WO2022088393A1 - 资源分配方法、终端及存储介质 - Google Patents

资源分配方法、终端及存储介质 Download PDF

Info

Publication number
WO2022088393A1
WO2022088393A1 PCT/CN2020/134358 CN2020134358W WO2022088393A1 WO 2022088393 A1 WO2022088393 A1 WO 2022088393A1 CN 2020134358 W CN2020134358 W CN 2020134358W WO 2022088393 A1 WO2022088393 A1 WO 2022088393A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency domain
domain position
time slot
resource
resources
Prior art date
Application number
PCT/CN2020/134358
Other languages
English (en)
French (fr)
Inventor
李志远
Original Assignee
Tcl通讯(宁波)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tcl通讯(宁波)有限公司 filed Critical Tcl通讯(宁波)有限公司
Priority to US18/250,987 priority Critical patent/US20230371035A1/en
Publication of WO2022088393A1 publication Critical patent/WO2022088393A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria

Definitions

  • the present application relates to the field of communication technologies, and in particular, to a resource allocation method, a terminal, and a storage medium.
  • PDSCH Physical Downlink Shared Channel, Physical Downlink Shared Channel
  • NR New Radio
  • the PDSCH uses the same time slot allocation for transmission.
  • the content transmitted in each time slot is the same, and the TB (Transport Block) of the PDSCH is redundant.
  • Redundancy Version (RV, Redundancy Version) changes cyclically.
  • PDSCH time slot aggregation in the prior art increases the reliability of PDSCH transmission under non-ideal conditions by repeatedly sending and cyclically changing the TB RV configuration.
  • PDSCH resources are allocated at the same position in the bandwidth for multiple consecutive time slots, and the multipath effect of the wireless environment brings about channel fading.
  • the frequency domain positions of PDSCH resources in multiple consecutive time slots are the same, which easily causes PDSCH to experience channel fading under the same conditions in the frequency domain, and reduces the probability of successful PDSCH demodulation by user equipment (UE) in an unsatisfactory channel environment.
  • UE user equipment
  • the embodiments of the present application provide a resource allocation method, a terminal, and a storage medium, which can reduce and improve the channel gain of the PDSCH, and improve the success rate of the terminal in demodulating the PDSCH in an unsatisfactory channel environment.
  • an embodiment of the present application provides a resource allocation method, including:
  • the PDSCH resource is allocated to the terminal according to the frequency domain position of the resource in each of the plurality of consecutive time slots.
  • the frequency-domain position offset strategy includes a frequency-domain position offset
  • the determining the second frequency domain position of the resource in the second time slot after the first time slot according to the first frequency domain position and the preset frequency domain position offset strategy specifically includes:
  • a second frequency domain position of the resource in the second time slot is determined according to the first frequency domain position and the frequency domain position offset.
  • the determining the frequency domain position offset of the resources in the second time slot relative to the resources in the first time slot according to the number of time slots specifically includes:
  • the frequency domain position offset of the resource in the second time slot relative to the resource in the first time slot is a preset offset
  • determining that the frequency domain position offset of the resource in the second time slot relative to the resource in the first time slot is two preset offsets
  • determining that the frequency domain position offsets of the resources in the second timeslot relative to the resources in the first timeslot are three preset offsets
  • the frequency domain position offset strategy further includes a frequency domain position offset direction
  • the determining the second frequency domain position of the resource in the second time slot according to the first frequency domain position and the frequency domain position offset specifically includes:
  • the direction of the frequency domain position offset is determined to be positive, and based on the first frequency domain position, the frequency domain position offset is shifted in a positive direction to obtain the The second frequency domain location of the resource in the second time slot.
  • the second frequency domain position is a frequency domain starting position of the resource in the second time slot
  • the method also includes:
  • the resources are allocated between the second frequency domain position and the bandwidth boundary part of the resources, and allocate the remaining resources in the remaining bandwidth.
  • the method further includes:
  • the first frequency domain location of the resource in the first time slot is sent to the terminal through the PDCCH.
  • an embodiment of the present application provides a resource allocation method, including:
  • the base station obtaining the first frequency domain position of the resource in the first time slot sent by the base station, where the first time slot is a time slot in a plurality of aggregated consecutive time slots;
  • the PDSCH resource allocated by the base station is determined according to the frequency domain position of the resource in each time slot of the plurality of consecutive time slots.
  • an embodiment of the present application further provides a resource allocation device, including:
  • a first frequency domain location determination module configured to determine, in the aggregated multiple consecutive time slots, a first frequency domain location of the resource in the first time slot;
  • a second frequency domain location determining module configured to determine a second frequency domain location of the resource in the second time slot after the first time slot according to the first frequency domain location and a preset frequency domain location offset strategy ;as well as,
  • an allocation module configured to allocate PDSCH resources to the terminal according to the frequency domain positions of the resources in each time slot of the plurality of consecutive time slots.
  • an embodiment of the present application further provides a resource allocation device, including:
  • an acquisition module configured to acquire a first frequency domain position of a resource in a first time slot sent by the base station, where the first time slot is a time slot in a plurality of aggregated consecutive time slots;
  • a frequency domain position determination module configured to determine a second frequency domain position of a resource in a second time slot after the first time slot according to the first frequency domain position and a preset frequency domain position offset strategy;
  • An allocated resource determining module configured to determine the PDSCH resource allocated by the base station according to the frequency domain position of the resource in each time slot of the plurality of consecutive time slots.
  • embodiments of the present application further provide a computer-readable storage medium, where a plurality of instructions are stored in the storage medium, and the instructions are suitable for being loaded by a processor to perform the following steps:
  • the PDSCH resource is allocated to the terminal according to the frequency domain position of the resource in each of the plurality of consecutive time slots.
  • the frequency-domain position offset strategy includes a frequency-domain position offset
  • a second frequency domain position of the resource in the second time slot is determined according to the first frequency domain position and the frequency domain position offset.
  • the processor is performing the determining, according to the number of time slots, a frequency domain position offset of the resources in the second time slot relative to the resources in the first time slot
  • determining that the frequency domain position offset of the resources in the second time slot relative to the resources in the first time slot is a preset offset
  • determining that the frequency domain position offset of the resource in the second time slot relative to the resource in the first time slot is two preset offsets
  • determining that the frequency domain position offsets of the resources in the second timeslot relative to the resources in the first timeslot are three preset offsets
  • the frequency domain position offset strategy further includes a frequency domain position offset direction
  • the processor determines the second frequency domain position of the resource in the second time slot according to the first frequency domain position and the frequency domain position offset, the processor specifically performs the following steps:
  • the direction of the frequency domain position offset is determined to be positive, and based on the first frequency domain position, the frequency domain position offset is shifted in a positive direction to obtain the The second frequency domain location of the resource in the second time slot.
  • the second frequency domain position is a frequency domain starting position of the resource in the second time slot
  • the processor also performs the following steps:
  • the resources are allocated between the second frequency domain position and the bandwidth boundary part of the resources, and allocate the remaining resources in the remaining bandwidth.
  • the processor further performs the following steps:
  • the first frequency domain location of the resource in the first time slot is sent to the terminal through the PDCCH.
  • the present application further provides a terminal, including a processor and a memory, the processor is electrically connected to the memory, the memory is used to store instructions and data, and the processor is used to perform the following steps:
  • the PDSCH resource is allocated to the terminal according to the frequency domain position of the resource in each of the plurality of consecutive time slots.
  • the frequency-domain position offset strategy includes a frequency-domain position offset
  • a second frequency domain position of the resource in the second time slot is determined according to the first frequency domain position and the frequency domain position offset.
  • the processor is performing the determining, according to the number of time slots, a frequency domain position offset of the resources in the second time slot relative to the resources in the first time slot
  • determining that the frequency domain position offset of the resources in the second time slot relative to the resources in the first time slot is a preset offset
  • determining that the frequency domain position offset of the resource in the second time slot relative to the resource in the first time slot is two preset offsets
  • determining that the frequency domain position offsets of the resources in the second timeslot relative to the resources in the first timeslot are three preset offsets
  • the frequency domain position offset strategy further includes a frequency domain position offset direction
  • the processor When the processor performs the determining of the second frequency domain position of the resource in the second time slot according to the first frequency domain position and the frequency domain position offset, the processor specifically performs the following steps:
  • the direction of the frequency domain position offset is determined to be positive, and based on the first frequency domain position, the frequency domain position offset is shifted in a positive direction to obtain the The second frequency domain location of the resource in the second time slot.
  • the second frequency domain position is a frequency domain starting position of the resource in the second time slot
  • the processor also performs the following steps:
  • the resources are allocated between the second frequency domain position and the bandwidth boundary part of the resources, and allocate the remaining resources in the remaining bandwidth.
  • the processor further performs the following steps:
  • the first frequency domain location of the resource in the first time slot is sent to the terminal through the PDCCH.
  • the resource allocation method, base station, terminal and storage medium provided by the present application can determine the first frequency domain position of the resource in the first time slot in the aggregated multiple consecutive time slots, and then according to the first frequency domain position and the preset
  • the frequency domain position offset strategy is to determine the second frequency domain position of the resource in the second time slot after the first time slot, so as to allocate PDSCH resources to the terminal according to the frequency domain position of the resources in each time slot, so that the PDSCH resources
  • the frequency domain positions in multiple consecutive time slots are spread out, which increases the channel gain of PDSCH, prevents PDSCH from experiencing channel fading under the same conditions in the frequency domain, and improves the success rate of terminal demodulation of PDSCH in an unsatisfactory channel environment.
  • FIG. 1 is a schematic flowchart of a resource allocation method provided by an embodiment of the present application.
  • FIG. 2 is a schematic diagram of allocation of frequency domain resources in a resource allocation method provided by an embodiment of the present application
  • FIG. 3 is a schematic diagram of resource allocation of multiple consecutive time slots in a resource allocation method provided by an embodiment of the present application
  • FIG. 4 is another schematic diagram of resource allocation of multiple consecutive time slots in the resource allocation method provided by the embodiment of the present application.
  • FIG. 5 is another schematic flowchart of a resource allocation method provided by an embodiment of the present application.
  • FIG. 6 is another schematic diagram of resource allocation of multiple consecutive time slots in the resource allocation method provided by the embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of a resource allocation apparatus provided by an embodiment of the present application.
  • FIG. 8 is another schematic flowchart of a resource allocation method provided by an embodiment of the present application.
  • FIG. 9 is another schematic structural diagram of a resource allocation apparatus provided by an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of a terminal provided by an embodiment of the present application.
  • FIG. 11 is another schematic structural diagram of a terminal provided by an embodiment of the present application.
  • a resource allocation method comprising: in a plurality of aggregated consecutive time slots, determining a first frequency domain position of a resource in a first time slot; according to the first frequency domain position and a preset frequency domain position an offset strategy, determining the second frequency domain position of the resource in the second time slot after the first time slot; according to the frequency domain position of the resource in each time slot of the plurality of consecutive time slots, allocate PDSCH to the terminal resource.
  • FIG. 1 is a schematic flowchart of a resource allocation method provided by an embodiment of the present application.
  • the resource allocation method is applied to a base station, and the specific process of the resource allocation method may be as follows:
  • PDSCH transmits data in a time slot aggregation transmission manner, that is, the base station allocates multiple consecutive time slots to the terminal to transmit the same data.
  • the time slot aggregation of PDSCH is configured by higher layer signaling, such as:
  • the multiple consecutive time slots aggregated in step 101 may be 2, 4 or 8 consecutive time slots.
  • the resource size of the RB (Resource Block, resource block) of the PDSCH does not change, that is, the resource size in each time slot is the same, and the time domain position of the PDSCH RB resource is the same, and the time domain
  • the resource can be specified by the Time domain resource assignment field of DCI 1_0 or DCI1_1 in the PDCCH channel, but the frequency domain positions of the PDSCH RB resources in multiple consecutive time slots are different.
  • the first time slot may be the first time slot in multiple consecutive time slots
  • the first frequency domain position may be the frequency domain starting position of the resource in the first time slot, using RB Start_first To represent.
  • the first frequency domain location may be specified by DCI 1_0 in the PDCCH channel or Frequency domain resource assignment in DCI 1_1.
  • the first frequency domain position can be determined in two ways:
  • P is the size of the RBG, specified by the protocol
  • N RBG is the total number of RBGs in the bandwidth.
  • Bit bits are arranged from low frequency to high frequency, so which RBG the low bit of the bitmap starts from, the first RB of the RBG is the first frequency domain position RB Start_first , as shown in FIG. 2 . It should be noted that the number of RBs in the RBG at the beginning of the Bit bit and the RBG at the end is not necessarily P.
  • the first frequency domain position RB Start_first can be calculated.
  • L RBs is the length of the scheduled PDSCH channel contiguous resources
  • RIV is the value of the field.
  • the frequency domain starting position of the subsequent time slot can be determined according to the preset frequency domain position offset strategy.
  • the first frequency domain position and a preset frequency domain position offset strategy determine a second frequency domain position of the resource in the second time slot after the first time slot.
  • the second time slot may be any time slot located after the first time slot among the multiple consecutive time slots, and the second frequency domain position may be the frequency domain starting position of the resource in the second time slot, Since the size of the resource in each time slot is fixed, the overall frequency domain position of the resource in the second time slot can be determined according to the frequency domain starting position of the resource in the second time slot and the fixed resource size.
  • the preset frequency domain position offset strategy may include a frequency domain position offset amount and a frequency domain position offset direction based on the first frequency domain position, that is, according to the ordering of the second time slot in multiple consecutive time slots, it may be Set the corresponding frequency domain position offset and frequency domain position offset direction, that is, in addition to the first time slot, other time slots in multiple consecutive time slots, frequency domain position offset amount and/or frequency domain position offset The directions are different.
  • the second frequency domain position of the resource in the second time slot after the first time slot is determined according to the first frequency domain position and a preset frequency domain position offset strategy, include:
  • a second frequency domain position of the resource in the second time slot is determined according to the first frequency domain position and the frequency domain position offset.
  • the first time slot may be the first time slot of a plurality of consecutive time slots, and according to the number of time slots spaced between the second time slot and the first time slot, it can be determined that the second time slot is Sorting in multiple consecutive time slots, for example, if the number of time slots spaced between the second time slot and the first time slot is 0, it indicates that the second time slot is the second time slot in the plurality of consecutive time slots If the number of time slots spaced between the second time slot and the first time slot is 1, it indicates that the second time slot is the third time slot in the multiple consecutive time slots.
  • the frequency domain position offset of the resources in the second time slot relative to the resources in the first time slot can be determined. The later the second time slot is arranged in the multiple consecutive time slots, the greater the frequency domain position offset of the resource in the second time slot, or the closer the second time slot is arranged in the multiple consecutive time slots After that, the frequency domain position offset of the resource in the second time slot is smaller.
  • the resource in the second time slot is determined
  • the frequency domain position offset relative to the resources in the first timeslot is a preset offset; if the number of timeslots is 2 or 3, that is, the second timeslot is one of multiple consecutive timeslots.
  • the frequency domain position offset of the resource in the second time slot relative to the resource in the first time slot is two preset offsets; if The number of timeslots is 4 or 5, that is, the second timeslot is the sixth timeslot or the seventh timeslot in multiple consecutive timeslots, then it is determined that the resources in the second timeslot are relative to all the timeslots.
  • the frequency domain position offsets of the resources in the first time slot are three preset offsets; if the number of time slots is 6, that is, the second time slot is the eighth time slot in the multiple consecutive time slots. slot, then determine that the frequency domain position offsets of the resources in the second time slot relative to the resources in the first time slot are four preset offsets.
  • the aggregated multiple consecutive time slots are generally 2, 4 or 8 time slots, the above only enumerates the case of a maximum of 8 time slots, if the aggregated multiple consecutive time slots can also include more time slots, Then you can continue to increase the preset offset on the basis of the above. For example, if the number of timeslots is 7 or 8, that is, the second timeslot is the ninth timeslot or the tenth timeslot among multiple consecutive timeslots, then it is determined that the resources in the second timeslot are relative to the first timeslot.
  • the frequency domain position offsets of the resources in the slot are five preset offsets and so on.
  • the frequency domain position offset directions may be different, for example, one timeslot
  • the frequency domain position of the resource in the time slot is shifted positively, and the frequency domain position of the resource in the other time slot is shifted negatively.
  • the positive offset refers to the offset toward the high frequency direction of the broadband
  • the negative offset refers to the offset toward the low frequency direction of the broadband.
  • the determining the second frequency domain position of the resource in the second time slot according to the first frequency domain position and the frequency domain position offset includes:
  • the direction of the frequency domain position offset is determined to be positive, and based on the first frequency domain position, the frequency domain position offset is shifted in a positive direction to obtain the The second frequency domain location of the resource in the second time slot.
  • the second time slot is in an even-numbered column in the sorting, that is, the second time slot is a plurality of consecutive time slots.
  • the second time slot, the fourth time slot, the sixth time slot or the eighth time slot in the The frequency domain position of the resources in the slot if the number of time slots spaced between the second time slot and the first time slot is odd, it means that the second time slot is in the odd-numbered column in the sorting, that is, the second time slot is more
  • the third time slot, the fifth time slot or the seventh time slot in the consecutive time slots take the first frequency domain position as the starting point, and offset the corresponding frequency domain offset in the forward direction to obtain the corresponding time slot in the The frequency domain location of the resource.
  • the frequency domain position offset is shifted in the forward direction to obtain the number of time slots in the second time slot.
  • the second frequency domain position of the resource if the number of time slots spaced between the second time slot and the first time slot is an odd number, then based on the first frequency domain position, the frequency domain position offset is shifted in the forward direction to obtain the first time slot.
  • the starting position of the resource in the frequency domain in the ith time slot after the first time slot can be obtained.
  • RB Starti RB Start - first + ⁇ offset.
  • RB Starti is the frequency domain starting position of the resource in the ith time slot
  • RB Start_first is the frequency domain starting position of the resource in the first time slot
  • the value of ⁇ offset represents the frequency domain position offset
  • the positive and negative of ⁇ offset represent the direction of frequency domain position offset, where positive can represent positive frequency shift, and negative can represent negative frequency shift.
  • ⁇ offset can be calculated according to the following formula:
  • Slot first is the number of the first time slot in multiple consecutive time slots, such as 0, and Slot i is the number of the ith time slot in multiple consecutive time slots, such as the second time slot to the eighth time slot
  • the number of time slots can be 1, 2, 3, 4, 5, 6, 7.
  • the first frequency domain position of the resource in the first time slot Slot1 is determined as A1, and then according to the preset frequency domain position offset strategy, It is determined that the frequency domain position offset of the resource in the second time slot Slot2 is Delta_offset1, and the frequency domain position offset direction is the forward offset, it can be obtained that the second frequency domain position of the resource in the second time slot is B1.
  • the multiple consecutive time slots are 2 time slots, first determine that the first frequency domain position of the resource in the first time slot Slot1 is A2, and then offset according to the preset frequency domain position Strategy, determine that the frequency domain position offset of the resource in the second time slot Slot2 is Delta_offset2, and the frequency domain position offset direction is a negative offset, then it can be concluded that the second frequency domain position of the resource in the second time slot is B2.
  • the frequency domain locations of the resources in different time slots are dispersed, that is, the frequency domain starting positions of the resources in each time slot are different, and the PDSCH channel is added. gain.
  • the PDSCH resources are allocated to the terminal, because the subband fading conditions over the entire bandwidth are not consistent, and the channel conditions are not fixed, but dynamic. Therefore, the frequency domain positions of resources in different time slots are different, so that the PDSCH will not experience channel fading under the same conditions in the frequency domain.
  • the terminal can perform data analysis according to the PDSCH resources in other time slots. As long as the PDSCH of one time slot is successfully demodulated by the terminal, the terminal can obtain the data transmitted by the base station, thereby improving the probability of successful PDSCH demodulation of the terminal in an unsatisfactory channel environment.
  • the method also includes:
  • the resources are allocated between the second frequency domain position and the bandwidth boundary part of the resources, and allocate the remaining resources in the remaining bandwidth.
  • the second frequency domain position is the frequency domain starting position of the resource in the second time slot
  • the bandwidth is the bandwidth of the PDSCH channel
  • the bandwidth boundary may be the upper limit frequency of the bandwidth or the lower limit frequency of the bandwidth.
  • the broadband boundary is the broadband upper limit frequency, first allocate some resources between the second frequency domain position and the broadband upper limit frequency, and then start from the broadband lower limit frequency Allocate the remaining resources; if the frequency domain position offset direction of the resources in the second time slot is negative, the broadband boundary is the broadband lower limit frequency, first allocate some resources between the second frequency domain position and the broadband lower limit frequency, and then start from the broadband The remaining resources are allocated at the upper frequency limit.
  • the resources in the second time slot Slot2 are divided into two parts for allocation. Since the frequency domain position offset direction of the resources in the second time slot Slot2 is positive, the second time slot Slot2 A part of the resources are allocated between the second frequency domain position and the bandwidth upper limit frequency, and the other part of the resources are allocated from the bandwidth lower limit frequency.
  • the method also includes:
  • the first frequency domain location of the resource in the first time slot is sent to the terminal through the PDCCH.
  • the base station after determining the first frequency domain position of the resource in the first time slot, the base station only needs to send the first frequency domain position to the terminal through PDCCH (Physical Downlink Control Channel, physical downlink control channel), and the second The second frequency domain position of the resource in the time slot does not need to be sent to the terminal through the PDCCH, so that the scheduling complexity is not increased.
  • the terminal is preconfigured with the same frequency domain position offset strategy in the base station.
  • the base station After receiving the first frequency domain position, the base station can calculate the second time slot according to the first frequency domain position and the frequency domain position offset strategy. The second frequency domain position of the resource, so as to obtain the PDSCH resource allocated by the base station and implement data analysis.
  • FIG. 5 is a schematic diagram of a specific flow of a resource allocation method provided by an embodiment of the present application.
  • the resource allocation method is applied to a base station, and the specific process of the resource allocation method may be as follows:
  • the first time slot is the first time slot. As shown in FIG. 6 , the multiple consecutive time slots are 4 time slots, and the frequency domain position of the resource in the first time slot Slot1 is determined to be A.
  • the second time slot is any time slot after the first time slot.
  • the second time slot may be the second time slot Slot2, the third time slot Slot3 or the fourth time slot Slot4.
  • the number of time slots between the second time slot Slot2 and the first time slot Slot1 is 0, the number of time slots between the third time slot Slot3 and the first time slot Slot1 is 1, and the fourth time slot Slot1
  • the number of time slots spaced between the first time slot Slot4 and the first time slot Slot1 is 2.
  • the frequency domain position offset of the resources in the second time slot relative to the resources in the first time slot is Delta_offset;
  • the frequency domain position offset of the resources in the second time slot relative to the resources in the first time slot is 2Delta_offset.
  • the frequency domain position offset of the resources in the second time slot Slot2 and the third time slot Slot3 is Delta_offset, and the frequency domain position offset of the resources in the fourth time slot Slot4 is 2Delta_offset.
  • the number of time slots between the second time slot Slot2 and the fourth time slot Slot4 and the first time slot Slot1 is an even number
  • the third time slot Slot3 and the first time slot Slot1 The number of time slots between them is an odd number.
  • the number of time slots is an even number, negatively offset the frequency domain position offset based on the first frequency domain position to obtain a second frequency domain position of the resource in the second time slot .
  • the second time slot Slot2 and the fourth time slot Slot4 correspond to negative offsets.
  • the second time slot Slot2 is negatively offset by Delta_offset based on the first frequency domain position A, and the frequency domain position of the second time slot Slot2 is obtained as B; the fourth time slot Slot4 is negative based on the first frequency domain position A.
  • the frequency domain position of the fourth time slot Slot4 is obtained as D. Since the length between the frequency domain position D and the bandwidth lower limit frequency is less than the length of the resource in the frequency domain, part of the resources in the fourth time slot Slot4 are allocated between the frequency domain position D and the bandwidth lower limit frequency. The remaining resources in the slot Slot4 are allocated from the bandwidth upper limit frequency.
  • the number of time slots is an odd number, based on the first frequency domain position, forwardly offset the frequency domain position offset amount to obtain a second frequency domain position of the resource in the second time slot .
  • the third time slot Slot3 corresponds to a forward offset. Specifically, the third time slot Slot3 is positively offset by Delta_offset based on the first frequency domain position A, and the frequency domain position of the third time slot Slot3 is obtained as C.
  • the first frequency domain position A of the resource in the first slot Slot1 is sent to the terminal through the PDCCH, while the second slot Slot2, the third slot Slot3 and the fourth slot Slot4
  • the frequency domain positions B, C, and D of the frequency domain do not need to be sent to the terminal, and the terminal can calculate it by itself according to the preset frequency domain position offset strategy and the first frequency domain position A in the first time slot Slot1, so as to avoid increasing scheduling complexity.
  • the resource allocation method provided by the present application can determine the first frequency domain position of the resource in the first time slot in the aggregated multiple consecutive time slots, and then according to the first frequency domain position and the preset frequency domain
  • the position offset strategy determines the second frequency domain position of the resource in the second time slot after the first time slot, so as to allocate PDSCH resources to the terminal according to the frequency domain position of the resources in each time slot, so that the PDSCH resources can be used in multiple
  • the frequency domain positions in consecutive time slots are dispersed, which increases the channel gain of PDSCH, prevents PDSCH from experiencing channel fading under the same conditions in the frequency domain, and improves the success rate of terminal demodulation of PDSCH in an unsatisfactory channel environment.
  • this embodiment will be further described from the perspective of a resource allocation apparatus, and the resource allocation apparatus may be integrated into a base station.
  • FIG. 7 specifically describes the resource allocation apparatus provided by the embodiment of the present application.
  • the resource allocation apparatus may include: a first frequency domain location determination module 701 , a second frequency domain location determination module 702 , and an allocation module 703 .
  • the first frequency domain position determination module 701 The first frequency domain position determination module 701
  • the first frequency domain location determination module 701 is configured to determine, in the aggregated multiple consecutive time slots, the first frequency domain location of the resource in the first time slot.
  • the aggregated multiple consecutive time slots may be 2, 4 or 8 consecutive time slots.
  • the resource size of the RB (Resource Block, resource block) of the PDSCH does not change, that is, the resource size in each time slot is the same, and the time domain position of the PDSCH RB resource is the same, and the time domain
  • the resource can be specified by the Time domain resource assignment field of DCI 1_0 or DCI1_1 in the PDCCH channel, but the frequency domain positions of the PDSCH RB resources in multiple consecutive time slots are different.
  • the first time slot may be the first time slot in a plurality of consecutive time slots
  • the first frequency domain position may be the frequency domain starting position of the resource in the first time slot, which is represented by RB Start_first .
  • the first frequency domain location may be specified by DCI 1_0 in the PDCCH channel or Frequency domain resource assignment in DCI 1_1.
  • a second frequency domain location determination module 702 configured to determine a second frequency domain of resources in a second time slot following the first time slot according to the first frequency domain location and a preset frequency domain location offset policy Location.
  • the second time slot may be any time slot located after the first time slot among the multiple consecutive time slots, and the second frequency domain position may be the frequency domain starting position of the resource in the second time slot, Since the size of the resource in each time slot is fixed, the overall frequency domain position of the resource in the second time slot can be determined according to the frequency domain starting position of the resource in the second time slot and the fixed resource size.
  • the preset frequency domain position offset strategy may include a frequency domain position offset amount and a frequency domain position offset direction based on the first frequency domain position, that is, according to the ordering of the second time slot in multiple consecutive time slots, it may be Set the corresponding frequency domain position offset and frequency domain position offset direction, that is, in addition to the first time slot, other time slots in multiple consecutive time slots, frequency domain position offset amount and/or frequency domain position offset The directions are different.
  • the allocation module 703 is configured to allocate the PDSCH resource to the terminal according to the frequency domain position of the resource in each time slot of the plurality of consecutive time slots.
  • the frequency domain positions of the resources in each time slot are dispersed through the frequency domain location resource strategy, that is, the frequency domain starting positions of the resources in each time slot are different, and the channel gain of the PDSCH is increased.
  • the PDSCH resources are allocated to the terminal, because the subband fading conditions over the entire bandwidth are not consistent, and the channel conditions are not fixed, but dynamic. Therefore, the frequency domain positions of resources in different time slots are different, so that the PDSCH will not experience channel fading under the same conditions in the frequency domain.
  • the terminal can perform data analysis according to the PDSCH resources in other time slots. As long as the PDSCH of one time slot is successfully demodulated by the terminal, the terminal can obtain the data transmitted by the base station, thereby improving the probability of successful PDSCH demodulation of the terminal in an unsatisfactory channel environment.
  • the frequency-domain position offset strategy includes a frequency-domain position offset; the second frequency-domain position determination module 702 is specifically configured to:
  • a second frequency domain position of the resource in the second time slot is determined according to the first frequency domain position and the frequency domain position offset.
  • the second frequency domain location determination module 702 is further configured to:
  • determining that the frequency domain position offset of the resources in the second time slot relative to the resources in the first time slot is a preset offset
  • determining that the frequency domain position offset of the resource in the second time slot relative to the resource in the first time slot is two preset offsets
  • determining that the frequency domain position offsets of the resources in the second timeslot relative to the resources in the first timeslot are three preset offsets
  • the frequency domain position offset strategy further includes a frequency domain position offset direction; the second frequency domain position determination module 702 is further configured to:
  • the direction of the frequency domain position offset is determined to be positive, and based on the first frequency domain position, the frequency domain position offset is shifted in a positive direction to obtain the The second frequency domain location of the resource in the second time slot.
  • the second frequency domain position is the frequency domain starting position of the resource in the second time slot;
  • the apparatus further includes a resource allocation module, and the resource allocation module is specifically configured to:
  • the resources are allocated between the second frequency domain position and the bandwidth boundary part of the resources, and allocate the remaining resources in the remaining bandwidth.
  • the apparatus further includes a sending module, and the sending module is specifically configured to:
  • the first frequency domain location of the resource in the first time slot is sent to the terminal through the PDCCH.
  • the resource allocation device provided by the present application can determine the first frequency domain position of the resource in the first time slot in the aggregated multiple consecutive time slots, and then according to the first frequency domain position and the preset frequency domain
  • the position offset strategy determines the second frequency domain position of the resource in the second time slot after the first time slot, so as to allocate PDSCH resources to the terminal according to the frequency domain position of the resources in each time slot, so that the PDSCH resources can be used in multiple
  • the frequency domain positions in consecutive time slots are dispersed, which increases the channel gain of PDSCH, prevents PDSCH from experiencing channel fading under the same conditions in the frequency domain, and improves the success rate of terminal demodulation of PDSCH in an unsatisfactory channel environment.
  • FIG. 8 is a schematic flowchart of a resource allocation method provided by an embodiment of the present application.
  • the resource allocation method is applied to a terminal, and the specific process of the resource allocation method may be as follows:
  • the multiple consecutive time slots may be 2, 4 or 8 consecutive time slots.
  • the resource size of the RB (Resource Block, resource block) of the PDSCH does not change, that is, the resource size in each time slot is the same, and the time domain position of the PDSCH RB resource is the same, and the time domain
  • the resource can be specified by the Time domain resource assignment field of DCI 1_0 or DCI1_1 in the PDCCH channel, but the frequency domain positions of the PDSCH RB resources in multiple consecutive time slots are different.
  • the first time slot may be the first time slot in a plurality of consecutive time slots
  • the first frequency domain position may be the frequency domain starting position of the resource in the first time slot, which is represented by RB Start_first .
  • the first frequency domain location may be specified by DCI 1_0 in the PDCCH channel or Frequency domain resource assignment in DCI 1_1.
  • the base station After determining the first frequency domain position of the resource in the first time slot, the base station only needs to send the first frequency domain position to the terminal through the PDCCH.
  • the second time slot may be any time slot located after the first time slot among the multiple consecutive time slots, and the second frequency domain position may be the frequency domain starting position of the resource in the second time slot, Since the size of the resource in each time slot is fixed, the overall frequency domain position of the resource in the second time slot can be determined according to the frequency domain starting position of the resource in the second time slot and the fixed resource size.
  • the terminal is preconfigured with the same frequency domain position offset strategy as that of the base station. Since the second time slot in the base station is allocated based on the first frequency domain location and the frequency domain location offset strategy, the terminal can obtain the first frequency domain location by adopting the frequency domain location offset strategy after obtaining the first frequency domain location.
  • the frequency-domain position offset strategy may include a frequency-domain position offset amount and a frequency-domain position offset direction based on the first frequency-domain position, that is, according to the ordering of the second time slots in multiple consecutive time slots, it can be determined
  • the corresponding frequency domain position offset amount and frequency domain position offset direction are used to determine the second frequency domain position.
  • the frequency domain positions of resources in different time slots are dispersed, the resources in the first time slot can be obtained based on the first frequency domain position sent by the base station, and the other time slots in multiple consecutive time slots
  • the resources in can be derived based on the frequency domain location resource policy and the second frequency domain location determined by the first frequency domain location. Since the sub-band fading conditions over the entire bandwidth are not consistent, and the channel conditions are not fixed, but dynamically changed, the frequency domain positions of resources in different time slots are different, so that PDSCH will not experience the same frequency in the frequency domain. condition of channel fading.
  • the terminal can perform data analysis according to the PDSCH resources in other time slots. As long as the PDSCH of one time slot is successfully demodulated by the terminal, the terminal can obtain the data transmitted by the base station, thereby improving the probability of successful PDSCH demodulation of the terminal in an unsatisfactory channel environment.
  • the resource allocation method provided by the present application can determine the first frequency domain position of the resource in the first time slot sent by the base station according to the first frequency domain position and the preset frequency domain position offset strategy.
  • the second frequency domain position of the resource in the second time slot after the first time slot so as to determine the PDSCH resource allocated by the base station according to the frequency domain position of the resource in each time slot.
  • the positions in the frequency domain are scattered, which increases the channel gain of the PDSCH and prevents the PDSCH from experiencing channel fading under the same conditions in the frequency domain, thereby improving the success rate of the terminal to demodulate the PDSCH in an unsatisfactory channel environment.
  • a resource allocation apparatus which may be integrated in a terminal, and the terminal may include a mobile phone, a tablet computer, or the like.
  • FIG. 9 specifically describes the resource allocation apparatus provided by the embodiment of the present application.
  • the resource allocation apparatus may include: an acquisition module 901 , a frequency domain location determination module 902 , and an allocated resource determination module 903 .
  • the obtaining module 901 is configured to obtain a first frequency domain position of a resource in a first time slot sent by the base station, where the first time slot is a time slot in a plurality of aggregated consecutive time slots.
  • the multiple consecutive time slots may be 2, 4 or 8 consecutive time slots.
  • the resource size of the RB (Resource Block, resource block) of the PDSCH does not change, that is, the resource size in each time slot is the same, and the time domain position of the PDSCH RB resource is the same, and the time domain
  • the resource can be specified by the Time domain resource assignment field of DCI 1_0 or DCI1_1 in the PDCCH channel, but the frequency domain positions of the PDSCH RB resources in multiple consecutive time slots are different.
  • the first time slot may be the first time slot in a plurality of consecutive time slots
  • the first frequency domain position may be the frequency domain starting position of the resource in the first time slot, which is represented by RB Start_first .
  • the first frequency domain location may be specified by DCI 1_0 in the PDCCH channel or Frequency domain resource assignment in DCI 1_1.
  • the base station After determining the first frequency domain position of the resource in the first time slot, the base station only needs to send the first frequency domain position to the terminal through the PDCCH.
  • the frequency domain position determination module 902 is configured to determine the second frequency domain position of the resource in the second time slot after the first time slot according to the first frequency domain position and a preset frequency domain position offset policy.
  • the second time slot may be any time slot located after the first time slot among the multiple consecutive time slots, and the second frequency domain position may be the frequency domain starting position of the resource in the second time slot, Since the size of the resource in each time slot is fixed, the overall frequency domain position of the resource in the second time slot can be determined according to the frequency domain starting position of the resource in the second time slot and the fixed resource size.
  • the terminal is preconfigured with the same frequency domain position offset strategy as that of the base station. Since the second time slot in the base station is allocated based on the first frequency domain location and the frequency domain location offset strategy, the terminal can obtain the first frequency domain location by adopting the frequency domain location offset strategy after obtaining the first frequency domain location.
  • the frequency-domain position offset strategy may include a frequency-domain position offset amount and a frequency-domain position offset direction based on the first frequency-domain position, that is, according to the ordering of the second time slots in multiple consecutive time slots, it can be determined
  • the corresponding frequency domain position offset amount and frequency domain position offset direction are used to determine the second frequency domain position.
  • the allocated resource determining module 903 is configured to determine the PDSCH resource allocated by the base station according to the frequency domain position of the resource in each time slot of the plurality of consecutive time slots.
  • the frequency domain positions of resources in different time slots are dispersed, the resources in the first time slot can be obtained based on the first frequency domain position sent by the base station, and the other time slots in multiple consecutive time slots
  • the resources in can be derived based on the frequency domain location resource policy and the second frequency domain location determined by the first frequency domain location. Since the sub-band fading conditions over the entire bandwidth are not consistent, and the channel conditions are not fixed, but dynamically changed, the frequency domain positions of resources in different time slots are different, so that PDSCH will not experience the same frequency in the frequency domain. condition of channel fading.
  • the terminal can perform data analysis according to the PDSCH resources in other time slots. As long as the PDSCH of one time slot is successfully demodulated by the terminal, the terminal can obtain the data transmitted by the base station, thereby improving the probability of successful PDSCH demodulation of the terminal in an unsatisfactory channel environment.
  • the resource allocation device can, after acquiring the first frequency domain location of the resource in the first time slot sent by the base station, determine the location according to the first frequency domain location and the preset frequency domain location offset strategy.
  • the second frequency domain position of the resource in the second time slot after the first time slot so as to determine the PDSCH resource allocated by the base station according to the frequency domain position of the resource in each time slot.
  • the positions in the frequency domain are scattered, which increases the channel gain of the PDSCH and prevents the PDSCH from experiencing channel fading under the same conditions in the frequency domain, thereby improving the success rate of the terminal to demodulate the PDSCH in an unsatisfactory channel environment.
  • an embodiment of the present application further provides a terminal, where the terminal may be a device such as a smart phone or a tablet computer.
  • the terminal 400 includes a processor 401 and a memory 402 .
  • the processor 401 is electrically connected to the memory 402 .
  • the processor 401 is the control center of the terminal 400, uses various interfaces and lines to connect various parts of the entire mobile terminal, executes the mobile terminal by running or loading the application program stored in the memory 402, and calling the data stored in the memory 402. various functions and processing data, so as to monitor the mobile terminal as a whole.
  • the processor 401 in the terminal 400 loads the instructions corresponding to the processes of one or more application programs into the memory 402 according to the following steps, and is executed by the processor 401 and stored in the memory 402 application to achieve various functions:
  • the base station obtaining the first frequency domain position of the resource in the first time slot sent by the base station, where the first time slot is a time slot in a plurality of aggregated consecutive time slots;
  • the PDSCH resource allocated by the base station is determined according to the frequency domain position of the resource in each time slot of the plurality of consecutive time slots.
  • FIG. 11 is a schematic structural diagram of a terminal provided by an embodiment of the present application.
  • the terminal 300 may include an RF circuit 310, a memory 320 including one or more computer-readable storage media, an input unit 330, a display unit 340, a sensor 350, an audio circuit 360, a speaker 361, a microphone 362, a transmission module 370, including There are a processor 380 with one or more processing cores, and components such as a power supply 390.
  • the terminal structure shown in FIG. 11 does not constitute a limitation on the terminal, and may include more or less components than shown, or combine some components, or arrange different components.
  • the RF circuit 310 is used for receiving and sending electromagnetic waves, realizing mutual conversion between electromagnetic waves and electrical signals, so as to communicate with a communication network or other devices.
  • RF circuitry 310 may include various existing circuit elements for performing these functions, eg, antennas, cellular communication radio frequency transceivers, millimeter wave radio frequency transceivers, WIFI/BT transceivers, GPS transceivers, digital signal processors, Encryption/decryption chips, Subscriber Identity Module (SIM) cards, memory, etc.
  • SIM Subscriber Identity Module
  • the RF circuit 310 may communicate with various networks such as the Internet, an intranet, a wireless network, or with other devices over a wireless network.
  • the aforementioned wireless network may include a cellular telephone network, a wireless local area network, or a metropolitan area network.
  • the above-mentioned wireless network can use various communication standards, protocols and technologies, including but not limited to Global System for Mobile Communication (GSM), Enhanced Data GSM Environment (EDGE), wideband code Division Multiple Access (Wideband Code Division Multiple Access, WCDMA), Code Division Multiple Access (Code Division Access, CDMA), Time Division Multiple Access (Time Division Multiple Access, TDMA), Wireless Fidelity (Wireless Fidelity, Wi- Fi) (such as IEEE 802.11a, IEEE 802.11b, IEEE802.11g and/or IEEE 802.11n), Voice over Internet Protocol (VoIP), Worldwide Interoperability for Microwave Access, Wi-Max), other protocols for mail, instant messaging, and short messaging, and any other suitable communication protocols, even those that are not currently being developed.
  • GSM Global System for Mobile Communication
  • EDGE Enhanced Data GSM Environment
  • WCDMA Wideband Code Division Multiple Access
  • CDMA Code Division
  • the memory 320 can be used to store software programs and modules, such as the program instructions/modules corresponding to the switching device and method of the call network in the above-mentioned embodiments.
  • the processor 380 executes various functions by running the software programs and modules stored in the memory 320.
  • Application and data processing that is, to realize the control function of the mobile terminal.
  • Memory 320 may include high-speed random access memory, and may also include non-volatile memory, such as one or more magnetic storage devices, flash memory, or other non-volatile solid-state memory.
  • the memory 320 may further include memory located remotely from the processor 380, and these remote memories may be connected to the terminal 300 through a network. Examples of such networks include, but are not limited to, the Internet, an intranet, a local area network, a mobile communication network, and combinations thereof.
  • the input unit 330 may be used to receive input numerical or character information, and generate keyboard, mouse, joystick, optical or trackball signal input related to user settings and function control.
  • the input unit 330 may include a touch-sensitive surface 331 as well as other input devices 332 .
  • Touch-sensitive surface 331 also known as a touch display or trackpad, can collect user touch operations on or near it (such as a user using a finger, stylus, etc., any suitable object or accessory on or on touch-sensitive surface 331). operation near the touch-sensitive surface 331), and drive the corresponding connection device according to a preset program.
  • the touch-sensitive surface 331 may include two parts, a touch detection device and a touch controller.
  • the touch detection device detects the user's touch orientation, detects the signal brought by the touch operation, and transmits the signal to the touch controller; the touch controller receives the touch information from the touch detection device, converts it into contact coordinates, and then sends it to the touch controller.
  • the touch-sensitive surface 331 may be implemented using resistive, capacitive, infrared, and surface acoustic wave types.
  • the input unit 330 may also include other input devices 332 .
  • other input devices 332 may include, but are not limited to, one or more of physical keyboards, function keys (such as volume control keys, switch keys, etc.), trackballs, mice, joysticks, and the like.
  • the display unit 340 may be used to display information input by or provided to the user and various graphical user interfaces of the mobile terminal 300, which may be composed of graphics, text, icons, videos, and any combination thereof.
  • the display unit 340 may include a display panel 341.
  • the display panel 341 may be configured in the form of an LCD (Liquid Crystal Display, liquid crystal display), an OLED (Organic Light-Emitting Diode, organic light-emitting diode) and the like.
  • the touch-sensitive surface 331 may cover the display panel 341.
  • the touch-sensitive surface 331 When the touch-sensitive surface 331 detects a touch operation on or near it, it transmits it to the processor 380 to determine the type of the touch event, and then the processor 380 determines the type of the touch event according to the touch event. Type provides corresponding visual output on display panel 341 .
  • the touch-sensitive surface 331 and the display panel 341 are used as two separate components to realize the input and output functions, in some embodiments, the touch-sensitive surface 331 and the display panel 341 may be integrated to realize the input and output functions.
  • the terminal 300 may also include at least one sensor 350, such as a light sensor, a motion sensor, and other sensors.
  • the light sensor may include an ambient light sensor and a proximity sensor, wherein the ambient light sensor may adjust the brightness of the display panel 341 according to the brightness of the ambient light, and the proximity sensor may turn off the display panel 341 and the display panel 341 when the terminal 300 is moved to the ear. / or backlight.
  • the gravitational acceleration sensor can detect the magnitude of acceleration in all directions (usually three axes), and can detect the magnitude and direction of gravity when stationary, and can be used for applications that recognize the terminal posture (such as horizontal and vertical screen switching, related games, magnetometer attitude calibration), vibration recognition related functions (such as pedometer, tapping), etc.; as for other sensors such as gyroscopes, barometers, hygrometers, thermometers, infrared sensors, etc. that can be configured on the terminal 300 Repeat.
  • the audio circuit 360 , the speaker 361 and the microphone 362 may provide an audio interface between the user and the mobile terminal 300 .
  • the audio circuit 360 can transmit the received audio data converted electrical signal to the speaker 361, and the speaker 361 converts it into a sound signal for output; on the other hand, the microphone 362 converts the collected sound signal into an electrical signal, which is converted by the audio circuit 360 After receiving, it is converted into audio data, and then the audio data is output to the processor 380 for processing, and then sent to, for example, another terminal through the RF circuit 310, or the audio data is output to the memory 320 for further processing.
  • the audio circuit 360 may also include an earphone jack to provide communication between peripheral headphones and the mobile terminal 300 .
  • the terminal 300 can help the user to send and receive emails, browse web pages, access streaming media, etc. through the transmission module 370 (eg, a WIFI module), and it provides the user with wireless broadband Internet access.
  • the transmission module 370 eg, a WIFI module
  • FIG. 11 shows the transmission module 370, it is understood that it does not belong to the necessary structure of the terminal 300, and can be completely omitted as required within the scope of not changing the essence of the invention.
  • the processor 380 is the control center of the terminal 300, using various interfaces and lines to connect various parts of the entire terminal, by running or executing the software programs and/or modules stored in the memory 320, and calling the data stored in the memory 320, Various functions of the terminal 300 are executed and data is processed to monitor the terminal as a whole.
  • the processor 380 may include one or more processing cores; in some embodiments, the processor 380 may integrate an application processor and a modem processor, wherein the application processor mainly handles the operating system, user interface and Applications, etc., the modem processor mainly deals with wireless communication. It can be understood that, the above-mentioned modulation and demodulation processor may not be integrated into the processor 380 .
  • the terminal 300 also includes a power supply 390 (such as a battery) for powering various components.
  • the power supply can be logically connected to the processor 380 through a power management system, so as to manage charging, discharging, and power consumption management through the power management system. and other functions.
  • Power supply 390 may also include one or more DC or AC power sources, recharging systems, power failure detection circuits, power converters or inverters, power status indicators, and any other components.
  • the terminal 300 may further include a camera (eg, a front camera, a rear camera), a Bluetooth module, and the like, which will not be repeated here.
  • the display unit of the mobile terminal is a touch screen display
  • the mobile terminal further includes a memory, and one or more programs, wherein one or more programs are stored in the memory and configured to be displayed by one or more programs.
  • the above processor executing one or more programs contains instructions for:
  • the base station obtaining the first frequency domain position of the resource in the first time slot sent by the base station, where the first time slot is a time slot in a plurality of aggregated consecutive time slots;
  • the preset frequency domain position offset strategy determine the second frequency domain position of the resource in the second time slot after the first time slot
  • the PDSCH resource allocated by the base station is determined according to the frequency domain position of the resource in each time slot of the plurality of consecutive time slots.
  • the above modules can be implemented as independent entities, or can be arbitrarily combined to be implemented as the same or several entities.
  • the specific implementation of the above modules can refer to the previous method embodiments, which will not be repeated here.
  • the embodiments of the present invention provide a storage medium, in which a plurality of instructions are stored, and the instructions can be loaded by a processor to execute steps in any method for switching a call network provided by the embodiments of the present invention.
  • the storage medium may include: a read-only memory (ROM, Read Only Memory), a random access memory (RAM, Random Access Memory), a magnetic disk or an optical disk, and the like.
  • ROM Read Only Memory
  • RAM Random Access Memory
  • magnetic disk or an optical disk and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种资源分配方法、终端(300, 400)及存储介质。所述方法包括:在聚合的多个连续时隙中,确定第一时隙中资源的第一频域位置(101);根据所述第一频域位置和预设的频域位置偏移策略,确定所述第一时隙之后的第二时隙中资源的第二频域位置(102);根据所述多个连续时隙的每个时隙中资源的频域位置,向终端分配PDSCH资源(103)。

Description

资源分配方法、终端及存储介质
本申请要求于2020年10月29日提交中国专利局、申请号为202011181571.1、发明名称为“资源分配方法、装置及存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种资源分配方法、终端及存储介质。
背景技术
NR(New Radio,新无线电)中的PDSCH(Physical Downlink Shared Channel,物理下行共享信道),支持时隙聚合的发送方式,以获得下行覆盖增益。这主要是针对小区边缘用户,以提高数据传输的可靠性。
在配置了时隙聚合后,PDSCH使用相同的时隙分配传输,在多个连续时隙中,每个时隙传输的内容都是相同的,且PDSCH的TB(Transport Block,传输块)的冗余版本(RV,Redundancy Version)循环变化。
现有技术中的PDSCH时隙聚合虽然通过重复发送和循环变化TB RV配置来增加非理想情况下的PDSCH传输可靠性。但是,多个连续时隙都是在带宽的同一个位置上分配PDSCH资源,而无线环境的多径效应带来信道衰落。多个连续时隙中PDSCH资源的频域位置相同,容易导致PDSCH在频域上经历同等条件的信道衰落,降低不理想的信道环境下用户设备(UE)对PDSCH解调成功的概率。
技术问题
本申请实施例提供一种资源分配方法、终端及存储介质,能够降 低提高PDSCH的信道增益,提高不理想的信道环境下终端解调PDSCH的成功率。
技术解决方案
第一方面,本申请实施例提供了一种资源分配方法,包括:
在聚合的多个连续时隙中,确定第一时隙中资源的第一频域位置;
根据所述第一频域位置和预设的频域位置偏移策略,确定所述第一时隙之后的第二时隙中资源的第二频域位置;
根据所述多个连续时隙的每个时隙中资源的频域位置,向终端分配PDSCH资源。
在本申请一些实施例中,所述频域位置偏移策略包括频域位置偏移量;
所述根据所述第一频域位置和预设的频域位置偏移策略,确定所述第一时隙之后的第二时隙中资源的第二频域位置,具体包括:
确定所述第二时隙与所述第一时隙之间间隔的时隙个数;
根据所述时隙个数,确定所述第二时隙中的资源相对于所述第一时隙中资源的频域位置偏移量;
根据所述第一频域位置和所述频域位置偏移量,确定所述第二时隙中资源的第二频域位置。
在本申请一些实施例中,所述根据所述时隙个数,确定所述第二时隙中的资源相对于所述第一时隙中资源的频域位置偏移量,具体包括:
若所述时隙个数为0或1,则确定所述第二时隙中的资源相对于 所述第一时隙中资源的频域位置偏移量为一个预设偏移量;
若所述时隙个数为2或3,则确定所述第二时隙中的资源相对于所述第一时隙中资源的频域位置偏移量为两个预设偏移量;
若所述时隙个数为4或5,则确定所述第二时隙中的资源相对于所述第一时隙中资源的频域位置偏移量为三个预设偏移量;
若所述时隙个数为6,则确定所述第二时隙中的资源相对于所述第一时隙中资源的频域位置偏移量为四个预设偏移量。
在本申请一些实施例中,所述频域位置偏移策略还包括频域位置偏移方向;
所述根据所述第一频域位置和所述频域位置偏移量,确定所述第二时隙中资源的第二频域位置,具体包括:
检测所述时隙个数为偶数还是奇数;
若所述时隙个数为偶数,则确定所述频域位置偏移方向为负向,并基于所述第一频域位置,负向偏移所述频域位置偏移量,获得所述第二时隙中资源的第二频域位置;
若所述时隙个数为奇数,则确定所述频域位置偏移方向为正向,并基于所述第一频域位置,正向偏移所述频域位置偏移量,获得所述第二时隙中资源的第二频域位置。
在本申请一些实施例中,所述第二频域位置为所述第二时隙中资源的频域起始位置;
所述方法还包括:
在分配第二时隙中的资源时,若资源在频域上的长度超过所述第 二频域位置与带宽边界之间的长度,则在所述第二频域位置与带宽边界之间分配部分资源,并在剩余带宽中分配剩余资源。
在本申请一些实施例中,所述方法还包括:
通过PDCCH向所述终端发送所述第一时隙中资源的第一频域位置。
第二方面,本申请实施例提供了一种资源分配方法,包括:
获取基站发送的第一时隙中资源的第一频域位置,所述第一时隙为聚合的多个连续时隙中的时隙;
根据所述第一频域位置和预设的频域位置偏移策略,确定所述第一时隙之后的第二时隙中资源的第二频域位置;
根据所述多个连续时隙的每个时隙中资源的频域位置,确定所述基站分配的PDSCH资源。
第三方面,本申请实施例还提供了一种资源分配装置,包括:
第一频域位置确定模块,用于在聚合的多个连续时隙中,确定第一时隙中资源的第一频域位置;
第二频域位置确定模块,用于根据所述第一频域位置和预设的频域位置偏移策略,确定所述第一时隙之后的第二时隙中资源的第二频域位置;以及,
分配模块,用于根据所述多个连续时隙的每个时隙中资源的频域位置,向终端分配PDSCH资源。
第四方面,本申请实施例还提供了一种资源分配装置,包括:
获取模块,用于获取基站发送的第一时隙中资源的第一频域位置, 所述第一时隙为聚合的多个连续时隙中的时隙;
频域位置确定模块,用于根据所述第一频域位置和预设的频域位置偏移策略,确定所述第一时隙之后的第二时隙中资源的第二频域位置;以及,
分配资源确定模块,用于根据所述多个连续时隙的每个时隙中资源的频域位置,确定所述基站分配的PDSCH资源。
第五方面,本申请实施例还提供了一种计算机可读存储介质,所述存储介质中存储有多条指令,所述指令适于由处理器加载以执行如下步骤:
在聚合的多个连续时隙中,确定第一时隙中资源的第一频域位置;
根据所述第一频域位置和预设的频域位置偏移策略,确定所述第一时隙之后的第二时隙中资源的第二频域位置;
根据所述多个连续时隙的每个时隙中资源的频域位置,向终端分配PDSCH资源。
在本申请一些实施例中,所述频域位置偏移策略包括频域位置偏移量;
所述处理器在执行所述根据所述第一频域位置和预设的频域位置偏移策略,确定所述第一时隙之后的第二时隙中资源的第二频域位置时,具体执行如下步骤:
确定所述第二时隙与所述第一时隙之间间隔的时隙个数;
根据所述时隙个数,确定所述第二时隙中的资源相对于所述第一时隙中资源的频域位置偏移量;
根据所述第一频域位置和所述频域位置偏移量,确定所述第二时隙中资源的第二频域位置。
在本申请一些实施例中,所述处理器在执行所述根据所述时隙个数,确定所述第二时隙中的资源相对于所述第一时隙中资源的频域位置偏移量时,具体执行如下步骤:
若所述时隙个数为0或1,则确定所述第二时隙中的资源相对于所述第一时隙中资源的频域位置偏移量为一个预设偏移量;
若所述时隙个数为2或3,则确定所述第二时隙中的资源相对于所述第一时隙中资源的频域位置偏移量为两个预设偏移量;
若所述时隙个数为4或5,则确定所述第二时隙中的资源相对于所述第一时隙中资源的频域位置偏移量为三个预设偏移量;
若所述时隙个数为6,则确定所述第二时隙中的资源相对于所述第一时隙中资源的频域位置偏移量为四个预设偏移量。
在本申请一些实施例中,所述频域位置偏移策略还包括频域位置偏移方向;
所述处理器在执行所述根据所述第一频域位置和所述频域位置偏移量,确定所述第二时隙中资源的第二频域位置时,具体执行如下步骤:
检测所述时隙个数为偶数还是奇数;
若所述时隙个数为偶数,则确定所述频域位置偏移方向为负向,并基于所述第一频域位置,负向偏移所述频域位置偏移量,获得所述第二时隙中资源的第二频域位置;
若所述时隙个数为奇数,则确定所述频域位置偏移方向为正向,并基于所述第一频域位置,正向偏移所述频域位置偏移量,获得所述第二时隙中资源的第二频域位置。
在本申请一些实施例中,所述第二频域位置为所述第二时隙中资源的频域起始位置;
所述处理器还执行如下步骤:
在分配第二时隙中的资源时,若资源在频域上的长度超过所述第二频域位置与带宽边界之间的长度,则在所述第二频域位置与带宽边界之间分配部分资源,并在剩余带宽中分配剩余资源。
在本申请一些实施例中,所述处理器还执行如下步骤:
通过PDCCH向所述终端发送所述第一时隙中资源的第一频域位置。
第六方面,本申请还提供一种终端,包括处理器和存储器,所述处理器与所述存储器电性连接,所述存储器用于存储指令和数据,所述处理器用于执行如下步骤:
在聚合的多个连续时隙中,确定第一时隙中资源的第一频域位置;
根据所述第一频域位置和预设的频域位置偏移策略,确定所述第一时隙之后的第二时隙中资源的第二频域位置;
根据所述多个连续时隙的每个时隙中资源的频域位置,向终端分配PDSCH资源。
在本申请一些实施例中,所述频域位置偏移策略包括频域位置偏移量;
所述处理器在执行所述根据所述第一频域位置和预设的频域位置偏移策略,确定所述第一时隙之后的第二时隙中资源的第二频域位置时,具体执行如下步骤:
确定所述第二时隙与所述第一时隙之间间隔的时隙个数;
根据所述时隙个数,确定所述第二时隙中的资源相对于所述第一时隙中资源的频域位置偏移量;
根据所述第一频域位置和所述频域位置偏移量,确定所述第二时隙中资源的第二频域位置。
在本申请一些实施例中,所述处理器在执行所述根据所述时隙个数,确定所述第二时隙中的资源相对于所述第一时隙中资源的频域位置偏移量时,具体执行如下步骤:
若所述时隙个数为0或1,则确定所述第二时隙中的资源相对于所述第一时隙中资源的频域位置偏移量为一个预设偏移量;
若所述时隙个数为2或3,则确定所述第二时隙中的资源相对于所述第一时隙中资源的频域位置偏移量为两个预设偏移量;
若所述时隙个数为4或5,则确定所述第二时隙中的资源相对于所述第一时隙中资源的频域位置偏移量为三个预设偏移量;
若所述时隙个数为6,则确定所述第二时隙中的资源相对于所述第一时隙中资源的频域位置偏移量为四个预设偏移量。
在本申请一些实施例中,所述频域位置偏移策略还包括频域位置偏移方向;
所述处理器在执行所述根据所述第一频域位置和所述频域位置 偏移量,确定所述第二时隙中资源的第二频域位置时,具体执行如下步骤:
检测所述时隙个数为偶数还是奇数;
若所述时隙个数为偶数,则确定所述频域位置偏移方向为负向,并基于所述第一频域位置,负向偏移所述频域位置偏移量,获得所述第二时隙中资源的第二频域位置;
若所述时隙个数为奇数,则确定所述频域位置偏移方向为正向,并基于所述第一频域位置,正向偏移所述频域位置偏移量,获得所述第二时隙中资源的第二频域位置。
在本申请一些实施例中,所述第二频域位置为所述第二时隙中资源的频域起始位置;
所述处理器还执行如下步骤:
在分配第二时隙中的资源时,若资源在频域上的长度超过所述第二频域位置与带宽边界之间的长度,则在所述第二频域位置与带宽边界之间分配部分资源,并在剩余带宽中分配剩余资源。
在本申请一些实施例中,所述处理器还执行如下步骤:
通过PDCCH向所述终端发送所述第一时隙中资源的第一频域位置。
有益效果
本申请提供的资源分配方法、基站、终端及存储介质,能够在聚合的多个连续时隙中,确定第一时隙中资源的第一频域位置,进而根据第一频域位置和预设的频域位置偏移策略,确定第一时隙之后的 第二时隙中资源的第二频域位置,以根据每个时隙中资源的频域位置,向终端分配PDSCH资源,使PDSCH资源在多个连续时隙中的频域位置分散开,增加PDSCH的信道增益,避免PDSCH在频域上经历同等条件的信道衰落,提高不理想的信道环境下终端解调PDSCH的成功率。
附图说明
下面结合附图,通过对本申请的具体实施方式详细描述,将使本申请的技术方案及其它有益效果显而易见。
图1为本申请实施例提供的资源分配方法的流程示意图;
图2为本申请实施例提供的资源分配方法中频域资源的分配示意图;
图3为本申请实施例提供的资源分配方法中多个连续时隙的资源分配示意图;
图4为本申请实施例提供的资源分配方法中多个连续时隙的另一资源分配示意图;
图5为本申请实施例提供的资源分配方法的另一流程示意图;
图6为本申请实施例提供的资源分配方法中多个连续时隙的又一资源分配示意图;
图7为本申请实施例提供的资源分配装置的结构示意图;
图8为本申请实施例提供的资源分配方法的又一流程示意图;
图9为本申请实施例提供的资源分配装置的另一结构示意图;
图10为本申请实施例提供的终端的结构示意图;
图11为本申请实施例提供的终端的另一结构示意图。
本发明的实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
一种资源分配方法,所述方法包括:在聚合的多个连续时隙中,确定第一时隙中资源的第一频域位置;根据所述第一频域位置和预设的频域位置偏移策略,确定所述第一时隙之后的第二时隙中资源的第二频域位置;根据所述多个连续时隙的每个时隙中资源的频域位置,向终端分配PDSCH资源。
如图1所示,图1是本申请实施例提供的资源分配方法的流程示意图,该资源分配方法应用于基站,该资源分配方法的具体流程可以如下:
101.在聚合的多个连续时隙中,确定第一时隙中资源的第一频域位置。
本发明实施例中,针对小区边缘用户,为提高数据传输的可靠性,PDSCH采用时隙聚合的发送方式发送数据,即基站向终端分配多个连续时隙,以发送相同数据。PDSCH的时隙聚合由高层信令进行配置,如:
pdsch-AggregationFactor ENUMERATED{n2, n4,n8}
步骤101中聚合的多个连续时隙可以为2个、4个或8个连续的时隙。在聚合的多个连续时隙中,PDSCH的RB(Resource Block,资源块)资源大小不发生变化,即每个时隙中的资源大小相同,且PDSCH的RB资源的时域位置相同,时域资源可以由PDCCH信道中的DCI 1_0或DCI1_1的Time domain resource assignment字段指定,但多个连续时隙中PDSCH的RB资源的频域位置不同。
本发明实施例中,第一时隙可以为多个连续时隙中的第一个时隙,第一频域位置可以为第一时隙中资源的频域起始位置,用RB Start—first来表示。第一频域位置可以由PDCCH信道中的DCI 1_0或是DCI 1_1中Frequency domain resource assignment指定。具体地,第一频域位置可以由两种确定方式:
(1)位图方式(Type 0)
通过字段Frequency domain resource assignment的位图,即可知道分配了哪些RBG(Resource Block Group,资源块组),每个RBG包含多少个连续的RB是由协议规定好的,值为Ρ。因此基于字段的位图指示,并根据如下公式,可以获知第一频域位置RB Start—first
Figure PCTCN2020134358-appb-000001
其中,P为RBG的大小,由协议规定,N RBG为带宽中的RBG总数。
Bit位从低频到高频排列,因此位图的低位从哪个RBG开始,该RBG的第一个RB即为第一频域位置RB Start—first,如图2所示。需 要注意的是,Bit位开始的RBG和结束的RBG中的RB个数并不一定为P。
假设,Frequency domain resource assignment字段是0111111110000。那么RB Start的值为8。
(2)RIV(resource indication value,资源指示值)方式(Type 1)
基于RIV指示的Frequency domain resource assignment的值,并根据如下公式,可以计算得出第一频域位置RB Start—first
Figure PCTCN2020134358-appb-000002
Figure PCTCN2020134358-appb-000003
否则,
Figure PCTCN2020134358-appb-000004
其中,
Figure PCTCN2020134358-appb-000005
Figure PCTCN2020134358-appb-000006
为带宽中的RB总数,L RBs为调度的PDSCH信道连续资源的长度,RIV为字段的值。
在确定第一时隙中资源的第一频域位置后,即可根据预设的频域位置偏移策略,确定后续时隙的频域起始位置。
102.根据所述第一频域位置和预设的频域位置偏移策略,确定所述第一时隙之后的第二时隙中资源的第二频域位置。
本发明实施例中,第二时隙可以为多个连续时隙中位于第一时隙之后的任意一个时隙,第二频域位置可以为第二时隙中资源的频域起始位置,由于每个时隙中的资源大小固定,因此根据第二时隙中资源的频域起始位置和固定资源大小,可以确定第二时隙中资源的整体频域位置。
预设的频域位置偏移策略可以包括基于第一频域位置的频域位 置偏移量和频域位置偏移方向,即根据第二时隙在多个连续时隙中的排序情况,可以设置相应的频域位置偏移量和频域位置偏移方向,即除了第一时隙外,多个连续时隙中的其他时隙,频域位置偏移量和/或频域位置偏移方向不同。
具体地,步骤102中的所述根据所述第一频域位置和预设的频域位置偏移策略,确定所述第一时隙之后的第二时隙中资源的第二频域位置,包括:
确定所述第二时隙与所述第一时隙之间间隔的时隙个数;
根据所述时隙个数,确定所述第二时隙中的资源相对于所述第一时隙中资源的频域位置偏移量;
根据所述第一频域位置和所述频域位置偏移量,确定所述第二时隙中资源的第二频域位置。
需要说明的是,第一时隙可以为多个连续时隙的第一个时隙,根据第二时隙与第一时隙之间间隔的时隙个数,即可确定第二时隙在多个连续时隙中的排序,例如,若第二时隙与第一时隙之间间隔的时隙个数为0,则表明第二时隙为多个连续时隙中的第二个时隙;若第二时隙与第一时隙之间间隔的时隙个数为1,则表明第二时隙为多个连续时隙中的第三个时隙。
根据第二时隙在多个连续时隙中的排序,即可确定第二时隙中的资源相对于第一时隙中资源的频域位置偏移量。第二时隙在多个连续时隙中排列的越靠后,第二时隙中资源的频域位置偏移量越大,或者,第二时隙在多个连续时隙中排列的越靠后,第二时隙中资源 的频域位置偏移量越小。
例如,若所述时隙个数为0或1,即第二时隙为多个连续时隙中的第二个时隙或第三个时隙,则确定所述第二时隙中的资源相对于所述第一时隙中资源的频域位置偏移量为一个预设偏移量;若所述时隙个数为2或3,即第二时隙为多个连续时隙中的第四个时隙或第五个时隙,则确定所述第二时隙中的资源相对于所述第一时隙中资源的频域位置偏移量为两个预设偏移量;若所述时隙个数为4或5,即第二时隙为多个连续时隙中的第六个时隙或第七个时隙,则确定所述第二时隙中的资源相对于所述第一时隙中资源的频域位置偏移量为三个预设偏移量;若所述时隙个数为6,即第二时隙为多个连续时隙中的第八个时隙,则确定所述第二时隙中的资源相对于所述第一时隙中资源的频域位置偏移量为四个预设偏移量。
由于聚合的多个连续时隙一般为2个、4个或8个时隙,因此上述只列举了最多8个时隙的情况,若聚合的多个连续时隙还可以包括更多时隙,则可以在上述基础上继续增加预设偏移量。例如,若时隙个数为7或8,即第二时隙为多个连续时隙中的第九个时隙或第十个时隙,则确定第二时隙中资源相对于第一时隙中资源的频域位置偏移量为五个预设偏移量等。
其中,预设偏移量为固定偏移量,可以设置为
Figure PCTCN2020134358-appb-000007
Figure PCTCN2020134358-appb-000008
为带宽的RB总数,n为连续时隙的个数,一般取值为2、4或8,即多个连续时隙为2个时隙时,n=2;多个连续时隙为4个时隙时,n=4;多个连续时隙为8个时隙时,n=8。
由于第一时隙后的每两个时隙设置一个频域位置偏移量,因此对于频域位置偏移量相同的两个时隙,其频域位置偏移方向可以不同,例如一个时隙中资源的频域位置正向偏移,另一个时隙中资源的频域位置负向偏移。其中,正向偏移是指朝向宽带的高频率方向偏移,负向偏移是指朝向宽带的低频率方向偏移。
具体地,所述根据所述第一频域位置和所述频域位置偏移量,确定所述第二时隙中资源的第二频域位置,包括:
检测所述时隙个数为偶数还是奇数;
若所述时隙个数为偶数,则确定所述频域位置偏移方向为负向,并基于所述第一频域位置,负向偏移所述频域位置偏移量,获得所述第二时隙中资源的第二频域位置;
若所述时隙个数为奇数,则确定所述频域位置偏移方向为正向,并基于所述第一频域位置,正向偏移所述频域位置偏移量,获得所述第二时隙中资源的第二频域位置。
需要说明的是,若第二时隙与第一时隙之间间隔的时隙个数为偶数,则表明第二时隙在排序中位于偶数列,即第二时隙为多个连续时隙中的第二个时隙、第四个时隙、第六个时隙或第八个时隙,以第一频域位置为起点,负向偏移相应的频域偏移量,得到相应时隙中的资源的频域位置;若第二时隙与第一时隙之间间隔的时隙个数为奇数,则表明第二时隙在排序中位于奇数列,即第二时隙为多个连续时隙中的第三个时隙、第五个时隙或第七个时隙,以第一频域位置为起点,正向偏移相应的频域偏移量,得到相应时隙中的资源 的频域位置。
或者,若第二时隙与第一时隙之间间隔的时隙个数为偶数,则基于第一频域位置,正向偏移所述频域位置偏移量,获得第二时隙中资源的第二频域位置;若第二时隙与第一时隙之间间隔的时隙个数为奇数,则基于第一频域位置,正向偏移频域位置偏移量,获得第二时隙中资源的第二频域位置。
具体地,根据如下公式,可以得出第一个时隙之后的第i个时隙中资源的频域起始位置。
RB Starti=RB Start—first+Δoffset。
其中,RB Starti为第i个时隙中资源的频域起始位置,RB Start—first为第一个时隙中资源的频域起始位置,Δoffset的数值大小表示频域位置偏移量,Δoffset的正负表示频域位置偏移方向,其中正可以表示正向频移,负可以表示负向频移。
具体地,Δoffset可以根据如下公式计算得出:
Figure PCTCN2020134358-appb-000009
Figure PCTCN2020134358-appb-000010
Figure PCTCN2020134358-appb-000011
Figure PCTCN2020134358-appb-000012
其中Slot first为多个连续时隙中的第一个时隙的编号,如0,Slot i为多个连续时隙中的第i个时隙的编号,如第二个时隙到第八个时隙的编号可以为1、2、3、4、5、6、7。
如图3所示,在多个连续时隙为2个时隙时,先确定第一个时隙 Slot1中资源的第一频域位置为A1,进而根据预设的频域位置偏移策略,确定第二个时隙Slot2中资源的频域位置偏移量为Delta_offset1,频域位置偏移方向为正向偏移,则可以得出第二时隙中资源的第二频域位置为B1。
或者,如图4所示,在多个连续时隙为2个时隙时,先确定第一个时隙Slot1中资源的第一频域位置为A2,进而根据预设的频域位置偏移策略,确定第二个时隙Slot2中资源的频域位置偏移量为Delta_offset2,频域位置偏移方向为负向偏移,则可以得出第二时隙中资源的第二频域位置为B2。
103.根据所述多个连续时隙的每个时隙中资源的频域位置,向终端分配PDSCH资源。
本发明实施例中,通过步骤102中的频域位置资源策略,将不同时隙中资源的频域位置分散开,即每个时隙中资源的频域起始位置均不同,增加PDSCH的信道增益。基于每个时隙中资源的频域起始位置和固定资源大小,向终端分配PDSCH资源,由于整个带宽上的子带衰落情况并不一致,且信道条件也不是固定不变的,而是动态变化的,因此不同时隙中资源的频域位置不同,使得PDSCH在频域上不会经历同等条件的信道衰落。即使部分时隙中资源的频域位置位于衰落情况最差的窄带上,终端也可根据其他时隙中PDSCH资源进行数据解析,由于多个连续时隙中每个时隙传输的数据相同,因此只要有一个时隙的PDSCH被终端解调成功,终端即可获取基站传输的数据,从而提高终端在不理想的信道环境下PDSCH解调成功的 概率。
进一步地,所述方法还包括:
在分配第二时隙中的资源时,若资源在频域上的长度超过所述第二频域位置与带宽边界之间的长度,则在所述第二频域位置与带宽边界之间分配部分资源,并在剩余带宽中分配剩余资源。
需要说明的是,第二频域位置为第二时隙中资源的频域起始位置,带宽为PDSCH信道的带宽,带宽边界可以为带宽上限频率,也可以为带宽下限频率。在确定第二频域位置后,若第二频域位置与带宽边界之间的频段不够分配PDSCH资源,则将该频段先分配给部分PDSCH资源,再从剩余带宽中分配剩余未分配的资源。其中,带宽边界是指第二时隙中资源的频域位置偏移方向上的带宽边界。若第二时隙中资源的频域位置偏移方向为正向,则宽带边界为宽带上限频率,先在第二频域位置与宽带上限频率之间分配部分资源,再从宽带下限频率处开始分配剩余资源;若第二时隙中资源的频域位置偏移方向为负向,则宽带边界为宽带下限频率,先在第二频域位置与宽带下限频率之间分配部分资源,再从宽带上限频率处开始分配剩余资源。
如图3所示,第二个时隙Slot2中的资源分为两部分进行分配,由于第二个时隙Slot2中资源的频域位置偏移方向为正向,则第二个时隙Slot2中的一部分资源分配在第二频域位置至带宽上限频率之间,另一部分资源从带宽下限频率处开始分配。
进一步地,所述方法还包括:
通过PDCCH向所述终端发送所述第一时隙中资源的第一频域位置。
需要说明的是,基站在确定第一时隙中资源的第一频域位置后,只需通过PDCCH(Physical Downlink Control Channel,物理下行控制信道)将第一频域位置发送给终端,而第二时隙中资源的第二频域位置无需再通过PDCCH发送给终端,从而不增加调度的复杂度。终端中预先配置基站中相同的频域位置偏移策略,基站在接收到第一频域位置后,根据第一频域位置和频域位置偏移策略,即可计算得出第二时隙中资源的第二频域位置,从而获取基站分配的PDSCH资源,实现数据解析。
如图5所示,图5是本申请实施例提供的资源分配方法的具体流程示意图,该资源分配方法应用于基站,该资源分配方法的具体流程可以如下:
501、在聚合的多个连续时隙中,确定第一时隙中资源的第一频域位置。
其中,第一时隙为第一个时隙。如图6所示,多个连续时隙为4个时隙,确定第一个时隙Slot1中资源的频域位置为A。
502、确定第一时隙之后的第二时隙与第一时隙之间间隔的时隙个数。
其中,第二时隙为第一时隙之后的任意一个时隙。如图6所述,第二时隙可以为第二个时隙Slot2、第三个时隙Slot3或第四个时隙Slot4。第二个时隙Slot2与第一个时隙Slot1之间间隔的时隙个数为0, 第三个时隙Slot3与第一个时隙Slot1之间间隔的时隙个数为1,第四个时隙Slot4与第一个时隙Slot1之间间隔的时隙个数为2。
503、根据所述时隙个数,确定所述第二时隙中资源相对于所述第一时隙中资源的频域位置偏移量。
其中,第二时隙与第一时隙之间间隔的时隙个数为0或1时,第二时隙中资源相对于第一时隙中资源的频域位置偏移量为Delta_offset;第二时隙与第一时隙之间间隔的时隙个数为2时,第二时隙中资源相对于第一时隙中资源的频域位置偏移量为2Delta_offset。如图6所示,第二个时隙Slot2和第三个时隙Slot3中资源的频域位置偏移量为Delta_offset,第四个时隙Slot4中资源的频域位置偏移量为2Delta_offset。
504、检测所述时隙个数为偶数还是奇数。
如图6所示,第二个时隙Slot2和第四个时隙Slot4与第一个时隙Slot1之间间隔的时隙个数为偶数,第三个时隙Slot3与第一个时隙Slot1之间间隔的时隙个数为奇数。
505、若所述时隙个数为偶数,则基于所述第一频域位置,负向偏移所述频域位置偏移量,获得所述第二时隙中资源的第二频域位置。
如图6所示,第二个时隙Slot2和第四个时隙Slot4对应负向偏移。具体地,第二个时隙Slot2基于第一频域位置A负向偏移Delta_offset,得到第二个时隙Slot2的频域位置为B;第四个时隙Slot4基于第一频域位置A负向偏移2Delta_offset,得到第四个时隙Slot4的频域位置 为D。由于频域位置D与带宽下限频率之间的长度小于资源在频域上的长度,因此第四个时隙Slot4中的部分资源分配在频域位置D与带宽下限频率之间,第四个时隙Slot4中的剩余资源从带宽上限频率处开始分配。
506、若所述时隙个数为奇数,则基于所述第一频域位置,正向偏移所述频域位置偏移量,获得所述第二时隙中资源的第二频域位置。
如图6所示,第三个时隙Slot3对应正向偏移。具体地,第三个时隙Slot3基于第一频域位置A正向偏移Delta_offset,得到第三个时隙Slot3的频域位置为C。
507、通过PDCCH向所述终端发送所述第一时隙中资源的第一频域位置。
如图6所示,通过PDCCH将第一个时隙Slot1中资源的第一频域位置A发送给终端,而第二个时隙Slot2、第三个时隙Slot3和第四个时隙Slot4中的频域位置B、C、D无需发送给终端,终端可以根据预设的频域位置偏移策略和第一个时隙Slot1中的第一频域位置A自行计算得出,以避免增加调度的复杂度。
由上述可知,本申请提供的资源分配方法,能够在聚合的多个连续时隙中,确定第一时隙中资源的第一频域位置,进而根据第一频域位置和预设的频域位置偏移策略,确定第一时隙之后的第二时隙中资源的第二频域位置,以根据每个时隙中资源的频域位置,向终端分配PDSCH资源,使PDSCH资源在多个连续时隙中的频域位置分 散开,增加PDSCH的信道增益,避免PDSCH在频域上经历同等条件的信道衰落,提高不理想的信道环境下终端解调PDSCH的成功率。
根据上述实施例所描述的方法,本实施例将从资源分配装置的角度进一步进行描述,该资源分配装置可以集成基站中。
请参阅图7,图7具体描述了本申请实施例提供的资源分配装置,该资源分配装置可以包括:第一频域位置确定模块701、第二频域位置确定模块702和分配模块703。
(1)第一频域位置确定模块701
第一频域位置确定模块701,用于在聚合的多个连续时隙中,确定第一时隙中资源的第一频域位置。
本发明实施例中,聚合的多个连续时隙可以为2个、4个或8个连续的时隙。在聚合的多个连续时隙中,PDSCH的RB(Resource Block,资源块)资源大小不发生变化,即每个时隙中的资源大小相同,且PDSCH的RB资源的时域位置相同,时域资源可以由PDCCH信道中的DCI 1_0或DCI1_1的Time domain resource assignment字段指定,但多个连续时隙中PDSCH的RB资源的频域位置不同。
第一时隙可以为多个连续时隙中的第一个时隙,第一频域位置可以为第一时隙中资源的频域起始位置,用RB Start—first来表示。第一频域位置可以由PDCCH信道中的DCI 1_0或是DCI 1_1中Frequency domain resource assignment指定。
(2)第二频域位置确定模块702
第二频域位置确定模块702,用于根据所述第一频域位置和预设的频域位置偏移策略,确定所述第一时隙之后的第二时隙中资源的第二频域位置。
本发明实施例中,第二时隙可以为多个连续时隙中位于第一时隙之后的任意一个时隙,第二频域位置可以为第二时隙中资源的频域起始位置,由于每个时隙中的资源大小固定,因此根据第二时隙中资源的频域起始位置和固定资源大小,可以确定第二时隙中资源的整体频域位置。
预设的频域位置偏移策略可以包括基于第一频域位置的频域位置偏移量和频域位置偏移方向,即根据第二时隙在多个连续时隙中的排序情况,可以设置相应的频域位置偏移量和频域位置偏移方向,即除了第一时隙外,多个连续时隙中的其他时隙,频域位置偏移量和/或频域位置偏移方向不同。
(3)分配模块703
分配模块703,用于根据所述多个连续时隙的每个时隙中资源的频域位置,向终端分配PDSCH资源。
本发明实施例中,通过频域位置资源策略,将每个时隙中资源的频域位置分散开,即每个时隙中资源的频域起始位置均不同,增加PDSCH的信道增益。基于每个时隙中资源的频域起始位置和固定资源大小,向终端分配PDSCH资源,由于整个带宽上的子带衰落情况并不一致,且信道条件也不是固定不变的,而是动态变化的,因此不同时隙中资源的频域位置不同,使得PDSCH在频域上不会经历同等条 件的信道衰落。即使部分时隙中资源的频域位置位于衰落情况最差的窄带上,终端也可根据其他时隙中PDSCH资源进行数据解析,由于多个连续时隙中每个时隙传输的数据相同,因此只要有一个时隙的PDSCH被终端解调成功,终端即可获取基站传输的数据,从而提高终端在不理想的信道环境下PDSCH解调成功的概率。
在本申请的一些实施例中,所述频域位置偏移策略包括频域位置偏移量;第二频域位置确定模块702具体用于:
确定所述第二时隙与所述第一时隙之间间隔的时隙个数;
根据所述时隙个数,确定所述第二时隙中的资源相对于所述第一时隙中资源的频域位置偏移量;
根据所述第一频域位置和所述频域位置偏移量,确定所述第二时隙中资源的第二频域位置。
在本申请的一些实施例中,第二频域位置确定模块702还用于:
若所述时隙个数为0或1,则确定所述第二时隙中的资源相对于所述第一时隙中资源的频域位置偏移量为一个预设偏移量;
若所述时隙个数为2或3,则确定所述第二时隙中的资源相对于所述第一时隙中资源的频域位置偏移量为两个预设偏移量;
若所述时隙个数为4或5,则确定所述第二时隙中的资源相对于所述第一时隙中资源的频域位置偏移量为三个预设偏移量;
若所述时隙个数为6,则确定所述第二时隙中的资源相对于所述第一时隙中资源的频域位置偏移量为四个预设偏移量。
在本申请的一些实施例中,所述频域位置偏移策略还包括频域位 置偏移方向;第二频域位置确定模块702还用于:
检测所述时隙个数为偶数还是奇数;
若所述时隙个数为偶数,则确定所述频域位置偏移方向为负向,并基于所述第一频域位置,负向偏移所述频域位置偏移量,获得所述第二时隙中资源的第二频域位置;
若所述时隙个数为奇数,则确定所述频域位置偏移方向为正向,并基于所述第一频域位置,正向偏移所述频域位置偏移量,获得所述第二时隙中资源的第二频域位置。
在本申请的一些实施例中,所述第二频域位置为所述第二时隙中资源的频域起始位置;所述装置还包括资源分配模块,所述资源分配模块具体用于:
在分配第二时隙中的资源时,若资源在频域上的长度超过所述第二频域位置与带宽边界之间的长度,则在所述第二频域位置与带宽边界之间分配部分资源,并在剩余带宽中分配剩余资源。
在本申请的一些实施例中,所述装置还包括发送模块,所述发送模块具体用于:
通过PDCCH向所述终端发送所述第一时隙中资源的第一频域位置。
由上述可知,本申请提供的资源分配装置,能够在聚合的多个连续时隙中,确定第一时隙中资源的第一频域位置,进而根据第一频域位置和预设的频域位置偏移策略,确定第一时隙之后的第二时隙中资源的第二频域位置,以根据每个时隙中资源的频域位置,向终端分配 PDSCH资源,使PDSCH资源在多个连续时隙中的频域位置分散开,增加PDSCH的信道增益,避免PDSCH在频域上经历同等条件的信道衰落,提高不理想的信道环境下终端解调PDSCH的成功率。
如图8所示,图8是本申请实施例提供的资源分配方法的流程示意图,该资源分配方法应用于终端,该资源分配方法的具体流程可以如下:
801、获取基站发送的第一时隙中资源的第一频域位置,所述第一时隙为聚合的多个连续时隙中的时隙。
本申请实施例中,多个连续时隙可以为2个、4个或8个连续的时隙。在聚合的多个连续时隙中,PDSCH的RB(Resource Block,资源块)资源大小不发生变化,即每个时隙中的资源大小相同,且PDSCH的RB资源的时域位置相同,时域资源可以由PDCCH信道中的DCI 1_0或DCI1_1的Time domain resource assignment字段指定,但多个连续时隙中PDSCH的RB资源的频域位置不同。
第一时隙可以为多个连续时隙中的第一个时隙,第一频域位置可以为第一时隙中资源的频域起始位置,用RB Start—first来表示。第一频域位置可以由PDCCH信道中的DCI 1_0或是DCI 1_1中Frequency domain resource assignment指定。
基站在确定第一时隙中资源的第一频域位置后,只需通过PDCCH将第一频域位置发送给终端。
802、根据所述第一频域位置和预设的频域位置偏移策略,确定 所述第一时隙之后的第二时隙中资源的第二频域位置。
本申请实施例中,第二时隙可以为多个连续时隙中位于第一时隙之后的任意一个时隙,第二频域位置可以为第二时隙中资源的频域起始位置,由于每个时隙中的资源大小固定,因此根据第二时隙中资源的频域起始位置和固定资源大小,可以确定第二时隙中资源的整体频域位置。
终端中预先配置有与基站相同的频域位置偏移策略。由于基站中的第二时隙是基于第一频域位置和频域位置偏移策略进行资源分配的,因此终端在获取第一频域位置后,采用频域位置偏移策略,即可获得第二时隙中资源的第二频域位置。
其中,频域位置偏移策略可以包括基于第一频域位置的频域位置偏移量和频域位置偏移方向,即根据第二时隙在多个连续时隙中的排序情况,可以确定相应的频域位置偏移量和频域位置偏移方向,进而确定第二频域位置。
803、根据所述多个连续时隙的每个时隙中资源的频域位置,确定所述基站分配的PDSCH资源。
本申请实施例中,不同时隙中资源的频域位置是分散开的,第一时隙中的资源可以基于基站发送的第一频域位置得出,多个连续时隙中的其他时隙中的资源可以基于频域位置资源策略和第一频域位置确定的第二频域位置得出。由于整个带宽上的子带衰落情况并不一致,且信道条件也不是固定不变的,而是动态变化的,因此不同时隙中资源的频域位置不同,使得PDSCH在频域上不会经历同等条件的信道 衰落。即使部分时隙中资源的频域位置位于衰落情况最差的窄带上,终端也可根据其他时隙中PDSCH资源进行数据解析,由于多个连续时隙中每个时隙传输的数据相同,因此只要有一个时隙的PDSCH被终端解调成功,终端即可获取基站传输的数据,从而提高终端在不理想的信道环境下PDSCH解调成功的概率。
由上述可知,本申请提供的资源分配方法,能够在获取基站发送的第一时隙中资源的第一频域位置后,根据第一频域位置和预设的频域位置偏移策略,确定第一时隙之后的第二时隙中资源的第二频域位置,以根据每个时隙中资源的频域位置,确定基站分配的PDSCH资源,由于PDSCH资源在多个连续时隙中的频域位置分散开,增加PDSCH的信道增益,避免PDSCH在频域上经历同等条件的信道衰落,从而提高不理想的信道环境下终端解调PDSCH的成功率。
根据上述实施例所描述的方法,本实施例将从资源分配装置的角度进一步进行描述,该资源分配装置可以集成在终端中,终端可以包括手机、平板电脑等。
请参阅图9,图9具体描述了本申请实施例提供的资源分配装置,该资源分配装置可以包括:获取模块901、频域位置确定模块902和分配资源确定模块903。
(1)获取模块901
获取模块901,用于获取基站发送的第一时隙中资源的第一频域位置,所述第一时隙为聚合的多个连续时隙中的时隙。
本申请实施例中,多个连续时隙可以为2个、4个或8个连续的时隙。在聚合的多个连续时隙中,PDSCH的RB(Resource Block,资源块)资源大小不发生变化,即每个时隙中的资源大小相同,且PDSCH的RB资源的时域位置相同,时域资源可以由PDCCH信道中的DCI 1_0或DCI1_1的Time domain resource assignment字段指定,但多个连续时隙中PDSCH的RB资源的频域位置不同。
第一时隙可以为多个连续时隙中的第一个时隙,第一频域位置可以为第一时隙中资源的频域起始位置,用RB Start—first来表示。第一频域位置可以由PDCCH信道中的DCI 1_0或是DCI 1_1中Frequency domain resource assignment指定。
基站在确定第一时隙中资源的第一频域位置后,只需通过PDCCH将第一频域位置发送给终端。
(2)频域位置确定模块902
频域位置确定模块902,用于根据所述第一频域位置和预设的频域位置偏移策略,确定所述第一时隙之后的第二时隙中资源的第二频域位置。
本申请实施例中,第二时隙可以为多个连续时隙中位于第一时隙之后的任意一个时隙,第二频域位置可以为第二时隙中资源的频域起始位置,由于每个时隙中的资源大小固定,因此根据第二时隙中资源的频域起始位置和固定资源大小,可以确定第二时隙中资源的整体频域位置。
终端中预先配置有与基站相同的频域位置偏移策略。由于基站中 的第二时隙是基于第一频域位置和频域位置偏移策略进行资源分配的,因此终端在获取第一频域位置后,采用频域位置偏移策略,即可获得第二时隙中资源的第二频域位置。
其中,频域位置偏移策略可以包括基于第一频域位置的频域位置偏移量和频域位置偏移方向,即根据第二时隙在多个连续时隙中的排序情况,可以确定相应的频域位置偏移量和频域位置偏移方向,进而确定第二频域位置。
(3)分配资源确定模块903
分配资源确定模块903,用于根据所述多个连续时隙的每个时隙中资源的频域位置,确定所述基站分配的PDSCH资源。
本申请实施例中,不同时隙中资源的频域位置是分散开的,第一时隙中的资源可以基于基站发送的第一频域位置得出,多个连续时隙中的其他时隙中的资源可以基于频域位置资源策略和第一频域位置确定的第二频域位置得出。由于整个带宽上的子带衰落情况并不一致,且信道条件也不是固定不变的,而是动态变化的,因此不同时隙中资源的频域位置不同,使得PDSCH在频域上不会经历同等条件的信道衰落。即使部分时隙中资源的频域位置位于衰落情况最差的窄带上,终端也可根据其他时隙中PDSCH资源进行数据解析,由于多个连续时隙中每个时隙传输的数据相同,因此只要有一个时隙的PDSCH被终端解调成功,终端即可获取基站传输的数据,从而提高终端在不理想的信道环境下PDSCH解调成功的概率。
由上述可知,本申请提供的资源分配装置,能够在获取基站发送 的第一时隙中资源的第一频域位置后,根据第一频域位置和预设的频域位置偏移策略,确定第一时隙之后的第二时隙中资源的第二频域位置,以根据每个时隙中资源的频域位置,确定基站分配的PDSCH资源,由于PDSCH资源在多个连续时隙中的频域位置分散开,增加PDSCH的信道增益,避免PDSCH在频域上经历同等条件的信道衰落,从而提高不理想的信道环境下终端解调PDSCH的成功率。
另外,本申请实施例还提供一种终端,该终端可以是智能手机、平板电脑等设备。如图10所示,终端400包括处理器401、存储器402。其中,处理器401与存储器402电性连接。
处理器401是终端400的控制中心,利用各种接口和线路连接整个移动终端的各个部分,通过运行或加载存储在存储器402内的应用程序,以及调用存储在存储器402内的数据,执行移动终端的各种功能和处理数据,从而对移动终端进行整体监控。
在本实施例中,终端400中的处理器401会按照如下的步骤,将一个或一个以上的应用程序的进程对应的指令加载到存储器402中,并由处理器401来运行存储在存储器402中的应用程序,从而实现各种功能:
获取基站发送的第一时隙中资源的第一频域位置,所述第一时隙为聚合的多个连续时隙中的时隙;
根据所述第一频域位置和预设的频域位置偏移策略,确定所述第一时隙之后的第二时隙中资源的第二频域位置;
根据所述多个连续时隙的每个时隙中资源的频域位置,确定所述基站分配的PDSCH资源。
请参阅图11,图11为本申请实施例提供的终端的结构示意图。该终端300可以包括RF电路310、包括有一个或一个以上计算机可读存储介质的存储器320、输入单元330、显示单元340、传感器350、音频电路360、扬声器361、传声器362、传输模块370、包括有一个或者一个以上处理核心的处理器380、以及电源390等部件。本领域技术人员可以理解,图11中示出的终端结构并不构成对终端的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
RF电路310用于接收以及发送电磁波,实现电磁波与电信号的相互转换,从而与通讯网络或者其他设备进行通讯。RF电路310可包括各种现有的用于执行这些功能的电路元件,例如,天线、蜂窝通信射频收发器、毫米波射频收发器、WIFI/BT收发器、GPS收发器、数字信号处理器、加密/解密芯片、用户身份模块(SIM)卡、存储器等等。RF电路310可与各种网络如互联网、企业内部网、无线网络进行通讯或者通过无线网络与其他设备进行通讯。上述的无线网络可包括蜂窝式电话网、无线局域网或者城域网。上述的无线网络可以使用各种通信标准、协议及技术,包括但并不限于全球移动通信系统(Global System for Mobile Communication,GSM)、增强型移动通信技术(Enhanced Data GSM Environment,EDGE),宽带码分多址技术(Wideband Code Division Multiple Access,WCDMA),码分多址技术(Code Division Access,CDMA)、时分多址技术(Time Division Multiple  Access,TDMA),无线保真技术(Wireless Fidelity,Wi-Fi)(如美国电气和电子工程师协会标准IEEE 802.11a,IEEE 802.11b,IEEE802.11g和/或IEEE 802.11n)、网络电话(Voice over Internet Protocol,VoIP)、全球微波互联接入(Worldwide Interoperability for Microwave Access,Wi-Max)、其他用于邮件、即时通讯及短消息的协议,以及任何其他合适的通讯协议,甚至可包括那些当前仍未被开发出来的协议。
存储器320可用于存储软件程序以及模块,如上述实施例中通话网络的切换装置、方法对应的程序指令/模块,处理器380通过运行存储在存储器320内的软件程序以及模块,从而执行各种功能应用以及数据处理,即实现移动终端的控制功能。存储器320可包括高速随机存储器,还可包括非易失性存储器,如一个或者多个磁性存储装置、闪存、或者其他非易失性固态存储器。在一些实例中,存储器320可进一步包括相对于处理器380远程设置的存储器,这些远程存储器可以通过网络连接至终端300。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
输入单元330可用于接收输入的数字或字符信息,以及产生与用户设置以及功能控制有关的键盘、鼠标、操作杆、光学或者轨迹球信号输入。具体地,输入单元330可包括触敏表面331以及其他输入设备332。触敏表面331,也称为触摸显示屏或者触控板,可收集用户在其上或附近的触摸操作(比如用户使用手指、触笔等任何适合的物体或附件在触敏表面331上或在触敏表面331附近的操作),并根据预先设定的程式驱动相应的连接装置。可选的,触敏表面331可包括触摸检 测装置和触摸控制器两个部分。其中,触摸检测装置检测用户的触摸方位,并检测触摸操作带来的信号,将信号传送给触摸控制器;触摸控制器从触摸检测装置上接收触摸信息,并将它转换成触点坐标,再送给处理器380,并能接收处理器380发来的命令并加以执行。此外,可以采用电阻式、电容式、红外线以及表面声波等多种类型实现触敏表面331。除了触敏表面331,输入单元330还可以包括其他输入设备332。具体地,其他输入设备332可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆等中的一种或多种。
显示单元340可用于显示由用户输入的信息或提供给用户的信息以及移动终端300的各种图形用户接口,这些图形用户接口可以由图形、文本、图标、视频和其任意组合来构成。显示单元340可包括显示面板341,可选的,可以采用LCD(Liquid Crystal Display,液晶显示器)、OLED(Organic Light-Emitting Diode,有机发光二极管)等形式来配置显示面板341。进一步的,触敏表面331可覆盖显示面板341,当触敏表面331检测到在其上或附近的触摸操作后,传送给处理器380以确定触摸事件的类型,随后处理器380根据触摸事件的类型在显示面板341上提供相应的视觉输出。虽然在图11中,触敏表面331与显示面板341是作为两个独立的部件来实现输入和输出功能,但是在某些实施例中,可以将触敏表面331与显示面板341集成而实现输入和输出功能。
终端300还可包括至少一种传感器350,比如光传感器、运动传感器以及其他传感器。具体地,光传感器可包括环境光传感器及接近传 感器,其中,环境光传感器可根据环境光线的明暗来调节显示面板341的亮度,接近传感器可在终端300移动到耳边时,关闭显示面板341和/或背光。作为运动传感器的一种,重力加速度传感器可检测各个方向上(一般为三轴)加速度的大小,静止时可检测出重力的大小及方向,可用于识别终端姿态的应用(比如横竖屏切换、相关游戏、磁力计姿态校准)、振动识别相关功能(比如计步器、敲击)等;至于终端300还可配置的陀螺仪、气压计、湿度计、温度计、红外线传感器等其他传感器,在此不再赘述。
音频电路360、扬声器361和传声器362,传声器362可提供用户与移动终端300之间的音频接口。音频电路360可将接收到的音频数据转换后的电信号,传输到扬声器361,由扬声器361转换为声音信号输出;另一方面,传声器362将收集的声音信号转换为电信号,由音频电路360接收后转换为音频数据,再将音频数据输出处理器380处理后,经RF电路310以发送给比如另一终端,或者将音频数据输出至存储器320以便进一步处理。音频电路360还可能包括耳塞插孔,以提供外设耳机与移动终端300的通信。
终端300通过传输模块370(例如WIFI模块)可以帮助用户收发电子邮件、浏览网页和访问流式媒体等,它为用户提供了无线的宽带互联网访问。虽然图11示出了传输模块370,但是可以理解的是,其并不属于终端300的必须构成,完全可以根据需要在不改变发明的本质的范围内而省略。
处理器380是终端300的控制中心,利用各种接口和线路连接整个 终端的各个部分,通过运行或执行存储在存储器320内的软件程序和/或模块,以及调用存储在存储器320内的数据,执行终端300的各种功能和处理数据,从而对终端进行整体监控。可选的,处理器380可包括一个或多个处理核心;在一些实施例中,处理器380可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序等,调制解调处理器主要处理无线通信。可以理解的是,上述调制解调处理器也可以不集成到处理器380中。
终端300还包括给各个部件供电的电源390(比如电池),在一些实施例中,电源可以通过电源管理系统与处理器380逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。电源390还可以包括一个或一个以上的直流或交流电源、再充电系统、电源故障检测电路、电源转换器或者逆变器、电源状态指示器等任意组件。
尽管未示出,终端300还可以包括摄像头(如前置摄像头、后置摄像头)、蓝牙模块等,在此不再赘述。具体在本实施例中,移动终端的显示单元是触摸屏显示器,移动终端还包括有存储器,以及一个或者一个以上的程序,其中一个或者一个以上程序存储于存储器中,且经配置以由一个或者一个以上处理器执行一个或者一个以上程序包含用于进行以下操作的指令:
获取基站发送的第一时隙中资源的第一频域位置,所述第一时隙为聚合的多个连续时隙中的时隙;
根据所述第一频域位置和预设的频域位置偏移策略,确定所述第 一时隙之后的第二时隙中资源的第二频域位置;
根据所述多个连续时隙的每个时隙中资源的频域位置,确定所述基站分配的PDSCH资源。
具体实施时,以上各个模块可以作为独立的实体来实现,也可以进行任意组合,作为同一或若干个实体来实现,以上各个模块的具体实施可参见前面的方法实施例,在此不再赘述。
本领域普通技术人员可以理解,上述实施例的各种方法中的全部或部分步骤可以通过指令来完成,或通过指令控制相关的硬件来完成,该指令可以存储于一计算机可读存储介质中,并由处理器进行加载和执行。为此,本发明实施例提供一种存储介质,其中存储有多条指令,该指令能够被处理器进行加载,以执行本发明实施例所提供的任一种通话网络的切换方法中的步骤。
其中,该存储介质可以包括:只读存储器(ROM,Read Only Memory)、随机存取记忆体(RAM,Random Access Memory)、磁盘或光盘等。
由于该存储介质中所存储的指令,可以执行本发明实施例所提供的任一种资源分配方法中的步骤,因此,可以实现本发明实施例所提供的任一种资源分配方法所能实现的有益效果,详见前面的实施例,在此不再赘述。
以上各个操作的具体实施可参见前面的实施例,在此不再赘述。综上该,虽然本申请已以优选实施例揭露如上,但上述优选实施例并非用以限制本申请,本领域的普通技术人员,在不脱离本申请的精神和范围内,均可作各种更动与润饰,因此本申请的保护范围以权利要 求界定的范围为准。

Claims (18)

  1. 一种资源分配方法,所述方法包括:
    在聚合的多个连续时隙中,确定第一时隙中资源的第一频域位置;
    根据所述第一频域位置和预设的频域位置偏移策略,确定所述第一时隙之后的第二时隙中资源的第二频域位置;
    根据所述多个连续时隙的每个时隙中资源的频域位置,向终端分配PDSCH资源。
  2. 根据权利要求1所述的资源分配方法,其中,所述频域位置偏移策略包括频域位置偏移量;
    所述根据所述第一频域位置和预设的频域位置偏移策略,确定所述第一时隙之后的第二时隙中资源的第二频域位置,具体包括:
    确定所述第二时隙与所述第一时隙之间间隔的时隙个数;
    根据所述时隙个数,确定所述第二时隙中的资源相对于所述第一时隙中资源的频域位置偏移量;
    根据所述第一频域位置和所述频域位置偏移量,确定所述第二时隙中资源的第二频域位置。
  3. 根据权利要求2所述的资源分配方法,其中,所述根据所述时隙个数,确定所述第二时隙中的资源相对于所述第一时隙中资源的频域位置偏移量,具体包括:
    若所述时隙个数为0或1,则确定所述第二时隙中的资源相对于所述第一时隙中资源的频域位置偏移量为一个预设偏移量;
    若所述时隙个数为2或3,则确定所述第二时隙中的资源相对于 所述第一时隙中资源的频域位置偏移量为两个预设偏移量;
    若所述时隙个数为4或5,则确定所述第二时隙中的资源相对于所述第一时隙中资源的频域位置偏移量为三个预设偏移量;
    若所述时隙个数为6,则确定所述第二时隙中的资源相对于所述第一时隙中资源的频域位置偏移量为四个预设偏移量。
  4. 根据权利要求2所述的资源分配方法,其中,所述频域位置偏移策略还包括频域位置偏移方向;
    所述根据所述第一频域位置和所述频域位置偏移量,确定所述第二时隙中资源的第二频域位置,具体包括:
    检测所述时隙个数为偶数还是奇数;
    若所述时隙个数为偶数,则确定所述频域位置偏移方向为负向,并基于所述第一频域位置,负向偏移所述频域位置偏移量,获得所述第二时隙中资源的第二频域位置;
    若所述时隙个数为奇数,则确定所述频域位置偏移方向为正向,并基于所述第一频域位置,正向偏移所述频域位置偏移量,获得所述第二时隙中资源的第二频域位置。
  5. 根据权利要求1所述的资源分配方法,其中,所述第二频域位置为所述第二时隙中资源的频域起始位置;
    所述方法还包括:
    在分配第二时隙中的资源时,若资源在频域上的长度超过所述第二频域位置与带宽边界之间的长度,则在所述第二频域位置与带宽边界之间分配部分资源,并在剩余带宽中分配剩余资源。
  6. 根据权利要求1所述的资源分配方法,其中,所述方法还包括:
    通过PDCCH向所述终端发送所述第一时隙中资源的第一频域位置。
  7. 一种计算机可读存储介质,所述存储介质中存储有多条指令,所述指令适于由处理器加载以执行如下步骤:
    在聚合的多个连续时隙中,确定第一时隙中资源的第一频域位置;
    根据所述第一频域位置和预设的频域位置偏移策略,确定所述第一时隙之后的第二时隙中资源的第二频域位置;
    根据所述多个连续时隙的每个时隙中资源的频域位置,向终端分配PDSCH资源。
  8. 根据权利要求7所述的计算机可读存储介质,其中,所述频域位置偏移策略包括频域位置偏移量;
    所述处理器在执行所述根据所述第一频域位置和预设的频域位置偏移策略,确定所述第一时隙之后的第二时隙中资源的第二频域位置时,具体执行如下步骤:
    确定所述第二时隙与所述第一时隙之间间隔的时隙个数;
    根据所述时隙个数,确定所述第二时隙中的资源相对于所述第一时隙中资源的频域位置偏移量;
    根据所述第一频域位置和所述频域位置偏移量,确定所述第二时隙中资源的第二频域位置。
  9. 根据权利要求8所述的计算机可读存储介质,其中,所述处 理器在执行所述根据所述时隙个数,确定所述第二时隙中的资源相对于所述第一时隙中资源的频域位置偏移量时,具体执行如下步骤:
    若所述时隙个数为0或1,则确定所述第二时隙中的资源相对于所述第一时隙中资源的频域位置偏移量为一个预设偏移量;
    若所述时隙个数为2或3,则确定所述第二时隙中的资源相对于所述第一时隙中资源的频域位置偏移量为两个预设偏移量;
    若所述时隙个数为4或5,则确定所述第二时隙中的资源相对于所述第一时隙中资源的频域位置偏移量为三个预设偏移量;
    若所述时隙个数为6,则确定所述第二时隙中的资源相对于所述第一时隙中资源的频域位置偏移量为四个预设偏移量。
  10. 根据权利要求8所述的计算机可读存储介质,其中,所述频域位置偏移策略还包括频域位置偏移方向;
    所述处理器在执行所述根据所述第一频域位置和所述频域位置偏移量,确定所述第二时隙中资源的第二频域位置时,具体执行如下步骤:
    检测所述时隙个数为偶数还是奇数;
    若所述时隙个数为偶数,则确定所述频域位置偏移方向为负向,并基于所述第一频域位置,负向偏移所述频域位置偏移量,获得所述第二时隙中资源的第二频域位置;
    若所述时隙个数为奇数,则确定所述频域位置偏移方向为正向,并基于所述第一频域位置,正向偏移所述频域位置偏移量,获得所述第二时隙中资源的第二频域位置。
  11. 根据权利要求7所述的计算机可读存储介质,其中,所述第二频域位置为所述第二时隙中资源的频域起始位置;
    所述处理器还执行如下步骤:
    在分配第二时隙中的资源时,若资源在频域上的长度超过所述第二频域位置与带宽边界之间的长度,则在所述第二频域位置与带宽边界之间分配部分资源,并在剩余带宽中分配剩余资源。
  12. 根据权利要求1所述的计算机可读存储介质,其中,所述处理器还执行如下步骤:
    通过PDCCH向所述终端发送所述第一时隙中资源的第一频域位置。
  13. 一种终端,包括处理器和存储器,所述处理器与所述存储器电性连接,所述存储器用于存储指令和数据,所述处理器用于执行如下步骤:
    在聚合的多个连续时隙中,确定第一时隙中资源的第一频域位置;
    根据所述第一频域位置和预设的频域位置偏移策略,确定所述第一时隙之后的第二时隙中资源的第二频域位置;
    根据所述多个连续时隙的每个时隙中资源的频域位置,向终端分配PDSCH资源。
  14. 根据权利要求13所述的终端,其中,所述频域位置偏移策略包括频域位置偏移量;
    所述处理器在执行所述根据所述第一频域位置和预设的频域位置偏移策略,确定所述第一时隙之后的第二时隙中资源的第二频域位 置时,具体执行如下步骤:
    确定所述第二时隙与所述第一时隙之间间隔的时隙个数;
    根据所述时隙个数,确定所述第二时隙中的资源相对于所述第一时隙中资源的频域位置偏移量;
    根据所述第一频域位置和所述频域位置偏移量,确定所述第二时隙中资源的第二频域位置。
  15. 根据权利要求14所述的终端,其中,所述处理器在执行所述根据所述时隙个数,确定所述第二时隙中的资源相对于所述第一时隙中资源的频域位置偏移量时,具体执行如下步骤:
    若所述时隙个数为0或1,则确定所述第二时隙中的资源相对于所述第一时隙中资源的频域位置偏移量为一个预设偏移量;
    若所述时隙个数为2或3,则确定所述第二时隙中的资源相对于所述第一时隙中资源的频域位置偏移量为两个预设偏移量;
    若所述时隙个数为4或5,则确定所述第二时隙中的资源相对于所述第一时隙中资源的频域位置偏移量为三个预设偏移量;
    若所述时隙个数为6,则确定所述第二时隙中的资源相对于所述第一时隙中资源的频域位置偏移量为四个预设偏移量。
  16. 根据权利要求14所述的终端,其中,所述频域位置偏移策略还包括频域位置偏移方向;
    所述处理器在执行所述根据所述第一频域位置和所述频域位置偏移量,确定所述第二时隙中资源的第二频域位置时,具体执行如下步骤:
    检测所述时隙个数为偶数还是奇数;
    若所述时隙个数为偶数,则确定所述频域位置偏移方向为负向,并基于所述第一频域位置,负向偏移所述频域位置偏移量,获得所述第二时隙中资源的第二频域位置;
    若所述时隙个数为奇数,则确定所述频域位置偏移方向为正向,并基于所述第一频域位置,正向偏移所述频域位置偏移量,获得所述第二时隙中资源的第二频域位置。
  17. 根据权利要求13所述的终端,其中,所述第二频域位置为所述第二时隙中资源的频域起始位置;
    所述处理器还执行如下步骤:
    在分配第二时隙中的资源时,若资源在频域上的长度超过所述第二频域位置与带宽边界之间的长度,则在所述第二频域位置与带宽边界之间分配部分资源,并在剩余带宽中分配剩余资源。
  18. 根据权利要求13所述的终端,其中,所述处理器还执行如下步骤:
    通过PDCCH向所述终端发送所述第一时隙中资源的第一频域位置。
PCT/CN2020/134358 2020-10-29 2020-12-07 资源分配方法、终端及存储介质 WO2022088393A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/250,987 US20230371035A1 (en) 2020-10-29 2020-12-07 Resource allocation method, terminal and storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011181571.1 2020-10-29
CN202011181571.1A CN112367706B (zh) 2020-10-29 2020-10-29 资源分配方法、装置及存储介质

Publications (1)

Publication Number Publication Date
WO2022088393A1 true WO2022088393A1 (zh) 2022-05-05

Family

ID=74513685

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/134358 WO2022088393A1 (zh) 2020-10-29 2020-12-07 资源分配方法、终端及存储介质

Country Status (3)

Country Link
US (1) US20230371035A1 (zh)
CN (1) CN112367706B (zh)
WO (1) WO2022088393A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106385709A (zh) * 2016-10-31 2017-02-08 宇龙计算机通信科技(深圳)有限公司 资源调度方法及资源调度装置
US20200053722A1 (en) * 2018-08-09 2020-02-13 Samsung Electronics Co., Ltd. Method and device for configuring demodulation reference signal for uplink control channel in wireless cellular communication system
CN111107555A (zh) * 2019-11-08 2020-05-05 中兴通讯股份有限公司 传输信道的传输和发送方法、装置、设备和存储介质
CN111385075A (zh) * 2018-12-29 2020-07-07 展讯半导体(南京)有限公司 边链路信息传输方法、用户终端及计算机可读存储介质
CN111642017A (zh) * 2017-11-02 2020-09-08 Oppo广东移动通信有限公司 用于配置资源的方法、终端设备和网络设备

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009131142A1 (ja) * 2008-04-23 2009-10-29 シャープ株式会社 通信システム、送信機、受信機及び通信方法
WO2016028001A1 (ko) * 2014-08-20 2016-02-25 엘지전자 주식회사 무선 통신 시스템에서 신호 전송 방법 및 장치
CN114629613B (zh) * 2016-09-30 2024-04-30 瑞典爱立信有限公司 调度uci传输方案
US10904880B2 (en) * 2017-03-24 2021-01-26 Telefonaktiebolaget Lm Ericsson (Publ) Resource allocation signaling for slot aggregation
CN108966181B (zh) * 2017-05-26 2021-07-23 株式会社Kt 为新无线电配置关于分量载波的频率资源的方法及其装置
WO2019014938A1 (en) * 2017-07-21 2019-01-24 Zte Corporation SYSTEM AND METHOD FOR ALLOCATING NETWORK RESOURCES
GB2565344B (en) * 2017-08-11 2022-05-04 Tcl Communication Ltd Slot aggregation
KR20190027705A (ko) * 2017-09-07 2019-03-15 엘지전자 주식회사 무선 통신 시스템에서 자원 할당 방법 및 상기 방법을 이용하는 장치
EP3462795B1 (en) * 2017-10-02 2024-03-20 Apple Inc. Mobile communication system, user equipment, access node, transceiver, baseband circuitry, apparatus, method, and machine readable media and computer programs for processing baseband signals
WO2019095271A1 (zh) * 2017-11-17 2019-05-23 Oppo广东移动通信有限公司 资源确定方法、装置、网元及系统
US11025456B2 (en) * 2018-01-12 2021-06-01 Apple Inc. Time domain resource allocation for mobile communication
PL3603254T3 (pl) * 2018-01-12 2024-03-11 Telefonaktiebolaget Lm Ericsson (Publ) Konfiguracja zasobów żądania szeregowania
US20200229144A1 (en) * 2019-01-10 2020-07-16 Qualcomm Incorporated Resource reservation techniques for wireless communications
CN111756511B (zh) * 2019-03-29 2021-09-07 华为技术有限公司 一种确定跳频频率的方法、设备及系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106385709A (zh) * 2016-10-31 2017-02-08 宇龙计算机通信科技(深圳)有限公司 资源调度方法及资源调度装置
CN111642017A (zh) * 2017-11-02 2020-09-08 Oppo广东移动通信有限公司 用于配置资源的方法、终端设备和网络设备
US20200053722A1 (en) * 2018-08-09 2020-02-13 Samsung Electronics Co., Ltd. Method and device for configuring demodulation reference signal for uplink control channel in wireless cellular communication system
CN111385075A (zh) * 2018-12-29 2020-07-07 展讯半导体(南京)有限公司 边链路信息传输方法、用户终端及计算机可读存储介质
CN111107555A (zh) * 2019-11-08 2020-05-05 中兴通讯股份有限公司 传输信道的传输和发送方法、装置、设备和存储介质

Also Published As

Publication number Publication date
US20230371035A1 (en) 2023-11-16
CN112367706B (zh) 2023-03-10
CN112367706A (zh) 2021-02-12

Similar Documents

Publication Publication Date Title
JP7195404B2 (ja) Pdcch監視方法、端末及びネットワーク機器
CN109699084B (zh) 非授权频段下的信息传输方法、终端及网络设备
CN106231637A (zh) 辅小区变换方法、装置以及基站
JP7194819B2 (ja) リソース配置方法、端末、およびネットワーク機器
CN109699078B (zh) 非授权频段下的信息传输方法、网络设备及终端
US11044706B2 (en) Control channel transmission method and related apparatuses
US20190109767A1 (en) Network bandwidth management method, terminal and computer storage medium
CN108811109B (zh) 资源映射方法、网络设备和终端设备
WO2021093754A1 (zh) 上行资源确定方法、指示方法、终端和网络设备
US11412499B2 (en) Method of allocating channel estimation number for search space and terminal device
JP2019507414A (ja) 通信デバイス、及び通信デバイスの電力消費を減少させる方法及び装置
JP7523573B2 (ja) リソース決定方法、指示方法及び機器
CN109075927B (zh) 下行数据传输方法和装置
WO2021057812A1 (zh) 资源配置方法、装置、设备及存储介质
CN110890942A (zh) 一种旁链路信息反馈方法及终端
CN110636533B (zh) 一种调度传输方法及终端
WO2022088388A1 (zh) 频域资源分配方法、装置及存储介质
CN111615197A (zh) 资源调整方法及设备
KR20210126090A (ko) 전송 자원 지시 방법, 전송 방법, 네트워크 장치 및 단말
WO2022088393A1 (zh) 资源分配方法、终端及存储介质
EP3611860B1 (en) Data transmission and related product
CN110839296B (zh) 网络资源调度方法、装置、存储介质及移动终端
JP7307269B2 (ja) 情報処理方法、機器及びコンピュータ可読記憶媒体
US20200100149A1 (en) Mobile terminal-based call link switching and control method, system, and mobile terminal
CN112291043B (zh) 数据传输方法、装置及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20959552

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20959552

Country of ref document: EP

Kind code of ref document: A1