WO2019042457A1 - 带宽分配方法、装置及系统 - Google Patents

带宽分配方法、装置及系统 Download PDF

Info

Publication number
WO2019042457A1
WO2019042457A1 PCT/CN2018/103939 CN2018103939W WO2019042457A1 WO 2019042457 A1 WO2019042457 A1 WO 2019042457A1 CN 2018103939 W CN2018103939 W CN 2018103939W WO 2019042457 A1 WO2019042457 A1 WO 2019042457A1
Authority
WO
WIPO (PCT)
Prior art keywords
bandwidth
onu
olt
entry
entries
Prior art date
Application number
PCT/CN2018/103939
Other languages
English (en)
French (fr)
Inventor
张伟良
袁立权
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2019042457A1 publication Critical patent/WO2019042457A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q11/0067Provisions for optical access or distribution networks, e.g. Gigabit Ethernet Passive Optical Network (GE-PON), ATM-based Passive Optical Network (A-PON), PON-Ring
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q2011/0079Operation or maintenance aspects
    • H04Q2011/0083Testing; Monitoring
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q2011/0086Network resource allocation, dimensioning or optimisation

Definitions

  • Embodiments of the present invention relate to the field of optical communications, and in particular, to a bandwidth allocation method, apparatus, and system.
  • FIG. 1 is a schematic diagram of a point-to-multipoint passive optical network architecture in the related art of the present invention.
  • the passive optical network architecture in the related art is shown in FIG. 1 , which is a point-to-multipoint network topology and an optical line terminal ( Optional Line Terminal (referred to as OLT) connects multiple optical network units (Optional Network Units, or simply ONUs) through a point-to-multipoint optical distribution network (ODN), and uses the downlink direction (OLT to ONU).
  • OLT Optional Line Terminal
  • the transmission delay in the passive optical network includes: optical transmission delay, delay caused by the ONU opening a quiet window, bandwidth allocation delay, and the like.
  • the optical transmission delay is related to the fiber distance, and the transmission time of 20KM is about 100us. Open quiet windows and dynamic bandwidth scheduling will bring significant delays to the services carried by the PON.
  • FIG. 2 is a schematic diagram of the impact of the quiet window on the working ONU in the ONU registration process of the related art of the present invention, as shown in FIG. 2 .
  • the quiet window belongs to the overhead caused by the initialization of the channel connection between the OLT and the ONU.
  • the ONU that works normally during the quiet window cannot communicate normally with the OLT. If the working ONU has the uplink data to be sent at the beginning of the quiet window, it must wait for the quiet window to end before it has the opportunity to send the uplink data. In this case, the uplink data sent by the working ONU may cause delay.
  • FIG. 3 is a schematic diagram of delay caused by request-based bandwidth allocation in the related art of the present invention.
  • passive optical networks have gradually become one of the bearer technologies for mobile pre-transmission, mobile backhaul, sensor networks and car networking.
  • the transmission delay requirements of mobile networks are very strict, and the current passive optical network systems and their working methods are difficult to meet the requirements.
  • the passive optical network applied to the mobile bearer needs network architecture transformation and working mechanism optimization, which is quite different from the traditional FTTH (fiber to the home) and FTTB (fiber to the building) application scenarios.
  • the solution in the related art is to implement ONU discovery and ranging through the second channel, and replace the dynamic bandwidth allocation with static bandwidth allocation, but the second channel brings large system overhead and cost, resulting in unnecessary resource waste. .
  • the embodiment of the invention provides a bandwidth allocation method, device and system, so as to at least solve the technical problem that the transmission delay of the passive optical network is too large in the related art.
  • a bandwidth allocation method including: an optical line terminal OLT divides an uplink bandwidth in one cycle into a fixed number of bandwidth entries, wherein one or more of the bandwidth entries are used in the following A: Ranging, initial communication, assigned to the designated ONU; the OLT sends the bandwidth entry to the optical network unit ONU.
  • another bandwidth allocation method including: an optical line terminal OLT divides an uplink bandwidth in one cycle into a fixed number of bandwidth entries, wherein one or more of the bandwidth entries are used for the following One of the following: the ranging, the initial communication, is assigned to the designated ONU; the OLT sends the bandwidth entry to the optical network unit ONU.
  • a bandwidth allocation method including: an optical network unit ONU receiving a bandwidth entry delivered by an optical line terminal OLT, wherein one or more of the bandwidth entries are used in one of the following: Ranging, initial communication, assigned to the specified ONU.
  • a bandwidth allocation apparatus applied to an optical line terminal OLT, comprising: an allocation module configured to divide an uplink bandwidth in one cycle into a fixed number of bandwidth entries, wherein one or more The bandwidth entry is used for one of the following: ranging, initial communication, and assignment to the designated ONU; the sending module is configured to deliver the bandwidth entry to the optical network unit ONU.
  • another bandwidth allocation apparatus is provided, which is applied to an optical network unit ONU, and includes: a receiving module, configured to receive a bandwidth entry delivered by an optical line terminal OLT, where one or more The bandwidth entry is used for one of the following: ranging, initial communication, assigned to the designated ONU.
  • a bandwidth allocation system including: an optical line terminal OLT, an optical network unit ONU, wherein the OLT includes: an allocation module configured to divide an uplink bandwidth in one cycle into fixed a number of bandwidth entries, wherein one or more of the bandwidth entries are used for one of: a ranging, initial communication, assigned to a designated ONU; a delivery module configured to deliver the bandwidth entry to an optical network unit ONU
  • the ONU includes: a receiving module, configured to receive the bandwidth entry delivered by the OLT.
  • a storage medium is also provided.
  • the storage medium is arranged to store steps for performing the method embodiments of any of the above.
  • a processor configured to execute a program, wherein the program is operative to perform the steps of any one of the method embodiments above.
  • an electronic device comprising a memory and a processor, wherein the memory stores a computer program, the processor being arranged to run the computer program to perform any of the above The steps in the method embodiments.
  • the OLT divides the uplink bandwidth in one cycle into a fixed number of bandwidth entries, wherein one or more of the bandwidth entries are used for one of the following: ranging, initial communication, and allocation to the designated ONU;
  • the OLT sends the bandwidth entry to the optical network unit ONU.
  • FIG. 1 is a schematic diagram of a point-to-multipoint passive optical network architecture in the related art of the present invention
  • FIG. 2 is a schematic diagram of the impact of a quiet window on a working ONU in an ONU registration process of the related art of the present invention
  • 3 is a schematic diagram of delays caused by request-based bandwidth allocation in the related art of the present invention.
  • FIG. 4 is a flow chart of a bandwidth allocation method according to an embodiment of the present invention.
  • FIG. 5 is a structural block diagram of a bandwidth allocation apparatus according to an embodiment of the present invention.
  • FIG. 6 is a structural block diagram of a bandwidth allocation system according to an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of interaction according to Embodiment 1 of the present invention.
  • Embodiment 3 of the present invention is a schematic diagram of interaction of Embodiment 3 of the present invention.
  • Embodiment 4 of the present invention is a schematic diagram of interaction of Embodiment 4 of the present invention.
  • FIG. 11 is a schematic diagram of interaction according to Embodiment 5 of the present invention.
  • the embodiment of the present application can be run on the network architecture shown in FIG. 1 , as shown in FIG. 1 , the network architecture includes: an OLT and an ONU.
  • FIG. 4 is a flowchart of a bandwidth allocation method according to an embodiment of the present invention. As shown in FIG. 4, the process includes the following steps:
  • Step S402 the OLT divides the uplink bandwidth in one cycle into a fixed number of bandwidth entries, where one or more bandwidth entries are used for one of the following: ranging, initial communication, and allocation to the designated ONU;
  • step S404 the OLT sends the bandwidth entry to the optical network unit ONU.
  • the OLT divides the uplink bandwidth in one cycle into a fixed number of bandwidth entries, where one or more bandwidth entries are used for one of the following: ranging, initial communication, and allocation to the designated ONU; and the OLT issues the bandwidth entry.
  • the optical network unit ONU By fixing the allocated bandwidth, the technical problem of excessive transmission delay of the passive optical network in the related art is solved at low cost and effectively.
  • the execution body of the foregoing steps may be an OLT, a management device of the OLT, or the like, but is not limited thereto.
  • the one or more bandwidth entries are identified as one of the following attributes: to be ranging, unallocated, allocated; wherein the to-be-received indicates that the bandwidth entry is used for ranging; the unallocated indicates that the bandwidth entry is used for initial communication; Allocated indicates that the bandwidth entry has been assigned to the specified ONU.
  • the to-be-received indicates that the bandwidth entry is used for the ranging includes: the OLT sends the first bandwidth to the ONU, and records the sending time, where the first bandwidth is one or more bandwidth entries identified as the to-be-measured distance.
  • the method further includes: after receiving the first bandwidth, the ONU selects one or more bandwidth entries in the first bandwidth, and sends the first bandwidth to the OLT in the bandwidth entry.
  • the first bandwidth response includes ONU identity information, and a number of bandwidth entries;
  • the method further includes: the OLT receiving the first bandwidth response, recording the receiving time, and acquiring the identity information of the ONU, according to the sending time of the first bandwidth and the receiving time of the first bandwidth response, Calculate the ranging result of the ONU identity information corresponding to the ONU, and obtain the logical distance between the OLT and the ONU in the passive optical network.
  • the OLT further updates the local logical distance between the OLT and the ONU, or sends the logical distance to the ONU to the ONU.
  • the OLT further includes: the OLT allocates a bandwidth entry for the ONU, and the bandwidth entry is used by the ONU to send data and/or management information to the OLT.
  • the unallocated bandwidth entry is used for initial communication, and the OLT sends the second bandwidth to the ONU, where the second bandwidth is one or more bandwidth entries identified as being unallocated.
  • the unallocated bandwidth parameter is used for initial communication, and the method further includes: after receiving the second bandwidth, the ONU selects one or more bandwidth entries in the second bandwidth, and sends a second bandwidth response to the OLT in the bandwidth entry, where The second bandwidth response includes ONU identity information.
  • the OLT receives the second bandwidth response, obtains the ONU identity, and the OLT allocates a bandwidth entry for the ONU, where the bandwidth entry is used by the ONU to send data and/or management information to the OLT.
  • the allocated bandwidth entry has been allocated to the designated ONU.
  • the interval between the bandwidth entries When there is an interval between the bandwidth entries, the interval between the bandwidth entries. The same or different, the minimum value of the interval meets the delay requirements of the system.
  • the method further includes: specifying that the ONU sends data and/or management information to the OLT in the bandwidth entry.
  • the method further includes: the OLT acquiring the identity information of the ONU.
  • the ONU identity information includes at least one of the following: a sequence number SN, a MAC address, a password, and a registration ID.
  • the OLT before the OLT sends the one or more bandwidth entries for the initial communication to the ONU, the OLT further includes: acquiring, by the OLT, a logical distance from the ONU.
  • the method further includes: the OLT setting a maximum logical distance between the OLT and the ONU, where the logic between the OLT and all the ONUs The distance is less than or equal to the longest logical distance.
  • the OLT after the OLT sets the longest logical distance between the OLT and the ONU, the OLT also sends the longest logical distance between the OLT and the ONU.
  • the OLT acquires a logical distance from the ONU, including: configuring a logical distance between the OLT and the ONU into the OLT.
  • the OLT acquires a logical distance from the ONU, including: the OLT performs ranging on the third wavelength, and obtains a ranging result of the OLT and the ONU on the third wavelength; and the OLT is configured according to the third wavelength.
  • the distance measurement result and the wavelength relationship calculate the logical distance between the OLT and the ONU at the working wavelength.
  • the OLT sends the longest logical distance between the OLT and the ONU, including: the ONU tests the logical distance between the ONU and the OLT through an optical time domain reflectometer OTDR technology, wherein the wavelength used by the OTDR is different from the working wavelength.
  • the OLT sends the longest logical distance between the OLT and the ONU, including: the OLT sends a ranging data packet with a sending time; the ONU receives the ranging data packet, records the local receiving time, and obtains the ranging data.
  • the transmission time in the packet calculates the logical distance between the ONU and the OLT according to the local receiving time and the sending time.
  • the OLT and the ONU have a Time of Day (ToD) condition.
  • ToD Time of Day
  • the ONU obtains the longest logical distance between the OLT and the ONU; the ONU compensates locally, and the compensation is the longest logical distance minus the OLT and the ONU.
  • the logical distance between is the longest logical distance minus the OLT and the ONU.
  • the logical distance between the OLT and the ONU is configured into the OLT, and the method includes: the branch fiber connected to the ONU is equipped with an electronic tag; and the difference between the logical distance between the electronic tag, the ONU and the OLT, and the longest logical distance.
  • the value is associated, and the OLT sends the electronic tag and the difference; the ONU identifies the electronic tag on the connected branch fiber, obtains the difference corresponding to the electronic tag, and performs local compensation.
  • the embodiment further provides a bandwidth allocation method that can be applied to the OLT side, including:
  • the optical line terminal OLT divides the uplink bandwidth in one cycle into a fixed number of bandwidth entries, where one or more bandwidth entries are used for one of the following: ranging, initial communication, and allocation to the designated ONU;
  • the OLT sends the bandwidth entry to the optical network unit ONU.
  • the to-be-received indicates that the bandwidth entry is used for the ranging includes: the OLT sends the first bandwidth to the ONU, and records the sending time, where the first bandwidth is one or more bandwidth entries identified as the to-be-measured distance.
  • the to-be-received indicates that the bandwidth entry is used for ranging
  • the method further includes: receiving, by the OLT, the first bandwidth response sent by the ONU, and recording the receiving time, acquiring the ONU identity information from the first bandwidth response, and the number of the bandwidth entry, according to The transmission time of the first bandwidth and the reception time of the first bandwidth response are calculated, and the ranging result of the ONU identity information corresponding to the ONU is calculated, and the logical distance between the OLT and the ONU in the passive optical network is obtained.
  • the OLT further updates the local logical distance from the ONU, or sends the logical distance to the ONU to the ONU.
  • the OLT further includes: the OLT allocates a bandwidth entry for the ONU, and the bandwidth entry is used by the ONU to send data and/or management information to the OLT.
  • the unallocated bandwidth entry is used for initial communication, and the OLT sends the second bandwidth to the ONU, where the second bandwidth is one or more bandwidth entries identified as being unallocated.
  • the unallocated bandwidth parameter is used for the initial communication, and the OLT obtains the ONU identity information after receiving the second bandwidth response sent by the ONU, and the OLT allocates a bandwidth entry for the ONU, where the bandwidth entry is used by the ONU to send data to the OLT. / or management information.
  • the allocated bandwidth entry has been allocated to the designated ONU.
  • the interval between the bandwidth entries When there is an interval between the bandwidth entries, the interval between the bandwidth entries. The same or different, the minimum value of the interval meets the delay requirements of the system.
  • the embodiment further provides a bandwidth allocation method that can be applied to the ONU side, including:
  • the optical network unit ONU receives the bandwidth entry delivered by the optical line terminal OLT, where one or more bandwidth entries are used for one of the following: ranging, initial communication, and allocation to the designated ONU.
  • the to-be-received indicates that the bandwidth entry is used for ranging includes: the ONU receives the first bandwidth delivered by the OLT, where the first bandwidth is one or more bandwidth entries identified as to-be-measured.
  • the ONU further includes: the ONU selects one or more bandwidth entries in the first bandwidth, and sends a first bandwidth response to the OLT in the bandwidth entry, where the first bandwidth response includes the ONU identity. Information, and the number of the bandwidth entry.
  • the unallocated bandwidth entry is used for initial communication, and the ONU receives the second bandwidth delivered by the OLT, where the second bandwidth is one or more bandwidth entries identified as being unallocated.
  • the ONU further includes: the ONU selects one or more bandwidth entries in the second bandwidth, and sends a second bandwidth response to the OLT in the bandwidth entry, where the second bandwidth response includes the ONU identity. information.
  • the allocated bandwidth indicates that the bandwidth has been allocated to the designated ONU.
  • the interval between the bandwidth entries is the same. Or different, the minimum interval meets the delay requirements of the system.
  • the method further includes: specifying that the ONU sends data and/or management information to the OLT in the bandwidth entry.
  • the identifier of the bandwidth entry includes one of the following: an ONU identifier, a link identifier.
  • the ONU identifier includes one of the following: an ONU-ID, and a Physical Link Identification (PLID).
  • the link identifier includes one of the following: a Transmission Container (T-CONT), and a User Link Identification (ULID).
  • the method according to the above embodiment can be implemented by means of software plus a necessary general hardware platform, and of course, by hardware, but in many cases, the former is A better implementation.
  • the technical solution of the present invention which is essential or contributes to the prior art, may be embodied in the form of a software product stored in a storage medium (such as ROM/RAM, disk,
  • the optical disc includes a number of instructions for causing a terminal device (which may be a cell phone, a computer, a server, or a network device, etc.) to perform the methods described in various embodiments of the present invention.
  • a bandwidth allocation device is also provided, which is used to implement the foregoing embodiments and preferred embodiments, and has not been described again.
  • the term “module” may implement a combination of software and/or hardware of a predetermined function.
  • the devices described in the following embodiments are preferably implemented in software, hardware, or a combination of software and hardware, is also possible and contemplated.
  • FIG. 5 is a structural block diagram of a bandwidth allocation apparatus according to an embodiment of the present invention, which is applied to an OLT side. As shown in FIG. 5, the apparatus includes:
  • the allocating module 50 is configured to divide the uplink bandwidth in one cycle into a fixed number of bandwidth entries, wherein one or more bandwidth entries are used for one of the following: ranging, initial communication, and assignment to the designated ONU;
  • the sending module 52 is configured to send the bandwidth entry to the optical network unit ONU.
  • the embodiment further provides another bandwidth allocation device, which is applied to the optical network unit ONU, and includes: a receiving module, configured to receive a bandwidth entry delivered by the optical line terminal OLT, where one or more bandwidth entries are used in the following One: ranging, initial communication, assigned to the designated ONU.
  • each bandwidth entry is identified as one of the following attributes: to be ranging, unassigned, and allocated; wherein the to-be-measured indicates that the current bandwidth entry is used for ranging; the unallocated indicates that the current bandwidth is used for initial communication; The assignment indicates that the current bandwidth has been assigned to the specified ONU.
  • FIG. 6 is a structural block diagram of a bandwidth allocation system according to an embodiment of the present invention. As shown in FIG. 6, the system includes: an optical line terminal OLT60, and an optical network unit ONU62, where
  • OLT60 includes:
  • the allocation module 600 is configured to divide the uplink bandwidth in one cycle into a fixed number of bandwidth entries, wherein one or more bandwidth entries are used for one of the following: ranging, initial communication, and assignment to the designated ONU;
  • the sending module 602 is configured to send the bandwidth entry to the optical network unit ONU;
  • ONU62 includes:
  • the receiving module 620 is configured to receive a bandwidth entry delivered by the OLT.
  • each bandwidth entry is identified as one of the following attributes: to be ranging, unassigned, and allocated; wherein the to-be-measured indicates that the current bandwidth entry is used for ranging; the unallocated indicates that the current bandwidth is used for initial communication; The assignment indicates that the current bandwidth has been assigned to the specified ONU.
  • the OLT further includes: an obtaining module, configured to acquire a logical distance from the ONU before the sending module sends the one or more bandwidth entries for the initial communication to the ONU.
  • an obtaining module configured to acquire a logical distance from the ONU before the sending module sends the one or more bandwidth entries for the initial communication to the ONU.
  • the OLT further includes: a setting module, configured to set a longest logical distance between the OLT and the ONU before the sending module sends the one or more bandwidth entries for the initial communication to the ONU, where the OLT and the OLT The logical distance between all ONUs is less than or equal to the longest logical distance.
  • a setting module configured to set a longest logical distance between the OLT and the ONU before the sending module sends the one or more bandwidth entries for the initial communication to the ONU, where the OLT and the OLT The logical distance between all ONUs is less than or equal to the longest logical distance.
  • each of the above modules may be implemented by software or hardware.
  • the foregoing may be implemented by, but not limited to, the foregoing modules are all located in the same processor; or, the above modules are in any combination.
  • the forms are located in different processors.
  • This embodiment is an optional embodiment according to the present invention, and is used to describe the present application in detail according to specific scenarios and implementation manners:
  • This embodiment starts from the passive optical network architecture and bandwidth allocation, and proposes a passive optical network architecture and bandwidth allocation method.
  • the passive optical network system solves the transmission delay problem of the passive optical network with low cost and effectively.
  • the logical distance between all ONUs and the OLT is equal, or the equivalent logical distances of all ONUs and OLTs are equal after entering the working state.
  • the OLT divides the uplink bandwidth of each period into a fixed number of entries, periodically sends out, and each bandwidth entry is identified as to-be-measured, unallocated, allocated, etc., where the distance to be measured Indicates that the bandwidth entry can be used for ranging, for one-time ranging before all ONUs enter the working state, unallocated means that the bandwidth can be used for initial communication, and the ONU can select unallocated entries to report its own information, such as SN, Identification information such as a MAC address, and/or authentication information such as a password and a registration ID are allocated to indicate that the bandwidth entry has been allocated to an ONU.
  • a plurality of interval entries are assigned to one ONU, and the interval between the entries may be the same. Or different, but the minimum interval
  • the OLT initiates ranging, performs ranging on the third wavelength, and calculates a logical distance between the OLT and the ONU at the working wavelength according to the wavelength relationship.
  • the ONU initiates ranging. With the cooperation of the OLT, the ONU tests the logical distance between the ONU and the OLT through the OTDR technology. The wavelength used by the OTDR does not conflict with the uplink and downlink wavelengths used by the passive optical network.
  • the OLT initiates ranging.
  • both the OLT and the ONU have a ToD (Time of Day) condition, and the OLT sends a ranging data packet with a transmission timestamp, and each ONU receives the ranging.
  • the logical distance from the OLT to the ONU is calculated according to the local receiving time and the sending time stamp carried in the ranging data packet.
  • the logical distance between each ONU and the OLT is equal or controlled within a certain error range. After the OLT measures the first ONU at the working wavelength, the maximum logical distance of the system can be obtained.
  • a passive optical network system that does not require ranging. If the maximum logical distance of the system has been obtained in engineering wiring and/or engineering ranging, no ranging can be used. In engineering wiring and/or engineering ranging, engineers can use a handheld device to simulate the ONU with the OLT to complete the ranging, and obtain the logical distance between the OLT and the end of each branch fiber in the passive optical network system.
  • the OLT divides the uplink bandwidth of each period into a fixed number of entries, and each entry that has been allocated to the ONU carries an ONU identifier (ONU-ID, PLID) and a link identifier ( T-CONT, ULID), etc., and indicates that the entry has been assigned.
  • ONU-ID ONU identifier
  • T-CONT link identifier
  • ULID link identifier
  • One or more entries attempt to establish communication with the OLT.
  • the OLT can assign the corresponding entry to the ONU, thereby establishing a communication relationship, performing subsequent configuration and the like, if the ONU is not successfully obtained. Bandwidth allocation, you can try other unallocated entries to continue to establish communication with the OLT. If the passive optical network system needs to be measured once, the OLT marks the entry as the to-be-measured after the initialization, and the ONU can select one of the bandwidths to be sent to the ranging to send the ranging response, and the OLT completes the ranging, thereby letting the OLT Obtain the logical distance of the passive optical network.
  • the OLT does not need to open a quiet window on the working wavelength or the working time slot, avoids the delay caused by the open quiet window, and additionally uses the direct fixed allocated bandwidth for the ONU to compete for registration and measurement.
  • the communication can be performed in the relevant bandwidth allocation after the ONU completes the registration, and the resource configuration is directly completed after the ONU completes the registration.
  • the delay in obtaining the bandwidth entries by the ONUs can be reduced.
  • the OLT can allocate multiple bandwidths for registration, and one ONU to be registered selects one or competes.
  • the number of ONUs that can be connected under the OLT is small and fixed, for example, 16 ONUs.
  • the transmission distance between the OLT and the ONU is required to be relatively short, for example, 5KM and 10KM. Therefore, in the passive optical network system, the delay between the OLT and the ONU is controllable, and can meet the low-latency services such as mobile backhaul and mobile pre-transmission to a certain extent.
  • the physical length or logical length of the branch fiber or the logical length between the ONU and the OLT can be obtained in advance.
  • the engineer can obtain the engineering wiring and the construction process.
  • the length of the fiber for example, the length of the fiber is measured, or the branch fiber is connected through a handheld device, and the analog ONU cooperates with the OLT to complete the ranging, thereby obtaining the logical distance between the OLT and the end of each branch fiber in the passive optical network system.
  • the bandwidth segmentation entry in this embodiment is only an example. In the actual application, there may be other bandwidth segmentation entry methods. As long as the effects in the embodiments of the present invention can be achieved, the scope of the patent protection is within the scope of the patent protection.
  • the upstream bandwidth of each cycle can be divided into more entries, one ONU can get more entries in each cycle, and the interval between the entries that allocate ONUs can be smaller.
  • the lengths of the branch fibers connecting the ONUs are equal or nearly equal (the error is controlled within a certain range), since the trunk fibers connecting the OLT and the ODN are the same for each ONU, therefore, The total length of the fibers between the OLT and each ONU is equal or nearly equal.
  • the logical distance between the OLT and the end of each branch fiber in the passive optical network system is obtained in advance. Since the total length of the fiber between the OLT and the end of each branch fiber is equal or nearly equal, the OLT and each ONU are The logical distances between them are also equal or nearly equal.
  • the logical distance between the OLT and the ONU obtained in advance is configured into the OLT.
  • the passive optical network system supports one OLT and 16 ONUs.
  • the OLT divides the bandwidth of each cycle into 48 bandwidth entries of equal length.
  • these 48 bandwidth entries are numbered 1-48, and these bandwidth entries are divided into 16 groups, for example, 1, 17, and 33 are One group, 2, 18, and 34 are a group, 3, 19, and 35 are a group, and so on.
  • FIG. 7 is a schematic diagram of interaction in the first embodiment of the present invention.
  • the specific working steps in this embodiment include:
  • bandwidth entries are periodically sent out, and 48 of the bandwidth entries are identified as unallocated, so each bandwidth entry can be used for initial communication establishment between the ONU and the OLT.
  • the ONU After the ONU is powered on, it listens to the bandwidth entry sent by the OLT, selects an unidentified bandwidth entry, and sends its own identity information, such as SN and MAC address, to the OLT in the time slot corresponding to the bandwidth entry, and / or password, registration ID and other authentication information.
  • identity information such as SN and MAC address
  • the OLT detects the identity information sent by the ONU in the bandwidth entry marked as unassigned. If the OLT can obtain the correct ONU identification information and/or authentication information, the OLT allocates a fixed bandwidth entry, such as number 1, 17. , 33 bandwidth entries, which are subsequently marked as assigned.
  • the ONU After receiving the bandwidth entries allocated by the OLT, the ONU performs normal communication with the OLT through these bandwidth entries, including sending data and/or management information.
  • the OLT continues to periodically send out 48 bandwidth entries, each of which has updated the corresponding allocation status.
  • the ONU If the ONU does not obtain the bandwidth allocation of the OLT after reporting the identity information of the OLT in the time slot corresponding to the unallocated bandwidth entry, the ONU continues to select the unallocated bandwidth and sends its own identity information to the OLT.
  • the lengths of the branch fibers connecting the ONUs are equal or nearly equal (the error is controlled within a certain range), since the trunk fibers connecting the OLT and the ODN are the same for each ONU, therefore, The total length of the fibers between the OLT and each ONU is equal or nearly equal.
  • the logical distance between the OLT and the end of each branch fiber in the passive optical network system is the same or nearly the same, and the total length of the optical fibers between the OLT and the end of each branch fiber is equal or nearly equal, so the OLT
  • the logical distance between each ONU and the ONUs is also equal or nearly equal.
  • the logical distance between the OLT and the end of each branch fiber in the passive optical network system is the same or nearly the same, the logical distance between the OLT and the ONU is not placed in the OLT.
  • the passive optical network system supports one OLT and 16 ONUs.
  • the OLT divides the bandwidth of each cycle into 48 bandwidth entries of equal length.
  • these 48 bandwidth entries are numbered 1-48, and these bandwidth entries are divided into 16 groups, for example, 1, 17, and 33 are One group, 2, 18, and 34 are a group, 3, 19, and 35 are a group, and so on.
  • FIG. 8 is a schematic diagram of interaction in the second embodiment of the present invention.
  • the specific working steps in this embodiment include:
  • bandwidth entries are periodically sent underground and the transmission time is recorded. Among them, 48 bandwidth entries are identified as to be measured, so each bandwidth entry can be used for ranging between the ONU and the OLT.
  • the ONU After the ONU is powered on, it listens to the bandwidth entry sent by the OLT, selects a bandwidth entry that is identified as the distance to be measured, and sends its identity information, such as SN and MAC address identification information, and/or password to the OLT in the bandwidth entry. Authentication information such as registration ID, and the number of the selected bandwidth entry.
  • the OLT listens to the information sent by the ONU. If the correct ONU identification information and/or authentication information and the bandwidth entry number can be obtained, the ranging result is calculated according to the sending time and the receiving time of the corresponding bandwidth entry, and the obtained optical network is obtained in the passive optical network.
  • the logical distance between the OLT and the ONU and assigns a fixed bandwidth entry to the ONU, such as bandwidth entries numbered 1, 17, 33, which are subsequently marked as allocated.
  • the OLT continues to periodically transmit 48 bandwidths, and updates 3 of the bandwidths assigned to the ONUs as assigned. Other identifiers are unassigned. Each unassigned bandwidth entry can be used for initial communication establishment between the ONU and the OLT. .
  • the other ONUs After the other ONUs are powered on, they listen to the bandwidth entries sent by the OLT, select an unidentified bandwidth entry, and send their identity information, such as SN and MAC address identification information, and/or password to the OLT. , registration ID and other authentication information.
  • identity information such as SN and MAC address identification information, and/or password
  • the OLT detects the information sent by the ONU in the bandwidth entry marked as unallocated. If the OLT can obtain the correct ONU identification information and/or authentication information, the OLT allocates a fixed bandwidth entry, such as number 2, 18, 34 bandwidth entries, which are subsequently marked as assigned.
  • the ONU After receiving the bandwidth entries allocated by the OLT, the ONU performs normal communication with the OLT through these bandwidth entries, including sending data and/or management information to the OLT.
  • the OLT continues to periodically send out 48 bandwidth entries, each of which has updated the corresponding allocation status.
  • the ONU does not obtain the bandwidth allocation of the OLT after reporting its own information in the unallocated bandwidth entry, it continues to select the unallocated bandwidth and sends its own identity information.
  • the lengths of the branch fibers connecting the ONUs are not equal or not equal.
  • the logical distance corresponding to the corresponding branch fiber is obtained in advance, and the logical distance corresponding to each branch fiber is recorded, and the logical distances of all the branch fibers are summarized, and the longest logical distance is set, and the logical distance of all the branch fibers is set. Less than or equal to the longest logical distance.
  • each branch fiber is equipped with an electronic tag, and the logical distance between the electronic tag and the corresponding branch fiber is associated, and the electronic tag can be identified after the ONU is powered on.
  • the maximum logical distance and the logical distance corresponding to each branch fiber are all configured in the OLT of the passive optical network system.
  • the passive optical network system supports one OLT and 16 ONUs.
  • the OLT divides the bandwidth of each cycle into 48 bandwidth entries of equal length.
  • these 48 bandwidth entries are numbered 1-48, and these bandwidth entries are divided into 16 groups, for example, 1, 17, and 33 are One group, 2, 18, and 34 are a group, 3, 19, and 35 are a group, and so on.
  • FIG. 9 is a schematic diagram of interaction according to Embodiment 3 of the present invention.
  • the specific working steps in this implementation manner include:
  • bandwidth entries are periodically sent out, and 48 bandwidth entries are fixedly allocated.
  • bandwidth entries 1, 17, 33 are assigned to the ONUs corresponding to the electronic tags 1
  • bandwidth entries 2, 18, and 34 are assigned to The ONU corresponding to the electronic tag 2
  • the bandwidth entries 3, 19, and 35 are assigned to the ONU corresponding to the electronic tag 3, and so on, and the difference between the logical distance of the corresponding branch fiber and the maximum logical distance is indicated in the bandwidth entry.
  • the electronic label corresponding to the branch fiber is obtained, the bandwidth allocated by the OLT is intercepted, the bandwidth allocation with the corresponding electronic label is detected, and initial communication is established with the OLT through these bandwidth allocations, and normal communication is performed (including to the OLT). Transmitting data and/or management information), wherein the ONU obtains a difference between a logical distance of the branch fiber and a maximum logical distance in the bandwidth entry as an equalization delay, and the ONU sends management information or data to the OLT before the corresponding bandwidth entry Should wait for the equalization delay time.
  • the initial communication includes the ONU transmitting its own identity information, such as SN, MAC address, and other identification information, and/or password, registration ID, and the like.
  • the difference between the logical distance of the branch fiber and the maximum logical distance may also be sent to the ONU by the OLT after obtaining the identity information of the ONU in the initial communication process.
  • ONU initiates OTDR ranging:
  • the lengths of the branch fibers connecting the ONUs are not equal or not equal.
  • the passive optical network system supports one OLT and 16 ONUs.
  • the OLT divides the bandwidth of each cycle into 48 bandwidth entries of equal length. For the convenience of description, these 48 bandwidth entries are numbered 1-48.
  • FIG. 10 is a schematic diagram of interaction in Embodiment 4 of the present invention.
  • the specific working steps in this implementation manner include:
  • bandwidth entries are periodically sent out, and 48 bandwidth entries are identified as not assigned to any ONUs, and each bandwidth entry can be used for initial communication establishment between the ONU and the OLT.
  • the ONU After the ONU is powered on, obtain the longest logical distance that the OLT delivers, and interact with the OLT through the OTDR to obtain the logical distance between the ONU and the OLT.
  • the logical distance between the ONU and the OLT is compensated to the longest logical distance. .
  • the ONU listens to the bandwidth allocated by the OLT, selects an unidentified bandwidth, and sends its own identity information, such as SN and MAC address identification information, and/or password, registration ID, and other authentication information to the OLT.
  • identity information such as SN and MAC address identification information, and/or password, registration ID, and other authentication information
  • the OLT listens to the unallocated bandwidth. If the correct ONU identification information and/or authentication information can be obtained, the ONU is assigned a fixed bandwidth entry, such as the bandwidth entries numbered 1, 17, and 33. Mark as assigned.
  • the ONU After receiving the bandwidth entries allocated by the OLT, the ONU performs normal communication with the OLT through these bandwidth entries, including sending data and/or management information to the OLT.
  • the OLT continues to periodically send out 48 bandwidth entries, each of which has updated the corresponding allocation status.
  • the ONU If the ONU does not obtain the bandwidth allocation of the OLT after reporting its own information in the time slot corresponding to the unallocated bandwidth entry, the ONU continues to select the unallocated bandwidth and sends its own information.
  • the OLT initiates ToD ranging:
  • the lengths of the branch fibers connecting the ONUs are not equal or not equal.
  • the passive optical network system supports one OLT and 16 ONUs.
  • the OLT divides the bandwidth of each cycle into 48 bandwidth entries of equal length. For the convenience of description, these 48 bandwidth entries are numbered 1-48.
  • FIG. 11 is a schematic diagram of interaction in Embodiment 5 of the present invention.
  • the specific working steps in this implementation manner include:
  • the OLT After the OLT is powered on, the longest logical distance is periodically transmitted underground.
  • the OLT periodically sends out 48 bandwidth entries, of which 48 bandwidth entries are identified as not assigned to any ONU, and each bandwidth entry can be used for initial communication establishment between the ONU and the OLT.
  • the OLT periodically sends a ranging frame and carries the ToD time of transmitting the frame in the ranging frame.
  • the ONU After the ONU is powered on, obtain the longest logical distance sent by the OLT, and calculate the logical distance between the ONU and the OLT by listening to the ranging frame and the ToD time of the frame receiving the ranging frame. The local logical distance between the OLT and the OLT is compensated for the longest logical distance.
  • the ONU listens to the bandwidth allocation delivered by the OLT, selects an unidentified bandwidth entry, and sends its own identity information, such as SN, MAC address, and other identification information, and/or password, registration ID, etc., to the OLT in the bandwidth entry. information.
  • identity information such as SN, MAC address, and other identification information, and/or password, registration ID, etc.
  • the OLT snooping is marked as an unallocated bandwidth entry. If the correct ONU identification information and/or authentication information can be obtained, the ONU is assigned a fixed bandwidth entry, such as a bandwidth entry numbered 1, 17, 33, and these bandwidth entries. Subsequent tags are assigned.
  • the ONU After receiving the bandwidth entries allocated by the OLT, the ONU performs normal communication with the OLT through these bandwidth entries, including sending data and/or management information to the OLT.
  • the OLT continues to periodically send out 48 bandwidth entries, each of which has updated the corresponding allocation status.
  • the ONU If the ONU does not obtain the bandwidth allocation of the OLT after reporting its own information in the time slot corresponding to the unallocated bandwidth entry, the ONU continues to select the unallocated bandwidth entry and sends its own information.
  • This embodiment considers the case of converting an optical fiber based on Embodiments 2 and 3.
  • the lengths of the branch fibers connecting the ONUs are not equal or not equal.
  • the logical distance corresponding to the corresponding branch fiber is obtained in advance, and the logical distance corresponding to each branch fiber is recorded, and the logical distances of all the branch fibers are summarized, and the longest logical distance is set, and the logical distance of all the branch fibers is set. Less than or equal to the longest logical distance.
  • each branch fiber is equipped with an electronic tag, and the logical distance between the electronic tag and the corresponding branch fiber is associated, and the electronic tag can be identified after the ONU is powered on.
  • the maximum logical distance and the logical distance corresponding to each branch fiber are all configured in the OLT of the passive optical network system.
  • the passive optical network system supports one OLT and 16 ONUs.
  • the OLT divides the bandwidth of each cycle into 48 bandwidth entries of equal length.
  • these 48 bandwidth entries are numbered 1-48, and these bandwidth entries are divided into 16 groups, for example, 1, 17, and 33 are One group, 2, 18, and 34 are a group, 3, 19, and 35 are a group, and so on.
  • bandwidth entries are periodically sent out, and 48 bandwidth entries are fixedly allocated.
  • 1, 17, 33 are assigned to the ONU corresponding to the electronic tag 1
  • 2, 18, and 34 are assigned to the electronic tag 2.
  • the ONUs, 3, 19, and 35 are assigned to the ONUs corresponding to the electronic tags 3, and so on, and the difference between the logical distances of the corresponding branch fibers and the maximum logical distance is indicated in the bandwidth entry.
  • the electronic label corresponding to the branch fiber is obtained, the bandwidth allocated by the OLT is intercepted, the bandwidth allocation with the corresponding electronic label is detected, and initial communication is established with the OLT through these bandwidth allocations, and normal communication is performed (including to the OLT). Transmitting data and/or management information), wherein the ONU obtains a difference between a logical distance of the branch fiber and a maximum logical distance in the bandwidth entry as an equalization delay, and before the ONU sends a message or data to the OLT in the corresponding bandwidth entry, Should wait for the equalization delay time.
  • the initial communication includes the ONU transmitting its own identity information, such as SN, MAC address, and other identification information, and/or password, registration ID, and the like.
  • the difference between the logical distance of the branch fiber and the maximum logical distance may also be sent to the ONU by the OLT after obtaining the identity information of the ONU in the initial communication process.
  • the OLT needs to replace or repair the branch fiber due to aging, faults, etc.
  • the OLT needs to set all the bandwidth entries to be measured. After the ONU is powered on, Listening to the bandwidth allocation sent by the OLT, selecting a bandwidth entry identified as the to-be-measured distance, and transmitting its own identity information, such as SN, MAC address, and the like, and/or password, in the time slot corresponding to the bandwidth entry. Authentication information such as registration ID, and the selected bandwidth entry number.
  • the OLT listens to the information sent by the ONU. If the correct ONU identification information and/or authentication information and the bandwidth entry number can be obtained, the ranging result is calculated according to the sending time and the receiving time of the corresponding bandwidth entry, and the obtained optical network is obtained in the passive optical network.
  • the logical distance between the OLT and the ONU If the logical distance does not exceed the maximum logical distance, the maximum logical distance is not changed, and the equalization delay is configured for the ONU. Otherwise, the maximum logical distance is changed to be greater than the logical distance of the ONU, and other The ONU's equalization delay, and assigns a fixed bandwidth entry to the ONU, which is subsequently marked as allocated.
  • the OLT continues to periodically transmit 48 bandwidths, three of which have been assigned to the ONU as being assigned, others are unassigned, and each unassigned bandwidth entry can be used for initial communication establishment between the ONU and the OLT. .
  • Embodiments of the present invention also provide a storage medium.
  • the foregoing storage medium may be configured to store the steps in the implementation of any of the foregoing method embodiments.
  • the foregoing storage medium may be configured to store program code for performing the following steps:
  • the bandwidth entry is sent to the optical network unit ONU.
  • the foregoing storage medium may include, but not limited to, a USB flash drive, a Read-Only Memory (ROM), a Random Access Memory (RAM), a mobile hard disk, and a magnetic memory.
  • ROM Read-Only Memory
  • RAM Random Access Memory
  • a mobile hard disk e.g., a hard disk
  • magnetic memory e.g., a hard disk
  • the processor performs to divide the uplink bandwidth in one cycle into a fixed number of bandwidth entries according to the stored program code in the storage medium, wherein one or more bandwidth entries are used in one of the following: Ranging, initial communication, assigned to the designated ONU;
  • the processor sends a bandwidth entry to the optical network unit ONU according to the stored program code in the storage medium.
  • Embodiments of the present invention also provide an electronic device comprising a memory and a processor having a computer program stored therein, the processor being arranged to execute a computer program to perform the steps of any of the method embodiments described above.
  • the electronic device may further include a transmission device and an input and output device, wherein the transmission device is connected to the processor, and the input and output device is connected to the processor.
  • modules or steps of the present invention described above can be implemented by a general-purpose computing device that can be centralized on a single computing device or distributed across a network of multiple computing devices. Alternatively, they may be implemented by program code executable by the computing device such that they may be stored in the storage device by the computing device and, in some cases, may be different from the order herein.
  • the steps shown or described are performed, or they are separately fabricated into individual integrated circuit modules, or a plurality of modules or steps thereof are fabricated as a single integrated circuit module.
  • the invention is not limited to any specific combination of hardware and software.
  • the bandwidth allocation method, apparatus, and system provided by the embodiments of the present invention have the following beneficial effects: the technical problem of excessive transmission delay of the passive optical network in the related art is solved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Small-Scale Networks (AREA)

Abstract

本发明实施例中提供了一种带宽分配方法、装置及系统,其中,该方法包括:光线路终端OLT将一个周期内的上行带宽分成固定数目的带宽条目,其中,一个或者多个所述带宽条目用于以下之一:测距,初始通信,分配给指定ONU;所述OLT将所述带宽条目下发给光网络单元ONU。通过本发明实施例,解决了相关技术中无源光网络传输延迟过大的技术问题。

Description

带宽分配方法、装置及系统 技术领域
本发明实施例涉及光通信领域,具体而言,涉及一种带宽分配方法、装置及系统。
背景技术
图1是本发明相关技术中点到多点的无源光网络架构图,相关技术中的无源光网络架构如图1所示,是一个点到多点的网络拓扑,一个光线路终端(Optional Line Terminal,简称为OLT)通过点到多点光配线网络(Optional Distribution Network,简称为ODN)连接多个光网络单元(Optional Network Unit,简称为ONU),下行方向(OLT到ONU)采用时分复用(TDM)方式工作,上行方向(ONU到OLT)采用时分复用接入(TDMA)方式工作。
无源光网络中的传输延迟包括:光传输延迟,发现ONU开放安静窗口造成的延迟,带宽分配延迟等。光传输延迟与光纤距离相关,20KM的传输时间约100us。开放安静窗口和动态带宽调度都会给PON承载的业务带来明显的延迟。
(1)开放安静窗口带来的延迟。为了发现ONU以及对ONU进行测距时与正常业务不出现冲突,OLT需要开放安静窗口,图2是本发明相关技术ONU注册过程中的安静窗口对工作ONU的影响示意图,如图2所示,安静窗口属于OLT和ONU之间通道连接初始化带来的开销,在安静窗口期间正常工作的ONU不能与OLT进行通常的通信。如果正常工作的ONU正好在安静窗口开始时有上行数据要发送,则必须要等待安静窗口结束之后才有机会发送上行数据,这种情况下,正常工作的ONU发送的上行数据将可能造成延迟。
(2)动态带宽调度带来的延迟。为了最大化地利用下行带宽和上行 带宽,现有的无源光网络系统一般采用动态带宽调度,动态带宽分配一般是基于ONU的带宽请求或者OLT自身对ONU流量的检测而进行的,动态带宽调度可以提高带宽利用率,却存在一定的滞后性,会给业务带来较大延迟,如图3所示,图3是本发明相关技术中基于请求的带宽分配引起的延迟示意图。
随着移动网络的发展,无源光网络逐渐成为移动前传、移动回传、传感网络、车联网的承载技术之一。但是移动网络的传输延迟要求很严格,目前的无源光网络系统及其工作方式难以满足要求。应用于移动承载的无源光网络需要进行网络架构改造、工作机制优化等,与传统的FTTH(光纤到户)、FTTB(光纤到楼)应用场景存在比较大的区别。
相关技术中的解决方法是通过第二通道来实现ONU发现和测距,以及以静态带宽分配代替动态带宽分配,但是第二通道会带来较大的系统开销和成本,造成不必要的资源浪费。
针对相关技术中存在的上述问题,目前尚未发现有效的解决方案。
发明内容
本发明实施例提供了一种带宽分配方法、装置及系统,以至少解决相关技术中无源光网络传输延迟过大的技术问题。
根据本发明的一个实施例,提供了一种带宽分配方法,包括:光线路终端OLT将一个周期内的上行带宽分成固定数目的带宽条目,其中,一个或者多个所述带宽条目用于以下之一:测距,初始通信,分配给指定ONU;所述OLT将所述带宽条目下发给光网络单元ONU。
根据本发明的一个实施例,提供了另一种带宽分配方法,包括:光线路终端OLT将一个周期内的上行带宽分成固定数目的带宽条目,其中,一个或者多个所述带宽条目用于以下之一:测距,初始通信,分配给指定ONU;所述OLT将所述带宽条目下发给光网络单元ONU。
根据本发明的一个实施例,提供了又一种带宽分配方法,包括:光网 络单元ONU接收光线路终端OLT下发的带宽条目,其中,一个或者多个所述带宽条目用于以下之一:测距,初始通信,分配给指定ONU。
根据本发明的另一个实施例,提供了一种带宽分配装置,应用在光线路终端OLT,包括:分配模块,设置为将一个周期内的上行带宽分成固定数目的带宽条目,其中,一个或者多个所述带宽条目用于以下之一:测距,初始通信,分配给指定ONU;下发模块,设置为将所述带宽条目下发给光网络单元ONU。
根据本发明的另一个实施例,提供了另一种带宽分配装置,应用在光网络单元ONU,包括:接收模块,设置为接收光线路终端OLT下发的带宽条目,其中,一个或者多个所述带宽条目用于以下之一:测距,初始通信,分配给指定ONU。
根据本发明的又一个实施例,提供了一种带宽分配系统,包括:光线路终端OLT,光网络单元ONU,其中,所述OLT包括:分配模块,设置为将一个周期内的上行带宽分成固定数目的带宽条目,其中,一个或者多个所述带宽条目用于以下之一:测距,初始通信,分配给指定ONU;下发模块,设置为将所述带宽条目下发给光网络单元ONU;所述ONU包括:接收模块,设置为接收所述OLT下发的所述带宽条目。
根据本发明的又一个实施例,还提供了一种存储介质。该存储介质设置为存储用于执行上述任一项方法实施例中的步骤。
根据本发明的又一个实施例,还提供了一种处理器,所述处理器设置为运行程序,其中,所述程序运行时执行上述任一项方法实施例中的步骤。
根据本发明的又一个实施例,还提供了一种电子装置,包括存储器和处理器,所述存储器中存储有计算机程序,所述处理器被设置为运行所述计算机程序以执行上述任一项方法实施例中的步骤。
通过本发明中的实施例,OLT将一个周期内的上行带宽分成固定数目的带宽条目,其中,一个或者多个所述带宽条目用于以下之一:测距,初始通信,分配给指定ONU;所述OLT将所述带宽条目下发给光网络单 元ONU。通过固定分配带宽,以低成本、有效地解决了相关技术中无源光网络传输延迟过大的技术问题。
附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成本申请的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1是本发明相关技术中点到多点的无源光网络架构图;
图2是本发明相关技术ONU注册过程中的安静窗口对工作ONU的影响示意图;
图3是本发明相关技术中基于请求的带宽分配引起的延迟示意图;
图4是根据本发明实施例的带宽分配方法的流程图;
图5是根据本发明实施例的带宽分配装置的结构框图;
图6是根据本发明实施例的带宽分配系统的结构框图;
图7是本发明实施方式一的交互示意图;
图8是本发明实施方式二的交互示意图;
图9是本发明实施方式三的交互示意图;
图10是本发明实施方式四的交互示意图;
图11是本发明实施方式五的交互示意图。
具体实施方式
下文中将参考附图并结合实施例来详细说明本发明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
需要说明的是,本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
实施例1
本申请实施例可以运行于图1所示的网络架构上,如图1所示,该网络架构包括:OLT、ONU。
在本实施例中提供了一种运行于上述网络架构的带宽分配方法,图4是根据本发明实施例的带宽分配方法的流程图,如图4所示,该流程包括如下步骤:
步骤S402,OLT将一个周期内的上行带宽分成固定数目的带宽条目,其中,一个或者多个带宽条目用于以下之一:测距,初始通信,分配给指定ONU;
步骤S404,OLT将带宽条目下发给光网络单元ONU。
通过上述步骤,OLT将一个周期内的上行带宽分成固定数目的带宽条目,其中,一个或者多个带宽条目用于以下之一:测距,初始通信,分配给指定ONU;OLT将带宽条目下发给光网络单元ONU。通过固定分配带宽,以低成本、有效地解决了相关技术中无源光网络传输延迟过大的技术问题。
可选地,上述步骤的执行主体可以为OLT,OLT的管理设备等,但不限于此。
可选地,一个或者多个带宽条目标识为以下属性之一:待测距、未分配、已分配;其中,待测距表示带宽条目用于测距;未分配表示带宽条目用于初始通信;已分配表示带宽条目已经分配给指定ONU。
可选的,待测距表示带宽条目用于测距包括:OLT将第一带宽下发给ONU,并记录发送时间,其中,第一带宽为标识为待测距的一个或者多个带宽条目。
可选的,在OLT将第一带宽下发给ONU之后,方法还包括:ONU收到第一带宽后,选择第一带宽中的一个或者多个带宽条目,在带宽条目内向OLT发送第一带宽响应,第一带宽响应包括ONU身份信息,以及带宽条目的编号;
可选的,ONU向OLT发送第一带宽响应后,还包括:OLT收到第一带宽响应并记录接收时间,获取ONU身份信息,根据第一带宽的发送时间以及第一带宽响应的接收时间,计算ONU身份信息对应ONU的测距结果,获得无源光网络中OLT和ONU之间的逻辑距离。
可选的,OLT获得与ONU之间的逻辑距离后,还包括:OLT更新本地的与ONU的逻辑距离,或者将与ONU的逻辑距离下发给ONU;
可选的,OLT获得无源光网络中OLT和ONU之间的逻辑距离之后,还包括:OLT为ONU分配带宽条目,带宽条目用于ONU向OLT发送数据和/或管理信息。
可选的,未分配表示带宽条目用于初始通信包括:OLT将第二带宽下发给ONU,其中,第二带宽为标识为未分配的一个或者多个带宽条目。
可选的,未分配表示带宽条目用于初始通信,还包括:ONU收到第二带宽后,在第二带宽中选择一个或者多个带宽条目,在带宽条目内向OLT发送第二带宽响应,第二带宽响应包括ONU身份信息。
可选的,ONU发送第二带宽响应后,还包括:OLT收到第二带宽响应,获得ONU身份标识,OLT为ONU分配带宽条目,带宽条目用于ONU向OLT发送数据和/或管理信息。
可选的,已分配表示带宽条目已经分配给指定ONU包括:当带宽条目为多个时,带宽条目之间可以无间隔或者有间隔,当带宽条目之间有间隔时,带宽条目之间的间隔相同或者不同,间隔的最小值满足系统的延迟要求。
可选的,带宽条目已经分配给指定ONU后,还包括:指定ONU在带宽条目内向OLT发送数据和/或管理信息。
可选的,带宽条目已经分配给指定ONU之前,还包括:OLT获取到ONU身份信息。
在本实施例中,ONU身份信息,包括以下至少之一:序列号SN、MAC地址、密码、注册ID。
可选的,在OLT将用于初始通信的一个或者多个带宽条目下发给ONU之前,还包括:OLT获取与ONU之间的逻辑距离。
可选的,在OLT将用于初始通信的一个或者多个带宽条目下发给ONU之前,还包括:OLT设置OLT与ONU之间的最长逻辑距离,其中,OLT与所有ONU之间的逻辑距离小于等于最长逻辑距离。
可选的,OLT设置OLT与ONU之间的最长逻辑距离之后,还包括:OLT下发OLT与ONU之间的最长逻辑距离。
可选的,OLT获取与ONU之间的逻辑距离,包括:OLT与ONU的逻辑距离配置进OLT。
可选的,OLT获取与ONU之间的逻辑距离,包括:OLT在第三波长上对ONU进行测距,并获得OLT与ONU在第三波长上的测距结果;OLT根据第三波长上的测距结果和波长关系计算出工作波长上的OLT与ONU之间的逻辑距离。
可选的,OLT下发OLT与ONU之间的最长逻辑距离,包括:ONU通过光时域反射仪OTDR技术测试ONU与OLT之间的逻辑距离,其中OTDR所用波长与工作波长不同。
可选的,OLT下发OLT与ONU之间的最长逻辑距离,包括:OLT发送一个带有发送时间的测距数据包;ONU接收到测距数据包,记录本地接收时间,获得测距数据包中的发送时间,根据本地接收时间和发送时间,计算出ONU与OLT之间的逻辑距离;其中,OLT和ONU具备昼夜计时(Time of Day,简称为ToD)条件。
可选的,ONU获得与OLT之间的逻辑距离后,还包括:ONU获得OLT与ONU之间的最长逻辑距离;ONU在本地进行补偿,补偿为,最长逻辑距离减去OLT与ONU之间的逻辑距离。
可选的,OLT与ONU的逻辑距离配置进OLT,还包括:连接ONU的分支光纤装备有一个电子标签;OLT将电子标签、ONU与OLT之间的逻辑距离和最长逻辑距离之间的差值进行关联,OLT下发电子标签与差值; ONU识别所连接的分支光纤上的电子标签,获得电子标签对应的差值,在本地进行补偿。
本实施例还提供了一种可以应用于OLT侧的带宽分配方法,包括:
S11,光线路终端OLT将一个周期内的上行带宽分成固定数目的带宽条目,其中,一个或者多个带宽条目用于以下之一:测距,初始通信,分配给指定ONU;
S12,OLT将带宽条目下发给光网络单元ONU。
可选的,待测距表示带宽条目用于测距包括:OLT将第一带宽下发给ONU,并记录发送时间,其中,第一带宽为标识为待测距的一个或者多个带宽条目。
可选的,待测距表示带宽条目用于测距,还包括:OLT收到ONU发送的第一带宽响应并记录接收时间,从第一带宽响应获取ONU身份信息,以及带宽条目的编号,根据第一带宽的发送时间以及第一带宽响应的接收时间,计算ONU身份信息对应ONU的测距结果,获得无源光网络中OLT和ONU之间的逻辑距离。
可选的,OLT获得与ONU之间的逻辑距离后,还包括:OLT更新本地的与ONU的逻辑距离,或者将与ONU的逻辑距离下发给ONU。
可选的,OLT获得与ONU之间的逻辑距离后,还包括:OLT为ONU分配带宽条目,带宽条目用于ONU向OLT发送数据和/或管理信息。
可选的,未分配表示带宽条目用于初始通信包括:OLT将第二带宽下发给ONU,其中,第二带宽为标识为未分配的一个或者多个带宽条目。
可选的,未分配表示带宽条目用于初始通信还包括:OLT收到ONU发送的第二带宽响应后,获得ONU身份信息,OLT为ONU分配带宽条目,带宽条目用于ONU向OLT发送数据和/或管理信息。
可选的,已分配表示带宽条目已经分配给指定ONU包括:当带宽条目为多个时,带宽条目之间可以无间隔或者有间隔,当带宽条目之间有间 隔时,带宽条目之间的间隔相同或者不同,间隔的最小值满足系统的延迟要求。
本实施例还提供了一种可以应用于ONU侧的带宽分配方法,包括:
S21,光网络单元ONU接收光线路终端OLT下发的带宽条目,其中,一个或者多个带宽条目用于以下之一:测距,初始通信,分配给指定ONU。
可选的,待测距表示带宽条目用于测距包括:ONU接收OLT下发的第一带宽,其中,第一带宽为标识为待测距的一个或者多个带宽条目。
可选的,ONU接收OLT下发的第一带宽后,还包括:ONU选择第一带宽中的一个或者多个带宽条目,在带宽条目内向OLT发送第一带宽响应,第一带宽响应包括ONU身份信息,以及带宽条目的编号。
可选的,未分配表示带宽条目用于初始通信包括:ONU接收OLT下发的第二带宽,其中,第二带宽为标识为未分配的一个或者多个带宽条目。
可选的,ONU接收OLT下发的第二带宽后,还包括:ONU选择第二带宽中的一个或者多个带宽条目,在带宽条目内向OLT发送第二带宽响应,第二带宽响应包括ONU身份信息。
可选的,已分配表示带宽已经分配给指定ONU包括:当带宽条目为多个时,带宽条目之间可以无间隔或者有间隔,当带宽条目之间有间隔时,带宽条目之间的间隔相同或者不同,间隔的最小值满足系统的延迟要求。
可选的,带宽条目已经分配给指定ONU后,还包括:指定ONU在带宽条目内向OLT发送数据和/或管理信息。
可选的,带宽条目的标识包括以下之一:ONU标识、链接标识。
可选的,ONU标识包括以下之一:ONU-ID、物理链接标识(Physical Link Identification,PLID)。链接标识包括以下之一:传输容器(Transmission Container,T-CONT)、用户连接标识(User Link Identification,ULID)。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到根据上述实施例的方法可借助软件加必需的通用硬件平台的方式来实现,当 然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,或者网络设备等)执行本发明各个实施例所述的方法。
实施例2
在本实施例中还提供了一种带宽分配装置,该装置用于实现上述实施例及优选实施方式,已经进行过说明的不再赘述。如以下所使用的,术语“模块”可以实现预定功能的软件和/或硬件的组合。尽管以下实施例所描述的装置较佳地以软件来实现,但是硬件,或者软件和硬件的组合的实现也是可能并被构想的。
图5是根据本发明实施例的带宽分配装置的结构框图,应用在OLT侧,如图5所示,该装置包括:
分配模块50,设置为将一个周期内的上行带宽分成固定数目的带宽条目,其中,一个或者多个带宽条目用于以下之一:测距,初始通信,分配给指定ONU;
下发模块52,设置为将带宽条目下发给光网络单元ONU。
本实施例还提供了另一种带宽分配装置,应用在光网络单元ONU,包括:接收模块,设置为接收光线路终端OLT下发的带宽条目,其中,一个或者多个带宽条目用于以下之一:测距,初始通信,分配给指定ONU。
可选的,每个带宽条目标识为以下属性之一:待测距、未分配、已分配;其中,待测距表示当前带宽条目用于测距;未分配表示当前带宽用于初始通信;已分配表示当前带宽已经分配给指定ONU。
图6是根据本发明实施例的带宽分配系统的结构框图,如图6所示,该系统包括:光线路终端OLT60,光网络单元ONU62,其中,
OLT60包括:
分配模块600,设置为将一个周期内的上行带宽分成固定数目的带宽条目,其中,一个或者多个带宽条目用于以下之一:测距,初始通信,分配给指定ONU;
下发模块602,设置为将带宽条目下发给光网络单元ONU;
ONU62包括:
接收模块620,设置为接收OLT下发的带宽条目。
可选的,每个带宽条目标识为以下属性之一:待测距、未分配、已分配;其中,待测距表示当前带宽条目用于测距;未分配表示当前带宽用于初始通信;已分配表示当前带宽已经分配给指定ONU。
可选的,OLT还包括:获取模块,设置为在下发模块将用于初始通信的一个或者多个带宽条目下发给ONU之前,获取与ONU之间的逻辑距离。
可选的,OLT还包括:设置模块,设置为在下发模块将用于初始通信的一个或者多个带宽条目下发给ONU之前,设置OLT与ONU之间的最长逻辑距离,其中,OLT与所有ONU之间的逻辑距离小于等于最长逻辑距离。
需要说明的是,上述各个模块是可以通过软件或硬件来实现的,对于后者,可以通过以下方式实现,但不限于此:上述模块均位于同一处理器中;或者,上述各个模块以任意组合的形式分别位于不同的处理器中。
实施例3
本实施例是根据本发明的可选实施例,用于结合具体场景和实施方式对本申请进行详细说明:
本实施例从无源光网络架构以及带宽分配入手,提出了一种无源光网络架构以及带宽分配方法,无源光网络系统,以低成本、有效地解决无源光网络传输延迟问题。
本实施例的无源光网络系统,所有ONU与OLT之间的逻辑距离相等, 或者进入工作状态后所有ONU与OLT的等效逻辑距离相等。在所述无源光网络系统中,OLT将每个周期的上行带宽分成固定数目的条目,周期性地下发,每个带宽条目标识为待测距、未分配、已分配等,其中待测距表示该带宽条目可以用于测距,用于所有ONU进入工作状态之前的一次性测距,未分配表示该带宽可以用于初始通信,ONU可以选择未分配的条目上报自身的信息,如SN、MAC地址等标识信息,和/或密码、注册ID等认证信息,已分配表示该带宽条目已经分配给某个ONU,一般是多个间隔的条目分配给一个ONU,条目之间的间隔可以是相同或者不同,但是最小间隔满足延迟要求。
本实施例中的无源光网络系统的测距工作方法,包含以下方案:
(1)OLT发起测距,在第三波长上进行测距,在根据波长关系计算出工作波长上的OLT和ONU之间的逻辑距离。
(2)ONU发起测距,在OLT配合下,ONU通过OTDR技术,测试ONU和OLT之间的逻辑距离,其中OTDR所用波长与无源光网络所用上下行波长不冲突。
(3)OLT发起测距,在该无源光网络系统中,OLT和ONU都具备ToD(Time of Day)条件,OLT发送一个带有发送时间戳的测距数据包,各ONU接收到测距数据包后,根据本地接收时间,再结合测距数据包中携带的发送时间戳,计算出OLT到ONU的逻辑距离。
(4)一种仅需一次测距的无源光网络系统;
各ONU到OLT的逻辑距离相等或者控制在一定的误差范围内,OLT在工作波长上对第一个ONU进行测距后,即可获得系统的最大逻辑距离。
(5)无需测距的无源光网络系统,如果系统的最大逻辑距离在工程布线和/或工程测距中已经获得,则可以不用测距。在工程布线和/或工程测距中,工程人员可以用一个手持设备,模拟ONU配合OLT完成测距,获得无源光网络系统中OLT到各分支光纤末端之间的逻辑距离。
本实施例的无源光网络系统带宽分配方法,OLT将每个周期的上行带 宽分成固定数目的条目,已经分配给ONU的每个条目中携带ONU标识(ONU-ID、PLID)、链接标识(T-CONT、ULID)等,并指示该条目已经被分配,未分配给ONU的条目中指示未分配,未分配的条目可以用于ONU初始通信,上线ONU可以在未分配的条目内,选择其中的一个或者多个条目尝试与OLT建立通信,OLT从相应条目内获取ONU相关信息后,可以将相应条目分配给该ONU,从而建立通信关系,进行后续的配置等相关工作,如果ONU未成功获得带宽分配,可以尝试其他未分配条目继续与OLT建立通信。如果无源光网络系统需要一次测距,则OLT在初始化后将条目标记为待测距,ONU可以选择其中一个标记为待测距的带宽发送测距响应,与OLT完成测距,从而让OLT获得无源光网络的逻辑距离。
在本实施例的无源光网络系统中,OLT无需在工作波长上或者工作时隙上开放安静窗口,避免了开放安静窗口带来的延迟,另外通过直接固定分配带宽用于ONU竞争注册、测距和正常通信,甚至可以将相关资源配置在相关带宽分配中,在ONU完成注册后,直接完成资源配置。通过将每个周期的上行带宽分成固定条目,并且将条目按照一定的间隔分配给ONU,可以降低ONU获得带宽条目的延迟。OLT可以分配多个带宽用于注册,一个待注册的ONU选择其中一个或者进行竞争。在固定分配周期性带宽特征基础上,OLT下可以连接的ONU数量是少且固定的,例如16个ONU。另外PON用于移动回传、移动前传时,本身要求OLT和ONU之间的传输距离比较短,例如5KM、10KM。因此在所述无源光网络系统中,OLT和ONU之间的延迟是可控的,且能在一定程度上满足移动回传、移动前传等低延时业务。
在无源光网络开始工作之前,可以事先获得分支光纤的物理长度或者逻辑长度或者ONU和OLT之间的逻辑长度,例如,在工程实施过程中,工程人员可以在工程布线和施工过程中,获得光纤的长度,例如对光纤进行长度测量,或者通过一个手持设备连接分支光纤,模拟ONU与OLT配合共同完成测距,获得无源光网络系统中OLT到各分支光纤末端之间的逻辑距离。
本实施例方式中的带宽分割条目仅为示例,在实际应用中可以有其他带宽分割条目方法,只要能达到本发明实施例中的效果,都在本专利保护范围内。为了实现更小的延迟,可以将每个周期的上行带宽分割为更多条目,每个周期内一个ONU可以获得更多条目,分配ONU的条目之间的间隔可以更小。
本实施例还包括如下实施方式:
实施方式一
等距且距离已知:
在本实施方式的无源光网络系统中,连接各ONU的分支光纤长度相等或者接近相等(误差控制在一定的范围内),由于连接OLT和ODN的主干光纤对各ONU是相同的,因此,OLT和各ONU之间的光纤总长度相等或者接近相等。
在本实施方式中,事先获得无源光网络系统中OLT到各分支光纤末端之间的逻辑距离,由于OLT和各分支光纤末端之间的光纤总长度相等或者接近相等,因此OLT和各ONU之间的逻辑距离也是相等或者接近相等的。
在本实施方式中,事先获得的OLT和ONU之间的逻辑距离配置进OLT。
在本实施方式中,无源光网络系统支持1个OLT和16个ONU。OLT将每一周期的带宽分成等长的48份带宽条目,为了描述方便,将这48份带宽条目分别编号为1-48,并将这些带宽条目分为16组,例如1、17、33为一组,2、18、34为一组,3、19、35为一组,依此类推。
图7是本发明实施方式一的交互示意图,本实施方式中具体工作步骤包括:
OLT完成初始化后,将48份带宽条目周期性地下发,其中48份带宽条目都标识为未分配,因此每份带宽条目都可以用于ONU与OLT之间的初始通信建立。
ONU上电后,侦听OLT下发的带宽条目,选择一个标识为未分配的带宽条目,在该带宽条目对应的时隙内向OLT发送自身的身份信息,如SN、MAC地址等标识信息,和/或密码、注册ID等认证信息。
OLT在标记为未分配的带宽条目内检测ONU发送的身份信息,如果OLT能获取到正确的ONU标识信息和/或认证信息等,则为该ONU分配固定的带宽条目,如编号为1、17、33的带宽条目,这些带宽条目后续标记为已分配。
ONU接收到OLT分配的带宽条目后,通过这些带宽条目与OLT进行正常通信,包括发送数据和/或管理信息。
OLT继续周期性地下发48份带宽条目,其中每份带宽条目已经更新相应的分配状态。
如果ONU在未分配带宽条目对应的时隙内上报自身身份信息后,未获得OLT的带宽分配,则继续选择未分配的带宽并向OLT发送自身身份信息。
实施方式二
等距但距离未知,需一次测距:
在本实施方式的无源光网络系统中,连接各ONU的分支光纤长度相等或者接近相等(误差控制在一定的范围内),由于连接OLT和ODN的主干光纤对各ONU是相同的,因此,OLT和各ONU之间的光纤总长度相等或者接近相等。
在本实施方式中,事先确认无源光网络系统中OLT到各分支光纤末端之间的逻辑距离相同或者接近相同,由于OLT和各分支光纤末端之间的光纤总长度相等或者接近相等,因此OLT和各ONU之间的逻辑距离也是相等或者接近相等的。
在本实施方式中,虽然事先确认无源光网络系统中OLT到各分支光纤末端之间的逻辑距离相同或者接近相同,但未将OLT和ONU之间的逻辑距离配置进OLT。
在本实施方式中,无源光网络系统支持1个OLT和16个ONU。OLT将每一周期的带宽分成等长的48份带宽条目,为了描述方便,将这48份带宽条目分别编号为1-48,并将这些带宽条目分为16组,例如1、17、33为一组,2、18、34为一组,3、19、35为一组,依此类推。
图8是本发明实施方式二的交互示意图,本实施方式中具体工作步骤包括:
OLT完成初始化后,将48份带宽条目周期性地下发并记录发送时间,其中48份带宽条目都标识为待测距,因此每份带宽条目都可以用于ONU与OLT之间的测距。
ONU上电后,侦听OLT下发的带宽条目,选择一个标识为待测距的带宽条目,在该带宽条目内向OLT发送自身的身份信息,如SN、MAC地址等标识信息,和/或密码、注册ID等认证信息,以及所选择的带宽条目的编号。
OLT侦听ONU发送的信息,如果能获取到正确的ONU标识信息和/或认证信息以及带宽条目编号,则根据相应带宽条目的发送时间以及接收时间,计算测距结果,获得无源光网络中OLT和ONU之间的逻辑距离,并为该ONU分配固定的带宽条目,如编号为1、17、33的带宽条目,这些带宽条目后续标记为已分配。
OLT继续将48份带宽周期性地下发,更新其中3份已分配给ONU的带宽标识为已分配,其他标识为未分配,未分配的每份带宽条目都可以用于ONU与OLT的初始通信建立。
其他ONU上电后,侦听OLT下发的带宽条目,选择一个标识为未分配的带宽条目,在该带宽条目内向OLT发送自身的身份信息,如SN、MAC地址等标识信息,和/或密码、注册ID等认证信息。
OLT在标记为未分配的带宽条目内检测ONU发送的信息,如果OLT能获取到正确的ONU标识信息和/或认证信息等,则为该ONU分配固定的带宽条目,如编号为2、18、34的带宽条目,这些带宽条目后续标记为 已分配。
ONU接收到OLT分配的带宽条目后,通过这些带宽条目与OLT进行正常通信,包括向OLT发送数据和/或管理信息。
OLT继续周期性地下发48份带宽条目,其中每份带宽条目已经更新相应的分配状态。
如果ONU在未分配带宽条目内上报自身信息后,未获得OLT的带宽分配,则继续选择未分配的带宽并发送自身身份信息。
实施方式三
逻辑等距且逻辑距离已知:
在本实施方式的无源光网络系统中,连接各ONU的分支光纤长度不相等或者不全部相等。
在本实施方式中,事先获得相应分支光纤对应的逻辑距离,并记录各分支光纤所对应的逻辑距离,对所有分支光纤逻辑距离进行汇总后,设置最长的逻辑距离,所有分支光纤的逻辑距离小于等于该最长逻辑距离。
在本实施方式中,每个分支光纤装备有一个电子标签,将电子标签及对应分支光纤的逻辑距离进行关联,而且ONU上电后可以识别电子标签。
在本实施方式中,最大逻辑距离,以及各分支光纤对应的逻辑距离都配置进无源光网络系统的OLT中。
在本实施方式中,无源光网络系统支持1个OLT和16个ONU。OLT将每一周期的带宽分成等长的48份带宽条目,为了描述方便,将这48份带宽条目分别编号为1-48,并将这些带宽条目分为16组,例如1、17、33为一组,2、18、34为一组,3、19、35为一组,依此类推。
图9是本发明实施方式三的交互示意图,本实施方式中具体工作步骤包括:
OLT上电后,将48份带宽条目周期性地下发,并把48份带宽条目固定分配,例如带宽条目1、17、33分配给电子标签1对应的ONU,带宽 条目2、18、34分配给电子标签2对应的ONU,带宽条目3、19、35分配给电子标签3对应的ONU,依此类推,并在带宽条目中指出对应分支光纤的逻辑距离与最大逻辑距离之间的差值。
ONU上电后,获取分支光纤对应的电子标签,侦听OLT下发的带宽分配,检测到带有相应电子标签的带宽分配,通过这些带宽分配与OLT建立初始通信并进行正常通信(包括向OLT发送数据和/或管理信息),其中,ONU获取带宽条目中本分支光纤的逻辑距离与最大逻辑距离之间的差值作为均衡延迟,ONU在相应的带宽条目中向OLT发送管理信息或者数据前,应等待均衡延迟时间。
本实施例中,初始通信包括,ONU向OLT发送自身的身份信息,如SN、MAC地址等标识信息,和/或密码、注册ID等认证信息。另外,分支光纤的逻辑距离与最大逻辑距离之间的差值也可以在初始通信过程中,由OLT在获得ONU的身份信息后发送给ONU。
实施方式四
ONU发起OTDR测距:
在本实施方式的无源光网络系统中,连接各ONU的分支光纤长度不相等或者不全部相等。
在本实施方式中,无源光网络系统支持1个OLT和16个ONU。OLT将每一周期的带宽分成等长的48份带宽条目,为了描述方便,将这48份带宽条目分别编号为1-48。
图10是本发明实施方式四的交互示意图,本实施方式中具体工作步骤包括:
OLT上电后,周期性地下发最长逻辑距离。将48份带宽条目周期性地下发,其中48分带宽条目都标识为未分配给任何ONU,每份带宽条目都可以用于ONU与OLT的初始通信建立。
ONU上电后,获得OLT下发的最长逻辑距离,并通过OTDR与OLT进行交互,获得该ONU和OLT之间的逻辑距离,在本地将与OLT之间 的逻辑距离补偿为最长逻辑距离。
ONU侦听OLT下发的带宽分配,选择一个标识为未分配的带宽,在该带宽内向OLT发送自身的身份信息,如SN、MAC地址等标识信息,和/或密码、注册ID等认证信息。
OLT侦听标记为未分配的带宽,如果能获取到正确的ONU标识信息和/或认证信息,则为ONU分配固定的带宽条目,如编号为1、17、33的带宽条目,这些带宽条目后续标记为已分配。
ONU接收到OLT分配的带宽条目后,通过这些带宽条目与OLT进行正常通信,包括向OLT发送数据和/或管理信息。
OLT继续周期性地下发48份带宽条目,其中每份带宽条目已经更新相应的分配状态。
如果ONU在未分配的带宽条目对应的时隙内上报自身信息后,未获得OLT的带宽分配,则继续选择未分配的带宽并发送自身信息。
实施方式五
OLT发起ToD测距:
在本实施方式的无源光网络系统中,连接各ONU的分支光纤长度不相等或者不全部相等。
在本实施方式中,无源光网络系统支持1个OLT和16个ONU。OLT将每一周期的带宽分成等长的48份带宽条目,为了描述方便,将这48份带宽条目分别编号为1-48。
图11是本发明实施方式五的交互示意图,本实施方式中具体工作步骤包括:
OLT上电后,周期性地下发最长逻辑距离。OLT将48份带宽条目周期性地下发,其中48分带宽条目都标识为未分配给任何ONU,每份带宽条目都可以用于ONU与OLT的初始通信建立。OLT周期性下发测距帧,并在测距帧中携带发送该帧的ToD时间。
ONU上电后,获得OLT下发的最长逻辑距离,并通过侦听测距帧,以及本地接收到测距帧的发送该帧的ToD时间,计算该ONU与OLT之间的逻辑距离,在本地将与OLT之间的逻辑距离补偿为最长逻辑距离。
ONU侦听OLT下发的带宽分配,选择一个标识为未分配的带宽条目,在该带宽条目内向OLT发送自身的身份信息,如SN、MAC地址等标识信息,和/或密码、注册ID等认证信息。
OLT侦听标记为未分配的带宽条目,如果能获取到正确的ONU标识信息和/或认证信息,则为ONU分配固定的带宽条目,如编号为1、17、33的带宽条目,这些带宽条目后续标记为已分配。
ONU接收到OLT分配的带宽条目后,通过这些带宽条目与OLT进行正常通信,包括向OLT发送数据和/或管理信息。
OLT继续周期性地下发48份带宽条目,其中每份带宽条目已经更新相应的分配状态。
如果ONU在未分配的带宽条目对应的时隙内上报自身信息后,未获得OLT的带宽分配,则继续选择未分配的带宽条目并发送自身信息。
实施方式六
线路更新后需一次测距:
本实施方式在实施方式二和三的基础上考虑变换光纤的情况。
在本实施方式的无源光网络系统中,连接各ONU的分支光纤长度不相等或者不全部相等。
在本实施方式中,事先获得相应分支光纤对应的逻辑距离,并记录各分支光纤所对应的逻辑距离,对所有分支光纤逻辑距离进行汇总后,设置最长的逻辑距离,所有分支光纤的逻辑距离小于等于该最长逻辑距离。
在本实施方式中,每个分支光纤装备有一个电子标签,将电子标签及对应分支光纤的逻辑距离进行关联,而且ONU上电后可以识别电子标签。
在本实施方式中,最大逻辑距离,以及各分支光纤对应的逻辑距离都 配置进无源光网络系统的OLT中。
在本实施方式中,无源光网络系统支持1个OLT和16个ONU。OLT将每一周期的带宽分成等长的48份带宽条目,为了描述方便,将这48份带宽条目分别编号为1-48,并将这些带宽条目分为16组,例如1、17、33为一组,2、18、34为一组,3、19、35为一组,依此类推。
本实施方式中具体工作步骤包括:
OLT上电后,将48份带宽条目周期性地下发,并把48份带宽条目固定分配,例如1、17、33分配给电子标签1对应的ONU,2、18、34分配给电子标签2对应的ONU,3、19、35分配给电子标签3对应的ONU,依此类推,并在带宽条目中指出对应分支光纤的逻辑距离与最大逻辑距离之间的差值。
ONU上电后,获取分支光纤对应的电子标签,侦听OLT下发的带宽分配,检测到带有相应电子标签的带宽分配,通过这些带宽分配与OLT建立初始通信并进行正常通信(包括向OLT发送数据和/或管理信息),其中,ONU获取带宽条目中本分支光纤的逻辑距离与最大逻辑距离之间的差值作为均衡延迟,ONU在相应的带宽条目中向OLT发送消息或者数据前,应等待均衡延迟时间。
本实施例中,初始通信包括,ONU向OLT发送自身的身份信息,如SN、MAC地址等标识信息,和/或密码、注册ID等认证信息。另外,分支光纤的逻辑距离与最大逻辑距离之间的差值也可以在初始通信过程中,由OLT在获得ONU的身份信息后发送给ONU。
无源光网络系统在运行过程中,由于老化、故障等原因需要更换或者修理分支光纤,当ONU接入该分支光纤时,OLT需要将所有带宽条目设置为待测距,该ONU上电后,侦听OLT下发的带宽分配,选择一个标识为待测距的带宽条目,在该带宽条目对应的时隙内向OLT发送自身的身份信息,如SN、MAC地址等标识信息,和/或密码、注册ID等认证信息,以及所选择的带宽条目编号。
OLT侦听ONU发送的信息,如果能获取到正确的ONU标识信息和/或认证信息以及带宽条目编号,则根据相应带宽条目的发送时间以及接收时间,计算测距结果,获得无源光网络中OLT和ONU之间的逻辑距离,如果该逻辑距离未超过最大逻辑距离,则不变更最大逻辑距离,为该ONU配置均衡延迟,否则变更最大逻辑距离使得大于该ONU的逻辑距离,并更新其他各ONU的均衡延迟,并为该ONU分配固定的带宽条目,这些带宽后续标记为已分配。
OLT继续将48份带宽周期性地下发,其中3份带宽已分配给该ONU的标识为已分配,其他标识为未分配,未分配的每份带宽条目都可以用于ONU与OLT的初始通信建立。
实施例4
本发明的实施例还提供了一种存储介质。可选地,在本实施例中,上述存储介质可以被设置为存储用于执行上述任一项方法实施例中的步骤。
可选地,在本实施例中,上述存储介质可以被设置为存储用于执行以下步骤的程序代码:
S1,将一个周期内的上行带宽分成固定数目的带宽条目,其中,一个或者多个带宽条目用于以下之一:测距,初始通信,分配给指定ONU;
S2,将带宽条目下发给光网络单元ONU。
可选地,在本实施例中,上述存储介质可以包括但不限于:U盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、移动硬盘、磁碟或者光盘等各种可以存储程序代码的介质。
可选地,在本实施例中,处理器根据存储介质中已存储的程序代码执行将一个周期内的上行带宽分成固定数目的带宽条目,其中,一个或者多个带宽条目用于以下之一:测距,初始通信,分配给指定ONU;
可选地,在本实施例中,处理器根据存储介质中已存储的程序代码执行将带宽条目下发给光网络单元ONU。
本发明的实施例还提供了一种电子装置,包括存储器和处理器,该存储器中存储有计算机程序,该处理器被设置为运行计算机程序以执行上述任一项方法实施例中的步骤。
可选地,上述电子装置还可以包括传输设备以及输入输出设备,其中,该传输设备和上述处理器连接,该输入输出设备和上述处理器连接。
可选地,本实施例中的具体示例可以参考上述实施例及可选实施方式中所描述的示例,本实施例在此不再赘述。
显然,本领域的技术人员应该明白,上述的本发明的各模块或各步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,可选地,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本发明不限制于任何特定的硬件和软件结合。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
工业实用性
如上所述,本发明实施例提供的一种带宽分配方法、装置及系统具有以下有益效果:解决了相关技术中无源光网络传输延迟过大的技术问题。

Claims (50)

  1. 一种带宽分配方法,包括:
    光线路终端OLT将一个周期内的上行带宽分成固定数目的带宽条目,其中,一个或者多个所述带宽条目用于以下之一:测距,初始通信,分配给指定ONU;
    所述OLT将所述带宽条目下发给光网络单元ONU。
  2. 根据权利要求1所述的方法,其中,一个或者多个所述带宽条目标识为以下属性之一:待测距、未分配、已分配;
    其中,所述待测距表示所述带宽条目用于测距;所述未分配表示所述带宽条目用于初始通信;所述已分配表示所述带宽条目已经分配给指定ONU。
  3. 根据权利要求2所述的方法,其中,所述待测距表示所述带宽条目用于测距包括:
    所述OLT将第一带宽下发给ONU,并记录发送时间,其中,所述第一带宽为标识为待测距的一个或者多个带宽条目。
  4. 根据权利要求3所述的方法,其中,在所述OLT将所述第一带宽下发给所述ONU之后,所述方法还包括:
    所述ONU收到所述第一带宽后,选择所述第一带宽中的一个或者多个带宽条目,在所述带宽条目内向OLT发送第一带宽响应,所述第一带宽响应包括ONU身份信息,以及所述带宽条目的编号。
  5. 根据权利要求4所述的方法,所述ONU向所述OLT发送第一带宽响应后,还包括:
    所述OLT收到所述第一带宽响应并记录接收时间,获取ONU身份信息,根据所述第一带宽的所述发送时间以及所述第一带宽响应的所述接收时间,计算所述ONU身份信息对应ONU的测距结果,获得无源光网络中所述OLT和所述ONU之间的逻辑距离。
  6. 根据权利要求5所述的方法,其中,所述OLT获得与所述ONU之间的逻辑距离后,还包括:
    所述OLT更新本地的与所述ONU的逻辑距离,或者将与所述ONU的逻辑距离下发给所述ONU。
  7. 根据权利要求5所述的方法,所述OLT获得无源光网络中所述OLT和所述ONU之间的逻辑距离之后,还包括:
    所述OLT为所述ONU分配带宽条目,所述带宽条目用于所述ONU向所述OLT发送数据和/或管理信息。
  8. 根据权利要求2所述的方法,其中,所述未分配表示所述带宽条目用于初始通信包括:
    所述OLT将第二带宽下发给ONU,其中,所述第二带宽为标识为未分配的一个或者多个带宽条目。
  9. 根据权利要求8所述的方法,其中,所述未分配表示所述带宽条目用于初始通信,还包括:
    ONU收到所述第二带宽后,在所述第二带宽中选择一个或者多个带宽条目,在所述带宽条目内向OLT发送第二带宽响应,所述第二带宽响应包括ONU身份信息。
  10. 根据权利要求8所述的方法,其中,所述ONU发送第二带宽响应后,还包括:
    所述OLT收到所述第二带宽响应,获得所述ONU身份标识,所述OLT为所述ONU分配带宽条目,所述带宽条目用于所述ONU向所述OLT发送数据和/或管理信息。
  11. 根据权利要求2所述的方法,其中,所述已分配表示所述带宽条目已经分配给指定ONU包括:
    当所述带宽条目为多个时,所述带宽条目之间可以无间隔或者有间隔,当所述带宽条目之间有间隔时,所述带宽条目之间的所述间隔 相同或者不同,所述间隔的最小值满足系统的延迟要求。
  12. 根据权利要求11所述的方法,其中,所述带宽条目已经分配给指定ONU后,还包括:
    所述指定ONU在所述带宽条目内向OLT发送数据和/或管理信息。
  13. 根据权利要求11所述的方法,其中,所述带宽条目已经分配给指定ONU之前,还包括:
    OLT获取到所述ONU身份信息。
  14. 根据权利要求4、5、9、13任一项所述的方法,其中,所述ONU身份信息,包括以下至少之一:序列号SN、MAC地址、密码、注册ID。
  15. 根据权利要求1所述的方法,其中,在所述OLT将用于初始通信的一个或者多个所述带宽条目下发给所述ONU之前,还包括:
    所述OLT获取与所述ONU之间的逻辑距离。
  16. 根据权利要求1所述的方法,其中,在所述OLT将用于初始通信的一个或者多个所述带宽条目下发给所述ONU之前,还包括:
    所述OLT设置所述OLT与所述ONU之间的最长逻辑距离,其中,所述OLT与所有所述ONU之间的逻辑距离小于等于所述最长逻辑距离。
  17. 根据权利要求16所述的方法,所述OLT设置所述OLT与所述ONU之间的最长逻辑距离之后,还包括:
    所述OLT下发所述OLT与所述ONU之间的最长逻辑距离。
  18. 根据权利要求15所述的方法,其中,所述OLT获取与所述ONU之间的逻辑距离,包括:
    所述OLT与所述ONU的所述逻辑距离配置进所述OLT。
  19. 根据权利要求15所述的方法,其中,所述OLT获取与所述ONU之间的逻辑距离,包括:
    所述OLT在第三波长上对所述ONU进行测距,并获得所述OLT与所述ONU在所述第三波长上的测距结果;
    所述OLT根据所述第三波长上的所述测距结果和波长关系计算出工作波长上的所述OLT与所述ONU之间的逻辑距离。
  20. 根据权利要求17所述的方法,其中,所述OLT下发所述OLT与所述ONU之间的最长逻辑距离,包括:
    所述ONU通过光时域反射仪OTDR技术测试所述ONU与所述OLT之间的逻辑距离,其中OTDR所用波长与工作波长不同。
  21. 根据权利要求17所述的方法,其中,所述OLT下发所述OLT与所述ONU之间的最长逻辑距离,包括:
    OLT发送一个带有发送时间的测距数据包;
    所述ONU接收到所述测距数据包,记录本地接收时间,获得所述测距数据包中的发送时间,根据所述本地接收时间和所述发送时间,计算出所述ONU与所述OLT之间的逻辑距离;
    其中,所述OLT和所述ONU具备昼夜计时ToD条件。
  22. 根据权利要求20至21任一项所述的方法,其中,所述ONU获得与所述OLT之间的逻辑距离后,还包括:
    所述ONU获得所述OLT与所述ONU之间的最长逻辑距离;
    所述ONU在本地进行补偿,所述补偿为,所述最长逻辑距离减去所述OLT与所述ONU之间的逻辑距离。
  23. 根据权利要求18所述的方法,其中,所述OLT与所述ONU的所述逻辑距离配置进所述OLT,还包括:
    连接所述ONU的分支光纤装备有一个电子标签;
    所述OLT将所述电子标签、所述ONU与所述OLT之间的逻辑距离和最长逻辑距离之间的差值进行关联,所述OLT下发所述电子标签与所述差值;
    所述ONU识别所连接的所述分支光纤上的所述电子标签,获得所述电子标签对应的所述差值,在本地进行补偿。
  24. 一种带宽分配方法,应用在OLT,包括:
    光线路终端OLT将一个周期内的上行带宽分成固定数目的带宽条目,其中,一个或者多个所述带宽条目用于以下之一:测距,初始通信,分配给指定ONU;
    所述OLT将所述带宽条目下发给光网络单元ONU。
  25. 根据权利要求24所述的方法,其中,一个或者多个所述带宽条目标识为以下属性之一:待测距、未分配、已分配;
    其中,所述待测距表示所述带宽条目用于测距;所述未分配表示所述带宽条目用于初始通信;所述已分配表示所述带宽条目已经分配给指定ONU。
  26. 根据权利要求25所述的方法,其中,所述待测距表示所述带宽条目用于测距包括:
    所述OLT将第一带宽下发给ONU,并记录发送时间,其中,所述第一带宽为标识为待测距的一个或者多个带宽条目。
  27. 根据权利要求26所述的方法,其中,所述待测距表示所述带宽条目用于测距,还包括:
    OLT收到ONU发送的第一带宽响应并记录接收时间,从所述第一带宽响应获取ONU身份信息,以及带宽条目的编号,根据所述第一带宽的所述发送时间以及所述第一带宽响应的所述接收时间,计算所述ONU身份信息对应ONU的测距结果,获得无源光网络中OLT和所述ONU之间的逻辑距离。
  28. 根据权利要求27所述的方法,其中,所述OLT获得与所述ONU之间的逻辑距离后,还包括:
    所述OLT更新本地的与所述ONU的逻辑距离,或者将与所述ONU的逻辑距离下发给所述ONU。
  29. 根据权利要求27所述的方法,其中,所述OLT获得与所述ONU之间的逻辑距离后,还包括:
    所述OLT为所述ONU分配带宽条目,所述带宽条目用于所述ONU向所述OLT发送数据和/或管理信息。
  30. 根据权利要求25所述的方法,其中,所述未分配表示所述带宽条目用于初始通信包括:
    所述OLT将第二带宽下发给ONU,其中,所述第二带宽为标识为未分配的一个或者多个带宽条目。
  31. 根据权利要求30所述的方法,其中,所述未分配表示所述带宽条目用于初始通信还包括:
    OLT收到ONU发送的第二带宽响应后,获得ONU身份信息,所述OLT为所述ONU分配带宽条目,所述带宽条目用于所述ONU向所述OLT发送数据和/或管理信息。
  32. 根据权利要求25所述的方法,其中,所述已分配表示所述带宽条目已经分配给指定ONU包括:
    当所述带宽条目为多个时,所述带宽条目之间可以无间隔或者有间隔,当所述带宽条目之间有间隔时,所述带宽条目之间的所述间隔相同或者不同,所述间隔的最小值满足系统的延迟要求。
  33. 一种带宽分配方法,包括:
    光网络单元ONU接收光线路终端OLT下发的带宽条目,其中,一个或者多个所述带宽条目用于以下之一:测距,初始通信,分配给指定ONU。
  34. 根据权利要求33所述的方法,其中,一个或者多个所述带 宽条目标识为以下属性之一:待测距、未分配、已分配;
    其中,所述待测距表示所述带宽条目用于测距;所述未分配表示所述带宽条目用于初始通信;所述已分配表示所述带宽已经分配给指定ONU。
  35. 根据权利要求34所述的方法,其中,所述待测距表示所述带宽条目用于测距包括:
    所述ONU接收所述OLT下发的第一带宽,其中,所述第一带宽为标识为待测距的一个或者多个带宽条目。
  36. 根据权利要求35所述的方法,其中,所述ONU接收所述OLT下发的所述第一带宽后,还包括:
    所述ONU选择所述第一带宽中的一个或者多个带宽条目,在所述带宽条目内向所述OLT发送第一带宽响应,所述第一带宽响应包括ONU身份信息,以及所述带宽条目的编号。
  37. 根据权利要求34所述的方法,其中,所述未分配表示所述带宽条目用于初始通信包括:
    所述ONU接收所述OLT下发的第二带宽,其中,所述第二带宽为标识为未分配的一个或者多个带宽条目。
  38. 根据权利要求37所述的方法,其中,所述ONU接收所述OLT下发的第二带宽后,还包括:
    所述ONU选择所述第二带宽中的一个或者多个带宽条目,在所述带宽条目内向所述OLT发送第二带宽响应,所述第二带宽响应包括ONU身份信息。
  39. 根据权利要求34所述的方法,其中,所述已分配表示所述带宽已经分配给指定ONU包括:
    当所述带宽条目为多个时,所述带宽条目之间可以无间隔或者有间隔,当所述带宽条目之间有间隔时,所述带宽条目之间的所述间隔 相同或者不同,所述间隔的最小值满足系统的延迟要求。
  40. 根据权利要求39所述的方法,其中,所述带宽条目已经分配给指定ONU后,还包括:
    所述指定ONU在所述带宽条目内向OLT发送数据和/或管理信息。
  41. 一种带宽分配装置,应用在光线路终端OLT,包括:
    分配模块,设置为将一个周期内的上行带宽分成固定数目的带宽条目,其中,一个或者多个所述带宽条目用于以下之一:测距,初始通信,分配给指定ONU;
    下发模块,设置为将所述带宽条目下发给光网络单元ONU。
  42. 根据权利要求41所述的装置,其中,其中,每个所述带宽条目标识为以下属性之一:待测距、未分配、已分配;
    其中,所述待测距表示当前带宽条目用于测距;所述未分配表示当前带宽用于初始通信;所述已分配表示当前带宽已经分配给指定ONU。
  43. 一种带宽分配装置,应用在光网络单元ONU,包括:
    接收模块,设置为接收光线路终端OLT下发的带宽条目,其中,一个或者多个所述带宽条目用于以下之一:测距,初始通信,分配给指定ONU。
  44. 根据权利要求43所述的装置,其中,一个或者多个所述带宽条目标识为以下属性之一:待测距、未分配、已分配;
    其中,所述待测距表示所述带宽条目用于测距;所述未分配表示所述带宽条目用于初始通信;所述已分配表示所述带宽已经分配给指定ONU。
  45. 一种带宽分配系统,包括:光线路终端OLT,光网络单元 ONU,其中,
    所述OLT包括:
    分配模块,设置为将一个周期内的上行带宽分成固定数目的带宽条目,其中,一个或者多个所述带宽条目用于以下之一:测距,初始通信,分配给指定ONU;
    下发模块,设置为将所述带宽条目下发给光网络单元ONU;
    所述ONU包括:
    接收模块,设置为接收所述OLT下发的所述带宽条目。
  46. 根据权利要求45所述的系统,其中,其中,一个或者多个所述带宽条目标识为以下属性之一:待测距、未分配、已分配;
    其中,所述待测距表示当前带宽条目用于测距;所述未分配表示当前带宽用于初始通信;所述已分配表示当前带宽已经分配给指定ONU。
  47. 根据权利要求45所述的系统,其中,所述OLT还包括:
    获取模块,设置为在所述下发模块将用于初始通信的一个或者多个所述带宽条目下发给所述ONU之前,获取与所述ONU之间的逻辑距离。
  48. 根据权利要求45所述的系统,其中,所述OLT还包括:
    设置模块,设置为在所述下发模块将用于初始通信的一个或者多个所述带宽条目下发给所述ONU之前,设置所述OLT与所述ONU之间的最长逻辑距离,其中,所述OLT与所有所述ONU之间的逻辑距离小于等于所述最长逻辑距离。
  49. 一种存储介质,所述存储介质包括存储的程序,其中,所述程序运行时执行权利要求1至40中任一项所述的方法。
  50. 一种处理器,所述处理器设置为运行程序,其中,所述程序运行时执行权利要求1至40中任一项所述的方法。
PCT/CN2018/103939 2017-09-04 2018-09-04 带宽分配方法、装置及系统 WO2019042457A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710787320.X 2017-09-04
CN201710787320.XA CN109429118B (zh) 2017-09-04 2017-09-04 带宽分配方法、装置及系统

Publications (1)

Publication Number Publication Date
WO2019042457A1 true WO2019042457A1 (zh) 2019-03-07

Family

ID=65513756

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/103939 WO2019042457A1 (zh) 2017-09-04 2018-09-04 带宽分配方法、装置及系统

Country Status (2)

Country Link
CN (1) CN109429118B (zh)
WO (1) WO2019042457A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114339481A (zh) * 2020-09-30 2022-04-12 上海诺基亚贝尔股份有限公司 用于光通信的方法、设备、装置和计算机可读介质
CN114430372A (zh) * 2020-10-29 2022-05-03 南京中兴新软件有限责任公司 带宽分配方法、光线路终端、光网络单元及存储介质

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117353873B (zh) * 2023-12-04 2024-02-13 科谱半导体(天津)有限公司 上行帧的校验方法、装置、电子设备及存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101383767A (zh) * 2008-10-23 2009-03-11 中兴通讯股份有限公司 上行带宽分配方法和光线路终端
CN101778311A (zh) * 2009-01-08 2010-07-14 中兴通讯股份有限公司 光网络单元标识的分配方法以及光线路终端
CN102045605A (zh) * 2010-12-09 2011-05-04 北京邮电大学 OFDM-PON系统中基于QoS的周期轮询动态带宽分配算法
CN102325083A (zh) * 2006-11-09 2012-01-18 华为技术有限公司 用于不同传输率pon共存的带宽分配方法和装置
US20160277142A1 (en) * 2015-03-17 2016-09-22 Electronics And Telecommunications Research Institute Optical network unit (onu) for low latency packet transmission in time division multiplexing-passive optical network (tdm-pon), method of operating the same, and apparatus for controlling onu
CN106878836A (zh) * 2015-12-14 2017-06-20 中兴通讯股份有限公司 带宽调度方法、onu注册方法、装置及olt

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102082976B (zh) * 2009-11-27 2014-12-10 中兴通讯股份有限公司 一种无源光网络中数据发送的方法和系统
CN103139105B (zh) * 2011-12-05 2016-09-28 中兴通讯股份有限公司 一种无源光网络系统中的上行带宽分配方法及系统
CN106488345B (zh) * 2015-08-24 2020-06-16 中兴通讯股份有限公司 一种数据传输方法、装置、系统及onu、olt

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102325083A (zh) * 2006-11-09 2012-01-18 华为技术有限公司 用于不同传输率pon共存的带宽分配方法和装置
CN101383767A (zh) * 2008-10-23 2009-03-11 中兴通讯股份有限公司 上行带宽分配方法和光线路终端
CN101778311A (zh) * 2009-01-08 2010-07-14 中兴通讯股份有限公司 光网络单元标识的分配方法以及光线路终端
CN102045605A (zh) * 2010-12-09 2011-05-04 北京邮电大学 OFDM-PON系统中基于QoS的周期轮询动态带宽分配算法
US20160277142A1 (en) * 2015-03-17 2016-09-22 Electronics And Telecommunications Research Institute Optical network unit (onu) for low latency packet transmission in time division multiplexing-passive optical network (tdm-pon), method of operating the same, and apparatus for controlling onu
CN106878836A (zh) * 2015-12-14 2017-06-20 中兴通讯股份有限公司 带宽调度方法、onu注册方法、装置及olt

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114339481A (zh) * 2020-09-30 2022-04-12 上海诺基亚贝尔股份有限公司 用于光通信的方法、设备、装置和计算机可读介质
CN114430372A (zh) * 2020-10-29 2022-05-03 南京中兴新软件有限责任公司 带宽分配方法、光线路终端、光网络单元及存储介质
WO2022089186A1 (zh) * 2020-10-29 2022-05-05 中兴通讯股份有限公司 带宽分配方法、光线路终端、光网络单元及存储介质

Also Published As

Publication number Publication date
CN109429118B (zh) 2022-03-01
CN109429118A (zh) 2019-03-05

Similar Documents

Publication Publication Date Title
CN101827289B (zh) 一种wdm-epon无源光网络系统中远端设备获取波长值方法
TWI725274B (zh) 資料通信系統、光線路終端及基帶單元
CN101827099B (zh) 一种光网络单元的逻辑链路标识的分配方法和装置
KR101403911B1 (ko) 수동 광 가입자 망 시스템에 이용되는 동적 대역폭 할당 장치 및 그 구현 방법
WO2017101438A1 (zh) 带宽调度方法、onu注册方法、装置及olt
US20100111524A1 (en) Method and terminal for transmitting data
WO2019042457A1 (zh) 带宽分配方法、装置及系统
EP3244571B1 (en) Configuration data distribution method and apparatus
JP6900624B2 (ja) データ通信システム、光回線終端装置およびベースバンドユニット
TWI474682B (zh) 用於無線存取系統的方法及網路裝置
CN103401632A (zh) 一种大请求优先-公平带宽分配的动态波长带宽分配方法
CN102883234B (zh) 一种以太网无源光网络中的光网络单元注册方法及装置
WO2020063581A1 (zh) 光网络的测距方法、olt、onu、光网络系统
WO2013082936A1 (zh) 一种无源光网络系统中的上行带宽分配方法及系统
CN106303763A (zh) 一种异常pon终端的检测方法及装置
KR20140083160A (ko) 광 회선 단말 및 그것의 광 네트워크 단말 등록 방법
CN103248431B (zh) 一种onu可迁移的twdm-pon系统
CN116980783A (zh) 开放安静窗口的方法和装置以及注册方法、装置
CN109104646A (zh) 一种光网络单元注册方法及装置
CN102271293A (zh) 一种识别恶意光网络单元的方法及系统
CN108882063B (zh) 一种无源光网络非对称系统业务映射方法
CN102377481B (zh) 一种无源光网络中的测距方法及系统
US11616592B2 (en) Dynamic assignment of broadcast allocation identifiers
US8861961B2 (en) Passive optical network, access method thereof, optical network unit and optical line termination
CN117692827A (zh) Fttr网络中的测距方法、sfu、mfu与系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18851591

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 09/09/2020)

122 Ep: pct application non-entry in european phase

Ref document number: 18851591

Country of ref document: EP

Kind code of ref document: A1