WO2022089171A1 - 确定带宽的方法和装置 - Google Patents

确定带宽的方法和装置 Download PDF

Info

Publication number
WO2022089171A1
WO2022089171A1 PCT/CN2021/122743 CN2021122743W WO2022089171A1 WO 2022089171 A1 WO2022089171 A1 WO 2022089171A1 CN 2021122743 W CN2021122743 W CN 2021122743W WO 2022089171 A1 WO2022089171 A1 WO 2022089171A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal power
bandwidth range
bandwidth
network device
aclr
Prior art date
Application number
PCT/CN2021/122743
Other languages
English (en)
French (fr)
Inventor
潘永朝
李溢
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2022089171A1 publication Critical patent/WO2022089171A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/18Negotiating wireless communication parameters
    • H04W28/20Negotiating bandwidth
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/53Allocation or scheduling criteria for wireless resources based on regulatory allocation policies

Definitions

  • the embodiments of the present application relate to the field of communications, and more particularly, to a method and apparatus for determining bandwidth.
  • LTE long term evolution
  • 5G fifth generation
  • bandwidth Resources are not a combination of optional bandwidths defined by the protocol, and this problem is especially acute in low frequency bands.
  • the embodiments of the present application provide a method and apparatus for determining bandwidth, which can eliminate the risk of uplink interference leakage.
  • a method for determining bandwidth comprising: when no terminal device is scheduled, a network device measures a first signal power within a first bandwidth range; During scheduling, the network device measures the second signal power within the second bandwidth range, and measures the third signal power within the first bandwidth range, wherein the first bandwidth range and the second bandwidth range do not overlap; the network device determines the adjacent channel leakage ratio ACLR within the first bandwidth range according to the first signal power, the second signal power and the third signal power; when the ACLR is greater than When the preset threshold is set, the network device narrows the second bandwidth range; when the ACLR is less than or equal to the preset threshold, the network device expands the second bandwidth range.
  • the network equipment can know whether there is a risk of uplink interference leakage during terminal equipment scheduling by measuring the adjacent channel leakage ratio; if there is a risk of uplink interference leakage, the bandwidth of terminal equipment scheduling is reduced, thereby eliminating uplink interference leakage. risk.
  • the method before the scheduling of the terminal device within the second bandwidth range, the method further includes: the network device sends a first message to the terminal device, the first message is used to instruct the terminal device to be scheduled within the second bandwidth range.
  • the network device measuring the second signal power within the second bandwidth range includes: the network device measuring the fourth signal power corresponding to at least one frequency point, wherein the at least one frequency point The point is a frequency point within the second bandwidth range; the network device averages the fourth signal power corresponding to the at least one frequency point to obtain the second signal power.
  • the network device determines, according to the first signal power, the second signal power and the third signal power, an adjacent channel leakage ratio ACLR within the first bandwidth range, including The ACLR is determined according to the following formula:
  • the z is the third signal power
  • the x is the first signal power
  • the y is the second signal power.
  • a communication apparatus comprising: a measuring unit, configured to measure a first signal power within a first bandwidth range when the terminal device is not scheduled; the measuring unit is further configured to, when the second When scheduling the terminal device within the bandwidth range, the second signal power is measured within the second bandwidth range, and the third signal power is measured within the first bandwidth range, where the first bandwidth range is the same as the The second bandwidth range does not overlap; the processing unit is configured to determine the adjacent channel leakage ratio ACLR within the first bandwidth range according to the first signal power, the second signal power and the third signal power ; the processing unit is further configured to, when the ACLR is greater than a preset threshold, reduce the second bandwidth range; when the ACLR is less than or equal to the preset threshold, the network device expands the second bandwidth Bandwidth range.
  • the apparatus further includes: a sending unit, configured to send a first message to the terminal device, where the first message is used to instruct the terminal device to perform a transmission operation on the terminal device within the second bandwidth range schedule.
  • the measuring unit is specifically configured to: measure the fourth signal power corresponding to at least one frequency point, wherein the at least one frequency point is a frequency point within the second bandwidth range; The fourth signal power corresponding to at least one frequency point is averaged to obtain the second signal power.
  • the processing unit is specifically configured to determine the ACLR according to the following formula:
  • the z is the third signal power
  • the x is the first signal power
  • the y is the second signal power.
  • a communication device comprising: a processor and a transceiver, wherein the transceiver is configured to receive computer code or instructions and transmit them to the processor, and the processor executes the computer code or instructions, such as The method of the first aspect or any possible implementation of the first aspect.
  • a computer-readable storage medium stores a computer program; when the computer program runs on a computer, the computer can execute the first aspect or any possible implementation manner of the first aspect. method in .
  • FIG. 1 is a schematic diagram of an uplink interference leakage.
  • FIG. 2 is a schematic flowchart of a method for determining a bandwidth according to an embodiment of the present application.
  • FIG. 3 is a schematic diagram of a bandwidth distribution according to an embodiment of the present application.
  • FIG. 4 is a schematic block diagram of a communication apparatus according to an embodiment of the present application.
  • FIG. 5 is a schematic block diagram of a communication device according to an embodiment of the present application.
  • the embodiments of the present application may be applied to various communication systems, such as a wireless local area network (WLAN), a narrowband Internet of things (NB-IoT), a global system for mobile communications (global system for mobile communications, GSM), enhanced data rate for GSM evolution (enhanced data rate for gsmevolution, EDGE), wideband code division multiple access (WCDMA), code division multiple access 2000 system (code division multiple access) , CDMA2000), time division-synchronization code division multiple access system (time division-synchronization code division multiple access, TD-SCDMA), long term evolution system (long term evolution, LTE), satellite communication, fifth generation (5th generation, 5G) system Or new communication systems that will appear in the future.
  • WLAN wireless local area network
  • NB-IoT narrowband Internet of things
  • GSM global system for mobile communications
  • GSM global system for mobile communications
  • EDGE enhanced data rate for GSM evolution
  • WCDMA wideband code division multiple access
  • code division multiple access 2000 system code division multiple access
  • the terminal devices involved in the embodiments of the present application may include various handheld devices with wireless communication functions, vehicle-mounted devices, wearable devices, computing devices, or other processing devices connected to a wireless modem.
  • the terminal can be a mobile station (mobile station, MS), a subscriber unit (subscriber unit), user equipment (user equipment, UE), a cellular phone (cellular phone), a smart phone (smart phone), a wireless data card, a personal digital assistant ( personal digital assistant, PDA) computer, tablet computer, wireless modem (modem), handheld device (handset), laptop computer (laptop computer), machine type communication (machine type communication, MTC) terminal, etc.
  • the spectrum resources held by some operators are irregular for the current mainstream wireless standards, such as LTE or new radio (NR), that is, the bandwidth resources are not a combination of optional bandwidths defined by the protocol. .
  • This problem is particularly prominent in the low frequency band, especially the 900M frequency band.
  • the low frequency 900M spectrum has good deep coverage performance, but few resources can be allocated.
  • 900M is the mainstream frequency band of GSM, and GSM is narrowband (200k/ 180K) system, the bandwidth configuration is flexible, and there are few constraints on the allocation of bandwidth resources, and it is impossible to foresee the bandwidth requirements of the subsequent evolutionary mode during allocation.
  • the 900M spectrum resources from the perspective of new mainstream systems such as LTE/NR, have irregular spectrum. phenomenon is common.
  • the industry has successively launched some customized solutions, rounding up the irregular spectrum, combining it into a large bandwidth and performing related scheduling.
  • the downlink out-of-band here refers to the out-of-band corresponding to the operator's bandwidth resources, not the out-of-band of the configured bandwidth
  • leakage is usually controlled by adding a downlink filter on the base station side to eliminate risks; however,
  • the upstream direction since the sender is at the terminal, the out-of-band leakage cannot be controlled by adding a new filter. Therefore, the current customized solution only informs the operator of this risk in the upstream direction, but does not actually solve the problem.
  • a schematic diagram of out-of-band leakage is shown.
  • the operator allocates a bandwidth of 8M, that is, the operator allows the terminal to use a bandwidth of 8M, and the configured bandwidth of the terminal is 10M; due to the signal attenuation characteristics of the orthogonal frequency division multiplexing (OFDM) technology, it may be Interference leakage occurs in the range of 8M to 10M.
  • OFDM orthogonal frequency division multiplexing
  • an embodiment of the present application proposes a method for determining a bandwidth, which can determine an uplink scheduling bandwidth by detecting uplink interference leakage, so as to eliminate the risk of uplink interference leakage.
  • FIG. 2 a schematic flowchart of a bandwidth determination method 200 according to an embodiment of the present application is shown.
  • the network device measures the first signal power within the first bandwidth range, where the first signal power can be understood as the first noise floor power, and the first bandwidth range is the need to measure adjacent channel leakage.
  • ACLR adjacent channel leakage ratio
  • the network device When scheduling the terminal device within the second bandwidth range, the network device measures the second signal power within the second bandwidth range, and measures the third signal power within the first bandwidth range.
  • the second bandwidth range is the bandwidth range/spectrum resource used in the process of sending the signal by the terminal device.
  • the first bandwidth range does not overlap with the second bandwidth range, in other words, the frequency corresponding to the frequency point in the first bandwidth range is greater than the frequency corresponding to the frequency point in the second bandwidth range, and/or the first The frequency corresponding to the frequency point within the bandwidth range is smaller than the frequency corresponding to the frequency point within the second bandwidth range.
  • the first bandwidth range may be adjacent to the second bandwidth range, or the first bandwidth range may not be adjacent to the second bandwidth range.
  • the second signal power may be reference signal receiving power (RSRP), and the third signal power may be understood as the second noise floor power.
  • RSRP reference signal receiving power
  • the configuration bandwidth of the terminal equipment is divided into three areas: A, B, and C.
  • the allocated bandwidth includes two areas, A and B.
  • the A and B areas are the spectrum resources owned by the operator, that is, the operation It is necessary to ensure that the interference leakage caused by the use of spectrum resources in areas A and B to area C meets the requirements of the agreement. Since it is impossible to detect the leakage during the use of the allocated bandwidth within the bandwidth range of other operators (area C), several resource blocks (RBs) are reserved within the allocated bandwidth range of this operator. Scheduling is used as the protection bandwidth, that is, the protection bandwidth area is the B area, and whether the interference leakage meets the protocol requirements is detected by detecting the signal attenuation amplitude in the B area.
  • the area A is the scheduling area of the terminal device, that is, the area A is the second bandwidth range; the area B is the non-scheduling area, that is, the area B is the first bandwidth range.
  • the protection bandwidth is dynamically adjusted to ensure that the out-of-band leakage meets the protocol requirements. It should be understood that if the interference leakage in the B area meets the protocol requirements, it can be ensured that no interference leakage will be caused in the C area.
  • the network device sends a first message to the terminal device, where the first message is used to instruct the terminal device to be scheduled within the second bandwidth range; the terminal device receives the a first message, and send a signal to the network device within the second bandwidth range according to the first message.
  • the network device may only measure the fourth signal power corresponding to one frequency point within the second bandwidth range, where the fourth signal power is the second signal power obtained by measurement , where the fourth signal power may be RSRP.
  • the network device may also measure the fourth signal power corresponding to multiple frequency points, wherein the multiple frequency points are frequency points within the second bandwidth range, and the network device may measure the fourth signal power corresponding to the multiple frequency points. Take the average to obtain the second signal power.
  • the network device may also remove the maximum power value and the minimum power value in the fourth signal power corresponding to the multiple frequency points, and then remove the remaining power values.
  • the fourth signal power is averaged to obtain the second signal power.
  • the network device determines, according to the first signal power, the second signal power, and the third signal power, an adjacent channel leakage ratio ACLR within the first bandwidth range, where the ACLR may be understood as a signal attenuation amplitude.
  • the calculation expression of ACLR is:
  • z is the third signal power
  • x is the first signal power
  • y is the second signal power. 240. If the ACLR is greater than the preset threshold, the network device reduces the second bandwidth range.
  • the network device may expand the second bandwidth range.
  • the network device may also not change the second bandwidth range, which is not limited in this application.
  • the network equipment indicates that the spectrum resource for scheduling the terminal equipment should be less than 4M. For example, if the network device indicates that the bandwidth range for scheduling the terminal device is 0-3M, when the terminal device is not scheduled, the network device measures the first signal power within the range of 3M-4M; when scheduling the terminal device, the terminal device Use the spectrum resources in the range of 0 to 3M to send signals to the network device.
  • the second bandwidth is in the range of 0 to 3M
  • the first bandwidth is in the range of 3M to 4M
  • the network device measures the power of the second signal in the range of 0 to 3M. Measure the third signal power within the first bandwidth range; and calculate and obtain the ACLR within the first bandwidth range according to the measured first signal power, second signal power and third signal power. If the ACLR is greater than the preset threshold, the network device narrows the range of the second bandwidth, for example, the range of the second bandwidth can be narrowed to 0-2.5M, and instructs the terminal device to schedule within the range of 0-2.5M. ACLR in the range of 2.5M to 4M is measured until the latest measured ACLR meets the preset threshold.
  • the network device can expand the range of the second bandwidth, for example, can expand the range of the second bandwidth to 0-3.5M, and instruct the terminal device to schedule within the range of 0-3.5M, and At the same time, the ACLR in the range of 3.5M to 4M is measured until the latest measured ACLR meets the preset threshold.
  • the preset threshold may be required by the protocol, or may be a value more severe than the protocol requirement, which is not limited in this application.
  • expanding or narrowing the range of the second bandwidth may be adjusted in units of RBs. It can also be cell-level or user-level. Among them, the cell level means that as long as a certain terminal device in the cell does not meet the ACLR requirements, the uplink schedulable bandwidth of the entire cell is adaptively adjusted; the user level means that the uplink schedulable bandwidth is adjusted according to different types of terminal devices. Need to identify the type of terminal.
  • the network equipment can know whether there is a risk of uplink interference leakage during terminal equipment scheduling by measuring the adjacent channel leakage ratio; if there is a risk of uplink interference leakage, the bandwidth of the terminal equipment scheduling is reduced to eliminate the Risk of uplink interference leakage.
  • FIG. 4 a schematic block diagram of a communication apparatus 400 according to an embodiment of the present application is shown.
  • the communication device may be a component that implements the method in the embodiment of FIG. 2 , such as a chip.
  • the communication device 400 includes:
  • a measuring unit 410 configured to measure the first signal power within the first bandwidth range when the terminal device is not scheduled
  • the measuring unit 410 is further configured to, when scheduling the terminal device within the second bandwidth range, measure the power of the second signal within the second bandwidth range, and measure the third signal within the first bandwidth range power, wherein the first bandwidth range does not overlap with the second bandwidth range;
  • a processing unit 420 configured to determine an adjacent channel leakage ratio ACLR within the first bandwidth range according to the first signal power, the second signal power and the third signal power;
  • the processing unit 420 is further configured to, when the ACLR is greater than a preset threshold, reduce the second bandwidth range; and when the ACLR is less than or equal to the preset threshold, expand the second bandwidth range.
  • the apparatus further includes: a sending unit, configured to send a first message to the terminal device, where the first message is used to instruct the terminal device to be scheduled within the second bandwidth range.
  • a sending unit configured to send a first message to the terminal device, where the first message is used to instruct the terminal device to be scheduled within the second bandwidth range.
  • the measuring unit 410 is specifically configured to: measure the fourth signal power corresponding to at least one frequency point, wherein the at least one frequency point is a frequency point within the second bandwidth range; The fourth signal power corresponding to the frequency point is averaged to obtain the second signal power.
  • processing unit 420 is specifically configured to determine the ACLR according to the following formula:
  • z is the third signal power
  • x is the first signal power
  • y is the second signal power
  • An embodiment of the present application provides a communication device 500.
  • FIG. 5 a schematic block diagram of a communication device 500 according to an embodiment of the present application is shown.
  • the communication device 500 includes: a processor 510 and a transceiver 520, the transceiver 520 is configured to receive computer codes or instructions and transmit them to the processor 510, and the processor 510 executes the computer codes or instructions to The methods in the embodiments of the present application are implemented.
  • the communication device may be a network device implementing the method embodiment of FIG. 2 .
  • the above-mentioned processor 510 may be an integrated circuit chip with signal processing capability. In the implementation process, each step of the above method embodiments may be completed by a hardware integrated logic circuit in a processor or an instruction in the form of software.
  • the above-mentioned processor may be a general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), an off-the-shelf programmable gate array (field programmable gate array, FPGA), or other possible solutions. Programming logic devices, discrete gate or transistor logic devices, discrete hardware components.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • Programming logic devices, discrete gate or transistor logic devices, discrete hardware components The methods, steps, and logic block diagrams disclosed in the embodiments of this application can be implemented or executed.
  • a general purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the steps of the method disclosed in conjunction with the embodiments of the present application may be directly embodied as executed by a hardware decoding processor, or executed by a combination of hardware and software modules in the decoding processor.
  • the software modules may be located in random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, registers and other storage media mature in the art.
  • the storage medium is located in the memory, and the processor reads the information in the memory, and completes the steps of the above method in combination with its hardware.
  • the embodiments of the present application further provide a computer-readable storage medium, on which a computer program for implementing the methods in the foregoing method embodiments is stored.
  • a computer program for implementing the methods in the foregoing method embodiments is stored.
  • the computer program runs on a computer, the computer can implement the methods in the above method embodiments.
  • the character "/" in this application generally indicates that the related object is an "or" relationship; the term “at least one” in this application can indicate “one” and “two or more", for example, At least one of A, B, and C can mean: A alone exists, B exists alone, C exists alone, A and B exist simultaneously, A and C exist simultaneously, C and B exist simultaneously, A and B and C exist simultaneously, these seven situations.
  • the disclosed system, apparatus and method may be implemented in other manners.
  • the apparatus embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution in this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the functions, if implemented in the form of software functional units and sold or used as independent products, may be stored in a computer-readable storage medium.
  • the technical solution of the present application can be embodied in the form of a software product in essence, or the part that contributes to the prior art or the part of the technical solution.
  • the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (ROM), random access memory (RAM), magnetic disk or optical disk and other media that can store program codes .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供了一种确定带宽的方法和装置,能够消除上行干扰泄漏的风险,该方法包括:当没有对终端设备进行调度时,网络设备在第一带宽范围内测量第一信号功率;当在第二带宽范围内对所述终端设备进行调度时,所述网络设备在所述第二带宽范围内测量第二信号功率,在所述第一带宽范围内测量第三信号功率,其中,所述第一带宽范围与所述第二带宽范围不重叠;所述网络设备根据所述第一信号功率、所述第二信号功率和所述第三信号功率,确定在所述第一带宽范围内的邻道泄漏比ACLR;当所述ACLR大于预设阈值时,所述网络设备缩小所述第二带宽范围。

Description

确定带宽的方法和装置
本申请要求于2020年10月30日提交中国专利局、申请号为202011197217.8、申请名称为“确定带宽的方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及通信领域,并且更具体地,涉及一种确定带宽的方法和装置。
背景技术
目前,部分运营商持有的频谱资源对当前主流的通信系统来说是不规则的,例如,长期演进系统(long term evolution,LTE)、第五代(5th generation,5G)系统等,即带宽资源不是协议定义的可选带宽的组合,这个问题在低频段尤其突出。
为了充分利用不规则不连续频谱,推出了一些定制化的方案,将不规则频谱向上取整,合并为大带宽并做相关调度。在这些定制方案中,下行方向,通常通过在基站侧新增下行滤波器控制下行带外泄漏,消除风险;但是上行方向,由于发送端在终端,无法通过新增滤波器来控制带外泄漏,所以现在的定制方案都只是和运营商告知上行有这个风险,实际上没有解决上行带外泄漏的问题。
发明内容
本申请实施例提供了一种确定带宽的方法和装置,能够消除上行干扰泄漏的风险。
第一方面,提供一种确定带宽的方法,包括:当没有对终端设备进行调度时,网络设备在第一带宽范围内测量第一信号功率;当在第二带宽范围内对所述终端设备进行调度时,所述网络设备在所述第二带宽范围内测量第二信号功率,在所述第一带宽范围内测量第三信号功率,其中,所述第一带宽范围与所述第二带宽范围不重叠;所述网络设备根据所述第一信号功率、所述第二信号功率和所述第三信号功率,确定在所述第一带宽范围内的邻道泄漏比ACLR;当所述ACLR大于预设阈值时,所述网络设备缩小所述第二带宽范围;当所述ACLR小于或等于所述预设阈值时,所述网络设备扩大所述第二带宽范围。
上述技术方案中,网络设备通过测量邻道泄漏比,可以获知终端设备调度时是否存在上行干扰泄露的风险;若存在上行干扰泄露的风险,则缩小终端设备调度的带宽,从而消除上行干扰泄漏的风险。
在一种实现方式中,在所述在第二带宽范围内对所述终端设备进行调度之前,所述方法还包括:所述网络设备向所述终端设备发送第一消息,所述第一消息用于指示在所述第二带宽范围内对所述终端设备进行调度。
在一种实现方式中,所述网络设备在所述第二带宽范围内测量第二信号功率,包括:所述网络设备测量至少一个频点对应的第四信号功率,其中,所述至少一个频点为所述第 二带宽范围内的频点;所述网络设备将所述至少一个频点对应的第四信号功率取平均值,以获得所述第二信号功率。
在一种实现方式中,所述网络设备根据所述第一信号功率、所述第二信号功率和所述第三信号功率,确定在所述第一带宽范围内的邻道泄漏比ACLR,包括根据以下公式确定所述ACLR:
Figure PCTCN2021122743-appb-000001
其中,所述z为所述第三信号功率,所述x为所述第一信号功率,所述y为所述第二信号功率。
第二方面,提供一种通信装置,包括:测量单元,用于当没有对终端设备进行调度时,在第一带宽范围内测量第一信号功率;所述测量单元还用于,当在第二带宽范围内对所述终端设备进行调度时,在所述第二带宽范围内测量第二信号功率,在所述第一带宽范围内测量第三信号功率,其中,所述第一带宽范围与所述第二带宽范围不重叠;处理单元,用于根据所述第一信号功率、所述第二信号功率和所述第三信号功率,确定在所述第一带宽范围内的邻道泄漏比ACLR;所述处理单元还用于,当所述ACLR大于预设阈值时,缩小所述第二带宽范围;当所述ACLR小于或等于所述预设阈值时,所述网络设备扩大所述第二带宽范围。在一种实现方式中,所述装置还包括:发送单元,用于向所述终端设备发送第一消息,所述第一消息用于指示在所述第二带宽范围内对所述终端设备进行调度。
在一种实现方式中,所述测量单元具体用于:测量至少一个频点对应的第四信号功率,其中,所述至少一个频点为所述第二带宽范围内的频点;将所述至少一个频点对应的第四信号功率取平均值,以获得所述第二信号功率。
在一种实现方式中,所述处理单元具体用于根据以下公式确定所述ACLR:
Figure PCTCN2021122743-appb-000002
其中,所述z为所述第三信号功率,所述x为所述第一信号功率,所述y为所述第二信号功率。
第三方面,提供一种通信设备,包括:处理器和收发器,所述收发器用于接收计算机代码或指令,并传输至所述处理器,所述处理器运行所述计算机代码或指令,如第一方面或第一方面任意可能的实现方式中的方法。
第四方面,提供了一种计算机可读存储介质,所述计算机可读介质存储有计算机程序;所述计算机程序在计算机上运行时,使得计算机执行第一方面或第一方面任意可能的实现方式中的方法。
附图说明
图1为一种上行干扰泄漏示意图。
图2为本申请实施例的一种确定带宽的方法的示意性流程图。
图3为本申请实施例的一种带宽分布示意图。
图4为本申请实施例的一种通信装置示意性框图。
图5为本申请实施例的一种通信设备的示意性框图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例可以应用于各种通信系统,例如无线局域网系统(wireless local area network,WLAN)、窄带物联网系统(narrow band-internet of things,NB-IoT)、全球移动通信系统(global system for mobile communications,GSM)、增强型数据速率GSM演进系统(enhanced data rate for gsmevolution,EDGE)、宽带码分多址系统(wideband code division multiple access,WCDMA)、码分多址2000系统(code division multiple access,CDMA2000)、时分同步码分多址系统(time division-synchronization code division multiple access,TD-SCDMA),长期演进系统(long term evolution,LTE)、卫星通信、第五代(5th generation,5G)系统或者将来出现的新的通信系统等。
本申请实施例中所涉及到的终端设备可以包括各种具有无线通信功能的手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其它处理设备。终端可以是移动台(mobile station,MS)、用户单元(subscriber unit)、用户设备(user equipment,UE)、蜂窝电话(cellular phone)、智能电话(smart phone)、无线数据卡、个人数字助理(personal digital assistant,PDA)电脑、平板型电脑、无线调制解调器(modem)、手持设备(handset)、膝上型电脑(laptop computer)、机器类型通信(machine type communication,MTC)终端等。
由于各种原因,部分运营商持有的频谱资源对当前主流的无线制式来说是不规则的,比如LTE或新无线(new radio,NR),即带宽资源不是协议定义的可选带宽的组合。这个问题在低频段,特别是900M频段尤其突出,一个原因是低频900M频谱的深度覆盖性能好、但可分配资源少,另外一个原因是历史上900M为GSM的主流频段,GSM为窄带(200k/180K)系统,带宽配置灵活,对带宽资源分配的约束少,分配时也不可能预见到后续演进制式的带宽需求,所以造成900M频谱资源从LTE/NR等新主流制式来看,频谱不规则的现象普遍。同时,终端对载波聚合的实际支持能力,特别是支持2个以上低频段载波的终端比例极少,进一步加剧了频谱不规则现象的影响。
为了充分利用不规则不连续频谱,业界陆续推出一些定制化的方案,将不规则频谱向上取整,合并为大带宽并做相关调度。在这些定制方案中,下行方向,通常通过在基站侧新增下行滤波器控制下行带外(这里指运营商带宽资源相对应的带外,而不是配置带宽的带外)泄漏,消除风险;但是上行方向,由于发送端在终端,无法通过新增滤波器来控制带外泄漏,所以现在的定制方案都只是和运营商告知上行有这个风险,实际上没有解决问题。
如图1所示,出示了一种带外泄漏示意图。例如,运营商分配带宽为8M,即运营商允许终端使用的带宽为8M,终端的配置带宽为10M;由于正交频分复用技术(orthogonal frequency division multiplexing,OFDM)的信号衰减特性,可能在8M至10M范围内产生干扰泄漏。
为此,本申请实施例提出了一种确定带宽的方法,可以通过检测上行干扰泄漏,来确定上行调度带宽,以消除上行干扰泄漏的风险。
如图2所示,出示了本申请实施例的一种确定带宽方法200的示意性流程图。
210,当没有对终端设备进行调度时,网络设备在第一带宽范围内测量第一信号功率,该第一信号功率可以理解为第一底噪功率,该第一带宽范围为需要测量邻道泄漏比(adjacent channel leakage ratio,ACLR)的带宽范围,即终端设备发送信号过程中不会使用的带宽范围/频谱资源。
220,当在第二带宽范围内对终端设备进行调度时,网络设备在所述第二带宽范围内测量第二信号功率,在第一带宽范围内测量第三信号功率。该第二带宽范围为终端设备发送信号过程中使用的带宽范围/频谱资源。其中,所述第一带宽范围与所述第二带宽范围不重叠,换言之,第一带宽范围内的频点对应的频率大于第二带宽范围内的频点对应的频率,和/或,第一带宽范围内的频点对应的频率小于第二带宽范围内的频点对应的频率。应理解,第一带宽范围可以与第二带宽范围相邻,第一带宽范围也可以与第二带宽范围不相邻。
其中,第二信号功率可以为参考信号接收功率(reference signal receiving power,RSRP),第三信号功率可以理解为第二底噪功率。
如图3所示,将终端设备的配置带宽分为A、B、C三个区域,分配带宽包括A和B两个区域,A和B区域为运营商所拥有的频谱资源,也就是该运营商可以合法调度使用的带宽,C区域为其他运营商所拥有的频谱资源,需要确保A和B区频谱资源的使用对C区造成的干扰泄漏满足协议要求。由于无法在其他运营商的带宽范围内(C区)去检测分配带宽使用过程中的泄漏情况,因此,在本运营商的分配带宽范围内预留若干个资源块(resource block,RB)不进行调度作为保护带宽,即保护带宽区域为B区,通过检测B区的信号衰减幅度来检测干扰泄漏是否满足协议要求。其中,A区为终端设备的调度区域,即A区为第二带宽范围;B区为不调度区域,即B区为第一带宽范围。通过检测B区信号衰减幅度,动态调整保护带宽,以确保带外泄漏满足协议要求。应理解,若B区干扰泄漏是否满足协议要求,则可以确保不会在C区域造成干扰泄漏。
可选的,在终端设备在第二带宽范围内调度之前,网络设备向该终端设备发送第一消息,该第一消息用于指示在第二带宽范围内对终端设备进行调度;终端设备接收该第一消息,并根据该第一消息在第二带宽范围内向网络设备发送信号。
当在第二带宽范围内对终端设备进行调度时,网络设备可以在第二带宽范围内,仅测量一个频点对应的第四信号功率,该第四信号功率即为测量所得的第二信号功率,其中,第四信号功率可以为RSRP。可选的,网络设备也可以测量多个频点对应的第四信号功率,其中,多个频点为第二带宽范围内的频点,网络设备可以将多个频点对应的第四信号功率取平均值,以获得第二信号功率。
应理解,当网络设备测量了多个频点对应的第四信号功率时,网络设备也可以将多个频点对应的第四信号功率中的功率最大值和功率最小值去掉,再将剩余的第四信号功率取平均值,以获得第二信号功率。本申请实施例对此不做任何限定。
230,网络设备根据第一信号功率、第二信号功率和第三信号功率,确定在第一带宽范围内的邻道泄漏比ACLR,该ACLR可以理解为信号衰减幅度。具体而言,ACLR的计算表达式为:
Figure PCTCN2021122743-appb-000003
其中,z为第三信号功率,x为第一信号功率,y为第二信号功率。240,若ACLR大于预设阈值,则网络设备缩小第二带宽范围。
可选的,若ACLR小于或等于预设阈值,网络设备可以扩大第二带宽范围。网络设备也可以不改变第二带宽范围,本申请对此不做限定。
若终端设备的配置带宽范围为0~5M,运营商可以合法调度的带宽范围为0~4M,则在4~5M范围内为其他运营商所拥有的频谱资源,为防止在4~5M范围内的干扰泄漏,网络设备指示对终端设备进行调度的频谱资源应小于4M。例如,网络设备指示对终端设备调度的带宽范围为0~3M,则在没有对终端设备调度时,网络设备在3M~4M范围内测量第一信号功率;在对终端设备进行调度时,终端设备利用0~3M范围内的频谱资源向网络设备发送信号,此时,第二带宽范围为0~3M,第一带宽范围为3M~4M,网络设备在0~3M范围内测量第二信号功率,在第一带宽范围内测量第三信号功率;并根据测量所得的第一信号功率、第二信号功率和第三信号功率,计算获得第一带宽范围内的ACLR。若ACLR大于预设阈值,则网络设备缩小第二带宽的范围,例如可以将第二带宽的范围缩小为0~2.5M,并指示对终端设备在0~2.5M范围内调度,与此同时,测量2.5M~4M范围内的ACLR,直至最新测量的ACLR满足预设阈值。若ACLR小于或等于预设阈值,则网络设备可以扩大第二带宽的范围,例如可以将第二带宽的范围扩大为0~3.5M,并指示对终端设备在0~3.5M范围内调度,与此同时,测量3.5M~4M范围内的ACLR,直至最新测量的ACLR满足预设阈值。应理解,预设阈值可以是协议要求的,也可以是比协议要求更苛刻的数值,本申请对此不做任何限定。
具体而言,可选的,扩大或缩小第二带宽的范围,可以是以RB为单位进行调整的。也可以是小区级的或用户级的。其中,小区级是指小区内只要检测到某个终端设备不满足ACLR要求,则将整个小区的上行可调度带宽自适应调整;用户级是指根据不同类型的终端设备去调整上行可调度带宽,需要去识别终端的类型。
本申请实施例提供的技术方案,网络设备通过测量邻道泄漏比,可以获知终端设备调度时是否存在上行干扰泄露的风险;若存在上行干扰泄露的风险,则缩小终端设备调度的带宽,从而消除上行干扰泄漏的风险。
本申请实施例提出了一种通信装置400,如图4所示,示出了本申请实施例的一种通信装置400的示意性框图。该通信装置可以是实现图2实施例中方法的部件,例如一种芯片。该通信装置400包括:
测量单元410,用于在没有对终端设备进行调度时,在第一带宽范围内测量第一信号功率;
所述测量单元410还用于,所述在第二带宽范围内对终端设备进行调度时,在所述第二带宽范围内测量第二信号功率,在所述第一带宽范围内测量第三信号功率,其中,所述第一带宽范围与所述第二带宽范围不重叠;
处理单元420,用于根据所述第一信号功率、所述第二信号功率和所述第三信号功率,确定在所述第一带宽范围内的邻道泄漏比ACLR;
所述处理单元420还用于,当所述ACLR大于预设阈值时,缩小所述第二带宽范围; 当所述ACLR小于或等于所述预设阈值时,扩大所述第二带宽范围。
可选的,所述装置还包括:发送单元,用于向所述终端设备发送第一消息,所述第一消息用于指示在所述第二带宽范围内对所述终端设备进行调度。
可选的,所述测量单元410具体用于:测量至少一个频点对应的第四信号功率,其中,所述至少一个频点为所述第二带宽范围内的频点;将所述至少一个频点对应的第四信号功率取平均值,以获得所述第二信号功率。
可选的,所述处理单元420具体用于根据以下公式确定ACLR:
Figure PCTCN2021122743-appb-000004
其中,z为第三信号功率,x为第一信号功率,y为第二信号功率。
本申请实施例提供了一种通信设备500,如图5所示,出示了本申请实施例的一种通信设备500的示意性框图。该通信设备500包括:处理器510和收发器520,所述收发器520用于接收计算机代码或指令,并传输至所述处理器510,所述处理器510运行所述计算机代码或指令,以实现本申请实施例中的方法。该通信设备可以是实现图2方法实施例中的网络设备。
上述的处理器510可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
本申请实施例还提供了一种计算机可读存储介质,其上存储有用于实现上述方法实施例中的方法的计算机程序。当该计算机程序在计算机上运行时,使得该计算机可以实现上述方法实施例中的方法。
另外,本申请中字符“/”,一般表示前后关联对象是一种“或”的关系;本申请中术语“至少一个”,可以表示“一个”和“两个或两个以上”,例如,A、B和C中至少一个,可以表示:单独存在A,单独存在B,单独存在C、同时存在A和B,同时存在A和C,同时存在C和B,同时存在A和B和C,这七种情况。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。本领域技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置 和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (10)

  1. 一种确定带宽的方法,其特征在于,包括:
    当没有对终端设备进行调度时,网络设备在第一带宽范围内测量第一信号功率;
    当在第二带宽范围内对所述终端设备进行调度时,所述网络设备在所述第二带宽范围内测量第二信号功率,在所述第一带宽范围内测量第三信号功率,其中,所述第一带宽范围与所述第二带宽范围不重叠;
    所述网络设备根据所述第一信号功率、所述第二信号功率和所述第三信号功率,确定在所述第一带宽范围内的邻道泄漏比ACLR;
    当所述ACLR大于预设阈值时,所述网络设备缩小所述第二带宽范围;
    当所述ACLR小于或等于所述预设阈值时,所述网络设备扩大所述第二带宽范围。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    所述网络设备向所述终端设备发送第一消息,所述第一消息用于指示在所述第二带宽范围内对所述终端设备进行调度。
  3. 根据权利要求1或2所述的方法,其特征在于,所述网络设备在所述第二带宽范围内测量第二信号功率,包括:
    所述网络设备测量至少一个频点对应的第四信号功率,其中,所述至少一个频点为所述第二带宽范围内的频点;
    所述网络设备将所述至少一个频点对应的第四信号功率取平均值,以获得所述第二信号功率。
  4. 根据权利要求1至3中任一项所述的方法,其特征在于,所述网络设备根据所述第一信号功率、所述第二信号功率和所述第三信号功率,确定在所述第一带宽范围内的邻道泄漏比ACLR,包括根据以下公式确定所述ACLR:
    Figure PCTCN2021122743-appb-100001
    其中,所述z为所述第三信号功率,所述x为所述第一信号功率,所述y为所述第二信号功率。
  5. 一种通信装置,其特征在于,包括:
    测量单元,用于当没有对终端设备进行调度时,在第一带宽范围内测量第一信号功率;
    所述测量单元还用于,当在第二带宽范围内对所述终端设备进行调度时,在所述第二带宽范围内测量第二信号功率,在所述第一带宽范围内测量第三信号功率,其中,所述第一带宽范围与所述第二带宽范围不重叠;
    处理单元,用于根据所述第一信号功率、所述第二信号功率和所述第三信号功率,确定在所述第一带宽范围内的邻道泄漏比ACLR;
    所述处理单元还用于,当所述ACLR大于预设阈值时,缩小所述第二带宽范围,当所述ACLR小于或等于所述预设阈值时,所述网络设备扩大所述第二带宽范围。
  6. 根据权利要求5所述的装置,其特征在于,所述装置还包括:
    发送单元,用于向所述终端设备发送第一消息,所述第一消息用于指示在所述第二带 宽范围内对所述终端设备进行调度。
  7. 根据权利要求5或6所述的装置,其特征在于,所述测量单元具体用于:
    测量至少一个频点对应的第四信号功率,其中,所述至少一个频点为所述第二带宽范围内的频点;
    将所述至少一个频点对应的第四信号功率取平均值,以获得所述第二信号功率。
  8. 根据权利要求5至7中任一项所述的装置,其特征在于,所述处理单元具体用于根据以下公式确定所述ACLR:
    Figure PCTCN2021122743-appb-100002
    其中,所述z为所述第三信号功率,所述x为所述第一信号功率,所述y为所述第二信号功率。
  9. 一种通信设备,其特征在于,包括:处理器和收发器,所述收发器用于接收计算机代码或指令,并传输至所述处理器,所述处理器运行所述计算机代码或指令,如权利要求1至4中任一项所述的方法。
  10. 一种计算机可读存储介质,其特征在于,包括:
    所述计算机可读介质存储有计算机程序;
    所述计算机程序在计算机上运行时,使得计算机执行权利要求1至4中任一项所述的方法。
PCT/CN2021/122743 2020-10-30 2021-10-09 确定带宽的方法和装置 WO2022089171A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011197217.8A CN114449587A (zh) 2020-10-30 2020-10-30 确定带宽的方法和装置
CN202011197217.8 2020-10-30

Publications (1)

Publication Number Publication Date
WO2022089171A1 true WO2022089171A1 (zh) 2022-05-05

Family

ID=81357593

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/122743 WO2022089171A1 (zh) 2020-10-30 2021-10-09 确定带宽的方法和装置

Country Status (2)

Country Link
CN (1) CN114449587A (zh)
WO (1) WO2022089171A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101496305A (zh) * 2006-07-25 2009-07-29 摩托罗拉公司 可调度无线通信终端中的谱发射电平变化
CN102685753A (zh) * 2011-03-07 2012-09-19 北京邮电大学 Lte保护频带的使用方法和装置
CN103650562A (zh) * 2011-05-16 2014-03-19 瑞典爱立信有限公司 与系统之间的干扰有关的方法和布置
CN108233956A (zh) * 2018-01-17 2018-06-29 广东欧珀移动通信有限公司 天线共存互扰处理方法、装置、存储介质及电子设备
EP3716501A1 (en) * 2019-03-28 2020-09-30 Nokia Technologies Oy Adapting guard band between adjacent channels

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101496305A (zh) * 2006-07-25 2009-07-29 摩托罗拉公司 可调度无线通信终端中的谱发射电平变化
CN102685753A (zh) * 2011-03-07 2012-09-19 北京邮电大学 Lte保护频带的使用方法和装置
CN103650562A (zh) * 2011-05-16 2014-03-19 瑞典爱立信有限公司 与系统之间的干扰有关的方法和布置
CN108233956A (zh) * 2018-01-17 2018-06-29 广东欧珀移动通信有限公司 天线共存互扰处理方法、装置、存储介质及电子设备
EP3716501A1 (en) * 2019-03-28 2020-09-30 Nokia Technologies Oy Adapting guard band between adjacent channels

Also Published As

Publication number Publication date
CN114449587A (zh) 2022-05-06

Similar Documents

Publication Publication Date Title
WO2019028759A1 (zh) 设备对设备通信的方法和终端设备
CN110768768B (zh) 探测参考信号的资源配置方法及通信装置
US10595245B2 (en) Method and apparatus for managing wireless connection switching
US11483828B2 (en) Indication information transmission method and apparatus
CN113141653A (zh) 一种无源互调干扰的抑制方法及相关设备
CN112088570B (zh) 一种信息传输方法、设备及存储介质
EP3648530A1 (en) Data transmission method, terminal device, and network device
US20220272668A1 (en) Wireless communication resource allocation method and apparatus, and communication device
US11463184B2 (en) Interference determining method and network device
US11770833B2 (en) Communication method, terminal device, and network device
CN107872846B (zh) 一种数据传输方法及装置
US20200120698A1 (en) Scheduling method, device and system for transmitting resources
US20200068577A1 (en) Method for sending information, method for receiving information, network device, and terminal device
US11082960B2 (en) Method and device for transmitting or receiving channel state information
CN111886905B (zh) 用于设备内共存的功率控制的方法和装置
WO2020024271A1 (zh) 资源分配的方法、终端设备和网络设备
WO2022089171A1 (zh) 确定带宽的方法和装置
CN112586066B (zh) 一种通信方法及装置
CN110891288B (zh) 物理下行控制信道配置方法、装置以及基站和存储介质
CN110663278B (zh) 设备对设备通信的方法和终端设备
WO2019061335A1 (zh) 信道侦听的方法、接入网设备、终端设备和通信系统
WO2017132957A1 (zh) 传输上行信息的方法、用户设备、基站和装置
WO2020029263A1 (zh) 无线通信方法和通信设备
US20200107214A1 (en) Centralized spectrum management for interference mitigation
WO2022027690A1 (zh) 功率控制的方法、终端设备和网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21884900

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21884900

Country of ref document: EP

Kind code of ref document: A1