WO2022088388A1 - 频域资源分配方法、装置及存储介质 - Google Patents

频域资源分配方法、装置及存储介质 Download PDF

Info

Publication number
WO2022088388A1
WO2022088388A1 PCT/CN2020/133891 CN2020133891W WO2022088388A1 WO 2022088388 A1 WO2022088388 A1 WO 2022088388A1 CN 2020133891 W CN2020133891 W CN 2020133891W WO 2022088388 A1 WO2022088388 A1 WO 2022088388A1
Authority
WO
WIPO (PCT)
Prior art keywords
sub
signal
channel
noise ratio
resource pool
Prior art date
Application number
PCT/CN2020/133891
Other languages
English (en)
French (fr)
Inventor
李志远
Original Assignee
Tcl通讯(宁波)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tcl通讯(宁波)有限公司 filed Critical Tcl通讯(宁波)有限公司
Priority to US18/250,362 priority Critical patent/US20230422287A1/en
Publication of WO2022088388A1 publication Critical patent/WO2022088388A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/02Selection of wireless resources by user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/40Resource management for direct mode communication, e.g. D2D or sidelink
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/542Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/56Allocation or scheduling criteria for wireless resources based on priority criteria

Definitions

  • the present application relates to the field of communication technologies, and in particular, to a frequency domain resource allocation method, device, and storage medium.
  • V2X Vehicle to X
  • NR V2X 5G air interface NR technology
  • TM2 and TM4 are transmission modes under no signal coverage area.
  • PSSCH Physical sidelink shared Channel
  • SideLink physical shared channel Physical shared channel
  • Frequency domain resources are randomly selected from the pool.
  • the channels of each subcarrier in the bandwidth have different characteristics, and if the frequency domain resources are randomly selected for the PSSCH, the reliability of transmission may be reduced.
  • the embodiments of the present application provide a frequency domain resource allocation method, device, and storage medium, which can allocate optimal frequency domain resources to PSSCH and improve transmission reliability.
  • the application provides a frequency domain resource allocation method, which is applied to an Internet of Vehicles terminal, and the method includes:
  • the resource pool includes multiple sub-channels
  • the sub-channel with the highest priority is selected from the resource pool as the PSSCH frequency domain resource.
  • each subchannel includes multiple subcarriers
  • the calculating the signal-to-noise ratio of each sub-channel in the resource pool specifically includes:
  • each sub-channel in the resource pool as a target sub-channel, respectively, calculating the signal-to-interference and noise ratio of each sub-carrier in the target sub-channel;
  • the calculating the signal-to-noise ratio of the target sub-channel according to the signal-to-interference and noise ratio of the multiple sub-carriers in the target sub-channel specifically includes:
  • the signal-to-interference-to-noise ratios of the multiple subcarriers in the target subchannel are mapped to the signal-to-noise ratios of the target subchannel.
  • the equivalent signal-to-noise ratio function is:
  • SNR eff is the signal-to-noise ratio of the target subchannel
  • R is the number of sub-carriers in the target sub-channel
  • SINR r is the signal-to-interference and noise ratio of the rth sub-carrier in the target sub-channel
  • is adjustment factor
  • determining the priority of each subchannel in the resource pool according to the signal-to-noise ratio specifically includes:
  • the priorities of the multiple subchannels in the resource pool are set.
  • the present application also provides a frequency domain resource allocation device, which is applied to an Internet of Vehicles terminal, and the device includes:
  • an acquisition module for acquiring a preconfigured resource pool;
  • the resource pool includes multiple sub-channels;
  • a calculation module for calculating the signal-to-noise ratio of each sub-channel in the resource pool
  • a determining module configured to determine the priority of each sub-channel in the resource pool according to the signal-to-noise ratio
  • the selection module is configured to select the sub-channel with the highest priority from the resource pool as the PSSCH frequency domain resource.
  • each subchannel includes multiple subcarriers
  • the computing module specifically includes:
  • a signal-to-interference-to-noise ratio calculation unit configured to respectively use each sub-channel in the resource pool as a target sub-channel, and calculate the signal-to-interference and noise ratio of each sub-carrier in the target sub-channel;
  • a signal-to-noise ratio calculation unit configured to calculate the signal-to-noise ratio of the target sub-channel according to the signal-to-interference and noise ratio of the multiple sub-carriers in the target sub-channel.
  • the signal-to-noise ratio calculation unit is specifically configured to:
  • the signal-to-interference-to-noise ratios of the multiple subcarriers in the target subchannel are mapped to the signal-to-noise ratios of the target subchannel.
  • the equivalent signal-to-noise ratio function is:
  • SNR eff is the signal-to-noise ratio of the target subchannel
  • R is the number of sub-carriers in the target sub-channel
  • SINR r is the signal-to-interference and noise ratio of the rth sub-carrier in the target sub-channel
  • is adjustment factor
  • the determining module is specifically used for:
  • the present application also provides a computer-readable storage medium in which a plurality of instructions are stored, and the instructions are adapted to be loaded by a processor to perform the following steps:
  • the resource pool includes multiple sub-channels
  • the sub-channel with the highest priority is selected from the resource pool as the PSSCH frequency domain resource.
  • each subchannel includes multiple subcarriers
  • the processor When performing the calculation of the signal-to-noise ratio of each sub-channel in the resource pool, the processor specifically performs the following steps:
  • each sub-channel in the resource pool as a target sub-channel, respectively, calculating the signal-to-interference and noise ratio of each sub-carrier in the target sub-channel;
  • the processor when the processor calculates the signal-to-noise ratio of the target sub-channel according to the signal-to-interference and noise ratio of the multiple sub-carriers in the target sub-channel, the processor specifically performs the following steps :
  • the signal-to-interference-to-noise ratios of the multiple subcarriers in the target subchannel are mapped to the signal-to-noise ratios of the target subchannel.
  • the equivalent signal-to-noise ratio function is:
  • SNR eff is the signal-to-noise ratio of the target subchannel
  • R is the number of sub-carriers in the target sub-channel
  • SINR r is the signal-to-interference and noise ratio of the rth sub-carrier in the target sub-channel
  • is adjustment factor
  • the processor when the processor determines the priority of each subchannel in the resource pool according to the signal-to-noise ratio, the processor specifically performs the following steps:
  • the priorities of the multiple subchannels in the resource pool are set.
  • the frequency domain resource allocation method, device and storage medium provided by the present application can calculate the signal-to-noise ratio of each sub-channel in the resource pool after acquiring the pre-configured resource pool, and determine each sub-channel in the resource pool according to the signal-to-noise ratio In order to select the sub-channel with the highest priority from the resource pool as the PSSCH frequency domain resource, so as to allocate the optimal frequency domain resource for the PSSCH and improve the reliability of transmission.
  • FIG. 1 is a schematic structural diagram of an Internet of Vehicles system provided by an embodiment of the present application.
  • FIG. 2 is a schematic flowchart of a frequency domain resource allocation method provided by an embodiment of the present application.
  • FIG. 3 is a schematic diagram of a resource pool in a frequency domain resource allocation method provided by an embodiment of the present application.
  • FIG. 4 is another schematic flowchart of a frequency domain resource allocation method provided by an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of a frequency domain resource allocation apparatus provided by an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of a calculation module in a frequency domain resource allocation apparatus provided by an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of a car networking terminal provided by an embodiment of the present application.
  • FIG. 8 is another schematic structural diagram of the Internet of Vehicles terminal provided by an embodiment of the present application.
  • FIG. 1 is a schematic structural diagram of a car networking system. Due to the different network coverage, the environment of the Internet of Vehicles can be divided into three situations, namely the network coverage area, the non-network coverage area and the partial network coverage area.
  • the PC5 interface of Sidelink can be used in these three situations, but the NR UU interface is in the There is no connection in areas with no network coverage, and may not exist in some areas of network coverage. Therefore, as shown in Figure 1, the IoV terminal 2 is located in the network coverage area, the base station (qNodeB) 1 is connected to the IoV terminal 2 through the NR UU, the vehicle network terminal 3 is located in the non-network coverage area, and the base station 1 and IoV terminal 3 cannot be connected.
  • the vehicle network terminal 2 can be connected to the vehicle network terminal 3 through the Sidelink.
  • FIG. 2 is a schematic flowchart of a frequency domain resource allocation method provided by an embodiment of the present application.
  • the frequency domain resource allocation method is applied to an Internet of Vehicles terminal, and the specific process of the frequency domain resource allocation method may be as follows:
  • the resource pool includes multiple sub-channels.
  • the time domain resources of PSSCH are calculated according to the timing of PSCCH (Physical Sidelink Control Channel, Sidelink Physical Control Channel), and the frequency domain resources of PSSCH are obtained according to the fields in the SCI (Sidelink control information, Sidelink control information) of PSCCH Resource block assignment and hopping resource allocation.
  • PSCCH Physical Sidelink Control Channel
  • SCI Segment control information, Sidelink control information
  • the SCI in the PSCCH specifies that the IoV terminal can only select the frequency domain resources of the PSSCH from the pre-configured resource pool.
  • the pre-configured resource pool can be configured by the base station when the IoV terminal is in the network coverage area, or it can be configured in the card.
  • the resource pool includes a plurality of sub-channels, each sub-channel is composed of a group of consecutive resource blocks (Resource Block, resource blocks), and each resource block includes a plurality of sub-carriers.
  • the size of the sub-channel is configured to the IoV terminal through the base station or pre-configured information.
  • each of the three resource pools RP1 , RP2 and RP3 includes multiple sub-channels SubCH.
  • each subchannel includes multiple subcarriers.
  • SINR Signal to Interference plus Noise Ratio
  • the calculating the signal-to-noise ratio of each sub-channel in the resource pool in step 202 includes:
  • each sub-channel in the resource pool as a target sub-channel, respectively, calculating the signal-to-interference and noise ratio of each sub-carrier in the target sub-channel;
  • the SINR is the signal-to-interference-plus-noise ratio, that is, the ratio of the strength of the received desired signal to the strength of the received interference signal (noise and interference).
  • the SINR of each subcarrier in the target subchannel can be calculated by the following formula:
  • S is the desired signal
  • I is the interference
  • is the noise
  • the SINR of different subcarriers in the target subchannel may be different.
  • the IoV terminal can use a function to perform equivalent signal-to-noise ratio mapping, that is, map the SINR of all sub-carriers in the target sub-channel into a Signal-to-noise ratio SNR, which is the signal-to-noise ratio SNR of the target subchannel.
  • the calculating the signal-to-noise ratio of the target sub-channel according to the signal-to-interference and noise ratios of the multiple sub-carriers in the target sub-channel includes:
  • the signal-to-interference-to-noise ratios of the multiple subcarriers in the target subchannel are mapped to the signal-to-noise ratios of the target subchannel.
  • the equivalent signal-to-noise ratio function can be SNR eff is the signal-to-noise ratio of the target subchannel
  • f(x) is the compression function of the signal-to-noise ratio mapping
  • f ⁇ 1 (x) is the inverse function of the compression function f(x)
  • R is the neutron of the target subchannel
  • SINR r is the signal-to-interference-to-noise ratio of the r-th subcarrier in the target subchannel
  • is an adjustment factor.
  • the compression function f(x) of the signal-to-noise ratio mapping can be various types of functions, such as the exponential equivalence ratio compression mapping EESM and the mutual information equivalence ratio compression mapping MIESM.
  • the compression function of the EESM is preferred in the embodiment of the present application to reduce the computational complexity of the signal-to-noise ratio (SNR) of the target channel, improve the computational efficiency, and further improve the frequency division efficiency of frequency domain resources.
  • SNR signal-to-noise ratio
  • the number R of subcarriers in the target subchannel can be obtained by high-level configuration, and the adjustment factor ⁇ is an empirical value, which is related to the channel mode model and the modulation method.
  • the optimal adjustment factor ⁇ can be determined by the following formula:
  • SINR AWGN,i is the signal-to-interference-to-noise ratio SINR of the i-th channel under AWGN (Additive White Gaussian Noise, Gaussian white noise) noise conditions, which can be obtained by simulation.
  • a CQI channel quality indication, channel quality indication
  • BLER block error rate
  • SINR EESM,i is the signal-to-interference-to-noise ratio SINR under the i-th equivalent channel state calculated according to the inverse function of the compression function of EESM.
  • SINR EESM,i contains the regulator ⁇ , by minimizing The optimal adjustment factor ⁇ opt can be obtained.
  • This embodiment of the present application first determines the optimal adjustment factor ⁇ opt , and then calculates the signal-to-noise ratio SNR of the target subchannel according to the optimal adjustment factor ⁇ opt , so as to improve the calculation accuracy of the SNR of the target sub-channel SNR, thereby The allocation effect of frequency domain resources is improved, and the reliability of transmission is further improved.
  • the priority of each subchannel can be set according to the size of the SNR of each subchannel.
  • determining the priority of each subchannel in the resource pool according to the signal-to-noise ratio in step 203 includes:
  • the priorities of the multiple subchannels in the resource pool are set.
  • the priority of the sub-channel in the resource pool is set according to the SNR of the sub-channel, that is, the higher the SNR of the sub-channel, the higher the priority of the sub-channel, the higher the SNR of the sub-channel The lower the SNR, the lower the priority of the subchannel.
  • the sub-channels with good channel conditions are preferentially selected, that is, the sub-channels with high signal-to-noise ratio (SNR) are preferentially selected as PSSCH frequency domain resources, which effectively improves the transmission efficiency. reliability.
  • SNR signal-to-noise ratio
  • FIG. 4 is a schematic diagram of a specific flow of a frequency domain resource allocation method provided by an embodiment of the present application.
  • the frequency domain resource allocation method is applied to an Internet of Vehicles terminal, and the specific flow of the frequency domain resource allocation method may be as follows:
  • the resource pool includes multiple subchannels, and each subchannel includes multiple subcarriers.
  • the PSSCH frequency domain resources specified by the SCI of the PSCCH can only be selected from the resource pool pre-configured by the IoV terminal.
  • the resource pool A preconfigured by the Internet of Vehicles terminal has M sub-channels, and each sub-channel has P sub-carriers.
  • each subchannel in the resource pool as a target subchannel, and calculate the signal-to-interference-noise ratio of each subcarrier in the target subchannel.
  • any subchannel B in the resource pool A calculate the SINR of each subcarrier in the subchannel B, so as to obtain the SINR of the P subcarriers in the subchannel B.
  • the signal-to-noise ratio SNR of the sub-channel B can be obtained by calculation, thereby obtaining the signal-to-noise ratio SNR of the N sub-channels in the resource pool A.
  • the N sub-channels are arranged from 1 to N in order, that is, the first sub-channel has the largest SNR and is arranged in the N-th sub-channel.
  • the signal-to-noise ratio SNR of the sub-channel is the smallest.
  • N sub-channels For example, according to the order of N sub-channels, set the priority of N sub-channels, and the order of priority of N sub-channels is consistent with the order of N sub-channels, that is, the priority of the first sub-channel is the highest, and the priority of the N sub-channels is the same as that of the N sub-channels.
  • the Nth subchannel has the lowest priority.
  • the subchannel arranged at the first has the highest priority, and the subchannel arranged at the first is selected as the PSSCH frequency domain resource.
  • the frequency domain resource allocation method can calculate the signal-to-noise ratio of each sub-channel in the resource pool after acquiring the pre-configured resource pool, and determine the signal-to-noise ratio of each sub-channel in the resource pool according to the signal-to-noise ratio.
  • the priority is to select the sub-channel with the highest priority from the resource pool as the PSSCH frequency domain resource, so as to allocate the optimal frequency domain resource for the PSSCH and improve the reliability of transmission.
  • this embodiment will be further described from the perspective of a frequency domain resource allocation device, which can be integrated in a car networking terminal.
  • FIG. 5 specifically describes the frequency domain resource allocation apparatus provided by the embodiment of the present application.
  • the frequency domain resource allocation apparatus may include: an acquisition module 501 , a calculation module 502 , a determination module 503 , and a selection module 504 .
  • the obtaining module 501 is configured to obtain a pre-configured resource pool; the resource pool includes multiple sub-channels.
  • the SCI in the PSCCH specifies that the IoV terminal can only select the frequency domain resources of the PSSCH from the pre-configured resource pool.
  • the pre-configured resource pool can be configured by the base station when the IoV terminal is in the network coverage area, or it can be configured in the card.
  • the resource pool includes a plurality of sub-channels, each sub-channel is composed of a group of consecutive resource blocks (Resource Block, resource blocks), and each resource block includes a plurality of sub-carriers.
  • the calculation module 502 is configured to calculate the signal-to-noise ratio of each sub-channel in the resource pool.
  • Each subchannel includes multiple subcarriers.
  • the signal-to-interference and noise ratio SINR of each subcarrier in the subchannel may be calculated first, and then the signal-to-noise ratio SNR of the subchannel may be calculated.
  • the determining module 503 is configured to determine the priority of each subchannel in the resource pool according to the signal-to-noise ratio.
  • the priority of each subchannel can be set according to the size of the SNR of each subchannel.
  • the selecting module 504 is configured to select the sub-channel with the highest priority from the resource pool as the PSSCH frequency domain resource.
  • the subchannel with good channel condition is preferentially selected, that is, the subchannel with a high signal-to-noise ratio (SNR) is preferentially selected as the PSSCH frequency domain resource, which effectively improves the reliability of transmission.
  • SNR signal-to-noise ratio
  • each subchannel includes multiple subcarriers.
  • the computing module 502 specifically includes:
  • a signal-to-interference-to-noise ratio calculation unit 601 configured to respectively use each sub-channel in the resource pool as a target sub-channel, and calculate the signal-to-interference and noise ratio of each sub-carrier in the target sub-channel;
  • a signal-to-noise ratio calculation unit 602 configured to calculate the signal-to-noise ratio of the target sub-channel according to the signal-to-interference and noise ratio of the multiple sub-carriers in the target sub-channel.
  • the signal-to-noise ratio calculation unit 602 is specifically configured to:
  • the signal-to-interference and noise ratios of the plurality of subcarriers in the target subchannel are mapped to the signal-to-noise ratio of the target subchannel.
  • the equivalent signal-to-noise ratio function is:
  • SNR eff is the signal-to-noise ratio of the target subchannel
  • R is the number of sub-carriers in the target sub-channel
  • SINR r is the signal-to-interference and noise ratio of the rth sub-carrier in the target sub-channel
  • is adjustment factor
  • the determining module 503 is specifically configured to:
  • the priorities of the multiple subchannels in the resource pool are set.
  • the frequency domain resource allocation device can calculate the signal-to-noise ratio of each sub-channel in the resource pool after acquiring the pre-configured resource pool, and determine the signal-to-noise ratio of each sub-channel in the resource pool according to the signal-to-noise ratio. Priority, so as to select the sub-channel with the highest priority from the resource pool as the PSSCH frequency domain resource, so as to allocate the optimal frequency domain resource for the PSSCH and improve the reliability of transmission.
  • an embodiment of the present application further provides a vehicle networking terminal.
  • the Internet of Vehicles terminal 700 includes a processor 701 and a memory 702 .
  • the processor 701 is electrically connected to the memory 702 .
  • the processor 701 is the control center of the Internet of Vehicles terminal 700, and uses various interfaces and lines to connect various parts of the entire Internet of Vehicles terminal, by running or loading the application program stored in the memory 702, and calling the data stored in the memory 702, Perform various functions of the Internet of Vehicles terminal and process data, so as to conduct overall monitoring of the Internet of Vehicles terminal.
  • the acquisition module 501 , the calculation module 502 , the determination module 503 and the selection module 504 shown in FIG. 7 may be application programs stored in the memory 702 .
  • the processor 701 in the IoV terminal 700 runs the acquisition module 501 , the calculation module 502 , the determination module 503 and the selection module 504 stored in the memory 702 , thereby realizing various functions.
  • the acquiring module 501 is executed by the processor 701, it is used to acquire a pre-configured resource pool; the resource pool includes multiple sub-channels.
  • the calculation module 502 is executed by the processor 701, it is configured to calculate the signal-to-noise ratio of each subchannel in the resource pool.
  • the determining module 503 When the determining module 503 is executed by the processor 701, it is configured to determine the priority of each subchannel in the resource pool according to the signal-to-noise ratio.
  • the selecting module 504 When the selecting module 504 is executed by the processor 701, it is configured to select the sub-channel with the highest priority from the resource pool as the PSSCH frequency domain resource.
  • FIG. 8 is a schematic structural diagram of an Internet of Vehicles terminal provided by an embodiment of the present application.
  • the IoV terminal 300 may include an RF circuit 310 , a memory 320 including one or more computer-readable storage media, an input unit 330 , a display unit 340 , a sensor 350 , an audio circuit 360 , a speaker 361 , a microphone 362 , and a transmission module 370 , including a processor 380 with one or more processing cores, a power supply 390 and other components.
  • a processor 380 with one or more processing cores, a power supply 390 and other components.
  • the RF circuit 310 is used for receiving and sending electromagnetic waves, realizing mutual conversion between electromagnetic waves and electrical signals, so as to communicate with a communication network or other devices.
  • RF circuitry 310 may include various existing circuit elements for performing these functions, eg, antennas, cellular communication radio frequency transceivers, millimeter wave radio frequency transceivers, WIFI/BT transceivers, GPS transceivers, digital signal processors, Encryption/decryption chips, Subscriber Identity Module (SIM) cards, memory, etc.
  • SIM Subscriber Identity Module
  • the RF circuit 310 may communicate with various networks such as the Internet, an intranet, a wireless network, or with other devices over a wireless network.
  • the aforementioned wireless network may include a cellular telephone network, a wireless local area network, or a metropolitan area network.
  • the above-mentioned wireless network can use various communication standards, protocols and technologies, including but not limited to Global System for Mobile Communication (GSM), Enhanced Data GSM Environment (EDGE), wideband code Division Multiple Access (Wideband Code Division Multiple Access, WCDMA), Code Division Multiple Access (Code Division Access, CDMA), Time Division Multiple Access (TDMA), Wireless Fidelity (Wireless Fidelity, Wi- Fi) (such as IEEE 802.11a, IEEE 802.11b, IEEE802.11g and/or IEEE 802.11n), Voice over Internet Protocol (VoIP), Worldwide Interoperability for Microwave Access, Wi-Max), other protocols for mail, instant messaging, and short messaging, and any other suitable communication protocols, even those that are not currently being developed.
  • GSM Global System for Mobile Communication
  • EDGE Enhanced Data GSM Environment
  • WCDMA Wideband Code Division Multiple Access
  • CDMA Code Division Multiple Access
  • the memory 320 can be used to store software programs and modules, such as the program instructions/modules corresponding to the frequency domain resource allocation apparatus and method in the above-mentioned embodiments.
  • the processor 380 executes various functional applications by running the software programs and modules stored in the memory 320. And data processing, that is, to realize the function of frequency domain resource allocation.
  • Memory 320 may include high-speed random access memory, and may also include non-volatile memory, such as one or more magnetic storage devices, flash memory, or other non-volatile solid-state memory.
  • the memory 320 may further include memory disposed remotely with respect to the processor 380, and these remote memories may be connected to the connected vehicle terminal 300 through a network. Examples of such networks include, but are not limited to, the Internet, an intranet, a local area network, a mobile communication network, and combinations thereof.
  • the input unit 330 may be used to receive input numerical or character information, and generate keyboard, mouse, joystick, optical or trackball signal input related to user settings and function control.
  • the input unit 330 may include a touch-sensitive surface 331 as well as other input devices 332 .
  • Touch-sensitive surface 331 also known as a touch display or trackpad, can collect user touch operations on or near it (such as a user using a finger, stylus, etc., any suitable object or accessory on or on touch-sensitive surface 331). operation near the touch-sensitive surface 331), and drive the corresponding connection device according to a preset program.
  • the touch-sensitive surface 331 may include two parts, a touch detection device and a touch controller.
  • the touch detection device detects the user's touch orientation, detects the signal brought by the touch operation, and transmits the signal to the touch controller; the touch controller receives the touch information from the touch detection device, converts it into contact coordinates, and then sends it to the touch controller.
  • the touch-sensitive surface 331 may be implemented using various types of resistive, capacitive, infrared, and surface acoustic waves.
  • the input unit 330 may also include other input devices 332 .
  • other input devices 332 may include, but are not limited to, one or more of physical keyboards, function keys (such as volume control keys, switch keys, etc.), trackballs, mice, joysticks, and the like.
  • the display unit 340 can be used to display information input by the user or information provided to the user and various graphical user interfaces of the car networking terminal 300, which can be composed of graphics, text, icons, videos and any combination thereof.
  • the display unit 340 may include a display panel 341.
  • the display panel 341 may be configured in the form of an LCD (Liquid Crystal Display, liquid crystal display), an OLED (Organic Light-Emitting Diode, organic light-emitting diode) and the like.
  • the touch-sensitive surface 331 may cover the display panel 341.
  • the touch-sensitive surface 331 When the touch-sensitive surface 331 detects a touch operation on or near it, it transmits it to the processor 380 to determine the type of the touch event, and then the processor 380 determines the type of the touch event according to the touch event. Type provides corresponding visual output on display panel 341 .
  • the touch-sensitive surface 331 and the display panel 341 are implemented as two separate components to realize the input and output functions, in some embodiments, the touch-sensitive surface 331 and the display panel 341 may be integrated to realize the input and output functions.
  • the IoV terminal 300 may further include at least one sensor 350, such as a light sensor, a motion sensor, and other sensors.
  • the light sensor may include an ambient light sensor and a proximity sensor, wherein the ambient light sensor may adjust the brightness of the display panel 341 according to the brightness of the ambient light, and the proximity sensor may close the display panel when the car networking terminal 300 is moved to the ear 341 and/or backlight.
  • the gravitational acceleration sensor can detect the magnitude of acceleration in all directions (usually three axes), and can detect the magnitude and direction of gravity when stationary, and can be used for applications that recognize the terminal posture (such as horizontal and vertical screen switching, related games, magnetometer attitude calibration), vibration recognition related functions (such as pedometer, tapping), etc.; as for the gyroscope, barometer, hygrometer, thermometer, infrared sensor and other sensors that can also be configured on the Internet of Vehicles terminal 300, This will not be repeated here.
  • the audio circuit 360 , the speaker 361 and the microphone 362 can provide an audio interface between the user and the connected car terminal 300 .
  • the audio circuit 360 can transmit the received audio data converted electrical signal to the speaker 361, and the speaker 361 converts it into a sound signal for output; on the other hand, the microphone 362 converts the collected sound signal into an electrical signal, which is converted by the audio circuit 360 After receiving, it is converted into audio data, and then the audio data is output to the processor 380 for processing, and then sent to, for example, another terminal through the RF circuit 310, or the audio data is output to the memory 320 for further processing.
  • the audio circuit 360 may also include an earplug jack to provide communication between the peripheral headset and the connected car terminal 300 .
  • the IoV terminal 300 can help users to send and receive emails, browse web pages, access streaming media, etc. through a transmission module 370 (eg, a WIFI module), and it provides users with wireless broadband Internet access.
  • a transmission module 370 eg, a WIFI module
  • FIG. 8 shows the transmission module 370, it can be understood that it does not belong to the necessary structure of the Internet of Vehicles terminal 300, and can be completely omitted as required within the scope of not changing the essence of the invention.
  • the processor 380 is the control center of the terminal 300, using various interfaces and lines to connect various parts of the entire terminal, by running or executing the software programs and/or modules stored in the memory 320, and calling the data stored in the memory 320, Execute various functions of the Internet of Vehicles terminal 300 and process data, so as to monitor the terminal as a whole.
  • the processor 380 may include one or more processing cores; in some embodiments, the processor 380 may integrate an application processor and a modem processor, wherein the application processor mainly handles the operating system, user interface and Applications, etc., the modem processor mainly deals with wireless communication. It can be understood that, the above-mentioned modulation and demodulation processor may not be integrated into the processor 380 .
  • the IoV terminal 300 also includes a power supply 390 (such as a battery) for supplying power to various components.
  • the power supply can be logically connected to the processor 380 through a power management system, so as to manage charging, discharging, and power management through the power management system. consumption management and other functions.
  • Power supply 390 may also include one or more DC or AC power sources, recharging systems, power failure detection circuits, power converters or inverters, power status indicators, and any other components.
  • the IoV terminal 300 may further include a camera (eg, a front-facing camera, a rear-facing camera), a Bluetooth module, and the like, which will not be repeated here.
  • the display unit of the Internet of Vehicles terminal is a touch screen display, and the Internet of Vehicles terminal further includes a memory 320.
  • the acquisition module 501, the calculation module 502, the determination module 503 and the selection module 504 shown in FIG. 7 may be stored in applications in memory 320.
  • the processor 380 in the IoV terminal 700 runs the acquisition module 501 , the calculation module 502 , the determination module 503 and the selection module 504 stored in the memory 320 , thereby realizing various functions.
  • the acquiring module 501 When the acquiring module 501 is executed by the processor 701, it is used to acquire a pre-configured resource pool; the resource pool includes multiple sub-channels.
  • the calculation module 502 When the calculation module 502 is executed by the processor 701, it is configured to calculate the signal-to-noise ratio of each subchannel in the resource pool.
  • the determining module 503 When the determining module 503 is executed by the processor 701, it is configured to determine the priority of each subchannel in the resource pool according to the signal-to-noise ratio.
  • the selecting module 504 When the selecting module 504 is executed by the processor 701, it is configured to select the sub-channel with the highest priority from the resource pool as the PSSCH frequency domain resource.
  • the above modules can be implemented as independent entities, or can be arbitrarily combined to be implemented as the same or several entities.
  • the specific implementation of the above modules can refer to the previous method embodiments, which will not be repeated here.
  • embodiments of the present invention provide a storage medium, in which a plurality of instructions are stored, and the instructions can be loaded by a processor to perform steps in any frequency domain resource allocation method provided by the embodiments of the present invention.
  • the storage medium may include: a read-only memory (ROM, Read Only Memory), a random access memory (RAM, Random Access Memory), a magnetic disk or an optical disk, and the like.
  • ROM Read Only Memory
  • RAM Random Access Memory
  • magnetic disk or an optical disk and the like.
  • any frequency domain resource allocation method provided by the present embodiment can be implemented
  • any frequency domain resource allocation method provided by the present embodiment can be implemented

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种频域资源分配方法、装置及存储介质。所述频域资源分配方法应用于车联网终端,所述方法包括:获取预先配置的资源池;所述资源池包括多个子信道(201);计算所述资源池中每个子信道的信噪比(202);根据所述信噪比,确定所述资源池中每个子信道的优先级(203);从所述资源池中选取优先级最高的子信道,作为PSSCH频域资源(204)。

Description

频域资源分配方法、装置及存储介质
本申请要求于2020年10月26日提交中国专利局、申请号为202011154825.0、发明名称为“频域资源分配方法、装置及存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种频域资源分配方法、装置及存储介质。
背景技术
车联网(Vehicle to X,V2X)是5G中的重要应用场景,V2X采用了ProSe(近距离通信)技术中的SideLink(边缘连接、侧链路连接)技术,实现车辆网终端之间的直接通信。SideLink基于5G空口NR的技术(NR V2X),满足V2X需求的低时延、高可靠性、高速率标准。
SideLink发展到目前有四种传输模式TM1,TM2,TM3,TM4。其中TM2和TM4是处于无信号覆盖区域下的传输模式,这种传输模式,基站无法调度频域资源给PSSCH(Physical sidelink shared Channel,SideLink物理共享信道),车辆网终端只能从预先配置的资源池中随机选择频域资源。但是,带宽中各个子载波的信道具有不同的特性,若随机选择频域资源给PSSCH,可能会降低传输的可靠性。
技术问题
本申请实施例提供一种频域资源分配方法、装置及存储介质,能够给PSSCH分配最优的频域资源,提高传输的可靠性。
技术解决方案
本申请提供了一种频域资源分配方法,应用于车联网终端,所述 方法包括:
获取预先配置的资源池;所述资源池包括多个子信道;
计算所述资源池中每个子信道的信噪比;
根据所述信噪比,确定所述资源池中每个子信道的优先级;
从所述资源池中选取优先级最高的子信道,作为PSSCH频域资源。
在本申请实施例中,所述每个子信道包括多个子载波;
所述计算所述资源池中每个子信道的信噪比,具体包括:
分别将所述资源池中的每个子信道作为目标子信道,计算所述目标子信道中每个子载波的信干噪比;
根据所述目标子信道中所述多个子载波的信干噪比,计算所述目标子信道的信噪比。
在本申请一些实施例中,所述根据所述目标子信道中所述多个子载波的信干噪比,计算所述目标子信道的信噪比,具体包括:
根据等效信噪比函数,将所述目标子信道中所述多个子载波的信干噪比映射为所述目标子信道的信噪比。
在本申请一些实施例中,所述等效信噪比函数为:
Figure PCTCN2020133891-appb-000001
其中,SNR eff为所述目标子信道的信噪比,R为所述目标子信道中子载波的个数,SINR r为所述目标子信道中第r个子载波的信干噪比,β为调节因子。
在本申请一些实施例中,所述根据所述信噪比,确定所述资源池中每个子信道的优先级,具体包括:
按照所述信噪比由高到低的顺序,对所述资源池中的多个子信道进行排序;
根据所述排序,并按照优先级由高到低的顺序,设置所述资源池中的多个子信道的优先级。
本申请还提供了一种频域资源分配装置,应用于车联网终端,所述装置包括:
获取模块,用于获取预先配置的资源池;所述资源池包括多个子信道;
计算模块,用于计算所述资源池中每个子信道的信噪比;
确定模块,用于根据所述信噪比,确定所述资源池中每个子信道的优先级;以及,
选取模块,用于从所述资源池中选取优先级最高的子信道,作为PSSCH频域资源。
在本申请一些实施例中,所述每个子信道包括多个子载波;
所述计算模块具体包括:
信干噪比计算单元,用于分别将所述资源池中的每个子信道作为目标子信道,计算所述目标子信道中每个子载波的信干噪比;以及,
信噪比计算单元,用于根据所述目标子信道中所述多个子载波的信干噪比,计算所述目标子信道的信噪比。
在本申请一些实施例中,所述信噪比计算单元具体用于:
根据等效信噪比函数,将所述目标子信道中所述多个子载波的信干噪比映射为所述目标子信道的信噪比。
在本申请一些实施例中,所述等效信噪比函数为:
Figure PCTCN2020133891-appb-000002
其中,SNR eff为所述目标子信道的信噪比,R为所述目标子信道中子载波的个数,SINR r为所述目标子信道中第r个子载波的信干噪比,β为调节因子。
在本申请一些实施例中,所述确定模块具体用于:
按照所述信噪比由高到低的顺序,对所述资源池中的多个子信道进行排序;根据所述排序,并按照优先级由高到低的顺序,设置所述资源池中的多个子信道的优先级。
本申请还提供一种计算机可读存储介质,所述存储介质中存储有多条指令,所述指令适于由处理器加载以执行以下步骤:
获取预先配置的资源池;所述资源池包括多个子信道;
计算所述资源池中每个子信道的信噪比;
根据所述信噪比,确定所述资源池中每个子信道的优先级;
从所述资源池中选取优先级最高的子信道,作为PSSCH频域资源。
在本申请一些实施例中,所述每个子信道包括多个子载波;
所述处理器在执行所述计算所述资源池中每个子信道的信噪比时,具体执行以下步骤:
分别将所述资源池中的每个子信道作为目标子信道,计算所述目标子信道中每个子载波的信干噪比;
根据所述目标子信道中所述多个子载波的信干噪比,计算所述目标子信道的信噪比。
在本申请一些实施例中,所述处理器在执行所述根据所述目标子信道中所述多个子载波的信干噪比,计算所述目标子信道的信噪比时,具体执行以下步骤:
根据等效信噪比函数,将所述目标子信道中所述多个子载波的信干噪比映射为所述目标子信道的信噪比。
在本申请一些实施例中,所述等效信噪比函数为:
Figure PCTCN2020133891-appb-000003
其中,SNR eff为所述目标子信道的信噪比,R为所述目标子信道中子载波的个数,SINR r为所述目标子信道中第r个子载波的信干噪比,β为调节因子。
在本申请一些实施例中,所述处理器在执行所述根据所述信噪比,确定所述资源池中每个子信道的优先级时,具体执行以下步骤:
按照所述信噪比由高到低的顺序,对所述资源池中的多个子信道进行排序;
根据所述排序,并按照优先级由高到低的顺序,设置所述资源池中的多个子信道的优先级。
有益效果
本申请提供的频域资源分配方法、装置及存储介质,能够在获取预先配置的资源池后,计算资源池中每个子信道的信噪比,并根据信噪比,确定资源池中每个子信道的优先级,以便从资源池中选取优先级最高的子信道,作为PSSCH频域资源,从而为PSSCH分配最优的频域资源,提高传输的可靠性。
附图说明
下面结合附图,通过对本申请的具体实施方式详细描述,将使本申请的技术方案及其它有益效果显而易见。
图1为本申请实施例提供的车联网系统的结构示意图。
图2为本申请实施例提供的频域资源分配方法的流程示意图。
图3为本申请实施例提供的频域资源分配方法中资源池的示意图。
图4为本申请实施例提供的频域资源分配方法的另一流程示意图。
图5为本申请实施例提供的频域资源分配装置的结构示意图。
图6为本申请实施例提供的频域资源分配装置中计算模块的结构示意图。
图7为本申请实施例提供的车联网终端的结构示意图。
图8为本申请实施例提供的车联网终端的另一结构示意图。
本发明的实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
如图1所示,图1是车联网系统的结构示意图。车联网的环境由于网络覆盖的不同,分为三种情况,即网络覆盖区、无网络覆盖区和 部分网络覆盖区,Sidelink的PC5接口在这三种情况下都可以使用,但NR UU接口在无网络覆盖区不存在连接,在部分网络覆盖区也可能不存在连接。因此,如图1所示,车联网终端2位于网络覆盖区,基站(qNodeB)1通过NR UU与车联网终端2连接,车辆网终端3位于无网络覆盖区,基站1与车联网终端3无法连接,而车辆网终端2可以通过Sidelink与车辆网终端3连接。
如图2所示,图2是本申请实施例提供的频域资源分配方法的流程示意图,该频域资源分配方法应用于车联网终端,该频域资源分配方法的具体流程可以如下:
201、获取预先配置的资源池;所述资源池包括多个子信道。
本申请实施例中,PSSCH的时域资源根据PSCCH(Physical Sidelink Control Channel,Sidelink物理控制信道)的时序推算得到,PSSCH的频域资源根据PSCCH的SCI(Sidelink control information,Sidelink控制信息)中的字段Resource block assignment and hopping resource allocation得出。而在无网络覆盖区,PSCCH中的SCI指定车联网终端只能在预先配置的资源池中选取PSSCH的频域资源。预先配置的资源池可以是车联网终端在网络覆盖区时基站配置的,也可以是卡里面配置的。
资源池包括多个子信道,每个子信道由一组连续的资源块(Resource Block,资源块)组成,每个资源块包括多个子载波。子信道的大小是通过基站或预配置信息来配置给车联网终端的。如图3所示,三个资源池RP1、RP2、RP3中均包括多个子信道SubCH。
202、计算所述资源池中每个子信道的信噪比。
本申请实施例中,每个子信道包括多个子载波,对于一个子信道,可以先计算该子信道中每个子载波的信干噪比(Signal to Interference plus Noise Ratio,SINR),再计算该子信道的信噪比(signal-to-noise ratio,SNR)。
具体地,步骤202中的所述计算所述资源池中每个子信道的信噪比,包括:
分别将所述资源池中的每个子信道作为目标子信道,计算所述目标子信道中每个子载波的信干噪比;
根据所述目标子信道中所述多个子载波的信干噪比,计算所述目标子信道的信噪比。
需要说明的是,信干噪比SINR是信号与干扰加噪声比,即接收到的期望信号的强度与接收到的干扰信号(噪声和干扰)的强度的比值。目标子信道中每个子载波的信干噪比SINR可以通过如下公式计算获得:
Figure PCTCN2020133891-appb-000004
其中,S为期望信号,I为干扰,δ为噪声。
目标子信道中不同子载波的信干噪比SINR可能不同。在获取目标子信道的每个子载波的信干噪比SINR后,车联网终端可以使用一种函数进行等效信噪比映射,即将目标子信道中所有子载波的信干噪比SINR映射为一个信噪比SNR,该信噪比SNR即为目标子信道的信噪比SNR。
具体地,所述根据所述目标子信道中所述多个子载波的信干噪比,计算所述目标子信道的信噪比,包括:
根据等效信噪比函数,将所述目标子信道中所述多个子载波的信干噪比映射为所述目标子信道的信噪比。
其中,等效信噪比函数可以是
Figure PCTCN2020133891-appb-000005
SNR eff为目标子信道的信噪比,f(x)为信噪比映射的压缩函数,f -1(x)为压缩函数f(x)的逆函数,R为所述目标子信道中子载波的个数,SINR r为所述目标子信道中第r个子载波的信干噪比,β为调节因子。
信噪比映射的压缩函数f(x)可以为多种类型的函数,如指数等效比压缩映射EESM和互信息等效比压缩映射MIESM。其中,EESM的压缩函数为f(x)=exp(-x),EESM的逆函数为f -1(-x)=-lnx。若采用EESM的压缩函数,则等效信噪比函数具体可以为:
Figure PCTCN2020133891-appb-000006
由于EESM的压缩函数的计算复杂度低,因此本申请实施例优选EESM的压缩函数,以降低目标信道的信噪比SNR的计算复杂度,提高计算效率,进而提高频域资源的分频效率。
目标子信道中子载波的个数R可以由高层配置得到,调节因子β为一个经验值,与信道模模型和调制方式有关。最优的调节因子β可以通过以下公式确定:
Figure PCTCN2020133891-appb-000007
其中,β opt为最优的调节因子,N为信道个数。SINR AWGN,i为 AWGN(Additive White Gaussian Noise,高斯白噪声)噪声条件下的第i个信道的信干噪比SINR,可以通过仿真得到。具体地,在每种信道模型下,仿真得到CQI(channel quality indication,信道质量指示)遍历所有信道状态的BLER(块误码率)-SINR曲线,针对某个CQI在每种信道模型下得到N个信道状态的BLER,即可查找得到AWGN下N个信道对应的信干噪比SINR。
SINR EESM,i为根据EESM的压缩函数的逆函数,计算得到的第i个等效信道状态下的信干噪比SINR。SINR EESM,i中含有调节因子β,通过最小化
Figure PCTCN2020133891-appb-000008
即可获得最优的调节因子β opt
本申请实施例先确定最优的调节因子β opt,再根据该最优的调节因子β opt,计算目标子信道的信噪比SNR,提高目标子信道的信噪比SNR的计算准确度,从而提高频域资源的分配效果,进一步提高传输的可靠性。
203、根据所述信噪比,确定所述资源池中每个子信道的优先级。
本申请实施例中,在计算获得资源池中每个子信道的信噪比SNR后,即可根据每个子信道的信噪比SNR的大小,设置每个子信道的优先级。
具体地,步骤203中的所述根据所述信噪比,确定所述资源池中每个子信道的优先级,包括:
按照所述信噪比由高到低的顺序,对所述资源池中的多个子信道进行排序;
根据所述排序,并按照优先级由高到低的顺序,设置所述资源池中的多个子信道的优先级。
需要说明的是,资源池中子信道的信噪比SNR越高,表明该子信道的信道条件越好,可以设置该子信道的优先级越高。也就是说,资源池中子信道的优先级按照子信道的信噪比SNR的高低来设置,即子信道的信噪比SNR越高,该子信道的优先级越高,子信道的信噪比SNR越低,该子信道的优先级越低。
204、从所述资源池中选取优先级最高的子信道,作为PSSCH频域资源。
本申请实施例中,由于优先级高的子信道的信道条件更好,因此优先选择信道条件好的子信道,即优先选择信噪比SNR高的子信道,作为PSSCH频域资源,有效提高传输的可靠性。
如图4所示,图4是本申请实施例提供的频域资源分配方法的具体流程示意图,该频域资源分配方法应用于车联网终端,该频域资源分配方法的具体流程可以如下:
401、获取预先配置的资源池;所述资源池包括多个子信道,每个子信道包括多个子载波。
PSCCH的SCI指定的PSSCH频域资源只能从车联网终端预先配置的资源池中选取。例如,车联网终端预先配置的资源池A中具有M个子信道,且每个子信道中具有P个子载波。
402、分别将所述资源池中的每个子信道作为目标子信道,计算所述目标子信道中每个子载波的信干噪比。
例如,对于资源池A中的任一子信道B,计算子信道B中每个子载波的信干噪比SINR,从而获得子信道B中P个子载波的信干噪比SINR。
403、根据所述目标子信道中所述多个子载波的信干噪比,计算所述目标子信道的信噪比。
例如,根据子信道B中P个子载波的信干噪比SINR,可以计算获得子信道B的信噪比SNR,从而获得资源池A中N个子信道的信噪比SNR。
404、在获取所述资源池中多个子信道的信噪比后,按照所述信噪比由高到低的顺序,对所述资源池中的多个子信道进行排序。
例如,根据资源池A中N个子信道的信噪比SNR大小,将N个子信道从1到N个顺序排列,即排列在第1个的子信道的信噪比SNR最大,排列在第N个的子信道的信噪比SNR最小。
405、根据所述排序,并按照优先级由高到低的顺序,设置所述资源池中的多个子信道的优先级。
例如,按照N个子信道的排序,设置N个子信道的优先级,N个子信道的优先级的顺序与N个子信道的排列顺序一致,即排列在第1个的子信道的优先级最高,排列在第N个的子信道的优先级最低。
406、从所述资源池中选取优先级最高的子信道,作为PSSCH频域资源。
例如,在排列的N个子信道中,排列在第1个的子信道的优先级 最高,选取排列在第1个的子信道作为PSSCH频域资源。
由上述可知,本申请提供的频域资源分配方法,能够在获取预先配置的资源池后,计算资源池中每个子信道的信噪比,并根据信噪比,确定资源池中每个子信道的优先级,以便从资源池中选取优先级最高的子信道,作为PSSCH频域资源,从而为PSSCH分配最优的频域资源,提高传输的可靠性。
根据上述实施例所描述的方法,本实施例将从频域资源分配装置的角度进一步进行描述,该频域资源分配装置可以集成在车联网终端中。
请参阅图5,图5具体描述了本申请实施例提供的频域资源分配装置,该频域资源分配装置可以包括:获取模块501、计算模块502、确定模块503和选取模块504。
(1)获取模块501
获取模块501,用于获取预先配置的资源池;所述资源池包括多个子信道。
在无网络覆盖区,PSCCH中的SCI指定车联网终端只能在预先配置的资源池中选取PSSCH的频域资源。预先配置的资源池可以是车联网终端在网络覆盖区时基站配置的,也可以是卡里面配置的。
资源池包括多个子信道,每个子信道由一组连续的资源块(Resource Block,资源块)组成,每个资源块包括多个子载波。
(2)计算模块502
计算模块502,用于计算所述资源池中每个子信道的信噪比。
每个子信道包括多个子载波,对于一个子信道,可以先计算该子信道中每个子载波的信干噪比SINR,再计算该子信道的信噪比SNR。
(3)确定模块503
确定模块503,用于根据所述信噪比,确定所述资源池中每个子信道的优先级。
在计算获得资源池中每个子信道的信噪比SNR后,即可根据每个子信道的信噪比SNR的大小,设置每个子信道的优先级。
(4)选取模块504
选取模块504,用于从所述资源池中选取优先级最高的子信道,作为PSSCH频域资源。
由于优先级高的子信道的信道条件更好,因此优先选择信道条件好的子信道,即优先选择信噪比SNR高的子信道,作为PSSCH频域资源,有效提高传输的可靠性。
在本申请一些实施例中,所述每个子信道包括多个子载波。如图6所示,所述计算模块502具体包括:
信干噪比计算单元601,用于分别将所述资源池中的每个子信道作为目标子信道,计算所述目标子信道中每个子载波的信干噪比;以及,
信噪比计算单元602,用于根据所述目标子信道中所述多个子载波的信干噪比,计算所述目标子信道的信噪比。
在本申请一些实施例中,所述信噪比计算单元602具体用于:
根据等效信噪比函数,将所述目标子信道中所述多个子载波的信 干噪比映射为所述目标子信道的信噪比。
在本申请一些实施例中,所述等效信噪比函数为:
Figure PCTCN2020133891-appb-000009
其中,SNR eff为所述目标子信道的信噪比,R为所述目标子信道中子载波的个数,SINR r为所述目标子信道中第r个子载波的信干噪比,β为调节因子。
在本申请一些实施例中,确定模块503具体用于:
按照所述信噪比由高到低的顺序,对所述资源池中的多个子信道进行排序;
根据所述排序,并按照优先级由高到低的顺序,设置所述资源池中的多个子信道的优先级。
由上述可知,本申请提供的频域资源分配装置,能够在获取预先配置的资源池后,计算资源池中每个子信道的信噪比,并根据信噪比,确定资源池中每个子信道的优先级,以便从资源池中选取优先级最高的子信道,作为PSSCH频域资源,从而为PSSCH分配最优的频域资源,提高传输的可靠性。
另外,本申请实施例还提供一种车联网终端。如图7所示,车联网终端700包括处理器701、存储器702。其中,处理器701与存储器702电性连接。
处理器701是车联网终端700的控制中心,利用各种接口和线路连接整个车联网终端的各个部分,通过运行或加载存储在存储器702内的应用程序,以及调用存储在存储器702内的数据,执行车联网终 端的各种功能和处理数据,从而对车联网终端进行整体监控。
在本实施例中,图7所示的获取模块501、计算模块502、确定模块503和选取模块504可以是存储在存储器702中的应用程序。车联网终端700中的处理器701运行存储在存储器702中的获取模块501、计算模块502、确定模块503和选取模块504,从而实现各种功能。当获取模块501被处理器701执行时,用于获取预先配置的资源池;所述资源池包括多个子信道。当计算模块502被处理器701执行时,用于计算所述资源池中每个子信道的信噪比。当确定模块503被处理器701执行时,用于根据所述信噪比,确定所述资源池中每个子信道的优先级。当选取模块504被处理器701执行时,用于从所述资源池中选取优先级最高的子信道,作为PSSCH频域资源。
请参阅图8,图8为本申请实施例提供的车联网终端的结构示意图。该车联网终端300可以包括RF电路310、包括有一个或一个以上计算机可读存储介质的存储器320、输入单元330、显示单元340、传感器350、音频电路360、扬声器361、传声器362、传输模块370、包括有一个或者一个以上处理核心的处理器380、以及电源390等部件。本领域技术人员可以理解,图8中示出的车联网终端结构并不构成对车联网终端的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
RF电路310用于接收以及发送电磁波,实现电磁波与电信号的相互转换,从而与通讯网络或者其他设备进行通讯。RF电路310可包括各种现有的用于执行这些功能的电路元件,例如,天线、蜂窝通信射 频收发器、毫米波射频收发器、WIFI/BT收发器、GPS收发器、数字信号处理器、加密/解密芯片、用户身份模块(SIM)卡、存储器等等。RF电路310可与各种网络如互联网、企业内部网、无线网络进行通讯或者通过无线网络与其他设备进行通讯。上述的无线网络可包括蜂窝式电话网、无线局域网或者城域网。上述的无线网络可以使用各种通信标准、协议及技术,包括但并不限于全球移动通信系统(Global System for Mobile Communication,GSM)、增强型移动通信技术(Enhanced Data GSM Environment,EDGE),宽带码分多址技术(Wideband Code Division Multiple Access,WCDMA),码分多址技术(Code Division Access,CDMA)、时分多址技术(Time Division Multiple Access,TDMA),无线保真技术(Wireless Fidelity,Wi-Fi)(如美国电气和电子工程师协会标准IEEE 802.11a,IEEE 802.11b,IEEE802.11g和/或IEEE 802.11n)、网络电话(Voice over Internet Protocol,VoIP)、全球微波互联接入(Worldwide Interoperability for Microwave Access,Wi-Max)、其他用于邮件、即时通讯及短消息的协议,以及任何其他合适的通讯协议,甚至可包括那些当前仍未被开发出来的协议。
存储器320可用于存储软件程序以及模块,如上述实施例中频域资源分配装置、方法对应的程序指令/模块,处理器380通过运行存储在存储器320内的软件程序以及模块,从而执行各种功能应用以及数据处理,即实现频域资源分配功能。存储器320可包括高速随机存储器,还可包括非易失性存储器,如一个或者多个磁性存储装置、闪存、或者其他非易失性固态存储器。在一些实例中,存储器320可进一步 包括相对于处理器380远程设置的存储器,这些远程存储器可以通过网络连接至车联网终端300。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
输入单元330可用于接收输入的数字或字符信息,以及产生与用户设置以及功能控制有关的键盘、鼠标、操作杆、光学或者轨迹球信号输入。具体地,输入单元330可包括触敏表面331以及其他输入设备332。触敏表面331,也称为触摸显示屏或者触控板,可收集用户在其上或附近的触摸操作(比如用户使用手指、触笔等任何适合的物体或附件在触敏表面331上或在触敏表面331附近的操作),并根据预先设定的程式驱动相应的连接装置。可选的,触敏表面331可包括触摸检测装置和触摸控制器两个部分。其中,触摸检测装置检测用户的触摸方位,并检测触摸操作带来的信号,将信号传送给触摸控制器;触摸控制器从触摸检测装置上接收触摸信息,并将它转换成触点坐标,再送给处理器380,并能接收处理器380发来的命令并加以执行。此外,可以采用电阻式、电容式、红外线以及表面声波等多种类型实现触敏表面331。除了触敏表面331,输入单元330还可以包括其他输入设备332。具体地,其他输入设备332可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆等中的一种或多种。
显示单元340可用于显示由用户输入的信息或提供给用户的信息以及车联网终端300的各种图形用户接口,这些图形用户接口可以由图形、文本、图标、视频和其任意组合来构成。显示单元340可包括 显示面板341,可选的,可以采用LCD(Liquid Crystal Display,液晶显示器)、OLED(Organic Light-Emitting Diode,有机发光二极管)等形式来配置显示面板341。进一步的,触敏表面331可覆盖显示面板341,当触敏表面331检测到在其上或附近的触摸操作后,传送给处理器380以确定触摸事件的类型,随后处理器380根据触摸事件的类型在显示面板341上提供相应的视觉输出。虽然在图8中,触敏表面331与显示面板341是作为两个独立的部件来实现输入和输出功能,但是在某些实施例中,可以将触敏表面331与显示面板341集成而实现输入和输出功能。
车联网终端300还可包括至少一种传感器350,比如光传感器、运动传感器以及其他传感器。具体地,光传感器可包括环境光传感器及接近传感器,其中,环境光传感器可根据环境光线的明暗来调节显示面板341的亮度,接近传感器可在车联网终端300移动到耳边时,关闭显示面板341和/或背光。作为运动传感器的一种,重力加速度传感器可检测各个方向上(一般为三轴)加速度的大小,静止时可检测出重力的大小及方向,可用于识别终端姿态的应用(比如横竖屏切换、相关游戏、磁力计姿态校准)、振动识别相关功能(比如计步器、敲击)等;至于车联网终端300还可配置的陀螺仪、气压计、湿度计、温度计、红外线传感器等其他传感器,在此不再赘述。
音频电路360、扬声器361和传声器362,传声器362可提供用户与车联网终端300之间的音频接口。音频电路360可将接收到的音频数据转换后的电信号,传输到扬声器361,由扬声器361转换为声音信号输出;另一方面,传声器362将收集的声音信号转换为电信号,由音频 电路360接收后转换为音频数据,再将音频数据输出处理器380处理后,经RF电路310以发送给比如另一终端,或者将音频数据输出至存储器320以便进一步处理。音频电路360还可能包括耳塞插孔,以提供外设耳机与车联网终端300的通信。
车联网终端300通过传输模块370(例如WIFI模块)可以帮助用户收发电子邮件、浏览网页和访问流式媒体等,它为用户提供了无线的宽带互联网访问。虽然图8示出了传输模块370,但是可以理解的是,其并不属于车联网终端300的必须构成,完全可以根据需要在不改变发明的本质的范围内而省略。
处理器380是终端300的控制中心,利用各种接口和线路连接整个终端的各个部分,通过运行或执行存储在存储器320内的软件程序和/或模块,以及调用存储在存储器320内的数据,执行车联网终端300的各种功能和处理数据,从而对终端进行整体监控。可选的,处理器380可包括一个或多个处理核心;在一些实施例中,处理器380可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序等,调制解调处理器主要处理无线通信。可以理解的是,上述调制解调处理器也可以不集成到处理器380中。
车联网终端300还包括给各个部件供电的电源390(比如电池),在一些实施例中,电源可以通过电源管理系统与处理器380逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。电源390还可以包括一个或一个以上的直流或交流电源、再充电系统、电源故障检测电路、电源转换器或者逆变器、电源状态指示器等任意 组件。
尽管未示出,车联网终端300还可以包括摄像头(如前置摄像头、后置摄像头)、蓝牙模块等,在此不再赘述。具体在本实施例中,车联网终端的显示单元是触摸屏显示器,车联网终端还包括有存储器320,图7所示的获取模块501、计算模块502、确定模块503和选取模块504可以是存储在存储器320中的应用程序。车联网终端700中的处理器380运行存储在存储器320中的获取模块501、计算模块502、确定模块503和选取模块504,从而实现各种功能。当获取模块501被处理器701执行时,用于获取预先配置的资源池;所述资源池包括多个子信道。当计算模块502被处理器701执行时,用于计算所述资源池中每个子信道的信噪比。当确定模块503被处理器701执行时,用于根据所述信噪比,确定所述资源池中每个子信道的优先级。当选取模块504被处理器701执行时,用于从所述资源池中选取优先级最高的子信道,作为PSSCH频域资源。
具体实施时,以上各个模块可以作为独立的实体来实现,也可以进行任意组合,作为同一或若干个实体来实现,以上各个模块的具体实施可参见前面的方法实施例,在此不再赘述。
本领域普通技术人员可以理解,上述实施例的各种方法中的全部或部分步骤可以通过指令来完成,或通过指令控制相关的硬件来完成,该指令可以存储于一计算机可读存储介质中,并由处理器进行加载和执行。为此,本发明实施例提供一种存储介质,其中存储有多条指令,该指令能够被处理器进行加载,以执行本发明实施例所提供的任一种 频域资源分配方法中的步骤。
其中,该存储介质可以包括:只读存储器(ROM,Read Only Memory)、随机存取记忆体(RAM,Random Access Memory)、磁盘或光盘等。
由于该存储介质中所存储的指令,可以执行本发明实施例所提供的任一种频域资源分配方法中的步骤,因此,可以实现本发明实施例所提供的任一种频域资源分配方法所能实现的有益效果,详见前面的实施例,在此不再赘述。
以上各个操作的具体实施可参见前面的实施例,在此不再赘述。综上该,虽然本申请已以优选实施例揭露如上,但上述优选实施例并非用以限制本申请,本领域的普通技术人员,在不脱离本申请的精神和范围内,均可作各种更动与润饰,因此本申请的保护范围以权利要求界定的范围为准。

Claims (15)

  1. 一种频域资源分配方法,应用于车联网终端,所述方法包括:
    获取预先配置的资源池;所述资源池包括多个子信道;
    计算所述资源池中每个子信道的信噪比;
    根据所述信噪比,确定所述资源池中每个子信道的优先级;
    从所述资源池中选取优先级最高的子信道,作为PSSCH频域资源。
  2. 根据权利要求1所述的频域资源分配方法,其中,所述每个子信道包括多个子载波;
    所述计算所述资源池中每个子信道的信噪比,具体包括:
    分别将所述资源池中的每个子信道作为目标子信道,计算所述目标子信道中每个子载波的信干噪比;
    根据所述目标子信道中所述多个子载波的信干噪比,计算所述目标子信道的信噪比。
  3. 根据权利要求2所述的频域资源分配方法,其中,所述根据所述目标子信道中所述多个子载波的信干噪比,计算所述目标子信道的信噪比,具体包括:
    根据等效信噪比函数,将所述目标子信道中所述多个子载波的信干噪比映射为所述目标子信道的信噪比。
  4. 根据权利要求3所述的频域资源分配方法,其中,所述等效信噪比函数为:
    Figure PCTCN2020133891-appb-100001
    其中,SNR eff为所述目标子信道的信噪比,R为所述目标子信道 中子载波的个数,SINR r为所述目标子信道中第r个子载波的信干噪比,β为调节因子。
  5. 根据权利要求1所述的频域资源分配方法,其中,所述根据所述信噪比,确定所述资源池中每个子信道的优先级,具体包括:
    按照所述信噪比由高到低的顺序,对所述资源池中的多个子信道进行排序;
    根据所述排序,并按照优先级由高到低的顺序,设置所述资源池中的多个子信道的优先级。
  6. 一种频域资源分配装置,应用于车联网终端,所述装置包括:
    获取模块,用于获取预先配置的资源池;所述资源池包括多个子信道;
    计算模块,用于计算所述资源池中每个子信道的信噪比;
    确定模块,用于根据所述信噪比,确定所述资源池中每个子信道的优先级;以及,
    选取模块,用于从所述资源池中选取优先级最高的子信道,作为PSSCH频域资源。
  7. 根据权利要求6所述的频域资源分配装置,其中,所述每个子信道包括多个子载波;
    所述计算模块具体包括:
    信干噪比计算单元,用于分别将所述资源池中的每个子信道作为目标子信道,计算所述目标子信道中每个子载波的信干噪比;以及,
    信噪比计算单元,用于根据所述目标子信道中所述多个子载波的 信干噪比,计算所述目标子信道的信噪比。
  8. 根据权利要求7所述的频域资源分配装置,其中,所述信噪比计算单元具体用于:
    根据等效信噪比函数,将所述目标子信道中所述多个子载波的信干噪比映射为所述目标子信道的信噪比。
  9. 根据权利要求8所述的频域资源分配装置,其中,所述等效信噪比函数为:
    Figure PCTCN2020133891-appb-100002
    其中,SNR eff为所述目标子信道的信噪比,R为所述目标子信道中子载波的个数,SINR r为所述目标子信道中第r个子载波的信干噪比,β为调节因子。
  10. 根据权利要求6所述的频域资源分配装置,其中,所述确定模块具体用于:
    按照所述信噪比由高到低的顺序,对所述资源池中的多个子信道进行排序;根据所述排序,并按照优先级由高到低的顺序,设置所述资源池中的多个子信道的优先级。
  11. 一种计算机可读存储介质,所述存储介质中存储有多条指令,所述指令适于由处理器加载以执行以下步骤:
    获取预先配置的资源池;所述资源池包括多个子信道;
    计算所述资源池中每个子信道的信噪比;
    根据所述信噪比,确定所述资源池中每个子信道的优先级;
    从所述资源池中选取优先级最高的子信道,作为PSSCH频域资源。
  12. 根据权利要求11所述的计算机可读存储介质,其中,所述每个子信道包括多个子载波;
    所述处理器在执行所述计算所述资源池中每个子信道的信噪比时,具体执行以下步骤:
    分别将所述资源池中的每个子信道作为目标子信道,计算所述目标子信道中每个子载波的信干噪比;
    根据所述目标子信道中所述多个子载波的信干噪比,计算所述目标子信道的信噪比。
  13. 根据权利要求12所述的计算机可读存储介质,其中,所述处理器在执行所述根据所述目标子信道中所述多个子载波的信干噪比,计算所述目标子信道的信噪比时,具体执行以下步骤:
    根据等效信噪比函数,将所述目标子信道中所述多个子载波的信干噪比映射为所述目标子信道的信噪比。
  14. 根据权利要求13所述的计算机可读存储介质,其中,所述等效信噪比函数为:
    Figure PCTCN2020133891-appb-100003
    其中,SNR eff为所述目标子信道的信噪比,R为所述目标子信道中子载波的个数,SINR r为所述目标子信道中第r个子载波的信干噪比,β为调节因子。
  15. 根据权利要求11所述的计算机可读存储介质,其中,所述处理器在执行所述根据所述信噪比,确定所述资源池中每个子信道的优先级时,具体执行以下步骤:
    按照所述信噪比由高到低的顺序,对所述资源池中的多个子信道进行排序;
    根据所述排序,并按照优先级由高到低的顺序,设置所述资源池中的多个子信道的优先级。
PCT/CN2020/133891 2020-10-26 2020-12-04 频域资源分配方法、装置及存储介质 WO2022088388A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/250,362 US20230422287A1 (en) 2020-10-26 2020-12-04 Frequency domain resource allocation method, device and storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011154825.0 2020-10-26
CN202011154825.0A CN112367705A (zh) 2020-10-26 2020-10-26 频域资源分配方法、装置及存储介质

Publications (1)

Publication Number Publication Date
WO2022088388A1 true WO2022088388A1 (zh) 2022-05-05

Family

ID=74510401

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/133891 WO2022088388A1 (zh) 2020-10-26 2020-12-04 频域资源分配方法、装置及存储介质

Country Status (3)

Country Link
US (1) US20230422287A1 (zh)
CN (1) CN112367705A (zh)
WO (1) WO2022088388A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114978952B (zh) * 2022-06-17 2023-09-15 国家无线电监测中心福建监测站 无人机监测系统编队通信链路质量评估方法和装置
WO2024055235A1 (zh) * 2022-09-15 2024-03-21 Oppo广东移动通信有限公司 用于侧行通信的方法、第一设备以及终端设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101790237A (zh) * 2009-01-24 2010-07-28 鼎桥通信技术有限公司 一种多通道hsupa系统中共享信道的空分复用方法
CN102036390A (zh) * 2009-09-30 2011-04-27 中兴通讯股份有限公司 一种优先级处理方法
CN106028453A (zh) * 2016-07-01 2016-10-12 南京邮电大学 基于排队论的无线虚拟网络资源跨层调度映射方法
CN107277922A (zh) * 2016-04-01 2017-10-20 北京三星通信技术研究有限公司 一种v2x通信中控制信道和数据信道发送方法和设备
US20190036738A1 (en) * 2015-09-25 2019-01-31 Intel IP Corporation Methods of performing communications, mobile terminal devices, and baseband modems

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018030791A1 (ko) * 2016-08-09 2018-02-15 엘지전자 주식회사 무선 통신 시스템에서 단말의 d2d 데이터 전송 방법 및 장치
EP4132032A1 (en) * 2017-03-23 2023-02-08 Apple Inc. User equipment (ue) and methods for vehicle-to-vehicle (v2v) sidelink communication
CN110710295B (zh) * 2017-08-02 2021-01-22 Oppo广东移动通信有限公司 设备对设备通信的方法、终端设备和网络设备
WO2019090522A1 (zh) * 2017-11-08 2019-05-16 Oppo广东移动通信有限公司 D2d通信中资源配置的方法、终端设备和网络设备
US11025456B2 (en) * 2018-01-12 2021-06-01 Apple Inc. Time domain resource allocation for mobile communication
CN111630920A (zh) * 2018-01-22 2020-09-04 Oppo广东移动通信有限公司 一种数据传输方法及装置、计算机存储介质
US11876747B2 (en) * 2018-08-08 2024-01-16 Interdigital Patent Holdings, Inc. Method and apparatus for physical sidelink control channel (PSCCH) design in new radio (NR)
CN110912658B (zh) * 2018-09-14 2022-06-03 上海诺基亚贝尔股份有限公司 通信系统中用于参考信号配置的方法、装置和计算机存储介质
CN111435909B (zh) * 2019-01-11 2022-01-14 华为技术有限公司 发送和接收反馈信道的方法以及装置
CN111436118A (zh) * 2019-02-15 2020-07-21 维沃移动通信有限公司 传输资源检测方法、传输资源确定方法和通信设备
US20220201654A1 (en) * 2019-04-09 2022-06-23 Idac Holdings, Inc. Nr sl psfch transmission and monitoring

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101790237A (zh) * 2009-01-24 2010-07-28 鼎桥通信技术有限公司 一种多通道hsupa系统中共享信道的空分复用方法
CN102036390A (zh) * 2009-09-30 2011-04-27 中兴通讯股份有限公司 一种优先级处理方法
US20190036738A1 (en) * 2015-09-25 2019-01-31 Intel IP Corporation Methods of performing communications, mobile terminal devices, and baseband modems
CN107277922A (zh) * 2016-04-01 2017-10-20 北京三星通信技术研究有限公司 一种v2x通信中控制信道和数据信道发送方法和设备
CN106028453A (zh) * 2016-07-01 2016-10-12 南京邮电大学 基于排队论的无线虚拟网络资源跨层调度映射方法

Also Published As

Publication number Publication date
US20230422287A1 (en) 2023-12-28
CN112367705A (zh) 2021-02-12

Similar Documents

Publication Publication Date Title
CN108430101B (zh) 天线关闭方法、装置、存储介质和电子设备
US11576183B2 (en) Method of receiving downlink channel, method of sending downlink channel, terminal and base station
CN110740479B (zh) 一种用于监听pdcch的方法、终端及网络设备
JP7186869B2 (ja) Csiレポートの報告方法、端末機器及びネットワーク機器
US11343056B2 (en) Data transmission method, sending device, and receiving device
CN110460352B (zh) 通信控制方法及相关设备
WO2021109955A1 (zh) 邻小区csi报告发送方法、接收方法及相关设备
WO2018082693A1 (zh) Csi上报方法、装置以及设备
CN111130728A (zh) 一种传输方法、终端及网络侧设备
WO2022088388A1 (zh) 频域资源分配方法、装置及存储介质
CN111277357B (zh) 信道状态信息报告的传输方法及终端
CN109075927B (zh) 下行数据传输方法和装置
CN110324834B (zh) 测量结果的指示方法、终端和基站
WO2015081880A1 (zh) 集群业务属性处理的方法、装置和系统
CN110149181B (zh) 搜索空间信道估计数的分配方法和终端设备
WO2021228055A1 (zh) 基于载波聚合的上行传输方法、存储介质及用户设备
WO2021209031A1 (zh) 资源确定方法及设备
WO2021109956A1 (zh) 参考信号的发送方法及发射机
JP7278397B2 (ja) 伝送リソース指示方法、伝送方法、ネットワーク機器及び端末
JP2022501943A (ja) 電力ヘッドルーム報告方法及び端末機器
US20220174701A1 (en) Information processing method, device, and computer-readable storage medium
WO2021204152A1 (zh) 资源确定方法及终端
WO2021204155A1 (zh) 资源确定方法及终端
CN110839296B (zh) 网络资源调度方法、装置、存储介质及移动终端
CN109150457A (zh) 控制信息的传输方法和终端设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20959547

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18250362

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20959547

Country of ref document: EP

Kind code of ref document: A1