WO2022088473A1 - 一种实现电压均衡的绝缘检测电路 - Google Patents

一种实现电压均衡的绝缘检测电路 Download PDF

Info

Publication number
WO2022088473A1
WO2022088473A1 PCT/CN2020/140696 CN2020140696W WO2022088473A1 WO 2022088473 A1 WO2022088473 A1 WO 2022088473A1 CN 2020140696 W CN2020140696 W CN 2020140696W WO 2022088473 A1 WO2022088473 A1 WO 2022088473A1
Authority
WO
WIPO (PCT)
Prior art keywords
resistor
bus
amplifier
voltage
circuit
Prior art date
Application number
PCT/CN2020/140696
Other languages
English (en)
French (fr)
Inventor
刘蕾
杨辉
张�林
郭燕齐
Original Assignee
一巨自动化装备(上海)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 一巨自动化装备(上海)有限公司 filed Critical 一巨自动化装备(上海)有限公司
Priority to US17/699,423 priority Critical patent/US11796578B2/en
Publication of WO2022088473A1 publication Critical patent/WO2022088473A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
    • G01R27/025Measuring very high resistances, e.g. isolation resistances, i.e. megohm-meters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/52Testing for short-circuits, leakage current or ground faults
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/005Testing of electric installations on transport means
    • G01R31/006Testing of electric installations on transport means on road vehicles, e.g. automobiles or trucks
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/12Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing
    • G01R31/14Circuits therefor, e.g. for generating test voltages, sensing circuits
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]

Definitions

  • the invention belongs to the technical field of power batteries, and relates to an insulation detection circuit for realizing voltage balance.
  • the commonly used insulation detection methods at this stage are the high-voltage signal injection method, which is based on the international standard IOS16750 and the insulation detection method of the national standard GB-T18488.
  • IOS16750 the insulation detection method of the national standard GB-T18488.
  • a large insulation resistance is required, and in order to ensure the accuracy of the detection process, it is necessary to ensure that the input voltage of the MCU chip is within the detectable range.
  • the current voltage-balanced insulation detection circuit scheme uses the insulation resistance and the voltage divider resistance in series, and uses the switch on and off many times to obtain the relationship between the two insulation resistances.
  • the sampling resistance is used to transmit the sampling signal to the MCU for Voltage detection to achieve insulation detection function. With this solution, it is required to choose a smaller insulation resistance, and there is a risk of not meeting the national or international standards for insulation testing.
  • the switch is controlled many times to determine the relationship between the insulation resistance, and the detection period is long; and the insulation resistance value between the positive and negative of the bus has no specific requirements, so the bus voltage cannot be balanced.
  • an insulation detection circuit that realizes voltage balance, reasonably utilize the existing resources of MCU, design an insulation detection circuit for voltage balance, and use the positive and negative electrodes of the bus to be connected to a common ground through a resistor of the same resistance to realize the bus voltage. balanced.
  • an insulation detection circuit for realizing voltage balance including: a busbar battery, a busbar positive voltage divider circuit, a busbar negative voltage divider circuit, a differential amplifier circuit and an MCU module;
  • the busbar battery is respectively connected to the busbar positive voltage divider circuit and the busbar negative voltage divider circuit, and the busbar positive voltage divider circuit and the busbar negative voltage divider circuit are respectively connected to the differential amplifier circuit , the differential amplifier circuit is connected to the MCU module;
  • the bus battery is used to supply power to each module
  • the busbar positive voltage divider circuit is used to convert the busbar positive voltage from a high voltage to a low voltage detectable state
  • the busbar negative voltage divider circuit is used to convert the busbar negative voltage from a high voltage to a low voltage detectable state
  • the differential amplifying circuit is used for sampling and amplifying the voltage-divided signal and transmitting it to the MCU module;
  • the MCU module is used to realize the insulation detection of the bus bar.
  • the busbar battery includes a battery, a first capacitor and a second capacitor
  • the busbar positive voltage divider circuit includes a first resistor and a second resistor
  • the busbar negative voltage includes a third resistor and a fourth resistor
  • the differential amplifier circuit includes a first amplifier, a second amplifier, a fifth resistor, a sixth resistor, a seventh resistor, an eighth resistor, a ninth resistor, a tenth resistor, Eleventh resistor
  • the MCU module includes an MCU processing chip
  • the resistance value of the first resistor is the same as that of the third resistor; the resistance value of the second resistor is smaller than the resistance value of the first resistor, and the resistance value of the fourth resistor is smaller than the resistance value of the third resistor;
  • the positive electrode of the battery is respectively connected to the first end of the first capacitor and the first end of the first resistor
  • the negative electrode of the battery is respectively connected to the first end of the second capacitor and the third resistor
  • the second end of the first capacitor is connected to the second end of the second capacitor, the first end of the second resistor, the first end of the fourth resistor, the first end of the The first end of the fifth resistor, the first end of the tenth resistor, and the first end of the eleventh resistor are connected and grounded, and the second end of the first resistor is respectively connected to the second end of the second resistor,
  • the first end of the seventh resistor is connected, the second end of the seventh resistor is connected to the non-inverting input end of the first amplifier, and the second end of the fifth resistor is respectively connected to the inverting end of the first amplifier.
  • the phase input end is connected to the first end of the sixth resistor, and the second end of the sixth resistor is connected to the output end of the first amplifier and the first ADC port of the MCU processing chip, respectively.
  • the second end of the three resistors are respectively connected to the second end of the fourth resistor and the first end of the ninth resistor, and the second end of the ninth resistor is respectively connected to the non-inverting input end of the second amplifier,
  • the first end of the eighth resistor is connected to the +2.5V power supply
  • the second end of the tenth resistor is connected to the inverting input end of the second amplifier, so
  • the second end of the eleventh resistor is respectively connected to the output end of the second amplifier and the second ADC port of the MCU processing chip.
  • the amplification factor of the first amplifier and the second amplifier is passed through the fifth resistor, the sixth resistor, the seventh resistor, and the eighth resistor.
  • the resistance, the ninth resistance, the tenth resistance, and the eleventh resistance are adjusted.
  • the amplification factors of the first amplifier and the second amplifier are the same or different, so that the positive and negative pressure sampling signals are differentially amplified at 0 to 0 of the MCU processing chip. 5V detectable range.
  • an insulation detection circuit that realizes voltage balance is designed, and the positive and negative electrodes of the bus are connected to the common ground through the same resistance value to realize the bus voltage balance; by increasing the resistance value of the insulation resistance, the effective The insulation performance of the circuit is guaranteed, and the proportional amplification resistance is added to the comparator, so that the voltage of the insulation detection signal is within the detection range of the MCU chip, which ensures the detection accuracy.
  • the real-time detection method is adopted to ensure the real-time safety and effectiveness of the system.
  • Fig. 1 is a structural block diagram of an insulation detection circuit for realizing voltage equalization provided by the present application
  • FIG. 2 is a circuit schematic diagram of an insulation detection circuit for realizing voltage equalization provided by the present application.
  • Embodiment provides an insulation detection circuit for realizing voltage equalization.
  • the insulation detection circuit includes: a bus battery 1 , a bus positive voltage divider circuit 2 , and a bus negative voltage divider circuit 3 . , differential amplifier circuit 4 and MCU module 5.
  • the bus battery 1 is respectively connected to the bus positive voltage divider circuit 2 and the bus negative voltage divider circuit 3, the bus positive voltage divider circuit 2 and the bus negative voltage divider circuit 3 are respectively connected to the differential amplifier circuit 4, and the differential amplifier circuit 4 is
  • the MCU module 5 is connected; the bus battery 1 is used to supply power to each module; the bus positive voltage divider circuit 2 is used to convert the positive voltage of the bus from a high voltage to a low voltage detectable state; the bus negative voltage divider circuit 3 is used to convert the negative voltage of the bus. The voltage is converted from a high voltage to a low voltage detectable state; the differential amplifier circuit 4 is used to sample the divided voltage signal and transmit it to the MCU module 5 after amplification; the MCU module 5 is used to realize the insulation detection of the busbar.
  • the low-voltage detectable state in the 5V system is 0-5V
  • the low-voltage detectable state in the 3.3V system is 0-3.3V.
  • the bus battery 1 includes a battery Ug, a first capacitor Cp and a second capacitor Cn
  • the bus positive voltage divider circuit 2 includes a first resistor Ra and a second resistor ra
  • the bus negative voltage divider circuit 3 includes a first resistor Ra and a second resistor ra.
  • the differential amplifier circuit 4 includes a first amplifier OPA1, a second amplifier OPA2, a fifth resistor r1, a sixth resistor r2, a seventh resistor r3, an eighth resistor r4, a ninth resistor r5, Ten resistors r6 and eleventh resistors r7;
  • the MCU module 5 includes an MCU processing chip.
  • the resistance value of the first resistor Ra is the same as that of the third resistor Rb; the resistance value of the second resistor ra is much smaller than that of the first resistor Ra, and the resistance value of the fourth resistor rb is much smaller than that of the third resistor Rb.
  • it is ensured that the insulation resistance between the positive and negative poles is equal (that is, Ra Rb), and the resistance value of the sampling resistance is small relative to the insulation resistance (ra ⁇ rb ⁇ Ra).
  • a resistor of (Ra+ra ⁇ Rb+rb) is connected to a common ground to achieve bus voltage equalization.
  • the positive electrode of the battery Ug is respectively connected to the first end of the first capacitor Cp and the first end of the first resistor Ra, and the negative electrode of the battery Ug is respectively connected to the first end of the second capacitor Cn and the first end of the third resistor Rb,
  • the second end of the first capacitor Cp is respectively connected with the second end of the second capacitor Cn, the first end of the second resistor ra, the first end of the fourth resistor rb, the first end of the fifth resistor r1, and the tenth resistor r6.
  • the first end of r7 and the first end of the eleventh resistor r7 are connected and grounded, the second end of the first resistor Ra is respectively connected to the second end of the second resistor ra and the first end of the seventh resistor r3, and the seventh resistor
  • the second end of r3 is connected to the non-inverting input end of the first amplifier OPA1
  • the second end of the fifth resistor r1 is respectively connected to the inverting input end of the first amplifier OPA1 and the first end of the sixth resistor r2
  • the second end of the Rb is respectively connected to the output end of the first amplifier OPA1 and the first ADC port of the MCU processing chip
  • the second end of the third resistor Rb is respectively connected to the second end of the fourth resistor rb and the first end of the ninth resistor r5
  • the second end of the ninth resistor r5 is connected to the non-inverting input end of the second amplifier OPA2 and the first end of the
  • sampling resistors r3 and r5 to detect the voltages of the voltage dividing resistors ra and rb, and use the differential amplification method of the amplifier to ensure that the positive and negative pressure sampling signals are within the detectable range (0 ⁇ 5V) of the MCU after differential amplification, so as to achieve insulation. detection function.
  • the amplification factors of the first amplifier OPA1 and the second amplifier OPA2 pass through the fifth resistor r1, the sixth resistor r2, the seventh resistor r3, the eighth resistor r4, the ninth resistor r5, the tenth resistor r6, the eleventh resistor Resistor r7 is adjusted.
  • the amplification factors of the first amplifier OPA1 and the second amplifier OPA2 are the same or different, so that the positive and negative pressure sampling signals are within the 0-5V detectable range of the MCU processing chip after differential amplification.
  • the models of the first amplifier OPA1 and the second amplifier OPA2 can be the same, and the magnification can be adjusted independently, which can be the same or different.
  • insulation resistance can also be increased, and a comparator can be added to differentially amplify the sampling signal to achieve insulation detection.
  • the insulation detection circuit for realizing voltage equalization provided by the present application is designed to realize the insulation detection circuit for voltage equalization by rationally utilizing the existing resources of MCU, and the positive and negative electrodes of the bus are connected to the same resistance value through a resistor of the same resistance value.
  • the bus voltage is balanced; by increasing the resistance value of the insulation resistance, the insulation performance of the circuit is effectively guaranteed, and at the same time, the proportional amplification resistance is added to the comparator, so that the voltage of the insulation detection signal is within the detection range of the MCU chip, and the detection accuracy is guaranteed.
  • real-time detection is adopted to ensure the real-time security and effectiveness of the system.
  • first and second are used for descriptive purposes only, and should not be understood as indicating or implying relative importance or implying the indicated number of technical features. Thus, a feature defined as “first”, “second” may expressly or implicitly include one or more of that feature. In the description of this application, unless stated otherwise, “plurality” means two or more.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Measurement Of Current Or Voltage (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

一种实现电压均衡的绝缘检测电路,包括母线电池、母线正压分压电路、母线负压分压电路、差分放大电路、MCU模块;母线电池分别与母线正负压分压电路连接,母线正压分压电路和母线负压分压电路分别连接到差分放大电路,差分放大电路与MCU模块连接;母线电池给各个模块供电;母线正压分压电路将母线正的电压由高压转换为低压可检测状态;母线负压分压电路将母线负的电压由高压转换为低压可检测状态;差分放大电路实现对分压信号的采样以及放大后传输至MCU模块;MCU模块实现对母线的绝缘检测。实现母线电压均衡,保证了电路的绝缘性能,保证了检测精度,同时采用实时检测的方式,保证系统的实时安全有效。

Description

一种实现电压均衡的绝缘检测电路 技术领域
本发明属于动力电池技术领域,涉及一种实现电压均衡的绝缘检测电路。
背景技术
由于新能源汽车的快速发展,对汽车电子的性能要求越来越高,尤其是电机对控制器的安全保护策略越来越严格。新能源汽车实时的装载一个高压大电池,由于具有高压的存在,就会涉及高压绝缘问题。母线正极或者母线负极通过绝缘层对整车地构成电流回路,当绝缘性能下降时,漏电流就会增大,当漏电流达到一定值时,就会对人身安全和整车的电气系统的运行造成危害。现阶段常用的绝缘检测方法有高压信号注入法,基于国际标准IOS16750以及国标GB-T18488的绝缘检测方法。为了减小漏电流的产生,需要较大的绝缘电阻,以及为了保证检测过程的准确性,需保证MCU芯片的输入电压处于可检测范围内。
目前电压均衡的绝缘检测电路方案,通过绝缘电阻与分压电阻串联,多次利用开关的开通和关断,得到两个绝缘电阻之间的关系式,利用采样电阻将采样信号传输给MCU,进行电压检测,实现绝缘检测功能。采用这种方案,要求选择较小的绝缘电阻,有不满足国标或国际标准绝缘检测的风险。方案中多次控制开关,确定绝缘电阻之间的关系式,检测周期较长;且母线正负之间的绝缘电阻阻值没有确定要求,无法实现母线电压均衡。
发明内容
提供一种实现电压均衡的绝缘检测电路,合理利用MCU现有的资源, 设计实现电压均衡的绝缘检测电路,利用母线正负极之间通过相同阻值的电阻连接到共同的地,实现母线电压均衡。
一方面,提供了一种实现电压均衡的绝缘检测电路,包括:母线电池、母线正压分压电路、母线负压分压电路、差分放大电路和MCU模块;
所述母线电池分别与所述母线正压分压电路和所述母线负压分压电路连接,所述母线正压分压电路和所述母线负压分压电路分别连接到所述差分放大电路,所述差分放大电路与所述MCU模块连接;
所述母线电池用于给各个模块供电;
所述母线正压分压电路用于将母线正的电压由高压转换为低压可检测状态;
所述母线负压分压电路用于将母线负的电压由高压转换为低压可检测状态;
所述差分放大电路用于实现对分压信号的采样以及放大后传输至所述MCU模块;
所述MCU模块用于实现对母线的绝缘检测。
如上述方案的任一可能实现方式,进一步地,所述母线电池包括电池、第一电容和第二电容,所述母线正压分压电路包括第一电阻和第二电阻,所述母线负压分压电路包括第三电阻和第四电阻,所述差分放大电路包括第一放大器、第二放大器、第五电阻、第六电阻、第七电阻、第八电阻、第九电阻、第十电阻、第十一电阻;所述MCU模块包括MCU处理芯片;
所述第一电阻与第三电阻的阻值相同;所述第二电阻的阻值小于所述第一电阻的阻值,所述第四电阻的阻值小于所述第三电阻的阻值;
所述电池的正极分别与所述第一电容的第一端、所述第一电阻的第一端连接,所述电池的负极分别与所述第二电容的第一端、所述第三电阻的第一端连接,所述第一电容的第二端分别与所述第二电容的第二端、所述第二电 阻的第一端、所述第四电阻的第一端、所述第五电阻的第一端、所述第十电阻的第一端、所述第十一电阻的第一端连接以及接地,所述第一电阻的第二端分别与第二电阻的第二端、所述第七电阻的第一端连接,所述第七电阻的第二端连接到所述第一放大器的同相输入端,所述第五电阻的第二端分别与所述第一放大器的反相输入端、所述第六电阻的第一端连接,所述第六电阻的第二端分别连接到所述第一放大器的输出端和所述MCU处理芯片的第一ADC口,所述第三电阻的第二端分别与所述第四电阻的第二端、所述第九电阻的第一端连接,所述第九电阻的第二端分别与所述第二放大器的同相输入端、所述第八电阻的第一端连接,所述第八电阻的第二端连接到+2.5V电源,所述第十电阻的第二端连接到所述第二放大器的反相输入端,所述第十一电阻的第二端分别连接到所述第二放大器的输出端和所述MCU处理芯片的第二ADC口。
如上述方案的任一可能实现方式,进一步地,所述第一放大器和所述第二放大器的放大倍数通过所述第五电阻、所述第六电阻、所述第七电阻、所述第八电阻、所述第九电阻、所述第十电阻、所述第十一电阻进行调节。
如上述方案的任一可能实现方式,进一步地,所述第一放大器和所述第二放大器的放大倍数相同或不同,使得正负压采样信号通过差分放大后处于所述MCU处理芯片的0~5V可检测范围内。
通过合理利用MCU现有的资源,设计实现电压均衡的绝缘检测电路,利用母线正负极之间通过相同阻值的电阻连接到共同的地,实现母线电压均衡;通过增加绝缘电阻阻值,有效保证了电路的绝缘性能,同时在比较器增加比例放大电阻,使绝缘检测信号电压处于MCU芯片检测范围内,保证了检测精度,同时采用实时检测的方式,保证系统的实时安全有效。
附图说明
下面结合附图及实施例作进一步描述:
图1是本申请提供的一种实现电压均衡的绝缘检测电路的结构框图;
图2是本申请提供的一种实现电压均衡的绝缘检测电路的电路原理图。
具体实施方式
实施例:本申请提供了一种实现电压均衡的绝缘检测电路,结合参考图1和图2,该绝缘检测电路包括:母线电池1、母线正压分压电路2、母线负压分压电路3、差分放大电路4和MCU模块5。
母线电池1分别与母线正压分压电路2和母线负压分压电路3连接,母线正压分压电路2和母线负压分压电路3分别连接到差分放大电路4,差分放大电路4与MCU模块5连接;母线电池1用于给各个模块供电;母线正压分压电路2用于将母线正的电压由高压转换为低压可检测状态;母线负压分压电路3用于将母线负的电压由高压转换为低压可检测状态;差分放大电路4用于实现对分压信号的采样以及放大后传输至MCU模块5;MCU模块5用于实现对母线的绝缘检测。
示例性的,关于低压可检测状态,5V系统时的低压可检测状态为0~5V,3.3V系统时的低压可检测状态为0~3.3V。
如图2所示,母线电池1包括电池Ug、第一电容Cp和第二电容Cn,母线正压分压电路2包括第一电阻Ra和第二电阻ra,母线负压分压电路3包括第三电阻Rb和第四电阻rb,差分放大电路4包括第一放大器OPA1、第二放大器OPA2、第五电阻r1、第六电阻r2、第七电阻r3、第八电阻r4、第九电阻r5、第十电阻r6、第十一电阻r7;MCU模块5包括MCU处理芯片。
第一电阻Ra与第三电阻Rb的阻值相同;第二电阻ra的阻值远小于第一电阻Ra的阻值,第四电阻rb的阻值远小于第三电阻Rb的阻值。本申请中保证正负极之间的绝缘电阻相等(即Ra=Rb),采样电阻相对于绝缘电阻阻值很小(ra≈rb<<Ra),利用母线正负极之间通过相同阻值(Ra+ra≈Rb+rb) 的电阻连接到共同的地,实现母线电压均衡。
电池Ug的正极分别与第一电容Cp的第一端、第一电阻Ra的第一端连接,电池Ug的负极分别与第二电容Cn的第一端、第三电阻Rb的第一端连接,第一电容Cp的第二端分别与第二电容Cn的第二端、第二电阻ra的第一端、第四电阻rb的第一端、第五电阻r1的第一端、第十电阻r6的第一端、第十一电阻r7的第一端连接以及接地,第一电阻Ra的第二端分别与第二电阻ra的第二端、第七电阻r3的第一端连接,第七电阻r3的第二端连接到第一放大器OPA1的同相输入端,第五电阻r1的第二端分别与第一放大器OPA1的反相输入端、第六电阻r2的第一端连接,第六电阻r2的第二端分别连接到第一放大器OPA1的输出端和MCU处理芯片的第一ADC口,第三电阻Rb的第二端分别与第四电阻rb的第二端、第九电阻r5的第一端连接,第九电阻r5的第二端分别与第二放大器OPA2的同相输入端、第八电阻r4的第一端连接,第八电阻r4的第二端连接到+2.5V电源,第十电阻r6的第二端连接到第二放大器OPA2的反相输入端,第十一电阻r7的第二端分别连接到第二放大器OPA2的输出端和MCU处理芯片的第二ADC口。
利用采样电阻r3和r5,检测分压电阻ra和rb的电压,采用放大器差分放大的方式,保证正负压采样信号通过差分放大后,均处于MCU的可检测范围(0~5V),实现绝缘检测功能。
可选的,第一放大器OPA1和第二放大器OPA2的放大倍数通过第五电阻r1、第六电阻r2、第七电阻r3、第八电阻r4、第九电阻r5、第十电阻r6、第十一电阻r7进行调节。
可选的,第一放大器OPA1和第二放大器OPA2的放大倍数相同或不同,使得正负压采样信号通过差分放大后处于MCU处理芯片的0~5V可检测范围内。
第一放大器OPA1和第二放大器OPA2的型号可以是相同的,放大倍数 单独调节,可以相同,也可以不同。
在实际应用中,还可以增加绝缘电阻、增加比较器对采样信号进行差分放大实现绝缘检测。
综上所述,本申请提供的实现电压均衡的绝缘检测电路,通过合理利用MCU现有的资源,设计实现电压均衡的绝缘检测电路,利用母线正负极之间通过相同阻值的电阻连接到共同的地,实现母线电压均衡;通过增加绝缘电阻阻值,有效保证了电路的绝缘性能,同时在比较器增加比例放大电阻,使绝缘检测信号电压处于MCU芯片检测范围内,保证了检测精度,同时采用实时检测的方式,保证系统的实时安全有效。
术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或隐含所指示的技术特征的数量。由此,限定的“第一”、“第二”的特征可以明示或隐含地包括一个或者更多个该特征。在本申请的描述中,除非另有说明,“多个”的含义是两个或者两个以上。
上述本申请实施例序号仅仅为了描述,不代表实施例的优劣。
以上所述仅为本申请的较佳实施例,并不用以限制本申请,凡在本申请的精神和原则之内所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (4)

  1. 一种实现电压均衡的绝缘检测电路,其特征在于,包括:母线电池(1)、母线正压分压电路(2)、母线负压分压电路(3)、差分放大电路(4)和MCU模块(5);
    所述母线电池(1)分别与所述母线正压分压电路(2)和所述母线负压分压电路(3)连接,所述母线正压分压电路(2)和所述母线负压分压电路(3)分别连接到所述差分放大电路(4),所述差分放大电路(4)与所述MCU模块(5)连接;
    所述母线电池(1)用于给各个模块供电;
    所述母线正压分压电路(2)用于将母线正的电压由高压转换为低压可检测状态;
    所述母线负压分压电路(3)用于将母线负的电压由高压转换为低压可检测状态;
    所述差分放大电路(4)用于实现对分压信号的采样以及放大后传输至所述MCU模块(5);
    所述MCU模块(5)用于实现对母线的绝缘检测。
  2. 根据权利要求1所述的实现电压均衡的绝缘检测电路,其特征在于,所述母线电池(1)包括电池(Ug)、第一电容(Cp)和第二电容(Cn),所述母线正压分压电路(2)包括第一电阻(Ra)和第二电阻(ra),所述母线负压分压电路(3)包括第三电阻(Rb)和第四电阻(rb),所述差分放大电路(4)包括第一放大器(OPA1)、第二放大器(OPA2)、第五电阻(r1)、第六电阻(r2)、第七电阻(r3)、第八电阻(r4)、第九电阻(r5)、第十电阻(r6)和第十一电阻(r7);所述MCU模块(5)包括MCU处理芯片;
    所述第一电阻(Ra)与第三电阻(Rb)的阻值相同;所述第二电阻(ra)的阻值小于所述第一电阻(Ra)的阻值,所述第四电阻(rb)的阻值小于所述第三电阻(Rb)的阻值;
    所述电池(Ug)的正极分别与所述第一电容(Cp)的第一端、所述第一电阻(Ra)的第一端连接,所述电池(Ug)的负极分别与所述第二电容(Cn)的第一端、所述第三电阻(Rb)的第一端连接,所述第一电容(Cp)的第二端分别与所述第二电容(Cn)的第二端、所述第二电阻(ra)的第一端、所述第四电阻(rb)的第一端、所述第五电阻(r1)的第一端、所述第十电阻(r6)的第一端、所述第十一电阻(r7)的第一端连接以及接地,所述第一电阻(Ra)的第二端分别与第二电阻(ra)的第二端、所述第七电阻(r3)的第一端连接,所述第七电阻(r3)的第二端连接到所述第一放大器(OPA1)的同相输入端,所述第五电阻(r1)的第二端分别与所述第一放大器(OPA1)的反相输入端、所述第六电阻(r2)的第一端连接,所述第六电阻(r2)的第二端分别连接到所述第一放大器(OPA1)的输出端和所述MCU处理芯片的第一ADC口,所述第三电阻(Rb)的第二端分别与所述第四电阻(rb)的第二端、所述第九电阻(r5)的第一端连接,所述第九电阻(r5)的第二端分别与所述第二放大器(OPA2)的同相输入端、所述第八电阻(r4)的第一端连接,所述第八电阻(r4)的第二端连接到+2.5V电源,所述第十电阻(r6)的第二端连接到所述第二放大器(OPA2)的反相输入端,所述第十一电阻(r7)的第二端分别连接到所述第二放大器(OPA2)的输出端和所述MCU处理芯片的第二ADC口。
  3. 根据权利要求2所述的实现电压均衡的绝缘检测电路,其特征在于,所述第一放大器(OPA1)和所述第二放大器(OPA2)的放大倍数通过所述第五电阻(r1)、所述第六电阻(r2)、所述第七电阻(r3)、所述第八电阻(r4)、所述第九电阻(r5)、所述第十电阻(r6)和所述第十一电阻(r7) 进行调节。
  4. 根据权利要求3所述的实现电压均衡的绝缘检测电路,其特征在于,所述第一放大器(OPA1)和所述第二放大器(OPA2)的放大倍数相同或不同,使得正负压采样信号通过差分放大后处于所述MCU处理芯片的0~5V可检测范围内。
PCT/CN2020/140696 2020-10-28 2020-12-29 一种实现电压均衡的绝缘检测电路 WO2022088473A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/699,423 US11796578B2 (en) 2020-10-28 2022-03-21 Insulation detection circuit for voltage balance

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011167891.1 2020-10-28
CN202011167891.1A CN112345902A (zh) 2020-10-28 2020-10-28 一种实现电压均衡的绝缘检测电路

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/699,423 Continuation US11796578B2 (en) 2020-10-28 2022-03-21 Insulation detection circuit for voltage balance

Publications (1)

Publication Number Publication Date
WO2022088473A1 true WO2022088473A1 (zh) 2022-05-05

Family

ID=74359224

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/140696 WO2022088473A1 (zh) 2020-10-28 2020-12-29 一种实现电压均衡的绝缘检测电路

Country Status (3)

Country Link
US (1) US11796578B2 (zh)
CN (1) CN112345902A (zh)
WO (1) WO2022088473A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116125302A (zh) * 2023-04-04 2023-05-16 滨州市道王动力有限公司 一种沙滩车电池绝缘监测电路

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111856126A (zh) * 2020-07-24 2020-10-30 一巨自动化装备(上海)有限公司 一种基于高压mcu的高低压信号采样及传输系统
CN115009060B (zh) * 2022-06-30 2023-05-09 珠海英搏尔电气股份有限公司 一种绝缘检测电路、检测方法及车载充电机

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108614158A (zh) * 2018-06-15 2018-10-02 郑州轻工业学院 一种电动汽车绝缘电阻检测控制电路及其检测方法
CN109031061A (zh) * 2018-07-10 2018-12-18 安徽贵博新能科技有限公司 一种电动汽车动力电池组绝缘检测电路
US20190064279A1 (en) * 2017-08-29 2019-02-28 Contemporary Amperex Technology Co., Limited Insulation detection circuit, detection method, and battery management system
CN109720235A (zh) * 2018-12-29 2019-05-07 蜂巢能源科技有限公司 基于全桥绝缘检测电路的绝缘检测系统及电动汽车
CN110095651A (zh) * 2019-05-13 2019-08-06 奇瑞新能源汽车技术有限公司 一种动力电池在线绝缘电阻检测电路
CN111505380A (zh) * 2020-04-24 2020-08-07 东软睿驰汽车技术(沈阳)有限公司 一种车辆绝缘电阻的检测装置、系统与电动汽车

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9140759B2 (en) * 2013-11-12 2015-09-22 Ford Global Technologies, Llc Electric vehicle battery pack voltage monitoring
CN109212421A (zh) * 2018-09-29 2019-01-15 欣旺达惠州电动汽车电池有限公司 一种高压电池组系统总电压和绝缘电阻的检测方法
CN109633276B (zh) * 2018-12-28 2021-04-13 蜂巢能源科技有限公司 基于全桥绝缘检测电路的绝缘电阻检测方法和装置
CN109633240B (zh) * 2018-12-29 2020-12-01 蜂巢能源科技有限公司 动力电池包电压检测方法及装置
CN109738742A (zh) * 2018-12-29 2019-05-10 蜂巢能源科技有限公司 动力电池的电芯与壳体短路检测电路及方法
CN110967607A (zh) * 2019-01-15 2020-04-07 宁德时代新能源科技股份有限公司 绝缘检测电路、方法以及电池管理系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190064279A1 (en) * 2017-08-29 2019-02-28 Contemporary Amperex Technology Co., Limited Insulation detection circuit, detection method, and battery management system
CN108614158A (zh) * 2018-06-15 2018-10-02 郑州轻工业学院 一种电动汽车绝缘电阻检测控制电路及其检测方法
CN109031061A (zh) * 2018-07-10 2018-12-18 安徽贵博新能科技有限公司 一种电动汽车动力电池组绝缘检测电路
CN109720235A (zh) * 2018-12-29 2019-05-07 蜂巢能源科技有限公司 基于全桥绝缘检测电路的绝缘检测系统及电动汽车
CN110095651A (zh) * 2019-05-13 2019-08-06 奇瑞新能源汽车技术有限公司 一种动力电池在线绝缘电阻检测电路
CN111505380A (zh) * 2020-04-24 2020-08-07 东软睿驰汽车技术(沈阳)有限公司 一种车辆绝缘电阻的检测装置、系统与电动汽车

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116125302A (zh) * 2023-04-04 2023-05-16 滨州市道王动力有限公司 一种沙滩车电池绝缘监测电路

Also Published As

Publication number Publication date
US11796578B2 (en) 2023-10-24
US20220214388A1 (en) 2022-07-07
CN112345902A (zh) 2021-02-09

Similar Documents

Publication Publication Date Title
WO2022088473A1 (zh) 一种实现电压均衡的绝缘检测电路
CN102362185A (zh) 不受电池电压影响的绝缘电阻测量电路
JP2008064536A (ja) 組電池総電圧検出およびリーク検出装置
CN102540101A (zh) 电池组高压及绝缘电阻检测一体化装置
CN109444552B (zh) 一种火工品电阻测试装置和火工品电阻测试方法
CN112798975A (zh) 高压电池包的绝缘检测电路及检测方法
CN109633240A (zh) 动力电池包电压检测方法及装置
US20160146870A1 (en) Contactor health monitor circuit and method
CN104076254A (zh) 一种交流激励绝缘检测电路
US20150323571A1 (en) Current sensing system and method
CN207369299U (zh) 一种带诊断功能的幻象供电电路
CN111474399B (zh) 一种高压侧大电流精密取样转换电路
CN209014646U (zh) 直测式霍尔传感器的电流检测电路和电机控制器
CN110456141A (zh) 一种高边过流检测电路及其方法
WO2016078078A1 (zh) 一种电池启动电流测试的充电器系统
CN209043964U (zh) 电流传感器
CN103929061A (zh) 单电源可调恒流源
CN211878070U (zh) 测试模组
CN213581110U (zh) 一种新型直流高压测量装置
CN213240428U (zh) 一种智能型开关断路器测试装置
CN111106808B (zh) 隔离采样电路
CN207096432U (zh) 一种检测电能表带载能力的电路
CN218824477U (zh) 一种电池电压采样测量电路及测量装置
CN219997177U (zh) 电流采样电路、车辆以及用电设备
CN219456327U (zh) 一种带高隔离性能的直流输入电压采样电路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20959630

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20959630

Country of ref document: EP

Kind code of ref document: A1