WO2022088935A1 - 智能设备的控制方法、标签、设备、终端及存储介质 - Google Patents

智能设备的控制方法、标签、设备、终端及存储介质 Download PDF

Info

Publication number
WO2022088935A1
WO2022088935A1 PCT/CN2021/115703 CN2021115703W WO2022088935A1 WO 2022088935 A1 WO2022088935 A1 WO 2022088935A1 CN 2021115703 W CN2021115703 W CN 2021115703W WO 2022088935 A1 WO2022088935 A1 WO 2022088935A1
Authority
WO
WIPO (PCT)
Prior art keywords
mobile terminal
electronic tag
smart device
pulse signal
radio pulse
Prior art date
Application number
PCT/CN2021/115703
Other languages
English (en)
French (fr)
Inventor
张烨
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Publication of WO2022088935A1 publication Critical patent/WO2022088935A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/72Mobile telephones; Cordless telephones, i.e. devices for establishing wireless links to base stations without route selection
    • H04M1/724User interfaces specially adapted for cordless or mobile telephones
    • H04M1/72403User interfaces specially adapted for cordless or mobile telephones with means for local support of applications that increase the functionality
    • H04M1/72409User interfaces specially adapted for cordless or mobile telephones with means for local support of applications that increase the functionality by interfacing with external accessories
    • H04M1/72415User interfaces specially adapted for cordless or mobile telephones with means for local support of applications that increase the functionality by interfacing with external accessories for remote control of appliances
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/72Mobile telephones; Cordless telephones, i.e. devices for establishing wireless links to base stations without route selection
    • H04M1/724User interfaces specially adapted for cordless or mobile telephones
    • H04M1/72448User interfaces specially adapted for cordless or mobile telephones with means for adapting the functionality of the device according to specific conditions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/72Mobile telephones; Cordless telephones, i.e. devices for establishing wireless links to base stations without route selection
    • H04M1/724User interfaces specially adapted for cordless or mobile telephones
    • H04M1/72448User interfaces specially adapted for cordless or mobile telephones with means for adapting the functionality of the device according to specific conditions
    • H04M1/72457User interfaces specially adapted for cordless or mobile telephones with means for adapting the functionality of the device according to specific conditions according to geographic location
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present application relates to the field of smart home, and in particular, to a control method, label, device, terminal and storage medium of a smart device.
  • a first aspect of the embodiments of the present application provides a method for controlling a smart device, which is applied to a mobile terminal.
  • the method includes: the mobile terminal senses a radio pulse signal sent by an electronic tag in real time, and the electronic tag is set within a preset range of the smart device; According to the radio pulse signal, the position information between the mobile terminal and the electronic tag is determined; according to the position information between the mobile terminal and the electronic tag, the corresponding control command is sent to the smart device to control the smart device.
  • a second aspect of an embodiment of the present application provides a method for controlling a smart device, which is applied to an electronic tag.
  • the method includes: sending a radio pulse signal to a mobile terminal; determining orientation information with the mobile terminal according to the radio pulse signal; The orientation information between the mobile terminal and the mobile terminal is used to send corresponding control instructions to the smart device to control the smart device; wherein, the electronic label is set within the preset range of the smart device.
  • a third aspect of the embodiments of the present application provides a method for controlling a smart device, which is applied to a smart device control system.
  • the method includes: an electronic tag sends out a radio pulse signal, and the electronic tag is set within a preset range of the smart device; the mobile terminal real-time Sensing the radio pulse signal sent by the electronic tag; the mobile terminal determines the position information between the mobile terminal and the electronic tag according to the radio pulse signal; the mobile terminal sends the corresponding control command to the smart device according to the position information between the mobile terminal and the electronic tag , to control smart devices.
  • a fourth aspect of the embodiments of the present application provides an electronic tag, including: a first sending module, configured to send a radio pulse signal to a mobile terminal; a determination module, configured to determine position information with the mobile terminal according to the radio pulse signal
  • the second sending module is used to send corresponding control instructions to the smart device according to the orientation information with the mobile terminal, so as to control the smart device; wherein, the electronic label is set within the preset range of the smart device.
  • a fifth aspect of the embodiments of the present application provides an electronic tag, including: an electronic chip, used to send a radio pulse signal to a mobile terminal; a processor, connected to the electronic chip, used to determine the connection with the mobile terminal according to the radio pulse signal Orientation information; the signal transceiver, connected to the processor, is used to send corresponding control instructions to the intelligent device according to the orientation information with the mobile terminal, so as to control the intelligent device; wherein, the electronic label is set in the preset of the intelligent device within the range.
  • a sixth aspect of an embodiment of the present application provides an intelligent device, including: an electronic chip for sending out a radio pulse signal, so that the mobile terminal can sense the radio pulse signal sent by the electronic chip in real time, and according to the radio pulse signal, determine the relationship between the mobile terminal and the electronic chip.
  • the position information between the chips, and according to the position information between the mobile terminal and the electronic chip, the corresponding control instructions are sent to the smart device; the processor, connected to the electronic chip, is used to receive the control instructions sent by the mobile terminal, so as to control the smart device. Take control.
  • a seventh aspect of an embodiment of the present application provides a mobile terminal.
  • the mobile terminal includes an electronic chip, a processor, and a memory connected to the processor.
  • the electronic chip is used for sending out radio pulse signals
  • the memory is used for storing program data
  • the processor is used for The program data is executed to implement the aforementioned method.
  • An eighth aspect of an embodiment of the present application provides a computer-readable storage medium, where program data is stored in the computer-readable storage medium, and the program data is used to implement the foregoing method when executed by a processor.
  • the present application senses the radio pulse signal sent by the electronic tag in real time through the mobile terminal, wherein the electronic tag is set in the preset range of the smart device, and then according to the radio pulse signal, The orientation information between the mobile terminal and the electronic tag is determined, and according to the orientation information between the mobile terminal and the electronic tag, a corresponding control instruction is sent to the smart device to control the smart device.
  • the present application senses the radio pulse signal sent by the electronic tag in real time through the mobile terminal, wherein the electronic tag is set in the preset range of the smart device, and then according to the radio pulse signal, The orientation information between the mobile terminal and the electronic tag is determined, and according to the orientation information between the mobile terminal and the electronic tag, a corresponding control instruction is sent to the smart device to control the smart device.
  • FIG. 1 is a schematic flowchart of a first embodiment of a control method for a smart device of the present application
  • FIG. 2 is a schematic flowchart of a second embodiment of a control method for a smart device of the present application
  • FIG. 3 is a schematic flowchart of an embodiment of step S26 in FIG. 2 of the present application.
  • FIG. 4 is a schematic flowchart of an embodiment of step S261 in FIG. 3 of the present application.
  • FIG. 5 is an interactive schematic diagram of an embodiment of step S261 in FIG. 3 of the present application.
  • FIG. 6 is a schematic flowchart of another embodiment of step S261 in FIG. 3 of the present application.
  • FIG. 7 is an interactive schematic diagram of another embodiment of step S261 in FIG. 3 of the present application.
  • FIG. 8 is a schematic flowchart of a third embodiment of a control method for a smart device of the present application.
  • FIG. 9 is a schematic flowchart of a fourth embodiment of a control method for a smart device of the present application.
  • FIG. 10 is a schematic flowchart of a fifth embodiment of a control method for a smart device of the present application.
  • FIG. 11 is a schematic flowchart of a sixth embodiment of a control method for a smart device of the present application.
  • FIG. 12 is a schematic structural diagram of an embodiment of an electronic label of the present application.
  • FIG. 13 is a schematic structural diagram of another embodiment of the electronic label of the present application.
  • FIG. 14 is a schematic structural diagram of an embodiment of a smart device of the present application.
  • 15 is a schematic structural diagram of an embodiment of a mobile terminal of the present application.
  • FIG. 16 is a schematic structural diagram of an embodiment of a computer storage medium provided by the present application.
  • first and second in this application are only used for descriptive purposes, and should not be construed as indicating or implying relative importance or implicitly indicating the number of indicated technical features. Thus, a feature delimited with “first”, “second” may expressly or implicitly include at least one of that feature.
  • a plurality of means at least two, such as two, three, etc., unless otherwise expressly and specifically defined.
  • the terms “comprising” and “having” and any variations thereof are intended to cover non-exclusive inclusion.
  • a process, method, system, product or device comprising a series of steps or units is not limited to the listed steps or units, but optionally also includes unlisted steps or units, or optionally also includes For other steps or units inherent to these processes, methods, products or devices.
  • the present application provides a control method for a smart device, wherein the mobile terminal can determine the position information between the mobile terminal and the electronic tag according to the radio pulse signal sent by the electronic tag, and then realizes the control of the smart device according to the position information. Control, the process does not require human operation, and can be automatically sensed and controlled only by azimuth information, which improves the convenience of the mobile terminal to control the smart device.
  • FIG. 1 is a schematic flowchart of a first embodiment of a method for controlling a smart device of the present application.
  • the control method of the smart device is applied to the mobile terminal.
  • the method may include the following steps:
  • Step S11 The mobile terminal senses the radio pulse signal sent by the electronic tag in real time, and the electronic tag is set within a preset range of the smart device.
  • the electronic tag can send out a radio pulse signal
  • the mobile terminal can sense the radio pulse signal sent by the electronic tag in real time.
  • the real-time sensing of the mobile terminal may be sensing according to a preset time interval, and the preset time interval may be set according to the actual situation, or sensing according to the default sensing frequency of the mobile terminal, such as 1 time per second, 10 times or 100 times.
  • the electronic tag can periodically send out radio pulse signals, for example, the period is 1 microsecond, 1 second or 1 minute, which can be selected according to the actual situation; or, the electronic tag can also send out radio pulse signals under other trigger conditions, wherein
  • the trigger condition may be that the electronic tag receives a user's touch instruction, and the electronic tag receives a control instruction from the mobile terminal after establishing a communication connection with the mobile terminal.
  • the electronic tag can be an ultra-wideband positioning tag.
  • the ultra-wideband positioning tag is a tag for positioning based on an ultra-wideband technology (UWB, Ultra Wide Band).
  • UWB directly modulates the impulse pulse with very steep rise and fall time, so that the signal has a bandwidth of the order of GHz, and the peak-to-peak time interval of the pulse is in the order of 10-100ps.
  • UWB has the advantages of insensitivity to channel fading, low power spectral density of transmitted signals, low interception capability, low system complexity, and can provide positioning accuracy of several centimeters. Compared with Bluetooth positioning, UWB positioning has higher accuracy.
  • the electronic tag is set within a preset range of the smart device, so as to obtain orientation information between the mobile terminal and the smart device according to the electronic tag.
  • the orientation information between the mobile terminal and the electronic tag can be used as the orientation information between the mobile terminal and the smart device, so that the smart device can be controlled accordingly according to the orientation information between the mobile terminal and the electronic tag.
  • the preset range can be set according to the actual situation. In some embodiments, the preset range may be 0-10 cm. When the preset range is 0cm, it means that the electronic label is set on the smart device at this time, that is, it is in contact with the smart device.
  • the electronic tag can be set as close as possible to the smart device, that is, the distance from the smart device is reduced, so that the orientation information between the mobile terminal and the electronic tag is closer to the orientation information between the mobile terminal and the smart device, Therefore, the measurement error is reduced, and the accuracy of the control of the smart device can be improved when the mobile terminal controls the smart device according to the orientation information between the mobile terminal and the electronic tag.
  • the mobile terminal may adjust the orientation information between the mobile terminal and the electronic tag through an orientation adjustment parameter, so as to obtain the information between the mobile terminal and the smart device. location information.
  • the orientation adjustment parameter may include distance information and angle information between the electronic tag and the smart device.
  • the orientation adjustment parameter may be obtained by the user through a corresponding measurement tool. The user inputs the orientation correction parameter into the mobile terminal, so that the mobile terminal adjusts the orientation information between the mobile terminal and the electronic tag according to the orientation adjustment parameter.
  • the distance between the mobile terminal and the smart device can be obtained according to the cosine theorem. Distance information and angle information.
  • Step S12 Determine the orientation information between the mobile terminal and the electronic tag according to the radio pulse signal.
  • the orientation information includes at least one of distance information and angle information.
  • the mobile terminal can determine the distance information and angle information between the mobile terminal and the electronic tag according to the radio pulse signal sent by the electronic tag.
  • the mobile terminal can first determine the flight time of the radio pulse signal between the mobile terminal and the electronic tag, and then determine the distance between the mobile terminal and the electronic tag according to the flight time between the mobile terminal and the electronic tag. location information.
  • the flight time refers to the time required for the radio pulse signal to propagate from the mobile terminal to the electronic tag or from the electronic tag to the mobile terminal, which is recorded as
  • Step S13 Send a corresponding control instruction to the smart device according to the orientation information between the mobile terminal and the electronic tag, so as to control the smart device.
  • the mobile terminal may send a corresponding control instruction to the smart device through Bluetooth, wherein a Bluetooth communication connection is pre-established between the mobile terminal and the smart device.
  • the mobile terminal may also send control instructions to the smart device through other communication methods, such as WiFi.
  • step S13 it is also possible to first judge whether the orientation information between the mobile terminal and the electronic tag has changed; if so, execute step S13; otherwise, repeat step S11, so that when the orientation information changes , the smart device is controlled, the method process can be simplified, and the resources of the mobile terminal can be saved.
  • the above scheme uses the mobile terminal to sense the radio pulse signal sent by the electronic tag in real time, wherein the electronic tag is set within the preset range of the smart device, and then the orientation information between the mobile terminal and the electronic tag is determined according to the radio pulse signal, and then according to the radio pulse signal.
  • the orientation information between the mobile terminal and the electronic tag sends corresponding control instructions to the smart device to control the smart device.
  • FIG. 2 is a schematic flowchart of a second embodiment of a control method for a smart device of the present application.
  • the control method of the smart device is applied to the mobile terminal.
  • the method may include the following steps:
  • Step S21 The mobile terminal establishes a Bluetooth communication connection with the electronic tag.
  • a Bluetooth communication connection is established in advance, so that the ultra-wideband communication connection is established when the measurement needs to be performed through the ultra-wideband technology, thereby saving the function of the electronic tag. consumption.
  • UWB requires high power consumption to be turned on for a long time, and the battery capacity of the electronic tag is limited.
  • this embodiment realizes the function of the mobile terminal to find the electronic tag by means of the assistance of Bluetooth, so the electronic tag does not need When the UWB is turned on for a long time, the connection is established with the mobile terminal through low-power Bluetooth. On the one hand, the UWB can be turned on quickly, and on the other hand, the power consumption of the electronic tag can be saved.
  • the communication distance of Bluetooth is no longer limited to 10m, and some can even reach 100m under barrier-free conditions, so for the general home space, the Bluetooth communication connection can always be maintained between mobile terminals, electronic tags and smart devices, so that When UWB measurement is required, UWB can be turned on quickly.
  • the method may further include: judging whether the electronic tag is paired with the mobile terminal; if yes, executing step S21.
  • the electronic tag is paired with the mobile terminal.
  • the Bluetooth pairing aspect reference may be made to the related art, which will not be repeated here.
  • judging whether the electronic tag is paired with the mobile terminal includes: judging whether the Bluetooth pairing of the electronic tag and the mobile terminal is successful, and judging whether the electronic tag and the mobile terminal can establish an ultra-wideband communication connection; The Bluetooth pairing is successful, and the electronic tag and the mobile terminal can establish an ultra-wideband communication connection, then it is determined that the electronic tag is paired with the mobile terminal.
  • judging whether the electronic tag and the mobile terminal can establish an ultra-wideband communication connection can be judging whether the electronic tag and the mobile terminal can send a radio pulse signal; or whether the identification information of the electronic tag is pre-stored in the mobile terminal can establish an ultra-wideband connection. or determine whether the identification information of the mobile terminal is pre-stored in the list of established ultra-wideband connections of the electronic tag; if any of the above results are yes, it is determined that the electronic tag is matched with the mobile terminal, so that after the Bluetooth communication connection is established, An ultra-wideband communication connection can be established.
  • the identification information of the electronic tag is used to uniquely identify the electronic tag, and may include at least one of the name of the electronic tag, the manufacturer and the device id.
  • the identification information of the mobile terminal is used to uniquely identify the mobile terminal, and may include at least one of an International Mobile Equipment Identity (International Mobile Equipment Identity, IMEI for short), a mobile terminal serial number, and a mobile terminal production serial number.
  • the identification information may also be used to identify a type of electronic label or mobile terminal, for example, an electronic label or mobile terminal used to identify a certain brand.
  • the identification information of the mobile terminal is pre-stored in the list of established ultra-broadband connections of the electronic tag, it can also prevent mobile terminals in the list of non-establishable ultra-broadband connections from establishing a Bluetooth communication connection with the electronic tag, reducing malicious connections. , can reduce the power consumption of the electronic label.
  • the ultra-wideband communication connection is not established immediately, but the ultra-wideband communication connection can be established through Bluetooth interaction only after the mobile terminal enables the ultra-wideband ranging function.
  • the following introduces two triggering methods for enabling the UWB ranging function, one is passive triggering and the other is active triggering.
  • Step S22 The mobile terminal detects the preset instruction, and enables the ultra-wideband ranging function, wherein the preset instruction is triggered by the user.
  • the ultra-wideband ranging function of the mobile terminal is triggered by user operation, that is, passively triggered.
  • the preset instruction includes an instruction related to enabling the ultra-wideband ranging function, for example, the user can trigger the preset instruction by means of voice input, button click, gesture, or the like.
  • the content of the specific voice input, the setting position and clicking method of the button, and the type of gesture, etc. can all be set according to actual needs, which will not be repeated here.
  • the mobile terminal when the user goes home from get off work and enters the home space, the mobile terminal will first establish a Bluetooth communication connection with the smart device and the electronic tag.
  • the user can click the virtual button or physical button to turn on the UWB ranging function.
  • the ultra-wideband ranging function of the mobile terminal is turned on, that is, the mobile terminal can obtain the distance between the mobile terminal and the electronic tag in real time through UWB, and realize precise control of the smart device according to the distance.
  • Step S23 When the mobile terminal detects that the current actual position has changed, the ultra-wideband ranging function is enabled.
  • the mobile terminal automatically detects whether the current actual position changes, and if the current actual position changes, the ultra-wideband ranging function is enabled, that is, it is actively triggered.
  • the current actual position of the mobile terminal refers to the current actual geographic location of the mobile terminal and/or the current actual angle of the mobile terminal, while the orientation information refers to the relative distance and/or relative angle between the mobile terminal and the electronic tag, which are different.
  • the mobile terminal may detect whether the current actual position changes through at least one of an acceleration sensor and an angular velocity sensor.
  • the acceleration sensor and/or the angular velocity sensor are arranged in the mobile terminal, the acceleration sensor can sense the displacement of the mobile terminal, and the angular velocity sensor is used for sensing the angle change of the mobile terminal. It can be understood that when the displacement of the mobile terminal changes, the distance between the mobile terminal and the smart device will change because the position of the smart device remains unchanged. Therefore, the mobile terminal needs to enable the ultra-wideband ranging function to obtain the The new position information is controlled, and the smart device is controlled according to the new position information, so that the smart device can reach the state most suitable for the current position of the user.
  • the smart device has a rotatable function, such as a rotatable fan
  • the angle between the mobile terminal and the smart device changes, and the ultra-wideband ranging function needs to be turned on to obtain new angle information, so as to better understand the smart device. device to control.
  • the mobile terminal may include an IMU (Inertial Measurement Unit, inertial measurement unit).
  • IMU Inertial Measurement Unit, inertial measurement unit
  • IMU which usually contains three sensors: accelerometer, gyroscope and magnetometer, can measure speed, direction and gravity using IMU. In this embodiment, whether the current actual position of the mobile terminal changes can be detected through the IMU.
  • the mobile terminal may automatically turn on the UWB ranging function periodically.
  • the time at which the UWB ranging function is automatically turned on can be defined by the user. For example, user A usually gets home around 6 pm, so user A can choose to automatically turn on the ultra-broadband ranging function at 6 pm, and then when user A returns home at 6 pm, the mobile terminal will automatically turn on the ultra-broadband ranging function. No user operation is required, which improves the convenience of smart device control.
  • the ultra-wideband communication connection may also be established directly through Bluetooth interaction, which will not be described herein again.
  • Step S24 The mobile terminal interacts with the electronic tag through Bluetooth, so that the electronic tag selects the same ultra-wideband channel as the mobile terminal, and establishes an ultra-wideband communication connection.
  • step S24 includes: the mobile terminal performs network monitoring and addressing, and sends information related to network monitoring and addressing to the electronic tag through Bluetooth, so as to realize synchronization between the mobile terminal and the electronic tag.
  • all power consumption mechanisms such as network access and search can be placed on the mobile terminal side, thereby saving the power consumption of the tag to the greatest extent.
  • Step S25 The mobile terminal senses the radio pulse signal sent by the electronic tag in real time, and the electronic tag is set within the preset range of the smart device.
  • step S11 in the above embodiment, and details are not repeated here.
  • Step S26 Determine the orientation information between the mobile terminal and the electronic tag according to the radio pulse signal.
  • Step S27 Send a corresponding control instruction to the smart device according to the orientation information between the mobile terminal and the electronic tag, so as to control the smart device.
  • Step S27 may include: if the distance between the mobile terminal and the electronic tag decreases, sending a corresponding control command to the speaker to lower the volume of the speaker. Volume; if the distance between the mobile terminal and the electronic tag increases, a corresponding control command is sent to the speaker to increase the volume of the speaker.
  • the mobile terminal compares the distance between the mobile terminal and the electronic label at the current moment with the distance between the mobile terminal and the electronic label at the previous moment; if the distance S t between the mobile terminal and the electronic label at the current moment is smaller than the previous moment The distance S t-1 between the mobile terminal and the electronic tag at the moment, that is, S t ⁇ S t-1 , then it is determined that the distance between the mobile terminal and the electronic tag decreases, and the corresponding control command is sent to the speaker to adjust the The volume of the sound; if the distance S t between the mobile terminal and the electronic tag at the current moment is greater than the distance S t-1 between the mobile terminal and the electronic tag at the previous moment, that is, S t > S t-1 , then send the corresponding sound to the sound.
  • the volume of the speaker can be automatically reduced gradually, and as the user moves away from the speaker, the volume of the speaker can be automatically gradually increased, so that the volume heard by the user is kept within a suitable volume range.
  • S t S t-1
  • the user can customize a preset volume range
  • the mobile terminal can adjust the volume of the sound according to the preset volume range and the orientation information between the mobile terminal and the electronic tag, so that the volume heard by the user remains within the preset volume. within the set volume range.
  • the mobile terminal detects that the distance from the electronic tag is greater than the preset distance threshold, it can send the corresponding control command to the audio to turn off. Therefore, when the user leaves the use range of the audio, the audio is automatically turned off, and the energy consumption caused by the loud volume playback of the audio can be greatly saved.
  • Step S27 may include: if the distance between the mobile terminal and the electronic tag decreases, sending a corresponding control instruction to the light to adjust the Brightness; if the distance between the mobile terminal and the electronic tag increases, a corresponding control command is sent to the light to adjust the brightness of the headlight.
  • the mobile terminal compares the distance between the mobile terminal and the electronic label at the current moment with the distance between the mobile terminal and the electronic label at the previous moment; if the distance S t between the mobile terminal and the electronic label at the current moment is smaller than the previous moment The distance S t-1 between the mobile terminal and the electronic tag at the moment, that is, S t ⁇ S t-1 , then it is determined that the distance between the mobile terminal and the electronic tag decreases, and a corresponding control command is sent to the light to adjust the The brightness of the lamp; if the distance S t between the mobile terminal and the electronic tag at the current moment is greater than the distance S t-1 between the mobile terminal and the electronic tag at the previous moment, that is, S t > S t-1 , send a corresponding message to the lamp.
  • the brightness of the lamp can be automatically and gradually reduced as the user approaches the lamp, and the brightness of the lamp can be automatically gradually adjusted as the user moves away from the lamp, so that the surrounding brightness of the user can be maintained within a suitable brightness range.
  • S t the distance between the mobile terminal and the electronic tag at the current moment
  • the user can customize a preset brightness range
  • the mobile terminal can adjust the brightness of the light according to the preset brightness range and the orientation information between the mobile terminal and the electronic tag, so that the brightness around the user remains at the preset brightness. within the range.
  • the lamp has a brightness upper limit, so when the brightness of the lamp reaches the upper limit, if the mobile terminal detects that the distance from the electronic tag is greater than the preset distance threshold, it can send the corresponding control to the lamp.
  • the instruction is used to turn off the light, so that when the user leaves the use range of the light, the light is automatically turned off, and the energy consumption generated by the high-brightness operation of the light can also be greatly saved.
  • the smart device is an electric fan
  • the orientation information includes distance information.
  • Step S27 may include: if the distance between the mobile terminal and the electronic tag decreases, sending a corresponding control instruction to the electric fan to reduce the distance of the electric fan. Rotation speed; if the distance between the mobile terminal and the electronic label increases, a corresponding control command is sent to the fan to increase the rotation speed of the fan.
  • the smart device is an electric fan
  • the orientation information also includes angle information.
  • Step S27 may include: if the angle between the mobile terminal and the electronic tag is not within the preset angle range, performing an adjustment on the angle of the electric fan according to the angle information. Adjust so that the adjusted angle between the mobile terminal and the electronic tag is within a preset angle range.
  • the orientation information also includes angle information, wherein the angle information is used to adjust the angle of the air outlet of the electric fan, so that the air outlet of the electric fan can be aimed at the user, so that the user can receive a larger area of air volume.
  • the mobile terminal determines whether the angle between the mobile terminal and the electronic tag is within the preset angle range, and if not, adjusts the angle of the fan according to the angle information, so that the adjusted angle between the mobile terminal and the electronic tag is The angle is within the preset angle range; if it is, the angle of the fan can not be adjusted.
  • the preset angle range can be selected by the user according to the actual situation, for example, it can be [-10°, +10°] and [-30°, +30°]. Wherein, when the angle between the mobile terminal and the electronic tag is zero, it means that the user is facing the smart device at this time.
  • the orientation information may also include angle information, so that it can also be adjusted accordingly according to the angle information, which is not limited here.
  • a Bluetooth communication connection is established between the mobile terminal and the electronic tag, and then when the mobile terminal enables the ultra-wideband ranging function, it interacts with the electronic tag through Bluetooth, so that the electronic tag selects the same ultra-wideband channel as the mobile terminal to communicate with the mobile terminal.
  • the electronic tag establishes an ultra-wideband communication connection.
  • the Bluetooth on the electronic tag side can be kept on, while UWB is only turned on during the ranging process, which can save the power consumption of the electronic tag;
  • the electronic tag establishes a Bluetooth communication connection in advance.
  • the UWB on the electronic tag side can be quickly turned on, so as to quickly establish an ultra-wideband communication connection; again, all network monitoring and addressing work is completed by the mobile terminal and sent to the electronic tag through Bluetooth. Synchronization, thus saving the power consumption of the electronic label to the greatest extent.
  • step S26 it may further include: judging whether the orientation information between the mobile terminal and the electronic tag has changed within a preset time range; if not, sending a corresponding control instruction to the electronic tag, so that the electronic tag Disconnect the UWB communication connection and enter the UWB sleep state.
  • the preset time range may be set according to actual conditions, for example, 5 minutes, half an hour, 1 hour, and the like. It can be understood that the orientation information between the mobile terminal and the electronic tag has not changed within the preset time range, which means that the position of the user will not change within a period of time, so that the mobile terminal can send the corresponding control to the electronic tag. instruction, so that the electronic tag disconnects the ultra-wideband communication connection and enters the ultra-wideband sleep state. At this time, the electronic tag entering the ultra-wideband sleep state does not perform ranging and consumes less power. Further, when the mobile terminal detects that the current actual position changes, it re-enters the ultra-wideband connection state, that is, starts the ranging work.
  • the electronic tag may be provided with a button, and after step S26, the step may further include: in response to receiving the alarm information sent by the electronic tag, according to the orientation information between the mobile terminal and the electronic tag, determining the corresponding alarm type and Carry out an alarm; wherein, the alarm information is generated by the operation of the key.
  • the keys on the electronic label may be virtual keys or physical keys.
  • the electronic tag detects the user's operation button, and sends alarm information to the mobile terminal, so that the mobile terminal responds to receiving the alarm information sent by the electronic tag, and determines the corresponding alarm type according to the orientation information between the mobile terminal and the electronic tag.
  • the alarm type may include an alarm method: vibration alarm and/or sound and light alarm, or alarm device: mobile terminal and/or electronic label, etc.
  • the mobile terminal can send corresponding control information to the electronic tag according to the orientation information between the mobile terminal and the electronic tag obtained by UWB real-time ranging, so that the electronic tag can remind the user that it is through vibration of different frequencies or sound and light of different sizes.
  • Approaching the phone or away from the phone so that users can find the phone faster. For example, when the user approaches the mobile phone, the vibration frequency of the electronic tag is higher, and when the user is away from the mobile phone, the vibration frequency of the electronic tag is smaller.
  • the method may further include: displaying the orientation information between the mobile terminal and the electronic tag on the display screen of the mobile terminal.
  • the orientation information between the mobile terminal and the electronic tag for example, the electronic tag, may also be displayed on the display interface of other devices, which is not limited here. In the above manner, the user can know the orientation information with the electronic tag in real time and intuitively.
  • FIG. 3 is a schematic flowchart of an embodiment of step S26 in FIG. 2 of the present application.
  • step S26 may include sub-steps S261 and S262.
  • Step S261 Determine the flight time of the radio pulse signal between the mobile terminal and the electronic tag.
  • Step S262 Determine the orientation information between the mobile terminal and the electronic tag according to the flight time between the mobile terminal and the electronic tag.
  • the UWB ranging is calculated by using Time Of Flight (TOF). Based on UWB, sub-nanometer precise time (1ns is approximately equal to 750px) can be obtained, which can make the obtained orientation information more accurate.
  • TOF Time Of Flight
  • step S262 may be: calculating the product of the flight time and the speed of light between the mobile terminal and the electronic tag, so as to obtain orientation information between the mobile terminal and the electronic tag.
  • the calculation formula of the orientation information between the mobile terminal and the electronic tag is as follows:
  • the following embodiments respectively introduce a method for determining the flight time of a radio pulse signal between a mobile terminal and an electronic tag.
  • a method for determining the flight time of a radio pulse signal between a mobile terminal and an electronic tag For details, please refer to the following embodiments. It can be understood that the methods for determining the flight time are not limited to the two described below.
  • FIG. 4 is a schematic flowchart of an embodiment of step S261 in FIG. 3 of the present application
  • FIG. 5 is an interactive schematic diagram of an embodiment of step S261 in FIG. 3 of the present application.
  • step S261 may include sub-steps S2611, S2612 and S2613.
  • Step S2611 Determine the first time period between when the mobile terminal sends the first message to the electronic tag and when the mobile terminal receives the second message fed back by the electronic tag for responding to the first message.
  • Step S2612 Determine the second time period between when the electronic tag receives the first message and when the electronic tag sends the second message.
  • Step S2613 Determine the flight time of the radio pulse signal between the mobile terminal and the electronic tag according to the first time period and the second time period.
  • the mobile terminal adopts the method of Single-sided Two-way Ranging (SS-TWR) to calculate the flight time of the radio pulse signal between the mobile terminal and the electronic tag.
  • SS-TWR Single-sided Two-way Ranging
  • unilateral two-way ranging is a measurement of the time of a single round-trip message, that is, device A actively sends data to device B, and device B returns data to device A in response.
  • Device A is a mobile terminal
  • Device B is an electronic label.
  • the mobile terminal can first send (TX) the first message to the electronic tag, so that finally the mobile terminal can receive (RX)
  • the electronic tag sends the second message, And the orientation information is calculated on the mobile terminal side.
  • the message sent between the electronic tag and the mobile terminal includes parameters related to calculating the position information.
  • the second message sent by the electronic tag includes the first message sending time stamp T1, the first message receiving time stamp T2, and the second message sending timestamp T3.
  • the process of using the unilateral two-way ranging method to determine the flight time is as follows:
  • the mobile terminal sends the first message to the electronic tag, and records the time stamp T1 for sending the first message;
  • the electronic tag receives the first message, and records the first message reception timestamp T2 at the same time;
  • the electronic tag After delaying T reply , the electronic tag sends the second message to the mobile terminal for responding to the feedback of the first message, and simultaneously records the time stamp T3 for sending the second message;
  • the mobile terminal receives the second message, and simultaneously records the time stamp T4 for receiving the second message;
  • the first time period T round between when the mobile terminal sends the first message to the electronic tag and when the mobile terminal receives the second message fed back by the electronic tag in response to the first message is equal to the second message receiving timestamp T4
  • the difference from the first message sending time stamp T1, that is, T round T4-T1;
  • the wireless pulse signal is transmitted twice between the mobile terminal and the electronic tag, so is 0.5 times the difference between the first time period and the second time period, that is
  • the error of the unilateral and bidirectional ranging can also be calculated, so that the user can know the magnitude of the error of the ranging, and then make corresponding adjustments.
  • the two difference times (T reply and T round ) are calculated based on the local clock.
  • the local clock error can be offset, but there will be a slight clock offset between different devices. If the crystal oscillator frequencies of devices A and B are offset are e A and e B respectively, so the obtained flight time will increase with the increase of T reply , and the formula of ranging error is as follows:
  • FIG. 6 is a schematic flowchart of another embodiment of step S261 in FIG. 3 of the present application
  • FIG. 7 is an interactive schematic diagram of another embodiment of step S261 in FIG. 3 of the present application.
  • step S261 may include sub-steps S2614, S2615, S2617 and S2618. There is no certain sequence relationship between step S2614 in this embodiment and the above-mentioned step S2613.
  • Step S2614 Determine the first time period between when the electronic tag sends the first message to the mobile terminal and when the electronic tag receives the second message fed back by the mobile terminal for responding to the first message.
  • Step S2615 Determine the second time period between when the mobile terminal receives the first message and when the mobile terminal sends the second message.
  • Step S2616 Determine the third time period between the electronic tag receiving the second message and sending the third message to the mobile terminal.
  • Step S2617 Determine a fourth time period between when the mobile terminal sends the second message and when the mobile terminal receives the third message.
  • Step S2618 Determine the flight time of the radio pulse signal between the mobile terminal and the electronic tag according to the first time period, the second time period, the third time period and the fourth time period.
  • the mobile terminal uses the Double-sided Two-way Ranging (DS-TWR) method to calculate the flight time of the radio pulse signal between the mobile terminal and the electronic tag.
  • DS-TWR Double-sided Two-way Ranging
  • Bilateral two-way ranging records the timestamps of two round trips, and finally obtains the flight time. Although the response time is increased, the ranging error will be reduced.
  • Device A is an electronic label
  • Device B is a mobile terminal.
  • the electronic tag can first send (TX) the first message to the mobile terminal, so that finally the mobile terminal can receive (RX) the third message sent by the electronic tag, and The orientation information is calculated on the mobile terminal side.
  • the electronic tag sends the first message to the mobile terminal, and records the time stamp T1 for sending the first message;
  • the mobile terminal receives the first message, and records the first message reception timestamp T2 at the same time;
  • the mobile terminal After the delay T reply1 , the mobile terminal sends the second message to the electronic tag for responding to the feedback of the first message, and records the time stamp T3 for sending the second message;
  • the electronic tag receives the second message, records the time stamp T4 for receiving the second message, and after delaying T reply2 , sends the third message to the mobile terminal for responding to the feedback of the second message, and records the sending of the third message at the same time timestamp T5;
  • the mobile terminal receives the third message and records the time stamp T6 for receiving the third message
  • T round1 is the first time period
  • T reply1 is the second time period
  • T round2 is the third time period
  • T reply2 is the fourth time period.
  • the error of the bilateral two-way ranging can also be calculated, so that the user can know the magnitude of the error in the ranging, so as to make corresponding adjustments.
  • ka and k b are the ratio of the actual frequency of the crystal to the nominal frequency, so ka and k b are very close to 1.
  • FIG. 8 is a schematic flowchart of a third embodiment of a control method for a smart device of the present application.
  • the control method of the smart device is applied to an electronic label, and the electronic label is set within a preset range of the smart device.
  • the method may include the following steps:
  • Step S31 Send a radio pulse signal to the mobile terminal.
  • the electronic tag sends a radio pulse signal to the mobile terminal, and the mobile terminal can sense the radio pulse signal sent by the electronic tag in real time.
  • Step S32 Determine the azimuth information with the mobile terminal according to the radio pulse signal.
  • the electronic tag can determine the orientation information with the electronic tag according to the radio pulse signal sent out. Specifically, the electronic tag can first determine the flight time of the radio pulse signal between the mobile terminal and the electronic tag, and then determine the orientation information between the mobile terminal and the electronic tag according to the flight time between the mobile terminal and the electronic tag.
  • Step S33 Send a corresponding control instruction to the smart device according to the orientation information with the mobile terminal, so as to control the smart device.
  • smart devices include, but are not limited to, speakers, lights and fans.
  • the electronic tag can communicate with the smart device to send corresponding control instructions to the smart device.
  • the electronic tag and the smart device can be connected through USB (Universal Serial Bus, Universal Serial Bus).
  • the connection may also be performed through a communication manner such as Bluetooth or WiFi, which is not limited here.
  • the electronic tag determines the position information with the mobile terminal according to the radio pulse signal, and sends the corresponding control command to the smart device according to the position information with the mobile terminal.
  • control the smart device so for the description of this embodiment, please refer to the corresponding position in the above-mentioned embodiment, which will not be repeated here.
  • a radio pulse signal is sent to the mobile terminal through the electronic tag, then the position information with the mobile terminal is determined according to the radio pulse signal, and the corresponding control command is sent to the intelligent device according to the position information with the mobile terminal, to control smart devices.
  • no human operation is required, and only the orientation information can be automatically sensed and controlled, which improves the convenience of the electronic tag to control the smart device;
  • the real-time control of smart devices is improved;
  • electronic tags determine orientation information based on radio pulse signals, which can improve the accuracy of orientation information, thereby improving the accuracy of intelligent device control.
  • FIG. 9 is a schematic flowchart of a fourth embodiment of a control method for a smart device of the present application.
  • the control method of the smart device is applied to the electronic tag.
  • the method may include the following steps:
  • Step S41 establishing a Bluetooth communication connection with the mobile terminal.
  • the method may further include: judging whether the electronic tag is paired with the mobile terminal; if yes, executing step S41.
  • Step S42 Interact with the mobile terminal through Bluetooth, select the same ultra-wideband channel as the mobile terminal, and establish an ultra-wideband communication connection.
  • the electronic tag can receive the information related to network monitoring and addressing sent by the mobile terminal, so as to realize the synchronization between the electronic tag and the mobile terminal.
  • Step S43 Send a radio pulse signal to the mobile terminal.
  • Step S44 Determine the orientation information with the electronic tag according to the radio pulse signal.
  • Step S45 Send a corresponding control instruction to the smart device according to the orientation information with the electronic tag, so as to control the smart device.
  • step S44 it may further include: when the orientation information between the mobile terminal and the electronic tag changes within a preset time range, receiving a corresponding control instruction sent by the mobile terminal, and disconnecting the UWB communication Connect, enter UWB sleep state.
  • a Bluetooth communication connection is established between the mobile terminal and the electronic tag, and then when the mobile terminal enables the ultra-wideband ranging function, it interacts with the electronic tag through Bluetooth, so that the electronic tag selects the same ultra-wideband channel as the mobile terminal to communicate with the mobile terminal.
  • the electronic tag establishes an ultra-wideband communication connection.
  • the Bluetooth on the electronic tag side can be kept on, while UWB is only turned on during the ranging process, which can save the power consumption of the electronic tag;
  • the electronic tag establishes a Bluetooth communication connection in advance.
  • the UWB on the electronic tag side can be quickly turned on, so as to quickly establish an ultra-wideband communication connection; again, all network monitoring and addressing work is completed by the mobile terminal and sent to the electronic tag through Bluetooth. Synchronization, thus saving the power consumption of the electronic label to the greatest extent.
  • FIG. 10 is a schematic flowchart of a fifth embodiment of a control method for a smart device of the present application.
  • the method for controlling a smart device is applied to a smart device control system.
  • the method may include the following steps:
  • Step S51 The electronic tag sends out a radio pulse signal, and the electronic tag is set within a preset range of the smart device.
  • Step S52 The mobile terminal senses the radio pulse signal sent by the electronic tag in real time.
  • Step S53 The mobile terminal determines the orientation information between the mobile terminal and the electronic tag according to the radio pulse signal.
  • Step S54 The mobile terminal sends a corresponding control instruction to the smart device according to the orientation information between the mobile terminal and the electronic tag, so as to control the smart device.
  • a radio pulse signal is sent through an electronic tag, and the electronic tag is set within the preset range of the smart device; the mobile terminal senses the radio pulse signal sent by the electronic tag in real time, and then determines the distance between the mobile terminal and the electronic tag according to the radio pulse signal. Position information, and then send corresponding control instructions to the smart device according to the position information between the mobile terminal and the electronic tag, so as to control the smart device.
  • the mobile terminal determines the orientation information based on the radio pulse signal, which can improve the accuracy of the orientation information, thereby improving the accuracy of the intelligent device control.
  • FIG. 11 is a schematic flowchart of a sixth embodiment of a control method for a smart device of the present application.
  • the method for controlling a smart device is applied to a smart device control system.
  • the method may include the following steps:
  • Step S61 The mobile terminal establishes a Bluetooth communication connection with the electronic tag.
  • the method may further include: the mobile terminal determines whether the electronic tag is paired with the mobile terminal; if yes, executes step S61.
  • Step S62 The mobile terminal detects the preset instruction and enables the ultra-wideband ranging function, wherein the preset instruction is triggered by the user.
  • Step S63 When the mobile terminal detects that the current actual position has changed, the UWB ranging function is enabled.
  • Step S64 The electronic tag interacts with the mobile terminal through Bluetooth, selects the same ultra-wideband channel as the mobile terminal, and establishes an ultra-wideband communication connection.
  • the mobile terminal performs the network monitoring and addressing work, and sends the information related to the network monitoring and addressing to the electronic tag through Bluetooth; Synchronization of tags.
  • Step S65 The electronic tag sends out a radio pulse signal, and the electronic tag is set within a preset range of the smart device.
  • Step S66 The mobile terminal senses the radio pulse signal sent by the electronic tag in real time.
  • Step S67 The mobile terminal determines the orientation information between the mobile terminal and the electronic tag according to the radio pulse signal.
  • Step S68 The mobile terminal sends a corresponding control instruction to the smart device according to the orientation information between the mobile terminal and the electronic tag, so as to control the smart device.
  • step S67 may include: the mobile terminal determines the time of flight of the radio pulse signal between the mobile terminal and the electronic tag; the mobile terminal determines the distance between the mobile terminal and the electronic tag according to the time of flight between the mobile terminal and the electronic tag position information between.
  • step S67 it may further include: the mobile terminal determines whether the orientation information between the mobile terminal and the electronic tag has changed within a preset time range; if not, the mobile terminal sends a corresponding control instruction to the electronic tag ; The electronic tag receives the corresponding control command sent by the mobile terminal, disconnects the ultra-wideband communication connection, and enters the ultra-wideband sleep state.
  • a Bluetooth communication connection is established between the mobile terminal and the electronic tag, and then when the mobile terminal enables the ultra-wideband ranging function, it interacts with the electronic tag through Bluetooth, so that the electronic tag selects the same ultra-wideband channel as the mobile terminal to communicate with the mobile terminal.
  • the electronic tag establishes an ultra-wideband communication connection.
  • the Bluetooth on the electronic tag side can be kept on, while UWB is only turned on during the ranging process, which can save the power consumption of the electronic tag;
  • the electronic tag establishes a Bluetooth communication connection in advance.
  • the UWB on the electronic tag side can be quickly turned on, so as to quickly establish an ultra-wideband communication connection; again, all network monitoring and addressing work is completed by the mobile terminal and sent to the electronic tag through Bluetooth. Synchronization, thus saving the power consumption of the electronic label to the greatest extent.
  • FIG. 12 is a schematic structural diagram of an embodiment of the electronic label of the present application.
  • the electronic tag 100 includes a first sending module 110 , a determining module 120 and a second sending module 130 .
  • the first sending module 110 is used for sending radio pulse signals to the mobile terminal;
  • the determining module 120 is used for determining the position information with the mobile terminal according to the radio pulse signal;
  • the second sending module 130 is used for and send corresponding control instructions to the smart device to control the smart device; wherein, the electronic label is set within the preset range of the smart device.
  • FIG. 13 is a schematic structural diagram of another embodiment of the electronic label of the present application.
  • the electronic tag 200 includes an electronic chip 210 , a processor 220 and a signal transceiver 230 .
  • the electronic chip 210 is used for sending radio pulse signals to the mobile terminal;
  • the processor 220 is connected to the electronic chip 210, and is used for determining the orientation information with the mobile terminal according to the radio pulse signal;
  • the signal transceiver 230 is connected to the processor 220, and uses According to the orientation information with the mobile terminal, a corresponding control instruction is sent to the smart device to control the smart device; wherein, the electronic tag 200 is set within a preset range of the smart device.
  • the electronic chip 210 may be integrated into the processor 220 .
  • Smart devices are not limited to speakers, lights and fans.
  • FIG. 14 is a schematic structural diagram of an embodiment of a smart device of the present application.
  • the smart device 300 includes an electronic chip 310 and a processor 320 .
  • the electronic chip 310 is used to send out a radio pulse signal, so that the mobile terminal can sense the radio pulse signal sent by the electronic chip 310 in real time, determine the orientation information between the mobile terminal and the electronic chip 310 according to the radio pulse signal, and according to the relationship between the mobile terminal and the electronic chip 310
  • the orientation information between the electronic chips 310 sends corresponding control instructions to the smart device 300 ;
  • the processor 320 is configured to receive the control commands sent by the mobile terminal to control the smart device 300 .
  • the electronic chip 310 may be integrated into the processor 320 .
  • the smart device 300 is not limited to speakers, lights and fans.
  • FIG. 15 is a schematic structural diagram of an embodiment of a mobile terminal of the present application.
  • the mobile terminal 400 includes an electronic chip 410, a processor 420, and a memory 430 connected to the processor 420.
  • the electronic chip 410 is used to send out radio pulse signals
  • the memory 430 is used to store program data
  • the processor 420 is used to execute the program data to achieve Steps in any of the above method embodiments.
  • the mobile terminal 400 may be a terminal such as a mobile phone, a smart phone, a notebook computer, a digital broadcast receiver, a PDA (Personal Digital Assistant), a PAD (Tablet Computer), a PMP (Portable Multimedia Player), a navigation device, and the like.
  • a PDA Personal Digital Assistant
  • PAD Tablet Computer
  • PMP Portable Multimedia Player
  • the electronic chip 410 may be integrated into the processor.
  • the processor 420 is used to control itself and the memory 430 to implement the steps in any of the above method embodiments.
  • the processor 420 may also be referred to as a CPU (Central Processing Unit, central processing unit).
  • the processor 420 may be an integrated circuit chip with signal processing capability.
  • the processor 420 may also be a general-purpose processor, a digital signal processor (Digital Signal Processor, DSP), an application specific integrated circuit (Application Specific Integrated Circuit, ASIC), a field programmable gate array (Field-Programmable Gate Array, FPGA) or other Programmable logic devices, discrete gate or transistor logic devices, discrete hardware components.
  • a general purpose processor may be a microprocessor or the processor may be any conventional processor or the like. Additionally, the processor 420 may be implemented jointly by multiple integrated circuit chips.
  • FIG. 16 is a schematic structural diagram of an embodiment of a computer-readable storage medium provided by the present application.
  • the computer-readable storage medium 500 stores program data 510, and when the program data 510 is executed by the processor, is used to implement the steps in any of the foregoing method embodiments.
  • the computer-readable storage medium 500 may specifically be a USB flash drive, a removable hard disk, a read-only memory (ROM, Read-Only Memory), a random access memory (RAM, Random Access Memory), a magnetic disk, or an optical disk that can store computer programs.
  • the medium can also be a server storing the computer program, and the server can send the stored computer program to other devices to run, or can also run the stored computer program by itself.
  • the disclosed method and apparatus may be implemented in other manners.
  • the apparatus implementations described above are only illustrative, for example, the division of modules or units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or units, which may be in electrical, mechanical or other forms.
  • Units described as separate components may or may not be physically separated, and components shown as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution in this implementation manner.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the above-mentioned integrated units may be implemented in the form of hardware, or may be implemented in the form of software functional units.
  • the integrated unit if implemented as a software functional unit and sold or used as a stand-alone product, may be stored in a computer-readable storage medium.
  • the technical solutions of the present application can be embodied in the form of software products in essence, or the parts that contribute to the prior art, or all or part of the technical solutions, and the computer software products are stored in a storage medium , including several instructions to make a computer device (which may be a personal computer, a server, or a network device, etc.) or a processor (processor) to execute all or part of the steps of the methods of the various embodiments of the present application.
  • the aforementioned storage medium includes: U disk, mobile hard disk, Read-Only Memory (ROM, Read-Only Memory), Random Access Memory (RAM, Random Access Memory), magnetic disk or optical disk and other media that can store program codes .

Landscapes

  • Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Environmental & Geological Engineering (AREA)
  • Telephone Function (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种智能设备的控制方法、标签、设备、终端及存储介质,其中,所述方法应用于移动终端,包括:移动终端实时感应电子标签发出的无线电脉冲信号,电子标签设置于智能设备的预设范围内;根据无线电脉冲信号,确定移动终端与电子标签之间的方位信息;根据移动终端与电子标签之间的方位信息,向智能设备发送对应的控制指令,以对智能设备进行控制。通过上述方式,本申请能够提高对智能设备控制的便捷度。

Description

智能设备的控制方法、标签、设备、终端及存储介质 【技术领域】
本申请涉及智能家居领域,特别是涉及一种智能设备的控制方法、标签、设备、终端及存储介质。
【背景技术】
随着科技的进步,人们的生活质量也随之提升。目前,在智能家居领域,用户通过对移动终端上的应用程序进行相应操作,以控制一定范围内的智能设备。
【发明内容】
本申请实施例第一方面提供了一种智能设备的控制方法,应用于移动终端,该方法包括:移动终端实时感应电子标签发出的无线电脉冲信号,电子标签设置于智能设备的预设范围内;根据无线电脉冲信号,确定移动终端与电子标签之间的方位信息;根据移动终端与电子标签之间的方位信息,向智能设备发送对应的控制指令,以对智能设备进行控制。
本申请实施例第二方面提供了一种智能设备的控制方法,应用于电子标签,该方法包括:向移动终端发出无线电脉冲信号;根据无线电脉冲信号,确定与移动终端之间的方位信息;根据与移动终端赊之间的方位信息,向智能设备发送对应的控制指令,以对智能设备进行控制;其中,电子标签设置于智能设备的预设范围内。
本申请实施例第三方面提供了一种智能设备的控制方法,应用于智能设备控制系统,该方法包括:电子标签发出无线电脉冲信号,电子标签设置于智能设备的预设范围内;移动终端实时感应电子标签发出的无线电脉冲信号;移动终端根据无线电脉冲信号,确定移动终端与电子标签之间的方位信息;移动终端根据移动终端与电子标签之间的方位信息,向智能设备发送对应的控制指令,以对智能设备进行控制。
本申请实施例第四方面提供了一种电子标签,包括:第一发送模块,用于向移动终端发出无线电脉冲信号;确定模块,用于根据无线电脉冲信号,确定与移动终端之间的方位信息;第二发送模块,用于根据与移动终端之间的方位信息,向智能设备发送对应的控制指令,以对智能设备进行控制;其中,电子标签设置于智能设备的预设范围内。
本申请实施例第五方面提供了一种电子标签,包括:电子芯片,用于向移动终端发出无线电脉冲信号;处理器,连接电子芯片,用于根据无线电脉冲信号,确定与移动终端之间的方位信息;信号收发器,连接处理器,用于根据与移动终端之间的方位信息,向智能设备发送对应的控制指令,以对智能设备进行控制;其中,电子标签设置于智能设备的预设范围内。
本申请实施例第六方面提供了一种智能设备,包括:电子芯片,用于发出无线电脉冲信号,以使得移动终端实时感应电子芯片发出的无线电脉冲信号,根据无线电脉冲信号,确定移动终端与电子芯片之间的方位信息,并根据移动终端与电子芯片之间的方位信息,向智能设备发送对应的控制指令;处理器,连接电子芯片,用于接收移动终端发送的控制指令,以对智能设备进行控制。
本申请实施例第七方面提供了一种移动终端,该移动终端包括电子芯片、处理器以及与处理器连接的存储器,电子芯片用于发出无线电脉冲信号,存储器用于存储程序数据,处理器用于执行程序数据以实现前述的方法。
本申请实施例第八方面提供了一种计算机可读存储介质,该计算机可读存储介质中存储有程序数据,程序数据在被处理器执行时,用以实现前述的方法。
本申请的有益效果是:区别于现有技术的情况,本申请通过移动终端实时感应电子标签发出的无线电脉冲信号,其中,电子标签设置于智能设备的预设范围内,然后根据无线电脉冲信号,确定移动终端与电子标签之间的方位信息,再根据移动终端与电子标签之间的方位信息,向智能设备发送对应的控制指令,以对智能设备进行控制。通过上述方式,无需人为操作,仅凭方位信息即可自动感知与控制,提高了移动终端对智能设备控制的便捷度。
【附图说明】
为了更清楚地说明本申请中的技术方案,下面将对实施例描述中所需要的附图作简单的介绍,显而易见地,下面描述的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来说,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。其中:
图1是本申请智能设备的控制方法第一实施例的流程示意图;
图2是本申请智能设备的控制方法第二实施例的流程示意图;
图3是本申请图2中步骤S26一实施例的流程示意图;
图4是本申请图3中步骤S261一实施例的流程示意图;
图5是本申请图3中步骤S261一实施例的交互示意图;
图6是本申请图3中步骤S261另一实施例的流程示意图;
图7是本申请图3中步骤S261另一实施例的交互示意图;
图8是本申请智能设备的控制方法第三实施例的流程示意图;
图9是本申请智能设备的控制方法第四实施例的流程示意图;
图10是本申请智能设备的控制方法第五实施例的流程示意图;
图11是本申请智能设备的控制方法第六实施例的流程示意图;
图12是本申请电子标签一实施例的结构示意图;
图13是本申请电子标签另一实施例的结构示意图;
图14是本申请智能设备一实施例的结构示意图;
图15是本申请移动终端一实施例的结构示意图;
图16是本申请提供的计算机存储介质一实施例的结构示意图。
【具体实施方式】
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本申请的一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请中的术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。本申请的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其它步骤或单元。
在本申请中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
目前,用户通过应用程序对智能设备进行控制的方式,每次对智能设备的状态进行调整,用户都需要经过解锁手机、打开应用程序、找到相应的控制按钮和点击控制按钮等操作,直至将智能设备调整到合适的状态。可见,目前对智能设备的控制较为繁琐。由此,本申请提供了一种智能设备的控制方法,其中,移动终端能够根据电子标签发出的无线电脉冲信号,确定移动终端与电子标签之间的方位信息,然后根据方位信息实现对智能设备进行控制,过程无需人为操作,仅凭方位信息即可自动感知与控制,提高了移动终端对智能设备控制的便捷度。
请参阅图1,图1是本申请智能设备的控制方法第一实施例的流程示意图。本实施例中,智能设备的控制方法应用于移动终端。
该方法可以包括以下步骤:
步骤S11:移动终端实时感应电子标签发出的无线电脉冲信号,电子标签设置于智能设备的预设范围内。
本实施例中,电子标签可以发出无线电脉冲信号,且移动终端可以实时感应电子标签发出的无线电脉冲信号。可以理解的,移动终端实时感应可以是按照预设时间间隔进行感应,预设时间间隔可以根据实际情况进行设置,或者按照移动终端默认的感应频率进行感应,例如1秒感应1次、10次或100次。
其中,电子标签可以周期性发出无线电脉冲信号,周期例如为1微秒、1秒或1分钟,具体可以根据实际情况进行选择;或者,电子标签还可以在其他触发条件下发出无线电脉冲信号,其中触发条件可以为电子标签接收到用户的触摸指令、电子标签与移动终端建立通信连接之后接收到来自移动终端的控制指令等。
可选地,电子标签可以为超宽带定位标签。其中,超宽带定位标签是基于超宽带技术(UWB,Ultra Wide Band)进行定位的标签。UWB通过对具有很陡上升和下降时间的冲激脉冲进行直接调制,使信号具有GHz量级的带宽,脉冲峰峰时间间隔在10-100ps级。UWB具有对信道衰落不敏感、发射信号功率谱密度低、低截获能力、系统复杂度低、能提供数厘米的定位精度等优点。相对于蓝牙定位,UWB定位的精度更高。
本实施例中,电子标签设置于智能设备的预设范围内,以根据电子标签获取移动终端与智能设备之间的方位信息。具体地,可以将移动终端与电子标签之间的方位信息作为移动终端与智能设备之间的方位信息,从而可以根据移动终端与电子标签之间的方位信息,对智能设备进行相应控制。其中,预设范围可以根据实际情况进行设置。在一些实施方式中,预设范围可以为0~10cm。当预设范围为0cm时,说明此时 电子标签设置于智能设备上,即与智能设备接触。
可以理解的,电子标签可以尽可能靠近智能设备设置,即减小与智能设备之间的距离,以使得移动终端与电子标签之间的方位信息更加接近移动终端与智能设备之间的方位信息,从而减小测量误差,进而移动终端根据移动终端与电子标签之间的方位信息,对智能设备进行控制时,可以提高对智能设备控制的准确性。
在一些实施方式中,移动终端在确定移动终端与电子标签之间的方位信息之后,可以通过方位调整参数对移动终端与电子标签之间的方位信息进行调整,以得到移动终端与智能设备之间的方位信息。例如,当方位信息包括距离信息和角度信息时,方位调整参数可以包括电子标签与智能设备之间的距离信息和角度信息。可选地,方位调整参数可以由用户通过相应的测量工具进行测量获得。用户通过将方位修正参数输入移动终端,以使得移动终端根据方位调整参数对移动终端与电子标签之间的方位信息进行调整。具体地,由于已知电子标签与智能设备之间的距离信息和角度信息,以及电子标签与移动终端之间的距离信息和角度信息,从而可以根据余弦定理求得移动终端与智能设备之间的距离信息和角度信息。
步骤S12:根据无线电脉冲信号,确定移动终端与电子标签之间的方位信息。
本实施例中,方位信息至少包括距离信息和角度信息中的一者。移动终端可以根据电子标签发出的无线电脉冲信号,确定移动终端与电子标签之间的距离信息和角度信息。
具体地,在一些实施方式中,移动终端可以先确定无线电脉冲信号在移动终端与电子标签之间的飞行时间,然后根据移动终端与电子标签之间的飞行时间,确定移动终端与电子标签之间的方位信息。
本实施例中,飞行时间是指无线电脉冲信号从移动终端传播至电子标签或从电子标签传播至移动终端所需要的时间,记作
Figure PCTCN2021115703-appb-000001
步骤S13:根据移动终端与电子标签之间的方位信息,向智能设备发送对应的控制指令,以对智能设备进行控制。
可选地,移动终端可以通过蓝牙向智能设备发送对应的控制指令,其中,移动终端与智能设备预先建立有蓝牙通信连接。在其他实施方式中,移动终端还可以通过其他通信方式向智能设备发送控制指令,例如WiFi。
可选地,在步骤S13之前,还可以先判断移动终端与电子标签之间的方位信息是否发生变化;若是,则执行步骤S13;否则,则重复步骤S11,从而可以实现在方位信息发生变化时,才对智能设备进行控制,且可以简化方法流程,节省移动终端的资源。
上述方案,通过移动终端实时感应电子标签发出的无线电脉冲信号,其中,电子标签设置于智能设备的预设范围内,然后根据无线电脉冲信号,确定移动终端与电子标签之间的方位信息,再根据移动终端与电子标签之间的方位信息,向智能设备发送对应的控制指令,以对智能设备进行控制。通过上述方式,不需要人为操作,仅凭方位信息即可自动感知与控制,提高了移动终端对智能设备控制的便捷度;其次,移动终端可以实时根据方位信息的变化对智能设备进行控制,从而提高了对智能设备控制的实时性;再次,移动终端基于无线电脉冲信号确定方位信息,可以提高方位信息的精准度,从而提高了对智能设备控制的精准度。
请参阅图2,图2是本申请智能设备的控制方法第二实施例的流程示意图。本实施例中,智能设备的控制方法应用于移动终端。
该方法可以包括以下步骤:
步骤S21:移动终端与电子标签建立蓝牙通信连接。
本实施例中,移动终端在与电子标签建立超宽带通信连接之前,预先建立有蓝牙通信连接,以使得在需要通过超宽带技术进行测量时,再建立超宽带通信连接,从而节省电子标签的功耗。可以理解的,UWB长时间开启需要很高的功耗,而电子标签的电池容量有限,对此,本实施例通过蓝牙的辅助的方式现实了移动终端查找电子标签的功能,从而电子标签不需要长时间打开UWB,而是通过低功耗的蓝牙与移动终端建立连接,一方面可以实现UWB的快速开启,另一方面可以节省电子标签的功耗。
随着蓝牙技术的发展,蓝牙的通信距离也随着提升。蓝牙的通信距离不再受限于10m,有的在无障碍条件下甚至可以达到100m,所以对于一般的家居空间而言,移动终端与电子标签、智能设备之间可以一直保持蓝牙通信连接,以便于在需要进行UWB测量时,可以快速开启UWB。
步骤S21之前还可以包括:判断电子标签与移动终端是否配对;若是,则执行步骤S21。在一些实施方式中,可以理解的,电子标签与移动终端建立蓝牙通信连接之前,需要先进行蓝牙的配对,已确定是否能够建立蓝牙通信连接,若电子标签与移动终端的蓝牙配对成功,则确定电子标签与移动终端配对。其中,对于蓝牙配对方面的阐述可以参照相关技术,此处不再赘述。在另一些实施方式中,判断电子标签与移动终端是否配对包括:判断电子标签与移动终端的蓝牙是否配对成功,以及判断电子标签与移动终端是否可以建立超宽带通信连接;若电子标签与移动终端的蓝牙配对成功,且电子标签与移动终端可以建立超宽带 通信连接,则确定电子标签与移动终端配对。
其中,判断电子标签与移动终端是否可以建立超宽带通信连接,可以是判断电子标签与移动终端是否能够发出无线电脉冲信号;或者判断电子标签的标识信息是否预先存储在移动终端的可建立超宽带连接名单中;或者判断移动终端的标识信息是否预先存储在电子标签的可建立超宽带连接名单中;若以上任一结果为是,则确定电子标签与移动终端匹配,从而在建立蓝牙通信连接后,可以建立超宽带通信连接。可以理解的,存储有可建立超宽带连接名单的一端和标识信息在可建立超宽带连接名单中的一端都能够建立超宽带通信连接。其中,电子标签的标识信息用于唯一标识电子标签,可以包括电子标签的名称、生产商和设备id中的至少一者。移动终端的标识信息用于唯一标识移动终端,可以包括国际移动设备识别码(International MobileEquipment Identity,简称为IMEI)、移动终端序列号、移动终端生产串号中的至少一者。在其他实施方式中,标识信息也可以用于标识一类电子标签或移动终端,例如用于标识某一品牌的电子标签或移动终端。
其中,通过判断移动终端的标识信息是否预先存储在电子标签的可建立超宽带连接名单中,还可以避免非可建立超宽带连接名单中的移动终端与电子标签建立蓝牙通信连接,减少了恶意连接,可以降低电子标签的功耗。
本实施例中,在移动终端与电子标签建立蓝牙通信连接后,并不是立刻建立超宽带通信连接,而是需要在移动终端开启超宽带测距功能之后,才能通过蓝牙交互,建立超宽带通信连接。下面介绍了开启超宽带测距功能的两种触发方式,一种是被动触发,另一种是主动触发。
步骤S22:移动终端检测到预设指令,开启超宽带测距功能,其中,预设指令由用户触发。
可以理解的,移动终端的超宽带测距功能由用户操作触发,即被动触发。
可选地,预设指令包括与开启超宽带测距功能相关的指令,例如用户可以通过语音输入、点击按钮、手势等方式触发预设指令。其中,具体语音输入的内容、按钮的设置位置和点击方式、以及手势的种类等都可以根据实际需要进行设置,此处不再赘述。
在一应用场景中,用户下班回家,进入家居空间时,移动终端会与智能设备和电子标签先建立起蓝牙通信连接,当用户需要开启超宽带测距功能时,用户可以点击虚拟按钮或者物理按钮,以开启超宽带测距功能。当移动终端的超宽带测距功能打开后,即移动终端可以通过UWB,实时获得与电子标签之间的距离,并根据该距离,实现对智能设备的精准控制。
步骤S23:移动终端检测到当前实际位置发生变化,则开启超宽带测距功能。
可以理解的,移动终端自动检测当前实际位置是否发生变化,若当前实际位置发生变化,则开启超宽带测距功能,即主动触发。
移动终端的当前实际位置是指移动终端当前实际的地理位置和/或移动终端当前实际的角度,而方位信息是指移动终端与电子标签之间的相对距离和/或相对角度,两者不同。
可选地,移动终端可以通过加速度传感器、角速度传感器中的至少一者,检测当前实际位置是否发生变化。其中,加速度传感器和/或角速度传感器设置于移动终端中,加速度传感器可以感应移动终端的位移,角速度传感器用于感应移动终端的角度变化。可以理解的,当移动终端发生位移变化时,由于智能设备的位置是不变的,所以移动终端与智能设备之间的距离将会发生变化,从而移动终端需要开启超宽带测距功能,以获取新的方位信息,并根据新的方位信息对智能设备进行控制,以使智能设备达到最合适用户当前位置的状态。其中,当智能设备具备可以转动的功能时,例如可转动的电扇,移动终端与智能设备之间角度发生变化,也需要开启超宽带测距功能,获取新的角度信息,从而更好的对智能设备进行控制。
在一些实施方式中,移动终端可以包括IMU(Inertial Measurement Unit,惯性测量单元)。IMU,通常包含加速度计、陀螺仪和磁力仪三种传感器,使用IMU可以测量速度、方向和重力。本实施例,通过IMU可以检测到移动终端的当前实际位置是否发生变化。
在其他实施方式中,移动终端可以定时自动开启超宽带测距功能。可选地,定时自动开启超宽带测距功能的时间可以由用户自定义。例如,用户A一般下午6点左右到家,从而用户A可以选择下午6点自动开启超宽带测距功能,进而当用户A下午6点回到家中时,移动终端会自动开启超宽带测距功能,无需用户操作,提高了智能设备控制的便捷性。
在其他实施例中,在移动终端与电子标签建立蓝牙通信连接后,也可以直接通过蓝牙交互,建立超宽带通信连接,此处不再赘述。
步骤S24:移动终端与电子标签通过蓝牙交互,以使得电子标签选择与移动终端相同的超宽带信道,并建立超宽带通信连接。
其中,步骤S24包括:移动终端进行网络监听寻址工作,并通过蓝牙将与网络监听寻址相关的信息发送给电子标签,以实现移动终端和电子标签的同步。本实施例,可以将所有的入网搜寻等耗电机制都放在移动终端侧,从而最大程度节省标签功耗。
步骤S25:移动终端实时感应电子标签发出的无线电脉冲信号,电子标签设置于智能设备的预设范围 内。
本实施例对于该步骤的阐述,请参见上述实施例中的步骤S11,此处不再赘述。
步骤S26:根据无线电脉冲信号,确定移动终端与电子标签之间的方位信息。
步骤S27:根据移动终端与电子标签之间的方位信息,向智能设备发送对应的控制指令,以对智能设备进行控制。
在一些实施方式中,智能设备为音响,方位信息包括距离信息,则步骤S27可以包括:若移动终端与电子标签之间的距离减小,则向音响发送对应的控制指令,以调小音响的音量;若移动终端与电子标签之间的距离增大,则向音响发送对应的控制指令,以调大音响的音量。
具体地,移动终端将当前时刻移动终端与电子标签之间的距离与前一时刻移动终端与电子标签之间的距离进行比较;若当前时刻移动终端与电子标签之间的距离S t小于前一时刻移动终端与电子标签之间的距离S t-1,即S t<S t-1,则确定移动终端与电子标签之间的距离减小,则向音响发送对应的控制指令,以调小音响的音量;若当前时刻移动终端与电子标签之间的距离S t大于前一时刻移动终端与电子标签之间的距离S t-1,即S t>S t-1,则向音响发送对应的控制指令,以调大音响的音量。通过上述方式,可以实现随着用户走近音响,自动逐渐调小音响的音量,以及随着用户远离音响,自动逐渐调大音响的音量,从而使得用户听到的音量保持在一个合适的音量范围内。可以理解的,当前时刻移动终端与电子标签之间的距离S t等于前一时刻移动终端与电子标签之间的距离S t-1时,即S t=S t-1,说明此时用户未进行移动,当前音响的音量仍处于一个合适的范围内,所以可以不对音响进行调节。
可选地,用户可以自定义一个预设音量范围,移动终端可以根据预设音量范围和移动终端与电子标签之间的方位信息对音响的音量进行调整,以使得用户听到的音量保持在预设音量范围内。
可以理解的,音响存在一个音量上限,所以当音响的音量达到上限时,若移动终端检测到与电子标签之间的距离大于预设距离阈值时,则可以向音响发送对应的控制指令,以关闭音响,从而使得用户离开音响的使用范围时,自动关闭音响,还可以大大节省音响大音量播放产生的能耗。
在另一些实施方式中,智能设备为灯,方位信息包括距离信息,步骤S27可以包括:若移动终端与电子标签之间的距离减小,则向灯发送对应的控制指令,以调小灯的亮度;若移动终端与电子标签之间的距离增大,则向灯发送对应的控制指令,以调大灯的亮度。
具体地,移动终端将当前时刻移动终端与电子标签之间的距离与前一时刻移动终端与电子标签之间的距离进行比较;若当前时刻移动终端与电子标签之间的距离S t小于前一时刻移动终端与电子标签之间的距离S t-1,即S t<S t-1,则确定移动终端与电子标签之间的距离减小,则向灯发送对应的控制指令,以调小灯的亮度;若当前时刻移动终端与电子标签之间的距离S t大于前一时刻移动终端与电子标签之间的距离S t-1,即S t>S t-1,则向灯发送对应的控制指令,以调大灯的亮度。通过上述方式,可以实现随着用户走近灯,自动逐渐调小灯的亮度,以及随着用户远离灯,自动逐渐调大灯的亮度,从而使得用户周围亮度保持在一个合适的亮度范围内。可以理解的,当前时刻移动终端与电子标签之间的距离S t等于前一时刻移动终端与电子标签之间的距离S t-1时,即S t=S t-1,说明此时用户未进行移动,当前灯的亮度仍处于一个合适的范围内,所以可以不对灯进行调节。
可选地,用户可以自定义一个预设亮度范围,移动终端可以根据预设亮度范围和移动终端与电子标签之间的方位信息对灯的亮度进行调整,以使得用户周围亮度保持在预设亮度范围内。
可选地,可以理解的,灯存在一个亮度上限,所以当灯的亮度达到上限时,若移动终端检测到与电子标签之间的距离大于预设距离阈值时,则可以向灯发送对应的控制指令,以关闭灯,从而使得用户离开灯的使用范围时,自动关闭灯,还可以大大节省灯高亮度运行产生的能耗。
在又一些实施方式中,智能设备为电扇,方位信息包括距离信息,步骤S27可以包括:若移动终端与电子标签之间的距离减小,则向电扇发送对应的控制指令,以减小电扇的转速;若移动终端与电子标签之间的距离增大,则向电扇发送对应的控制指令,以增大电扇的转速。
具体地,对于根据移动终端与电子标签之间的距离对电扇转速的调整可以参见音响和灯的介绍,此处不再赘述。
在再一些实施方式中,智能设备为电扇,方位信息还包括角度信息,步骤S27可以包括:若移动终端与电子标签之间的角度不在预设角度范围内,则根据角度信息对电扇的角度进行调整,以使得调整后的移动终端与电子标签之间的角度在预设角度范围内。不同于上述实施方式,本实施方式中,方位信息还包括角度信息,其中,角度信息用于调整电扇出风口的角度,以使得电扇的出风口可以对准用户,使用户能够接收到更大面积的风量。
具体地,移动终端判断移动终端与电子标签之间的角度是否在预设角度范围内,若不在,则根据角度信息对电扇的角度进行调整,以使得调整后的移动终端与电子标签之间的角度在预设角度范围内;若在,则可以不对电扇的角度进行调整。可选地,预设角度范围可以由用户根据实际情况进行选择,例如可以为[-10°,+10°]和[-30°,+30°]。其中,当移动终端与电子标签之间的角度为零时,说明此时用户正对着智 能设备。
可以理解的,对于具有角度调节功能的音响、灯等智能设备,方位信息也可以包括角度信息,从而也能够根据角度信息对其进行相应调整,此处不做限定。
上述方案,通过移动终端与电子标签建立蓝牙通信连接,然后当移动终端开启超宽带测距功能时,才通过蓝牙与电子标签进行交互,使得电子标签选择与移动终端相同的超宽带信道,以与电子标签建立超宽带通信连接,在整个交互过程中,电子标签侧的蓝牙可以一直保持开启状态,而UWB只在测距过程中开启,从而可以节省电子标签的功耗;其次,由于移动终端与电子标签预先建立蓝牙通信连接,通过蓝牙交互可以使得电子标签侧的UWB快速开启,从而快速建立超宽带通信连接;再次,所有的网络监听寻址工作全部由移动终端完成并通过蓝牙发给电子标签同步,从而最大程度节省了电子标签的功耗。
在一些实施例中,步骤S26之后还可以包括:判断预设时间范围内移动终端与电子标签之间的方位信息是否发生变化;若否,则向电子标签发送对应的控制指令,以使电子标签断开超宽带通信连接,进入超宽带睡眠状态。
其中,预设时间范围可以根据实际情况进行设置,例如为5分钟、半小时、1小时等。可以理解的,预设时间范围内移动终端与电子标签之间的方位信息都未发生变化,则可以说明该用户一段时间内的位置不会发生变化,从而移动终端可以向电子标签发送对应的控制指令,以使电子标签断开超宽带通信连接,进入超宽带睡眠状态,此时,进入超宽带睡眠状态的电子标签不进行测距,功耗较小。进一步,当移动终端检测到当前实际位置发生变化,则重新进入超宽带连接状态,即开始测距工作。
在一些实施例中,电子标签上可以设置有按键,步骤S26之后还可以包括:响应于接收到电子标签发送的报警信息,根据移动终端与电子标签之间的方位信息,确定对应的报警类型并进行报警;其中,报警信息由按键被操作产生。
其中,电子标签上的按键可以为虚拟按键或物理按键。电子标签检测到用户操作按键,向移动终端发送报警信息,以使得移动终端响应于接收到电子标签发送的报警信息,根据移动终端与电子标签之间的方位信息,确定对应的报警类型并进行报警。可选地,报警类型可以包括报警方式:震动报警和/或声光报警,或者报警设备:移动终端和/或电子标签等。
在一应用场景中,用户找不到手机时,可以通过点击或按压电子标签上的按键直接唤醒手机,使得手机发出震动或声音。同时,移动终端可以根据UWB实时测距获得的移动终端与电子标签之间的方位信息向电子标签发送相应的控制信息,以使得电子标签通过不同频率的震动或不同大小的声光,提醒用户是走近手机还是远离手机,从而使用户能够更快的找到手机。例如,当用户走近手机时,电子标签的震动频率越大,远离手机时,电子标签的震动频率越小。
在一些实施例中,步骤S26之后还可以包括:在移动终端的显示屏上显示移动终端与电子标签之间的方位信息。另外,也可以在其他设备的显示界面上显示移动终端与电子标签之间的方位信息,例如电子标签,此处不作限定。通过上述方式,用户可以实时、直观的了解到与电子标签之间的方位信息。
请参阅图3,图3是本申请图2中步骤S26一实施例的流程示意图。
本实施例中,步骤S26可以包括子步骤S261和S262。
步骤S261:确定无线电脉冲信号在移动终端与电子标签之间的飞行时间。
步骤S262:根据移动终端与电子标签之间的飞行时间,确定移动终端与电子标签之间的方位信息。
本实施例中,UWB测距采用飞行时间(Time Of Flight,TOF)进行计算,基于UWB可以获得亚纳米的精确时间(1ns约等于750px),可以使得获得的方位信息更加精准。
其中,步骤S262可以是:计算移动终端与电子标签之间的飞行时间与光速的乘积,以得到移动终端与电子标签之间的方位信息。具体地,移动终端与电子标签之间的方位信息的计算公式如下:
Figure PCTCN2021115703-appb-000002
其中,
Figure PCTCN2021115703-appb-000003
为无线电脉冲信号在移动终端与电子标签之间的飞行时间,C为光速,S为移动终端与电子标签之间的方位信息。
下面实施例分别介绍了一种确定无线电脉冲信号在移动终端与电子标签之间的飞行时间的方法,具体内容请参见下面实施例。可以理解的,确定飞行时间的方法不限于下面介绍的两种。
请参阅图4至图5,图4是本申请图3中步骤S261一实施例的流程示意图,图5是本申请图3中步骤S261一实施例的交互示意图。
本实施例中,步骤S261可以包括子步骤S2611、S2612和S2613。
步骤S2611:确定移动终端向电子标签发出第一消息,至移动终端接收到电子标签用于响应第一消息所反馈的第二消息,之间的第一时间段。
步骤S2612:确定电子标签接收到第一消息,至电子标签发出第二消息,之间的第二时间段。
步骤S2613:根据第一时间段和第二时间段,确定无线电脉冲信号在移动终端与电子标签之间的飞行 时间。
本实施例中,移动终端采用单边双向测距(Single-sided Two-way Ranging,SS-TWR)的方法计算无线电脉冲信号在移动终端与电子标签之间的飞行时间。其中,单边双向测距是对单个往返消息时间上的测量,即设备A主动发送数据到设备B,设备B返回数据响应设备A。
本实施例中,如图5所示,Device A为移动终端,Device B为电子标签。可以理解的,当采用单边双向测距的方式进行测量时,可以由移动终端先向电子标签发出(TX)第一消息,以使得最后移动终端可以接收(RX)电子标签发出第二消息,并在移动终端侧计算方位信息。可以理解的,电子标签与移动终端之间发送的消息中包括与计算方位信息相关的参数,例如电子标签发出的第二消息中包括第一消息发送时间戳T1、第一消息接收时间戳T2、和第二消息发送时间戳T3。
具体地,采用单边双向测距方法确定飞行时间的过程为:
(1)移动终端向电子标签发出第一消息,同时记录第一消息发送时间戳T1;
(2)电子标签接收到第一消息,同时记录第一消息接收时间戳T2;
(3)延时T reply之后,电子标签向移动终端发送用于响应第一消息所反馈的第二消息,同时记录第二消息发送时间戳T3;
(4)移动终端接收第二消息,同时记录第二消息接收时间戳T4;
(5)移动终端向电子标签发出第一消息,至移动终端接收到电子标签用于响应第一消息所反馈的第二消息,之间的第一时间段T round等于第二消息接收时间戳T4与第一消息发送时间戳T1之差,即T round=T4-T1;
(6)确定电子标签接收到第一消息,至电子标签发出第二消息,之间的第二时间段T reply等于第二消息发送时间戳T3与第一消息接收时间戳T2之差,即T reply=T3-T2;
(7)根据第一时间段和第二时间段,确定无线电脉冲信号在移动终端与电子标签之间的飞行时间
Figure PCTCN2021115703-appb-000004
可以理解的,无线脉冲信号在移动终端与电子标签之间传递了两次,所以
Figure PCTCN2021115703-appb-000005
为第一时间段与第二时间段之差的0.5倍,即
Figure PCTCN2021115703-appb-000006
在一些实施方式中,还可以计算单边双向测距的误差,以使得用户了解测距的误差大小,从而进行相应调整。两个差值时间(T reply和T round)都是基于本地的时钟计算得到的,本地时钟误差可以抵消,但是不同设备之间会存在微小的时钟偏移,若设备A和B的晶振频偏分别为e A和e B,因此得到的飞行时间会随着T reply的增加而增加,测距误差的公式如下:
Figure PCTCN2021115703-appb-000007
可以得到,随着T reply和晶振频偏的增加,会增加飞行时间的误差,从而增加方位信息的误差。
请参阅图6至图7,图6是本申请图3中步骤S261另一实施例的流程示意图,图7是本申请图3中步骤S261另一实施例的交互示意图。
本实施例中,步骤S261可以包括子步骤S2614、S2615、S2617和S2618。其中,本实施例的步骤S2614与上述步骤S2613之间并没有一定的先后关系。
步骤S2614:确定电子标签向移动终端发出第一消息,至电子标签接收到移动终端用于响应第一消息所反馈的第二消息,之间的第一时间段。
步骤S2615:确定移动终端接收到第一消息,至移动终端发出第二消息,之间的第二时间段。
步骤S2616:确定电子标签接收到第二消息,至向移动终端发出第三消息,之间的第三时间段。
步骤S2617:确定移动终端发出第二消息,至移动终端接收到第三消息,之间的第四时间段。
步骤S2618:根据第一时间段、第二时间段、第三时间段和第四时间段,确定无线电脉冲信号在移动终端与电子标签之间的飞行时间。
本实施例中,移动终端采用双边双向测距(Double-sided Two-way Ranging,DS-TWR)的方法计算无线电脉冲信号在移动终端与电子标签之间的飞行时间。双边双向测距记录了两个往返的时间戳,最后得到飞行时间,虽然增加了响应的时间,但会降低测距误差。
本实施例中,如图7所示,Device A为电子标签,Device B为移动终端。可以理解的,当采用双边双向测距的方式进行测量时,可以由电子标签先向移动终端发出(TX)第一消息,以使得最后移动终端可以接收(RX)电子标签发出第三消息,并在移动终端侧计算方位信息。
具体地,采用双边双向测距确定飞行时间的过程为:
(1)电子标签向移动终端发出第一消息,同时记录第一消息发送时间戳T1;
(2)移动终端接收到第一消息,同时记录第一消息接收时间戳T2;
(3)延时T reply1之后,移动终端向电子标签发送用于响应第一消息所反馈的第二消息,同时记录第二消息发送时间戳T3;
(4)电子标签接收第二消息,同时记录第二消息接收时间戳T4,并延时T reply2之后,向移动终端发送用于响应第二消息所反馈的第三消息,同时记录第三消息发送时间戳T5;
(5)移动终端接收第三消息,同时记录第三消息接收时间戳T6;
(6)电子标签向移动终端发出第一消息,至电子标签接收到移动终端用于响应第一消息所反馈的第二消息,之间的第一时间段T round1等于第二消息接收时间戳T4与第一消息发送时间戳T1之差,即T round1=T4-T1;
(7)移动终端接收到第一消息,至移动终端发出第二消息,之间的第二时间段T reply1等于第二消息发送时间戳T3与第一消息接收时间戳T2之差,即T reply1=T3-T2;
(8)电子标签接收到第二消息,至向移动终端发出第三消息,之间的第三时间段T reply2等于第三消息发送时间戳T5与第二消息接收时间戳T4之差,即T reply2=T5-T4;
(9)移动终端发出第二消息,至移动终端接收到第三消息,之间的第四时间段T round2等于第三消息接收时间戳T6与第二消息发送时间戳T3之差,即T round2=T6-T3;
(10)根据第一时间段、第二时间段、第三时间段和第四时间段,确定无线电脉冲信号在移动终端与电子标签之间的飞行时间
Figure PCTCN2021115703-appb-000008
具体计算公式为:
Figure PCTCN2021115703-appb-000009
其中,
Figure PCTCN2021115703-appb-000010
为飞行时间,T round1为第一时间段,T reply1为第二时间段,T round2为第三时间段,T reply2为第四时间段。
在一些实施方式中,还可以计算双边双向测距的误差,以使得用户了解测距的误差大小,从而进行相应调整。
测距误差的公式如下:
Figure PCTCN2021115703-appb-000011
其中,
Figure PCTCN2021115703-appb-000012
为飞行时间,k a和k b为晶振实际频率与标称频率之比,因此k a和k b非常接近于1。
请参阅图8,图8是本申请智能设备的控制方法第三实施例的流程示意图。本实施例中,智能设备的控制方法应用于电子标签,电子标签设置于智能设备的预设范围内。
该方法可以包括以下步骤:
步骤S31:向移动终端发出无线电脉冲信号。
电子标签向移动终端发出无线电脉冲信号,移动终端可以实时感应电子标签发出的无线电脉冲信号。
步骤S32:根据无线电脉冲信号,确定与移动终端之间的方位信息。
电子标签根据发出的无线电脉冲信号,可以确定与电子标签之间的方位信息。具体地,电子标签可以先确定无线电脉冲信号在移动终端与电子标签之间的飞行时间,然后根据移动终端与电子标签之间的飞行时间,确定移动终端与电子标签之间的方位信息。
步骤S33:根据与移动终端之间的方位信息,向智能设备发送对应的控制指令,以对智能设备进行控制。
其中,智能设备包括但不限于为音响、灯和电扇。电子标签可以与智能设备进行通信连接,以实现向智能设备发送对应的控制指令。本实施例中,电子标签与智能设备可以通过USB(Universal Serial Bus,通用串行总线)进行连接。在其他实施方式中,还可以通过蓝牙或WiFi等通信方式进行连接,此处不做限定。
与上述实施例不同的是,本实施例中是由电子标签根据无线电脉冲信号,确定与移动终端之间的方位信息,以及根据与移动终端之间的方位信息,向智能设备发送对应的控制指令,以对智能设备进行控制,所以对于本实施例的阐述请参见上述实施例中的相应位置,此处不再赘述。
需要注意的是,当电子标签采用单边双向测距方法确定无线电脉冲信号在移动终端与电子标签之间的 飞行时间时,此时,图5中的Device A为电子标签,Device B为移动终端,从而实现在电子标签侧计算方位信息。当电子标签采用双边双向测距方法确定无线电脉冲信号在移动终端与电子标签之间的飞行时间时,此时,图7中的Device A为移动终端,Device B为电子标签,从而实现在电子标签侧计算方位信息。
上述方案,通过电子标签向移动终端发出无线电脉冲信号,然后根据无线电脉冲信号,确定与移动终端之间的方位信息,再根据与移动终端之间的方位信息,向智能设备发送对应的控制指令,以对智能设备进行控制。通过上述方式,不需要人为操作,仅凭方位信息即可自动感知与控制,提高了电子标签对智能设备控制的便捷度;其次,电子标签可以实时根据方位信息的变化对智能设备进行控制,从而提高了对智能设备控制的实时性;再次,电子标签基于无线电脉冲信号确定方位信息,可以提高方位信息的精准度,从而提高了对智能设备控制的精准度。
请参阅图9,图9是本申请智能设备的控制方法第四实施例的流程示意图。本实施例中,智能设备的控制方法应用于电子标签。
该方法可以包括以下步骤:
步骤S41:与移动终端建立蓝牙通信连接。
在一些实施方式中,步骤S41之前,还可以包括:判断电子标签与移动终端是否配对;若是,则执行步骤S41。
步骤S42:与移动终端通过蓝牙交互,选择与移动终端相同的超宽带信道,并建立超宽带通信连接。
具体地,电子标签可以接收移动终端发送的与网络监听寻址相关的信息,以实现电子标签和移动终端的同步。
步骤S43:向移动终端发出无线电脉冲信号。
步骤S44:根据无线电脉冲信号,确定与电子标签之间的方位信息。
步骤S45:根据与电子标签之间的方位信息,向智能设备发送对应的控制指令,以对智能设备进行控制。
在一些实施例中,步骤S44之后,还可以包括:当预设时间范围内移动终端与电子标签之间的方位信息是否发生变化时,接收移动终端发送的对应的控制指令,断开超宽带通信连接,进入超宽带睡眠状态。
对于上述方法步骤的阐述可以参见上述移动终端侧实施例,此处不再赘述。
上述方案,通过移动终端与电子标签建立蓝牙通信连接,然后当移动终端开启超宽带测距功能时,才通过蓝牙与电子标签进行交互,使得电子标签选择与移动终端相同的超宽带信道,以与电子标签建立超宽带通信连接,在整个交互过程中,电子标签侧的蓝牙可以一直保持开启状态,而UWB只在测距过程中开启,从而可以节省电子标签的功耗;其次,由于移动终端与电子标签预先建立蓝牙通信连接,通过蓝牙交互可以使得电子标签侧的UWB快速开启,从而快速建立超宽带通信连接;再次,所有的网络监听寻址工作全部由移动终端完成并通过蓝牙发给电子标签同步,从而最大程度节省了电子标签的功耗。
请参阅图10,图10是本申请智能设备的控制方法第五实施例的流程示意图。本实施例中,智能设备的控制方法应用于智能设备控制系统。
该方法可以包括以下步骤:
步骤S51:电子标签发出无线电脉冲信号,电子标签设置于智能设备的预设范围内。
步骤S52:移动终端实时感应电子标签发出的无线电脉冲信号。
步骤S53:移动终端根据无线电脉冲信号,确定移动终端与电子标签之间的方位信息。
步骤S54:移动终端根据移动终端与电子标签之间的方位信息,向智能设备发送对应的控制指令,以对智能设备进行控制。
对于上述方法步骤的阐述可以参见上述移动终端侧实施例,此处不再赘述。
上述方案,通过电子标签发出无线电脉冲信号,电子标签设置于智能设备的预设范围内;移动终端实时感应电子标签发出的无线电脉冲信号,然后根据无线电脉冲信号,确定移动终端与电子标签之间的方位信息,再根据移动终端与电子标签之间的方位信息,向智能设备发送对应的控制指令,以对智能设备进行控制。通过上述方式,不需要人为操作,仅凭方位信息即可自动感知与控制,提高了移动终端对智能设备控制的便捷度;其次,移动终端可以实时根据方位信息的变化对智能设备进行控制,从而提高了对智能设备控制的实时性;再次,移动终端基于无线电脉冲信号确定方位信息,可以提高方位信息的精准度,从而提高了对智能设备控制的精准度。
请参阅图11,图11是本申请智能设备的控制方法第六实施例的流程示意图。本实施例中,智能设备的控制方法应用于智能设备控制系统。
该方法可以包括以下步骤:
步骤S61:移动终端与电子标签建立蓝牙通信连接。
在一些实施方式中,步骤S61之前,还可以包括:移动终端判断电子标签与移动终端是否配对;若是,则执行步骤S61。
步骤S62:移动终端检测到预设指令,开启超宽带测距功能,其中,预设指令由用户触发。
步骤S63:移动终端检测到当前实际位置发生变化,则开启超宽带测距功能。
步骤S64:电子标签与移动终端通过蓝牙交互,选择与移动终端相同的超宽带信道,并建立超宽带通信连接。
具体地,移动终端进行网络监听寻址工作,并通过蓝牙将与网络监听寻址相关的信息发送给电子标签;电子标签接收移动终端发送的与网络监听寻址相关的信息,实现移动终端和电子标签的同步。
步骤S65:电子标签发出无线电脉冲信号,电子标签设置于智能设备的预设范围内。
步骤S66:移动终端实时感应电子标签发出的无线电脉冲信号。
步骤S67:移动终端根据无线电脉冲信号,确定移动终端与电子标签之间的方位信息。
步骤S68:移动终端根据移动终端与电子标签之间的方位信息,向智能设备发送对应的控制指令,以对智能设备进行控制。
在一些实施例中,步骤S67可以包括:移动终端确定无线电脉冲信号在移动终端与电子标签之间的飞行时间;移动终端根据移动终端与电子标签之间的飞行时间,确定移动终端与电子标签之间的方位信息。
在一些实施例中,步骤S67之后,还可以包括:移动终端判断预设时间范围内移动终端与电子标签之间的方位信息是否发生变化;若否,则移动终端向电子标签发送对应的控制指令;电子标签接收移动终端发送的对应的控制指令,断开超宽带通信连接,进入超宽带睡眠状态。
对于上述方法步骤的阐述可以参见上述移动终端侧实施例,此处不再赘述。
上述方案,通过移动终端与电子标签建立蓝牙通信连接,然后当移动终端开启超宽带测距功能时,才通过蓝牙与电子标签进行交互,使得电子标签选择与移动终端相同的超宽带信道,以与电子标签建立超宽带通信连接,在整个交互过程中,电子标签侧的蓝牙可以一直保持开启状态,而UWB只在测距过程中开启,从而可以节省电子标签的功耗;其次,由于移动终端与电子标签预先建立蓝牙通信连接,通过蓝牙交互可以使得电子标签侧的UWB快速开启,从而快速建立超宽带通信连接;再次,所有的网络监听寻址工作全部由移动终端完成并通过蓝牙发给电子标签同步,从而最大程度节省了电子标签的功耗。
请参阅图12,图12是本申请电子标签一实施例的结构示意图。
本实施例中,电子标签100包括第一发送模块110、确定模块120和第二发送模块130。其中,第一发送模块110用于向移动终端发出无线电脉冲信号;确定模块120用于根据无线电脉冲信号,确定与移动终端之间的方位信息;第二发送模块130用于根据与移动终端之间的方位信息,向智能设备发送对应的控制指令,以对智能设备进行控制;其中,电子标签设置于智能设备的预设范围内。
请参阅图13,图13是本申请电子标签另一实施例的结构示意图。
本实施例中,电子标签200包括电子芯片210、处理器220和信号收发器230。其中,电子芯片210用于向移动终端发出无线电脉冲信号;处理器220连接电子芯片210,用于根据无线电脉冲信号,确定与移动终端之间的方位信息;信号收发器230连接处理器220,用于根据与移动终端之间的方位信息,向智能设备发送对应的控制指令,以对智能设备进行控制;其中,电子标签200设置于智能设备的预设范围内。
在一些实施方式中,电子芯片210可以集成于处理器220中。智能设备不限于音响、灯和电扇。
请参阅图14,图14是本申请智能设备一实施例的结构示意图。
智能设备300包括电子芯片310和处理器320。其中,电子芯片310用于发出无线电脉冲信号,以使得移动终端实时感应电子芯片310发出的无线电脉冲信号,根据无线电脉冲信号,确定移动终端与电子芯片310之间的方位信息,并根据移动终端与电子芯片310之间的方位信息,向智能设备300发送对应的控制指令;处理器320用于接收移动终端发送的控制指令,以对智能设备300进行控制。
在一些实施方式中,电子芯片310可以集成于处理器320中。智能设备300不限于音响、灯和电扇。
请参阅图15,图15是本申请移动终端一实施例的结构示意图。
该移动终端400包括电子芯片410、处理器420以及与处理器420连接的存储器430,电子芯片410用于发出无线电脉冲信号,存储器430用于存储程序数据,处理器420用于执行程序数据以实现上述任一方法实施例中的步骤。
移动终端400可以是诸如移动电话、智能电话、笔记本电脑、数字广播接收器、PDA(个人数字助理)、PAD(平板电脑)、PMP(便携式多媒体播放器)、导航装置等等的终端。
在一些实施方式中,电子芯片410可以集成于处理器中。
具体而言,处理器420用于控制其自身以及存储器430以实现上述任一方法实施例中的步骤。处理器420还可以称为CPU(Central Processing Unit,中央处理单元)。处理器420可能是一种集成电路芯片,具有信号的处理能力。处理器420还可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。另外,处理器420可以由多个集成电路芯片共同实 现。
请参阅图16,图16是本申请提供的计算机可读存储介质一实施例的结构示意图。该计算机可读存储介质500存储有程序数据510,程序数据510被处理器执行时,用以实现上述任一方法实施例中的步骤。
该计算机可读存储介质500具体可以为U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等可以存储计算机程序的介质,或者也可以为存储有该计算机程序的服务器,该服务器可将存储的计算机程序发送给其他设备运行,或者也可以自运行该存储的计算机程序。
在本申请所提供的几个实施例中,应该理解到,所揭露的方法和装置,可以通过其它的方式实现。例如,以上所描述的装置实施方式仅仅是示意性的,例如,模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性、机械或其它的形式。
作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施方式方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器(processor)执行本申请各个实施方式方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述仅为本申请的实施例,并非因此限制本申请的专利范围,凡是利用本申请说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本申请的专利保护范围内。

Claims (37)

  1. 一种智能设备的控制方法,应用于移动终端,其特征在于,所述方法包括:
    移动终端实时感应电子标签发出的无线电脉冲信号,所述电子标签设置于智能设备的预设范围内;
    根据所述无线电脉冲信号,确定所述移动终端与所述电子标签之间的方位信息;
    根据所述移动终端与所述电子标签之间的方位信息,向所述智能设备发送对应的控制指令,以对所述智能设备进行控制。
  2. 根据权利要求1中所述的方法,其特征在于,
    所述移动终端实时感应电子标签发出的无线电脉冲信号之前,还包括:
    所述移动终端与所述电子标签建立蓝牙通信连接;
    所述移动终端与所述电子标签通过蓝牙交互,以使得所述电子标签选择与所述移动终端相同的超宽带信道,并建立超宽带通信连接。
  3. 根据权利要求2中所述的方法,其特征在于,
    所述移动终端与所述电子标签建立蓝牙通信连接之前,还包括:
    判断所述电子标签与所述移动终端是否配对;
    若是,则执行所述移动终端与所述电子标签建立蓝牙通信连接的步骤。
  4. 根据权利要求2中所述的方法,其特征在于,
    所述移动终端与所述电子标签通过蓝牙交互,以使得所述电子标签选择与所述移动终端相同的超宽带信道,并建立超宽带通信连接,包括:
    所述移动终端进行网络监听寻址工作,并通过蓝牙将与网络监听寻址相关的信息发送给所述电子标签,以实现所述移动终端和所述电子标签的同步。
  5. 根据权利要求2中所述的方法,其特征在于,
    所述移动终端与所述电子标签通过蓝牙交互,以使得所述电子标签选择与所述移动终端相同的超宽带信道,并建立超宽带通信连接之前,还包括:
    所述移动终端检测到预设指令,开启超宽带测距功能,其中,所述预设指令由用户触发。
  6. 根据权利要求2中所述的方法,其特征在于,
    所述移动终端与所述电子标签通过蓝牙交互,以使得所述电子标签选择与所述移动终端相同的超宽带信道,并建立超宽带通信连接之前,还包括:
    所述移动终端检测到当前实际位置发生变化,则开启超宽带测距功能。
  7. 根据权利要求1中所述的方法,其特征在于,
    根据所述无线电脉冲信号,确定所述移动终端与所述电子标签之间的方位信息之后,还包括:
    判断预设时间范围内所述移动终端与所述电子标签之间的方位信息是否发生变化;
    若否,则向所述电子标签发送对应的控制指令,以使所述电子标签断开超宽带通信连接,进入超宽带睡眠状态。
  8. 根据权利要求1中所述的方法,其特征在于,
    所述向所述智能设备发送对应的控制指令,包括:
    所述移动终端通过蓝牙向所述智能设备发送对应的控制指令,其中,所述移动终端与所述智能设备预先建立有蓝牙通信连接。
  9. 根据权利要求1中所述的方法,其特征在于,所述移动终端包括电子芯片,所述电子芯片用于发出无线电脉冲信号,
    所述根据所述无线电脉冲信号,确定所述移动终端与所述电子标签之间的方位信息,包括:
    确定所述无线电脉冲信号在所述移动终端与所述电子标签之间的飞行时间;
    根据所述移动终端与所述电子标签之间的飞行时间,确定所述移动终端与所述电子标签之间的方位信息。
  10. 根据权利要求9中所述的方法,其特征在于,
    所述确定所述无线电脉冲信号在所述移动终端与所述电子标签之间的飞行时间,包括:
    确定所述移动终端向所述电子标签发出第一消息,至所述移动终端接收到所述电子标签用于响应所述第一消息所反馈的第二消息,之间的第一时间段;
    确定所述电子标签接收到所述第一消息,至所述电子标签发出所述第二消息,之间的第二时间段;
    根据所述第一时间段和所述第二时间段,确定所述无线电脉冲信号在所述移动终端与所述电子标签之间的飞行时间。
  11. 根据权利要求10所述的方法,其特征在于,
    所述根据所述第一时间段和所述第二时间段,确定所述无线电脉冲信号在所述移动终端与所述电子标签之间的飞行时间,包括:
    采用以下公式计算所述无线电脉冲信号在所述移动终端与所述电子标签之间的飞行时间:
    Figure PCTCN2021115703-appb-100001
    其中,
    Figure PCTCN2021115703-appb-100002
    为所述飞行时间,T round为所述第一时间段,T reply为所述第二时间段。
  12. 根据权利要求9中所述的方法,其特征在于,
    所述确定所述无线电脉冲信号在所述移动终端与所述电子标签之间的飞行时间,包括:
    确定所述电子标签向所述移动终端发出第一消息,至所述电子标签接收到所述移动终端用于响应所述第一消息所反馈的第二消息,之间的第一时间段;
    确定所述移动终端接收到所述第一消息,至所述移动终端发出所述第二消息,之间的第二时间段;
    确定所述电子标签接收到所述第二消息,至向所述移动终端发出第三消息,之间的第三时间段;
    确定所述移动终端发出所述第二消息,至所述移动终端接收到所述第三消息,之间的第四时间段;
    根据所述第一时间段、所述第二时间段、所述第三时间段和所述第四时间段,确定所述无线电脉冲信号在所述移动终端与所述电子标签之间的飞行时间。
  13. 根据权利要求12所述的方法,其特征在于,
    所述根据所述第一时间段、所述第二时间段、所述第三时间段和所述第四时间段,确定所述无线电脉冲信号在所述移动终端与所述电子标签之间的飞行时间,包括:
    采用以下公式计算所述无线电脉冲信号在所述移动终端与所述电子标签之间的飞行时间:
    Figure PCTCN2021115703-appb-100003
    其中,
    Figure PCTCN2021115703-appb-100004
    为所述飞行时间,T round1为所述第一时间段,T reply1为所述第二时间段,T round2为所述第三时间段,T reply2为所述第四时间段。
  14. 根据权利要求1中所述的方法,其特征在于,所述电子标签上设置有按键,
    所述根据所述无线电脉冲信号,确定所述移动终端与所述电子标签之间的方位信息之后,还包括:
    响应于接收到所述电子标签发送的报警信息,根据所述移动终端与所述电子标签之间的方位信息,确定对应的报警类型并进行报警;其中,所述报警信息由所述按键被操作产生。
  15. 根据权利要求1中所述的方法,其特征在于,所述智能设备为音响,所述方位信息包括距离信息,
    所述根据所述移动终端与所述电子标签之间的方位信息,向所述智能设备发送对应的控制指令,以对所述智能设备进行控制,包括:
    若所述移动终端与所述电子标签之间的距离减小,则向所述音响发送对应的控制指令,以调小所述音响的音量;
    若所述移动终端与所述电子标签之间的距离增大,则向所述音响发送对应的控制指令,以调大所述音响的音量。
  16. 根据权利要求1中所述的方法,其特征在于,所述智能设备为灯,所述方位信息包括距离信息,
    所述根据所述移动终端与所述电子标签之间的方位信息,向所述智能设备发送对应的控制指令,以对所述智能设备进行控制,包括:
    若所述移动终端与所述电子标签之间的距离减小,则向所述灯发送对应的控制指令,以调小所述灯的亮度;
    若所述移动终端与所述电子标签之间的距离增大,则向所述灯发送对应的控制指令,以调大所述灯的亮度。
  17. 根据权利要求1中所述的方法,其特征在于,所述智能设备为电扇,所述方位信息包括距离信息,
    所述根据所述移动终端与所述电子标签之间的方位信息,向所述智能设备发送对应的控制指令,以对 所述智能设备进行控制,包括:
    若所述移动终端与所述电子标签之间的距离减小,则向所述电扇发送对应的控制指令,以减小所述电扇的转速;
    若所述移动终端与所述电子标签之间的距离增大,则向所述电扇发送对应的控制指令,以增大所述电扇的转速。
  18. 根据权利要求1中所述的方法,其特征在于,所述智能设备为电扇,所述方位信息包括角度信息,
    所述根据所述移动终端与所述电子标签之间的方位信息,向所述智能设备发送对应的控制指令,以对所述智能设备进行控制,包括:
    若所述移动终端与所述电子标签之间的角度不在预设角度范围内,则根据所述角度信息对所述电扇的角度进行调整,以使得调整后的所述移动终端与所述电子标签之间的角度在预设角度范围内。
  19. 根据权利要求1中所述的方法,其特征在于,
    所述根据所述无线电脉冲信号,确定所述移动终端与所述电子标签之间的方位信息之后,还包括:
    在所述移动终端的显示屏上显示所述移动终端与所述电子标签之间的方位信息。
  20. 一种智能设备的控制方法,应用于电子标签,其特征在于,所述方法包括:
    向移动终端发出无线电脉冲信号;
    根据所述无线电脉冲信号,确定与所述移动终端之间的方位信息;
    根据与所述移动终端之间的方位信息,向所述智能设备发送对应的控制指令,以对所述智能设备进行控制;
    其中,所述电子标签设置于所述智能设备的预设范围内。
  21. 根据权利要求20中所述的方法,其特征在于,
    所述向移动终端发出无线电脉冲信号之前,还包括:
    与所述移动终端建立蓝牙通信连接;
    与所述移动终端通过蓝牙交互,选择与所述移动终端相同的超宽带信道,并建立超宽带通信连接。
  22. 根据权利要求21中所述的方法,其特征在于,
    所述与所述电子标签建立蓝牙通信连接之前,还包括:
    判断所述电子标签与所述移动终端是否配对;
    若是,则执行所述与所述移动终端建立蓝牙通信连接的步骤。
  23. 根据权利要求21中所述的方法,其特征在于,
    所述与所述移动终端通过蓝牙交互,选择与所述移动终端相同的超宽带信道,并建立超宽带通信连接,包括:
    接收所述移动终端发送的与网络监听寻址相关的信息,以实现所述移动终端和所述电子标签的同步。
  24. 根据权利要求21中所述的方法,其特征在于,
    所述与所述移动终端通过蓝牙交互,选择与所述移动终端相同的超宽带信道,并建立超宽带通信连接之后,还包括:
    当预设时间范围内所述移动终端与所述电子标签之间的方位信息是否发生变化时,接收所述移动终端发送的对应的控制指令,以断开超宽带通信连接,进入超宽带睡眠状态。
  25. 一种智能设备的控制方法,应用于智能设备控制系统,其特征在于,所述方法包括:
    电子标签发出无线电脉冲信号,所述电子标签设置于智能设备的预设范围内;
    移动终端实时感应电子标签发出的无线电脉冲信号;
    移动终端根据所述无线电脉冲信号,确定所述移动终端与所述电子标签之间的方位信息;
    移动终端根据所述移动终端与所述电子标签之间的方位信息,向所述智能设备发送对应的控制指令,以对所述智能设备进行控制。
  26. 根据权利要求25中所述的方法,其特征在于,
    所述移动终端实时感应电子标签发出的无线电脉冲信号之前,还包括:
    所述移动终端与所述电子标签建立蓝牙通信连接;
    所述电子标签与所述移动终端通过蓝牙交互,选择与所述移动终端相同的超宽带信道,并建立超宽带通信连接。
  27. 根据权利要求26中所述的方法,其特征在于,
    所述移动终端与所述电子标签建立蓝牙通信连接之前,还包括:
    判断所述电子标签与所述移动终端是否配对;
    若是,则执行所述移动终端与所述电子标签建立蓝牙通信连接的步骤。
  28. 根据权利要求26中所述的方法,其特征在于,
    所述电子标签与所述移动终端通过蓝牙交互,选择与所述移动终端相同的超宽带信道,并建立超宽带通信连接,包括:
    所述移动终端进行网络监听寻址工作,并通过蓝牙将与网络监听寻址相关的信息发送给所述电子标签;
    所述电子标签接收所述移动终端发送的与网络监听寻址相关的信息,实现所述电子标签和所述移动终端的同步。
  29. 根据权利要求26中所述的方法,其特征在于,
    所述电子标签与所述移动终端通过蓝牙交互,选择与所述移动终端相同的超宽带信道,并建立超宽带通信连接之前,还包括:
    所述移动终端检测到预设指令,开启超宽带测距功能,其中,所述预设指令由用户触发。
  30. 根据权利要求26中所述的方法,其特征在于,
    所述电子标签与所述移动终端通过蓝牙交互,选择与所述移动终端相同的超宽带信道,并建立超宽带通信连接之前,还包括:
    所述移动终端检测到当前实际位置发生变化,则开启超宽带测距功能。
  31. 根据权利要求25中所述的方法,其特征在于,
    所述移动终端根据所述无线电脉冲信号,确定所述移动终端与所述电子标签之间的方位信息之后,还包括:
    所述移动终端判断预设时间范围内所述移动终端与所述电子标签之间的方位信息是否发生变化;
    若否,则所述移动终端向所述电子标签发送对应的控制指令;
    所述电子标签接收所述移动终端发送的对应的控制指令,以断开超宽带通信连接,进入超宽带睡眠状态。
  32. 根据权利要求25中所述的方法,其特征在于,所述移动终端包括电子芯片,所述电子芯片用于发出无线电脉冲信号,
    所述移动终端根据所述无线电脉冲信号,确定所述移动终端与所述电子标签之间的方位信息,包括:
    所述移动终端确定所述无线电脉冲信号在所述移动终端与所述电子标签之间的飞行时间;
    所述移动终端根据所述移动终端与所述电子标签之间的飞行时间,确定所述移动终端与所述电子标签之间的方位信息。
  33. 一种电子标签,其特征在于,包括:
    第一发送模块,用于向移动终端发出无线电脉冲信号;
    确定模块,用于根据所述无线电脉冲信号,确定与所述移动终端之间的方位信息;
    第二发送模块,用于根据与所述移动终端之间的方位信息,向所述智能设备发送对应的控制指令,以对所述智能设备进行控制;
    其中,所述电子标签设置于所述智能设备的预设范围内。
  34. 一种电子标签,其特征在于,包括:
    电子芯片,用于向移动终端发出无线电脉冲信号;
    处理器,连接所述电子芯片,所述用于根据所述无线电脉冲信号,确定与所述移动终端之间的方位信息;
    信号收发器,连接所述处理器,用于根据与所述移动终端之间的方位信息,向所述智能设备发送对应的控制指令,以对所述智能设备进行控制;
    其中,所述电子标签设置于所述智能设备的预设范围内。
  35. 一种智能设备,其特征在于,包括:
    电子芯片,用于发出无线电脉冲信号,以使得移动终端实时感应所述电子芯片发出的无线电脉冲信号,根据所述无线电脉冲信号,确定所述移动终端与所述电子芯片之间的方位信息,并根据所述移动终端与所述电子芯片之间的方位信息,向智能设备发送对应的控制指令;
    处理器,连接所述电子芯片,用于接收所述移动终端发送的控制指令,以对所述智能设备进行控制。
  36. 一种移动终端,其特征在于,所述移动终端包括电子芯片、处理器以及与所述处理器连接的存储器,
    所述电子芯片用于发出无线电脉冲信号,所述存储器用于存储程序数据,所述处理器用于执行所述程序数据以实现如权利要求1-19任一项所述的方法。
  37. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有程序数据,所述程序数据在被处理器执行时,用以实现如权利要求1-19任一项所述的方法。
PCT/CN2021/115703 2020-10-29 2021-08-31 智能设备的控制方法、标签、设备、终端及存储介质 WO2022088935A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011186870.4 2020-10-29
CN202011186870.4A CN114430440B (zh) 2020-10-29 2020-10-29 智能设备的控制方法、电子标签、设备、终端及存储介质

Publications (1)

Publication Number Publication Date
WO2022088935A1 true WO2022088935A1 (zh) 2022-05-05

Family

ID=81308817

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/115703 WO2022088935A1 (zh) 2020-10-29 2021-08-31 智能设备的控制方法、标签、设备、终端及存储介质

Country Status (2)

Country Link
CN (1) CN114430440B (zh)
WO (1) WO2022088935A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114979792A (zh) * 2022-05-24 2022-08-30 深圳市酷开网络科技股份有限公司 显示设备的控制方法、装置、电子设备及可读存储介质
CN115866798A (zh) * 2022-11-28 2023-03-28 惠州市乐亿通科技有限公司 储能电池无线配对监测方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116112602A (zh) * 2022-11-30 2023-05-12 武汉路特斯汽车有限公司 一种交互控制方法、系统和存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN206790756U (zh) * 2017-06-08 2017-12-22 黄石安达业智能科技有限公司 一种基于Zigbee通信技术的远程控制智能照明系统
CN109383451A (zh) * 2017-08-09 2019-02-26 丰田自动车株式会社 车辆功能控制装置及车辆功能控制系统
CN109547301A (zh) * 2018-11-14 2019-03-29 三星电子(中国)研发中心 一种用于电子设备的自动控制方法、装置及设备
WO2020069311A1 (en) * 2018-09-28 2020-04-02 Apple Inc. Ranging between mobile devices
CN111212182A (zh) * 2019-12-01 2020-05-29 深圳市纽瑞芯科技有限公司 用嵌uwb模块的手机直接遥控uwb设备的方法及装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102799923A (zh) * 2012-07-17 2012-11-28 合肥工大高科信息科技股份有限公司 具备显示与报警功能的矿用人员电子标签及其信号处理方法
CN104777750A (zh) * 2015-03-18 2015-07-15 四川长虹电器股份有限公司 基于蓝牙的智能家居控制系统
US20170123045A1 (en) * 2015-10-29 2017-05-04 Industrial Bank Of Korea Mobile apparatus for measuring relative location based on uwb and method thereof
CN107492238A (zh) * 2017-06-19 2017-12-19 中国科学院光电研究院 一种寻找物品系统及其方法
CN107749972A (zh) * 2017-11-03 2018-03-02 杭州檀木科技有限公司 通过rfid电子标签自动触发定向监控的方法及设备
CN107959925A (zh) * 2017-11-24 2018-04-24 安徽省雨龙家具有限公司 一种智能家居设备辅助定位方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN206790756U (zh) * 2017-06-08 2017-12-22 黄石安达业智能科技有限公司 一种基于Zigbee通信技术的远程控制智能照明系统
CN109383451A (zh) * 2017-08-09 2019-02-26 丰田自动车株式会社 车辆功能控制装置及车辆功能控制系统
WO2020069311A1 (en) * 2018-09-28 2020-04-02 Apple Inc. Ranging between mobile devices
CN109547301A (zh) * 2018-11-14 2019-03-29 三星电子(中国)研发中心 一种用于电子设备的自动控制方法、装置及设备
CN111212182A (zh) * 2019-12-01 2020-05-29 深圳市纽瑞芯科技有限公司 用嵌uwb模块的手机直接遥控uwb设备的方法及装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114979792A (zh) * 2022-05-24 2022-08-30 深圳市酷开网络科技股份有限公司 显示设备的控制方法、装置、电子设备及可读存储介质
CN114979792B (zh) * 2022-05-24 2024-05-07 深圳市酷开网络科技股份有限公司 显示设备的控制方法、装置、电子设备及可读存储介质
CN115866798A (zh) * 2022-11-28 2023-03-28 惠州市乐亿通科技有限公司 储能电池无线配对监测方法

Also Published As

Publication number Publication date
CN114430440A (zh) 2022-05-03
CN114430440B (zh) 2023-03-21

Similar Documents

Publication Publication Date Title
WO2022088935A1 (zh) 智能设备的控制方法、标签、设备、终端及存储介质
US11425767B2 (en) Controlling electronic devices based on wireless ranging
AU2021269359B2 (en) Display method and apparatus
EP3761676B1 (en) Broadcasting a device state in a wireless communication network
EP2858391B1 (en) Method and device for broadcasting of BLE packets, and method and device for adjusting operation mode of an application processor based on the received BLE packets
WO2020140935A1 (zh) 信息上报方法及终端
EP2802124B1 (en) Method and system for file transfer, and main control device
US9860297B2 (en) Method, apparatus, and computer program product for media selection for moving user
WO2019000411A1 (zh) 一种无线通信连接建立的方法及设备
US20200412862A1 (en) Electronic device and method for connection to external device
US20240298140A1 (en) Techniques for changing frequency of ranging based on location of mobile device
US11792868B2 (en) Proximity-based connection for Bluetooth devices
CN111651030B (zh) 传感器检测方法、装置、存储介质及移动终端
US10262648B2 (en) Method for controlling interference in audio service and terminal
WO2022206751A1 (zh) 一种输入设备复用的跨设备协同方法及电子设备
EP2712243B1 (en) Method and apparatus of setting data transmission and reception period
US20240187832A1 (en) Proximity-based connection for bluetooth devices
CN111149313B (zh) 一种数据传输方法及设备
CN113253826A (zh) 一种控制方法、装置、终端以及存储介质
WO2020038157A1 (zh) 基于nan智能管理方法及相关产品
EP3136744B1 (en) Device control method and apparatus in home network system
CN111642007A (zh) 一种终端设备同步接入网络的方法、系统及终端设备
WO2019166004A1 (zh) 智能终端及其文件管理方法、具有存储功能的装置
WO2022151832A1 (zh) IoT设备的控制方法、装置、UWB标签及终端设备
US20240064039A1 (en) Facilitating smart device control using positioning tags

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21884667

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21884667

Country of ref document: EP

Kind code of ref document: A1