of the second polarization multiplexed optical signal of the at least two channels of the second polarization multiplexed optical signal is coupled and outputted, A third linearly polarized light signal and a fourth linearly polarized light signal are obtained.
  • the above-mentioned converting the linearly polarized optical signal into an analog signal and performing analog-to-digital conversion on the analog signal to obtain a digital signal includes: converting the first linearly polarized optical signal into a first analog signal, and performing analog-to-digital conversion on the first analog signal , obtain a first digital signal; convert the second linearly polarized optical signal into a second analog signal, and perform analog-to-digital conversion on the second analog signal to obtain a second digital signal; convert the third linearly polarized optical signal into a third analog signal, and performing analog-to-digital conversion on the third analog signal to obtain a third digital signal; converting the fourth linearly polarized optical signal into a fourth analog signal, and performing analog-to-digital conversion on the fourth analog signal to obtain a fourth digital signal;
  • the above-mentioned processing of the digital signal to obtain the baseband signal includes: processing the first digital signal, the second digital signal, the third digital signal and the fourth digital signal to obtain the baseband signal.
  • the first linearly polarized optical signal and the first linearly polarized optical signal and the first linearly polarized optical signal are obtained by coupling and outputting one of the at least two second polarization multiplexed optical signals.
  • Two linearly polarized optical signals including: adjusting the polarization state of a second polarization multiplexed optical signal to obtain an adjusted optical signal; coupling and outputting the adjusted optical signal to obtain a first linearly polarized optical signal and a second linearly polarized optical signal Signal.
  • the other of the at least two second polarization multiplexed optical signals is coupled and outputted to obtain the third linearly polarized optical signal and the first polarization multiplexed optical signal.
  • the four-linearly polarized optical signal includes: adjusting the polarization state of another second polarization multiplexed optical signal to obtain another adjusted optical signal; coupling and outputting the adjusted other optical signal to obtain a third linearly polarized optical signal and a third optical signal.
  • a third aspect provides a signal receiving system, including a signal receiving device, a remote device, and an optical fiber in any possible implementation manner of the first aspect.
  • a signal receiving apparatus configured to execute the method in any possible implementation manner of the foregoing second aspect.
  • the apparatus includes a module for executing the method in any of the possible implementation manners of the second aspect above.
  • a computer program product includes: a computer program (also referred to as code, or instructions), which, when the computer program is executed, enables the computer to execute any one of the above-mentioned second aspects. method in method.
  • a computer-readable storage medium stores a computer program (also referred to as code, or instruction) when it is run on a computer, causing the computer to execute the second aspect above. method in any of the possible implementations.
  • a chip system in a seventh aspect, includes a processor for implementing the method involved in the second aspect or any possible implementation manner of the second aspect.
  • the chip system further includes a memory for storing program instructions.
  • the chip system can be composed of chips, and can also include chips and other discrete devices.
  • FIG. 1 is a schematic block diagram of a system architecture of a signal receiving apparatus provided by an embodiment of the present application
  • FIG. 2 is a schematic block diagram of a signal receiving apparatus provided by an embodiment of the present application.
  • FIG. 3 is a schematic block diagram of a signal receiving system provided by an embodiment of the present application.
  • FIG. 4 is a schematic block diagram of another signal receiving system provided by an embodiment of the present application.
  • FIG. 5 is a schematic block diagram of another signal receiving system provided by an embodiment of the present application.
  • FIG. 6 is a schematic block diagram of another signal receiving system provided by an embodiment of the present application.
  • FIG. 7 is a schematic flowchart of a signal receiving method provided by an embodiment of the present application.
  • LTE long term evolution
  • FDD frequency division duplex
  • TDD time division duplex
  • UMTS universal mobile telecommunication system
  • 5th generation, 5G new radio
  • new radio new radio, NR
  • the technical solutions of the embodiments of the present application can also be applied to various electronic receiving systems in the microwave field, for example, phased array radar, satellite communication, etc., which are not limited in the embodiments of the present application.
  • BPF Bandpass filter
  • LNA Low noise amplifier
  • Photoelectric modulator a modulator made of the electro-optic effect of certain electro-optic crystals, such as lithium niobate crystal (LiNbO 3 ), gallium arsenide crystal (GaAs) and lithium tantalate crystal (LiTaO 3 ).
  • the electro-optic effect is that when a voltage is applied to the electro-optic crystal, the refractive index of the electro-optic crystal will change, resulting in a change in the characteristics of the light wave passing through the crystal, realizing the modulation of the phase, amplitude, intensity and polarization state of the optical signal.
  • the electro-optical modulator may be a polarization division multiplexing-mach zehnder modulator (PDM-MZM) and a polarization division multiplexing-dual electrode mach zehnder modulator, PDM-DEMZM).
  • PDM-MZM polarization division multiplexing-mach zehnder modulator
  • PDM-DEMZM polarization division multiplexing-dual electrode mach zehnder modulator
  • PDM-MZM and PDM-DEMZM can be two optical branches that divide the input light into two equal signals and enter the modulator respectively.
  • the materials used in these two optical branches are electro-optical materials, and their refractive index varies with the external application.
  • the synthesized optical signal will be an interference signal with varying intensity, which is equivalent to converting the change of the electrical signal into the change of the optical signal. , which realizes the modulation of light intensity.
  • OBPF Optical bandpass filter
  • Voltage-controlled oscillato refers to the oscillator circuit whose output frequency has a corresponding relationship with the input control voltage, the oscillator whose frequency is a function of the input signal voltage, the working state of the oscillator or the component parameters of the oscillator circuit Controlled by the input control voltage, a voltage-controlled oscillator can be formed.
  • Radio frequency (RF) a modulated radio wave with a certain transmission frequency.
  • Local oscillator signal (local oscillator, LO): It is generated by the local oscillator source. In principle, the selection of the oscillation frequency should firstly hinder the working frequency of other radio stations.
  • 90-degree polarization rotator (90° PR): a device used to change the polarization state of the input optical signal.
  • Polarization beam combiner It is used to couple two orthogonally polarized lights into one light, which can be used to combine the power of the pump laser and improve the extinction ratio of the fiber laser.
  • Optical splitter Also known as optical splitter, it is one of the important passive devices in optical fiber links, and is a fiber optic tandem device with multiple input ends and multiple output ends.
  • Polarization beam splitter used to couple the single output of a beam of orthogonally polarized light into two fiber outputs respectively.
  • Polarization controller a device used to change the polarization angle of the input light.
  • Polarizer refers to a device that emits natural light from a common light source and is used to obtain polarized light from natural light.
  • Photodiode (PD) It is used to convert optical signals into electrical signals. The principle is that the conductivity of the irradiated material changes due to radiation.
  • ADC Analog to digital converter
  • Digital signal processor analog to digital converter, DSP: a processor composed of large-scale or ultra-large-scale integrated circuit chips to complete digital signal processing tasks.
  • the first, the second, and various numeral numbers are only for the convenience of description, and are not used to limit the scope of the embodiments of the present application. For example, distinguishing different optical signals, distinguishing different devices, etc.
  • At least one means one or more, and “plurality” means two or more.
  • And/or which describes the association relationship of the associated objects, indicates that there can be three kinds of relationships, for example, A and/or B, which can indicate: the existence of A alone, the existence of A and B at the same time, and the existence of B alone, where A, B can be singular or plural.
  • the character “/” generally indicates that the associated objects are an “or” relationship.
  • At least one item(s) below” or similar expressions thereof refer to any combination of these items, including any combination of single item(s) or plural items(s).
  • At least one (a) of a, b and c may represent: a, or b, or c, or a and b, or a and c, or b and c, or a, b and c, wherein a, b, c can be single or multiple.
  • FIG. 1 is a schematic block diagram of a system architecture 100 provided by an embodiment of the present application, where the system architecture 100 includes: a remote unit (remote unit, RU), an optical fiber, and a local unit (local unit, LU).
  • the RU is used to receive RF and generate LO, and adjust RF and LO to the optical carrier with orthogonal polarization multiplexing to obtain an orthogonal polarization multiplexing optical signal carrying RF and LO, and then use the optical fiber to obtain the optical signal. transfer to LU.
  • the LU is used to perform projection, detection, analog-to-digital conversion, and digital signal processing on the above-mentioned orthogonal polarization multiplexed optical signal, and finally restore the baseband signal.
  • optical fiber may be any kind of non-polarization-maintaining optical fiber, which is not limited in this embodiment of the present application.
  • the foregoing RU may be a macro station or a small wireless station, which is not limited in this embodiment of the present application.
  • base stations which can be evolved base stations (evolved NodeB, eNB or eNodeB) in the LTE system, and can also be home base stations (for example, home evolved NodeB, or home Node B, HNB), baseband
  • the unit can also be a wireless controller in a cloud radio access network (CRAN) scenario, or it can be an access point (AP) in a WLAN, which can be
  • the gNB in a new radio (new radio, NR) system may be a satellite base station in a satellite communication system, etc., which is not limited in the embodiment of the present application.
  • FIG. 2 is a schematic block diagram of a signal receiving apparatus 200 provided by an embodiment of the present application.
  • the signal receiving apparatus 200 includes: an optical splitter 210, an optical signal processing module 220, a photodetector 230, an analog-to-digital converter 240, and a Digital signal processor 250 .
  • the optical splitter 210 is configured to receive the first polarization-multiplexed optical signal from the remote device, divide the first polarization-multiplexed optical signal into at least two paths, obtain at least two paths of the second polarization-multiplexed optical signal, and divide the first polarization-multiplexed optical signal into at least two paths.
  • At least two channels of second polarization multiplexed optical signals are respectively input to at least two optical signal processing modules 220, and the first polarization multiplexed optical signal is obtained by modulating the radio frequency signal and the local oscillator signal respectively to two orthogonal polarization states of the optical carrier
  • the optical signal processing module 220 is used to couple the second polarization multiplexed optical signal to obtain the linearly polarized optical signal, and input the linearly polarized optical signal to the photodetector 230; the photodetector 230 is used to convert the linearly polarized optical signal Convert to analog signal, and input the analog signal to the analog-to-digital converter 240; the analog-to-digital converter 240 is used to perform analog-to-digital conversion on the analog signal, obtain a digital signal, and input the digital signal to the digital signal processor 250; digital signal processing The device 250 is used to process the digital signal to obtain a baseband signal.
  • the signal receiving device of the embodiment of the present application outputs at least three mutually independent analog signals, performs analog-to-digital conversion, and then inputs them to a digital signal processor for digital processing, and restores the IQ signal in the digital domain. Therefore, the circuit architecture Precise control of the orthogonal polarization states of light is not required, and the circuit architecture not only facilitates recovery of baseband signals, but also reduces system costs.
  • the above-mentioned remote device may include: an antenna, a bandpass filter, a low noise amplifier, an optoelectronic modulator, a local oscillator source, a laser, and an optical bandpass filter.
  • the antenna is used to receive the first radio frequency signal, and input the first radio frequency signal to the band-pass filter; the band-pass filter is used to filter the first radio frequency signal to obtain the second radio frequency signal, and input the second radio frequency signal to a low frequency noise amplifier; the low noise amplifier is used to amplify the second radio frequency signal to obtain the third radio frequency signal, and input the third radio frequency signal to a radio frequency input end of the photoelectric modulator; the local oscillator source is used to generate a The local oscillator signal with the same signal frequency is input to the other radio frequency input end of the photoelectric modulator; the laser is used to generate a fifth linearly polarized light signal, and the linearly polarized light signal is input to the photoelectric modulator.
  • the photoelectric modulator is used to divide the linearly polarized optical signal into upper and lower signals, and use the linearly polarized optical signal to perform optical domain modulation on the third radio frequency signal and the local oscillator signal respectively to obtain orthogonal polarization multiplexed light
  • the orthogonal polarization multiplexed light is input to the optical bandpass filter; the optical bandpass filter is used to filter the orthogonal polarization multiplexed light to obtain the upper sideband signal or the lower sideband signal of the orthogonal polarization multiplexed light, and the upper sideband signal is obtained.
  • the signal or the lower sideband signal is determined as the first polarization multiplexed optical signal.
  • the above-mentioned optical signal processing module 220 includes: a polarization beam splitter and a polarizer;
  • the above-mentioned photodetector 230 includes: a first photodetector, a second photodetector and a third photodetector ;
  • the above-mentioned analog-to-digital converter 240 includes: a first analog-to-digital converter, a second analog-to-digital converter and a third analog-to-digital converter.
  • the polarization beam splitter is used to couple the second polarization multiplexed optical signal to the two main axes of the polarization beam splitter to obtain the first linearly polarized optical signal and the second linearly polarized optical signal, and the first linearly polarized optical signal is obtained.
  • the optical signal is input to the first photodetector, and the second linearly polarized optical signal is input to the second photodetector;
  • the polarizer is used to couple the second polarization multiplexed optical signal to the main axis of the polarizer to obtain a third linear polarization optical signal, and input the third linearly polarized optical signal to the third photodetector;
  • the first photodetector is used to convert the first linearly polarized optical signal into a first analog signal, and input the first analog signal to the first analog-digital signal a converter;
  • the second photodetector is used for converting the second linearly polarized light signal into a second analog signal, and the second analog signal is input to the second analog-to-digital converter;
  • the third photodetector is used for converting the third linearly polarized light signal is a third analog signal, and the third analog signal is input to the third analog-to-digital converter;
  • the first analog-to-digital converter is
  • three independent analog signals are output, and after analog-to-digital conversion, they are input to a digital signal processor for digital processing, and the IQ signal is recovered in the digital domain, so the circuit architecture does not need to correct the optical positive
  • the cross-polarization state is precisely controlled, and the circuit architecture not only facilitates the recovery of the baseband signal, but also reduces the system cost.
  • At least one of a first polarization controller and a first optical fiber is provided between the above-mentioned optical splitter 210 and the above-mentioned polarization beam splitter, and the first polarization controller or the first optical fiber is used for Adjust the polarization state of the second polarization multiplexed optical signal; and/or, at least one of a second polarization controller and a second optical fiber is arranged between the above-mentioned optical splitter 210 and the above-mentioned polarizer, and the second polarization controller The filter or the second optical fiber is used to adjust the polarization state of the second polarization multiplexed optical signal.
  • the above-mentioned optical signal processing module 220 includes: a first polarized light beam splitter and a second polarized light beam splitter;
  • the above-mentioned photodetector 230 includes: a first photodetector and a second photodetector , a third photodetector, and a fourth photodetector;
  • the analog-to-digital converter 240 includes: a first analog-to-digital converter, a second analog-to-digital converter, a third analog-to-digital converter, and a fourth analog-to-digital converter.
  • the first polarization beam splitter is used for coupling and outputting the second polarization multiplexed optical signal to the two main axes of the first polarization beam splitter to obtain the first linearly polarized optical signal and the second linearly polarized optical signal, and the The first linearly polarized light signal is input to the first photodetector, and the second linearly polarized light signal is input to the second photodetector; the second polarized light beam splitter is used for coupling and outputting the second polarization multiplexed light signal to the second polarized light
  • the third linearly polarized light signal and the fourth linearly polarized light signal are obtained, the third linearly polarized light signal is input to the third photodetector, and the fourth linearly polarized light signal is input to the fourth linearly polarized light signal.
  • the first photodetector is used to convert the first linearly polarized light signal into a first analog signal, and the first analog signal is input to the first analog-to-digital converter;
  • the second photodetector is used to convert the second linearly polarized light is a second analog signal, and the second analog signal is input to the second analog-to-digital converter;
  • the third photodetector is used to convert the third linearly polarized light signal into a third analog signal, and the third analog signal is input to the third an analog-to-digital converter;
  • the fourth photodetector is used for converting the fourth linearly polarized light signal into a fourth analog signal, and the fourth analog signal is input to the fourth analog-to-digital converter;
  • the first analog-to-digital converter is used for the first analog-to-digital converter
  • the analog signal is converted from analog to digital to obtain a first digital signal, and the first digital signal is input to the digital signal processor;
  • the second analog to digital converter is used for analog
  • At least one of a first polarization controller and a first optical fiber is provided between the above-mentioned optical splitter 210 and the above-mentioned first polarization beam splitter.
  • FIG. 3 is a schematic block diagram of a signal receiving system 300 provided by an embodiment of the present application.
  • a RU includes an antenna, a BPF, an LNA, an LD, a PDM-MZM, a VCO, and an OBPF, wherein the PDM- The MZM includes two sub-modulators X-MZM and Y-MZM, 90° PR and PBC.
  • the LU includes OS, PBS, POL, a first photodetector PD1, a second photodetector PD2, a third photodetector PD3, a first analog - to-digital converter ADC1, a second analog-to-digital converter ADC2, The third analog-to-digital converter ADC 3 and DSP.
  • the antenna is connected to the input end of the BPF, the output end of the BPF is connected to the input end of the LNA, the output end of the LNA is connected to one RF input end of the PDM-MZM, the VCO is connected to the other RF input end of the PDM-MZM, and the LD It is connected with the optical input end of PDM-MZM, and the output end of PDM-MZM is connected with the input end of OBPF; the output end of OBPF is connected with one end of the fiber, and the other end of the fiber is connected with the input end of OS; one output end of OS is connected with the input end of OS.
  • the input end of PBS is connected, one output end of PBS is connected with the input end of PD 1 , the output end of PD 1 is connected with the input end of ADC 1 , the other output end of PBS is connected with the input end of PD 2 , and the output end of PD 2 is connected
  • the other output end of OS is connected with the input end of POL, the output end of POL is connected with the input end of PD 3 , and the output end of PD 3 is connected with the input end of ADC 3 ; the above ADC 1
  • the output end of the DSP, the output end of the ADC 2 and the output end of the ADC 3 are respectively connected with the three input ends of the above-mentioned DSP.
  • the antenna is used to receive RF, and the RF is input to the BPF; the BPF is used to filter the RF to obtain the filtered RF, and the filtered RF is input to the LNA; the LNA is used to filter the RF Amplify the signal, obtain the amplified RF, and input the amplified RF to one RF input terminal of the PDM-MZM; the VCO is used to generate the LO with the same frequency as the above RF, and input the LO to the other of the PDM-MZM RF input end; LD is used to generate a beam of linearly polarized light, and input the linearly polarized light to the optical input end of PDM-MZM; PDM-MZM is used to divide the above linearly polarized light into upper and lower signals, using line The polarized light modulates the amplified RF and LO in the optical domain to obtain orthogonal polarization multiplexed light, and the orthogonal polarization multiple
  • the optical fiber is used to receive the first polarization multiplexed optical signal sent by the OBPF, and transmit the first polarization multiplexed optical signal to the input end of the OS in the LU through long-distance transmission.
  • the OS is used to split the first polarization multiplexed optical signal to obtain two identical second polarization multiplexed optical signals;
  • the PBS is used to split the second polarization multiplexed optical signal from the OS.
  • the signals are coupled to obtain optical signals E out1 and E out2 , and E out1 is input to PD 1 , and E out2 is input to PD 2 ;
  • POL is used to couple the second polarization multiplexed optical signal from the OS, and obtain Optical signal E out3 , and input E out3 to PD 3 ;
  • PD 1 is used to convert E out1 to analog signal i 1 (t), and i 1 (t) is input to ADC 1 ;
  • PD 2 is used to convert E out2 Convert to analog signal i 2 (t), and input i 2 (t) to ADC 2 ;
  • PD 3 is used to convert E out3 to analog signal i 3 (t), and input i 3 (t) to ADC 3 ;
  • ADC 1 is used for i 1 (t) to perform analog-to-digital conversion to obtain digital signal i 1 (n), and i 1 (n) is input to the first input end of the DSP;
  • ADC 2 is used to
  • nonlinear compensation algorithms such as “memory polynomial with time delay and nonlinearity”, “neural network algorithm”, etc., can be used to solve the problems existing in the system. time delay and nonlinear problems.
  • E c is the output amplitude of the linearly polarized light
  • is the frequency of the linearly polarized light
  • I is the in-phase component
  • Q is the quadrature component
  • is the frequency of the radio frequency signal.
  • the frequency of the above-mentioned LO signal is the same as that of the RF signal.
  • E Y-MZM (t) After ignoring the high-order term in formula (3), in E Y-MZM (t) only the signals of the ⁇ + ⁇ sideband and the ⁇ - ⁇ sideband are included, that is, the optical carrier is suppressed.
  • optical signal E Y-MZM (t) is combined with the optical signal E X-MZM (t) through PBC after 90° PR to form a polarization multiplexed optical signal, and its expression is:
  • the optical signal E PDM-MZM (t) of formula (4) contains two orthogonal polarization state optical signals, Transverse electric wave (TE) and Transverse magnetic wave (TM). IQ information is contained in the optical signal of polarization state TE, while LO is contained in the optical signal of polarization state TM.
  • optical signal E PDM-MZM (t) of formula (4) contains the optical signals of the upper and lower sidebands of ⁇ + ⁇ and ⁇ - ⁇ , which can be filtered by OBPF to filter out the lower sideband ⁇ - ⁇ and retain the upper sideband ⁇ + ⁇ (or, keep the lower sideband ⁇ - ⁇ , filter out the upper sideband ⁇ + ⁇ ) to get the output of OBPF:
  • the optical signal E OBPF (t) output by the OBPF is transmitted to the LU through the optical fiber.
  • the OS in the LU divides the E OBPF (t) into two identical optical signals.
  • One of the optical signals enters the PBS to obtain E out1 and E out2 , after another optical signal enters the POL, E out3 is obtained, and its expression can be expressed as E outk :
  • ⁇ 3 is the angle between the optical signal entering POL and the main axis of polarizer Pol.
  • the photocurrent i k (t) output by the PD can be converted into a digital signal i k (n) through the ADC.
  • the digital signal i k (n) can be written in matrix form according to formula (7), that is:
  • Equation (9) The IQ signal in Equation (9) can be expressed as:
  • equation (10) When the coefficients a k and b k in equation (10) are determined, the IQ signal can be recovered using equation (10).
  • a k corresponds to a 1 , a 2 , and a 3 in formula (9)
  • b k corresponds to b 1 , b 2 , and b 3 in formula (9).
  • the DSP of the embodiment of the present application can use a memory polynomial to recover the baseband signal, which is beneficial to solve the problems of system time delay and nonlinearity.
  • IQ signals can be respectively recovered by the following expressions:
  • the IQ signal can be recovered using the formula (11).
  • the above-mentioned memory polynomial is an algorithm preset in the DSP, and the coefficients a kqp and b kqp are determined by an algorithm preset in the DSP.
  • three independent analog signals i 1 (t), i 2 (t) and i 3 (t) are output, and after analog-to-digital conversion, they are input to the DSP for digital processing, and IQ is performed in the digital domain.
  • signal recovery so the circuit architecture does not require precise control of the orthogonal polarization state of light, and the circuit architecture not only facilitates the recovery of baseband signals, but also helps to improve the stability of the system;
  • the polarization state of the light is not sensitive, and the non-polarization maintaining fiber can be used to transmit the optical signal, which reduces the development cost of the system.
  • the IQ signal of the baseband signal is recovered by using different algorithms, which can solve the nonlinear problem of the system and greatly improve the performance of the system.
  • a PC is provided between the OS and the PBS, and/or a length of optical fiber is provided between the OS and the PBS.
  • a PC is provided between the OS and the POL, and/or a length of optical fiber is provided between the OS and the POL.
  • a PC is respectively provided between the OS and the PBS and between the OS and the POL
  • a length of optical fiber is respectively provided between the OS and the PBS and between the OS and the POL.
  • the above-mentioned PC and/or the optical fiber is used to adjust the polarization state of the second polarization multiplexed optical signal from the OS, and the setting of the PC and/or the optical fiber can ensure that between i 1 (t), i 2 (t) and i 3 (t) are independent of each other, so that the accuracy of the IQ signal recovered by the LU can be improved.
  • FIG. 4 is a schematic block diagram of another signal receiving system 400 provided by the present application.
  • the RU is similar to the RU in the above-mentioned system 300, and the relevant description about the RU in the system 300 can be referred to here. No longer.
  • the LU in system 400 includes OS, first polarizing beam splitter PBS 1 , second polarizing beam splitter PBS 2 , first photodetector PD 1 , second photodetector PD 2 , third photodetector PD 3.
  • a fourth photodetector PD 4 a first analog-to-digital converter ADC 1 , a second analog-to-digital converter ADC 2 , a third analog-to-digital converter ADC 3 , a fourth analog-to-digital converter ADC 4 , and a DSP.
  • one output terminal of OS is connected to the input terminal of PBS 1 , one output terminal of PBS 1 is connected to the input terminal of PD 1 , and the output terminal of PD 1 is connected to the input terminal of ADC 1 ;
  • the other output terminal is connected to the input terminal of PD 2 , and the output terminal of PD 2 is connected to the input terminal of ADC 2 ;
  • the other output terminal of OS is connected to the input terminal of PC, and the output terminal of PC is connected to an output terminal of PBS 2 and PD
  • the input end of 3 is connected, the output end of PD 3 is connected with the input end of ADC 3 ;
  • the other output end of PBS 2 is connected with the input end of PD 4 , and the output end of PD 4 is connected with the input end of ADC 4 ;
  • the above ADC 1 The output end of the ADC 2 , the output end of the ADC 3 , and the output end of the ADC 4 are respectively connected to the four input ends of the above-mentioned D
  • the OS is used for splitting the above-mentioned first polarization multiplexed optical signal to obtain two identical second polarization multiplexed optical signals
  • PBS 1 is used for splitting the second polarization multiplexed optical signal from the OS Coupling processing to obtain optical signals E out1 and E out2 , and input E out1 to the above PD 1 , and input E out2 to PD 2
  • PBS 2 is used to perform coupling processing on the second polarization multiplexed optical signal from the OS to obtain optical signals Signals E out3 and E out4 , and input E out3 to PD 3 and E out4 to PD 4
  • PD 1 is used to convert E out1 to analog signal i 1 (t) and input i 1 (t) to ADC 1
  • PD 2 is used to convert E out2 to analog signal i 2 (t), and i 2 (t) is input to ADC 2
  • PD 3 is used to convert E out3 to analog signal i 3 (t), and Input i 3 (
  • the polarization state of light is adjusted by setting the PC, so as to ensure that the four outputs i 1 (t), i 2 (t), i 3 (t) and i 4 (t) are independent of each other.
  • the circuit architecture does not require precise control of the orthogonal polarization state of the light, and the circuit architecture not only facilitates the recovery of the baseband signal, but also facilitates Improve the stability of the system; in addition, since the LU is not sensitive to the polarization state of the light transmitted by the RU, the non-polarization maintaining fiber can be used to transmit the optical signal, which reduces the development cost of the system; at the same time, different algorithms are used in the digital processing stage. Recovering the IQ signal of the baseband signal can solve the nonlinear problem existing in the system and greatly improve the performance of the system.
  • FIG. 5 is a schematic block diagram of another signal receiving system 500 provided by the present application.
  • the RU is similar to the above-mentioned system 300, and reference can be made to the relevant description of the RU in the system 300, which will not be repeated here.
  • the LU is based on the system 400, and replaces the PC provided between the OS of the LU and the PBS 2 in the system 400 with a piece of optical fiber.
  • the optical fiber between the RU and the LU is referred to as optical fiber 1
  • the optical fiber between the OS and PBS 2 is referred to as optical fiber 2.
  • the above-mentioned optical fiber 2 is used to adjust the polarization state of the second polarization-multiplexed optical signal from the OS, so that i 1 (t), i 2 (t), i 3 (t) and i 4 (t) are independent of each other.
  • Other devices in the LU are similar to the above-mentioned system 400, and reference may be made to the relevant description of the LU in the system 400, which will not be repeated here.
  • the recovery of the IQ signal is completed in the digital domain, so the circuit architecture does not require precise control of the orthogonal polarization state of the light, and the circuit architecture is not only easy to achieve the recovery of the baseband signal, but also conducive to improving the stability of the system;
  • the optical fiber adjusts the polarization state of light, which has the advantages of low cost and low loss; at the same time, the LU is not sensitive to the polarization state of the light transmitted by the RU, and a non-polarization maintaining fiber can be used to transmit the optical signal, reducing the The development cost of the system is reduced; in the digital processing stage, the IQ signal of the baseband signal is recovered by using different algorithms, which solves the problem of nonlinearity of the system and greatly improves the performance of the system.
  • At least one of a PC and an optical fiber 2 is provided between the OS and the PBS 1 .
  • At least one of a PC and an optical fiber 2 is provided between the OS and the PBS 2 .
  • At least one of a PC and an optical fiber 2 is provided between the OS and the PBS 1 and between the OS and the PBS 2 , respectively.
  • FIG. 6 is a schematic block diagram of another signal receiving system 600 provided by the present application.
  • the RU includes an antenna, a BPF, an LNA, a first electrical coupler EC 1 , and a second electrical coupler EC 2 , LD, PDM-DEMZM, VCO, OBPF, wherein PDM-DEMZM includes two sub-modulators X-DEMZM and Y-DEMZM, 90° PR and PBC.
  • the LU is similar to the above-mentioned system 500, and reference may be made to the relevant description of the LU in the system 500, which will not be repeated here.
  • the antenna is connected to the input end of the BPF, the output end of the BPF is connected to the input end of the LNA, the output end of the LNA is connected to the input end of the EC 1 , and the output end of the EC 1 is connected to the X- end of the PDM-DEMZM.
  • the two RF input terminals of the DEMZM are connected, the VCO is connected to the input terminal of EC 2 , the output terminal of EC 2 is connected to the two RF input terminals of the Y-DEMZM of the PDM-DEMZM, and the LD is connected to the optical input terminal of the PDM-DEMZM.
  • the output port of the PDM-DEMZM is connected to the input port of the OBPF.
  • the antenna is used to receive RF, and the RF is input to the BPF; the BPF is used to filter the RF to obtain the filtered RF, and the filtered RF is input to the LNA; the LNA is used to filter the RF Amplify the signal, obtain the amplified RF, and input the amplified RF to EC 1 ; EC 1 is used to receive the amplified RF, electrically couple the amplified RF, and input the coupled RF to the X-DEMZM The two radio frequency input terminals of the X-DEMZM are used to modulate the coupled RF to obtain the optical signal carrying the RF; the VCO is used to generate the LO with the same frequency as the RF, and the LO is input to the EC 2 ; the EC 2 is used to Receive the LO, electrically couple the LO to obtain the coupled LO, and input the coupled LO to the two RF input terminals of the Y-DEMZM; the Y
  • the recovery of the IQ signal is completed in the digital domain, so the circuit architecture does not require precise control of the orthogonal polarization state of the light, and the circuit architecture not only facilitates the recovery of the baseband signal, but also reduces the system cost; Compared with the polarization controller PC, it has the advantages of low cost and low loss; at the same time, the LU is not sensitive to the polarization state of the light transmitted by the RU, and a non-polarization maintaining fiber can be used to transmit the optical signal, which reduces the system cost. Development cost; in the digital processing stage, the IQ signal of the baseband signal is recovered by using different algorithms, which solves the problem of system nonlinearity and greatly improves the performance of the system.
  • At least one of a PC and an optical fiber 2 is provided between the OS and the PBS 1 .
  • At least one of a PC and an optical fiber 2 is provided between the OS and the PBS 2 .
  • At least one of a PC and an optical fiber 2 is provided between the OS and the PBS 1 and between the OS and the PBS 2 , respectively.
  • FIG. 7 is a schematic flowchart of a signal receiving method 700 provided by an embodiment of the present application.
  • the method 700 may be applied to the system architecture 100 shown in FIG. 1 , but the embodiment of the present application is not limited thereto.
  • the method 700 may be executed by the apparatus 200 shown in FIG. 2 above, that is, executed by the LU in the system architecture 100 .
  • method 700 may include the following steps:
  • S701 Receive a first polarization multiplexed optical signal from a remote device, divide the first polarization multiplexed optical signal into at least two paths, and obtain at least two paths of second polarization multiplexed optical signals.
  • S702 Perform coupling processing on the second polarization multiplexed optical signal to obtain a linearly polarized optical signal.
  • S703 Convert the linearly polarized optical signal into an analog signal, and perform analog-to-digital conversion on the analog signal to obtain a digital signal.
  • the signal receiving method of the embodiment of the present application obtains at least three mutually independent analog signals, converts them into digital signals for digital processing, and restores the IQ signal in the digital domain, so the signal receiving method does not need to correct the optical positive
  • the cross-polarization state is precisely controlled, and the recovery of the baseband signal is easy to achieve.
  • performing coupling processing on the second polarization multiplexed optical signal to obtain a linearly polarized optical signal includes: coupling one of the at least two second polarization multiplexed optical signals to a second polarization multiplexed optical signal Coupling and outputting to obtain a first linearly polarized optical signal and a second linearly polarized optical signal; coupling and outputting the other second polarization multiplexing optical signal among the at least two second polarization multiplexing optical signals to obtain a third linearly polarized optical signal.
  • the above-mentioned converting the linearly polarized optical signal into an analog signal and performing analog-to-digital conversion on the analog signal to obtain a digital signal includes: converting the first linearly polarized optical signal into a first analog signal, and performing analog-to-digital conversion on the first analog signal , obtain a first digital signal; convert the second linearly polarized optical signal into a second analog signal, and perform analog-to-digital conversion on the second analog signal to obtain a second digital signal; convert the third linearly polarized optical signal into a third analog signal, and performing analog-to-digital conversion on the third analog signal to obtain a third digital signal;
  • the above-mentioned processing of the digital signal to obtain the baseband signal includes: processing the first digital signal, the second digital signal and the third digital signal to obtain the baseband signal.
  • coupling and outputting one of the at least two second polarization multiplexed optical signals to obtain the first linearly polarized optical signal and the second linearly polarized optical signal includes: adjusting A channel of the second polarization multiplexes the polarization state of the optical signal to obtain an adjusted channel of the optical signal; the adjusted channel of the optical signal is coupled and output to obtain the first linearly polarized optical signal and the second linearly polarized optical signal.
  • the above-mentioned coupling and outputting another second polarization multiplexing optical signal of the at least two second polarization multiplexing optical signals to obtain a third linearly polarized optical signal includes: adjusting the other second polarization multiplexing optical signal. Using the polarization state of the optical signal, another optical signal after adjustment is obtained; the other optical signal after adjustment is coupled out to obtain a third linearly polarized optical signal.
  • performing coupling processing on the second polarization multiplexed optical signal to obtain a linearly polarized optical signal includes: coupling one of the at least two second polarization multiplexed optical signals to a second polarization multiplexed optical signal Coupling and outputting to obtain a first linearly polarized optical signal and a second linearly polarized optical signal; coupling and outputting the other second polarization multiplexing optical signal in the at least two second polarization multiplexing optical signals to obtain a third linearly polarized optical signal and a second polarization multiplexing optical signal.
  • the above-mentioned converting the linearly polarized optical signal into an analog signal and performing analog-to-digital conversion on the analog signal to obtain a digital signal includes: converting the first linearly polarized optical signal into a first analog signal, and performing analog-to-digital conversion on the first analog signal , obtain a first digital signal; convert the second linearly polarized optical signal into a second analog signal, and perform analog-to-digital conversion on the second analog signal to obtain a second digital signal; convert the third linearly polarized optical signal into a third analog signal, and performing analog-to-digital conversion on the third analog signal to obtain a third digital signal; converting the fourth linearly polarized optical signal into a fourth analog signal, and performing analog-to-digital conversion on the fourth analog signal to obtain a fourth digital signal;
  • the above-mentioned processing of the digital signal to obtain the baseband signal includes: processing the first digital signal, the second digital signal, the third digital signal and the fourth digital signal to obtain the baseband signal.
  • coupling and outputting one of the at least two second polarization multiplexed optical signals to obtain the first linearly polarized optical signal and the second linearly polarized optical signal includes: adjusting A channel of the second polarization multiplexes the polarization state of the optical signal to obtain an adjusted channel of the optical signal; the adjusted channel of the optical signal is coupled and output to obtain the first linearly polarized optical signal and the second linearly polarized optical signal.
  • the above-mentioned coupling output of another second polarization multiplexed optical signal among the at least two second polarization multiplexed optical signals to obtain a third linearly polarized optical signal and a fourth linearly polarized optical signal including: Adjusting the polarization state of the other channel of the second polarization multiplexing optical signal to obtain another channel of adjusted optical signal; coupling and outputting the other channel of the adjusted optical signal to obtain the third linearly polarized optical signal and the fourth linearly polarized optical signal.
  • each module in the signal receiving apparatus may be implemented by hardware or by a combination of software and hardware. Not limited.
  • the present application also provides a signal receiving system, including the above-mentioned signal receiving device, a remote device and an optical fiber.
  • a signal receiving system including the above-mentioned signal receiving device, a remote device and an optical fiber.
  • the signal receiving system may be specifically shown in FIG. 3 to FIG. 6 , the foregoing description can be referred to, and details are not repeated here.
  • the disclosed system, apparatus and method may be implemented in other manners.
  • the apparatus embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution in this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the functions, if implemented in the form of software functional units and sold or used as independent products, may be stored in a computer-readable storage medium.
  • the technical solution of the present application can be embodied in the form of a software product in essence, or the part that contributes to the prior art or the part of the technical solution, and the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (ROM), random access memory (RAM), magnetic disk or optical disk and other media that can store program codes .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optical Communication System (AREA)

Abstract

本申请提供了一种信号接收装置和信号接收方法,能够在恢复基带信号时,不需要对光的正交偏振态进行精准控制,易于实现,且能够降低系统成本。该装置包括光分路器、光信号处理模块、光电探测器、模数转换器和数字信号处理器。光分路器用于将第一偏振复用光信号分成至少两路第二偏振复用光信号,并分别输入至少两个光信号处理模块;光信号处理模块用于对第二偏振复用光信号进行耦合处理,并将耦合后的光信号输入至光电探测器;光电探测器用于将耦合后的光信号转换为模拟信号,并将模拟信号输入至模数转换器;模数转换器用于将模拟信号转换为数字信号,并将数字信号输入至数字信号处理器;数字信号处理器用于对数字信号进行处理,获得基带信号。

Description

信号接收装置和信号接收方法
本申请要求于2020年10月27日提交中国国家知识产权局、申请号为202011175626.8、申请名称为“信号接收装置和信号接收方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,更具体地,涉及一种信号接收装置和信号接收方法。
背景技术
随着通信技术的快速发展,人们对高清视频、虚拟现实和远程会议等场景下的大数据量传输要求越来越高,该传输要求包括超高速率、低延时以及超大网络容量等,这给当前的通信系统提出了更高的要求。微波以及毫米波技术已经成为当前无线通信系统的关键技术,微波光子技术考虑使用光来解决电域的问题,同时结合了微波和光通信的双重优势,具有超宽带、低损耗、抗电磁干扰且成本低等优点,得到了越来越广泛的研究。
在微波光子技术领域,微波光子零中频接收机的成本低,体积小,是当前集成度较高的一种接收机。现有技术中的微波光子零中频接收机是通过模拟电路的方法来恢复基带信号的同相和正交(in-phase/quadrature,IQ)信号,该方法需要对光的正交偏振态和相位差进行精准控制,不易实现,且成本较高。
发明内容
本申请提供一种信号接收装置和信号接收方法,在恢复基带信号时,不再需要对光的正交偏振态进行精准控制,易于实现,且能够降低系统成本。
第一方面,提供了一种信号接收装置,该接收装置包括:光分路器、光信号处理模块、光电探测器、模数转换器以及数字信号处理器。其中,光分路器用于接收来自远端装置的第一偏振复用光信号,将第一偏振复用光信号分成至少两路,得到至少两路第二偏振复用光信号,并将至少两路第二偏振复用光信号分别输入至少两个光信号处理模块,第一偏振复用光信号是将射频信号和本振信号分别调制到光载波的两个正交偏振态获得的;光信号处理模块用于对第二偏振复用光信号进行耦合处理,获得线偏振光信号,并将线偏振光信号输入至光电探测器;光电探测器用于将线偏振光信号转换为模拟信号,并将模拟信号输入至模数转换器;模数转换器用于对模拟信号进行模数转换,获得数字信号,将数字信号输入至数字信号处理器;数字信号处理器用于对数字信号进行处理,获得基带信号。
本申请实施例的信号接收装置,通过输出至少三路相互独立的模拟信号,将其进行模数转换后输入至数字信号处理器进行数字处理,在数字域进行IQ信号的恢复,所以该电路架构不需要对光的正交偏振态进行精准控制,且该电路架构不仅容易实现基带信号的恢复,而且能够降低系统成本。
应理解,上述远端装置可以包括:天线、带通滤波器、低噪声放大器、光电调制器、本振源、激光器以及光带通滤波器。其中,天线用于接收第一射频信号,将第一射频信号输入至带通滤波器;带通滤波器用于对第一射频信号进行滤波,获得第二射频信号,将第二射频信号输入至低噪声放大器;低噪声放大器用于对第二射频信号进行信号放大,获得第三射频信号,并将第三射频信号输入至光电调制器的一个射频输入端;本振源用于产生与第三射频信号频率相同的本振信号,并将本振信号输入至光电调制器的另一个射频输入端;激光器用于产生一束第五线偏振光信号,将该线偏振光信号输入至光电调制器的光输入端;光电调制器用于将该线偏振光信号分为上下两路信号,分别利用该线偏振光信号对第三射频信号和本振信号进行光域调制,获得正交偏振复用光,将正交偏振复用光输入至光带通滤波器;光带通滤波器用于对正交偏振复用光进行滤波,获得正交偏振复用光的上边带信号或下边带信号,将上边带信号或下边带信号确定为第一偏振复用光信号。
结合第一方面,在第一方面的某些实现方式中,光信号处理模块可以包括:偏振光分束器和起偏器;光电探测器包括:第一光电探测器、第二光电探测器以及第三光电探测器;模数转换器包括:第一模数转换器、第二模数转换器以及第三模数转换器。其中,偏振光分束器用于将第二偏振复用光信号耦合输出至偏振光分束器的两个主轴上,得到第一线偏振光信号和第二线偏振光信号,并将第一线偏振光信号输入至第一光电探测器,将第二线偏振光信号输入至第二光电探测器;起偏器用于将第二偏振复用光信号耦合输出至起偏器的主轴上,得到第三线偏振光信号,并将第三线偏振光信号输入至第三光电探测器;第一光电探测器用于将第一线偏振光信号转换为第一模拟信号,并将第一模拟信号输入至第一模数转换器;第二光电探测器用于将第二线偏振光信号转换为第二模拟信号,并将第二模拟信号输入至第二模数转换器;第三光电探测器用于将第三线偏振光信号转换为第三模拟信号,并将第三模拟信号输入至第三模数转换器;第一模数转换器用于对第一模拟信号进行模数转换,获得第一数字信号,并将第一数字信号输入至数字信号处理器;第二模数转换器用于对第二模拟信号进行模数转换,获得第二数字信号,并将第二数字信号输入至数字信号处理器;第三模数转换器用于对第三模拟信号进行模数转换,获得第三数字信号,并将第三数字信号输入至数字信号处理器;数字信号处理器用于对第一数字信号、第二数字信号以及第三数字信号进行处理,获得基带信号。
本申请实施例通过输出三路相互独立的模拟信号,将其进行模数转换后输入至数字信号处理器进行数字处理,在数字域进行IQ信号的恢复,所以该电路架构不需要对光的正交偏振态进行精准控制,且该电路架构不仅容易实现基带信号的恢复,而且能够降低系统成本。
结合第一方面,在第一方面的某些实现方式中,光分路器与上述偏振光分束器之间设有第一偏振控制器和第一光纤中的至少一个,第一偏振控制器或第一光纤用于调整来第二偏振复用光信号的偏振态;和/或,上述光分路器与上述起偏器之间设有第二偏振控制器和第二光纤中的至少一个,第二偏振控制器或第二光纤用于调整第二偏振复用光信号的偏振态。
应理解,调整光信号的偏振态是为了保证输出的三路模拟信号之间相互独立。
结合第一方面,在第一方面的某些实现方式中,光信号处理模块可以包括:第一偏振光分束器和第二偏振光分束器;光电探测器包括:第一光电探测器、第二光电探测器、第 三光电探测器以及第四光电探测器;模数转换器包括:第一模数转换器、第二模数转换器、第三模数转换器以及第四模数转换器。其中,第一偏振光分束器用于将第二偏振复用光信号耦合输出至第一偏振光分束器的两个主轴上,得到第一线偏振光信号和第二线偏振光信号,并将第一线偏振光信号输入至第一光电探测器,将第二线偏振光信号输入至第二光电探测器;第二偏振光分束器用于将第二偏振复用光信号耦合输出至第二偏振光分束器的两个主轴上,得到第三线偏振光信号和第四线偏振光信号,并将第三线偏振光信号输入至第三光电探测器,将第四线偏振光信号输入至第四光电探测器;第一光电探测器用于将第一线偏振光信号转换为第一模拟信号,并将第一模拟信号输入至第一模数转换器;第二光电探测器用于将第二线偏振光信号转换为第二模拟信号,并将第二模拟信号输入至第二模数转换器;第三光电探测器用于将第三线偏振光信号转换为第三模拟信号,并将第三模拟信号输入至第三模数转换器;第四光电探测器用于将第四线偏振光信号转换为第四模拟信号,并将第四模拟信号输入至第四模数转换器;第一模数转换器用于对第一模拟信号进行模数转换,获得第一数字信号,将第一数字信号输入至数字信号处理器;第二模数转换器用于对第二模拟信号进行模数转换,获得第二数字信号,将第二数字信号输入至数字信号处理器;第三模数转换器用于对第三模拟信号进行模数转换,获得第三数字信号,将第三数字信号输入至数字信号处理器;第四模数转换器用于对第四模拟信号进行模数转换,获得第四数字信号,将第四数字信号输入至数字信号处理器;数字信号处理器具体用于对第一数字信号、第二数字信号、第三数字信号以及第四数字信号进行处理,获得基带信号。
本申请实施例通过输出四路相互独立的模拟信号,将其进行模数转换后输入至数字信号处理器进行数字处理,在数字域进行IQ信号的恢复,所以该电路架构不需要对光的正交偏振态进行精准控制,且该电路架构不仅容易实现基带信号的恢复,而且能够降低系统成本。
结合第一方面,在第一方面的某些实现方式中,光分路器与上述第一偏振光分束器之间设有第一偏振控制器和第一光纤中的至少一个,第一偏振控制器或第一光纤用于调整第二偏振复用光信号的偏振态;和/或,上述光分路器与上述第二偏振光分束器之间设有第一偏振控制器和第一光纤中的至少一个,第一偏振控制器或第一光纤用于调整第二偏振复用光信号的偏振态。
应理解,调整光信号的偏振态是为了保证输出的四路模拟信号之间相互独立。
第二方面,提供的一种信号接收方法,包括:接收来自远端装置的第一偏振复用光信号,将第一偏振复用光信号分成至少两路,得到至少两路第二偏振复用光信号;对第二偏振复用光信号进行耦合处理,获得线偏振光信号;将线偏振光信号转换为模拟信号,并对模拟信号进行模数转换,获得数字信号;对数字信号进行处理,获得基带信号。上述方法可以由上述第一方面中任一种可能实现的装置执行。
本申请实施例的信号接收方法,通过获得至少三路相互独立的模拟信号,将其转换为数字信号进行数字处理,在数字域进行IQ信号的恢复,所以该信号接收方法不需要对光的正交偏振态进行精准控制,且容易实现基带信号的恢复。
结合第二方面,在第二方面的某些实现方式中,上述对第二偏振复用光信号进行耦合处理,获得线偏振光信号,包括:将至少两路第二偏振复用光信号中的一路第二偏振复用光信号耦合输出,得到第一线偏振光信号和第二线偏振光信号;将至少两路第二偏振复用 光信号中的另一路第二偏振复用光信号耦合输出,得到第三线偏振光信号。
上述将线偏振光信号转换为模拟信号,并对模拟信号进行模数转换,获得数字信号,包括:将第一线偏振光信号转换为第一模拟信号,并对第一模拟信号进行模数转换,获得第一数字信号;将第二线偏振光信号转换为第二模拟信号,并对第二模拟信号进行模数转换,获得第二数字信号;将第三线偏振光信号转换为第三模拟信号,并对第三模拟信号进行模数转换,获得第三数字信号。
上述对数字信号进行处理,获得基带信号,包括:对第一数字信号、第二数字信号以及第三数字信号进行处理,获得基带信号。
结合第二方面,在第二方面的某些实现方式中,上述将至少两路第二偏振复用光信号中的一路第二偏振复用光信号耦合输出,得到第一线偏振光信号和第二线偏振光信号,包括:调整一路第二偏振复用光信号的偏振态,获得调整后的一路光信号;将调整后的一路光信号耦合输出,得到第一线偏振光信号和第二线偏振光信号。
结合第二方面,在第二方面的某些实现方式中,上述将至少两路第二偏振复用光信号中的另一路第二偏振复用光信号耦合输出,得到第三线偏振光信号,包括:调整另一路第二偏振复用光信号的偏振态,获得调整后的另一路光信号;将调整后的另一路光信号耦合输出,得到第三线偏振光信号。
结合第二方面,在第二方面的某些实现方式中,上述对第二偏振复用光信号进行耦合处理,获得线偏振光信号,包括:将至少两路第二偏振复用光信号中的一路第二偏振复用光信号耦合输出,得到第一线偏振光信号和第二线偏振光信号;将至少两路第二偏振复用光信号中的另一路第二偏振复用光信号耦合输出,得到第三线偏振光信号和第四线偏振光信号。
上述将线偏振光信号转换为模拟信号,并对模拟信号进行模数转换,获得数字信号,包括:将第一线偏振光信号转换为第一模拟信号,并对第一模拟信号进行模数转换,获得第一数字信号;将第二线偏振光信号转换为第二模拟信号,并对第二模拟信号进行模数转换,获得第二数字信号;将第三线偏振光信号转换为第三模拟信号,并对第三模拟信号进行模数转换,获得第三数字信号;将第四线偏振光信号转换为第四模拟信号,并对第四模拟信号进行模数转换,获得第四数字信号;
上述对数字信号进行处理,获得基带信号,包括:对第一数字信号、第二数字信号、第三数字信号以及第四数字信号进行处理,获得基带信号。
结合第二方面,在第二方面的某些实现方式中,上述将至少两路第二偏振复用光信号中的一路第二偏振复用光信号耦合输出,得到第一线偏振光信号和第二线偏振光信号,包括:调整一路第二偏振复用光信号的偏振态,获得调整后的一路光信号;将调整后的一路光信号耦合输出,得到第一线偏振光信号和第二线偏振光信号。
结合第二方面,在第二方面的某些实现方式中,上述将至少两路第二偏振复用光信号中的另一路第二偏振复用光信号耦合输出,得到第三线偏振光信号和第四线偏振光信号,包括:调整另一路第二偏振复用光信号的偏振态,获得调整后的另一路光信号;将调整后的另一路光信号耦合输出,得到第三线偏振光信号和第四线偏振光信号。
第三方面,提供的一种信号接收系统,包括上述第一方面中任何一种可能的实现方式中的信号接收装置、远端装置和光纤。
第四方面,提供了一种信号接收装置,用于执行上述第二方面中任一种可能的实现方式中的方法。具体地,该装置包括用于执行上述第二方面中任一种可能的实现方式中的方法的模块。
第五方面,提供了一种计算机程序产品,计算机程序产品包括:计算机程序(也可以称为代码,或指令),当计算机程序被运行时,使得计算机执行上述第二方面中任一种可能实现方式中的方法。
第六方面,提供了一种计算机可读存储介质,该计算机可读存储介质存储有计算机程序(也可以称为代码,或指令)当其在计算机上运行时,使得计算机执行上述第二方面中任一种可能实现方式中的方法。
第七方面,提供了一种芯片系统,该芯片系统包括处理器,用于实现上述第二方面或第二方面任一种可能实现方式中所涉及的方法。在一种可能的设计中,该芯片系统还包括存储器,存储器,用于保存程序指令。该芯片系统可以由芯片构成,也可以包括芯片和其他分立器件。
附图说明
图1是本申请实施例提供的信号接收装置的系统架构的示意性框图;
图2是本申请实施例提供的一种信号接收装置的示意性框图;
图3是本申请实施例提供的一种信号接收系统的示意性框图;
图4是本申请实施例提供的另一种信号接收系统的示意性框图;
图5是本申请实施例提供的又一种信号接收系统的示意性框图;
图6是本申请实施例提供的又一种信号接收系统的示意性框图;
图7为本申请实施例提供的一种信号接收方法的示意性流程图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信系统,例如:长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、通用移动通信系统(universal mobile telecommunication system,UMTS)、第五代(5th generation,5G)系统或新无线(new radio,NR)或者其他演进的通信系统等。
此外,本申请实施例的技术方案还可以应用于各种微波领域的电子接收系统中,例如,相控阵雷达、卫星通信等,本申请实施例对此不作限定。
为便于理解,首先介绍本申请实施例所涉及的相关术语。
1、带通滤波器(bandpass filter,BPF):一个允许特定频段的波通过同时屏蔽其他频段的设备。
2、低噪声放大器(low noise amplifier,LNA):一种噪声系数很低的放大器。一般用作各类无线电接收机的高频或中频前置放大器,以及高灵敏度电子探测设备的放大电路。
3、光电调制器:利用某些电光晶体,如铌酸锂晶体(LiNbO 3)、砷化稼晶体(GaAs)和钽酸锂晶体(LiTaO 3)的电光效应制成的调制器。电光效应即当把电压加到电光晶体上 时,电光晶体的折射率将发生变化,结果引起通过该晶体的光波特性的变化,实现对光信号的相位、幅度、强度以及偏振状态的调制。
在本申请中,光电调制器可以是偏振复用马赫增德尔调制器(polarization division multiplexing–mach zehnder modulator,PDM-MZM)和偏振复用双电极马赫增德尔调制器(polarization division multiplexing-dual electrode mach zehnder modulator,PDM-DEMZM)。
PDM-MZM和PDM-DEMZM可以是将输入光分成两路相等的信号分别进入调制器的两个光支路,这两个光支路采用的材料是电光性材料,其折射率随外部施加的电信号大小而变化,当两个支路信号调制器输出端再次结合在一起时,合成的光信号将是一个强度大小变化的干涉信号,相当于把电信号的变化转换成了光信号的变化,实现了光强度的调制。
4、光带通滤波器(optical bandpass filter,OBPF):用来滤除输入光信号的上下边带的任一边带的器件。
5、本振源(voltage-controlled oscillato,VCO):指输出频率与输入控制电压有对应关系的振荡电路,频率是输入信号电压的函数的振荡器,振荡器的工作状态或振荡回路的元件参数受输入控制电压的控制,就可构成一个压控振荡器。
6、射频信号(radio frequency,RF):经过调制的、拥有一定发射频率的电波。
7、本振信号(local oscillator,LO):由本振源产生,其振荡频率的选取原则上是首先要能妨碍其它无线电台的工作频率。
8、90度偏振旋转器(polarization rotator,90°PR):用于改变输入光信号偏振态的器件。
9、偏振光合束器(polarization beam combiner,PBC):用于将两束正交偏振光耦合入一根光线中,可用于泵浦激光器的功率合束,提高光纤激光器的消光比。
10、光分路器(optical splitter,OS):又称分光器,是光纤链路中重要的无源器件之一,是具有多个输入端和多个输出端的光纤汇接器件。
11、偏振光分束器(polarization beam splitter,PBS):用于将一束正交偏振光的单一输出分别耦合到两个光纤输出中。
12、偏振控制器(polarization controller,PC):用来改变输入光的偏振角度的器件。
13、起偏器(polarizer,POL):指普通光源发出的是自然光,用于从自然光中获得偏振光的器件。
14、光电探测器(photodiode,PD):用于将光信号转换为电信号,其原理是由辐射引起被照射材料电导率发生改变。
15、模数转换器(analog to digital converter,ADC):一个将模拟信号转变为数字信号的电子元件。
16、数字信号处理器(analog to digital converter,DSP):由大规模或超大规模集成电路芯片组成的用来完成数字信号处理任务的处理器。
在介绍本申请实施例提供的信号接收装置和信号接收方法之前,先做出以下几点说明。
第一,在下文示出的实施例中,各术语及英文缩略语,如光信号处理模块、耦合输出等,均为方便描述而给出的示例性举例,不应对本申请构成任何限定。本申请并不排除已有或未来定义其它能够实现相同或相似功能的术语的可能。
第二,在下文示出的实施例中第一、第二以及各种数字编号仅为描述方便进行的区分, 并不用来限制本申请实施例的范围。例如,区分不同的光信号、区分不同的器件等。
第三,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a、b和c中的至少一项(个),可以表示:a,或b,或c,或a和b,或a和c,或b和c,或a、b和c,其中a,b,c可以是单个,也可以是多个。
下面结合附图对本申请实施例做详细介绍。
图1是本申请实施例提供的系统架构100的示意性框图,该系统架构100包括:远端单元(remote unit,RU)、光纤以及本地单元(local unit,LU)。其中,RU用于接收RF以及产生LO,并将RF和LO调节到偏振正交复用的光载波上,获得携带RF和LO的正交偏振复用的光信号,再通过光纤将该光信号传输到LU。LU用于对上述正交偏振复用的光信号进行投影、探测、模数转换和数字信号处理,最终恢复出基带信号。
应理解,上述光纤可以是任一种非保偏光纤,本申请实施例对此不作限定。
示例性地,上述RU可以为宏站或者无线小站,本申请实施例对此不作限定。
上述宏站和无线小站统称为基站,可以是LTE系统中的演进型基站(evolved NodeB,eNB或eNodeB),还可以是家庭基站(例如,home evolved NodeB,或home Node B,HNB)、基带单元(base band unit,BBU),还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器,或者可以是WLAN中的接入点(access point,AP),可以是新型无线(new radio,NR)系统中的gNB,可以是卫星通信系统中的卫星基站等,本申请实施例并不限定。
图2是本申请实施例提供的一种信号接收装置200的示意性框图,该信号接收装置200包括:光分路器210、光信号处理模块220、光电探测器230、模数转换器240以及数字信号处理器250。
其中,光分路器210用于接收来自远端装置的第一偏振复用光信号,将第一偏振复用光信号分成至少两路,得到至少两路第二偏振复用光信号,并将至少两路第二偏振复用光信号分别输入至少两个光信号处理模块220,第一偏振复用光信号是将射频信号和本振信号分别调制到光载波的两个正交偏振态获得的;光信号处理模块220用于对第二偏振复用光信号进行耦合处理,获得线偏振光信号,并将线偏振光信号输入至光电探测器230;光电探测器230用于将线偏振光信号转换为模拟信号,并将模拟信号输入至模数转换器240;模数转换器240用于对模拟信号进行模数转换,获得数字信号,将数字信号输入至数字信号处理器250;数字信号处理器250用于对数字信号进行处理,获得基带信号。
本申请实施例的信号接收装置,通过输出至少三路相互独立的模拟信号,将其进行模数转换后输入至数字信号处理器进行数字处理,在数字域进行IQ信号的恢复,所以该电路架构不需要对光的正交偏振态进行精准控制,且该电路架构不仅容易实现基带信号的恢复,而且能够降低系统成本。
应理解,上述远端装置可以包括:天线、带通滤波器、低噪声放大器、光电调制器、本振源、激光器以及光带通滤波器。
其中,天线用于接收第一射频信号,将第一射频信号输入至带通滤波器;带通滤波器用于对第一射频信号进行滤波,获得第二射频信号,将第二射频信号输入至低噪声放大器;低噪声放大器用于对第二射频信号进行信号放大,获得第三射频信号,并将第三射频信号输入至光电调制器的一个射频输入端;本振源用于产生与第三射频信号频率相同的本振信号,并将本振信号输入至光电调制器的另一个射频输入端;激光器用于产生一束第五线偏振光信号,将该线偏振光信号输入至光电调制器的光输入端;光电调制器用于将该线偏振光信号分为上下两路信号,分别利用该线偏振光信号对第三射频信号和本振信号进行光域调制,获得正交偏振复用光,将正交偏振复用光输入至光带通滤波器;光带通滤波器用于对正交偏振复用光进行滤波,获得正交偏振复用光的上边带信号或下边带信号,将上边带信号或下边带信号确定为第一偏振复用光信号。
作为一个可以选的实施例,上述光信号处理模块220包括:偏振光分束器和起偏器;上述光电探测器230包括:第一光电探测器、第二光电探测器以及第三光电探测器;上述模数转换器240包括:第一模数转换器、第二模数转换器以及第三模数转换器。
其中,偏振光分束器用于将第二偏振复用光信号耦合输出至偏振光分束器的两个主轴上,得到第一线偏振光信号和第二线偏振光信号,并将第一线偏振光信号输入至第一光电探测器,将第二线偏振光信号输入至第二光电探测器;起偏器用于将第二偏振复用光信号耦合输出至起偏器的主轴上,得到第三线偏振光信号,并将第三线偏振光信号输入至第三光电探测器;第一光电探测器用于将第一线偏振光信号转换为第一模拟信号,并将第一模拟信号输入至第一模数转换器;第二光电探测器用于将第二线偏振光信号转换为第二模拟信号,并将第二模拟信号输入至第二模数转换器;第三光电探测器用于将第三线偏振光信号转换为第三模拟信号,并将第三模拟信号输入至第三模数转换器;第一模数转换器用于对第一模拟信号进行模数转换,获得第一数字信号,并将第一数字信号输入至数字信号处理器;第二模数转换器用于对第二模拟信号进行模数转换,获得第二数字信号,并将第二数字信号输入至数字信号处理器;第三模数转换器用于对第三模拟信号进行模数转换,获得第三数字信号,并将第三数字信号输入至数字信号处理器;数字信号处理器用于对第一数字信号、第二数字信号以及第三数字信号进行处理,获得基带信号。
本申请实施例通过输出三路相互独立的模拟信号,将其进行模数转换后输入至数字信号处理器进行数字处理,在数字域进行IQ信号的恢复,所以该电路架构不需要对光的正交偏振态进行精准控制,且该电路架构不仅容易实现基带信号的恢复,而且能够降低系统成本。
作为一个可选的实施例,上述光分路器210与上述偏振光分束器之间设有第一偏振控制器和第一光纤中的至少一个,第一偏振控制器或第一光纤用于调整来第二偏振复用光信号的偏振态;和/或,上述光分路器210与上述起偏器之间设有第二偏振控制器和第二光纤中的至少一个,第二偏振控制器或第二光纤用于调整第二偏振复用光信号的偏振态。
应理解,调整光信号的偏振态是为了保证输出的三路模拟信号之间相互独立。
作为一个可选的实施例,上述光信号处理模块220包括:第一偏振光分束器和第二偏振光分束器;上述光电探测器230包括:第一光电探测器、第二光电探测器、第三光电探测器以及第四光电探测器;上述模数转换器240包括:第一模数转换器、第二模数转换器、第三模数转换器以及第四模数转换器。
其中,第一偏振光分束器用于将第二偏振复用光信号耦合输出至第一偏振光分束器的两个主轴上,得到第一线偏振光信号和第二线偏振光信号,并将第一线偏振光信号输入至第一光电探测器,将第二线偏振光信号输入至第二光电探测器;第二偏振光分束器用于将第二偏振复用光信号耦合输出至第二偏振光分束器的两个主轴上,得到第三线偏振光信号和第四线偏振光信号,并将第三线偏振光信号输入至第三光电探测器,将第四线偏振光信号输入至第四光电探测器;第一光电探测器用于将第一线偏振光信号转换为第一模拟信号,并将第一模拟信号输入至第一模数转换器;第二光电探测器用于将第二线偏振转换为第二模拟信号,并将第二模拟信号输入至第二模数转换器;第三光电探测器用于将第三线偏振光信号转换为第三模拟信号,并将第三模拟信号输入至第三模数转换器;第四光电探测器用于将第四线偏振光信号转换为第四模拟信号,并将第四模拟信号输入至第四模数转换器;第一模数转换器用于对第一模拟信号进行模数转换,获得第一数字信号,将第一数字信号输入至数字信号处理器;第二模数转换器用于对第二模拟信号进行模数转换,获得第二数字信号,将第二数字信号输入至数字信号处理器;第三模数转换器用于对第三模拟信号进行模数转换,获得第三数字信号,将第三数字信号输入至数字信号处理器;第四模数转换器用于对第四模拟信号进行模数转换,获得第四数字信号,将第四数字信号输入至数字信号处理器;数字信号处理器具体用于对第一数字信号、第二数字信号、第三数字信号以及第四数字信号进行处理,获得基带信号。
本申请实施例通过输出四路相互独立的模拟信号,将其进行模数转换后输入至数字信号处理器进行数字处理,在数字域进行IQ信号的恢复,所以该电路架构不需要对光的正交偏振态进行精准控制,且该电路架构不仅容易实现基带信号的恢复,而且能够降低系统成本。
作为一个可选的实施例,上述光分路器210与上述第一偏振光分束器之间设有第一偏振控制器和第一光纤中的至少一个,第一偏振控制器或第一光纤用于调整第二偏振复用光信号的偏振态;和/或,上述光分路器210与上述第二偏振光分束器之间设有第一偏振控制器和第一光纤中的至少一个,第一偏振控制器或第一光纤用于调整第二偏振复用光信号的偏振态。
应理解,调整光信号的偏振态是为了保证输出的四路模拟信号之间相互独立。
下面,结合本申请实施例的四种可能的信号接收系统的示意性框图(即图3至图6),对上述RU和LU的结构进行详细说明。
图3是本申请实施例提供的一种信号接收系统300的示意性框图,在该信号接收系统300中,RU包括天线、BPF、LNA、LD、PDM-MZM、VCO以及OBPF,其中,PDM-MZM包括两个子调制器X-MZM和Y-MZM、90°PR以及PBC。LU包括OS、PBS、POL、第一光电探测器PD 1、第二光电探测器PD 2、第三光电探测器PD 3、第一模数转换器ADC 1、第二模数转换器ADC 2、第三模数转换器ADC 3以及DSP。
其中,天线与BPF的输入端连接,BPF的输出端与LNA的输入端连接,LNA的输出端与PDM-MZM的一个射频输入端连接,VCO与PDM-MZM的另一个射频输入端连接,LD与PDM-MZM的光输入端连接,PDM-MZM的输出端与OBPF的输入端连接;OBPF的输出端与光纤的一端连接,光纤的另一端与OS的输入端连接;OS的一个输出端与PBS的输入端连接,PBS的一个输出端与PD 1的输入端连接,PD 1的输出端与ADC 1的输入端 连接,PBS的另一输出端与PD 2的输入端连接,PD 2的输出端与ADC 2的输入端连接;OS的另一输出端与POL的输入端连接,POL的输出端与PD 3的输入端连接,PD 3的输出端与ADC 3的输入端连接;上述ADC 1的输出端、ADC 2的输出端以及ADC 3的输出端,分别与上述DSP的三个输入端连接。
在图3的RU中,天线用于接收RF,将RF输入至BPF;BPF用于对RF进行滤波,获得滤波后的RF,将滤波后的RF输入至LNA;LNA用于对滤波后的RF进行信号放大,获得放大后的RF,并将放大后的RF输入至PDM-MZM的一个射频输入端;VCO用于产生与上述RF频率相同的LO,并将LO输入至PDM-MZM的另一个射频输入端;LD用于产生一束线偏振光,并将该线偏振光输入至PDM-MZM的光输入端;PDM-MZM用于将上述线偏振光分为上下两路信号,分别利用线偏振光对放大后的RF和LO进行光域调制,获得正交偏振复用光,并将该正交偏振复用光输入至OBPF;OBPF用于对上述正交偏振复用光进行滤波,获得正交偏振复用光的上边带信号或下边带信号,并从中选择一个信号发送,本实施例将该信号称为第一偏振复用光信号。
光纤用于接收上述OBPF发送的第一偏振复用光信号,经过远距离传输,将该第一偏振复用光信号输送至LU中的OS的输入端。
在图3的LU中,OS用于对上述第一偏振复用光信号进行分路,得到两路完全相同的第二偏振复用光信号;PBS用于对来自OS的第二偏振复用光信号进行耦合处理,得到光信号E out1和E out2,并将E out1输入至PD 1,将E out2输入至PD 2;POL用于对来自OS的第二偏振复用光信号进行耦合处理,得到光信号E out3,并将E out3输入至PD 3;PD 1用于将E out1转换为模拟信号i 1(t),并将i 1(t)输入至ADC 1;PD 2用于将E out2转换为模拟信号i 2(t),并将i 2(t)输入至ADC 2;PD 3用于将E out3转换为模拟信号i 3(t),并将i 3(t)输入至ADC 3;ADC 1用于i 1(t)进行模数转换,获得数字信号i 1(n),将i 1(n)输入至DSP的第一输入端;ADC 2用于对i 2(t)进行模数转换,获得数字信号i 2(n),将i 2(n)输入至DSP的第二输入端;ADC 3用于对i 3(t)进行模数转换,获得数字信号i 3(n),将i 3(n)输入至DSP的第三输入端;DSP用于对i 1(n)、i 2(n)以及i 3(n)进行处理,获得IQ信号。
其中,本申请实施例在DSP进行数字处理的过程中,通过采用不同的非线性补偿算法,例如:“具有时延和非线性的记忆多项式”、“神经网络算法”等,可以解决系统存在的时延以及非线性问题。
下面详细介绍本申请实施例的每一路信号的表达式。
1、LD所产生的线偏振光的表达式为:
E in=E ce jwt      (1)
其中,E c为线偏振光的输出幅度,ω为线偏振光的频率;
RF信号的表达式为:
v RF(t)=IcosΩt+QsinΩt,
其中,I为同相分量,Q为正交分量,Ω为射频信号频率。
VCO所产生的LO信号的表达式为:
v LO(t)=v LOcosΩt,
上述LO信号的频率与RF信号相同。
2、将v RF(t)输入至子调制器X-MZM,使V dc1工作在最小点,即子调制器X-MZM内部 上下两路之间的相位差为π,得到子调制器X-MZM的输出信号:
Figure PCTCN2021124874-appb-000001
忽略公式(2)中的高次项后,在E X-MZM(t)中就只包含ω+Ω边带和ω-Ω边带的信号,即光载波被抑制。
3、同理,将v RF(t)输入至子调制器Y-MZM,使V dc2工作在最小工作点,得到子调制器Y-MZM的输出信号:
Figure PCTCN2021124874-appb-000002
忽略公式(3)中高次项后,在E Y-MZM(t)中只包含ω+Ω边带和ω-Ω边带的信号,即光载波被抑制。
4、光信号E Y-MZM(t)经过90°PR后与光信号E X-MZM(t)通过PBC合并成一路偏振复用的光信号,其表达式为:
Figure PCTCN2021124874-appb-000003
5、公式(4)的光信号E PDM-MZM(t)包含横电波(Transverse electric wave,TE)和横磁波(Transverse magnetic wave,TM)两个正交的偏振态光信号,其中基带信号的IQ信息包含在偏振态TE的光信号中,而LO包含在偏振态TM的光信号中。
此外,公式(4)的光信号E PDM-MZM(t)中包含ω+Ω和ω-Ω上下两个边带的光信号,可以通过OBPF,滤除下边带ω-Ω,保留上边带ω+Ω(或者,保留下边带ω-Ω,滤除上边带ω+Ω),得到OBPF的输出结果:
Figure PCTCN2021124874-appb-000004
6、OBPF输出的光信号E OBPF(t)经过光纤传输至LU,LU中的OS将E OBPF(t)分为两路完全相同的光信号,其中,一路光信号进入PBS后得到E out1和E out2,另一路光信号进入POL后得到E out3,其表达式可以统一表示为E outk
Figure PCTCN2021124874-appb-000005
其中,k=1,2,3,α 1和α 2为进入PBS1的光信号与PBS1主轴之间的夹角,α 3为进入POL 的光信号与起偏器Pol主轴之间的夹角。
7、上述E outk(t)光信号分别经过PD拍频后可以得到:
Figure PCTCN2021124874-appb-000006
8、PD输出的光电流i k(t)经过ADC可以被转换为数字信号i k(n)。示例性地,根据公式(7)可将数字信号i k(n)写为矩阵形式,即:
Figure PCTCN2021124874-appb-000007
9、通过DSP对上述数字信号i k(n)进行数字信号处理,从而可以恢复出基带IQ信号。示例性地,对公式(8)中的矩阵求逆,可以得到基带信号的IQ信号:
Figure PCTCN2021124874-appb-000008
公式(9)中的IQ信号可以表示为:
Figure PCTCN2021124874-appb-000009
当公式(10)中的系数a k和b k确定时,即可使用公式(10)恢复IQ信号。其中,a k对应于公式(9)中的a 1、a 2、a 3,b k对应于公式(9)中的b 1、b 2、b 3
由于系统存在时延以及非线性,本申请实施例的DSP可以采用一种记忆多项式来进行基带信号的恢复,有利于解决系统时延和非线性的问题。
示例性地,上述IQ信号可以分别通过下列表达式来恢复:
Figure PCTCN2021124874-appb-000010
当公式(11)中的系数a kqp和b kqp确定时,便可以使用公式(11)进行IQ信号的恢复。上述记忆多项式是预设在DSP中的算法,系数a kqp和b kqp是预设在DSP中的算法确定的。
本申请实施例通过输出i 1(t)、i 2(t)和i 3(t)三路相互独立的模拟信号,将其进行模数转换后输入至DSP进行数字处理,在数字域进行IQ信号的恢复,所以该电路架构不需要对光的正交偏振态进行精准控制,且该电路架构不仅容易实现基带信号的恢复,而且利于提高 系统的稳定性;此外,由于LU对RU传输过来的光的偏振态不敏感,可以采用非保偏光纤传输光信号,降低了系统的开发成本。同时,在数字处理阶段通过采用不同的算法恢复基带信号的IQ信号,能够解决系统存在的非线性问题,大大提升了系统的性能。
可选地,上述OS与PBS之间设有PC,和/或,上述OS与PBS之间设有一段光纤。
可选地,上述OS与POL之间设有PC,和/或,上述OS与POL之间设有一段光纤。
可选地,上述OS与PBS之间和上述OS与POL之间分别设有PC,和/或,上述OS与PBS之间和上述OS与POL之间分别设有一段光纤。
上述PC和/或光纤用于调整来自OS的第二偏振复用光信号的偏振态,设置PC和/或光纤能保证i 1(t)、i 2(t)和i 3(t)之间相互独立,从而可以提高LU恢复的IQ信号的准确性。
图4是本申请提供的另一种信号接收系统400的示意性框图,在该信号接收系统400中,RU与上述系统300中的RU类似,可以参照系统300中关于RU的相关描述,此处不再赘述。系统400中的LU包括OS、第一偏振光分束器PBS 1、第二偏振光分束器PBS 2、第一光电探测器PD 1、第二光电探测器PD 2、第三光电探测器PD 3、第四光电探测器PD 4、第一模数转换器ADC 1、第二模数转换器ADC 2、第三模数转换器ADC 3、第四模数转换器ADC 4以及DSP。
在图4的LU中,OS的一个输出端与PBS 1的输入端连接,PBS 1的一个输出端与PD 1的输入端连接,PD 1的输出端与ADC 1的输入端连接;PBS 1的另一输出端与PD 2的输入端连接,PD 2的输出端与ADC 2的输入端连接;OS的另一输出端与PC输入端连接,PC的输出端与PBS 2的一个出端与PD 3的输入端连接,PD 3的输出端与ADC 3的输入端连接;PBS 2的另一输出端与PD 4的输入端连接,PD 4的输出端与ADC 4的输入端连接;上述ADC 1的输出端、ADC 2的输出端、ADC 3的输出端以及ADC 4的输出端,分别与上述DSP的四个输入端连接。
具体而言,OS用于对上述第一偏振复用光信号进行分路,得到两路完全相同的第二偏振复用光信号;PBS 1用于对来自OS的第二偏振复用光信号进行耦合处理,得到光信号E out1和E out2,并将E out1输入至上述PD 1,将E out2输入PD 2;PBS 2用于对来自OS的第二偏振复用光信号进行耦合处理,得到光信号E out3和E out4,并将E out3输入至PD 3,将E out4输入至PD 4;PD 1用于将E out1转换为模拟信号i 1(t),并将i 1(t)输入至ADC 1;PD 2用于将E out2转换为模拟信号i 2(t),并将i 2(t)输入至ADC 2;PD 3用于将E out3转换为模拟信号i 3(t),并将i 3(t)输入至ADC 3;PD 4用于将E out4转换为模拟信号i 4(t),并将i 4(t)输入至ADC 4;ADC 1用于对i 1(t)进行模数转换,获得数字信号i 1(n),将i 1(n)输入至DSP的第一输入端;ADC 2用于对i 2(t)进行模数转换,获得数字信号i 2(n),将i 2(n)输入至DSP的第二输入端;ADC 3用于对i 3(t)进行模数转换,获得数字信号i 3(n),将i 3(n)输入至DSP的第三输入端;ADC 4用于对i 4(t)进行模数转换,获得数字信号i 4(n),将i 4(n)输入至DSP的第四输入端;DSP用于对i 1(n)、i 2(n)、i 3(n)以及i 4(n)进行数字处理,获得基带信号的IQ信号。PC用于调整来自OS的第二偏振复用光信号的偏振态,使得i 1(t)、i 2(t)、i 3(t)以及i 4(t)之间相互独立。
其中,DSP所使用的算法以及数字处理过程可参照上述系统200中的相关描述,此处不再赘述。
本申请实施例通过设置PC来调整光的偏振态,保证四路输出i 1(t)、i 2(t)、i 3(t)以及i 4(t)之间相互独立,将其进行模数转换后输入至DSP进行数字处理,在数字域完成IQ信号的 恢复,所以该电路架构不需要对光的正交偏振态进行精准控制,且该电路架构不仅容易实现基带信号的恢复,而且利于提高系统的稳定性;此外,由于LU对RU传输过来的光的偏振态不敏感,可以采用非保偏光纤传输光信号,降低了系统的开发成本;同时,在数字处理阶段通过采用不同的算法恢复基带信号的IQ信号,能够解决系统存在的非线性问题,大大提升了系统的性能。
图5是本申请提供的又一种信号接收系统500的示意性框图,在该信号接收系统500中,RU与上述系统300类似,可以参照系统300中关于RU的相关描述,此处不再赘述。LU是在系统400的基础上,将系统400中LU的OS与PBS 2之间设有的PC替换为一段光纤。为便于区分,本实施例将RU和LU之间的光纤称为光纤1,将OS与PBS 2之间的光纤称为光纤2。
上述光纤2用于调整来自OS的第二偏振复用光信号的偏振态,使得i 1(t)、i 2(t)、i 3(t)以及i 4(t)之间相互独立。LU中的其他器件与上述系统400类似,可以参照系统400中关于LU的相关描述,此处也不再赘述。
本申请实施例通过输出i 1(t)、i 2(t)、i 3(t)以及i 4(t)四路相互独立的模拟信号,将其进行模数转换后输入至DSP进行数字处理,在数字域完成IQ信号的恢复,所以该电路架构不需要对光的正交偏振态进行精准控制,且该电路架构不仅容易实现基带信号的恢复,而且有利于提高系统的稳定性;通过采用光纤调整光的偏振态,相比偏振控制器PC具有成本低,损耗小的优势;同时此外LU对RU传输过来的光的偏振态不敏感,可以采用非保偏光纤用来传输光信号,降低了系统的开发成本;在数字处理阶段通过采用不同的算法恢复基带信号的IQ信号,解决了系统非线性的问题,大大提升了系统的性能。
可选的,上述OS与PBS 1之间设有PC和光纤2中的至少一个。
可选的,上述OS与PBS 2之间设有PC和光纤2中的至少一个。
可选地,上述OS与PBS 1之间和上述OS与PBS 2之间分别设有PC和光纤2中的至少一个。
图6是本申请提供的又一种信号接收系统600的示意性框图,在该信号接收系统600中,RU包括天线、BPF、LNA、第一电耦合器EC 1、第二电耦合器EC 2、LD、PDM-DEMZM、VCO、OBPF,其中PDM-DEMZM包括两个子调制器X-DEMZM和Y-DEMZM、90°PR以及PBC。LU与上述系统500类似,可以参照系统500中关于LU的相关描述,此处不再赘述。
在图6的RU中,天线与BPF的输入端连接,BPF的输出端与LNA的输入端连接,LNA的输出端与EC 1的输入端连接,EC 1的输出端与PDM-DEMZM的X-DEMZM的两个射频输入端连接,VCO与EC 2的输入端连接,EC 2的输出端与PDM-DEMZM的Y-DEMZM的两个射频输入端连接,LD与PDM-DEMZM的光输入端连接,PDM-DEMZM的输出端口与OBPF的输入端连接。
在图6的RU中,天线用于接收RF,将RF输入至BPF;BPF用于对RF进行滤波,获得滤波后的RF,将滤波后的RF输入至LNA;LNA用于对滤波后的RF进行信号放大,获得放大后的RF,并将放大后的RF输入至EC 1;EC 1用于接收放大后的RF,对放大后的RF进行电耦合,将耦合后的RF输入至X-DEMZM的两个射频输入端;X-DEMZM用于对耦合后的RF进行调制,获得携带RF的光信号;VCO用于产生与RF频率相同的LO, 并将LO输入至EC 2;EC 2用于接收LO,对LO进行电耦合,得到耦合后的LO,将耦合后的LO输入至Y-DEMZM的两个射频输入端;Y-DEMZM用于对耦合后的LO进行调制,获得携带LO的光信号;LD用于产生一束线偏振光,并将该线偏振光输入至PDM-DEMZM的光输入端;PDM-DEMZM用于将上述线偏振光分为上下两路信号,分别利用该线偏振光对放大后的RF和耦合后的LO进行光域调制,获得正交偏振复用光,并将该正交偏振复用光输入至OBPF;OBPF用于对上述正交偏振复用光进行滤波,获得正交偏振复用光的上边带信号或下边带信号,并从中选择一个信号发送,本实施例将该信号称为第一偏振复用光信号。
本申请实施例通过输出i 1(t)、i 2(t)、i 3(t)以及i 4(t)四路相互独立的模拟信号,将其进行模数转换后输入至DSP进行数字处理,在数字域完成IQ信号的恢复,所以该电路架构不需要对光的正交偏振态进行精准控制,且该电路架构不仅容易实现基带信号的恢复,而且能够降低系统成本;通过采用光纤调整光的偏振态,相比偏振控制器PC具有成本低,损耗小的优势;同时此外LU对RU传输过来的光的偏振态不敏感,可以采用非保偏光纤用来传输光信号,降低了系统的开发成本;在数字处理阶段通过采用不同的算法恢复基带信号的IQ信号,解决了系统非线性的问题,大大提升了系统的性能。
可选的,上述OS与PBS 1之间设有PC和光纤2的至少一个。
可选的,上述OS与PBS 2之间设有PC和光纤2的至少一个。
可选地,上述OS与PBS 1之间和上述OS与PBS 2之间分别设有PC和光纤2中的至少一个。
图7为本申请实施例提供的一种信号接收方法700的示意性流程图。该方法700可以应用于图1所示的系统架构100,但本申请实施例不限于此。此外,该方法700可以由上述图2所示的装置200执行,即由系统架构100中的LU执行。如图7所示,方法700可以包括下列步骤:
S701,接收来自远端装置的第一偏振复用光信号,将第一偏振复用光信号分成至少两路,得到至少两路第二偏振复用光信号。
S702,对第二偏振复用光信号进行耦合处理,获得线偏振光信号。
S703,将线偏振光信号转换为模拟信号,并对模拟信号进行模数转换,获得数字信号。
S704,对数字信号进行处理,获得基带信号。
本申请实施例的信号接收方法,通过获得至少三路相互独立的模拟信号,将其转换为数字信号进行数字处理,在数字域进行IQ信号的恢复,所以该信号接收方法不需要对光的正交偏振态进行精准控制,且容易实现基带信号的恢复。
作为一个可选的实施例,上述对第二偏振复用光信号进行耦合处理,获得线偏振光信号,包括:将至少两路第二偏振复用光信号中的一路第二偏振复用光信号耦合输出,得到第一线偏振光信号和第二线偏振光信号;将至少两路第二偏振复用光信号中的另一路第二偏振复用光信号耦合输出,得到第三线偏振光信号。
上述将线偏振光信号转换为模拟信号,并对模拟信号进行模数转换,获得数字信号,包括:将第一线偏振光信号转换为第一模拟信号,并对第一模拟信号进行模数转换,获得第一数字信号;将第二线偏振光信号转换为第二模拟信号,并对第二模拟信号进行模数转换,获得第二数字信号;将第三线偏振光信号转换为第三模拟信号,并对第三模拟信号进 行模数转换,获得第三数字信号;
上述对数字信号进行处理,获得基带信号,包括:对第一数字信号、第二数字信号以及第三数字信号进行处理,获得基带信号。
作为一个可选的实施例,上述将至少两路第二偏振复用光信号中的一路第二偏振复用光信号耦合输出,得到第一线偏振光信号和第二线偏振光信号,包括:调整一路第二偏振复用光信号的偏振态,获得调整后的一路光信号;将调整后的一路光信号耦合输出,得到第一线偏振光信号和第二线偏振光信号。
作为一个可选的实施例,上述将至少两路第二偏振复用光信号中的另一路第二偏振复用光信号耦合输出,得到第三线偏振光信号,包括:调整另一路第二偏振复用光信号的偏振态,获得调整后的另一路光信号;将调整后的另一路光信号耦合输出,得到第三线偏振光信号。
作为一个可选的实施例,上述对第二偏振复用光信号进行耦合处理,获得线偏振光信号,包括:将至少两路第二偏振复用光信号中的一路第二偏振复用光信号耦合输出,得到第一线偏振光信号和第二线偏振光信号;将至少两路第二偏振复用光信号中的另一路第二偏振复用光信号耦合输出,得到第三线偏振光信号和第四线偏振光信号;
上述将线偏振光信号转换为模拟信号,并对模拟信号进行模数转换,获得数字信号,包括:将第一线偏振光信号转换为第一模拟信号,并对第一模拟信号进行模数转换,获得第一数字信号;将第二线偏振光信号转换为第二模拟信号,并对第二模拟信号进行模数转换,获得第二数字信号;将第三线偏振光信号转换为第三模拟信号,并对第三模拟信号进行模数转换,获得第三数字信号;将第四线偏振光信号转换为第四模拟信号,并对第四模拟信号进行模数转换,获得第四数字信号;
上述对数字信号进行处理,获得基带信号,包括:对第一数字信号、第二数字信号、第三数字信号以及第四数字信号进行处理,获得基带信号。
作为一个可选的实施例,上述将至少两路第二偏振复用光信号中的一路第二偏振复用光信号耦合输出,得到第一线偏振光信号和第二线偏振光信号,包括:调整一路第二偏振复用光信号的偏振态,获得调整后的一路光信号;将调整后的一路光信号耦合输出,得到第一线偏振光信号和第二线偏振光信号。
作为一个可选的实施例,上述将至少两路第二偏振复用光信号中的另一路第二偏振复用光信号耦合输出,得到第三线偏振光信号和第四线偏振光信号,包括:调整另一路第二偏振复用光信号的偏振态,获得调整后的另一路光信号;将调整后的另一路光信号耦合输出,得到第三线偏振光信号和第四线偏振光信号。
应理解,本申请实施例中的信号处理的过程与上文中结合图2至图6所描述的信号接收装置(即LU)相同,由于上文中已经结合附图做了详细描述,为了简洁,这里不再赘述。
需要说明的是,上文中结合各附图说明了本申请实施例提供的信号接收装置,该信号接收装置中的各模块可以由硬件实现,也可以由软硬件结合的方式实现,本申请对此不做限定。
本申请还提供了一种信号接收系统,包括上述信号接收装置、远端装置和光纤。示例性地,该信号接收系统具体可以如图3至图6所示,可参考前面的描述,此处不再赘述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (15)

  1. 一种信号接收装置,其特征在于,包括:
    光分路器、光信号处理模块、光电探测器、模数转换器以及数字信号处理器;
    其中,所述光分路器用于:接收来自远端装置的第一偏振复用光信号,将所述第一偏振复用光信号分成至少两路,得到至少两路第二偏振复用光信号,并将所述至少两路第二偏振复用光信号分别输入至少两个所述光信号处理模块,所述第一偏振复用光信号是将射频信号和本振信号分别调制到光载波的两个正交偏振态获得的;
    所述光信号处理模块用于:对所述第二偏振复用光信号进行耦合处理,获得线偏振光信号,并将所述线偏振光信号输入至所述光电探测器;
    所述光电探测器用于:将所述线偏振光信号转换为模拟信号,并将所述模拟信号输入至所述模数转换器;
    所述模数转换器用于:对所述模拟信号进行模数转换,获得数字信号,将所述数字信号输入至所述数字信号处理器;
    所述数字信号处理器用于:对所述数字信号进行处理,获得基带信号。
  2. 根据权利要求1所述的装置,其特征在于,所述光信号处理模块包括:偏振光分束器和起偏器;
    所述光电探测器包括:第一光电探测器、第二光电探测器以及第三光电探测器;
    所述模数转换器包括:第一模数转换器、第二模数转换器以及第三模数转换器;
    其中,所述偏振光分束器用于:将所述第二偏振复用光信号耦合输出至所述偏振光分束器的两个主轴上,得到第一线偏振光信号和第二线偏振光信号,并将所述第一线偏振光信号输入至所述第一光电探测器,将所述第二线偏振光信号输入至所述第二光电探测器;
    所述起偏器用于:将所述第二偏振复用光信号耦合输出至所述起偏器的主轴上,得到第三线偏振光信号,并将所述第三线偏振光信号输入至所述第三光电探测器;
    所述第一光电探测器用于:将所述第一线偏振光信号转换为第一模拟信号,并将所述第一模拟信号输入至所述第一模数转换器;
    所述第二光电探测器用于:将所述第二线偏振光信号转换为第二模拟信号,并将所述第二模拟信号输入至所述第二模数转换器;
    所述第三光电探测器用于:将所述第三线偏振光信号转换为第三模拟信号,并将所述第三模拟信号输入至所述第三模数转换器;
    所述第一模数转换器用于:对所述第一模拟信号进行模数转换,获得第一数字信号,并将所述第一数字信号输入至所述数字信号处理器;
    所述第二模数转换器用于:对所述第二模拟信号进行模数转换,获得第二数字信号,并将所述第二数字信号输入至所述数字信号处理器;
    所述第三模数转换器用于:对所述第三模拟信号进行模数转换,获得第三数字信号,并将所述第三数字信号输入至所述数字信号处理器;
    所述数字信号处理器具体用于:对所述第一数字信号、所述第二数字信号以及所述第三数字信号进行处理,获得所述基带信号。
  3. 根据权利要求2所述的装置,其特征在于,所述光分路器与所述偏振光分束器之间设有第一偏振控制器和第一光纤中的至少一个,所述第一偏振控制器或所述第一光纤用于调整所述第二偏振复用光信号的偏振态;和/或,
    所述光分路器与所述起偏器之间设有第二偏振控制器和第二光纤中的至少一个,所述第二偏振控制器或所述第二光纤用于调整所述第二偏振复用光信号的偏振态。
  4. 根据权利要求1所述的装置,其特征在于,所述光信号处理模块包括:第一偏振光分束器和第二偏振光分束器;
    所述光电探测器包括:第一光电探测器、第二光电探测器、第三光电探测器以及第四光电探测器;
    所述模数转换器包括:第一模数转换器、第二模数转换器、第三模数转换器以及第四模数转换器;
    其中,所述第一偏振光分束器用于:将所述第二偏振复用光信号耦合输出至所述第一偏振光分束器的两个主轴上,得到第一线偏振光信号和第二线偏振光信号,并将所述第一线偏振光信号输入至所述第一光电探测器,将所述第二线偏振光信号输入至所述第二光电探测器;
    所述第二偏振光分束器用于:将所述第二偏振复用光信号耦合输出至所述第二偏振光分束器的两个主轴上,得到第三线偏振光信号和第四线偏振光信号,并将所述第三线偏振光信号输入至所述第三光电探测器,将所述第四线偏振光信号输入至所述第四光电探测器;
    所述第一光电探测器用于:将所述第一线偏振光信号转换为第一模拟信号,并将所述第一模拟信号输入至所述第一模数转换器;
    所述第二光电探测器用于:将所述第二线偏振光信号转换为第二模拟信号,并将所述第二模拟信号输入至所述第二模数转换器;
    所述第三光电探测器用于:将所述第三线偏振光信号转换为第三模拟信号,并将所述第三模拟信号输入至所述第三模数转换器;
    所述第四光电探测器用于:将所述第四线偏振光信号转换为第四模拟信号,并将所述第四模拟信号输入至所述第四模数转换器;
    所述第一模数转换器用于:对所述第一模拟信号进行模数转换,获得第一数字信号,将所述第一数字信号输入至所述数字信号处理器;
    所述第二模数转换器用于:对所述第二模拟信号进行模数转换,获得第二数字信号,将所述第二数字信号输入至所述数字信号处理器;
    所述第三模数转换器用于:对所述第三模拟信号进行模数转换,获得第三数字信号,将所述第三数字信号输入至所述数字信号处理器;
    所述第四模数转换器用于:对所述第四模拟信号进行模数转换,获得第四数字信号,将所述第四数字信号输入至所述数字信号处理器;
    所述数字信号处理器具体用于:对所述第一数字信号、所述第二数字信号、所述第三数字信号以及所述第四数字信号进行处理,获得所述基带信号。
  5. 根据权利要求4所述的装置,其特征在于,所述光分路器与所述第一偏振光分束器之间设有第一偏振控制器和第一光纤中的至少一个,所述第一偏振控制器或所述第一光纤用于调整所述第二偏振复用光信号的偏振态;和/或,
    所述光分路器与所述第二偏振光分束器之间设有第二偏振控制器和第二光纤中的至少一个,所述第二偏振控制器或所述第二光纤用于调整所述第二偏振复用光信号的偏振态。
  6. 根据权利要求1至5中任一项所述的装置,其特征在于,所述远端装置包括:
    天线、带通滤波器、低噪声放大器、光电调制器、本振源、激光器以及光带通滤波器;
    其中,所述天线用于:接收第一射频信号,将所述第一射频信号输入至所述带通滤波器;
    所述带通滤波器用于:对所述第一射频信号进行滤波,获得第二射频信号,将所述第二射频信号输入至所述低噪声放大器;
    所述低噪声放大器用于:对所述第二射频信号进行信号放大,获得第三射频信号,并将所述第三射频信号输入至所述光电调制器的一个射频输入端;
    所述本振源用于:产生与所述第三射频信号频率相同的本振信号,并将所述本振信号输入至所述光电调制器的另一个射频输入端;
    所述激光器用于:产生第五线偏振光信号,将所述第五线偏振光信号输入至所述光电调制器的光输入端;
    所述光电调制器用于:将所述第五线偏振光信号分为上下两路,分别利用所述第五线偏振光信号对所述第三射频信号和所述本振信号进行光域调制,获得正交偏振复用光,将所述正交偏振复用光输入至所述光带通滤波器;
    所述光带通滤波器用于:对所述正交偏振复用光进行滤波,获得所述正交偏振复用光的上边带信号或下边带信号,将所述上边带信号或所述下边带信号确定为所述第一偏振复用光信号。
  7. 一种信号接收方法,其特征在于,包括:
    接收来自远端装置的第一偏振复用光信号,将所述第一偏振复用光信号分成至少两路,得到至少两路第二偏振复用光信号,所述第一偏振复用光信号是将射频信号和本振信号分别调制到光载波的两个正交偏振态获得的;
    对所述第二偏振复用光信号进行耦合处理,获得线偏振光信号;
    将所述线偏振光信号转换为模拟信号,并对所述模拟信号进行模数转换,获得数字信号;
    对所述数字信号进行处理,获得基带信号。
  8. 根据权利要求7所述的方法,其特征在于,所述对所述第二偏振复用光信号进行耦合处理,获得线偏振光信号,包括:
    将所述至少两路第二偏振复用光信号中的一路第二偏振复用光信号耦合输出,得到第一线偏振光信号和第二线偏振光信号;
    将所述至少两路第二偏振复用光信号中的另一路第二偏振复用光信号耦合输出,得到第三线偏振光信号;
    所述将所述线偏振光信号转换为模拟信号,并对所述模拟信号进行模数转换,获得数字信号,包括:
    将所述第一线偏振光信号转换为第一模拟信号,并对所述第一模拟信号进行模数转换,获得第一数字信号;
    将所述第二线偏振光信号转换为第二模拟信号,并对所述第二模拟信号进行模数转换, 获得第二数字信号;
    将所述第三线偏振光信号转换为第三模拟信号,并对所述第三模拟信号进行模数转换,获得第三数字信号;
    所述对所述数字信号进行处理,获得基带信号,包括:
    对所述第一数字信号、所述第二数字信号以及所述第三数字信号进行处理,获得所述基带信号。
  9. 根据权利要求8所述的方法,其特征在于,所述将所述至少两路第二偏振复用光信号中的一路第二偏振复用光信号耦合输出,得到第一线偏振光信号和第二线偏振光信号,包括:
    调整所述一路第二偏振复用光信号的偏振态,获得调整后的一路光信号;
    将所述调整后的一路光信号耦合输出,得到所述第一线偏振光信号和所述第二线偏振光信号。
  10. 根据权利要求8或9所述的方法,其特征在于,所述将所述至少两路第二偏振复用光信号中的另一路第二偏振复用光信号耦合输出,得到第三线偏振光信号,包括:
    调整所述另一路第二偏振复用光信号的偏振态,获得调整后的另一路光信号;
    将所述调整后的另一路光信号耦合输出,得到所述第三线偏振光信号。
  11. 根据权利要求7所述的方法,其特征在于,对所述第二偏振复用光信号进行耦合处理,获得线偏振光信号,包括:
    将所述至少两路第二偏振复用光信号中的一路第二偏振复用光信号耦合输出,得到第一线偏振光信号和第二线偏振光信号;
    将所述至少两路第二偏振复用光信号中的另一路第二偏振复用光信号耦合输出,得到第三线偏振光信号和第四线偏振光信号;
    所述将所述耦合后的光信号转换为模拟信号,并对所述模拟信号进行模数转换,获得数字信号,包括:
    将所述第一线偏振光信号转换为第一模拟信号,并对所述第一模拟信号进行模数转换,获得第一数字信号;
    将所述第二线偏振光信号转换为第二模拟信号,并对所述第二模拟信号进行模数转换,获得第二数字信号;
    将所述第三线偏振光信号转换为第三模拟信号,并对所述第三模拟信号进行模数转换,获得第三数字信号;
    将所述第四线偏振光信号转换为第四模拟信号,并对所述第四模拟信号进行模数转换,获得第四数字信号;
    所述对所述数字信号进行处理,获得基带信号,包括:
    对所述第一数字信号、所述第二数字信号、所述第三数字信号以及所述第四数字信号进行处理,获得所述基带信号。
  12. 根据权利要求11所述的方法,其特征在于,所述将所述至少两路第二偏振复用光信号中的一路第二偏振复用光信号耦合输出,得到第一线偏振光信号和第二线偏振光信号,包括:
    调整所述一路第二偏振复用光信号的偏振态,获得调整后的一路光信号;
    将所述调整后的一路光信号耦合输出,得到所述第一线偏振光信号和所述第二线偏振光信号。
  13. 根据权利要求11或12所述的方法,其特征在于,所述将所述至少两路第二偏振复用的光信号中的另一路第二偏振复用光信号耦合输出,得到第三线偏振光信号和第四线偏振光信号,包括:
    调整所述另一路第二偏振复用光信号的偏振态,获得调整后的另一路光信号;
    将所述调整后的另一路光信号耦合输出,得到第三线偏振光信号和第四线偏振光信号。
  14. 一种信号接收系统,其特征在于,包括权利要求1至6中任一项所述的信号接收装置、远端装置和光纤。
  15. 一种信号接收装置,用于实现权利要求7至13中任一项所述的方法。
PCT/CN2021/124874 2020-10-27 2021-10-20 信号接收装置和信号接收方法 WO2022089268A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/307,641 US20230261758A1 (en) 2020-10-27 2023-04-26 Signal receiving apparatus and method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011175626.8 2020-10-27
CN202011175626.8A CN114499688A (zh) 2020-10-27 2020-10-27 信号接收装置和信号接收方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/307,641 Continuation US20230261758A1 (en) 2020-10-27 2023-04-26 Signal receiving apparatus and method

Publications (1)

Publication Number Publication Date
WO2022089268A1 true WO2022089268A1 (zh) 2022-05-05

Family

ID=81381901

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/124874 WO2022089268A1 (zh) 2020-10-27 2021-10-20 信号接收装置和信号接收方法

Country Status (3)

Country Link
US (1) US20230261758A1 (zh)
CN (1) CN114499688A (zh)
WO (1) WO2022089268A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114866147A (zh) * 2022-06-06 2022-08-05 北京万东医疗科技股份有限公司 一种磁共振信号传输系统、方法、电子设备和存储介质
WO2023098232A1 (zh) * 2021-11-30 2023-06-08 华为技术有限公司 光信号发送的方法、导频接收机和发射机

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116500589B (zh) * 2023-06-27 2023-09-26 深圳市速腾聚创科技有限公司 激光雷达和可移动设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130034354A1 (en) * 2011-08-01 2013-02-07 Nec Corporation Polarization-multiplexed signal receiver, polarization multiplexing system and polarization-multiplexed signal receiving method
CN104104417A (zh) * 2014-06-24 2014-10-15 广东科学技术职业学院 超高速光纤无线mimo传输系统及方法
CN105553560A (zh) * 2015-12-07 2016-05-04 武汉邮电科学研究院 基于光强度调制信号的偏振无关直接检测系统及方法
US20170019173A1 (en) * 2014-03-27 2017-01-19 Huawei Technologies Co., Ltd. Apparatus and method for monitoring optical performance parameter, and optical transmission system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130034354A1 (en) * 2011-08-01 2013-02-07 Nec Corporation Polarization-multiplexed signal receiver, polarization multiplexing system and polarization-multiplexed signal receiving method
US20170019173A1 (en) * 2014-03-27 2017-01-19 Huawei Technologies Co., Ltd. Apparatus and method for monitoring optical performance parameter, and optical transmission system
CN104104417A (zh) * 2014-06-24 2014-10-15 广东科学技术职业学院 超高速光纤无线mimo传输系统及方法
CN105553560A (zh) * 2015-12-07 2016-05-04 武汉邮电科学研究院 基于光强度调制信号的偏振无关直接检测系统及方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023098232A1 (zh) * 2021-11-30 2023-06-08 华为技术有限公司 光信号发送的方法、导频接收机和发射机
CN114866147A (zh) * 2022-06-06 2022-08-05 北京万东医疗科技股份有限公司 一种磁共振信号传输系统、方法、电子设备和存储介质
CN114866147B (zh) * 2022-06-06 2023-10-20 北京万东医疗科技股份有限公司 一种磁共振信号传输系统、方法、电子设备和存储介质

Also Published As

Publication number Publication date
CN114499688A (zh) 2022-05-13
US20230261758A1 (en) 2023-08-17

Similar Documents

Publication Publication Date Title
WO2022089268A1 (zh) 信号接收装置和信号接收方法
US10659162B2 (en) Photonic microwave down-conversion system and method
CN109842451B (zh) 利用双偏振正交相移键控调制器实现微波信号光子学变频和多通道移相的方法
US10784967B2 (en) Photonic radio-frequency receiver with mirror frequency suppression function
US11588554B2 (en) Free space optical communication system and method
EP2506456B1 (en) Signal reception device and method based on microwave photon technology
US20090214224A1 (en) Method and apparatus for coherent analog rf photonic transmission
CN106100750B (zh) 采用基于i/q调制器的光独立边带调制的2×2 mimo光纤无线融合方法和系统
US10567087B2 (en) Coherent optical receiver
CN103297145A (zh) 全光产生十六倍频毫米波的装置
CN112087248B (zh) 基于偏振复用光调制器产生PDM-m2QAM射频信号的光纤-无线通信系统
CN111416662B (zh) 基于偏振复用双mzm调制器的信号生成传输方法
CN111464240A (zh) 基于偏振复用强度调制器的矢量射频信号发生系统
CN113872700B (zh) 一种高隔离度多通道微波光子上变频装置与方法
CN106877934B (zh) 基于相位因子优化的载波抑制模式光载无线矢量波系统
Li et al. A 2× 2 MIMO optical wireless system at D-band
JP2017098675A (ja) 光伝送方法および光伝送装置
US9654249B2 (en) Ultra-wide range optical wavelength converter by direct signal translation from integrated coherent receiver to dual-polarization IQ modulator
WO2022103910A1 (en) Apparatus for broadband wavelength conversion of dual- polarization phase-encoded signal
CN111164911B (zh) 光载波抑制调制的方法和装置
CN110601762A (zh) 一种实现相位噪声补偿的射频信号传输方法及传输系统
WO2024119802A1 (zh) 信号处理方法、系统、设备及介质
WO2022001546A1 (zh) 信号传输方法、装置及网络设备
CN113890629B (zh) 太赫兹信号接收装置、方法及信号传输系统
US11387911B2 (en) Optical receiver and method of operation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21884996

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21884996

Country of ref document: EP

Kind code of ref document: A1