WO2022088240A1 - 基于温度测算的电机保护方法、装置、电子设备和介质 - Google Patents

基于温度测算的电机保护方法、装置、电子设备和介质 Download PDF

Info

Publication number
WO2022088240A1
WO2022088240A1 PCT/CN2020/127677 CN2020127677W WO2022088240A1 WO 2022088240 A1 WO2022088240 A1 WO 2022088240A1 CN 2020127677 W CN2020127677 W CN 2020127677W WO 2022088240 A1 WO2022088240 A1 WO 2022088240A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
voice coil
temperature
real
vibration file
Prior art date
Application number
PCT/CN2020/127677
Other languages
English (en)
French (fr)
Inventor
郑亚军
Original Assignee
瑞声声学科技(深圳)有限公司
瑞声光电科技(常州)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 瑞声声学科技(深圳)有限公司, 瑞声光电科技(常州)有限公司 filed Critical 瑞声声学科技(深圳)有限公司
Publication of WO2022088240A1 publication Critical patent/WO2022088240A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/60Controlling or determining the temperature of the motor or of the drive
    • H02P29/64Controlling or determining the temperature of the winding
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K41/00Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
    • H02K41/02Linear motors; Sectional motors
    • H02K41/035DC motors; Unipolar motors
    • H02K41/0352Unipolar motors
    • H02K41/0354Lorentz force motors, e.g. voice coil motors
    • H02K41/0356Lorentz force motors, e.g. voice coil motors moving along a straight path

Definitions

  • the invention relates to the technical field of linear motors, in particular to a motor protection method, device, electronic device and medium based on temperature measurement.
  • the monitoring of motor conditions is always an important topic.
  • the heating of the voice coil is an unavoidable problem in the working state.
  • the continuous operation of the motor may lead to a continuous increase in the internal temperature of the motor, resulting in unstable and uncontrollable operation of the motor, resulting in a decline in the performance of the motor, and a severe temperature increase may even bring safety risks. Therefore, how to control the temperature of the motor voice coil is an important link to ensure the safe and efficient operation of the motor.
  • a motor protection method based on temperature measurement including:
  • the vibration file is a voltage signal adapted to a vibration event of the motor voice coil
  • the vibration file is corrected.
  • the calculating the predicted temperature of the motor voice coil according to the vibration file includes:
  • the predicted temperature of the motor voice coil is obtained by calculating according to the real-time current of the motor voice coil.
  • calculating and obtaining the real-time current of the motor voice coil based on the preset electromechanical coupling model of the motor according to the vibration file including:
  • the voltage u in the voltage signal corresponding to the vibration file is input into the electromechanical coupling model of the motor, so as to calculate the voltage u, the mover mass m of the motor, the mechanical damping c, the spring coefficient k, the static resistance of the voice coil, the sound
  • the coil inductance, as well as the electromechanical coupling coefficient BL, displacement x, displacement velocity v and displacement acceleration a, are calculated to obtain the current i corresponding to the voltage u as the real-time current of the motor voice coil.
  • the preset heat conduction model includes a preset heat conduction mapping relationship
  • the calculating and obtaining the predicted temperature of the motor voice coil based on the preset heat conduction model according to the real-time current of the motor voice coil including:
  • the real-time current of the motor voice coil is input into the preset heat conduction model, so as to calculate and obtain the predicted temperature of the motor voice coil according to the real-time current of the motor voice coil and the preset heat conduction mapping relationship.
  • the preset thermal conduction mapping relationship includes: the thermal conduction relationship between the voice coil and the interior of the motor, the thermal conduction relationship between the interior of the motor and the exterior of the motor, and the changing relationship between temperature and resistance.
  • the thermal conduction relationship between the voice coil and the motor includes:
  • the heat conduction relationship between the inside of the motor and the outside of the motor includes:
  • the total energy Q 2 (t) inside the motor conducted to the outside of the motor is the fifth of the real-time temperature T 1 (t) inside the motor, the temperature T 0 outside the motor, and the heat dissipation coefficient e 2 inside the motor Mapping relations;
  • the changing relationship between the temperature and the resistance includes: the real-time resistance Re (t) of the voice coil wire of the motor and the rate of change of the resistance with temperature k t , the real-time temperature T(t) of the voice coil, and the initial temperature of the voice coil
  • the performing correction processing on the vibration file includes:
  • the calculation duration L is the processing duration for calculating the predicted temperature of the motor voice coil according to the vibration file;
  • the duration L0 of the vibration file when detecting that the duration L0 of the vibration file is greater than (L+Ld), attenuate the signal after calculating the duration L in the vibration file, and the attenuation process is performed.
  • the duration is Ld;
  • a motor protection device including an acquisition module, a prediction module and a correction module, wherein:
  • the acquisition module is used to acquire a vibration file, and the vibration file is a voltage signal adapted to a vibration event of the motor voice coil;
  • the prediction module configured to calculate the predicted temperature of the motor voice coil according to the vibration file
  • the correction module is configured to perform correction processing on the vibration file when the predicted temperature is higher than a preset temperature threshold.
  • an electronic device comprising a memory and a processor, the memory stores a computer program, and when the computer program is executed by the processor, the processor is made to execute the first aspect and any one of the possibilities thereof. steps of the implementation.
  • a storage medium stores a computer instruction program, and the computer instruction program is loaded by a processor and executes the steps of the first aspect and any possible implementation manners thereof.
  • the beneficial effects of the present invention are: obtaining a vibration file, which is a voltage signal of a vibration event adapted to the motor voice coil; calculating the predicted temperature of the motor voice coil according to the vibration file; when the predicted temperature is higher than a preset temperature threshold , the vibration file is corrected, that is, the temperature rise caused by the original vibration signal can be calculated according to the temperature prediction algorithm, and whether the temperature rise exceeds the safe temperature can be judged, so as to realize the warning of excessive temperature; and the signal of the vibration file whose temperature is too high can be played. limit, realize the temperature control of the motor, and protect the stable operation of the motor.
  • FIG. 1 is a schematic flowchart of a motor protection method based on temperature measurement and calculation provided by the present invention
  • FIG. 2 is a schematic structural diagram of a heat conduction model provided by the present invention.
  • FIG. 3 is a schematic diagram of the effect of a correction processing signal provided by the present invention.
  • FIG. 4 is a schematic diagram of another modification processing signal effect provided by the present invention.
  • FIG. 5 is a schematic flowchart of another motor protection method based on temperature measurement provided by the present invention.
  • FIG. 6 is a schematic structural diagram of a motor protection device provided by the present invention.
  • the linear motor mentioned in the embodiments of the present invention is a transmission device that directly converts electrical energy into linear motion mechanical energy without any intermediate conversion mechanism. It can be regarded as a rotating electrical machine which is cut radially and developed into a plane. Linear motors are also called linear motors, linear motors, linear motors, push rod motors, etc.
  • FIG. 1 is a schematic flowchart of a motor protection method based on temperature measurement provided by an embodiment of the present invention.
  • the method may include:
  • the vibration file is a voltage signal adapted to a vibration event of the motor voice coil.
  • the executive body of the embodiment of the present invention may be a motor protection device, which can measure and control the temperature of the motor voice coil to protect the motor from working.
  • the above-mentioned motor protection device may be a system including a linear motor, or may be an electronic device, and the above-mentioned electronic device may be a terminal device, including but not limited to other devices such as a laptop computer and a tablet computer. Portable device or desktop computer.
  • the vibration file in the embodiment of the present invention is a voltage signal adapted to a vibration event of the motor voice coil, and a desired vibration effect can be achieved by playing the voltage signal.
  • the vibration file may be a voltage signal generated online according to a vibration event, or a pre-stored voltage signal may be retrieved according to the vibration event.
  • a preset model may be used to predict the temperature of the voice coil according to the collected vibration file.
  • the above step 102 may include:
  • the preset electromechanical coupling model of the motor in the embodiment of the present invention may be a general linear motor calculation model, which is a description method commonly used in the industry, and is an electromagnetic coupling model established by combining the physical structure and circuit structure of the motor. With this model, taking the voltage as input, the corresponding current output can be calculated. That is, the real-time current of the corresponding motor voice coil can be obtained according to the above-mentioned vibration file conversion.
  • the preset heat conduction model in the embodiment of the present invention is a calculation model established based on the heat conduction relationship of materials, which is a heat conduction equation established according to the relationship between heat generation, heat dissipation and temperature rise.
  • the real-time temperature of each unit can be calculated by using the current as the heat source.
  • the predicted temperature of the motor voice coil can be obtained by calculating according to the real-time current of the motor voice coil.
  • a playback restriction strategy can be implemented, mainly performing corresponding correction processing, which can retain the playback effect of the original vibration file for a certain period of time, and adjust the vibration file to control the temperature.
  • step 22 may include:
  • the voltage u in the voltage signal corresponding to the above-mentioned vibration file is input into the above-mentioned electromechanical coupling model of the motor, so that according to the above-mentioned voltage u, the mover mass m of the motor, the mechanical damping c, the spring coefficient k, the static resistance of the voice coil, and the inductance of the voice coil, As well as the electromechanical coupling coefficient BL, displacement x, displacement velocity v, and displacement acceleration a, the current i corresponding to the above-mentioned voltage u is calculated and obtained as the real-time current of the above-mentioned motor voice coil.
  • u is the voltage in the voltage signal corresponding to the vibration file
  • m is the mover mass of the motor
  • c is the mechanical damping of the motor
  • k is the spring coefficient of the motor
  • BL is the electromechanical coupling coefficient
  • R e is the static resistance of the motor coil
  • L e is the motor coil inductance
  • i is the current
  • u is the voltage
  • x is the displacement
  • v and a are the velocity and acceleration corresponding to the displacement x, respectively.
  • the corresponding real-time current i of the motor voice coil can be calculated according to the voltage u in the voltage signal corresponding to the vibration file.
  • the above-mentioned preset heat conduction model includes a preset heat conduction mapping relationship
  • the above step 22 may include:
  • the real-time current of the above-mentioned motor voice coil is input into the above-mentioned preset heat conduction model, to calculate and obtain the predicted temperature of the above-mentioned motor voice coil according to the real-time current of the above-mentioned motor voice coil and the above-mentioned preset heat conduction mapping relationship.
  • the heat conduction model is first introduced.
  • the actual working environment of the motor voice coil heating and heat conduction is divided into three-dimensional conduction units of the heating source (voice coil), the inside of the motor, and the outside of the motor.
  • FIG. 2 is a schematic structural diagram of a heat conduction model provided by an embodiment of the present invention, as shown in FIG. 2 , wherein:
  • Voice coil The energy input Q is obtained in the form of electrical energy, part of the energy Q t causes the voice coil temperature T to rise, and the other part of the energy Q 1 is conducted to the inside of the motor by heat dissipation;
  • the energy Q 1 conducted by the voice coil a part of the energy Q t causes the internal temperature T 1 of the motor to rise, and the other part of the energy Q 2 is conducted to the outside of the motor by heat dissipation;
  • the structure of the heat conduction model in the embodiment of the present invention may be as described above.
  • a specific heat conduction model can be established, here is a software model, wherein the heat conduction relationship of the model can be described by a preset heat conduction equation.
  • the heat conduction model established in the embodiment of the present invention is established according to the heat conduction characteristics in the actual working environment of the voice coil, and has high accuracy and rationality. , voice coil resistance, motor internal/external temperature, etc.), which cannot be achieved by traditional blind modeling.
  • experimental data collection may be performed to obtain data collection for parameter fitting.
  • the current in the wire of the voice coil and the temperature of the voice coil can be collected by the current collector and the temperature collector, respectively, to obtain multiple sample current values in the wires of the voice coil and sample temperature values of the voice coil at the same time.
  • Heat transfer relationships and model parameters in a heat transfer model may be performed to obtain data collection for parameter fitting.
  • an equivalent heat conduction model can be established, model parameters can be obtained through parameter fitting, and the heat conduction relationship can be improved, that is, the preset heat conduction mapping relationship of the heat conduction model can be obtained, which can be used according to the real-time working current of the motor voice coil.
  • Calculates tracking voice coil temperature That is, in the application, the real-time current of the motor voice coil can be input into the above-mentioned preset heat conduction model, so as to calculate and obtain the predicted temperature of the above-mentioned motor voice coil according to the real-time current of the motor voice coil and the above-mentioned preset heat conduction mapping relationship.
  • the above-mentioned preset thermal conduction mapping relationship includes: the thermal conduction relationship between the voice coil and the inside of the motor, the thermal conduction relationship between the inside of the motor and the outside of the motor, and the change relationship between temperature and resistance.
  • the above-mentioned relationship between the voice coil and the internal heat conduction of the motor may include:
  • the real-time temperature T(t) of the voice coil and the initial temperature of the voice coil T(0), the total energy input Q(t) of the voice coil of the motor, the total energy Q 1 (t) that the voice coil of the motor conducts into the motor, and the voice coil The third mapping relationship of the heating coefficient cm .
  • the above-mentioned heat conduction relationship between the inside of the motor and the outside of the motor includes:
  • the variation relationship between the above-mentioned temperature and resistance includes: the real-time resistance Re (t) of the above-mentioned motor voice coil wire and the rate of change k t of the resistance with temperature, the above-mentioned real-time voice coil temperature T(t), and the above-mentioned voice coil initial temperature T(0) and the fifth mapping relationship of the initial resistance of the voice coil Re (0).
  • thermal conduction relationship is specifically described below:
  • the heat conduction equation between the voice coil and the motor can include:
  • Q(t) is the total energy input of the voice coil
  • i(t) is the instantaneous current in the wire
  • Re(t) is the instantaneous resistance of the wire
  • Q 1 (t) is the total energy that the voice coil conducts into the motor
  • e 1 is the heat dissipation coefficient (related to the material properties and material area of the heat sink)
  • T(t) is the temperature of the voice coil itself
  • T 1 (t) is the internal temperature of the motor
  • C m is the temperature rise coefficient of the voice coil (actually is The product of mass and specific heat capacity, collectively referred to here as "temperature rise coefficient”)
  • T(0) is the initial temperature of the voice coil.
  • the heat conduction equation between the inside and outside of the motor can include:
  • C m1 is the temperature rise coefficient inside the motor
  • e 2 is the heat dissipation coefficient inside the motor
  • T 1 (t) is the initial temperature inside the motor
  • T 0 is the temperature outside the motor. The default does not change to the test ambient temperature.
  • k t is the rate of change of resistance with temperature rise.
  • the above-mentioned preset heat conduction model can be used to calculate the real-time voice coil temperature, and then determine whether the safe temperature is exceeded. If it exceeds the safe temperature, you can stop the calculation immediately, output the calculation time, and send the command of "execute playback limit" to be used when modifying the vibration file; if it does not exceed the safe temperature, you can continue the calculation (parameter update) until the whole The segment voltage signal is calculated, and the command "Do not perform playback limit" is sent.
  • step 103 includes:
  • the above-mentioned calculation duration L is the processing duration for calculating the predicted temperature of the above-mentioned motor voice coil according to the above-mentioned vibration file;
  • the above-mentioned preset attenuation duration Ld may be set to 10 milliseconds
  • Figure 3 is a schematic diagram of the effect of the correction processing signal. As shown in Figure 3, if the original vibration file duration L0 exceeds (L+Ld), the decay time is set to Ld, that is, within the range from time L to time (L+Ld), The voltage signal strength decays from the original strength to 0.
  • Figure 4 is another schematic diagram of the effect of the correction processing signal. As shown in Figure 4, if the duration L0 of the original vibration file does not exceed (L+Ld), the decay time is set to (L0-L), that is, in the range from time L to time L0 The voltage signal strength decays from the original strength to 0 within .
  • a vibration file can be obtained in practical applications, and the real-time voltage signal in the above-mentioned vibration file is converted into a real-time current i(t) by using a preset electromechanical coupling model of the motor, and then through the preset heat conduction model, according to
  • the real-time current i(t) calculates the real-time temperature T(t) of the voice coil, and judges whether the real-time temperature T(t) exceeds the preset safe temperature Th. If it exceeds, the calculation can be stopped, and the calculation time L of this time can be recorded.
  • Execute Playback limit if it is not exceeded, the calculation can be continued, the playback limit is not executed, and the parameters of the voice coil temperature and static resistance involved in the model can be updated.
  • the motor protection device 600 includes an acquisition module 610, a prediction module 620 and a correction module 630, wherein:
  • the above-mentioned acquisition module 610 is used to acquire a vibration file, and the above-mentioned vibration file is a voltage signal of a vibration event adapted to the motor voice coil;
  • the above-mentioned prediction module 620 is used to calculate the predicted temperature of the above-mentioned motor voice coil according to the above-mentioned vibration file;
  • the above-mentioned correction module 630 is configured to perform correction processing on the above-mentioned vibration file when the above-mentioned predicted temperature is higher than the preset temperature threshold.
  • each step involved in the method shown in FIG. 1 may be performed by each module in the motor protection device 600 shown in FIG. 6 , which will not be repeated here.
  • the motor protection device 600 in the embodiment of the present invention can obtain a vibration file, which is a voltage signal adapted to a vibration event of the motor voice coil; calculate the predicted temperature of the motor voice coil according to the vibration file; In the case of setting the temperature threshold, the vibration file is corrected, that is, the temperature rise caused by the original vibration signal can be calculated according to the temperature prediction algorithm, and whether the temperature rise exceeds the safe temperature can be judged to realize the warning of excessive temperature; The signal of the vibration file is played to limit, realize the temperature control of the motor, and protect the stable operation of the motor.
  • a vibration file which is a voltage signal adapted to a vibration event of the motor voice coil
  • an embodiment of the present invention further provides an electronic device.
  • the electronic device includes at least a processor and a memory, and the memory stores a computer storage medium.
  • the computer storage medium may be stored in the memory of the electronic device, and the computer storage medium is used for storing a computer program, and the computer program includes program instructions, and the processor is used for executing the program instructions stored in the computer storage medium.
  • the processor (or CPU (Central Processing Unit, central processing unit)) is the computing core and control core of the device, which is suitable for implementing one or more instructions, specifically suitable for loading and executing one or more instructions to implement the corresponding method. Flow or corresponding function; in one embodiment, the above-mentioned processor in this embodiment of the present invention may be used to perform a series of processing, including any steps of the method in the embodiment shown in FIG. 1 and so on.
  • Embodiments of the present invention further provide a computer storage medium (Memory), where the computer storage medium is a memory device in an electronic device, used to store programs and data.
  • the computer storage medium here may include both the built-in storage medium in the electronic device, and certainly also the extended storage medium supported by the electronic device.
  • Computer storage media provide storage space in which an electronic device's operating system is stored.
  • one or more instructions suitable for being loaded and executed by the processor are also stored in the storage space, and these instructions may be one or more computer programs (including program codes).
  • the computer storage medium here can be a high-speed RAM memory, or a non-volatile memory (non-volatile memory), such as at least one disk memory; optionally, it can also be at least one memory located far away from the aforementioned processor. computer storage media.
  • one or more instructions stored in the computer storage medium can be loaded and executed by the processor to implement the corresponding steps in the foregoing embodiment; in specific implementation, one or more instructions in the computer storage medium can be configured by The processor loads and executes any steps of the method in FIG. 1 , which will not be repeated here.
  • the disclosed systems, devices and methods may be implemented in other manners.
  • the division of the module is only for one logical function division.
  • multiple modules or components may be combined or integrated into another system, or some features may be ignored or not implement.
  • the shown or discussed mutual coupling, or direct coupling, or communication connection may be through some interfaces, indirect coupling or communication connection of devices or modules, and may be in electrical, mechanical or other forms.
  • Modules described as separate components may or may not be physically separated, and components shown as modules may or may not be physical modules, that is, they may be located in one place, or may be distributed to multiple network modules. Some or all of the modules may be selected according to actual needs to achieve the purpose of the solution in this embodiment.
  • the above-mentioned embodiments it may be implemented in whole or in part by software, hardware, firmware or any combination thereof.
  • software it can be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions may be stored in or transmitted over a computer-readable storage medium.
  • the computer instructions can be sent from one website site, computer, server, or data center to another by wire (eg, coaxial cable, fiber optic, digital subscriber line (DSL)) or wireless (eg, infrared, wireless, microwave, etc.)
  • wire e.g. coaxial cable, fiber optic, digital subscriber line (DSL)
  • wireless e.g., infrared, wireless, microwave, etc.
  • the computer-readable storage medium can be any available medium that can be accessed by a computer or a data storage device such as a server, data center, etc. that includes one or more available media integrated.
  • the available media may be read-only memory (ROM), or random access memory (RAM), or magnetic media, such as floppy disks, hard disks, magnetic tapes, magnetic disks, or optical media, such as, A digital versatile disc (DVD), or a semiconductor medium, for example, a solid state disk (SSD) and the like.
  • ROM read-only memory
  • RAM random access memory
  • magnetic media such as floppy disks, hard disks, magnetic tapes, magnetic disks, or optical media, such as, A digital versatile disc (DVD), or a semiconductor medium, for example, a solid state disk (SSD) and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Electromagnetism (AREA)
  • Control Of Electric Motors In General (AREA)

Abstract

本发明提供了一种基于温度测算的电机保护方法、装置、电子设备和介质,其中方法包括:获取振动文件,所述振动文件为适配电机音圈的振动事件的电压信号;根据所述振动文件计算所述电机音圈的预测温度;在所述预测温度高于预设温度阈值的情况下,对所述振动文件进行修正处理。

Description

基于温度测算的电机保护方法、装置、电子设备和介质 技术领域
本发明涉及直线电机技术领域,尤其涉及一种基于温度测算的电机保护方法、装置、电子设备和介质。
背景技术
随着科技的发展,电机的应用已经不仅仅是在工业生产中提供一种动力输出器件,在日常的消费类电子产品中电机也发挥着重要的作用,提供触觉反馈,输出丰富的振动效果,提升用户体验感受。
无论是作为动力输出,还是产生触觉效果,电机的工况监控始终都是一个重要的话题。电机作为一种电磁感应设备,在工作状态下,音圈的发热是不可避免的问题。然而电机的持续工作,可能导致电机内部温度的持续升高,导致电机工作不稳定与不可控,从而引起电机性能的下降,太严重的温度升高甚至会带来安全风险。所以如何对电机音圈的温度进行控制是保障电机安全、高效工作的重要环节。
发明内容
基于此,有必要针对上述问题,提供一种基于温度测算的电机保护方法、装置、电子设备和介质,用于解决如何对电机音圈的温度进行控制以保护电机的问题。
本发明的技术方案如下:
一方面,提供了一种基于温度测算的电机保护方法,包括:
获取振动文件,所述振动文件为适配电机音圈的振动事件的电压信号;
根据所述振动文件计算所述电机音圈的预测温度;
在所述预测温度高于预设温度阈值的情况下,对所述振动文件进行修正处理。
可选的,所述根据所述振动文件计算所述电机音圈的预测温度包括:
基于预设的电机机电耦合模型,根据所述振动文件计算获得所述电机音圈的实时电流;
基于预设的热传导模型,根据所述电机音圈的实时电流计算获得所述电机音圈的预测温度。
可选的,所述基于预设的电机机电耦合模型,根据所述振动文件计算获得所述电机音圈的实时电流,包括:
将所述振动文件对应的电压信号中的电压u输入所述电机机电耦合模型,以根据所述电压u、电机马达的动子质量m、机械阻尼c、弹簧系数k、音圈静态电阻、音圈电感,以及机电耦合系数BL、位移x、位移速度v和位移加速度a,计算获得所述电压u对应的电流i作为所述电机音圈的实时电流。
可选的,所述预设的热传导模型包括预设热传导映射关系;
所述基于预设的热传导模型,根据所述电机音圈的实时电流计算获得所述电机音圈的预测温度,包括:
将所述电机音圈的实时电流输入所述预设的热传导模型,以根据所述电机音圈的实时电流和所述预设热传导映射关系,计算获得所述电机音圈的预测温度。
可选的,所述预设热传导映射关系包括:音圈与电机内部热传导关系、电机内部与电机外部热传导关系,以及温度与电阻的变化关系。
可选的,所述音圈与电机内部热传导关系包括:
所述电机音圈的总能量输入Q(t)与电机音圈的实时电流i(t)和电机音圈导线的实时电阻R e(t)的第一映射关系;
所述电机音圈传导到电机内部的总能量Q 1(t)与音圈实时温度T(t)、电机内部实时温度T 1(t)、音圈散热系数e 1的第二映射关系;
所述音圈实时温度T(t)与音圈初始温度T(0)、所述电机音圈的总能量输入Q(t)、所述电机音圈传导到电机内部的总能量Q 1(t)和音圈升温系数c m的第三映射关系。
可选的,所述电机内部与电机外部热传导关系包括:
电机内部实时温度T 1(t)与电机内部初始温度T 1(0)、所述电机音圈传导到电机内部的总能量Q 1(t)、所述电机内部传导到电机外部的总能量Q 2(t)、所述 电机内部的升温系数c m1的第四映射关系;
所述电机内部传导到电机外部的总能量Q 2(t)与所述电机内部实时温度T 1(t)、所述电机外部的温度T 0、所述电机内部的散热系数e 2的第五映射关系;
所述温度与电阻的变化关系包括:所述电机音圈导线的实时电阻R e(t)与电阻随温度变化速率k t、所述音圈实时温度T(t)、所述音圈初始温度T(0)和音圈初始电阻R e(0)的第五映射关系。
可选的,所述对所述振动文件进行修正处理,包括:
获取计算时长L和预设衰减时长Ld,所述计算时长L为根据所述振动文件计算所述电机音圈的预测温度的处理时长;
获取所述振动文件的时长L0;在检测到所述振动文件的时长L0大于(L+Ld)的情况下,对所述振动文件中计算时长L后的信号进行衰减处理,所述衰减处理的时长为Ld;
在检测到所述振动文件的时长L0不大于(L+Ld)的情况下,对所述振动文件中计算时长L后的信号进行衰减处理,所述衰减处理的时长为(L0-L)。
另一方面,提供了一种电机保护装置,包括获取模块、预测模块和修正模块,其中:
所述获取模块,用于获取振动文件,所述振动文件为适配电机音圈的振动事件的电压信号;
所述预测模块,用于根据所述振动文件计算所述电机音圈的预测温度;
所述修正模块,用于在所述预测温度高于预设温度阈值的情况下,对所述振动文件进行修正处理。
另一方面,提供了一种电子设备,包括存储器和处理器,上述存储器存储有计算机程序,上述计算机程序被上述处理器执行时,使得上述处理器执行如上述第一方面及其任一种可能的实现方式的步骤。
另一方面,提供了一种存储介质,上述存储介质存储有计算机指令程序,上述计算机指令程序被处理器加载并执行如上述第一方面及其任一种可能的实现方式的步骤。
本发明的有益效果在于:获取振动文件,该振动文件为适配电机音圈的振动事件的电压信号;根据振动文件计算电机音圈的预测温度;在预测温度高于 预设温度阈值的情况下,对振动文件进行修正处理,即可以根据温度预测算法计算出原振动信号导致的温度上升,判断温升是否超过安全温度,实现温度过高预警;且对温度过高的振动文件的信号进行播放限制,实现电机的温度控制,保护电机稳定工作。
附图说明
图1为本发明提供的一种基于温度测算的电机保护方法的流程示意图;
图2为本发明提供的一种热传导模型的结构示意图;
图3为本发明提供的一种修正处理信号效果示意图;
图4为本发明提供的另一种修正处理信号效果示意图;
图5为本发明提供的另一种基于温度测算的电机保护方法的流程示意图;
图6为本发明提供的一种电机保护装置的结构示意图。
具体实施方式
为了使本技术领域的人员更好地理解本发明方案,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其他步骤或单元。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本发明的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其 它实施例相结合。
本发明实施例中提到的直线电机是一种将电能直接转换成直线运动机械能,而不需要任何中间转换机构的传动装置。它可以看成是一台旋转电机按径向剖开,并展成平面而成。直线电机也称线性电机、线性马达、直线马达、推杆马达等。
下面结合本发明实施例中的附图对本发明实施例进行描述。
请参阅图1,图1是本发明实施例提供的一种基于温度测算的电机保护方法的流程示意图。该方法可包括:
101、获取振动文件,上述振动文件为适配电机音圈的振动事件的电压信号。
本发明实施例的执行主体可以为一种电机保护装置,该装置可以对电机音圈的温度进行测算和控制,以保护电机工作。在可选的实施方式中,上述电机保护装置可以为包括直线电机的系统,也可以为电子设备,上述电子设备可以为终端设备,包括但不限于诸如膝上型计算机、平板计算机之类的其它便携式设备或者台式计算机。
本发明实施例中的振动文件为适配电机音圈的振动事件的电压信号,通过播放该电压信号可以实现期望的振动效果。可选的,该振动文件可以是根据振动事件在线生成的电压信号,也可以根据振动事件调取预存好的电压信号。
102、根据上述振动文件计算上述电机音圈的预测温度。
本发明实施例中可以采用预设的模型,来根据采集的振动文件进行音圈温度预测。在一种实施方式中,上述步骤102可包括:
21、基于预设的电机机电耦合模型,根据上述振动文件计算获得上述电机音圈的实时电流;
22、基于预设的热传导模型,根据上述电机音圈的实时电流计算获得上述电机音圈的预测温度。
本发明实施例中的预设的电机机电耦合模型可以为通用的线性电机计算模型,为业内常用的描述方式,是一种结合电机的物理结构与电路结构,所建立的一种电磁耦合模型。通过该模型,以电压作为输入,可以计算出相应的电流输出。即可以根据上述振动文件转换获得对应的电机音圈的实时电流。
而本发明实施例中预设的热传导模型为一种基于材料的热传导关系建立的计算模型,是根据发热、散热、温升之间的关系,建立的一种热传导方程。通过该模型,以电流作为发热源,可以计算出各单元的实时温度。本发明实施例中可以根据电机音圈的实时电流计算获得电机音圈的预测温度。
103、在上述预测温度高于预设温度阈值的情况下,对上述振动文件进行修正处理。
具体的,根据上述电机音圈的预测温度,可以执行播放限制策略,主要进行相应的修正处理,可保留原振动文件一定时间内的播放效果,调整振动文件来控制温度。
在一种可选的实施方式中,上述步骤22可包括:
将上述振动文件对应的电压信号中的电压u输入上述电机机电耦合模型,以根据上述电压u、电机马达的动子质量m、机械阻尼c、弹簧系数k、音圈静态电阻、音圈电感,以及机电耦合系数BL、位移x、位移速度v和位移加速度a,计算获得上述电压u对应的电流i作为上述电机音圈的实时电流。
具体的,上述电机机电耦合模型表达式可以写作如下形式:
Figure PCTCN2020127677-appb-000001
其中,u为振动文件对应的电压信号中的电压,m为电机马达的动子质量,c为马达机械阻尼,k为马达弹簧系数;BL为机电耦合系数,R e为马达线圈静态电阻,L e为马达线圈电感,i为电流,u为电压,x为位移,v和a分别为位移x对应的速度和加速度。
通过上述电机机电耦合模型表达式,可以根据振动文件对应的电压信号中的电压u计算出对应的电机音圈的实时电流i。
在一种可选的实施方式中,上述预设的热传导模型包括预设热传导映射关系;
上述步骤22可包括:
将上述电机音圈的实时电流输入上述预设的热传导模型,以根据上述电机音圈的实时电流和上述预设热传导映射关系,计算获得上述电机音圈的预测温 度。
为了更清楚地描述本发明实施例中的方法,首先对热传导模型进行介绍。本发明实施例中将电机音圈发热及热传导的实际工作环境,划分为发热源(音圈)、电机内部、电机外部这三维传导单元。
图2为本发明实施例提供的一种热传导模型的结构示意图,如图2所示,其中:
音圈:通过电能形式获得能量输入Q,其中一部分能量Q t导致音圈温度T上升,另一部分能量Q 1则以散热方式传导到电机内部;
电机内部:音圈传导过来的能量Q 1,一部分能量Q t导致电机内部温度T 1上升,另一部分能量Q 2则以散热方式传导到电机外部;
电机外部:电机内部传导过来的能量Q 2,快速向周围扩散,不会引起电机外部温度T 0变化。
本发明实施例中的热传导模型的结构可以如上所述。依据上述热传导模型结构及其热传导关系,可以建立具体的热传导模型,此处为软件模型,其中模型的热传导关系可以通过预设热传导方程来描述。为了建立热传导模型,需要进行热传导参数拟合,来获得模型参数,即确定热传导方程中的未知参数。
本发明实施例中建立的热传导模型,根据音圈实际工作环境中的热传导特性建立,具有较高的准确性与合理性,可以根据应用需要,提取模型中任意的状态量(例如,音圈温度、音圈电阻、电机内/外部温度等),而传统的盲建模并不能实现。
本发明实施例中,可以进行实验数据采集,获得参数拟合的数据采集。具体的,可以通过电流采集器和温度采集器分别采集音圈的导线内的电流和音圈的温度,获得多组同一时刻音圈的导线内的样本电流值和音圈的样本温度值,用于拟合热传导模型中的热传导关系和模型参数。
可以根据实际音圈发热与散热状态,建立等效热传导模型,通过参数拟合获得模型参数,完善热传导关系,即获得热传导模型的预设热传导映射关系,可以用于根据电机音圈的实时工作电流计算追踪音圈温度。即在应用中可以将电机音圈的实时电流输入上述预设的热传导模型,以根据上述电机音圈的实时电流和上述预设热传导映射关系,计算获得上述电机音圈的预测温度。
在一种可选的实施方式中,上述预设热传导映射关系包括:音圈与电机内部热传导关系、电机内部与电机外部热传导关系,以及温度与电阻的变化关系。
可选的,上述音圈与电机内部热传导关系可包括:
上述电机音圈的总能量输入Q(t)与电机音圈的实时电流i(t)和电机音圈导线的实时电阻R e(t)的第一映射关系;
上述电机音圈传导到电机内部的总能量Q 1(t)与音圈实时温度T(t)、电机内部实时温度T 1(t)、音圈散热系数e 1的第二映射关系;
上述音圈实时温度T(t)与音圈初始温度T(0)、上述电机音圈的总能量输入Q(t)、上述电机音圈传导到电机内部的总能量Q 1(t)和音圈升温系数c m的第三映射关系。
进一步可选的,上述电机内部与电机外部热传导关系包括:
电机内部实时温度T 1(t)与电机内部初始温度T 1(0)、上述电机音圈传导到电机内部的总能量Q 1(t)、上述电机内部传导到电机外部的总能量Q 2(t)、上述电机内部的升温系数c m1的第四映射关系;
上述电机内部传导到电机外部的总能量Q 2(t)与上述电机内部实时温度T 1(t)、上述电机外部的温度T 0、上述电机内部的散热系数e 2的第五映射关系;
上述温度与电阻的变化关系包括:上述电机音圈导线的实时电阻R e(t)与电阻随温度变化速率k t、上述音圈实时温度T(t)、上述音圈初始温度T(0)和音圈初始电阻R e(0)的第五映射关系。
在一种实施方式中,以下对上述热传导关系进行具体描述:
1、音圈与电机内部热传导方程可包括:
Q(t)=∫i(t) 2Re(t)dt
Figure PCTCN2020127677-appb-000002
Figure PCTCN2020127677-appb-000003
其中,Q(t)为音圈的总能量输入,i(t)为导线内的瞬时电流,Re(t)为导线的瞬时电阻;Q 1(t)为音圈传导到电机内部的总能量,e 1为散热系数(与散热体材料属性、材料面积有关),T(t)为音圈自身温度,T 1(t)为电机内部温度; C m为音圈的温升系数(实际为质量与比热容乘积,这里综合称为“温升系数”),T(0)为音圈的初始温度。
2、电机内部与电机外部热传导方程可包括:
Figure PCTCN2020127677-appb-000004
Figure PCTCN2020127677-appb-000005
其中,C m1为电机内部的温升系数,e 2为电机内部的散热系数,T 1(t)为电机内部的初始温度;T 0为电机外部的温度,这里默认该域散热较快,温度默认不变为测试环境温度。
3、温度——电阻的变化关系:
R e(t)=k t·(T(t)-T(0))+R e(0)
其中,k t为电阻随温升的变化速率。
本发明实施例中,利用上述预设的热传导模型,可以计算出实时音圈温度,进而判断是否超过安全温度。若超过安全温度,可以立即停止计算,并输出计算的时长,发送“执行播放限制”的命令,以便修改振动文件时使用;若不超过安全温度,可以继续计算(进行参数更新),直至将整段电压信号计算完,并发送“不执行播放限制”的命令。
本发明实施例中对电机的温度预测与保护无需增加附加的温度监控设备,可以实现低成本、高效的实现电机保护。
在实际应用流程中,上述“执行播放限制,修正振动文件”策略具体可如下:
在一种可选的实施方式中,上述步骤103包括:
31、获取计算时长L和预设衰减时长Ld,上述计算时长L为根据上述振动文件计算上述电机音圈的预测温度的处理时长;
32、获取上述振动文件的时长L0;在检测到上述振动文件的时长L0大于(L+Ld)的情况下,对上述振动文件中计算时长L后的信号进行衰减处理,上述衰减处理的时长为Ld;
33、在检测到上述振动文件的时长L0不大于(L+Ld)的情况下,对上述 振动文件中计算时长L后的信号进行衰减处理,上述衰减处理的时长为(L0-L)。
具体的,上述预设衰减时长Ld可设置为10毫秒;
图3为一种修正处理信号效果示意图,如图3所示,若原振动文件时长L0超过(L+Ld),则衰减时间设置为Ld,即在时刻L到时刻(L+Ld)范围内,电压信号强度由原强度衰减至0。
图4为另一种修正处理信号效果示意图,如图4所示,若原振动文件时长L0不超过(L+Ld),则衰减时间设置为(L0-L),即在时刻L到时刻L0范围内,电压信号强度由原强度衰减至0。
可以参见图5所示的另一种基于温度测算的电机保护方法的流程示意图。如图5所示,在实际应用中可以获取振动文件,采用预设的电机机电耦合模型将上述振动文件中的实时电压信号换算为实时电流i(t),再通过预设的热传导模型,根据实时电流i(t)计算出音圈实时温度T(t),并判断实时温度T(t)是否超过预设的安全温度Th,若超过,可以停止计算,记录本次的计算时长L,执行播放限制;若不超过,可以继续计算,不执行播放限制,并且可以更新模型中涉及的音圈温度和静态电阻这部分参数。通过上述方法可以实现电机线圈温度过高预警,且对温度过高的振动信号进行播放限制,实现电机的温度保护。
通过上述步骤,可以及时对温度过高的振动文件信号进行播放限制,实现电机(音圈)的温度保护。
基于上述基于温度测算的电机保护方法实施例的描述,本发明实施例还公开了一种电机保护装置。请参见图6,电机保护装置600包括获取模块610、预测模块620和修正模块630,其中:
上述获取模块610,用于获取振动文件,上述振动文件为适配电机音圈的振动事件的电压信号;
上述预测模块620,用于根据上述振动文件计算上述电机音圈的预测温度;
上述修正模块630,用于在上述预测温度高于预设温度阈值的情况下,对上述振动文件进行修正处理。
根据本发明的一个实施例,图1所示的方法所涉及的各个步骤均可以是由 图6所示的电机保护装置600中的各个模块执行的,此处不再赘述。
本发明实施例中的电机保护装置600,可以通过获取振动文件,该振动文件为适配电机音圈的振动事件的电压信号;根据振动文件计算电机音圈的预测温度;在预测温度高于预设温度阈值的情况下,对振动文件进行修正处理,即可以根据温度预测算法计算出原振动信号导致的温度上升,判断温升是否超过安全温度,实现温度过高预警;且对温度过高的振动文件的信号进行播放限制,实现电机的温度控制,保护电机稳定工作。
基于上述方法实施例以及装置实施例的描述,本发明实施例还提供一种电子设备。该电子设备至少包括处理器和存储器,上述存储器存储有计算机存储介质。
计算机存储介质可以存储在电子设备的存储器中,上述计算机存储介质用于存储计算机程序,上述计算机程序包括程序指令,上述处理器用于执行上述计算机存储介质存储的程序指令。处理器(或称CPU(Central Processing Unit,中央处理器))是设备的计算核心以及控制核心,其适于实现一条或多条指令,具体适于加载并执行一条或多条指令从而实现相应方法流程或相应功能;在一个实施例中,本发明实施例上述的处理器可以用于进行一系列的处理,包括如图1所示实施例中方法的任意步骤等等。
本发明实施例还提供了一种计算机存储介质(Memory),上述计算机存储介质是电子设备中的记忆设备,用于存放程序和数据。可以理解的是,此处的计算机存储介质既可以包括电子设备中的内置存储介质,当然也可以包括电子设备所支持的扩展存储介质。计算机存储介质提供存储空间,该存储空间存储了电子设备的操作系统。并且,在该存储空间中还存放了适于被处理器加载并执行的一条或多条的指令,这些指令可以是一个或一个以上的计算机程序(包括程序代码)。需要说明的是,此处的计算机存储介质可以是高速RAM存储器,也可以是非不稳定的存储器(non-volatile memory),例如至少一个磁盘存储器;可选的还可以是至少一个位于远离前述处理器的计算机存储介质。
在一个实施例中,可由处理器加载并执行计算机存储介质中存放的一条或多条指令,以实现上述实施例中的相应步骤;具体实现中,计算机存储介质中的一条或多条指令可以由处理器加载并执行图1中方法的任意步骤,此处不再 赘述。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的装置和模块的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本发明所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,该模块的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如,多个模块或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。所显示或讨论的相互之间的耦合、或直接耦合、或通信连接可以是通过一些接口,装置或模块的间接耦合或通信连接,可以是电性,机械或其它的形式。
作为分离部件说明的模块可以是或者也可以不是物理上分开的,作为模块显示的部件可以是或者也可以不是物理模块,即可以位于一个地方,或者也可以分布到多个网络模块上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。该计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行该计算机程序指令时,全部或部分地产生按照本发明实施例的流程或功能。该计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。该计算机指令可以存储在计算机可读存储介质中,或者通过该计算机可读存储介质进行传输。该计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。该计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。该可用介质可以是只读存储器(read-only memory,ROM),或随机存储存储器(random access memory,RAM),或磁性介质,例如,软盘、硬盘、磁带、磁碟、或光介质,例如,数字通用光盘(digital versatile disc,DVD)、或者半导体介质,例如,固态硬盘(solid state disk,SSD)等。

Claims (11)

  1. 一种基于温度测算的电机保护方法,其特征在于,包括:
    获取振动文件,所述振动文件为适配电机音圈的振动事件的电压信号;
    根据所述振动文件计算所述电机音圈的预测温度;
    在所述预测温度高于预设温度阈值的情况下,对所述振动文件进行修正处理。
  2. 根据权利要求1所述的基于温度测算的电机保护方法,其特征在于,所述根据所述振动文件计算所述电机音圈的预测温度包括:
    基于预设的电机机电耦合模型,根据所述振动文件计算获得所述电机音圈的实时电流;
    基于预设的热传导模型,根据所述电机音圈的实时电流计算获得所述电机音圈的预测温度。
  3. 根据权利要求2所述的基于温度测算的电机保护方法,其特征在于,所述基于预设的电机机电耦合模型,根据所述振动文件计算获得所述电机音圈的实时电流,包括:
    将所述振动文件对应的电压信号中的电压u输入所述电机机电耦合模型,以根据所述电压u、电机马达的动子质量m、机械阻尼c、弹簧系数k、音圈静态电阻、音圈电感,以及机电耦合系数BL、位移x、位移速度v和位移加速度a,计算获得所述电压u对应的电流i作为所述电机音圈的实时电流。
  4. 根据权利要求3所述的基于温度测算的电机保护方法,其特征在于,所述预设的热传导模型包括预设热传导映射关系;
    所述基于预设的热传导模型,根据所述电机音圈的实时电流计算获得所述电机音圈的预测温度,包括:
    将所述电机音圈的实时电流输入所述预设的热传导模型,以根据所述电机音圈的实时电流和所述预设热传导映射关系,计算获得所述电机音圈的预测温度。
  5. 根据权利要求4所述的基于温度测算的电机保护方法,其特征在于,所述预设热传导映射关系包括:音圈与电机内部热传导关系、电机内部与电机外部热传导关系,以及温度与电阻的变化关系。
  6. 根据权利要求5所述的基于温度测算的电机保护方法,其特征在于,所述音圈与电机内部热传导关系包括:
    所述电机音圈的总能量输入Q(t)与电机音圈的实时电流i(t)和电机音圈导线的实时电阻R e(t)的第一映射关系;
    所述电机音圈传导到电机内部的总能量Q 1(t)与音圈实时温度T(t)、电机内部实时温度T 1(t)、音圈散热系数e 1的第二映射关系;
    所述音圈实时温度T(t)与音圈初始温度T(0)、所述电机音圈的总能量输入Q(t)、所述电机音圈传导到电机内部的总能量Q 1(t)和音圈升温系数c m的第三映射关系。
  7. 根据权利要求6所述的基于温度测算的电机保护方法,其特征在于,所述电机内部与电机外部热传导关系包括:
    电机内部实时温度T 1(t)与电机内部初始温度T 1(0)、所述电机音圈传导到电机内部的总能量Q 1(t)、所述电机内部传导到电机外部的总能量Q 2(t)、所述电机内部的升温系数c m1的第四映射关系;
    所述电机内部传导到电机外部的总能量Q 2(t)与所述电机内部实时温度T 1(t)、所述电机外部的温度T 0、所述电机内部的散热系数e 2的第五映射关系;
    所述温度与电阻的变化关系包括:所述电机音圈导线的实时电阻R e(t)与电阻随温度变化速率k t、所述音圈实时温度T(t)、所述音圈初始温度T(0)和音圈初始电阻R e(0)的第五映射关系。
  8. 根据权利要求1-7任一项所述的基于温度测算的电机保护方法,其特征在于,所述对所述振动文件进行修正处理,包括:
    获取计算时长L和预设衰减时长Ld,所述计算时长L为根据所述振动文 件计算所述电机音圈的预测温度的处理时长;
    获取所述振动文件的时长L0;在检测到所述振动文件的时长L0大于(L+Ld)的情况下,对所述振动文件中计算时长L后的信号进行衰减处理,所述衰减处理的时长为Ld;
    在检测到所述振动文件的时长L0不大于(L+Ld)的情况下,对所述振动文件中计算时长L后的信号进行衰减处理,所述衰减处理的时长为(L0-L)。
  9. 一种电机保护装置,其特征在于,包括获取模块、预测模块和修正模块,其中:
    所述获取模块,用于获取振动文件,所述振动文件为适配电机音圈的振动事件的电压信号;
    所述预测模块,用于根据所述振动文件计算所述电机音圈的预测温度;
    所述修正模块,用于在所述预测温度高于预设温度阈值的情况下,对所述振动文件进行修正处理。
  10. 一种电子设备,其特征在于,包括存储器和处理器,所述存储器存储有计算机程序,所述计算机程序被所述处理器执行时,使得所述处理器执行如权利要求1至8中任一项所述的使用状态判断方法的步骤。
  11. 一种存储介质,存储有计算机指令程序,其特征在于,所述计算机指令程序被处理器执行时,使得所述处理器执行如权利要求1至8中任一项所述方法的步骤。
PCT/CN2020/127677 2020-10-30 2020-11-10 基于温度测算的电机保护方法、装置、电子设备和介质 WO2022088240A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011197891.6 2020-10-30
CN202011197891.6A CN112271979B (zh) 2020-10-30 2020-10-30 基于温度测算的电机保护方法、装置、电子设备和介质

Publications (1)

Publication Number Publication Date
WO2022088240A1 true WO2022088240A1 (zh) 2022-05-05

Family

ID=74344500

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/127677 WO2022088240A1 (zh) 2020-10-30 2020-11-10 基于温度测算的电机保护方法、装置、电子设备和介质

Country Status (2)

Country Link
CN (1) CN112271979B (zh)
WO (1) WO2022088240A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04165991A (ja) * 1990-10-25 1992-06-11 Olympus Optical Co Ltd Dcリニアモータ駆動装置
CN108668197A (zh) * 2017-03-31 2018-10-16 展讯通信(上海)有限公司 扬声器系统的控制方法及装置
CN109905812A (zh) * 2019-01-31 2019-06-18 维沃移动通信有限公司 一种输入功率控制方法及装置、终端设备
CN110011591A (zh) * 2018-12-31 2019-07-12 瑞声科技(新加坡)有限公司 马达驱动信号生成方法、电子设备及存储介质
CN110398297A (zh) * 2018-04-25 2019-11-01 半导体组件工业公司 驱动器模块以及用于确定驱动器模块的环境空气温度的方法
CN111385714A (zh) * 2020-03-17 2020-07-07 维沃移动通信有限公司 扬声器的音圈温度确定方法、电子设备及存储介质

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2357726B1 (en) * 2010-02-10 2016-07-06 Nxp B.V. System and method for adapting a loudspeaker signal
CN109861172B (zh) * 2019-03-29 2020-07-03 北京经纬恒润科技有限公司 电机过热保护方法及装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04165991A (ja) * 1990-10-25 1992-06-11 Olympus Optical Co Ltd Dcリニアモータ駆動装置
CN108668197A (zh) * 2017-03-31 2018-10-16 展讯通信(上海)有限公司 扬声器系统的控制方法及装置
CN110398297A (zh) * 2018-04-25 2019-11-01 半导体组件工业公司 驱动器模块以及用于确定驱动器模块的环境空气温度的方法
CN110011591A (zh) * 2018-12-31 2019-07-12 瑞声科技(新加坡)有限公司 马达驱动信号生成方法、电子设备及存储介质
CN109905812A (zh) * 2019-01-31 2019-06-18 维沃移动通信有限公司 一种输入功率控制方法及装置、终端设备
CN111385714A (zh) * 2020-03-17 2020-07-07 维沃移动通信有限公司 扬声器的音圈温度确定方法、电子设备及存储介质

Also Published As

Publication number Publication date
CN112271979A (zh) 2021-01-26
CN112271979B (zh) 2022-04-26

Similar Documents

Publication Publication Date Title
JP5459325B2 (ja) キャッシュ装置、キャッシュプログラム、及び通信装置
US10156987B1 (en) Temperature management in a data storage system
US10048995B1 (en) Methods and apparatus for improved fault analysis
KR101629879B1 (ko) 캐시 사용 기반 어댑티브 스케줄링을 가지는 멀티코어 컴퓨터 시스템
US10966346B2 (en) Method, device and system for controlling heat dissipation of electrical cabinet
US11003496B2 (en) Performance-based multi-mode task dispatching in a multi-processor core system for high temperature avoidance
WO2021115076A1 (zh) 一种电机功能安全控制方法及装置
CN110765034B (zh) 一种数据预取方法及终端设备
WO2015021755A1 (zh) 一种数据存储的方法及装置
US10013261B2 (en) Techniques for managing or controlling computing devices
WO2013130839A1 (en) Controlling a cooling system for a computer system
US20150120747A1 (en) Techniques for searching data associated with devices in a heterogeneous data center
WO2022088241A1 (zh) 一种电机线圈的发热状态监测方法、相关设备和介质
WO2022088240A1 (zh) 基于温度测算的电机保护方法、装置、电子设备和介质
US10146783B2 (en) Using file element accesses to select file elements in a file system to defragment
TW201830194A (zh) 用於可攜式計算設備中的情境感知熱管理和工作負荷排程的系統和方法
JP2008084011A (ja) Cadデータのロード装置
CN108089458A (zh) 研究环境温度对新型过载保护继电器温度影响仿真方法
CN110489303A (zh) 一种基于NVMe SSD硬盘的温度预测控制管理方法及装置
WO2022166679A1 (zh) 计算核、计算核温度调整方法、设备、介质、芯片和系统
US9052881B2 (en) Discovering thermal relationships in data processing environments
KR20200091917A (ko) 리소스 처리 방법 및 시스템, 저장 매체, 전자 기기
CN112558740B (zh) 组件节流电力备用设备充电系统
CN105426038A (zh) 基于画面热度算法的电网调度控制系统画面预加载方法
CN108804351A (zh) 一种缓存置换方法以及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20959400

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20959400

Country of ref document: EP

Kind code of ref document: A1