WO2022088256A1 - 双向逆变电路及双向逆变充电装置 - Google Patents

双向逆变电路及双向逆变充电装置 Download PDF

Info

Publication number
WO2022088256A1
WO2022088256A1 PCT/CN2020/128001 CN2020128001W WO2022088256A1 WO 2022088256 A1 WO2022088256 A1 WO 2022088256A1 CN 2020128001 W CN2020128001 W CN 2020128001W WO 2022088256 A1 WO2022088256 A1 WO 2022088256A1
Authority
WO
WIPO (PCT)
Prior art keywords
conversion unit
circuit
mos transistor
voltage
bidirectional inverter
Prior art date
Application number
PCT/CN2020/128001
Other languages
English (en)
French (fr)
Inventor
陈章盛
Original Assignee
深圳市思倍生电子科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202022468834.9U external-priority patent/CN213342021U/zh
Priority claimed from CN202011193179.9A external-priority patent/CN112187061A/zh
Application filed by 深圳市思倍生电子科技有限公司 filed Critical 深圳市思倍生电子科技有限公司
Publication of WO2022088256A1 publication Critical patent/WO2022088256A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only

Definitions

  • the present invention relates to the technical field of electronic equipment, in particular to a bidirectional inverter circuit and a bidirectional inverter charging device.
  • the present invention provides a bidirectional inverter circuit and a bidirectional inverter charging device to solve the technical problems existing in the prior art.
  • the present invention provides a bidirectional inverter circuit, including: a first conversion unit, a second conversion unit, a third conversion unit and a transformer, wherein,
  • the input end of the first conversion unit is connected to the DC power supply, and the output end is connected to the low voltage side of the transformer; the input end of the second conversion unit is connected to the high voltage side of the transformer, and the output end is connected to the third The input terminal of the conversion unit is connected;
  • the first conversion unit, the second conversion unit and the third conversion unit sequentially chop, rectify and invert the DC voltage to be converted into a first alternating current voltage, and the first alternating current voltage is output from the output end of the third conversion unit;
  • the third conversion unit, the second conversion unit, and the first conversion unit sequentially rectify and chop the second AC voltage for the first time.
  • a second rectification is carried out to convert into a second DC voltage, which charges the DC power source.
  • the first conversion unit is a full-bridge circuit composed of four MOS transistors
  • the second conversion unit is a full-bridge circuit composed of four MOS transistors
  • the third conversion unit is a full-bridge circuit composed of four MOS transistors Constituted SPWM full-bridge inverter circuit.
  • the first conversion unit is a push-pull circuit composed of two MOS tubes
  • the second conversion unit is a full-bridge circuit composed of four MOS tubes
  • the third conversion unit is composed of four MOS tubes. Constituted SPWM full-bridge inverter circuit.
  • an energy storage inductor is connected in series with the input end of the first conversion unit.
  • an oscillation suppression circuit is connected in parallel with the energy storage inductor, and the oscillation suppression circuit includes a first MOS tube, a second MOS tube, a first switch control circuit, a first capacitor, a second capacitor and a second switch control circuit,
  • the first MOS transistor and the second MOS transistor are both PMOS transistors;
  • the source electrodes of the first MOS transistor and the second MOS transistor are connected in parallel with the energy storage inductor, and the gate electrode and the source electrode of the first MOS transistor and the gate electrode and the source electrode of the second MOS transistor are connected with each other.
  • the first switch control circuit is connected;
  • the first switch control circuit and the second switch control circuit are both turned on;
  • the first switch control circuit and the second switch control circuit are both turned off.
  • the first switch control circuit includes a first transistor, and the gate and source of the first MOS transistor and the gate and source of the second MOS transistor are all connected to the first transistor. the collector connection;
  • the base of the first transistor is connected to the first control signal input port, and the emitter is grounded.
  • a second triode is connected in parallel with the base of the first triode, the collector of the second triode is connected to the base of the first triode, and the second triode is connected to the base of the first triode.
  • the base of the transistor is connected to the second control signal input port, and the emitter of the second transistor is grounded.
  • the second switch control circuit includes a third MOS transistor, the gate of the third MOS transistor is connected to the third control signal input port, and the source of the third MOS transistor is grounded.
  • the third MOS transistor is an NMOS transistor.
  • the present invention also provides a bidirectional inverter charging device, which includes a battery pack, a charging management circuit, a main control circuit, an auxiliary power supply circuit, and a charging and discharging switching circuit, and also includes the bidirectional inverter according to the first aspect. circuit; the input end of the bidirectional inverter circuit is connected to the battery pack, and the output end is connected to the charge-discharge switching circuit.
  • the present invention adopts a pure hardware solution to improve the one-way DC-AC inverter on the original energy storage product, and realizes that the original one-way inverter has AC/DC in addition to the DC/AC inversion by means of pure hardware. function to charge the battery.
  • the bidirectional inverter circuit of the present invention can realize the function of bidirectional inverter without additional charging adapter, and the inverter and charging share a set of power devices and magnetic devices, which saves the cost of components and reduces product volume. It is easy to achieve high-power charging, and theoretically, the maximum charging power can be equal to the inverter output power.
  • FIG. 1 is a circuit diagram of a full-bridge-full-bridge-SPWM full-bridge inverter architecture of a bidirectional inverter circuit provided by an embodiment of the present invention
  • FIG. 2 is a circuit diagram of a push-pull-full-bridge-SPWM full-bridge inverter architecture of a bidirectional inverter circuit provided by an embodiment of the present invention
  • FIG. 3 is a circuit diagram of an oscillation suppression circuit of a bidirectional inverter circuit provided by an embodiment of the present invention
  • FIG. 4 is a schematic diagram of an electrical structure of a bidirectional inverter charging device according to an embodiment of the present invention.
  • the invention provides a bidirectional inverter circuit, comprising: a first conversion unit, a second conversion unit, a third conversion unit and a transformer; wherein, the input end of the first conversion unit is connected to a DC power supply, and the output end is connected to the The low voltage side of the transformer is connected; the input end of the second conversion unit is connected to the high voltage side of the transformer, and the output end is connected to the input end of the third conversion unit.
  • the first conversion unit, the second conversion unit and the third conversion unit sequentially chop, rectify and invert the DC voltage to convert into a first AC voltage
  • the first AC voltage is output from the output terminal of the third conversion unit; or, when the output terminal of the third conversion unit is connected to the second AC voltage, the third conversion unit , the second conversion unit, the first conversion unit sequentially performs the first rectification, chopping and second rectification on the second AC voltage to convert it into a second DC voltage
  • the second DC voltage is the DC power supply Charge.
  • the first conversion unit is a full-bridge circuit composed of four MOS transistors Q1, Q2, Q3, and Q4, and the second conversion unit is composed of four MOS transistors Q1, Q2, Q3, and Q4.
  • the gates of the four MOS transistors Q1, Q2, Q3, and Q4 of the first conversion unit The external control port is very connected to chop the input DC voltage, and with the appropriate transformer turns ratio, the secondary side of the transformer outputs the desired high-frequency pulse voltage, and then passes through the four MOS transistors Q5, Q6, Q7, After the full-bridge rectifier circuit composed of the body diode of Q8 is rectified, the SPWM full-bridge inverter circuit composed of the four MOS transistors Q10, Q11, Q17, and Q18 of the third conversion unit of the DC high voltage supply is obtained for inversion. So as to complete the conversion of DC high voltage and AC output.
  • the body diode of the MOS transistor in the SPWM full-bridge inverter circuit is used to rectify the input second AC voltage to obtain a high-voltage DC voltage; Q5, Q6, Q7 ,
  • the gate of Q8 is connected to the control port, and the full-bridge circuit composed of it chops the high-voltage DC voltage, and then obtains the desired high-frequency low-voltage pulse voltage through the appropriate turns ratio.
  • the full-bridge rectifier circuit composed of diodes, the energy storage inductor L1, and the filter capacitor C2 rectify the high-frequency low-voltage pulse waveform to output a charging voltage suitable for the battery.
  • an energy storage inductor L1 is added to the circuit architecture.
  • the introduction of the energy storage inductance L1 is equivalent to artificially adding a large leakage inductance during the DC/AC operation process, which is likely to cause LC oscillation with the junction capacitance of the MOS transistor in the first conversion unit, resulting in a large voltage spike. front.
  • an oscillation suppression circuit is connected in parallel with the energy storage inductor.
  • the oscillation suppression circuit includes a first MOS transistor Q28, a second MOS transistor Q29, a first switch control circuit, a first capacitor C7, a second capacitor C13 and a second switch control circuit.
  • the first MOS transistor Q28 and the second MOS transistor Q29 are both PMOS transistors.
  • the sources of the first MOS transistor Q28 and the second MOS transistor Q29 are connected in series with the energy storage inductor L1, and the gate and source of the first MOS transistor Q28 and the second MOS transistor Q29 are connected in parallel.
  • the gate and source are connected with the first switch control circuit. After the first capacitor C7 and the second capacitor C13 are connected in parallel, one end is connected to the drain of the second MOS transistor Q29, and the other end is grounded through the second switch control circuit.
  • the first switch control circuit and the second switch control circuit are both turned on, and at this time Q28 and Q29 are turned on to short-circuit the energy storage inductor L1 ; C7, C13 are equivalent to input capacitors.
  • the first switch control circuit and the second switch control circuit are both turned off, at this time, Q28 and Q29 are turned off, and the energy storage inductor L1 is operated, C7, C13 do not participate in the work.
  • the first switch control circuit includes a first transistor Q32, the gate and source of the first MOS transistor Q28 and the gate and source of the second MOS transistor Q29 are all connected to the first transistor Q32.
  • the collector of a transistor Q32 is connected; the base of the first transistor Q32 is connected to the first control signal input port, and the emitter is grounded.
  • a second triode Q33 is connected in parallel with the base of the first triode Q32, the collector of the second triode Q33 is connected to the base of the first triode, and the second triode Q33 is connected to the base of the first triode.
  • the base of the transistor Q33 is connected to the second control signal input port, and the emitter of the second transistor Q33 is grounded.
  • the bidirectional inverter circuit When the bidirectional inverter circuit is in the DC/AC working state, the first control signal input port is input with a high level, and the second control signal input port is input with a low level. At this time, the first transistor Q32 is turned on, and the second transistor Q32 is turned on. Tube Q33 is turned off.
  • the bidirectional inverter circuit When the bidirectional inverter circuit is in the AC/DC working state, the first control signal input port is input with a low level, and the second control signal input port is input with a high level. At this time, the second transistor Q33 is turned on to ensure that the first three The base of the transistor Q32 is in a low potential state, thereby ensuring that the first transistor Q32 is turned off.
  • the second switch control circuit includes a third MOS transistor Q34, the gate of the third MOS transistor Q34 is connected to the third control signal input port, and the source of the third MOS transistor Q34 is grounded.
  • the third MOS transistor Q34 is an NMOS transistor.
  • the first conversion unit is a push-pull circuit composed of two MOS transistors Q9 and Q12.
  • the body diode of the power tube in the SPWM full-bridge inverter circuit rectifies the AC input voltage to obtain a high-voltage DC voltage, which is output to Q13, Q14
  • the full bridge circuit composed of Q15 and Q16 is chopped, and then the desired high-frequency low-voltage pulse voltage is obtained through the appropriate turns ratio.
  • the bridge rectifier circuit composed of the body diodes of Q9 and Q12, the energy storage inductor L2, and the filter capacitor are used.
  • C4 rectifies the high-frequency low-voltage pulse waveform and outputs a charging voltage suitable for the battery.
  • Embodiment 3 provides a bidirectional inverter charging device, including a battery pack, a charge management circuit, a main control circuit, an auxiliary power supply circuit, and a charge-discharge switching circuit, as well as the embodiment 1 or the embodiment 2.
  • the provided bidirectional inverter circuit the input end of the bidirectional inverter circuit is connected to the battery pack, and the output end is connected to the charge-discharge switching circuit.
  • the present invention adopts a pure hardware solution to improve the unidirectional DC-AC inverter on the original energy storage product, and realizes the original unidirectional inverter in addition to the DC/AC inversion through the pure hardware method. At the same time, it has the function of charging the battery with AC/DC.
  • the bidirectional inverter circuit of the present invention can realize the function of bidirectional inverter without additional charging adapter, and the inverter and charging share a set of power devices and magnetic devices, which saves the cost of components and reduces product volume. It is easy to achieve high-power charging, and theoretically, the maximum charging power can be equal to the inverter output power.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Inverter Devices (AREA)

Abstract

一种双向逆变电路及双向逆变充电装置,双向逆变电路包括:第一转换单元、第二转换单元、第三转换单元及变压器;第一转换单元的输入端与直流电源连接,输出端与变压器的低压侧连接;第二转换单元的输入端与变压器的高压侧连接,输出端与第三转换单元的输入端连接;直流电源向第一转换单元的输入端输入直流电压时,第一转换单元、第二转换单元、第三转换单元顺次对直流电压进行斩波、整流及逆变以转换为第一交流电压输出;或者,第三转换单元的输出端连接第二交流电压时,第三转换单元、第二转换单元、第一转换单元顺次对第二交流电压进行第一次整流、斩波及第二次整流以转换为第二直流电压,第二直流电压为直流电源充电。

Description

双向逆变电路及双向逆变充电装置 技术领域
本发明涉及电子设备技术领域,具体涉及双向逆变电路及双向逆变充电装置。
背景技术
目前市场上大多数支持AC交流电输出的便携式储能产品的充电与AC交流电输出分别由独立的充电器或者(内置充电模块)和逆变器组成,此类产品充电方式,要么采用直流充电,但需要配置的独立的充电适配器,要么采用交流电充电方式,但需要在产品内内置充电模块。
此类便携式储能产品为了获得更快的充电速度,往往需要配置更大的外置充电适配器,要么进一步将内置的充电模块功率提高,成本与电路设计难度也就随之上升,另外也势必增加产品体积以及散热的要求。
另外有少数的便携式储能产品利用DSP技术的控制来实现逆变/充电双向控制,此类产品的控制方式较为复杂,程序算法验证周期长,而造成产品研发周期长,成本也较高。
发明内容
针对现有技术中的缺陷,本发明提供了双向逆变电路及双向逆变充电装置,以解决现有技术中存在的技术问题。
本发明通过以下技术手段解决上述技术问题:
第一方面,本发明提供了双向逆变电路,包括:第一转换单元、第二转换单元、第三转换单元及变压器,其中,
所述第一转换单元的输入端与直流电源连接,输出端与所述变压器的低压侧连接;所述第二转换单元的输入端与所述变压器的高压侧连接,输出端与所 述第三转换单元的输入端连接;
所述直流电源向所述第一转换单元的输入端输入直流电压时,所述第一转换单元、第二转换单元、第三转换单元顺次对所述直流电压进行斩波、整流及逆变以转换为第一交流电压,所述第一交流电压从所述第三转换单元的输出端输出;
或者,所述第三转换单元的输出端连接第二交流电压时,所述第三转换单元、第二转换单元、第一转换单元顺次对所述第二交流电压进行第一次整流、斩波及第二次整流以转换为第二直流电压,所述第二直流电压为所述直流电源充电。
进一步,所述第一转换单元为由四个MOS管构成的全桥电路,所述第二转换单元为由四个MOS管构成的全桥电路,所述第三转换单元为由四个MOS管构成的SPWM全桥逆变电路。
进一步,所述第一转换单元为由两个MOS管构成的推挽电路、所述第二转换单元为由四个MOS管构成的全桥电路,所述第三转换单元为由四个MOS管构成的SPWM全桥逆变电路。
进一步,所述第一转换单元的输入端上串联有储能电感。
进一步,所述储能电感上并联有振荡抑制电路,所述振荡抑制电路包括第一MOS管、第二MOS管、第一开关控制电路、第一电容、第二电容和第二开关控制电路,所述第一MOS管和第二MOS管均为PMOS管;其中
所述第一MOS管和第二MOS管的源极串联后与所述储能电感并联,所述第一MOS管的栅极和源极、所述第二MOS管的栅极和源极与所述第一开关控制电路连接;
所述第一电容和第二电容并联后,一端与所述第二MOS管的漏极连接,另一端通过所述第二开关控制电路接地;
所述直流电源向所述第一转换单元的输入端输入直流电压时,所述第一开关控制电路、第二开关控制电路均导通;
或者,所述第三转换单元的输出端连接第二交流电压时,所述第一开关控制电路、第二开关控制电路均关断。
进一步,所述第一开关控制电路包括第一三极管,所述第一MOS管的栅极和源极、所述第二MOS管的栅极和源极均与所述第一三极管的集电极连接;
所述第一三极管的基极连接第一控制信号输入端口,发射极接地。
进一步,所述第一三极管的基极上并联有第二三极管,所述第二三极管的集电极与所述第一三极管的基极连接,所述第二三极管的基极连接第二控制信号输入端口,所述第二三极管的发射极接地。
进一步,所述第二开关控制电路包括第三MOS管,所述第三MOS管的栅极连接第三控制信号输入端口,所述第三MOS管的源极接地。
进一步,所述第三MOS管为NMOS管。
第二方面,本发明还提供了一种双向逆变充电装置,包括电池包、充电管理电路、主控电路、辅助供电电路、充放电切换电路,还包括如第一方面所述的双向逆变电路;所述双向逆变电路的输入端与所述电池包连接,输出端与所述充放电切换电路连接。
本发明的有益效果体现在:
本发明采用纯硬件的方案,在原储能产品上的单向DC-AC逆变器进行改进,通过纯硬件的方式,实现原单向逆变器除了DC/AC的逆变外同时具有AC/DC的对电池进行充电的功能。
本发明的双向逆变电路可实现双向逆变的功能,不需额外的充电适配器,逆变与充电共用一套功率器件、磁性器件,节约元件成本,减小产品体积。容易实现大功率充电,理论上可以做到最大充电功率与逆变输出功率相等。
附图说明
为了更清楚地说明本发明具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍。在所有附 图中,类似的元件或部分一般由类似的附图标记标识。附图中,各元件或部分并不一定按照实际的比例绘制。
图1为本发明实施例提供的双向逆变电路的全桥-全桥-SPWM全桥逆变架构的电路图;
图2为本发明实施例提供的双向逆变电路的推挽-全桥-SPWM全桥逆变架构的电路图;
图3为本发明实施例提供的双向逆变电路的振荡抑制电路的电路图;
图4为本发明实施例提供的双向逆变充电装置的电气结构示意图。
具体实施方式
下面将结合附图对本发明技术方案的实施例进行详细的描述。以下实施例仅用于更加清楚地说明本发明的技术方案,因此只作为示例,而不能以此来限制本发明的保护范围。
需要注意的是,除非另有说明,本申请使用的技术术语或者科学术语应当为本发明所属领域技术人员所理解的通常意义。
本发明提供了一种双向逆变电路,包括:第一转换单元、第二转换单元、第三转换单元及变压器;其中,所述第一转换单元的输入端与直流电源连接,输出端与所述变压器的低压侧连接;所述第二转换单元的输入端与所述变压器的高压侧连接,输出端与所述第三转换单元的输入端连接。所述直流电源向所述第一转换单元的输入端输入直流电压时,所述第一转换单元、第二转换单元、第三转换单元顺次对所述直流电压进行斩波、整流及逆变以转换为第一交流电压,所述第一交流电压从所述第三转换单元的输出端输出;或者,所述第三转换单元的输出端连接第二交流电压时,所述第三转换单元、第二转换单元、第一转换单元顺次对所述第二交流电压进行第一次整流、斩波及第二次整流以转换为第二直流电压,所述第二直流电压为所述直流电源充电。
实施例1
具体的,如图1所示,本实施例1中,所述第一转换单元为由四个MOS管Q1、Q2、Q3、Q4构成的全桥电路,所述第二转换单元为由四个MOS管Q5、Q6、Q7、Q8构成的全桥电路,所述第三转换单元为由四个MOS管Q10、Q11、Q17、Q18构成的SPWM全桥逆变电路。
当直流电源向所述第一转换单元的输入端输入直流电压时,即当双向逆变电路处于DC/AC工作过程时,第一转换单元的四个MOS管Q1、Q2、Q3、Q4的栅极外接控制端口,对输入的直流电压进行斩波,配合合适的变压器匝比,变压器次级侧输出期望的高频脉冲电压,然后通过第二转换单元的四个MOS管Q5、Q6、Q7、Q8的体二极管构成的全桥整流电路进行整流后,得出直流高压供给后级的第三转换单元的四个MOS管Q10、Q11、Q17、Q18组成的SPWM全桥逆变电路进行逆变,从而完成直流高压与交流输出的转换。
当第三转换单元的输出端连接第二交流电压时,利用SPWM全桥逆变电路中的MOS管的体二极管对输入的第二交流电压进行整流,得出高压直流电压;Q5、Q6、Q7、Q8的栅极外接控制端口,其组成的全桥电路对高压直流电压进行斩波,然后经过合适的匝比,得出期望的高频低压脉冲电压,利用Q1、Q2、Q3、Q4的体二极管组成的全桥整流电路及储能电感L1、滤波电容C2对此高频低压脉冲波形进行整流后,输出适合电池的充电电压。
由于锂电的充电三段式充电特性,及充电过程中的电池电压的缓慢增加,意味着在AC/DC工作模式中,高压侧的全桥驱动信号的占空比不是固定的,是需要根据充电电流及充电电压进行调节的以保证完整的充电过程。因此,在电路架构中加入了储能电感L1。此储能电感L1的导入,在DC/AC工作过程中相当于人为的加入了一个较大漏感,容易与第一转换单元中的MOS管的结电容产生LC振荡而产生较大的电压尖锋。
为了解决储能电感L1导入而引起的新的问题,本实施例中,在储能电感上并联有振荡抑制电路。如图3所示,所述振荡抑制电路包括第一MOS管Q28、第二MOS管Q29、第一开关控制电路、第一电容C7、第二电容C13和第二开关 控制电路。所述第一MOS管Q28和第二MOS管Q29均为PMOS管。
其中,所述第一MOS管Q28和第二MOS管Q29的源极串联后与所述储能电感L1并联,所述第一MOS管Q28的栅极和源极、所述第二MOS管Q29的栅极和源极与所述第一开关控制电路连接。所述第一电容C7和第二电容C13并联后,一端与所述第二MOS管Q29的漏极连接,另一端通过所述第二开关控制电路接地。
所述直流电源向所述第一转换单元的输入端输入直流电压时,所述第一开关控制电路、第二开关控制电路均导通,此时Q28、Q29导通,使储能电感L1短路;C7、C13相当于输入电容。
或者,所述第三转换单元的输出端连接第二交流电压时,所述第一开关控制电路、第二开关控制电路均关断,此时,Q28、Q29关断,储能电感L1工作,C7、C13不参与工作。
具体的,所述第一开关控制电路包括第一三极管Q32,所述第一MOS管Q28的栅极和源极、所述第二MOS管Q29的栅极和源极均与所述第一三极管Q32的集电极连接;所述第一三极管Q32的基极连接第一控制信号输入端口,发射极接地。
所述第一三极管Q32的基极上并联有第二三极管Q33,所述第二三极管Q33的集电极与所述第一三极管的基极连接,所述第二三极管Q33的基极连接第二控制信号输入端口,所述第二三极管Q33的发射极接地。
当双向逆变电路处于DC/AC工作状态时,第一控制信号输入端口输入高电平,第二控制信号输入端口输入低电平,此时第一三极管Q32导通,第二三极管Q33关断。当双向逆变电路处于AC/DC工作状态时,第一控制信号输入端口输入低电平,第二控制信号输入端口输入高电平,此时第二三极管Q33导通,保证第一三极管Q32的基极处于低电位状态,从而能够保证使第一三极管Q32关断。
具体的,所述第二开关控制电路包括第三MOS管Q34,所述第三MOS管Q34 的栅极连接第三控制信号输入端口,所述第三MOS管Q34的源极接地。所述第三MOS管Q34为NMOS管。
实施例2
如图2所示,本实施例2给出了双向逆变电路的另一种电路结构,本实施例2的电路结构与实施例1的电路结构唯一的区别在于,在本实施例2中,第一转换单元为由两个MOS管Q9、Q12构成的推挽电路。
具体参考图2所示的电路,当图2所示的双向逆变电路处于DC/AC工作过程时,Q9、Q12构成典型的推挽拓扑模式对输入的直流电压进行斩波,配合合适的变压器匝比,变压器次级侧输出期望的高频脉冲电压,然后通过全桥功率MOS Q13、Q14、Q15、Q16的体二极管构成的全桥整流电路进行整流后,得出直流高压供给后级的Q19、Q20、Q21、Q22组成的SPWM全桥逆变电路进行直流高压与交流输出的转换。
当图2所示的双向逆变电路处于AC/DC工作过程时,SPWM全桥逆变电路中的功率管的体二极管对交流输入电压进行整流,得出高压直流电压,输出给由Q13、Q14、Q15、Q16组成的全桥电路进行斩波,然后经过合适的匝比得出期望的高频低压脉冲电压,利用Q9、Q12的体二极管组成的桥式整流电路及储能电感L2、滤波电容C4对此高频低压脉冲波形进行整流后输出适合电池的充电电压。
实施例3
如图4所示,本实施例3提供了一种双向逆变充电装置,包括电池包、充电管理电路、主控电路、辅助供电电路、充放电切换电路,还包括如实施例1或实施例2所提供的双向逆变电路;所述双向逆变电路的输入端与所述电池包连接,输出端与所述充放电切换电路连接。
综上所述,本发明采用纯硬件的方案,在原储能产品上的单向DC-AC逆变器进行改进,通过纯硬件的方式,实现原单向逆变器除了DC/AC的逆变外同时具有AC/DC的对电池进行充电的功能。
本发明的双向逆变电路可实现双向逆变的功能,不需额外的充电适配器,逆变与充电共用一套功率器件、磁性器件,节约元件成本,减小产品体积。容易实现大功率充电,理论上可以做到最大充电功率与逆变输出功率相等。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围,其均应涵盖在本发明的权利要求和说明书的范围当中。

Claims (10)

  1. 一种双向逆变电路,其特征在于,包括:第一转换单元、第二转换单元、第三转换单元及变压器;其中,
    所述第一转换单元的输入端与直流电源连接,输出端与所述变压器的低压侧连接;所述第二转换单元的输入端与所述变压器的高压侧连接,输出端与所述第三转换单元的输入端连接;
    所述直流电源向所述第一转换单元的输入端输入直流电压时,所述第一转换单元、第二转换单元、第三转换单元顺次对所述直流电压进行斩波、整流及逆变以转换为第一交流电压,所述第一交流电压从所述第三转换单元的输出端输出;
    或者,所述第三转换单元的输出端连接第二交流电压时,所述第三转换单元、第二转换单元、第一转换单元顺次对所述第二交流电压进行第一次整流、斩波及第二次整流以转换为第二直流电压,所述第二直流电压为所述直流电源充电。
  2. 根据权利要求1所述的一种双向逆变电路,其特征在于:所述第一转换单元为由四个MOS管构成的全桥电路,所述第二转换单元为由四个MOS管构成的全桥电路,所述第三转换单元为由四个MOS管构成的SPWM全桥逆变电路。
  3. 根据权利要求1所述的一种双向逆变电路,其特征在于:所述第一转换单元为由两个MOS管构成的推挽电路、所述第二转换单元为由四个MOS管构成的全桥电路,所述第三转换单元为由四个MOS管构成的SPWM全桥逆变电路。
  4. 根据权利要求2或3任一所述的一种双向逆变电路,其特征在于:所述第一转换单元的输入端上串联有储能电感。
  5. 根据权利要求4所述的一种双向逆变电路,其特征在于:所述储能电感上并联有振荡抑制电路,所述振荡抑制电路包括第一MOS管、第二MOS管、第一开关控制电路、第一电容、第二电容和第二开关控制电路,所述第一MOS管和第二MOS管均为PMOS管;其中
    所述第一MOS管和第二MOS管的源极串联后与所述储能电感并联,所述第一MOS管的栅极和源极、所述第二MOS管的栅极和源极与所述第一开关控制电路连接;
    所述第一电容和第二电容并联后,一端与所述第二MOS管的漏极连接,另一端通过所述第二开关控制电路接地;
    所述直流电源向所述第一转换单元的输入端输入直流电压时,所述第一开关控制电路、第二开关控制电路均导通;
    或者,所述第三转换单元的输出端连接第二交流电压时,所述第一开关控制电路、第二开关控制电路均关断。
  6. 根据权利要求5所述的一种双向逆变电路,其特征在于:所述第一开关控制电路包括第一三极管,所述第一MOS管的栅极和源极、所述第二MOS管的栅极和源极均与所述第一三极管的集电极连接;
    所述第一三极管的基极连接第一控制信号输入端口,发射极接地。
  7. 根据权利要求6所述的一种双向逆变电路,其特征在于:所述第一三极管的基极上并联有第二三极管,所述第二三极管的集电极与所述第一三极管的基极连接,所述第二三极管的基极连接第二控制信号输入端口,所述第二三极管的发射极接地。
  8. 根据权利要求4所述的一种双向逆变电路,其特征在于:所述第二开关控制电路包括第三MOS管,所述第三MOS管的栅极连接第三控制信号输入端口,所述第三MOS管的源极接地。
  9. 根据权利要求8所述的一种双向逆变电路,其特征在于:所述第三MOS管为NMOS管。
  10. 一种双向逆变充电装置,包括电池包、充电管理电路、主控电路、辅助供电电路、充放电切换电路,其特征在于:还包括如权利要求4所述的双向逆变电路;所述双向逆变电路的输入端与所述电池包连接,输出端与所述充放电切换电路连接。
PCT/CN2020/128001 2020-10-30 2020-11-11 双向逆变电路及双向逆变充电装置 WO2022088256A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202022468834.9U CN213342021U (zh) 2020-10-30 2020-10-30 双向逆变电路及双向逆变充电装置
CN202011193179.9A CN112187061A (zh) 2020-10-30 2020-10-30 双向逆变电路及双向逆变充电装置
CN202022468834.9 2020-10-30
CN202011193179.9 2020-10-30

Publications (1)

Publication Number Publication Date
WO2022088256A1 true WO2022088256A1 (zh) 2022-05-05

Family

ID=81381487

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/128001 WO2022088256A1 (zh) 2020-10-30 2020-11-11 双向逆变电路及双向逆变充电装置

Country Status (1)

Country Link
WO (1) WO2022088256A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117458677A (zh) * 2023-12-22 2024-01-26 深圳市杰成镍钴新能源科技有限公司 退役电池包再利用串联切换控制系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202617004U (zh) * 2012-05-25 2012-12-19 许继电源有限公司 隔离型双向dc/dc变换器
CN105576731A (zh) * 2014-10-17 2016-05-11 天宝电子(惠州)有限公司 一种车载充电与逆变双向变流电源系统
CN206164392U (zh) * 2016-11-09 2017-05-10 扬州奥特斯光电科技有限公司 Dc‑dc‑ac逆变拓扑式单相交流逆变器
CN106685235A (zh) * 2017-02-14 2017-05-17 上海蔚来汽车有限公司 双向dc/dc功率变换器
CN110829878A (zh) * 2019-12-05 2020-02-21 哈尔滨理工大学 一种新型双向ac/dc变换器
CN111355398A (zh) * 2020-03-19 2020-06-30 深圳市高斯宝电气技术有限公司 一种集成dc/dc转换器的双向车载充电机电路

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202617004U (zh) * 2012-05-25 2012-12-19 许继电源有限公司 隔离型双向dc/dc变换器
CN105576731A (zh) * 2014-10-17 2016-05-11 天宝电子(惠州)有限公司 一种车载充电与逆变双向变流电源系统
CN206164392U (zh) * 2016-11-09 2017-05-10 扬州奥特斯光电科技有限公司 Dc‑dc‑ac逆变拓扑式单相交流逆变器
CN106685235A (zh) * 2017-02-14 2017-05-17 上海蔚来汽车有限公司 双向dc/dc功率变换器
CN110829878A (zh) * 2019-12-05 2020-02-21 哈尔滨理工大学 一种新型双向ac/dc变换器
CN111355398A (zh) * 2020-03-19 2020-06-30 深圳市高斯宝电气技术有限公司 一种集成dc/dc转换器的双向车载充电机电路

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117458677A (zh) * 2023-12-22 2024-01-26 深圳市杰成镍钴新能源科技有限公司 退役电池包再利用串联切换控制系统
CN117458677B (zh) * 2023-12-22 2024-03-29 深圳市杰成镍钴新能源科技有限公司 退役电池包再利用串联切换控制系统

Similar Documents

Publication Publication Date Title
CN108512256B (zh) 一种多功能车载充放电一体化系统
CN109039121B (zh) 一种高频隔离型交直流变换电路及其控制方法
WO2016015329A1 (zh) 一种dc-ac双向功率变换器拓扑结构
WO2021232706A1 (zh) 三桥臂拓扑装置、控制方法、逆变系统及不间断电源系统
US20180278158A1 (en) Bidirectional dc-dc converter
CN105939126B (zh) 一种开关电感型混合准z源逆变器
WO2022121890A1 (zh) 一种供电系统及太阳能光伏逆变器
CN110401348A (zh) 一种双向谐振直流-直流变换电路及不间断电源
CN112187061A (zh) 双向逆变电路及双向逆变充电装置
WO2023165253A1 (zh) 一种微型逆变器
CN107565814A (zh) 一种适用于燃料电池发电的高增益准z源开关升压逆变器
WO2022088256A1 (zh) 双向逆变电路及双向逆变充电装置
CN116984709A (zh) 一种高频逆变直流焊接电源电路
Burlaka et al. Bidirectional single stage isolated DC-AC converter
WO2024187553A1 (zh) 单级三端口磁集成拓扑、车载充电机及其控制方法
CN112615556A (zh) 一种多电平逆变器以及多电平逆变器的控制方法
CN219145265U (zh) 隔离驱动电路、控制装置及储能设备
CN213342021U (zh) 双向逆变电路及双向逆变充电装置
Bakeer et al. A modified two switched-inductors quasi Z-Source Inverter
CN208174547U (zh) 一种双向谐振直流-直流变换电路及不间断电源
WO2019109950A1 (zh) 升压电路,电源装置及便携式电能系统
TW201401720A (zh) 不間斷電源系統
WO2022151126A1 (zh) 一种直流变换器、控制方法、直流汇流箱及光伏发电系统
CN108566112B (zh) 一种带负压自举的三电平变流器驱动电路
CN110868075A (zh) 一种双向dc/dc变换器及其工作方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20959416

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 28/09/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20959416

Country of ref document: EP

Kind code of ref document: A1