WO2022089186A1 - 带宽分配方法、光线路终端、光网络单元及存储介质 - Google Patents

带宽分配方法、光线路终端、光网络单元及存储介质 Download PDF

Info

Publication number
WO2022089186A1
WO2022089186A1 PCT/CN2021/123109 CN2021123109W WO2022089186A1 WO 2022089186 A1 WO2022089186 A1 WO 2022089186A1 CN 2021123109 W CN2021123109 W CN 2021123109W WO 2022089186 A1 WO2022089186 A1 WO 2022089186A1
Authority
WO
WIPO (PCT)
Prior art keywords
bandwidth
onu
entry
olt
registered
Prior art date
Application number
PCT/CN2021/123109
Other languages
English (en)
French (fr)
Inventor
张伟良
李明生
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2022089186A1 publication Critical patent/WO2022089186A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/08Configuration management of networks or network elements
    • H04L41/0896Bandwidth or capacity management, i.e. automatically increasing or decreasing capacities
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q11/0067Provisions for optical access or distribution networks, e.g. Gigabit Ethernet Passive Optical Network (GE-PON), ATM-based Passive Optical Network (A-PON), PON-Ring
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q2011/0086Network resource allocation, dimensioning or optimisation

Definitions

  • the embodiments of the present application relate to, but are not limited to, the field of communications technologies, and in particular, relate to a bandwidth allocation method, an optical line terminal, an optical network unit, and a computer-readable storage medium.
  • Passive Optical Network is a point-to-multipoint network topology, mainly including optical line terminal (Optical Line Terminal, OLT) located in the central office and multiple optical network units (Optical Line Terminal, OLT) located at the user end. Network Unit, ONU).
  • OLT optical line terminal
  • OLT optical Line Terminal
  • OLT optical Line Terminal
  • a newly added ONU needs to be registered at the OLT before it can send upstream service data to the OLT through the upstream channel.
  • the OLT receives a registration response message sent by the newly added ONU through the upstream channel by opening a quiet window with a fixed duration to realize the registration of the newly added ONU.
  • the registered ONU needs to wait for the end of the quiet window of fixed duration before sending the upstream service data, which leads to a large delay in the sending of the upstream service data and cannot meet the delay. Sensitive business needs for system delay.
  • Embodiments of the present application provide a bandwidth allocation method, an optical line terminal, an optical network unit, and a computer-readable storage medium.
  • an embodiment of the present application provides a bandwidth allocation method, which is applied to an OLT.
  • the method includes: dividing an uplink bandwidth into several bandwidth entries, wherein the length of the time slot corresponding to the bandwidth entry is not less than a minimum quiet window
  • the duration of the minimum quiet window is determined according to the distance between the OLT and the ONU of the optical network unit, and one or more of the bandwidth entries are used for one of the following: register the ONU, transmit the uplink sent by the ONU Service data; deliver the several bandwidth entries to the ONU, so that the ONU selects the corresponding bandwidth entry according to the working state.
  • an embodiment of the present application further provides a bandwidth allocation method, which is applied to an ONU.
  • the method includes: receiving several bandwidth entries delivered by the OLT, wherein the length of the time slot corresponding to the bandwidth entry is not less than The duration of the minimum quiet window, the duration of the minimum quiet window is determined according to the distance between the OLT and the ONU, and one or more of the bandwidth entries are used for one of the following: register the ONU, and transmit the uplink sent by the ONU. Service data; select the corresponding bandwidth entry according to the working status.
  • an embodiment of the present application further provides an optical line terminal, including: a memory, a processor, and a computer program stored in the memory and running on the processor, and the processor implements the computer program when the processor executes the computer program.
  • an optical line terminal including: a memory, a processor, and a computer program stored in the memory and running on the processor, and the processor implements the computer program when the processor executes the computer program.
  • an embodiment of the present application further provides an optical network unit, including: a memory, a processor, and a computer program stored in the memory and running on the processor, and the processor implements the computer program when the processor executes the computer program.
  • an optical network unit including: a memory, a processor, and a computer program stored in the memory and running on the processor, and the processor implements the computer program when the processor executes the computer program.
  • the embodiments of the present application further provide a computer-readable storage medium storing computer-executable instructions, where the computer-executable instructions are used to execute the bandwidth allocation method as described above.
  • FIG. 1 is a schematic diagram of a system architecture for performing a bandwidth allocation method provided by an embodiment of the present application
  • FIG. 2 is a flowchart of a bandwidth allocation method applied to an OLT provided by an embodiment of the present application
  • FIG. 3 is a schematic diagram of a field structure of a BWmap provided by a specific example of the present application.
  • FIG. 5 is a flowchart of a bandwidth allocation method applied to an OLT provided by another embodiment of the present application.
  • FIG. 6 is a flowchart of a bandwidth allocation method applied to an ONU provided by another embodiment of the present application.
  • FIG. 7 is a flowchart of initiating a registration operation in a bandwidth allocation method applied to an ONU provided by another embodiment of the present application;
  • FIG. 8 is a flowchart of a bandwidth allocation method applied to an ONU provided by another embodiment of the present application.
  • FIG. 10 is a flowchart of a bandwidth allocation method compatible with an ONU of an old version provided by another specific example of the present application.
  • the embodiments of the present application provide a bandwidth allocation method, an optical line terminal, an optical network unit, and a computer-readable storage medium.
  • the OLT divides the uplink bandwidth into several bandwidth entries, wherein the length of the time slot corresponding to the bandwidth entry is not less than the minimum quiet window The duration of the minimum quiet window is determined according to the distance between the OLT and the ONU, and the bandwidth entry is used to register the ONU or to transmit the upstream service data sent by the ONU; then, the OLT uses the number of bandwidths The entry is delivered to the ONU, so that the ONU can select the corresponding bandwidth entry according to the working state.
  • the ONU to be registered can use the time slot corresponding to the bandwidth entry for registration to initiate registration with the OLT, so that it will not affect the registered ONU sending uplink service data to the OLT, thereby reducing the problem of registering the newly added ONU.
  • the bandwidth since the length of the time slot corresponding to the bandwidth entry is not less than the duration of the minimum quiet window, and the duration of the minimum quiet window is determined according to the distance between the OLT and the ONU, the bandwidth The length of the time slot corresponding to the entry can be flexibly set according to the distance between the OLT and the ONU. Therefore, compared with the fixed-duration quiet window adopted by some technical solutions, it can effectively reduce the waiting time when sending uplink service data. Therefore, it can meet the system delay requirements of delay-sensitive services.
  • FIG. 1 is a schematic diagram of a system architecture for executing a bandwidth allocation method provided by an embodiment of the present application.
  • the system architecture includes an OLT 110 and a plurality of ONUs, wherein the plurality of ONUs include a first ONU 120 to be registered, a second ONU 130 to be registered and a registered ONU 140, and the OLT 110 is respectively associated with the first ONU 120 to be registered, The second ONU 130 to be registered is connected with the registered ONU 140 .
  • the direction in which service packets are transmitted from OLT110 to multiple ONUs is the downlink transmission direction, and the service packets transmitted in this downstream transmission direction are downlink service packets;
  • the direction is the upstream transmission direction, and the service packets transmitted in the upstream transmission direction are upstream service packets.
  • the transmission of downlink service packets adopts the point-to-multipoint broadcast mode.
  • the downlink frame signal sent by OLT110 will be received by all ONUs connected to OLT110.
  • the transmission of the upstream service message adopts a multi-point-to-point mode, and each ONU shares the transmission medium, and each ONU transmits the upstream service message in the time slot allocated by the OLT110.
  • FIG. 1 does not constitute a limitation on the embodiments of the present application, and may include more or less components than those shown in the figure, or combine some components, or different component layout.
  • FIG. 2 is a flowchart of a bandwidth allocation method provided by an embodiment of the present application.
  • the bandwidth allocation method is applied to an OLT, and the bandwidth allocation method includes but is not limited to the following steps:
  • Step S110 dividing the upstream bandwidth into several bandwidth entries, wherein the time slot length corresponding to the bandwidth entry is not less than the duration of the minimum quiet window, and the duration of the minimum quiet window is determined according to the distance between the OLT and the ONU of the optical network unit,
  • One or more bandwidth entries are used for one of the following: registering the ONU and transmitting uplink service data sent by the ONU;
  • Step S120 delivering several bandwidth entries to the ONU, so that the ONU selects the corresponding bandwidth entry according to the working state.
  • the distance between the OLT and the ONU can be obtained in advance, and then the duration of the minimum quiet window can be obtained according to the distance. Therefore, the length of the time slot corresponding to the bandwidth entry can be determined according to the duration of the minimum quiet window.
  • the OLT divides the upstream bandwidth into several bandwidth entries, and sends the several bandwidth entries to the ONU, so that the ONU can select the corresponding bandwidth entry according to its working status. For example, when the ONU is in the work to be registered In the state, the ONU can select the corresponding bandwidth entry to initiate registration, and when the ONU is in the working state of transmitting services, the ONU can select the corresponding bandwidth entry to send upstream service data to the OLT.
  • the ONU to be registered can use the time slot corresponding to the bandwidth entry for registration to initiate registration with the OLT, it will not affect the registered ONU sending uplink service data to the OLT, thereby reducing the problem of registering the newly added ONU.
  • the transmission delay of upstream service data since the length of the time slot corresponding to the bandwidth entry is not less than the duration of the minimum quiet window, and the duration of the minimum quiet window is determined according to the distance between the OLT and the ONU, the bandwidth entry
  • the length of the corresponding time slot can be flexibly set according to the distance between the OLT and the ONU. Therefore, compared with the quiet window of fixed duration adopted by some technical solutions, it can effectively reduce the waiting time delay when sending uplink service data. , so as to meet the system delay requirements of delay-sensitive services.
  • the several bandwidth entries may be delivered to the ONU by sending a downlink frame signal.
  • the downlink frame signal may be a GPON Transmission Convergence (GPON Transmission Convergence, GTC).
  • GTC frame includes a synchronization field, a superframe indication field, a message processing field, a bit interleaved parity field, a downlink payload length field, a bandwidth allocation bitmap (Band-Width map, BWmap), and a payload.
  • the BWmap may carry multiple bandwidth fields, where the bandwidth fields correspond to the foregoing bandwidth entries, and the multiple bandwidth fields include the first bandwidth field and/or the second bandwidth field.
  • the first bandwidth field is used to indicate a time slot for the ONU to be registered by the OLT
  • the second bandwidth field is used to indicate a time slot for the registered ONU to send uplink service data to the OLT.
  • the BWmap includes N allocation structures (Allocation Structures), where N is a natural number.
  • the allocation structure is the bandwidth entry in step S110 or the above-mentioned bandwidth field, and the allocation structure mainly includes a bandwidth allocation identification (Alloc-ID) field, an identification bit (Flags) field, and a bandwidth start time (StartTime). ) field, grant size (GrantSize) field, burst configuration (BurstProfile) field and header error correction (HEC) field, where the Flags field may include uplink physical layer operation, management and maintenance (PLOAMu) flag bits and uplink dynamic bandwidth Report (DBRu) flag bit.
  • PLOAMu management and maintenance
  • DBRu uplink dynamic bandwidth Report
  • the Alloc-ID field may be used to indicate the receiver of the bandwidth allocation, such as a specific transmission container (Transmission CONT, T-CONT) in the ONU or an upstream ONU management and control channel.
  • a specific transmission container Transmission CONT, T-CONT
  • the current allocation structure is the above-mentioned second bandwidth field (that is, the current bandwidth entry is marked as allocated and can be used to transmit uplink service data sent by the ONU), wherein the ONU identifier includes the ONU identifier (ONU-ID) or the physical link Identifier (Physical Link Identifier, PLID), etc., the link identifier includes T-CONT or User Link Identifier (User Link Identifier, PLID) and so on. Since the current bandwidth entry is already occupied by the registered ONU, the registered ONU can send uplink service data to the OLT in the time slot corresponding to the current bandwidth entry.
  • the current allocation structure Assuming that the content recorded in the Alloc-ID field in the current allocation structure (ie, the current bandwidth entry) is broadcast T-CONT, broadcast Logical Link Identifier (LLID) or specific configuration information, etc., it indicates the current allocation
  • the structure has not been occupied by the ONU, therefore, the current allocation structure is the above-mentioned first bandwidth field (that is, the current bandwidth entry is marked as unallocated and can be used to initiate a registration operation to the OLT). Since the current bandwidth entry has not been occupied by the ONU, the ONU to be registered may initiate a registration operation to the OLT within the time slot corresponding to the current bandwidth entry.
  • the to-be-registered ONU can Initiate a registration operation to the OLT within the time slot indicated by the selected first bandwidth field.
  • the ONU to be registered can send the SN after receiving the registration request from the OLT, and send the measurement after receiving the ranging request from the OLT. From the response, or, the ONU to be registered may initiate a registration operation to the OLT at the start time of the time slot indicated by the selected first bandwidth field (that is, the time parameter recorded in the StartTime field).
  • the start time of the time slot indicated by the selected first bandwidth field is delayed for a certain period of time before the registration operation is initiated to the OLT, which is not specifically limited in this embodiment.
  • the ONU to be registered After the ONU to be registered receives the downlink frame signal sent by the OLT, the ONU to be registered needs a random delay for a period of time before responding and sending a serial number (Serial Number, SN) to the OLT. Therefore, As a result, the registration processing of the ONU to be registered will be delayed.
  • the ONU to be registered can initiate a registration operation to the OLT within the time slot indicated by the selected first bandwidth field, which cancels the original local random delay in some technical solutions, and can perform the registration operation in time , which can reduce the delay of the system.
  • the size of the time slot indicated by the bandwidth field in the downlink frame signal may have different implementations, which is not specifically limited in this embodiment.
  • the timeslots indicated by each bandwidth field in the downlink frame signal are equal, or the timeslots indicated by at least one bandwidth field in the downlink frame signal are the same as the timeslots indicated by other bandwidth fields in the downlink frame signal not equal.
  • the OLT can allocate the bandwidth to the ONUs to be registered at certain time intervals for competitive registration and registration. Ranging can be used to reduce the delay for the ONU to be registered to obtain the bandwidth used for registration.
  • the total number of ONUs that can be connected by the OLT is basically fixed, for example, the total number of connectable ONUs is 16; when performing mobile backhaul or mobile fronthaul
  • the transmission distance between the OLT and the ONU is relatively short, for example, the transmission distance is 5 kilometers or 10 kilometers, etc., therefore, the transmission delay between the OLT and the ONU is controllable, and can meet the requirements of the mobile backhaul to a certain extent. It meets the requirements of low-latency services such as transmission and mobile fronthaul.
  • different time slots can be dynamically configured according to the actual situation, so as to meet the delay requirements of different ONUs. For example, when The service transmission between the OLT and the ONU requires low latency, then the ONU can select the bandwidth field with the indicated time slot length shorter, or the OLT can dynamically adjust the time slot length indicated by the bandwidth field selected by the ONU according to the ONU's requirements .
  • the bandwidth allocation method may further include, but is not limited to, the following steps:
  • bandwidth entries are divided into several bandwidth sub-entry, wherein the time slot corresponding to the bandwidth sub-entry is less than or equal to the duration of the minimum quiet window, and the bandwidth sub-entry is used to transmit ONUs
  • the sent uplink service data
  • the OLT may divide one or more bandwidth entries into several bandwidth sub-entries according to the usage requirements of the ONUs, wherein the time slot corresponding to the bandwidth sub-entry is less than or equal to The duration of the minimum quiet window; then, the OLT allocates the bandwidth sub-entry to the ONU, so that the ONU can send upstream service data in the time slot corresponding to the bandwidth sub-entry. For example, when the data volume of the uplink service data sent by the ONU changes dynamically, the OLT can divide one or more bandwidth entries selected by the ONU into several bandwidth sub-entry, so that the ONU can Different uplink service data can be sent in different time slots, so as to meet the usage requirements of the ONU.
  • bandwidth sub-entry obtained by dividing one or more bandwidth entries is marked as allocated, that is, the bandwidth sub-entry is used to transmit the uplink service data sent by the ONU.
  • the OLT allocates the bandwidth sub-entry to the ONU, which may include but is not limited to the following steps:
  • the OLT may divide one or more bandwidth entries corresponding to these ONUs into several bandwidth sub-entries according to the usage requirements of each ONU, and assign the bandwidth sub-entries in the same bandwidth entry to different ONUs, So as to meet the different usage requirements of each ONU. For example, if the data volume of the uplink service data sent by the first ONU is relatively large, and the data volume of the uplink service data sent by the second ONU is relatively small, one or more bandwidth entries selected by the second ONU may be divided into several bandwidth sub-bands.
  • the OLT can also allocate different bandwidth sub-entries to different ONUs at different times in a dynamic allocation manner, which can be appropriately selected according to actual usage, which is not specifically limited in this embodiment.
  • the bandwidth allocation method may further include, but is not limited to, the following steps:
  • Step S130 receiving the SN sent by the ONU to be registered that has selected the bandwidth entry marked as unallocated, wherein the ONU to be registered is the ONU that has selected the bandwidth entry marked as unallocated, and the SN is determined by the ONU to be registered in the selected bandwidth. Sent in the time slot corresponding to the entry;
  • Step S140 Allocate an ONU identifier to the ONU to be registered according to the SN, and send the ONU identifier to the ONU to be registered.
  • the ONUs to be registered in the multiple ONUs will randomly select at least one bandwidth entry marked as unallocated among the multiple ONUs, and in the selected Initiate a registration operation to the OLT in the time slot corresponding to the bandwidth entry marked as unallocated.
  • the ONU to be registered will first send the ONU to be registered to the OLT in the time slot corresponding to the bandwidth entry marked as unallocated.
  • the corresponding SN when the OLT receives the SN, the OLT will allocate the ONU identifier to the ONU to be registered according to the SN, and send the ONU identifier to the ONU to be registered, thereby completing the processing of the distribution of the ONU identifier to the ONU to be registered. . Since the sending of the SN by the ONU to be registered is completed in the time slot corresponding to the bandwidth entry selected by the ONU to be registered, the sending of the upstream service data of the registered ONU will not be affected. As a result, the transmission delay of the uplink service data is caused, so that the system delay requirement of the delay-sensitive service can be satisfied.
  • the bandwidth allocation method may further include, but is not limited to, the following steps:
  • Step S150 sending ranging request information to the ONU to be registered
  • Step S160 receiving the ranging response information fed back by the ONU to be registered according to the ranging request information, and the ranging response information is sent by the ONU to be registered in the time slot corresponding to the selected bandwidth entry;
  • Step S170 Calculate an equalization delay (Equalization Delay, EqD) according to the ranging response information, and send EqD to the ONU to be registered, so as to complete the ranging operation of the ONU to be registered.
  • EqD equalization Delay
  • the OLT when the OLT successfully allocates an ONU identifier for the ONU to be registered, and the OLT sends the ONU identifier to the ONU to be registered, the OLT can send ranging request information to the ONU to be registered, and when the ONU to be registered receives the measurement After the distance request information, the ONU to be registered can feed back the ranging response information to the OLT according to the ranging request information. It is worth noting that the ONU to be registered feeds back the ranging response to the OLT in the time slot corresponding to the selected bandwidth entry.
  • the OLT When the OLT receives the ranging response information fed back by the ONU to be registered, the OLT will calculate the EqD according to the ranging response information, and send the EqD to the ONU to be registered, thereby converting the bandwidth entry selected by the ONU to be registered.
  • the corresponding time slot is allocated to the ONU to be registered or the T-CONT of the ONU to be registered, so as to complete the ranging operation of the ONU to be registered. Since the ranging response information fed back by the ONU to be registered is completed in the time slot corresponding to the bandwidth entry selected by the ONU to be registered, it will not affect the transmission of the uplink service data of the registered ONU.
  • the transmission delay of uplink service data caused by the ONU's registration can meet the system delay requirements of delay-sensitive services.
  • the bandwidth allocation method may further include, but is not limited to, the following steps:
  • the OLT after the OLT completes the ranging operation of the ONU to be registered, it means that the OLT has completed the registration operation of the ONU to be registered.
  • the time slot is allocated to the ONU to be registered or the T-CONT of the ONU to be registered, so that the ONU to be registered can send uplink service data to the OLT in the time slot corresponding to the selected bandwidth entry.
  • the OLT will update the identifier of the bandwidth entry selected by the ONU to be registered to allocated.
  • the ONU to be registered will be converted to Registering an ONU, therefore, other ONUs to be registered will not be able to select the bandwidth entry selected by the ONU to be registered (currently transformed into a registered ONU), so it is avoided that other ONUs to be registered select the already selected bandwidth entry. conflict, thus ensuring the stability of the system.
  • the OLT can also dynamically assign other bandwidth entries according to the actual application of the ONU to be registered.
  • the bandwidth entry marked as unallocated is also allocated to the ONU to be registered to meet the application requirements of the ONU to be registered.
  • the OLT may allocate at least one bandwidth entry marked as unallocated except for the bandwidth entry selected by the ONU to be registered to the ONU to be registered, and update the identifiers of these bandwidth entries to allocated, avoiding the need for other bandwidth entries to be allocated.
  • the conflict caused by the ONU to be registered selecting the already allocated bandwidth entry ensures the stability of the system.
  • the OLT updates the identifier of the bandwidth entry selected by the ONU to be registered to allocated, and the OLT updates at least the bandwidth entry selected by the ONU to be registered to at least one bandwidth entry.
  • FIG. 6 is a flowchart of a bandwidth allocation method provided by another embodiment of the present application.
  • the bandwidth allocation method is applied to an ONU, and the bandwidth allocation method includes but is not limited to the following steps:
  • Step S210 receiving several bandwidth entries issued by the OLT, wherein the length of the time slot corresponding to the bandwidth entry is not less than the duration of the minimum quiet window, and the duration of the minimum quiet window is determined according to the distance between the OLT and the ONU.
  • multiple bandwidth entries are used for one of the following: registering the ONU and transmitting the upstream service data sent by the ONU;
  • Step S220 select the corresponding bandwidth entry according to the working state.
  • the time slot length corresponding to the bandwidth entry sent by the OLT received by the ONU may be preset by the OLT.
  • the OLT may obtain the distance between the OLT and the ONU in advance, and then obtain the distance according to the distance.
  • the duration of the minimum quiet window, and then, the length of the time slot corresponding to the bandwidth entry can be determined according to the duration of the minimum quiet window.
  • the ONU After the ONU receives several bandwidth entries issued by the OLT, the ONU can select the corresponding bandwidth entry according to its working state.
  • the ONU when the ONU is in the working state to be registered, the ONU can select the corresponding bandwidth entry to initiate registration, while When the ONU is in the working state of transmitting the service, the ONU can select the corresponding bandwidth entry to send the upstream service data to the OLT. Since the ONU to be registered can use the time slot corresponding to the bandwidth entry for registration to initiate registration with the OLT, it will not affect the registered ONU sending uplink service data to the OLT, thereby reducing the problem of registering the newly added ONU.
  • the transmission delay of upstream service data since the length of the time slot corresponding to the bandwidth entry is not less than the duration of the minimum quiet window, and the duration of the minimum quiet window is determined according to the distance between the OLT and the ONU, therefore, the bandwidth entry
  • the length of the corresponding time slot can be flexibly set according to the distance between the OLT and the ONU. Therefore, compared with the quiet window of fixed duration adopted by some technical solutions, it can effectively reduce the waiting time delay when sending uplink service data. , so as to meet the system delay requirements of delay-sensitive services.
  • the bandwidth entry received by the ONU and delivered by the OLT may be carried by the OLT by sending a downlink frame signal.
  • the downlink frame signal may be a GTC frame.
  • a GTC frame includes a synchronization field, a superframe indication field, a message processing field, a bit-interleaved parity field, a downlink payload length field, a BWmap, and a payload.
  • the BWmap may carry multiple bandwidth fields, where the bandwidth fields correspond to the foregoing bandwidth entries, and the multiple bandwidth fields include the first bandwidth field and/or the second bandwidth field.
  • the first bandwidth field is used to indicate a time slot for the ONU to be registered by the OLT
  • the second bandwidth field is used to indicate a time slot for the registered ONU to send uplink service data to the OLT.
  • the field structure of the BWmap in the first downlink frame signal and the meanings and functions of each field are the same as the field structure of the BWmap and the meanings and functions of the fields in the embodiment shown in FIG.
  • the field structure of the BWmap and the meanings and functions of each field in the example reference may be made to the field structure of the BWmap and the meanings and functions of each field in the embodiment shown in FIG. 3 , which will not be repeated here.
  • the to-be-registered ONU can Initiate a registration operation to the OLT within the time slot indicated by the selected first bandwidth field.
  • the ONU to be registered can send the SN after receiving the registration request from the OLT, and send the measurement after receiving the ranging request from the OLT. From the response, or, the ONU to be registered may initiate a registration operation to the OLT at the start time of the time slot indicated by the selected first bandwidth field (that is, the time parameter recorded in the StartTime field).
  • the start time of the time slot indicated by the selected first bandwidth field is delayed for a certain period of time before the registration operation is initiated to the OLT, which is not specifically limited in this embodiment.
  • the ONU to be registered After the ONU to be registered receives the downlink frame signal sent by the OLT, the ONU to be registered needs a random delay for a period of time before responding and sending the SN to the OLT. Therefore, the registration of the ONU to be registered will be caused. Processing is not timely. In this embodiment, however, the ONU to be registered can initiate a registration operation to the OLT within the time slot indicated by the selected first bandwidth field, which cancels the original local random delay in some technical solutions, and can perform the registration operation in time , which can reduce the delay of the system.
  • the size of the time slot indicated by the bandwidth field in the downlink frame signal may have different implementations, which is not specifically limited in this embodiment.
  • the timeslots indicated by each bandwidth field in the downlink frame signal are equal, or the timeslots indicated by at least one bandwidth field in the downlink frame signal are the same as the timeslots indicated by other bandwidth fields in the downlink frame signal not equal.
  • the OLT can allocate the bandwidth to the ONUs to be registered at certain time intervals for competitive registration and registration. Ranging can be used to reduce the delay for the ONU to be registered to obtain the bandwidth used for registration.
  • the total number of ONUs that can be connected by the OLT is basically fixed, for example, the total number of connectable ONUs is 16; when performing mobile backhaul or mobile fronthaul
  • the transmission distance between the OLT and the ONU is relatively short, for example, the transmission distance is 5 kilometers or 10 kilometers, etc., therefore, the transmission delay between the OLT and the ONU is controllable, and can meet the requirements of the mobile backhaul to a certain extent. It meets the requirements of low-latency services such as transmission and mobile fronthaul.
  • different time slots can be dynamically configured according to the actual situation, so as to meet the delay requirements of different ONUs. For example, when The service transmission between the OLT and the ONU requires low latency, then the ONU can select the bandwidth field with the indicated time slot length shorter, or the OLT can dynamically adjust the time slot length indicated by the bandwidth field selected by the ONU according to the ONU's requirements .
  • the bandwidth allocation method may further include, but is not limited to, the following steps:
  • the bandwidth sub-entry is obtained by dividing one or more bandwidth entries by the OLT under the condition that all ONUs have completed the registration, and the time slot corresponding to the bandwidth sub-entry is less than or equal to the minimum quietness the duration of the window;
  • the OLT may divide one or more bandwidth entries into several bandwidth sub-entries according to the usage requirements of the ONUs, wherein the time slot corresponding to the bandwidth sub-entry is less than or equal to The duration of the minimum quiet window; and after the ONU receives the bandwidth sub-entry allocated by the OLT, the ONU can send uplink service data to the OLT in the time slot corresponding to the bandwidth sub-entry. It is worth noting that the OLT can divide one or more bandwidth entries selected by the ONU into several bandwidth sub-entries according to the actual application of the ONU.
  • the OLT can divide one or more bandwidth entries selected by the ONU into several bandwidth sub-entries, so that the ONU can send different uplink service data according to the time slots corresponding to different bandwidth sub-entries, so as to meet the usage requirements of the ONU.
  • bandwidth sub-entry obtained by dividing one or more bandwidth entries is marked as allocated, that is, the bandwidth sub-entry is used to transmit the uplink service data sent by the ONU.
  • the bandwidth allocation method may also include but is not limited to the following steps:
  • Step S221 in the time slot corresponding to the selected bandwidth entry, send the SN to the OLT;
  • Step S222 Receive the ONU identifier allocated by the OLT according to the SN from the OLT.
  • the ONU to be registered will first send the pending bandwidth entry to the OLT in the time slot corresponding to the selected bandwidth entry. Register the SN corresponding to the ONU.
  • the OLT When the OLT receives the SN, the OLT will allocate the ONU identifier to the ONU to be registered according to the SN, and send the ONU identifier to the ONU to be registered, thereby completing the assignment of the ONU identifier to the ONU to be registered. processing.
  • the ONU to be registered Since the ONU to be registered sends the SN to the OLT in the time slot corresponding to the bandwidth entry selected by the ONU to be registered, it will not affect the transmission of the upstream service data of the registered ONU.
  • the transmission delay of uplink service data caused by the registration can meet the system delay requirements of delay-sensitive services.
  • the bandwidth allocation method may further include, but is not limited to, the following steps:
  • Step S230 receiving ranging request information sent by the OLT
  • Step S240 in the time slot corresponding to the selected bandwidth entry, feedback ranging response information to the OLT according to the ranging request information;
  • Step S250 Receive the EqD calculated by the OLT according to the ranging response information from the OLT, so as to complete the ranging operation initiated by the OLT.
  • the OLT when the OLT successfully allocates an ONU identity for the ONU to be registered, and after the ONU to be registered receives the ONU identity sent by the OLT, the OLT can send ranging request information to the ONU to be registered, and when the ONU to be registered receives After receiving the ranging request information from the OLT, the ONU to be registered can feed back ranging response information to the OLT according to the ranging request information in the time slot corresponding to the selected bandwidth entry; After the ranging response information fed back by the ONU, the OLT will calculate the EqD according to the ranging response information, and send the EqD to the ONU to be registered. When the ONU to be registered receives the EqD, the measurement of the ONU to be registered is completed.
  • the OLT will allocate the time slot corresponding to the bandwidth entry selected by the ONU to be registered to the ONU to be registered or the T-CONT of the ONU to be registered. Since the ranging response information fed back by the ONU to be registered is completed in the time slot corresponding to the bandwidth entry selected by the ONU to be registered, it will not affect the transmission of the uplink service data of the registered ONU.
  • the transmission delay of uplink service data caused by the ONU's registration can meet the system delay requirements of delay-sensitive services.
  • the bandwidth allocation method may further include, but is not limited to, the following steps:
  • the uplink service data is sent to the OLT in the time slot corresponding to the selected bandwidth entry corresponding to the ONU identifier.
  • the ONU to be registered is converted into a registered ONU, and the bandwidth entry selected by the ONU to be registered is also marked as allocated.
  • the registered ONU may determine, from the bandwidth entries according to the ONU identity allocated by the OLT, the bandwidth entry identified as the allocated bandwidth entry corresponding to the ONU identity, and The uplink service data is sent to the OLT in the time slot corresponding to the determined bandwidth entry, so as to perform data communication with the OLT.
  • the OLT updates the identifier of the bandwidth entry selected by the ONU to be registered to allocated, other ONUs to be registered will not be able to select the bandwidth entry selected by the ONU to be registered (currently converted to a registered ONU), so it can be avoided.
  • the conflict caused by the selection of the already selected bandwidth entry by other ONUs to be registered ensures the stability of the system.
  • the OLT can also be based on the actual application of the ONU to be registered.
  • the other bandwidth entries marked as unallocated are also dynamically allocated to the ONU to be registered to meet the application requirements of the ONU to be registered, which is not specifically limited in this embodiment.
  • the OLT may allocate at least one bandwidth entry marked as unallocated except for the bandwidth entry selected by the ONU to be registered to the ONU to be registered, and update the identifiers of these bandwidth entries to allocated, avoiding the need for other bandwidth entries to be allocated.
  • the conflict caused by the ONU to be registered selecting the already allocated bandwidth entry ensures the stability of the system.
  • the BWmap carried in the downlink frame signal can be divided into 10 copies, that is, the BWmap includes 10 bandwidth fields (that is, bandwidth entries), and the time slot length indicated by each bandwidth field is 12.5us.
  • the OLT will first initialize these bandwidth fields to the unallocated state, for example, set the allocation information subfield (ie the Alloc-ID field) in the bandwidth field to a special identification value, such as broadcast T-CONT, broadcast LLID or Specific configuration information, etc., that is, set these bandwidth fields to the above-mentioned first bandwidth fields. Then, the OLT will deliver the BWmap including these first bandwidth fields to each ONU, and the ONUs to be registered among these ONUs can randomly select at least one of these first bandwidth fields, and send its own SN to the OLT.
  • a special identification value such as broadcast T-CONT, broadcast LLID or Specific configuration information, etc.
  • the registered ONU When the registered ONU does not obtain a response from the OLT, after waiting for a certain period of time, it randomly selects at least one of the first bandwidth fields again, and sends its own SN to the OLT again. If the OLT obtains the SN of a certain ONU to be registered correctly, it will complete the subsequent activation process (including assigning the ONU identifier, ranging, , assign EqD). After the ONU to be registered is activated, the OLT allocates the first bandwidth field selected by the ONU to be registered to the ONU to be registered, wherein the allocation information subfield (ie the Alloc-ID field) in the first bandwidth field is set to this ONU ID corresponding to the ONU to be registered.
  • the allocation information subfield ie the Alloc-ID field
  • the upstream bandwidth can be divided into finer segments, so that more bandwidth fields can be allocated to the ONU.
  • FIG. 9 is a flowchart of a bandwidth allocation method provided by an example of the present application, and the process is specifically:
  • the OLT sets 10 bandwidth fields (ie, bandwidth entries) in the BWmap, and the time slot length indicated by each bandwidth field is 12.5us.
  • the OLT sends the BWmap carrying these bandwidth fields to the ONU, and these bandwidth fields are Initialized to an unallocated state, for example, these bandwidth fields are all set to the above-mentioned first bandwidth fields, and the allocation information subfield (ie, the Alloc-ID field) in these first bandwidth fields is set to broadcast T-CONT (for example, in the XG- In PON system or XGS-PON system, the value of broadcast T-CONT is 1023);
  • Step S302 the ONU to be registered obtains the BWmap sent by the OLT and parses the first bandwidth field carried by the BWmap, randomly selects a first bandwidth field, and directly sends the SN to the OLT at the start time of the time slot indicated by the first bandwidth field. , without random delay;
  • Step S303 after the OLT receives the SN sent by the ONU to be registered, allocates an ONU identity for the ONU to be registered, and sends ranging request information to the ONU to be registered in the time slot indicated by the first bandwidth field;
  • Step S304 the ONU to be registered receives the ONU identifier, and responds to the ranging request information, and directly sends the ranging response information to the OLT at the start time of the time slot indicated by the first bandwidth field;
  • Step S305 the OLT receives the ranging response information, calculates EqD, sends EqD to the ONU to be registered, and allocates the first bandwidth field to the ONU to be registered or the T-CONT of the ONU to be registered;
  • Step S306 the OLT updates the BWmap, and continues to send the updated BWmap to the ONU to be registered.
  • FIG. 10 is a flowchart of a bandwidth allocation method compatible with an ONU of an old version provided by another example of the present application. The process is as follows:
  • Step S401 the OLT sets 10 bandwidth fields (ie, bandwidth entries) in the BWmap, the time slot length indicated by each bandwidth field is 12.5us, and these bandwidth fields are initialized to an unallocated state, for example, these bandwidth fields are set
  • the OLT sets one of the first bandwidth fields as a quiet window, and sets the SNgrant information in the first bandwidth field corresponding to the quiet window, and the OLT sets the first bandwidth field corresponding to the quiet window in addition to the first bandwidth field of the quiet window.
  • the other first bandwidth fields and the SNgrant information are sent to the ONU through the BWmap, and the allocation information subfield (ie the Alloc-ID field) in these first bandwidth fields is set to broadcast T-CONT (for example, in the XG-PON system or XGS- In the PON system, the value of the broadcast T-CONT is 1023);
  • Step S402 the old version ONU to be registered obtains the BWmap sent by the OLT and parses the information carried by the BWmap. After the old version ONU to be registered obtains the SNgrant information, the old version ONU to be registered sends the SN directly to the OLT without after a random delay;
  • Step S403 after receiving the SN sent by the old version ONU to be registered, the OLT allocates an ONU identifier to the old version ONU to be registered, and sends the to-be-registered ONU identifier in the time slot indicated by the first bandwidth field corresponding to the quiet window.
  • the old version ONU sends ranging request information;
  • Step S404 the old version ONU to be registered receives the ONU identifier, and responds to the ranging request information, and directly sends the ranging response information to the OLT at the start time of the time slot indicated by the first bandwidth field corresponding to the quiet window;
  • Step S405 the OLT receives the ranging response information, calculates EqD, sends EqD to the old version ONU to be registered, and allocates the first bandwidth field to the old version ONU to be registered or the old version ONU to be registered.
  • T-CONT the OLT receives the ranging response information, calculates EqD, sends EqD to the old version ONU to be registered, and allocates the first bandwidth field to the old version ONU to be registered or the old version ONU to be registered.
  • Step S406 the OLT updates the BWmap, and continues to send the updated BWmap to the ONU of the old version to be registered.
  • an embodiment of the present application also provides an optical line terminal.
  • the optical line terminal includes: a memory, a processor, and a computer program stored in the memory and executable on the processor.
  • the processor and memory may be connected by a bus or otherwise.
  • the memory can be used to store non-transitory software programs and non-transitory computer-executable programs.
  • the memory may include high-speed random access memory, and may also include non-transitory memory, such as at least one magnetic disk storage device, flash memory device, or other non-transitory solid state storage device.
  • the memory may include memory located remotely from the processor, which may be connected to the processor through a network. Examples of such networks include, but are not limited to, the Internet, an intranet, a local area network, a mobile communication network, and combinations thereof.
  • optical line terminal in this embodiment can be applied as the OLT 110 in the system architecture of the embodiment shown in FIG. 1 , the optical line terminal in this embodiment and the system architecture of the embodiment shown in FIG. 1
  • the OLT 110 in the embodiment has the same inventive concept, so these embodiments have the same realization principle and technical effect, which will not be described in detail here.
  • the non-transitory software programs and instructions required to implement the bandwidth allocation method in the above-mentioned embodiment are stored in the memory, and when executed by the processor, the bandwidth allocation method in the above-mentioned embodiment is executed, for example, the above-described method in FIG. 2 is executed.
  • an embodiment of the present application also provides an optical network unit.
  • the optical network unit includes: a memory, a processor, and a computer program stored on the memory and executable on the processor.
  • the processor and memory may be connected by a bus or otherwise.
  • the memory can be used to store non-transitory software programs and non-transitory computer-executable programs.
  • the memory may include high-speed random access memory, and may also include non-transitory memory, such as at least one magnetic disk storage device, flash memory device, or other non-transitory solid state storage device.
  • the memory may include memory located remotely from the processor, which may be connected to the processor through a network. Examples of such networks include, but are not limited to, the Internet, an intranet, a local area network, a mobile communication network, and combinations thereof.
  • the optical network unit in this embodiment can be applied as the first ONU 120 to be registered or the second ONU 130 to be registered in the system architecture of the embodiment shown in FIG. 1 , the optical network unit in this embodiment and the ONU 130 to be registered
  • the first to-be-registered ONU 120 and the second to-be-registered ONU 130 in the system architecture of the embodiment shown in FIG. 1 have the same inventive concept, so these embodiments have the same implementation principles and technical effects, which will not be described in detail here.
  • the non-transitory software programs and instructions required to implement the bandwidth allocation method of the above embodiment are stored in the memory, and when executed by the processor, the bandwidth allocation method in the above embodiment is executed, for example, the above-described method in FIG. 6 is executed.
  • an embodiment of the present application also provides a computer-readable storage medium, where the computer-readable storage medium stores computer-executable instructions, and the computer-executable instructions are executed by a processor or controller, for example, by the above-mentioned Executed by a processor in the embodiment of the optical line terminal, the above-mentioned processor can execute the bandwidth allocation method in the above-mentioned embodiment, for example, the above-described method steps S110 to S120 in FIG. 2 and method step S130 in FIG. 4 are executed To S140 , the method steps S150 to S170 in FIG. 5 .
  • the above-mentioned processor can execute the bandwidth allocation method in the above-mentioned embodiment, for example, execute the above-described method steps S210 to S220 in FIG. method steps S221 to S222 of FIG. 8 , method steps S230 to S250 of FIG. 8 .
  • the embodiments of the present application include: the OLT divides the upstream bandwidth into several bandwidth entries, wherein the length of the time slot corresponding to the bandwidth entry is not less than the duration of the minimum quiet window, and the duration of the minimum quiet window is determined according to the distance between the OLT and the ONU , one or more bandwidth entries are used for one of the following: registering the ONU, transmitting upstream service data sent by the ONU; delivering several bandwidth entries to the ONU, so that the ONU selects the corresponding bandwidth entry according to the working state.
  • the upstream bandwidth is divided into several bandwidth entries, wherein the length of the time slot corresponding to the bandwidth entry is not less than the duration of the minimum quiet window, and the duration of the minimum quiet window is based on the difference between the OLT and the ONU.
  • the bandwidth entry is used to register the ONU or to transmit the upstream service data sent by the ONU.
  • the ONU to be registered can use the time slot corresponding to the bandwidth entry for registration to initiate registration with the OLT, This will not affect the upstream service data sent by the registered ONU to the OLT, thereby reducing the transmission delay of upstream service data caused by registering the newly added ONU; in addition, the length of the time slot corresponding to the bandwidth entry is not less than the minimum quiet The duration of the window, and the duration of the minimum quiet window is determined according to the distance between the OLT and the ONU. Therefore, the time slot length corresponding to the bandwidth entry can be flexibly set according to the distance between the OLT and the ONU. Therefore, compared to The fixed-duration quiet window adopted by some technical solutions can effectively reduce the waiting time delay when sending uplink service data, so as to meet the system delay requirements of time-sensitive services.
  • Computer storage media include, but are not limited to, RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, digital versatile disk (DVD) or other optical disk storage, magnetic cartridges, magnetic tape, magnetic disk storage or other magnetic storage devices, or may Any other medium used to store desired information and which can be accessed by a computer.
  • communication media typically embodies computer readable instructions, data structures, program modules, or other data in a modulated data signal such as a carrier wave or other transport mechanism, and can include any information delivery media, as is well known to those of ordinary skill in the art .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Small-Scale Networks (AREA)

Abstract

一种带宽分配方法、光线路终端、光网络单元及存储介质。带宽分配方法包括:将上行带宽分成若干带宽条目,其中,带宽条目所对应的时隙长度不小于最小安静窗口的持续时间,最小安静窗口的持续时间根据OLT与ONU之间的距离而确定,一个或者多个带宽条目用于以下之一:对ONU进行注册、传输ONU发送的上行业务数据(S110);将若干带宽条目下发给ONU,以使ONU根据工作状态选择对应的带宽条目(S120)。

Description

带宽分配方法、光线路终端、光网络单元及存储介质
相关申请的交叉引用
本申请基于申请号为202011184132.6、申请日为2020年10月29日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请实施例涉及但不限于通信技术领域,尤其涉及一种带宽分配方法、光线路终端、光网络单元及计算机可读存储介质。
背景技术
无源光网络(Passive Optical Network,PON)是一种点对多点的网络拓扑结构,主要包括位于中心局的光线路终端(Optical Line Terminal,OLT)和位于用户端的多个光网络单元(Optical Network Unit,ONU)。
在PON系统中,新增ONU需要在OLT处完成注册后,才能通过上行通道向OLT发送上行业务数据。在一些技术方案中,OLT通过开放固定时长的安静窗口的方式,接收新增ONU通过上行通道发送的注册响应报文以实现对新增ONU的注册。而在OLT对新增ONU进行注册的过程中,已注册的ONU需要等待固定时长的安静窗口结束后才能发送上行业务数据,这导致了上行业务数据的发送存在较大时延,无法满足时延敏感业务对系统延时的需求。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本申请实施例提供了一种带宽分配方法、光线路终端、光网络单元及计算机可读存储介质。
第一方面,本申请实施例提供了一种带宽分配方法,应用于OLT,所述方法包括:将上行带宽分成若干带宽条目,其中,所述带宽条目所对应的时隙长度不小于最小安静窗口的持续时间,所述最小安静窗口的持续时间根据OLT与光网络单元ONU之间的距离而确定,一个或者多个所述带宽条目用于以下之一:对ONU进行注册、传输ONU发送的上行业务数据;将所述若干带宽条目下发给ONU,以使ONU根据工作状态选择对应的带宽条目。
第二方面,本申请实施例还提供了一种带宽分配方法,应用于ONU,所述方法包括:接收由OLT下发的若干带宽条目,其中,所述带宽条目所对应的时隙长度不小于最小安静窗口的持续时间,所述最小安静窗口的持续时间根据OLT与ONU之间的距离而确定,一个或者多个所述带宽条目用于以下之一:对ONU进行注册、传输ONU发送的上行业务数据;根据工作状态选择对应的带宽条目。
第三方面,本申请实施例还提供了一种光线路终端,包括:存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现如上第一方面所述的带宽分配方法。
第四方面,本申请实施例还提供了一种光网络单元,包括:存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现如上第二方面所述的带宽分配方法。
第五方面,本申请实施例还提供了一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令用于执行如上所述的带宽分配方法。
本申请的其它特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本申请而了解。本申请的目的和其他优点可通过在说明书、权利要求书以及附图中所特别指出的结构来实现和获得。
附图说明
附图用来提供对本申请技术方案的进一步理解,并且构成说明书的一部分,与本申请的实施例一起用于解释本申请的技术方案,并不构成对本申请技术方案的限制。
图1是本申请一个实施例提供的用于执行带宽分配方法的系统架构的示意图;
图2是本申请一个实施例提供的应用于OLT的带宽分配方法的流程图;
图3是本申请一个具体示例提供的BWmap的字段结构的示意图;
图4是本申请另一实施例提供的应用于OLT的带宽分配方法的流程图;
图5是本申请另一实施例提供的应用于OLT的带宽分配方法的流程图;
图6是本申请另一实施例提供的应用于ONU的带宽分配方法的流程图;
图7是本申请另一实施例提供的应用于ONU的带宽分配方法中发起注册操作的流程图;
图8是本申请另一实施例提供的应用于ONU的带宽分配方法的流程图;
图9是本申请一个具体示例提供的带宽分配方法的流程图;
图10是本申请另一个具体示例提供的能够兼容老版本的ONU的带宽分配方法的流程图。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本申请,并不用于限定本申请。
需要说明的是,虽然在装置示意图中进行了功能模块划分,在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于装置中的模块划分,或流程图中的顺序执行所示出或描述的步骤。说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
本申请实施例提供了一种带宽分配方法、光线路终端、光网络单元及计算机可读存储介质,OLT将上行带宽分成若干带宽条目,其中,带宽条目所对应的时隙长度不小于最小安静窗口的持续时间,而最小安静窗口的持续时间根据OLT与ONU之间的距离而确定,并且,带宽条目用于对ONU进行注册或者用于传输ONU发送的上行业务数据;接着,OLT将该若干带宽条目下发给ONU,以使ONU根据工作状态选择对应的带宽条目。因此,待注册ONU可以利用用于进行注册的带宽条目所对应的时隙向OLT发起注册,从而不会影响已注册ONU向OLT发送上行业务数据,从而能够降低由于对新增ONU进行注册而导致的上行业务数据的发送时延;此外,由于带宽条目所对应的时隙长度不小于最小安静窗口的持续时间,而最小安静窗 口的持续时间根据OLT与ONU之间的距离而确定,因此,带宽条目所对应的时隙长度可以根据OLT与ONU之间的距离而灵活设置,所以,相比于一些技术方案所采用的固定时长的安静窗口,能够有效降低发送上行业务数据时所需要等待的时延,从而能够满足时延敏感业务对系统延时的需求。
下面结合附图,对本申请实施例作进一步阐述。
如图1所示,图1是本申请一个实施例提供的用于执行带宽分配方法的系统架构的示意图。在图1的示例中,该系统架构包括OLT110和多个ONU,其中,该多个ONU中包括第一待注册ONU120、第二待注册ONU130和已注册ONU140,OLT110分别与第一待注册ONU120、第二待注册ONU130和已注册ONU140连接。
在图1中,由OLT110向多个ONU传输业务报文的方向为下行传输方向,在该下行传输方向中传输的业务报文为下行业务报文;由多个ONU向OLT110传输业务报文的方向为上行传输方向,在该上行传输方向中传输的业务报文为上行业务报文。
下行业务报文的传输采用点到多点的广播方式,由OLT110发送的下行帧信号,均会被与OLT110连接的所有ONU接收到,当ONU接收到下行帧信号后,ONU可以根据下行帧信号所携带的ONU标识(0NU-ID)、吉比特无源光网络封装方法的端口标识(GPON Encapsulate Method PortID,GEM-PortID)和分配标识(Allocation Identifier,Alloc-ID)等信息来获取属于自己的帧信号,并在该帧信号所指示的时隙内发送上行业务报文。
上行业务报文的传输采用多点到点的方式,各个ONU之间共享传输媒质,各个ONU在由OLT110所分配的时隙内传输上行业务报文。
本申请实施例描述的系统架构以及应用场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域技术人员可知,随着系统架构的演变和新应用场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
本领域技术人员可以理解的是,图1中示出的系统架构的结构并不构成对本申请实施例的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
基于上述系统架构的结构,提出本申请的带宽分配方法的各个实施例。
如图2所示,图2是本申请一个实施例提供的带宽分配方法的流程图,该带宽分配方法应用于OLT,该带宽分配方法包括但不限于有以下步骤:
步骤S110,将上行带宽分成若干带宽条目,其中,带宽条目所对应的时隙长度不小于最小安静窗口的持续时间,最小安静窗口的持续时间根据OLT与光网络单元ONU之间的距离而确定,一个或者多个带宽条目用于以下之一:对ONU进行注册、传输ONU发送的上行业务数据;
步骤S120,将若干带宽条目下发给ONU,以使ONU根据工作状态选择对应的带宽条目。
在一实施例中,可以预先获得OLT与ONU之间的距离,而后根据该距离得到最小安静窗口的持续时间,因此,可以根据该最小安静窗口的持续时间而确定带宽条目所对应的时隙长度,在此基础上,OLT将上行带宽分成若干带宽条目,并将该若干带宽条目下发给ONU,以使ONU可以根据其工作状态而选择对应的带宽条目,例如,当ONU处于待注册的工作状态时,ONU可以选择对应的带宽条目发起注册,而当ONU处于传输业务的工作状态时,ONU则可以选择对应的带宽条目向OLT发送上行业务数据。由于待注册ONU可以利用用于进行注册的带宽 条目所对应的时隙向OLT发起注册,因此不会影响已注册ONU向OLT发送上行业务数据,从而能够降低由于对新增ONU进行注册而导致的上行业务数据的发送时延;此外,由于带宽条目所对应的时隙长度不小于最小安静窗口的持续时间,而最小安静窗口的持续时间根据OLT与ONU之间的距离而确定,因此,带宽条目所对应的时隙长度可以根据OLT与ONU之间的距离而灵活设置,所以,相比于一些技术方案所采用的固定时长的安静窗口,能够有效降低发送上行业务数据时所需要等待的时延,从而能够满足时延敏感业务对系统延时的需求。
在一实施例中,OLT将若干带宽条目下发给ONU时,可以采用发送下行帧信号的方式将该若干带宽条目下发给ONU。其中,下行帧信号可以为GPON传输汇聚帧(GPON Transmission Convergence,GTC)。GTC帧包括同步字段、超帧指示字段、消息处理字段、比特间插奇偶校验码字段、下行有效载荷长度字段、带宽分配位图(Band-Width map,BWmap)以及负载。其中,BWmap可以携带有多个带宽字段,该带宽字段对应于上述的带宽条目,这多个带宽字段中包括第一带宽字段和/或第二带宽字段。需要说明的是,第一带宽字段用于指示OLT对待注册ONU进行注册的时隙,第二带宽字段用于指示已注册ONU向OLT发送上行业务数据的时隙。
如图3所示,给出了BWmap的字段结构的一个具体示例,该BWmap包括有N个分配结构(Allocation Structure),其中,N为自然数。值得注意的是,该分配结构即为步骤S110中的带宽条目或者上述的带宽字段,分配结构主要包括有带宽分配标识(Alloc-ID)字段、标识位(Flags)字段、带宽起始时间(StartTime)字段、授权量(GrantSize)字段、突发配置(BurstProfile)字段和报头纠错(HEC)字段,其中,Flags字段可以包括有上行物理层操作、管理和维护(PLOAMu)标记位以及上行动态带宽报告(DBRu)标记位。
在一实施例中,Alloc-ID字段可用于指示带宽分配的接收方,例如ONU内的特定传输容器(Transmission CONT,T-CONT)或者上行ONU管理及控制信道等。
下面以具体的示例对Alloc-ID字段的作用进行说明:
假设当前分配结构(即当前带宽条目)中的Alloc-ID字段所记载的内容为ONU标识或者链接标识等,即指示当前分配结构已经被某一ONU占用(该ONU为已注册ONU),因此,当前分配结构即为上述的第二带宽字段(即当前带宽条目标识为已分配,可用于传输ONU发送的上行业务数据),其中,ONU标识包括有ONU标识符(ONU-ID)或物理链路标识符(Physical Link Identifier,PLID)等,链接标识包括有T-CONT或用户链路标识符(User Link Identifier,PLID)等。由于当前带宽条目已经被已注册ONU占用,因此已注册ONU可以在当前带宽条目所对应的时隙内向OLT发送上行业务数据。
假设当前分配结构(即当前带宽条目)中的Alloc-ID字段所记载的内容为广播T-CONT、广播逻辑链路标识符(Logical Link Identifier,LLID)或者特定配置的信息等,即指示当前分配结构还没有被ONU占用,因此,当前分配结构即为上述的第一带宽字段(即当前带宽条目标识为未分配,可用于向OLT发起注册操作)。由于当前带宽条目还没有被ONU占用,因此待注册ONU可以在当前带宽条目所对应的时隙内向OLT发起注册操作。
在一实施例中,当待注册ONU从下行帧信号中随机选择至少一个第一带宽字段后,例如在下行帧信号所携带的BWmap中随机选择至少一个第一带宽字段后,待注册ONU可以在所选择的第一带宽字段所指示的时隙内向OLT发起注册操作,例如,待注册ONU可以在接收到来自OLT的注册请求后即发送SN,在收到来自OLT的测距请求后即发送测距响应,或者,待注 册ONU可以在所选择的第一带宽字段所指示的时隙的开始时间(即StartTime字段所记载的时间参数)即向OLT发起注册操作,此外,待注册ONU还可以在所选择的第一带宽字段所指示的时隙的开始时间延迟一定时间后再向OLT发起注册操作,本实施例对此并不作具体限定。在一些技术方案中,待注册ONU在接收到由OLT下发的下行帧信号后,待注册ONU需要随机延迟一段时间后才会进行响应并向OLT发送序列号(Serial Number,SN),因此,会导致待注册ONU的注册处理不及时。而在本实施例中,待注册ONU可以在所选择的第一带宽字段所指示的时隙内即向OLT发起注册操作,取消了一些技术方案中原有的本地随机延时,能够及时进行注册操作,从而能够减小系统的时延。
在一实施例中,下行帧信号中的带宽字段所指示的时隙的大小,可以有不同的实施方式,本实施例对此并不作具体限定。例如,下行帧信号中的每一个带宽字段所指示的时隙均相等,或者,下行帧信号中的至少一个带宽字段所指示的时隙,与下行帧信号中的其他带宽字段所指示的时隙不相等。
在每一个带宽字段所指示的时隙均相等的情况下,由于OLT是周期性向多个ONU下发下行帧信号的,因此OLT能够按照一定的时间间隔把带宽分配给待注册ONU进行竞争注册及测距,从而能够降低待注册ONU获得用于注册的带宽的时延。此外,在每一个带宽字段所指示的时隙均相等的情况下,OLT可以连接的ONU的总数量基本是固定,例如可连接的ONU总数量为16个;而在进行移动回传或者移动前传时,OLT与ONU之间的传输距离是比较短的,例如传输距离为5公里或者10公里等,因此,OLT与ONU之间的传输延迟是可控的,并且能够在一定程度上满足移动回传、移动前传等低时延业务的要求。
在至少一个带宽字段所指示的时隙与其他带宽字段所指示的时隙不相等的情况下,能够根据实际情况而动态配置不同的时隙,从而能够满足不同ONU的时延需求,例如,当OLT与ONU之间的业务传输要求为低时延,则ONU可以选择所指示的时隙长度较短的带宽字段,或者OLT根据ONU的要求动态调整ONU所选择的带宽字段所指示的时隙长度。
另外,在一实施例中,该带宽分配方法还可以包括但不限于有以下步骤:
在所有ONU均完成注册的情况下,将一个或者多个带宽条目分成若干带宽子条目,其中,带宽子条目所对应的时隙小于或者等于最小安静窗口的持续时间,带宽子条目用于传输ONU发送的上行业务数据;
将带宽子条目分配给ONU。
在一实施例中,在所有ONU均完成注册的情况下,OLT可以根据ONU的使用需求而将一个或者多个带宽条目分成若干带宽子条目,其中,带宽子条目所对应的时隙小于或者等于最小安静窗口的持续时间;接着,OLT将该带宽子条目分配给ONU,以使ONU能够在带宽子条目所对应的时隙内发送上行业务数据。例如,在ONU所发送的上行业务数据的数据量存在动态变化的情况下,OLT可以将该ONU所选择的一个或者多个带宽条目分成若干带宽子条目,使得ONU可以根据不同带宽子条目所对应的时隙发送不同的上行业务数据,从而可以满足ONU的使用需求。
值得注意的是,将一个或者多个带宽条目进行分割而得到的带宽子条目,均标识为已分配,即该带宽子条目用于传输ONU发送的上行业务数据。
另外,在一实施例中,OLT将带宽子条目分配给ONU,可以包括但不限于有以下步骤:
将同一个带宽条目中的带宽子条目分配给不同的ONU。
在一实施例中,OLT可以根据各个ONU的使用需求而将与这些ONU对应的一个或者多个带宽条目分成若干带宽子条目,并将同一个带宽条目中的带宽子条目分配给不同的ONU,从而满足各个ONU的不同的使用需求。例如,第一ONU发送的上行业务数据的数据量比较大,而第二ONU发送的上行业务数据的数据量比较小,则可以将第二ONU所选择的一个或者多个带宽条目分成若干带宽子条目,其中一部分带宽子条目保留给第二ONU以保证第二ONU所发送的上行业务数据的正常传输,而另外的带宽子条目则可以分配给第一ONU以保障第一ONU所发送的上行业务数据的正常传输。值得注意的是,OLT还可以按照动态分配的方式在不同的时间将不同的带宽子条目分配给不同的ONU,可以根据实际使用情况而进行适当的选择,本实施例对此并不作具体限定。
另外,在一实施例中,参照图4,在OLT将若干带宽条目下发给ONU之后,该带宽分配方法还可以包括但不限于有以下步骤:
步骤S130,接收由选择了标识为未分配的带宽条目的待注册ONU发送的SN,其中,待注册ONU为选择了标识为未分配的带宽条目的ONU,SN由待注册ONU在所选择的带宽条目所对应的时隙内发送;
步骤S140,根据SN为待注册ONU分配ONU标识,并向待注册ONU发送ONU标识。
在一实施例中,当OLT向多个ONU发送若干带宽条目后,这多个ONU中的待注册ONU会在这些带宽条目中随机选择至少一个标识为未分配的带宽条目,并在所选择的标识为未分配的带宽条目所对应的时隙内向OLT发起注册操作,此时,待注册ONU会先在其所选择的标识为未分配的带宽条目所对应的时隙内向OLT发送该待注册ONU所对应的SN,当OLT接收到该SN后,OLT会根据该SN为该待注册ONU分配ONU标识,并向该待注册ONU发送ONU标识,从而完成对该待注册ONU的分配ONU标识的处理。由于待注册ONU发送SN为在待注册ONU所选择的带宽条目所对应的时隙内完成的,因此不会影响已注册ONU的上行业务数据的发送,所以,能够降低由于对新增ONU进行注册而导致的上行业务数据的发送时延,从而能够满足时延敏感业务对系统延时的需求。
另外,在一实施例中,参照图5,在步骤S140之后,该带宽分配方法还可以包括但不限于有以下步骤:
步骤S150,向待注册ONU发送测距请求信息;
步骤S160,接收由待注册ONU根据测距请求信息而反馈的测距响应信息,测距响应信息由待注册ONU在所选择的带宽条目所对应的时隙内发送;
步骤S170,根据测距响应信息计算均衡时延(Equalization Delay,EqD),并将EqD发送给待注册ONU,以完成对待注册ONU的测距操作。
在一实施例中,当OLT成功为待注册ONU分配ONU标识,并且OLT把该ONU标识发送至待注册ONU后,OLT可以向待注册ONU发送测距请求信息,当待注册ONU接收到该测距请求信息后,待注册ONU可以根据该测距请求信息而向OLT反馈测距响应信息,值得注意的是,待注册ONU在其所选择的带宽条目所对应的时隙内向OLT反馈测距响应信息;而当OLT接收到由待注册ONU反馈的测距响应信息后,OLT会根据该测距响应信息计算EqD,并将该EqD发送给待注册ONU,从而将待注册ONU所选择的带宽条目所对应的时隙分配给该待注册ONU或者该待注册ONU的T-CONT,以完成对待注册ONU的测距操作。由于待注册ONU反馈测距响应信息为在待注册ONU所选择的带宽条目所对应的时隙内完成的,因此不会影响已注册ONU的 上行业务数据的发送,所以,能够降低由于对新增ONU进行注册而导致的上行业务数据的发送时延,从而能够满足时延敏感业务对系统延时的需求。
另外,在一实施例中,在完成对待注册ONU的测距操作后,该带宽分配方法还可以包括但不限于有以下步骤:
将待注册ONU所选择的带宽条目的标识更新为已分配。
在一实施例中,当OLT完成对待注册ONU的测距操作后,即说明OLT完成了对该待注册ONU的注册操作,此时,OLT会将该待注册ONU所选择的带宽条目所对应的时隙分配给该待注册ONU或者该待注册ONU的T-CONT,使得该待注册ONU能够在其所选择的带宽条目所对应的时隙内向OLT发送上行业务数据。为了避免由于其他待注册ONU选择该已经被选择的带宽条目而造成的冲突,OLT会将该待注册ONU所选择的带宽条目的标识更新为已分配,此时,该待注册ONU会转变成已注册ONU,因此,其他待注册ONU将不能选择该待注册ONU(当前已转变成已注册ONU)所选择的带宽条目,所以,避免了由于其他待注册ONU选择该已经被选择的带宽条目而造成的冲突,从而保证了系统的稳定性。
值得注意的是,OLT除了可以将待注册ONU所选择的带宽条目分配给该待注册ONU或者该待注册ONU的T-CONT,OLT还可以根据该待注册ONU的实际应用情况而动态地把其他的标识为未分配的带宽条目也分配给该待注册ONU,以满足该待注册ONU的应用需求。例如,OLT可以将除了该待注册ONU所选择的带宽条目之外的至少一个标识为未分配的带宽条目分配给该待注册ONU,并将这些带宽条目的标识更新为已分配,避免了由于其他待注册ONU选择该已经被分配的带宽条目而造成的冲突,从而保证了系统的稳定性。值得注意的是,在完成对待注册ONU的测距操作后,OLT将待注册ONU所选择的带宽条目的标识更新为已分配,以及OLT将除了该待注册ONU所选择的带宽条目之外的至少一个标识为未分配的带宽条目分配给该待注册ONU并将这些带宽条目的标识更新为已分配,相互之间互为并列的技术方案。
另外,如图6所示,图6是本申请另一个实施例提供的带宽分配方法的流程图,该带宽分配方法应用于ONU,该带宽分配方法包括但不限于有以下步骤:
步骤S210,接收由OLT下发的若干带宽条目,其中,带宽条目所对应的时隙长度不小于最小安静窗口的持续时间,最小安静窗口的持续时间根据OLT与ONU之间的距离而确定,一个或者多个带宽条目用于以下之一:对ONU进行注册、传输ONU发送的上行业务数据;
步骤S220,根据工作状态选择对应的带宽条目。
在一实施例中,ONU所接收到的由OLT下发的带宽条目所对应的时隙长度,可以由OLT预先设置,例如,OLT可以预先获得OLT与ONU之间的距离,而后根据该距离得到最小安静窗口的持续时间,接着,可以根据该最小安静窗口的持续时间而确定带宽条目所对应的时隙长度。当ONU接收到由OLT下发的若干带宽条目后,ONU可以根据其工作状态而选择对应的带宽条目,例如,当ONU处于待注册的工作状态时,ONU可以选择对应的带宽条目发起注册,而当ONU处于传输业务的工作状态时,ONU则可以选择对应的带宽条目向OLT发送上行业务数据。由于待注册ONU可以利用用于进行注册的带宽条目所对应的时隙向OLT发起注册,因此不会影响已注册ONU向OLT发送上行业务数据,从而能够降低由于对新增ONU进行注册而导致的上行业务数据的发送时延;此外,由于带宽条目所对应的时隙长度不小于最小安静窗口的持续时间,而最小安静窗口的持续时间根据OLT与ONU之间的距离而确定,因此,带宽条目所对应的时隙长度可以根据OLT与ONU之间的距离而灵活设置,所以,相比于一些技术 方案所采用的固定时长的安静窗口,能够有效降低发送上行业务数据时所需要等待的时延,从而能够满足时延敏感业务对系统延时的需求。
在一实施例中,ONU所接收到的由OLT下发的带宽条目,可以为OLT通过发送下行帧信号的方式而携带。其中,下行帧信号可以为GTC帧。GTC帧包括同步字段、超帧指示字段、消息处理字段、比特间插奇偶校验码字段、下行有效载荷长度字段、BWmap以及负载。其中,BWmap可以携带有多个带宽字段,该带宽字段对应于上述的带宽条目,这多个带宽字段中包括第一带宽字段和/或第二带宽字段。需要说明的是,第一带宽字段用于指示OLT对待注册ONU进行注册的时隙,第二带宽字段用于指示已注册ONU向OLT发送上行业务数据的时隙。
在一实施例中,第一下行帧信号中的BWmap的字段结构以及各字段的含义作用,与如图3所示实施例中的BWmap的字段结构以及各字段的含义作用均相同,本实施例中的BWmap的字段结构以及各字段的含义作用,可以参照如图3所示实施例中的BWmap的字段结构以及各字段的含义作用,此处不再赘述。
在一实施例中,当待注册ONU从下行帧信号中随机选择至少一个第一带宽字段后,例如在下行帧信号所携带的BWmap中随机选择至少一个第一带宽字段后,待注册ONU可以在所选择的第一带宽字段所指示的时隙内向OLT发起注册操作,例如,待注册ONU可以在接收到来自OLT的注册请求后即发送SN,在收到来自OLT的测距请求后即发送测距响应,或者,待注册ONU可以在所选择的第一带宽字段所指示的时隙的开始时间(即StartTime字段所记载的时间参数)即向OLT发起注册操作,此外,待注册ONU还可以在所选择的第一带宽字段所指示的时隙的开始时间延迟一定时间后再向OLT发起注册操作,本实施例对此并不作具体限定。在一些技术方案中,待注册ONU在接收到由OLT下发的下行帧信号后,待注册ONU需要随机延迟一段时间后才会进行响应并向OLT发送SN,因此,会导致待注册ONU的注册处理不及时。而在本实施例中,待注册ONU可以在所选择的第一带宽字段所指示的时隙内即向OLT发起注册操作,取消了一些技术方案中原有的本地随机延时,能够及时进行注册操作,从而能够减小系统的时延。
在一实施例中,下行帧信号中的带宽字段所指示的时隙的大小,可以有不同的实施方式,本实施例对此并不作具体限定。例如,下行帧信号中的每一个带宽字段所指示的时隙均相等,或者,下行帧信号中的至少一个带宽字段所指示的时隙,与下行帧信号中的其他带宽字段所指示的时隙不相等。
在每一个带宽字段所指示的时隙均相等的情况下,由于OLT是周期性向多个ONU下发下行帧信号的,因此OLT能够按照一定的时间间隔把带宽分配给待注册ONU进行竞争注册及测距,从而能够降低待注册ONU获得用于注册的带宽的时延。此外,在每一个带宽字段所指示的时隙均相等的情况下,OLT可以连接的ONU的总数量基本是固定,例如可连接的ONU总数量为16个;而在进行移动回传或者移动前传时,OLT与ONU之间的传输距离是比较短的,例如传输距离为5公里或者10公里等,因此,OLT与ONU之间的传输延迟是可控的,并且能够在一定程度上满足移动回传、移动前传等低时延业务的要求。
在至少一个带宽字段所指示的时隙与其他带宽字段所指示的时隙不相等的情况下,能够根据实际情况而动态配置不同的时隙,从而能够满足不同ONU的时延需求,例如,当OLT与ONU之间的业务传输要求为低时延,则ONU可以选择所指示的时隙长度较短的带宽字段,或者OLT根据ONU的要求动态调整ONU所选择的带宽字段所指示的时隙长度。
另外,在一实施例中,该带宽分配方法还可以包括但不限于有以下步骤:
接收由OLT分配的带宽子条目,其中,带宽子条目由OLT在所有ONU均完成注册的情况下,将一个或者多个带宽条目分割而得到,带宽子条目所对应的时隙小于或者等于最小安静窗口的持续时间;
在带宽子条目所对应的时隙内向OLT发送上行业务数据。
在一实施例中,在所有ONU均完成注册的情况下,OLT可以根据ONU的使用需求而将一个或者多个带宽条目分成若干带宽子条目,其中,带宽子条目所对应的时隙小于或者等于最小安静窗口的持续时间;而当ONU接收到由OLT分配的带宽子条目后,ONU可以在带宽子条目所对应的时隙内向OLT发送上行业务数据。值得注意的是,OLT可以根据ONU的实际应用情况而将该ONU所选择的一个或者多个带宽条目分成若干带宽子条目,例如,在ONU所发送的上行业务数据的数据量存在动态变化的情况下,OLT可以将该ONU所选择的一个或者多个带宽条目分成若干带宽子条目,使得ONU可以根据不同带宽子条目所对应的时隙发送不同的上行业务数据,从而可以满足ONU的使用需求。
值得注意的是,将一个或者多个带宽条目进行分割而得到的带宽子条目,均标识为已分配,即该带宽子条目用于传输ONU发送的上行业务数据。
另外,在一实施例中,当ONU的工作状态为注册状态时,即该ONU为待注册ONU时,该待注册ONU会从若干带宽条目中选择一个或者多个标识为未分配的带宽条目,而在待注册ONU从若干带宽条目中选择一个或者多个标识为未分配的带宽条目之后,参照图7,该带宽分配方法还可以包括但不限于有以下步骤:
步骤S221,在选择的带宽条目所对应的时隙内,向OLT发送SN;
步骤S222,接收来自OLT的由OLT根据SN而分配的ONU标识。
在一实施例中,当待注册ONU在若干带宽条目中随机选择至少一个标识为未分配的带宽条目后,待注册ONU会先在其所选择的带宽条目所对应的时隙内向OLT发送该待注册ONU所对应的SN,当OLT接收到该SN后,OLT会根据该SN为该待注册ONU分配ONU标识,并向该待注册ONU发送ONU标识,从而完成对该待注册ONU的分配ONU标识的处理。由于待注册ONU向OLT发送SN为在待注册ONU所选择的带宽条目所对应的时隙内完成的,因此不会影响已注册ONU的上行业务数据的发送,所以,能够降低由于对新增ONU进行注册而导致的上行业务数据的发送时延,从而能够满足时延敏感业务对系统延时的需求。
另外,在一实施例中,参照图8,在步骤S222之后,该带宽分配方法还可以包括但不限于有以下步骤:
步骤S230,接收由OLT发送的测距请求信息;
步骤S240,在选择的带宽条目所对应的时隙内,根据测距请求信息向OLT反馈测距响应信息;
步骤S250,接收来自OLT的由OLT根据测距响应信息而计算得到的EqD,以完成由OLT发起的测距操作。
在一实施例中,当OLT成功为待注册ONU分配ONU标识,并且待注册ONU接收到由OLT发送的该ONU标识后,OLT可以向待注册ONU发送测距请求信息,而当待注册ONU接收到该来自OLT的测距请求信息后,待注册ONU可以在其选择的带宽条目所对应的时隙内,根据该测距请求信息向OLT反馈测距响应信息;而当OLT接收到由待注册ONU反馈的测距响应信息 后,OLT会根据该测距响应信息计算EqD,并将该EqD发送给待注册ONU,当待注册ONU接收到该EqD后,即完成了对该待注册ONU的测距操作,此时,OLT会将该待注册ONU所选择的带宽条目所对应的时隙分配给该待注册ONU或者该待注册ONU的T-CONT。由于待注册ONU反馈测距响应信息为在待注册ONU所选择的带宽条目所对应的时隙内完成的,因此不会影响已注册ONU的上行业务数据的发送,所以,能够降低由于对新增ONU进行注册而导致的上行业务数据的发送时延,从而能够满足时延敏感业务对系统延时的需求。
另外,在一实施例中,当ONU的工作状态为业务传输状态时,即该ONU为已注册ONU时,该已注册ONU会从若干带宽条目中选择与由OLT所分配的ONU标识对应的带宽条目,而在待注册ONU从若干带宽条目中选择了与由OLT所分配的ONU标识对应的带宽条目之后,该带宽分配方法还可以包括但不限于有以下步骤:
在选择的与ONU标识对应的带宽条目所对应的时隙内向OLT发送上行业务数据。
在一实施例中,当待注册ONU成功注册后,该待注册ONU会转变成已注册ONU,而该待注册ONU所选择的带宽条目也会被标识为已分配。当该已注册ONU接收到由OLT发送的若干带宽条目后,该已注册ONU可以根据由OLT所分配的ONU标识从这些带宽条目中确定与该ONU标识对应的标识为已分配的带宽条目,并且在所确定的带宽条目所对应的时隙内向OLT发送上行业务数据,以进行与OLT之间的数据通信。由于OLT将待注册ONU所选择的带宽条目的标识更新为已分配,因此,其他待注册ONU将不能选择该待注册ONU(当前已转变成已注册ONU)所选择的带宽条目,所以,能够避免由于其他待注册ONU选择该已经被选择的带宽条目而造成的冲突,从而保证了系统的稳定性。
值得注意的是,OLT除了可以将待注册ONU所选择的带宽条目所对应的时隙分配给该待注册ONU或者该待注册ONU的T-CONT,OLT还可以根据该待注册ONU的实际应用情况而动态地把其他的标识为未分配的带宽条目也分配给该待注册ONU,以满足该待注册ONU的应用需求,本实施例对此并不作具体限定。例如,OLT可以将除了该待注册ONU所选择的带宽条目之外的至少一个标识为未分配的带宽条目分配给该待注册ONU,并将这些带宽条目的标识更新为已分配,避免了由于其他待注册ONU选择该已经被分配的带宽条目而造成的冲突,从而保证了系统的稳定性。
为了更加清楚的说明上述各个实施例中带宽分配方法的具体步骤流程,下面以具体的示例进行说明。
示例一:
假设在1公里、10个ONU的场景下,设备的响应时间变化量为2us,1公里的往返时间为10us,安静窗口的最小时间为12us,则可以将携带在下行帧信号中的BWmap分割成10份,即BWmap包括有10个带宽字段(即带宽条目),每个带宽字段所指示的时隙长度为12.5us。此时,OLT会先将这些带宽字段初始化为未分配状态,例如,将带宽字段中的分配信息子字段(即Alloc-ID字段)设置为特殊的标识值,如广播T-CONT、广播LLID或者特定配置的信息等,即把这些带宽字段设置为上述的第一带宽字段。接着,OLT会将包括有这些第一带宽字段的BWmap下发给各个ONU,而这些ONU中的待注册ONU可以随机选择这些第一带宽字段中的至少一个,并向OLT发送自身的SN,待注册ONU在未获得OLT响应的情况下,等待若干时间后,再次随机选择这些第一带宽字段中的至少一个,并再次向OLT发送自身的SN。如果OLT正确获得某个待注册ONU的SN,则会在该待注册ONU所选择的第一带宽字段所指示的时 隙内对该待注册ONU完成后续的激活过程(包括分配ONU标识、测距、分配EqD)。当待注册ONU完成激活后,OLT将该待注册ONU所选择的第一带宽字段分配给该待注册ONU,其中,第一带宽字段中的分配信息子字段(即Alloc-ID字段)设置为该待注册ONU所对应的ONU标识。
值得注意的是,如果在距离更短的情况下,例如在家庭内部,光纤的距离不会超过100米,因此安静窗口的取值范围可以为1us至3us。在适应安静窗口的前提条件下,上行带宽可以分割得更细,从而可以给ONU分配更多的带宽字段。
示例二:
如图9所示,图9是本申请一个示例所提供的带宽分配方法的流程图,该流程具体为:
步骤S301,OLT在BWmap中设置10个带宽字段(即带宽条目),每个带宽字段所指示的时隙长度为12.5us,OLT将携带有这些带宽字段的BWmap发送给ONU,这些带宽字段均被初始化为未分配状态,例如这些带宽字段均被设置为上述的第一带宽字段,这些第一带宽字段中的分配信息子字段(即Alloc-ID字段)设置为广播T-CONT(例如在XG-PON系统或者XGS-PON系统中,广播T-CONT的值为1023);
步骤S302,待注册ONU获取OLT发送的BWmap并解析该BWmap所携带的第一带宽字段,随机选择一个第一带宽字段,在该第一带宽字段所指示的时隙的开始时间直接向OLT发送SN,不经过随机延迟;
步骤S303,OLT接收到待注册ONU发送的SN后,为该待注册ONU分配ONU标识,并在该第一带宽字段所指示的时隙内向该待注册ONU发送测距请求信息;
步骤S304,待注册ONU接收到ONU标识,并响应测距请求信息,在该第一带宽字段所指示的时隙的开始时间直接向OLT发送测距响应信息;
步骤S305,OLT接收到测距响应信息,计算EqD,将EqD发送给待注册ONU,并将该第一带宽字段分配给该待注册ONU或者该待注册ONU的T-CONT;
步骤S306,OLT更新BWmap,并继续向待注册ONU发送更新后的BWmap。
示例三:
如图10所示,图10是本申请另一个示例所提供的能够兼容老版本的ONU的带宽分配方法的流程图。该流程具体为:
步骤S401,OLT在BWmap中设置10个带宽字段(即带宽条目),每个带宽字段所指示的时隙长度为12.5us,这些带宽字段均被初始化为未分配状态,例如这些带宽字段均被设置为上述的第一带宽字段,OLT将其中一个第一带宽字段设置为安静窗口,并在该安静窗口所对应的第一带宽字段中设置SNgrant信息,OLT将除了安静窗口所对应的第一带宽字段的其他第一带宽字段以及该SNgrant信息通过BWmap发送给ONU,这些第一带宽字段中的分配信息子字段(即Alloc-ID字段)设置为广播T-CONT(例如在XG-PON系统或者XGS-PON系统中,广播T-CONT的值为1023);
步骤S402,待注册的老版本ONU获取OLT发送的BWmap并解析该BWmap所携带的信息,当待注册的老版本ONU获取到该SNgrant信息后,待注册的老版本ONU直接向OLT发送SN,不经过随机延迟;
步骤S403,OLT接收到待注册的老版本ONU发送的SN后,为该待注册的老版本ONU分配ONU标识,并在安静窗口所对应的第一带宽字段所指示的时隙内向该待注册的老版本ONU发 送测距请求信息;
步骤S404,待注册的老版本ONU接收到ONU标识,并响应测距请求信息,在安静窗口所对应的第一带宽字段所指示的时隙的开始时间直接向OLT发送测距响应信息;
步骤S405,OLT接收到测距响应信息,计算EqD,将EqD发送给待注册的老版本ONU,并将该第一带宽字段分配给该待注册的老版本ONU或者该待注册的老版本ONU的T-CONT;
步骤S406,OLT更新BWmap,并继续向待注册的老版本ONU发送更新后的BWmap。
另外,本申请的一个实施例还提供了一种光线路终端,该光线路终端包括:存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序。
处理器和存储器可以通过总线或者其他方式连接。
存储器作为一种非暂态计算机可读存储介质,可用于存储非暂态软件程序以及非暂态性计算机可执行程序。此外,存储器可以包括高速随机存取存储器,还可以包括非暂态存储器,例如至少一个磁盘存储器件、闪存器件、或其他非暂态固态存储器件。在一些实施方式中,存储器可包括相对于处理器远程设置的存储器,这些远程存储器可以通过网络连接至该处理器。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
需要说明的是,本实施例中的光线路终端,可以应用为如图1所示实施例的系统架构中的OLT110,本实施例中的光线路终端和如图1所示实施例的系统架构中的OLT110具有相同的发明构思,因此这些实施例具有相同的实现原理以及技术效果,此处不再详述。
实现上述实施例的带宽分配方法所需的非暂态软件程序以及指令存储在存储器中,当被处理器执行时,执行上述实施例中的带宽分配方法,例如,执行以上描述的图2中的方法步骤S110至S120、图4中的方法步骤S130至S140、图5中的方法步骤S150至S170。
另外,本申请的一个实施例还提供了一种光网络单元,该光网络单元包括:存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序。
处理器和存储器可以通过总线或者其他方式连接。
存储器作为一种非暂态计算机可读存储介质,可用于存储非暂态软件程序以及非暂态性计算机可执行程序。此外,存储器可以包括高速随机存取存储器,还可以包括非暂态存储器,例如至少一个磁盘存储器件、闪存器件、或其他非暂态固态存储器件。在一些实施方式中,存储器可包括相对于处理器远程设置的存储器,这些远程存储器可以通过网络连接至该处理器。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
需要说明的是,本实施例中的光网络单元,可以应用为如图1所示实施例的系统架构中的第一待注册ONU120或者第二待注册ONU130,本实施例中的光网络单元和如图1所示实施例的系统架构中的第一待注册ONU120以及第二待注册ONU130具有相同的发明构思,因此这些实施例具有相同的实现原理以及技术效果,此处不再详述。
实现上述实施例的带宽分配方法所需的非暂态软件程序以及指令存储在存储器中,当被处理器执行时,执行上述实施例中的带宽分配方法,例如,执行以上描述的图6中的方法步骤S210至S220、图7中的方法步骤S221至S222、图8中的方法步骤S230至S250。
以上所描述的装置实施例仅仅是示意性的,其中作为分离部件说明的单元可以是或者也可以不是物理上分开的,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。
此外,本申请的一个实施例还提供了一种计算机可读存储介质,该计算机可读存储介质 存储有计算机可执行指令,该计算机可执行指令被一个处理器或控制器执行,例如,被上述光线路终端实施例中的一个处理器执行,可使得上述处理器执行上述实施例中的带宽分配方法,例如,执行以上描述的图2中的方法步骤S110至S120、图4中的方法步骤S130至S140、图5中的方法步骤S150至S170。或者,被上述光网络单元实施例中的一个处理器执行,可使得上述处理器执行上述实施例中的带宽分配方法,例如,执行以上描述的图6中的方法步骤S210至S220、图7中的方法步骤S221至S222、图8中的方法步骤S230至S250。
本申请实施例包括:OLT将上行带宽分成若干带宽条目,其中,带宽条目所对应的时隙长度不小于最小安静窗口的持续时间,最小安静窗口的持续时间根据OLT与ONU之间的距离而确定,一个或者多个带宽条目用于以下之一:对ONU进行注册、传输ONU发送的上行业务数据;将若干带宽条目下发给ONU,以使ONU根据工作状态选择对应的带宽条目。根据本申请实施例提供的方案,通过将上行带宽分成若干带宽条目,其中,带宽条目所对应的时隙长度不小于最小安静窗口的持续时间,而最小安静窗口的持续时间根据OLT与ONU之间的距离而确定,并且,带宽条目用于对ONU进行注册或者用于传输ONU发送的上行业务数据,因此,待注册ONU可以利用用于进行注册的带宽条目所对应的时隙向OLT发起注册,从而不会影响已注册ONU向OLT发送上行业务数据,从而能够降低由于对新增ONU进行注册而导致的上行业务数据的发送时延;此外,由于带宽条目所对应的时隙长度不小于最小安静窗口的持续时间,而最小安静窗口的持续时间根据OLT与ONU之间的距离而确定,因此,带宽条目所对应的时隙长度可以根据OLT与ONU之间的距离而灵活设置,所以,相比于一些技术方案所采用的固定时长的安静窗口,能够有效降低发送上行业务数据时所需要等待的时延,从而能够满足时延敏感业务对系统延时的需求。
本领域普通技术人员可以理解,上文中所公开方法中的全部或某些步骤、系统可以被实施为软件、固件、硬件及其适当的组合。某些物理组件或所有物理组件可以被实施为由处理器,如中央处理器、数字信号处理器或微处理器执行的软件,或者被实施为硬件,或者被实施为集成电路,如专用集成电路。这样的软件可以分布在计算机可读介质上,计算机可读介质可以包括计算机存储介质(或非暂时性介质)和通信介质(或暂时性介质)。如本领域普通技术人员公知的,术语计算机存储介质包括在用于存储信息(诸如计算机可读指令、数据结构、程序模块或其他数据)的任何方法或技术中实施的易失性和非易失性、可移除和不可移除介质。计算机存储介质包括但不限于RAM、ROM、EEPROM、闪存或其他存储器技术、CD-ROM、数字多功能盘(DVD)或其他光盘存储、磁盒、磁带、磁盘存储或其他磁存储装置、或者可以用于存储期望的信息并且可以被计算机访问的任何其他的介质。此外,本领域普通技术人员公知的是,通信介质通常包含计算机可读指令、数据结构、程序模块或者诸如载波或其他传输机制之类的调制数据信号中的其他数据,并且可包括任何信息递送介质。
以上是对本申请的一些实施进行了具体说明,但本申请并不局限于上述实施方式,熟悉本领域的技术人员在不违背本申请范围的前提下还可作出种种的等同变形或替换,这些等同的变形或替换均包含在本申请权利要求所限定的范围内。

Claims (17)

  1. 一种带宽分配方法,应用于光线路终端OLT,所述方法包括:
    将上行带宽分成若干带宽条目,其中,所述带宽条目所对应的时隙长度不小于最小安静窗口的持续时间,所述最小安静窗口的持续时间根据OLT与光网络单元ONU之间的距离而确定,一个或者多个所述带宽条目用于以下之一:对ONU进行注册、传输ONU发送的上行业务数据;
    将所述若干带宽条目下发给ONU,以使ONU根据工作状态选择对应的带宽条目。
  2. 根据权利要求1所述的带宽分配方法,其中,一个或者多个所述带宽条目标识为以下属性之一:未分配、已分配;
    其中,所述未分配表示所述带宽条目用于对ONU进行注册;所述已分配表示所述带宽条目用于传输ONU发送的上行业务数据。
  3. 根据权利要求1或2所述的带宽分配方法,其中,还包括:
    在所有ONU均完成注册的情况下,将一个或者多个所述带宽条目分成若干带宽子条目,其中,所述带宽子条目所对应的时隙小于或者等于所述最小安静窗口的持续时间,所述带宽子条目用于传输ONU发送的上行业务数据;
    将所述带宽子条目分配给ONU。
  4. 根据权利要求3所述的带宽分配方法,其中,所述将所述带宽子条目分配给ONU,包括:
    将同一个带宽条目中的带宽子条目分配给不同的ONU。
  5. 根据权利要求2所述的带宽分配方法,其中,在将所述若干带宽条目下发给ONU之后,还包括:
    接收由选择了标识为未分配的带宽条目的待注册ONU发送的序列号SN,其中,所述待注册ONU为选择了标识为未分配的带宽条目的ONU,所述SN由所述待注册ONU在所选择的带宽条目所对应的时隙内发送;
    根据所述SN为所述待注册ONU分配ONU标识,并向所述待注册ONU发送所述ONU标识。
  6. 根据权利要求5所述的带宽分配方法,其中,在向所述待注册ONU发送所述ONU标识之后,还包括:
    向所述待注册ONU发送测距请求信息;
    接收由所述待注册ONU根据所述测距请求信息而反馈的测距响应信息,所述测距响应信息由所述待注册ONU在所选择的带宽条目所对应的时隙内发送;
    根据所述测距响应信息计算均衡时延EqD,并将所述EqD发送给所述待注册ONU,以完成对所述待注册ONU的测距操作。
  7. 根据权利要求6所述的带宽分配方法,其中,在完成对所述待注册ONU的测距操作后,还包括:
    将所述待注册ONU所选择的带宽条目的标识更新为已分配。
  8. 根据权利要求6所述的带宽分配方法,其中,在完成对所述待注册ONU的测距操作后,还包括:
    将除所述待注册ONU所选择的带宽条目之外的至少一个标识为未分配的带宽条目分配给 所述待注册ONU,并将所述除所述待注册ONU所选择的带宽条目之外的至少一个标识为未分配的带宽条目的标识更新为已分配。
  9. 一种带宽分配方法,应用于ONU,所述方法包括:
    接收由OLT下发的若干带宽条目,其中,所述带宽条目所对应的时隙长度不小于最小安静窗口的持续时间,所述最小安静窗口的持续时间根据OLT与ONU之间的距离而确定,一个或者多个所述带宽条目用于以下之一:对ONU进行注册、传输ONU发送的上行业务数据;
    根据工作状态选择对应的带宽条目。
  10. 根据权利要求9所述的带宽分配方法,其中,一个或者多个所述带宽条目标识为以下属性之一:未分配、已分配;
    其中,所述未分配表示所述带宽条目用于对ONU进行注册;所述已分配表示所述带宽条目用于传输ONU发送的上行业务数据。
  11. 根据权利要求9或10所述的带宽分配方法,其中,还包括:
    接收由OLT分配的带宽子条目,其中,所述带宽子条目由OLT在所有ONU均完成注册的情况下,将一个或者多个所述带宽条目分割而得到,所述带宽子条目所对应的时隙小于或者等于所述最小安静窗口的持续时间;
    在所述带宽子条目所对应的时隙内向OLT发送上行业务数据。
  12. 根据权利要求10所述的带宽分配方法,其中,当所述工作状态为注册状态,所述根据工作状态选择对应的带宽条目,包括:
    从所述若干带宽条目中选择一个或者多个标识为未分配的带宽条目;
    在从所述若干带宽条目中选择一个或者多个标识为未分配的带宽条目之后,所述带宽分配方法还包括:
    在选择的带宽条目所对应的时隙内,向OLT发送SN;
    接收来自OLT的由OLT根据所述SN而分配的ONU标识。
  13. 根据权利要求12所述的带宽分配方法,其中,在接收来自OLT的由OLT根据所述SN而分配的ONU标识之后,还包括:
    接收由OLT发送的测距请求信息;
    在所述选择的带宽条目所对应的时隙内,根据所述测距请求信息向OLT反馈测距响应信息;
    接收来自OLT的由OLT根据所述测距响应信息而计算得到的EqD,以完成由OLT发起的测距操作。
  14. 根据权利要求12所述的带宽分配方法,其中,当所述工作状态为业务传输状态,所述根据工作状态选择对应的带宽条目,包括:
    根据所述ONU标识从所述若干带宽条目中选择与所述ONU标识对应的带宽条目;
    在根据所述ONU标识从所述若干带宽条目中选择与所述ONU标识对应的带宽条目之后,所述带宽分配方法还包括:
    在选择的与所述ONU标识对应的带宽条目所对应的时隙内向OLT发送上行业务数据。
  15. 一种光线路终端,包括:存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,其中,所述处理器执行所述计算机程序时实现如权利要求1至8中任意一项所述的带宽分配方法。
  16. 一种光网络单元,包括:存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,其中,所述处理器执行所述计算机程序时实现如权利要求9至14中任意一项所述的带宽分配方法。
  17. 一种计算机可读存储介质,存储有计算机可执行指令,其中,所述计算机可执行指令用于执行权利要求1至8中任意一项所述的带宽分配方法,或者执行权利要求9至14中任意一项所述的带宽分配方法。
PCT/CN2021/123109 2020-10-29 2021-10-11 带宽分配方法、光线路终端、光网络单元及存储介质 WO2022089186A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011184132.6 2020-10-29
CN202011184132.6A CN114430372A (zh) 2020-10-29 2020-10-29 带宽分配方法、光线路终端、光网络单元及存储介质

Publications (1)

Publication Number Publication Date
WO2022089186A1 true WO2022089186A1 (zh) 2022-05-05

Family

ID=81309408

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/123109 WO2022089186A1 (zh) 2020-10-29 2021-10-11 带宽分配方法、光线路终端、光网络单元及存储介质

Country Status (2)

Country Link
CN (1) CN114430372A (zh)
WO (1) WO2022089186A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117177104A (zh) * 2022-05-27 2023-12-05 中国移动通信有限公司研究院 一种信息反馈方法、设备及存储介质
CN118102144A (zh) * 2022-11-17 2024-05-28 中兴通讯股份有限公司 数据传输方法、装置、系统、设备及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070064731A1 (en) * 2005-09-06 2007-03-22 Hitachi Communication Technologies Ltd. Transmission apparatus with function of multi-step bandwidth assignment to other communication apparatuses
WO2019042457A1 (zh) * 2017-09-04 2019-03-07 中兴通讯股份有限公司 带宽分配方法、装置及系统
CN109756796A (zh) * 2017-11-01 2019-05-14 中兴通讯股份有限公司 一种无源光网络下行带宽传输方法和装置
US20200092253A1 (en) * 2018-09-13 2020-03-19 Charter Communications Operating, Llc Using dynamic host control protocol (dhcp) and a special file format to convey quality of service (qos) and service information to customer equipment

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070064731A1 (en) * 2005-09-06 2007-03-22 Hitachi Communication Technologies Ltd. Transmission apparatus with function of multi-step bandwidth assignment to other communication apparatuses
WO2019042457A1 (zh) * 2017-09-04 2019-03-07 中兴通讯股份有限公司 带宽分配方法、装置及系统
CN109756796A (zh) * 2017-11-01 2019-05-14 中兴通讯股份有限公司 一种无源光网络下行带宽传输方法和装置
US20200092253A1 (en) * 2018-09-13 2020-03-19 Charter Communications Operating, Llc Using dynamic host control protocol (dhcp) and a special file format to convey quality of service (qos) and service information to customer equipment

Also Published As

Publication number Publication date
CN114430372A (zh) 2022-05-03

Similar Documents

Publication Publication Date Title
CA2295563C (en) Method and apparatus for controlling communications in a passive optical network
US7889990B2 (en) Optical line terminal capable of active bandwidth allocation for passive optical network system
WO2022089186A1 (zh) 带宽分配方法、光线路终端、光网络单元及存储介质
US8548327B2 (en) Dynamic management of polling rates in an ethernet passive optical network (EPON)
EP2953375B1 (en) Probabilistic bandwidth control in a passive optical network (pon)
WO2003007518A2 (en) Allocation of upstream bandwidth in an ethernet passive optical network
KR20040039781A (ko) 이더넷 pon에 있어서 상향 데이터 전송 제어 방법 및그 장치
JP6900624B2 (ja) データ通信システム、光回線終端装置およびベースバンドユニット
US8285143B2 (en) Method of allocating bandwidth of passive optical network
US8040918B2 (en) Dynamic bandwidth allocation in a passive optical access network
JP5409386B2 (ja) 受動光網システム用動的帯域割当装置及びその実現方法
US8983295B2 (en) Optical line terminal and method of registering optical network terminal thereof
KR100786527B1 (ko) 수동광분기망에서 맥을 위한 승인 요청 방법
CN101330450B (zh) 光网络中带宽分配方法、系统及设备
EP4087271A1 (en) Service transmission method and apparatus, sending end and storage medium
CN111901706B (zh) 一种tdm pon中的onu发现测距方法和系统
WO2024077988A1 (zh) 配置信息的发送方法、装置、存储介质及电子装置
WO2023000870A1 (zh) 带宽分配方法、olt、onu、终端和存储介质
CN110858779B (zh) Onu通道处理方法、设备以及计算机可读存储介质
US11683102B1 (en) Bandwidth allocation method and associated optical line terminal
CN103518355A (zh) 一种带宽分配的方法、设备及系统
JP4877483B2 (ja) 送信割当て方法及び装置
JP6159265B2 (ja) 帯域割当方法、局側装置及び光通信システム
WO2022206174A1 (zh) 一种数据传输方法、光线路终端、光网络单元及通信系统
WO2024103769A1 (zh) 数据传输方法、装置、系统、设备及存储介质

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 27/09/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 21884915

Country of ref document: EP

Kind code of ref document: A1