WO2022088154A1 - 一种电动汽车的扭矩控制方法、装置、设备及其存储介质 - Google Patents

一种电动汽车的扭矩控制方法、装置、设备及其存储介质 Download PDF

Info

Publication number
WO2022088154A1
WO2022088154A1 PCT/CN2020/125673 CN2020125673W WO2022088154A1 WO 2022088154 A1 WO2022088154 A1 WO 2022088154A1 CN 2020125673 W CN2020125673 W CN 2020125673W WO 2022088154 A1 WO2022088154 A1 WO 2022088154A1
Authority
WO
WIPO (PCT)
Prior art keywords
torque
information
electric vehicle
variable
corrected
Prior art date
Application number
PCT/CN2020/125673
Other languages
English (en)
French (fr)
Inventor
胡峰伟
刘利梁
贾浩波
方学伟
房保金
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2020/125673 priority Critical patent/WO2022088154A1/zh
Priority to CN202080004667.2A priority patent/CN112638695B/zh
Priority to EP20959315.1A priority patent/EP4227145A4/en
Publication of WO2022088154A1 publication Critical patent/WO2022088154A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/40Electrical machine applications
    • B60L2220/42Electrical machine applications with use of more than one motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/40Electrical machine applications
    • B60L2220/46Wheel motors, i.e. motor connected to only one wheel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/12Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/14Acceleration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2250/00Driver interactions
    • B60L2250/26Driver interactions by pedal actuation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present application relates to the field of electric vehicles, and in particular, to a torque control method, device, device and storage medium of an electric vehicle.
  • the motor controller inside the electric vehicle is mainly responsible for adjusting the driving torque of the motor according to the vehicle information and driver information.
  • the vehicle information mainly includes vehicle speed, motor speed and torque
  • the driver information mainly includes the accelerator pedal opening value and its rate of change.
  • the torque control effect of electric vehicles is directly related to the driver's driving experience.
  • the driving experience depends on whether the vehicle can respond accurately and quickly to the needs of acceleration and deceleration, and on the other hand, it is related to the application scenarios.
  • Drivers in different application scenarios have different power demands on the vehicle.
  • Existing technologies mainly focus on how to perform precise and fast torque control adjustments, but essentially still require the driver to adapt to the driving mode set by the electric vehicle.
  • the torque control method of the controller is mainly to set the electric vehicle to three driving modes, and each driving mode corresponds to a torque calculation method to meet the driver's need for Requirements for rotational speed and acceleration in multiple application scenarios.
  • this approach requires the driver to manually adjust the driving mode, and still requires the driver to adapt to each driving mode.
  • the present application provides a torque control method, device, device and storage medium for an electric vehicle, which are used to meet the power demands of drivers in multiple application scenarios.
  • an embodiment of the present application provides a torque control method for an electric vehicle, which is applied to an electric vehicle.
  • the electric vehicle may include an electric motor, an accelerator pedal, and a controller, and the execution subject of the torque control method may be the interior of the electric vehicle.
  • the controller includes the following steps:
  • the operation information of the electric vehicle at least includes the current speed information of the vehicle, the rate of change of the accelerator pedal opening and the value of the accelerator pedal opening.
  • the rate of change based on the operation information and a preset object used to characterize the relationship between the operation information of the electric vehicle and the corrected torque information, determine the corrected torque information of the electric vehicle; based on the corrected torque information, control the torque output to the electric motor in the electric vehicle .
  • the object used to characterize the relationship between the electric vehicle operation information and the corrected torque information is determined by using the historical operation information of the electric vehicle.
  • the application scenario of the electric vehicle can be determined according to the operating parameters of the electric vehicle, and the predetermined object used to characterize the relationship between the operation information of the electric vehicle and the corrected torque information can be used to determine the application scenario of the electric vehicle.
  • the difference between the basic torque information output in the current operating mode of the electric motor and the torque information required by the driver in the current scene (that is, the corrected torque information), and the output torque of the electric vehicle is controlled according to the corrected torque information to realize the output to the electric vehicle.
  • the torque information of the car meets the driver's demand for torque in the current scenario.
  • the vehicle speed information includes some or all of the following: the vehicle speed information includes some or all of the following: the vehicle speed of the electric vehicle, the rotational speed of the electric motor, the current torque of the electric motor, the torque variable of the electric motor, and the acceleration of the electric vehicle.
  • the acceleration is the change value of the vehicle speed of the electric vehicle per unit time
  • the torque variable is the change value of the current torque per unit time.
  • the current operation information of the electric vehicle can be used to determine the application scenario of the electric vehicle, and the torque information required by the driver can be determined according to the current operation information of the electric vehicle.
  • the objects used to characterize the relationship between the operation information and the corrected torque information of the electric vehicle include: the first correspondence between the operation information and the target torque information, and the first correspondence between the target torque information, the basic torque information and the corrected torque information
  • the target torque information includes the target torque and the target torque variable.
  • the basic torque information is calculated based on the accelerator pedal opening value and the accelerator pedal conversion rate in the current driving mode of the electric vehicle; the basic torque information includes: basic torque and torque variables, and the basic torque variable is the change value of the basic torque within a unit time.
  • the target when the corrected torque information of the electric vehicle is determined based on the operation information and the preset object used to characterize the relationship between the operation information of the electric vehicle and the corrected torque information, the target can be determined based on the operation information and the first correspondence The torque information is then determined based on the target torque information, the basic torque information, and the second corresponding relationship to determine the corrected torque information.
  • the target torque information required by the driver in the current application scenario of the electric vehicle is determined, and based on the target torque information, the basic torque information calculated in the current driving mode of the electric vehicle, and the first Two correspondences, determining the correction torque information for compensating the basic torque information, and compensating the basic torque information, so as to output the torque information that meets the driver's demand.
  • the corrected torque information includes a corrected torque and a corrected torque variable.
  • the corrected torque is the difference between the target torque and the current torque
  • the corrected torque variable is the difference between the target torque variable and the torque variable.
  • the torque output to the electric motor in the electric vehicle is controlled based on the corrected torque information, including:
  • the modified torque and the basic torque are superimposed to obtain the first torque; the modified torque variable and the basic torque variable are superimposed to obtain the first torque variable; and the first torque and the first torque variable are output to the electric motor.
  • the modified torque information representing the difference between the basic torque information and the driver's required power torque information is compared with the basic torque information.
  • Superposition compensation is performed directly, so that the compensated basic torque information can meet the driver's torque demand in the current application scenario.
  • the correction torque information includes a first correction torque coefficient and a second correction torque coefficient.
  • the first correction torque coefficient is the first ratio of the difference between the target torque and the current torque to the current torque
  • the second correction torque coefficient is the second ratio of the difference between the target torque variable and the torque variable to the torque variable .
  • the corrected torque information is output in the form of a correction coefficient
  • the multiple relationship between the power information required by the driver and the basic torque information can be determined, and the basic torque information can be compensated according to the multiple relationship, so that the compensated output torque The information meets the driver's torque demand in the current application scenario.
  • the process of using the historical operation information to determine the object used to characterize the relationship between the operation information of the electric vehicle and the corrected torque information is as follows:
  • the operating parameters at the historical moment and the preset time period after the historical moment correspond to the target torque of the electric vehicle;
  • the operation information at each historical moment and the target torque of the electric vehicle corresponding to the operation information at each historical moment are used to establish a first correspondence; the target torque of the electric vehicle corresponding to the operation information at each historical moment and the basic torque information corresponding to each moment are used. , to establish a second correspondence.
  • the driver needs to adjust the opening value of the accelerator pedal.
  • the driving The operator needs to adjust the accelerator pedal opening value several times until the output torque meets the power demand when the driver adjusts the accelerator pedal opening value for the first time.
  • the information and the torque information output after the adjustment of the governor pedal opening value for many times are used to establish the object used to characterize the relationship between the operation information of the electric vehicle and the corrected torque information, so that when the calculated torque of the current driving mode of the electric vehicle does not meet the power demand of the driver, The calculated torque can be accurately compensated using the above established objects.
  • the object used to characterize the relationship between the operation information and the corrected torque information of the electric vehicle includes a model used to characterize the relationship between the operation information and the corrected torque information of the electric vehicle.
  • the set object for characterizing the relationship between the operation information of the electric vehicle and the corrected torque information, and determining the corrected torque information of the electric vehicle specifically includes: inputting the operation information into the trained model, and determining the corrected torque information according to the output result.
  • the trained model can be used to directly output the corrected torque information for compensating the current output torque, which is relatively fast in calculation, and the calculation speed is accelerated.
  • an embodiment of the present application provides a torque control device for an electric vehicle.
  • the torque control device may include: an acquisition unit, a determination unit, and a processing unit.
  • the obtaining unit may be used to obtain the operation information of the electric vehicle, and the operation information of the electric vehicle at least includes the current vehicle speed information, the change rate of the accelerator pedal opening and the accelerator pedal opening value.
  • the rate of change of the accelerator pedal opening is the rate of change of the accelerator pedal opening value per unit time;
  • the determination unit can be used to determine the corrected torque information of the electric vehicle based on the operation information and a preset object used to characterize the relationship between the operation information of the electric vehicle and the corrected torque information, and the object representing the relationship between the operation information of the electric vehicle and the corrected torque information is Determined by using the historical operation information of electric vehicles;
  • the processing unit may be used to control the torque output to the electric motor in the electric vehicle based on the corrected torque information.
  • the vehicle speed information includes some or all of the following: the vehicle speed of the electric vehicle, the rotational speed of the electric motor, the current torque of the electric motor, the torque variation of the electric motor, and the acceleration of the electric vehicle.
  • the acceleration is the change value of the vehicle speed of the electric vehicle per unit time
  • the torque variable is the change value of the current torque per unit time
  • the objects representing the relationship between the operation information of the electric vehicle and the corrected torque information include: a first correspondence between the operation information and the target torque information and a second correspondence between the target torque information, the basic torque information and the corrected torque information
  • the target torque information includes the target torque and the target torque variable
  • the basic torque information is calculated based on the current driving mode of the electric vehicle based on the accelerator pedal opening value and the accelerator pedal conversion rate
  • the basic torque information includes: basic torque and torque variables
  • the basic torque variable is the change value of the basic torque within the unit time
  • the determining unit is specifically used for: determining the target torque information based on the operation information and the first corresponding relationship; determining the corrected torque based on the target torque information, the basic torque information and the second corresponding relationship information.
  • the corrected torque information includes a corrected torque and a corrected torque variable; wherein the corrected torque is the difference between the target torque and the current torque, and the corrected torque variable is the difference between the target torque variable and the torque variable; the processing unit specifically It is used for: superimposing the corrected torque and the basic torque to obtain the first torque; superimposing the corrected torque variable and the basic torque variable to obtain the first torque variable; and outputting the first torque and the first torque variable to the electric motor.
  • the corrected torque information includes a first corrected torque coefficient and a second corrected torque coefficient; wherein the first corrected torque coefficient is a first ratio of the difference between the target torque and the current torque to the current torque,
  • the second correction torque coefficient is the second ratio of the difference between the target torque variable and the torque variable to the torque variable;
  • the processing unit is specifically configured to: superimpose the correction torque and the torque value corresponding to the first correction coefficient to obtain the second torque ; superimpose the corrected torque variable and the torque value corresponding to the second correction coefficient to obtain a second torque variable; output the second torque and the second torque variable to the electric motor.
  • the processing unit is further configured to establish an object for representing the relationship between the operation information of the electric vehicle and the corrected torque information by adopting the following steps: When the opening value of the accelerator pedal changes at the historical moment, record the operating parameters of the historical moment and the target torque of the electric vehicle corresponding to the preset time period after the historical moment; use the operation information of each historical moment and the electric vehicle corresponding to the operation information of each historical moment A first correspondence is established; the target torque of the electric vehicle corresponding to the operation information at each historical moment and the basic torque information corresponding to each moment are used to establish a second correspondence.
  • the object used to characterize the relationship between the operation information of the electric vehicle and the corrected torque information includes a model used to characterize the relationship between the operation information of the electric vehicle and the revised torque information;
  • the determining unit is specifically used for: inputting the running information into the trained model, and determining the corrected torque information according to the output result.
  • embodiments of the present application provide a torque control device for an electric vehicle, where the torque control device may include a processor coupled with at least one memory.
  • At least one processor is configured to execute computer programs or instructions stored in at least one memory, so that the torque control device executes the method provided in the first aspect or any possible design of the first aspect.
  • an embodiment of the present application provides a computer-readable storage medium, where instructions are stored in the computer-readable storage medium, and when the computer-readable storage medium runs on a computer, the computer executes the first aspect or any one of the first aspects.
  • a possible design is provided in the method.
  • embodiments of the present application further provide a computer program product including instructions, which, when executed on a computer, cause the computer to execute the method provided in the first aspect or any possible design of the first aspect.
  • embodiments of the present application further provide an electric vehicle, which may include a controller, an accelerator pedal, and an electric motor.
  • the motor is configured to receive a control command from the controller, and rotate according to the received control command; the controller may execute the method provided in the first aspect or any possible design of the first aspect.
  • FIG. 1 is a schematic diagram 1 of the architecture of an electric vehicle
  • FIG. 2 is a schematic diagram 2 of the structure of an electric vehicle
  • FIG. 3 is a schematic diagram three of the structure of an electric vehicle
  • FIG. 4 is a schematic diagram of a driving mode selection method for an electric vehicle
  • FIG. 5 is a schematic diagram 1 of the working principle of a torque control method for an electric vehicle provided by an embodiment of the application;
  • FIG. 6 is a schematic flowchart of a torque control method for an electric vehicle provided by an embodiment of the present application.
  • FIG. 7 is a schematic diagram 2 of the working principle of a torque control method for an electric vehicle provided by an embodiment of the present application;
  • FIG. 8 is a schematic structural diagram of a torque control device for an electric vehicle provided by an embodiment of the application.
  • FIG. 9 is a schematic structural diagram of a torque control device of an electric vehicle according to an embodiment of the present application.
  • the torque control solution for an electric vehicle can be applied in an electric vehicle, and the electric vehicle at least includes an accelerator pedal, a motor, a controller, and a wheel.
  • the controller in this embodiment of the present application may be a vehicle controller of an electric vehicle.
  • the driver when the driver needs to change the current speed of the electric vehicle, the driver can adjust the speed of the electric vehicle by changing the opening value of the accelerator pedal.
  • the controller detects that the opening value of the accelerator pedal changes, it outputs the corresponding torque control signal to the motor.
  • the motor Under the control of the torque control signal, the motor adjusts its own speed and drives the wheels connected to the motor to rotate, thereby changing the electric vehicle. speed to meet the driver's power requirements.
  • a detection sensor (not shown) is connected between the accelerator pedal of the electric vehicle and the controller.
  • the detection sensor detects that the accelerator pedal opening value changes, it outputs the accelerator pedal opening value to the controller.
  • FIG. 1 is a schematic structural diagram of an electric vehicle according to an embodiment of the present application.
  • an electric vehicle includes an accelerator pedal, an electric motor, a controller, and four wheels.
  • the accelerator pedal and the electric motor are all connected with the controller, and the four wheels of the electric vehicle are all connected with the electric motor.
  • the driver can change the opening value of the accelerator pedal.
  • the controller determines that the opening value of the accelerator pedal changes, it outputs the corresponding torque control signal to the electric motor. Under the control of the signal, it adjusts its own speed and drives the four wheels connected to the motor to rotate, thereby changing the speed of the electric vehicle.
  • FIG. 2 is a schematic structural diagram of another electric vehicle according to an embodiment of the present application.
  • the electric vehicle includes an accelerator pedal, a first electric motor, a second electric motor, a controller, and four wheels.
  • the accelerator pedal, the first electric motor and the second electric motor are all connected to the controller, the two front wheels of the electric vehicle are connected to the first electric motor, and the two rear wheels of the electric vehicle are connected to the second electric motor.
  • the driver can change the opening value of the accelerator pedal.
  • the controller determines that the opening value of the accelerator pedal changes, it outputs the first torque control signal to the first motor, and sends the second torque control signal to the second motor.
  • the electric motor outputs a second torque control signal, and the first electric motor and the second electric motor, under the control of the first torque control signal and the second torque control signal respectively, adjust their own rotational speed and drive the connected vehicle speed to rotate, thereby changing the vehicle speed of the electric vehicle .
  • the value in the first torque control signal and the value in the second torque control signal may be the same, or may be based on the weight distribution and wheel position of the electric vehicle distribution, configure the values in the first torque control signal and the second torque control signal.
  • FIG. 3 is a schematic structural diagram of another electric vehicle according to an embodiment of the present application.
  • the electric vehicle includes an accelerator pedal, a first motor, a second motor, a third motor, a fourth motor, a controller, and four wheels.
  • the accelerator pedal, the first motor, the second motor, the third motor and the fourth motor are all connected to the controller, and the first motor, the second motor, the third motor and the fourth motor are connected to the four wheels in one-to-one correspondence.
  • the driver can change the opening value of the accelerator pedal.
  • the controller determines that the opening value of the accelerator pedal changes, it outputs the first torque control signal to the first motor, and sends the second torque control signal to the second motor.
  • the motor outputs the second torque control signal, the third torque control signal is output to the third motor, and the fourth torque control signal is output to the fourth motor, and the first motor, the second motor, the third motor and the fourth motor receive the corresponding torque
  • the control signal adjusts its own speed and drives the connected speed to rotate, so as to change the speed of the electric vehicle.
  • the electric vehicle may further include a control panel, a casing, and a mechanical connection part connected between the motor and the wheel, and the driver can touch the corresponding button on the control panel or adjust the control panel.
  • the parameter values above can control the on-off of other electrical equipment set in the electric vehicle and adjust the value of the torque output to the motor, which improves the intelligence of the electric vehicle.
  • the torque control method of electric vehicles mainly controls the torque output to the electric motor by setting a single or multiple driving modes.
  • electric vehicles can include the following three driving modes, namely economic mode, normal driving mode and dynamic driving mode, the driver can touch the driving mode button on the control panel to select the corresponding driving mode.
  • each driving mode there is a fixed linear function relationship between the opening value of the accelerator pedal and the torque of the electric motor.
  • the driver changes the opening value of the accelerator pedal, it is directly calculated through the above linear function relationship. corresponding output torque, and output the calculated output torque value to the motor.
  • the torque output by the controller to the electric motor mainly includes two parameters, namely the basic torque and the torque variable (the acceleration of the electric vehicle).
  • the value of the torque variable can be determined according to the difference between the basic torque and the output torque and the rate of change of the accelerator pedal opening.
  • the embodiments of the present application provide a torque control method, device, device, and storage medium for an electric vehicle, and the method can be applied to the above-mentioned electric vehicle provided by the embodiment to realize the torque information output in the electric vehicle driving mode
  • the torque information calculated by the existing driving modulus is compensated, so that the driver can have a fast output to meet the driver's power demand in different application scenarios and improve the driver's use experience.
  • the compensation method of the torque control scheme of the electric vehicle provided by the embodiment of the present application can be represented by a structural block diagram.
  • the current The driving mode calculates the basic torque information based on the accelerator pedal opening value and the accelerator pedal opening change rate, and the torque control scheme of the electric vehicle provided by the present application is based on the current operating parameters of the electric vehicle, and calculates the correction for performing torque compensation on the basic torque information
  • the torque information, the basic torque information and the modified torque information are used to control the torque output to the electric motor, so as to output the torque that meets the driver's power demand and avoid the driver from making multiple adjustments to the opening value of the accelerator pedal.
  • FIG. 6 shows a schematic flowchart of a torque control method for an electric vehicle provided by an embodiment of the present application.
  • the torque control method for an electric vehicle may be executed by the controller in the electric vehicle.
  • the torque control method of the electric vehicle mainly includes the following steps:
  • the operation information of the electric vehicle at least includes the current vehicle speed information, the change rate of the accelerator pedal opening degree and the accelerator pedal opening degree value of the electric vehicle.
  • the change rate of the accelerator pedal opening value is the change rate of the accelerator pedal opening value per unit time.
  • the operation information of the electric vehicle may be acquired by a detection device provided in the electric vehicle.
  • the operation information of the electric vehicle can be obtained from an external detection device of the electric vehicle.
  • the current vehicle speed information of the electric vehicle may include some or all of the following information: the vehicle speed of the electric vehicle, the rotational speed of the electric motor, the current torque of the electric motor, the torque variable of the electric motor, and the acceleration of the electric vehicle.
  • the acceleration is the change value of the vehicle speed of the electric vehicle per unit time
  • the torque variable is the change value of the current torque per unit time.
  • some or all of the parameters of the operating information provided above can be used to participate in the calculation of the corrected torque information.
  • the motor is connected to the wheel through a mechanical connecting part, and the rotation of the motor changes the rotation of the mechanical connecting part to drive the wheel to rotate.
  • the speed of the motor In the case of ignoring the wear of the mechanical connecting part between the motor and the wheel, there is a function between the speed of the motor and the speed of the electric vehicle Therefore, in an application scenario where the accuracy of the output torque is not high, one of the two parameters can be used to participate in the calculation of the corrected torque information.
  • S602 Determine the corrected torque information of the electric vehicle based on the operation information and a preset object used to characterize the relationship between the operation information of the electric vehicle and the corrected torque information. Among them, the object representing the relationship between the electric vehicle operation information and the corrected torque information is determined by using the historical operation information of the electric vehicle.
  • the correction torque information may be, but is not limited to, a correction torque and a correction torque variable.
  • the corrected torque variable is the difference between the basic torque and the target torque required by the driver in this application scenario, and the corrected torque variable is the difference between the basic torque variable and the target torque variable required by the driver in this application scenario.
  • the basic torque and the basic torque variable are basic torque information calculated based on the accelerator pedal opening value and the driving pedal opening change rate in the current driving mode of the electric vehicle.
  • the correction torque information may be, but is not limited to, a first correction coefficient and a second correction coefficient.
  • the first correction coefficient is the ratio of the difference between the basic torque and the target torque required by the driver in this application scenario to the basic torque
  • the second correction coefficient is the basic torque variable and the target torque variable required by the driver in this application scenario. The ratio of the difference to the torque variable.
  • S603 Control the torque output to the electric motor in the electric vehicle based on the corrected torque information.
  • the corrected torque information can be used to directly compensate the basic torque information output by the current driving model of the electric vehicle, and output the compensated torque information to the electric motor in the electric vehicle.
  • the corrected torque information includes the corrected torque and the corrected torque variable
  • the corrected torque may be superimposed with the basic torque calculated under the current driving model of the electric vehicle to obtain the first torque
  • the corrected torque variable may be combined with the current driving model of the electric vehicle.
  • the calculated basic torque variables are superimposed to obtain a first torque variable, and the first torque and the first torque variable are output to the electric motor, so that the output torque information can meet the driver's demand for power in the current application scenario.
  • the correction torque information includes a first correction coefficient and a second correction coefficient
  • the basic torque and the torque value corresponding to the first correction coefficient may be superimposed to obtain the second torque
  • the basic torque variable and the second correction coefficient may be superimposed.
  • the corresponding torque values are superimposed to obtain a second torque variable
  • the second torque and the second torque variable are output to the electric motor, so that the output torque information can meet the driver's demand for power in the current application scenario.
  • the corrected torque information may also include target torque information. After the corrected torque information is determined, the target torque information is directly output to the electric motor.
  • the above-mentioned object used to characterize the relationship between the operation information of the electric vehicle and the corrected torque information may have two specific implementation manners.
  • Embodiment 1 The object used to characterize the relationship between the operation information and the corrected torque information of the electric vehicle is a model that has been trained to characterize the relationship between the operation information and the corrected torque information of the electric vehicle.
  • the operation information of the electric vehicle can be directly input into the corresponding model that has been trained to represent the relationship between the operation information of the electric vehicle and the corrected torque information, and the trained model can directly output the corrected torque information .
  • the above-mentioned models in the table provided in the embodiments of the present application are obtained by training the historical operating parameters of the electric vehicle.
  • the following describes the process of establishing a corresponding model representing the relationship between the operation information and the corrected torque information of the electric vehicle in detail.
  • Target torque information corresponding to running parameters.
  • the historical operating parameters used to determine the above model may be, but not limited to, historical operating data saved by the driver controlling the electric vehicle to be in the dynamic adjustment mode.
  • the torque output by the electric vehicle after the preset duration at the historical moment corresponding to the operating parameters of each historical moment, the accelerator pedal opening value at the historical moment and the change rate of the accelerator pedal opening at the historical moment are used to determine the historical moment.
  • the driver when the electric vehicle is in the current driving mode, if the driver needs to adjust the speed of the current electric vehicle, he can directly adjust the opening value of the accelerator pedal.
  • the driver will change the torque information output to the motor by adjusting the accelerator pedal opening value multiple times within a preset time until the torque information output to the motor after the preset time period meets the first adjustment of the accelerator pedal opening value. information on the torque demanded by the driver. Since the torque information output after the preset time period at this historical moment meets the output torque information required by the driver when the accelerator pedal opening value is adjusted for the first time, the electric vehicle is already in a stable state, and the electric vehicle can be in a stable state according to the accelerator pedal opening value at the historical moment. When it occurs once, the adjustment time corresponding to the output torque information can be determined according to the change rate of the accelerator pedal opening, and the target torque and target torque variable that can be given in the current application scenario of the electric vehicle are calculated according to the above adjustment time and output torque.
  • the electric vehicle may further include a memory, and the historical operation information of the electric vehicle may be stored in the memory in the electric vehicle, or may be stored in the memory of the external device for communication of the electric vehicle.
  • the corresponding model used to characterize the relationship between the operating information and the corrected torque information of the electric vehicle is trained.
  • the included information adjusts the parameters in the corresponding model used to characterize the relationship between the operation information of the electric vehicle and the corrected torque information, and input the operation parameters at the historical moment into the corresponding model used to characterize the relationship between the operation information of the electric vehicle and the corrected torque information , and when the output result is consistent with the label content corresponding to the operating parameters at the historical moment, it is determined that the corresponding model used to characterize the relationship between the operating information of the electric vehicle and the corrected torque information has been trained.
  • the above historical operating parameters are used to train the corresponding model used to characterize the relationship between the operating information of the electric vehicle and the corrected torque information.
  • the specific error value can be determined according to the application scenario of the electric vehicle and the driver's accuracy of the corresponding model used to characterize the relationship between the operation information of the electric vehicle and the corrected torque information. Demand is determined.
  • the driving style of the driver in different periods may change and the driver may be replaced.
  • the model of torque information relationship is retrained, and its training period can be set according to actual needs.
  • the model used to characterize the relationship between the operating information of the electric vehicle and the corrected torque information is retrained, and the data stored in the memory is retrained. The data is cleared and the historical operating parameters of the electric vehicle are re-stored.
  • Embodiment 2 The objects used to characterize the relationship between the operation information and the corrected torque information of the electric vehicle include: a first correspondence between the operation information and the target torque information and a second correspondence between the target torque information, the basic torque information and the corrected torque information.
  • the target torque information can be determined based on the operation information and the first correspondence, and then the target torque information can be determined. Based on the target torque information and the second correspondence, the correction torque information is determined.
  • the first correspondence may include the correspondence between multiple operation parameter intervals and the target torque information. As shown in FIG. 7 , when the obtained values of multiple operation parameters are When it is within a plurality of operating parameter intervals corresponding to the first corrected torque information, the target torque information corresponding to the current operating parameter is the first torque information.
  • the corresponding relationship between the target torque information, the operation information and the corrected torque information may be a functional relationship between the target torque, the operation information and the corrected torque information.
  • the corrected torque information includes a corrected torque and a corrected torque variable
  • the target torque in the target torque information and the basic torque are used for subtraction to obtain a first difference
  • the first difference The value is the corrected torque
  • the second difference is obtained by subtracting the target torque variable and the basic torque variable in the target torque information.
  • the basic torque information calculated by the current operation model of the electric motor is compensated, and the compensated torque is output to the electric motor, so as to output the torque information for the electric motor that meets the driver's demand.
  • the correction torque information includes a first correction torque coefficient and a second correction torque coefficient
  • the ratio of the first difference to the basic torque is used as the first correction torque coefficient
  • the ratio of the second difference to the basic torque variable is used as the second correction torque coefficient
  • the correction in the second embodiment of the present application is combined with FIG. 7 .
  • the determination process of the torque information will be further described.
  • the detection device uses the detection device to obtain the current torque T, the accelerator pedal opening value A and the accelerator pedal opening change rate Z of the electric vehicle.
  • the current torque T of the electric motor is 68
  • the accelerator pedal opening value A is 20, and the unit time
  • the opening value Z of the accelerator pedal is 0.45
  • the obtained information is output to the corresponding relationship between the plurality of operating parameters and the target torque information in the first corresponding relationship, and it is determined that the current operating parameters are all at the target torque of 120 and the target torque variable.
  • the operating parameter range is 35
  • the target torque is 120
  • the target torque variable is 35, and is output to the second corresponding relationship.
  • the basic torque 80 and the basic torque variable 20 calculated by using the accelerator pedal opening value A20 and the accelerator pedal opening value Z0.45 per unit time in the current driving mode of the electric vehicle are output to the second corresponding relationship, and the target torque is used
  • the modified torque value 40 is obtained by subtracting 120 from the base torque 80
  • the modified torque variable 15 is obtained by subtracting the target torque variable 35 and the base torque variable 20.
  • the corrected torque information includes the first corrected torque coefficient and the second corrected torque information
  • the base torque is determined to be 80 and the target torque value is 120
  • the target torque 120 and the base torque 80 are used for subtraction the first difference 40 is obtained by the operation
  • the second difference 15 is obtained by subtracting the target torque variable 35 and the base torque variable 20
  • the first correction coefficient 0.5 is obtained by dividing the first difference 50 by the base torque
  • a first correction factor of 0.75 is obtained by dividing the second difference 15 by the basic torque variable 20 .
  • the embodiment of the present application further provides a torque control apparatus for an electric vehicle.
  • FIG. 8 it is a schematic structural block diagram of the torque control apparatus 800 for an electric vehicle provided by the embodiment of the present application.
  • the torque control device 800 of the electric vehicle may implement the functions or steps implemented by the controller in each of the above method embodiments.
  • the torque control device of the electric vehicle may be, but not limited to, the acquisition unit 801 , the determination unit 802 and the processing unit 803 .
  • a storage unit may also be included, and the storage unit may store historical operation information of the electric vehicle.
  • the obtaining unit 801 may be used to obtain the running information of the electric vehicle.
  • the operation information of the electric vehicle at least includes the current vehicle speed information, the accelerator pedal opening change rate and the accelerator pedal opening value, and the accelerator pedal opening change rate is the change rate of the accelerator pedal opening value per unit time.
  • the determining unit 802 may be configured to determine the corrected torque information of the electric vehicle based on the operation information and a preset object for characterizing the relationship between the operation information of the electric vehicle and the corrected torque information.
  • the processing unit 803 may be used to control the torque output to the electric motor in the electric vehicle based on the corrected torque information. Among them, the object representing the relationship between the electric vehicle operation information and the corrected torque information is determined by using the historical operation information of the electric vehicle.
  • the vehicle speed information includes some or all of the following: the vehicle speed information includes some or all of the following: the vehicle speed of the electric vehicle, the rotational speed of the electric motor, the current torque of the electric motor, the torque variable of the electric motor, and the acceleration of the electric vehicle.
  • the acceleration is the change value of the vehicle speed of the electric vehicle per unit time
  • the torque variable is the change value of the current torque per unit time.
  • the objects used to characterize the relationship between the operation information and the corrected torque information of the electric vehicle include: the first correspondence between the operation information and the target torque information, and the first correspondence between the target torque information, the basic torque information and the corrected torque information
  • the target torque information includes the target torque and the target torque variable
  • the basic torque information is calculated based on the current driving mode of the electric vehicle based on the accelerator pedal opening value and the accelerator pedal conversion rate
  • the basic torque information includes: basic torque and torque variable, the basic torque variable is the change value of the basic torque within the unit time; the determining unit 802 may be specifically used to: determine the target torque information based on the operation information and the first corresponding relationship; based on the target torque information, the basic torque information and the second corresponding relationship , to determine the correction torque information.
  • the corrected torque information includes a corrected torque and a corrected torque variable; wherein the corrected torque is the difference between the target torque and the current torque, and the corrected torque variable is the difference between the target torque variable and the torque variable; the processing unit 803 It can be specifically used to: superimpose the corrected torque and the basic torque to obtain the first torque; superimpose the corrected torque variable and the basic torque variable to obtain the first torque variable; output the first torque and the first torque variable to the electric motor.
  • the corrected torque information includes a first corrected torque coefficient and a second corrected torque coefficient; wherein the first corrected torque coefficient is a first ratio of the difference between the target torque and the current torque to the current torque,
  • the second correction torque coefficient is the second ratio of the difference between the target torque variable and the torque variable to the torque variable;
  • the processing unit 803 may be specifically configured to: superimpose the correction torque and the torque value corresponding to the first correction coefficient to obtain the first correction torque. Two torques; superimposing the corrected torque variable and the torque value corresponding to the second correction coefficient to obtain a second torque variable; and outputting the second torque and the second torque variable to the electric motor.
  • the processing unit 803 may also be configured to: for each historical moment operation information in the multiple historical operation parameters, when it is determined that the accelerator pedal opening value changes at the historical moment, record the operation parameters at the historical moment and the preset duration after the historical moment corresponds to the target torque of the electric vehicle; use the operation information at each historical moment and the target torque of the electric vehicle corresponding to the operation information at each historical moment to establish a first correspondence; use the operation information at each historical moment A second correspondence is established between the corresponding target torque of the electric vehicle and the basic torque information corresponding to each moment.
  • the determining unit 802 is specifically configured to: The operating information is input into the trained model, and the corrected torque information is determined according to the output result.
  • An embodiment of the present application further provides a torque control device for an electric vehicle.
  • a torque control device 900 for an electric vehicle is provided in an embodiment of the present application.
  • the torque control device 900 of the electric vehicle may be a controller in the electric vehicle provided by the embodiment of the present application, and can implement the functions of the controller in the method provided by the embodiment of the present application.
  • the torque control device 900 of the electric vehicle may be a chip system.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • the torque control device 900 of the electric vehicle includes at least one processor 901 for implementing or supporting the torque control device 900 of the electric vehicle to implement the functions of the methods provided in the embodiments of the present application.
  • the torque control device 900 of the electric vehicle includes at least one processor 901 for implementing or supporting the torque control device 900 of the electric vehicle to implement the functions of the methods provided in the embodiments of the present application.
  • the processor 901 for implementing or supporting the torque control device 900 of the electric vehicle to implement the functions of the methods provided in the embodiments of the present application.
  • the torque control device 900 for an electric vehicle may also include at least one memory 902 for storing program instructions and/or data.
  • Memory 902 is coupled to processor 901 .
  • the coupling in the embodiments of the present application is an indirect coupling or communication connection between devices, units or modules, which may be in electrical, mechanical or other forms, and is used for information exchange between devices, units or modules.
  • Processor 901 may cooperate with memory 902 .
  • the processor 901 may execute program instructions and/or data stored in the memory 902 to cause the torque control device of the electric vehicle to implement the corresponding method.
  • At least one of the at least one memory may be included in the processor. It should be noted that the memory 902 is not necessary, so it is indicated by a dotted line in FIG. 9 .
  • the torque control apparatus 900 for an electric vehicle may further include a communication interface 903 for communicating with other apparatuses through a transmission medium, so that devices in the torque control apparatus 900 for an electric vehicle may communicate with other apparatuses.
  • the other device may be a control panel or a terminal.
  • the processor 901 may utilize the communication interface 903 to send and receive data.
  • the communication interface 903 may specifically be a transceiver.
  • the specific connection medium between the communication interface 903 , the processor 901 , and the memory 902 is not limited in the embodiments of the present application.
  • the memory 902, the processor 901, and the communication interface 903 are connected through a bus 904 in FIG. 9.
  • the bus is represented by a thick line in FIG. 9, and the connection between other components is only for schematic illustration. , is not limited.
  • the bus can be divided into address bus, data bus, control bus and so on. For ease of presentation, only one thick line is used in FIG. 9, but it does not mean that there is only one bus or one type of bus.
  • Embodiments of the present application also provide a computer program product, including instructions, which, when executed on a computer, cause the computer to execute the method executed by the controller in FIG. 6 .
  • Embodiments of the present application also provide an electric vehicle, which may include a controller, an electric motor, and an accelerator pedal;
  • the motor is used for receiving the control command from the controller, and rotates according to the received control command;
  • the controller is used for executing the method performed by the controller in FIG. 6 .
  • the electric vehicle may further include a casing, a control panel and a power supply.
  • the embodiments of the present application may be provided as a method, a system, or a computer program product. Accordingly, the present application may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Furthermore, the present application may take the form of a computer program product embodied on one or more computer-usable storage media (including, but not limited to, disk storage, CD-ROM, optical storage, etc.) having computer-usable program code embodied therein.
  • computer-usable storage media including, but not limited to, disk storage, CD-ROM, optical storage, etc.
  • These computer program instructions may also be stored in a computer-readable memory capable of directing a computer or other programmable data processing apparatus to function in a particular manner, such that the instructions stored in the computer-readable memory result in an article of manufacture comprising instruction means, the instructions
  • the apparatus implements the functions specified in the flow or flow of the flowcharts and/or the block or blocks of the block diagrams.

Abstract

一种电动汽车的扭矩控制方法、装置、设备及其存储介质,该扭矩控制方法可以使控制器快速输出满足驾驶员动力需求的扭矩信息。该扭矩控制方法包括:获取电动汽车的运行信息,电动汽车的运行信息中至少包括汽车当前的车速信息、加速踏板开度变化率以及加速踏板开度值,加速踏板开度变化率为单位时间内加速踏板开度值的变化率;基于运行信息以及预先设定的用于表征电动汽车的运行信息与修正扭矩信息关系的对象,确定电动汽车的修正扭矩信息,用于表征电动汽车运行信息与修正扭矩信息关系的对象是利用电动汽车的历史运行信息确定的;基于修正扭矩信息对输出给电动汽车中电动机的扭矩进行控制。

Description

一种电动汽车的扭矩控制方法、装置、设备及其存储介质 技术领域
本申请涉及电动汽车领域,特别涉及一种电动汽车的扭矩控制方法、装置、设备及其存储介质。
背景技术
电动汽车行驶过程中,电动汽车内部的电动机控制器主要负责根据车辆信息及驾驶员信息调整电动机驱动扭矩的大小。其中,车辆信息主要有车速、电动机转速及扭矩大小等,驾驶员信息主要包括加速踏板开度值及其变化率等。电动汽车的扭矩控制效果,直接关系到驾驶员的驾驶体验。驾驶体验一方面取决于车辆对于加速、减速需求是否能够准确、快速地响应,另一方面与应用场景有关,在不同应用场景中的驾驶员对车辆的动力诉求亦不同。现有技术主要集中在如何进行精准、快速地扭矩控制调节上,但本质上仍然需要驾驶员去适应电动汽车设置的驾驶模式。
目前,为了满足多个应用场景下驾驶员的动力的需求,控制器的扭矩控制方式主要是将电动汽车设置三个驾驶模式,每一种驾驶模式下对应一个扭矩计算方法,以满足驾驶员在多个应用场景下对转速以及加速度的需求。但是该方式需要驾驶员人员手动调整驾驶模式,且仍然需要驾驶员去适应每一种驾驶模式。
综上,现有的电动汽车扭矩控制方式难以满足驾驶员对多个应用场景的动力需求。
发明内容
本申请提供一种电动汽车的扭矩控制方法、装置、设备及其存储介质,用于满足驾驶员在多个应用场景下的动力需求。
第一方面,本申请实施例提供了一种电动汽车的扭矩控制方法,应用于电动汽车中,该电动汽车可以包括电动机、加速踏板以及控制器,该扭矩控制方法的执行主体可以是电动汽车内部的控制器,具体包括以下步骤:
获取电动汽车的运行信息,电动汽车的运行信息中至少包括汽车的当前车速信息、加速踏板开度变化率以及加速踏板开度值,加速踏板开度变化率为单位时间内加速踏板开度值的变化率;基于运行信息以及预先设定的用于表征电动汽车的运行信息与修正扭矩信息关系的对象,确定电动汽车的修正扭矩信息;基于修正扭矩信息对输出给电动汽车中电动机的扭矩进行控制。其中,用于表征电动汽车运行信息与修正扭矩信息关系的对象是利用电动汽车的历史运行信息确定的。
采用上述方案,在驾驶员驾驶电动汽车过程中,可以根据电动汽车的运行参数确定电动汽车的应用场景,并根据预先设定的用于表征电动汽车的运行信息与修正扭矩信息关系的对象,确定电动机当前运行模式下输出的基本扭矩信息与当前场景下驾驶员需求的扭矩信息之间的差异(即修正扭矩信息),并根据该修正扭矩信息对输出电动汽车的扭矩进行控制,实现输出给电动汽车的扭矩信息满足驾驶员在当前场景下对扭矩的需求。
在一种可能的设计中,车速信息包括以下部分或者全部:车速信息包括以下部分或者全部:电动汽车的车速、电动机的转速、电动机的当前扭矩、电动机的扭矩变量以及电动 汽车的加速度。其中,加速度为单位时间内电动汽车的车速的变化值,扭矩变量为单位时间内当前扭矩的变化值。
采用上述方案,可以利用电动汽车的当前运行信息,确定电动汽车的应用场景,以及根据电动汽车的当前运行信息确定驾驶员需求的扭矩信息。
在一种可能的设计中,用于表征电动汽车的运行信息与修正扭矩信息关系的对象包括:运行信息与目标扭矩信息的第一对应关系以及目标扭矩信息、基本扭矩信息与修正扭矩信息的第二对应关系,目标扭矩信息包括目标扭矩与目标扭矩变量。其中,基本扭矩信息为电动汽车当前驾驶模式基于加速踏板开度值和加速踏板变换率计算得到的;基本扭矩信息包括:基本扭矩和扭矩变量,基本扭矩变量为单元时间内基本扭矩的变化值。
在上述条件下,基于运行信息以及预先设定的用于表征电动汽车的运行信息与修正扭矩信息关系的对象,确定电动汽车的修正扭矩信息时,可以基于运行信息以及第一对应关系,确定目标扭矩信,再基于目标扭矩信息、基本扭矩信息以及第二对应关系,确定修正扭矩信息。
采用上述方案,首先基于电动汽车的运行信息以及第一对应关系确定电动汽车当前应用场景下驾驶员需求的目标扭矩信息,并根据目标扭矩信息、电动汽车当前驾驶模式下计算的基本扭矩信息以及第二对应关系,确定对用于对基本扭矩信息进行补偿的修正扭矩信息,并对基本扭矩信息进行补偿,从而输出满足驾驶员需求的扭矩信息。
在一种可能的设计中,修正扭矩信息包括修正扭矩和修正扭矩变量。其中,修正扭矩为目标扭矩与当前扭矩的差值,修正扭矩变量为目标扭矩变量与扭矩变量的差值。
在上述条件下,基于修正扭矩信息对输出给电动汽车中电动机的扭矩进行控制,具体包括:
将修正扭矩和基本扭矩进行叠加,得到第一扭矩;将修正扭矩变量和基本扭矩变量进行叠加,得到第一扭矩变量;将第一扭矩和第一扭矩变量输出给电动机。
采用上述方案,在确定电动汽车当前驾驶模式下输出的基本扭矩无法满足驾驶员的动力需求时,将表征基本扭矩信息与驾驶员需求的动力扭矩信息之间差异的修正扭矩信息,与基本扭矩信息直接进行叠加补偿,使补偿后的基本扭矩信息满足当前应用场景下驾驶员对扭矩的需求。
在一种可能的设计中,修正扭矩信息包括第一修正扭矩系数和第二修正扭矩系数。其中,第一修正扭矩系数为目标扭矩与当前扭矩之间差值与当前扭矩的第一占比,第二修正扭矩系数为目标扭矩变量与扭矩变量之间差值与扭矩变量的第二占比。在上述条件下,基于修正扭矩信息对输出给电动汽车中电动机的扭矩进行控制,具体包括:
将修正扭矩和第一修正系数对应的扭矩值进行叠加,得到第二扭矩;将修正扭矩变量和第二修正系数对应的扭矩值进行叠加,得到第二扭矩变量;将第二扭矩和第二扭矩变量输出给电动机。
采用上述方案,修正扭矩信息以修正系数的形式输出,可以确定驾驶员需求的动力信息与基本扭矩信息之间的倍数关系,并根据该倍数关系对基本扭矩信息进行补偿,使得补偿后的输出扭矩信息满足当前应用场景先驾驶员对扭矩的需求。
在一种可能的设计中,利用历史运行信息确定用于表征电动汽车的运行信息与修正扭矩信息关系的对象的过程为:
对于多个历史运行参数中的每一历史时刻运行信息,在确定历史时刻加速踏板开度值 发生变化时,记录历史时刻的运行参数以及历史时刻之后的预设时长对应电动汽车的目标扭矩;利用每一历史时刻运行信息以及每一历史时刻运行信息对应的电动汽车的目标扭矩,建立第一对应关系;利用每一历史时刻运行信息对应的电动汽车的目标扭矩与每一时刻对应的基本扭矩信息,建立第二对应关系。
采用上述方案,在当前应用场景下驾驶员若需要调整电动汽车的车速,可以调整加速踏板的开度值,在确定第一次调整加速踏板开度值无法得到驾驶员需求的扭矩信息时,驾驶员需要多次对加速踏板开度值进行调整,直至输出的扭矩满足驾驶员第一次调整加速踏板开度值时的动力需求,基于第一次调整加速踏板开度值时,电动汽车输出的信息以及调速踏板开度值多次调整后输出的扭矩信息建立用于表征电动汽车的运行信息与修正扭矩信息关系的对象,使得电动汽车当前驾驶模式计算扭矩不满足驾驶员的动力需求时,可以利用建立好的上述对象准确对计算的扭矩进行补偿。
在一种可能的设计中,用于表征电动汽车的运行信息与修正扭矩信息关系的对象包括用于表征电动汽车的运行信息与修正扭矩信息关系的模型,在上述情况下,基于运行信息以及预先设定的用于表征电动汽车的运行信息与修正扭矩信息关系的对象,确定电动汽车的修正扭矩信息,具体包括:将运行信息输入至已训练的上述模型中,根据输出结果确定修正扭矩信息。
采用上述方式,可以利用训练好的模型直接输出用于对当前输出扭矩进行补正的修正扭矩信息,相对计算快捷,且计算速度加快。
第二方面,本申请实施例提供了一种电动汽车的扭矩控制装置,该扭矩控制装置可以包括:获取单元、确定单元和处理单元。
其中,获取单元可以用于获取电动汽车的运行信息,电动汽车的运行信息中至少包括汽车当前的车速信息、加速踏板开度变化率以及加速踏板开度值。加速踏板开度变化率为单位时间内加速踏板开度值的变化率;
确定单元可以用于基于运行信息以及预先设定的用于表征电动汽车的运行信息与修正扭矩信息关系的对象,确定电动汽车的修正扭矩信息,表征电动汽车运行信息与修正扭矩信息关系的对象是利用电动汽车的历史运行信息确定的;
处理单元可以用于基于修正扭矩信息对输出给电动汽车中电动机的扭矩进行控制。
在一种可能的设计中,车速信息包括以下部分或者全部:电动汽车的车速、电动机的转速、电动机的当前扭矩、电动机的扭矩变量以及电动汽车的加速度。
其中,加速度为单位时间内电动汽车的车速的变化值,扭矩变量为单位时间内当前扭矩的变化值。
在一种可能的设计中,表征电动汽车的运行信息与修正扭矩信息关系的对象包括:运行信息与目标扭矩信息的第一对应关系以及目标扭矩信息、基本扭矩信息与修正扭矩信息的第二对应关系;其中,目标扭矩信息包括目标扭矩与目标扭矩变量,基本扭矩信息为电动汽车当前驾驶模式基于加速踏板开度值和加速踏板变换率计算得到的;基本扭矩信息包括:基本扭矩和扭矩变量,基本扭矩变量为单元时间内基本扭矩的变化值;确定单元具体用于:基于运行信息以及第一对应关系,确定目标扭矩信息;基于目标扭矩信息、基本扭矩信息以及第二对应关系,确定修正扭矩信息。
在一种可能的设计中,修正扭矩信息包括修正扭矩和修正扭矩变量;其中,修正扭矩为目标扭矩与当前扭矩的差值,修正扭矩变量为目标扭矩变量与扭矩变量的差值;处理单 元具体用于:将修正扭矩和基本扭矩进行叠加,得到第一扭矩;将修正扭矩变量和基本扭矩变量进行叠加,得到第一扭矩变量;将第一扭矩和第一扭矩变量输出给电动机。
在一种可能的设计中,修正扭矩信息包括第一修正扭矩系数和第二修正扭矩系数;其中,第一修正扭矩系数为目标扭矩与当前扭矩之间差值与当前扭矩的第一占比,第二修正扭矩系数为目标扭矩变量与扭矩变量之间差值与扭矩变量的第二占比;处理单元具体用于:将修正扭矩和第一修正系数对应的扭矩值进行叠加,得到第二扭矩;将修正扭矩变量和第二修正系数对应的扭矩值进行叠加,得到第二扭矩变量;将第二扭矩和第二扭矩变量输出给电动机。
在一种可能的设计中,处理单元还用于采用以下步骤建立用于表征电动汽车的运行信息与修正扭矩信息关系的对象:对于多个历史运行参数中的每一历史时刻运行信息,在确定历史时刻加速踏板开度值发生变化时,记录历史时刻的运行参数以及历史时刻之后的预设时长对应电动汽车的目标扭矩;利用每一历史时刻运行信息以及每一历史时刻运行信息对应的电动汽车的目标扭矩,建立第一对应关系;利用每一历史时刻运行信息对应的电动汽车的目标扭矩与每一时刻对应的基本扭矩信息,建立第二对应关系。
在一种可能的设计中,用于表征电动汽车的运行信息与修正扭矩信息关系的对象包括用于表征电动汽车的运行信息与修正扭矩信息关系的模型;
确定单元具体用于:将运行信息输入至已训练的模型中,根据输出结果确定修正扭矩信息。
第三方面,本申请实施例提供了一种电动汽车的扭矩控制设备,该扭矩控制设备可以包括一个处理器与至少一个存储器耦合。
其中,至少一个处理器,用于执行至少一个存储器中存储的计算机程序或指令,以使得扭矩控制设备执行上述第一方面或第一方面中任一可能的设计中提供的方法。
第四方面,本申请实施例提供了一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述第一方面或第一方面中任一可能的设计中提供的方法。
第五方面,本申请实施例还提供一种包括指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第一方面或第一方面任一可能的设计中提供的方法。
第六方面,本申请实施例还提供一种电动汽车,该电动汽车可以包括控制器、加速踏板和电动机。
其中,该电动机用于接收控制器的控制指令,并根据接收的控制指令转动;该控制器可以执行上述第一方面或第一方面任一可能的设计中提供的方法。
本申请的这些方面或其它方面在以下实施例的描述中会更加简明易懂。
附图说明
图1为一种电动汽车的架构示意图一;
图2为一种电动汽车的架构示意图二;
图3为一种电动汽车的架构示意图三;
图4为一种电动汽车驾驶模式选择方式的示意图;
图5为本申请实施例提供的一种电动汽车的扭矩控制方法的工作原理示意图一;
图6为本申请实施例提供的一种电动汽车的扭矩控制方法流程示意图;
图7为本申请实施例提供的一种电动汽车的扭矩控制方法工作原理示意图二;
图8为本申请实施例提供的一种电动汽车的扭矩控制装置结构示意图;
图9为本申请实施例提供的一种电动汽车的扭矩控制设备结构示意图。
具体实施方式
为了使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请作进一步地详细描述。方法实施例中的具体操作方法也可以应用于装置实施例或系统实施例中。需要说明的是,在本申请的描述中“多个”理解为“至少两个”。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。A与B连接,可以表示:A与B直接连接和A与B通过C连接这两种情况。另外,在本申请的描述中,“第一”、“第二”等词汇,仅用于区分描述的目的,而不能理解为指示或暗示相对重要性,也不能理解为指示或暗示顺序。
下面将结合附图,对本申请实施例进行详细描述。
本申请实施例提供的电动汽车的扭矩控制方案可以应用于电动汽车内、电动汽车至少包括加速踏板、电动机、控制器以及车轮。需要说明的是,本申请实施例此处的控制器可以是电动汽车的整车控制器。
下面结合附图并举实施例,对本申请提供的技术方案做进一步说明。应理解,本申请实施例中提供的系统结构和业务场景主要是为了解释本申请的技术方案的一些可能的实施方式,不应被解读为对本申请的技术方案的唯一性限定。本领域普通技术人员可以知晓,随着系统的演进,以及更新的业务场景的出现,本申请提供的技术方案对于相同或类似的技术问题仍然可以适用。
应理解,本申请实施例提供的技术方案,在以下具体实施例的介绍中,某些重复之处可能不再赘述,但应视为这些具体实施例之间已有相互引用,可以相互结合。
在电动汽车中,在驾驶员需要改变电动汽车的当前车速时,驾驶员可以通过改变加速踏板的开度值调整电动汽车的车速。控制器在检测到加速踏板的开度值发生变化时,向电动机输出相应的扭矩控制信号,电动机在扭矩控制信号的控制下,调整自身的转速并带动与电动机连接的车轮旋转,从而改变电动汽车的转速,实现满足驾驶员的动力需求。
实际使用时,电动汽车的加速踏板和控制器之间连接有检测传感器(未示出),该检测传感器检测到加速踏板开度值发生变化时,将加速踏板开度值输出给控制器。
图1为本申请实施例提供的一种电动汽车的结构示意图。如图1所示,电动汽车包括加速踏板、电动机、控制器以及四个车轮。其中,加速踏板和电动机均与控制器连接,电动汽车的四个车轮均与电动机连接。
当驾驶员需要改变电动汽车的当前车速时,驾驶员可以改变加速踏板的开度值,控制器在确定加速踏板的开度值发生变化时,向电动机输出相应的扭矩控制信号,电动机在扭矩控制信号的控制下,调整自身的转速并带动与电动机连接的四个车轮旋转,从而实现改变电动汽车的车速。
图2为本申请实施例提供的另一种电动汽车的结构示意图。如图2所示,电动汽车包括加速踏板、第一电动机、第二电动机、控制器以及四个车轮。其中,加速踏板、第一电动机和第二电动机均与控制器连接,电动汽车的前侧的两个车轮与第一电动机连接,电动汽车后侧的两个车轮与第二电动机连接。
驾驶员需要改变电动汽车的当前车速时,驾驶员可以改变加速踏板的开度值,控制器在确定加速踏板的开度值发生变化时,向第一电动机输出第一扭矩控制信号,向第二电动机输出第二扭矩控制信号,第一电动机和第二电动机分别在第一扭矩控制信号和第二扭矩控制信号的控制下,调整自身的转速并带动连接的车速旋转,从而实现改变电动汽车的车速。
具体实现时,在配置第一扭矩控制信号和第二扭矩控制信号时,第一扭矩控制信号中的数值和第二扭矩控制信号中的数值可以相同,也可以根据电动汽车的重量分布和车轮位置的分布,配置第一扭矩控制信号和第二扭矩控制信号中的数值。
应理解,本申请实施例虽然只示出了两种第一扭矩控制信号和第二扭矩控制信号的配置方式,本申请实施例中的第一扭矩控制信号和第二扭矩控制信号的配置方式并不限于此。
图3为本申请实施例提供的另一种电动汽车的结构示意图。如图3所示,电动汽车包括加速踏板、第一电动机、第二电动机、第三电动机、第四电动机、控制器以及与四个车轮。其中,加速踏板、第一电动机、第二电动机、第三电动机和第四电动机均与控制器连接,第一电动机、第二电动机、第三电动机、第四电动机与四个车轮一一对应连接。
驾驶员需要改变电动汽车的当前车速时,驾驶员可以改变加速踏板的开度值,控制器在确定加速踏板的开度值发生变化时,向第一电动机输出第一扭矩控制信号,向第二电动机输出第二扭矩控制信号,向第三电动机输出第三扭矩控制信号,向第四电动机输出第四扭矩控制信号,第一电动机、第二电动机、第三电动机和第四电动机收到对应的扭矩控制信号后调整自身的转速并带动连接的车速旋转,从而实现改变电动汽车的车速。
本申请实施例提供的电动汽车中,电动汽车中还可以包括控制面板、壳体、以及连接在电动机与车轮之间的机械连接部件,驾驶员可以通过触碰控制面板相应的按钮或者调整控制面板上的参数数值实现控制电动汽车内部设置的其它电气设备的通断以及调整输出给电动机的扭矩的数值,提升了电动汽车的智能化。
目前,电动汽车的扭矩控制方式主要通过设置单一或者多个驾驶模式来控制输出给电动机的扭矩,例如,如图4所示,电动汽车可以包括以下三个驾驶模式,分别为经济模式、正常驾驶模式以及动态驾驶模式,驾驶员可以在控制面板上触碰驾驶模式按钮实现选择对应的驾驶模式。其中,在每一个驾驶模式下,加速踏板的开度值和电动机的扭矩之间呈现固定的线性函数关系,在检测到驾驶员改变加速踏板的开度值时,通过上述线性函数关系直接计算得到对应的输出扭矩,并将计算得到的输出扭矩值输出给电动机。
具体实现时,电动车的当前扭矩调整至加速踏板变化值对应的输出扭矩需要相应的时间。因此,在需要调整电动汽车的当前车速时,控制器输出给电动机的扭矩主要包括两个参数,分别为基本扭矩和扭矩变量(电动汽车的加速度)。其中,扭矩变量的数值可以根据基本扭矩与输出扭矩之间的差值以及加速踏板开度的变化率确定。
但是实际使用时,电动汽车处于不同的应用场景中(例如不同的转速),驾驶员调整相同的加速踏板开度值时需求的电动汽车的转速可能并不相同,但是上述通过调整电动汽车的驾驶模式的扭矩控制方式难以满足驾驶员在不同应用场景下的动力需求,需要驾驶员多次调试加速踏板开度值才能输出满足需求的扭矩。
鉴于此,本申请实施例提供了一种电动汽车的扭矩控制方法、装置、设备及其存储介质,该方法可以应用于实施例提供的上述电动汽车中,实现在电动汽车驾驶模式输出的扭矩信息不满足驾驶员对动力的需求时,对现有驾驶模数计算的扭矩信息进行补偿,从而有 快速输出满足驾驶员在不同应用场景下的动力需求,提高驾驶员的使用体验。
具体的,本申请实施例提供的电动汽车的扭矩控制方案的补偿方式以结构框图可以进行表示,如图5所示,在检测到电动汽车的加速踏板开度值发生变化时,电动汽车的当前驾驶模式基于加速踏板开度值和加速踏板开度变化率计算基本扭矩信息,本申请提供的电动汽车的扭矩控制方案基于电动汽车的当前运行参数,计算用于对基本扭矩信息进行扭矩补偿的修正扭矩信息,并基本扭矩信息和修正扭矩信息控制输出给电动机的扭矩,从而输出满足驾驶员动力需求的扭矩,避免驾驶员对加速踏板的开度值进行多次调整。
接下来,通过实施例对本申请提供的电动汽车的扭矩控制方法做进一步的示例性说明。
图6示出了一种本申请实施例提供的一种电动汽车的扭矩控制方法的流程示意图,该电动汽车的扭矩控制方法可以由上述电动汽车中的控制器执行。如图6所示,该电动汽车的扭矩控制方法主要包括以下步骤:
S601:获取电动汽车的运行信息。其中,电动汽车的运行信息中至少包括电动汽车的当前车速信息、加速踏板开度变化率以及加速踏板开度值。其中,加速踏板开度值变化率为单位时间内加速踏板开度值的变化率。
示例性的,电动汽车的运行信息可以由电动汽车内设置的检测装置上获取。在电动汽车内未设置检测装置的情况下,电动汽车的运行信息可以由电动汽车的外接的检测设备上获取。
具体来说,电动汽车的当前车速信息可以包括以下部分或全部信息:电动汽车的车速、电动机的转速、电动机的当前扭矩、电动机的扭矩变量以及电动汽车的加速度。其中,加速度为单位时间内电动汽车的车速的变化值,扭矩变量为单位时间内当前扭矩的变化值。
实际使用时,可以使用上述提供的运行信息的部分或全部参数参与修正扭矩信息的计算。例如,电动机通过机械连接部件与车轮连接,电动机旋转改变机械连接部件的转动带动车轮旋转,在忽略电动机与车轮之间机械连接部件磨损的情况下,电动机的转速与电动汽车的转速之间呈现函数关系,因此,在输出扭矩准确度要求不高的应用场景中,可以使用两个参数中的其中一个参数参与修正扭矩信息的计算。
S602:基于运行信息以及预先设定的用于表征电动汽车的运行信息与修正扭矩信息关系的对象,确定电动汽车的修正扭矩信息。其中,表征电动汽车运行信息与修正扭矩信息关系的对象是利用电动汽车的历史运行信息确定的。
在一示例中,修正扭矩信息可以是但不限于修正扭矩和修正扭矩变量。其中,修正扭矩变量为基本扭矩与该应用场景下驾驶员需求的目标扭矩的差值,修正扭矩变量为基本扭矩变量与该应用场景下驾驶员需求的目标扭矩变量的差值。其中,基本扭矩和基本扭矩变量是电动汽车当前驾驶模式基于加速踏板开度值和驾驶踏板开度变化率计算得到的基本扭矩信息。
在另一示例中,修正扭矩信息可以是但不限于第一修正系数和第二修正系数。其中,第一修正系数为基本扭矩与该应用场景下驾驶员需求的目标扭矩的差值与基本扭矩的占比,第二修正系数为基本扭矩变量与该应用场景下驾驶员需求的目标扭矩变量的差值与扭矩变量的占比。
S603:基于修正扭矩信息对输出给电动汽车中电动机的扭矩进行控制。
在本申请实施例中,在确定修正扭矩信息之后,可以利用修正扭矩信息对电动汽车当前驾驶模型输出的基本扭矩信息直接进行补偿,并将补偿后的扭矩信息输出给电动汽车中 的电动机。
示例性的,若修正扭矩信息包括修正扭矩以及修正扭矩变量,可以将修正扭矩与电动汽车当前驾驶模型下计算的基本扭矩进行叠加,得到第一扭矩,以及将修正扭矩变量与电动汽车当前驾驶模型计算的基本扭矩变量进行叠加,得到第一扭矩变量,并将第一扭矩和第一扭矩变量输出给电动机,从而使输出的扭矩信息满足驾驶员在当前应用场景下对动力的需求。
示例性的,若修正扭矩信息包括第一修正系数以及第二修正系数,可以将基本扭矩与第一修正系数对应的扭矩值进行叠加,得到第二扭矩,以及将基本扭矩变量与第二修正系数对应的扭矩值进行叠加,得到第二扭矩变量,并将第二扭矩和第二扭矩变量输出给电动机,从而使输出的扭矩信息满足驾驶员在当前应用场景下对动力的需求。
在本申请实施例中,为了简便控制器的计算以及快速响应驾驶员的动力需求,修正扭矩信息还可以包括目标扭矩信息,在确定该修正扭矩信息后,将目标扭矩信息直接输出给电动机。
具体实施时,上述用于表征电动汽车的运行信息与修正扭矩信息关系的对象可以有两种具体实现方式。
接下来,通过以下实施例对本申请实施例所提供的用于表征电动汽车的运行信息与修正扭矩信息关系的对象的两种实现方式做进一步的示例性说明。
实施例一:用于表征电动汽车的运行信息与修正扭矩信息关系的对象为已训练的表征电动汽车的运行信息与修正扭矩信息关系的模型。
在利用上述模型确定修正扭矩信息时,可以将电动汽车的运行信息直接输入至已训练的表征电动汽车的运行信息与修正扭矩信息关系的对应模型中,已训练的上述模型可以直接输出修正扭矩信息。
本申请实施例提供的表上述模型是利用电动汽车的历史运行参数训练得到的,下面对表征电动汽车的运行信息与修正扭矩信息关系的对应模型的建立过程进行详细说明。
首先,获取电动汽车多个历史时刻的运行参数,为多个历史时刻运行参数中的每一个加速踏板开度值发生变化的历史时刻运行参数配置对应的标签,该标签内的信息为该历史时刻运行参数对应的目标扭矩信息。
需要说明的是,本申请实施中用于确定上述模型的历史时刻运行参数可以是但不限于驾驶员控制电动汽车处于动态调整模式保存的历史运行数据。
具体实现时,利用每一个历史时刻运行参数对应的历史时刻预设时长后的电动汽车输出的扭矩,该历史时刻的加速踏板开度值以及该历史时刻的加速踏板开度变化率,确定该历史时刻运行参数对应的目标扭矩信息。
需要说明的是,在电动汽车处于当前驾驶模式下时,若驾驶员需要对当前电动汽车的转速进行调整,可以直接调整加速踏板开度值,若输出给电动机的扭矩信息不满足驾驶员对动力的需求时,驾驶员会在预设时间内通过多次调整加速踏板开度值改变输出给电动机的扭矩信息,直至预设时长后输出给电动机的扭矩信息满足第一次调整加速踏板开度值时驾驶员需求的扭矩信息。由于该历史时刻的预设时长后输出的扭矩信息满足第一次调整加速踏板开度值时驾驶员需求的输出扭矩信息时,电动汽车已经处于平稳状态,可以根据历史时刻加速踏板开度值第一次发生时,可以根据加速踏板开度变化率确定调整至输出扭矩信息对应的调整时间,并根据上述调整时间和输出扭矩计算电动汽车当前应用场景下可以 给定的目标扭矩和目标扭矩变量。
具体实现时,电动汽车内还可以包括存储器,电动汽车的历史运行信息可以保存在电动汽车内的存储器中,也可以保存在于电动汽车通信的外部设备的存储器中。
利用上述获取的多个历史时刻的运行参数以及该多个历史时刻运行参数对应的标签,对用于表征电动汽车的运行信息与修正扭矩信息关系的对应模型进行训练,并根据输出结果以及标签内包括的信息对用于表征电动汽车的运行信息与修正扭矩信息关系的对应模型内的参数进行调整,在将历史时刻运行参数输入至用于表征电动汽车的运行信息与修正扭矩信息关系的对应模型、且输出结果与该历史时刻运行参数对应的标签内容保持一致时,确定用于表征电动汽车的运行信息与修正扭矩信息关系的对应模型已训练好。
实际使用时,由于每一个历史时刻运行参数对应的电动汽车的路况并不相同,因此,利用上述历史运行参数对用于表征电动汽车的运行信息与修正扭矩信息关系的对应模型进行训练时,训练输出的模型与标签内的目标扭矩信息可以存在一定的误差,具体误差数值可以根据电动汽车的应用场景以及驾驶员对用于表征电动汽车的运行信息与修正扭矩信息关系的对应模型的准确度的需求确定。
实际使用时,用于不同时期驾驶员的驾驶风格可能会发生变化以及可能会出现更换驾驶员的情况出现,为了保证驾驶员的使用体验,需要周期性对用于表征电动汽车的运行信息与修正扭矩信息关系的模型进行重新训练,其训练周期可以根据实际需求进行设置。
在一示例中,当内存器中存在的电动汽车的历史运行参数的数量超过预设阈值时,对用于表征电动汽车的运行信息与修正扭矩信息关系的模型进行重新训练,并将存储器存储的数据进行清零处理,并重新存储电动汽车的历史运行参数。
实施例二、用于表征电动汽车的运行信息与修正扭矩信息关系的对象包括:运行信息与目标扭矩信息的第一对应关系以及目标扭矩信息、基本扭矩信息与修正扭矩信息的第二对应关系。
在基于运行信息以及预先设定的用于表征电动汽车的运行信息与修正扭矩信息关系的对象,确定电动汽车的修正扭矩信息时,可以基于运行信息以及第一对应关系,确定目标扭矩信息,再基于目标扭矩信息以及第二对应关系,确定修正扭矩信息。
实际使用时,由于运行信息中可以包括多个运行参数,第一对应关系中可以包括多个运行参数区间与目标扭矩信息的对应关系,如图7所示,当获取的多个运行参数的数值处于第一修正扭矩信息对应的多个运行参数区间内时,则当前运行参数对应的目标扭矩信息为第一扭矩信息。
具体实现时,目标扭矩信息、运行信息与修正扭矩信息的对应关系可以为目标扭矩、运行信息与修正扭矩信息之间的函数关系式。
在一示例中,若修正扭矩信息包括修正扭矩和修正扭矩变量,在确定目标扭矩信息的条件下,利用目标扭矩信息中的目标扭矩与基本扭矩进行减法运算得到第一差值,该第一差值即为修正扭矩;以及利用目标扭矩信息中的目标扭矩变量与基本扭矩变量进行减法运算得到第二差值,该第一差值即为修正扭矩变量,并根据修正扭矩和修正扭矩变量直接对电动机当前运行模型计算的基本扭矩信息进行补偿,并将补偿后的扭矩输出给电动机,即可为电动机输出满足驾驶员需求的扭矩信息。
在另一示例中,若修正扭矩信息包括第一修正扭矩系数和第二修正扭矩系数,在确定目标扭矩信息的条件下,将上述第一差值与基本扭矩的占比作为第一修正扭矩系数,以及 将上述第二差值与基本扭矩变量的占比作为第二修正扭矩系数。
以电动汽车的运行信息包括电动汽车当前扭矩、加速踏板开度变化率以及加速踏板的开度值,且修正扭矩为修正扭矩和修正扭矩变量为例,结合图7对本申请实施例二中的修正扭矩信息的确定过程进行进一步说明。
首先,利用检测装置获取电动汽车的当前扭矩T、加速踏板开度值A和加速踏板开度变化率Z,例如,电动机的当前扭矩T为68,加速踏板开度值A为20,单位时间内加速踏板的开度值Z为0.45,将获取的信息输出至第一对应关系中多个运行参数与目标扭矩信息的对应关系中,确定当前的运行参数均处于目标扭矩为120、且目标扭矩变量为35对应的运行参数范围时,将目标扭矩为120,目标扭矩变量为35输出给第二对应关系中。
将电动汽车当前驾驶模式利用加速踏板开度值A20以及单位时间内加速踏板的开度值Z0.45计算的基本扭矩80、且基本扭矩变量20,输出至第二对应关系中,并利用目标扭矩为120与基本扭矩80做减法运算得到修正扭矩值40,以及利用目标扭矩变量35与基本扭矩变量20做减法运行得到修正扭矩变量为15。
本申请实施例中,若修正扭矩信息包括第一修正扭矩系数和第二修正扭矩信息时,在确定基本扭矩为80以及目标扭矩值为120的情况下,利用目标扭矩120与基本扭矩80做减法运算得到第一差值40,以及利用目标扭矩变量35与基本扭矩变量20做减法运算得带第二差值15,将第一差值50与基本扭矩做除法运算得到第一修正系数0.5,以及将第二差值15与基本扭矩变量20做除法运算得到第一修正系数0.75。
应理解,本申请实施例虽然只示出了修正扭矩信息的两种实现方式,本申请实施例中的第一扭矩控制信号和第二扭矩控制信号的配置方式并不限于此。
本申请实施例还提供一种电动汽车的扭矩控制装置,参见图8,为本申请实施例提供的电动汽车的扭矩控制装置800的示意性结构框图。该电动汽车的扭矩控制装置800可以实现上述各个方法实施例中由控制器实现的功能或者步骤。该电动汽车的扭矩控制装置可以是但不限于获取单元801、确定单元802和处理单元803。可选的,还可以包括存储单元,该存储单元可以存储电动汽车的历史运行信息。
具体地,获取单元801可以用于获取电动汽车的运行信息。其中,电动汽车的运行信息中至少包括汽车当前的车速信息、加速踏板开度变化率以及加速踏板开度值,加速踏板开度变化率为单位时间内加速踏板开度值的变化率。确定单元802可以用于基于运行信息以及预先设定的用于表征电动汽车的运行信息与修正扭矩信息关系的对象,确定电动汽车的修正扭矩信息。处理单元803可以用于基于修正扭矩信息对输出给电动汽车中电动机的扭矩进行控制。其中,表征电动汽车运行信息与修正扭矩信息关系的对象是利用电动汽车的历史运行信息确定的。
在一种可能的设计中,车速信息包括以下部分或者全部:车速信息包括以下部分或者全部:电动汽车的车速、电动机的转速、电动机的当前扭矩、电动机的扭矩变量以及电动汽车的加速度。其中,加速度为单位时间内电动汽车的车速的变化值,扭矩变量为单位时间内当前扭矩的变化值。
在一种可能的设计中,用于表征电动汽车的运行信息与修正扭矩信息关系的对象包括:运行信息与目标扭矩信息的第一对应关系以及目标扭矩信息、基本扭矩信息与修正扭矩信息的第二对应关系,目标扭矩信息包括目标扭矩与目标扭矩变量;其中,基本扭矩信息为电动汽车当前驾驶模式基于加速踏板开度值和加速踏板变换率计算得到的;基本扭矩信息 包括:基本扭矩和扭矩变量,基本扭矩变量为单元时间内基本扭矩的变化值;确定单元802可以具体用于:基于运行信息以及第一对应关系,确定目标扭矩信息;基于目标扭矩信息、基本扭矩信息以及第二对应关系,确定修正扭矩信息。
在一种可能的设计中,修正扭矩信息包括修正扭矩和修正扭矩变量;其中,修正扭矩为目标扭矩与当前扭矩的差值,修正扭矩变量为目标扭矩变量与扭矩变量的差值;处理单元803可以具体用于:将修正扭矩和基本扭矩进行叠加,得到第一扭矩;将修正扭矩变量和基本扭矩变量进行叠加,得到第一扭矩变量;将第一扭矩和第一扭矩变量输出给电动机。
在一种可能的设计中,修正扭矩信息包括第一修正扭矩系数和第二修正扭矩系数;其中,第一修正扭矩系数为目标扭矩与当前扭矩之间差值与当前扭矩的第一占比,第二修正扭矩系数为目标扭矩变量与扭矩变量之间差值与扭矩变量的第二占比;处理单元803可以具体用于:将修正扭矩和第一修正系数对应的扭矩值进行叠加,得到第二扭矩;将修正扭矩变量和第二修正系数对应的扭矩值进行叠加,得到第二扭矩变量;将第二扭矩和第二扭矩变量输出给电动机。
在一种可能的设计中,处理单元803还可以用于:对于多个历史运行参数中的每一历史时刻运行信息,在确定历史时刻加速踏板开度值发生变化时,记录历史时刻的运行参数以及历史时刻之后的预设时长对应电动汽车的目标扭矩;利用每一历史时刻运行信息以及每一历史时刻运行信息对应的电动汽车的目标扭矩,建立第一对应关系;利用每一历史时刻运行信息对应的电动汽车的目标扭矩与每一时刻对应的基本扭矩信息,建立第二对应关系。
在一种可能的设计中,若用于表征电动汽车的运行信息与修正扭矩信息关系的对象包括用于表征电动汽车的运行信息与修正扭矩信息关系的模型,则确定单元802具体用于:将运行信息输入至已训练的模型中,根据输出结果确定修正扭矩信息。
本申请实施例还提供一种电动汽车的扭矩控制设备,如图9所示,为本申请实施例提供的电动汽车的扭矩控制设备900。其中,电动汽车的扭矩控制设备900可以是本申请实施例提供电动汽车内的控制器,能够实现本申请实施例提供的方法中控制器的功能。其中,该电动汽车的扭矩控制设备900可以为芯片系统。本申请实施例中,芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
具体实现,电动汽车的扭矩控制设备900包括至少一个处理器901,用于实现或用于支持电动汽车的扭矩控制设备900实现本申请实施例提供的方法的功能。具体参见方法示例中的详细描述,此处不做赘述。
电动汽车的扭矩控制设备900还可以包括至少一个存储器902,用于存储程序指令和/或数据。存储器902和处理器901耦合。本申请实施例中的耦合是装置、单元或模块之间的间接耦合或通信连接,可以是电性,机械或其它的形式,用于装置、单元或模块之间的信息交互。处理器901可能和存储器902协同操作。处理器901可能执行存储器902中存储的程序指令和/或数据,以使得电动汽车的扭矩控制设备实现相应的方法。至少一个存储器中的至少一个可以包括于处理器中。需要说明的是,存储器902不是必须的,所以在图9中以虚线进行示意。
电动汽车的扭矩控制设备900还可以包括通信接口903,用于通过传输介质和其它设备进行通信,从而用于电动汽车的扭矩控制设备900中的装置可以和其它设备进行通信。示例性地,其它设备可以是控制面板或者终端。处理器901可以利用通信接口903收发数 据。通信接口903具体可以是收发器。
本申请实施例中不限定上述通信接口903、处理器901以及存储器902之间的具体连接介质。本申请实施例在图9中以存储器902、处理器901以及通信接口903之间通过总线904连接,总线在图9中以粗线表示,其它部件之间的连接方式,仅是进行示意性说明,并不引以为限。总线可以分为地址总线、数据总线、控制总线等。为便于表示,图9中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
本申请实施例中还提供一种计算机程序产品,包括指令,当其在计算机上运行时,使得计算机执行图6中控制器执行的方法。
本申请实施例中还提供一种电动汽车,该电动汽车可以包括控制器、电动机和加速踏板;
其中,电动机用于接收控制器的控制指令,并根据接收的控制指令转动;控制器用于执行图6中控制器执行的方法。
可选地,该电动汽车还可以包括壳体、控制面板和供电电源。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请的方法、设备(系统)和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (17)

  1. 一种电动汽车的扭矩控制方法,其特征在于,包括:
    获取所述电动汽车的运行信息,所述电动汽车的运行信息中至少包括所述汽车当前的车速信息、加速踏板开度变化率以及加速踏板开度值,所述加速踏板开度变化率为单位时间内所述加速踏板开度值的变化率;
    基于所述运行信息以及预先设定的用于表征所述电动汽车的运行信息与修正扭矩信息关系的对象,确定所述电动汽车的修正扭矩信息,所述用于表征电动汽车运行信息与修正扭矩信息关系的对象是利用所述电动汽车的历史运行信息确定的;
    基于所述修正扭矩信息对输出给所述电动汽车中电动机的扭矩进行控制。
  2. 如权利要求1所述的方法,其特征在于,所述车速信息包括以下部分或者全部:所述电动汽车的车速、电动机的转速、电动机的当前扭矩、所述电动机的扭矩变量以及所述电动汽车的加速度;
    其中,所述加速度为单位时间内所述电动汽车的车速的变化值,所述扭矩变量为单位时间内所述当前扭矩的变化值。
  3. 如权利要求2所述的方法,其特征在于,所述用于表征所述电动汽车的运行信息与修正扭矩信息关系的对象包括:所述运行信息与目标扭矩信息的第一对应关系以及所述目标扭矩信息、基本扭矩信息与所述修正扭矩信息的第二对应关系,所述目标扭矩信息包括目标扭矩与目标扭矩变量;其中,所述基本扭矩信息为所述电动汽车当前驾驶模式基于所述加速踏板开度值和所述加速踏板变换率计算得到的;所述基本扭矩信息包括:基本扭矩和扭矩变量,基本扭矩变量为单元时间内基本扭矩的变化值;
    所述基于所述运行信息以及预先设定的用于表征所述电动汽车的运行信息与修正扭矩信息关系的对象,确定所述电动汽车的修正扭矩信息,包括:
    基于所述运行信息以及所述第一对应关系,确定所述目标扭矩信息;
    基于所述目标扭矩信息、基本扭矩信息以及所述第二对应关系,确定所述修正扭矩信息。
  4. 如权利要求3所述的方法,其特征在于,所述修正扭矩信息包括修正扭矩和修正扭矩变量;其中,所述修正扭矩为所述目标扭矩与所述当前扭矩的差值,所述修正扭矩变量为所述目标扭矩变量与所述扭矩变量的差值;
    所述基于所述修正扭矩信息对输出给所述电动汽车中电动机的扭矩进行控制,包括:
    将所述修正扭矩和所述基本扭矩进行叠加,得到第一扭矩;
    将所述修正扭矩变量和所述基本扭矩变量进行叠加,得到第一扭矩变量;
    将所述第一扭矩和所述第一扭矩变量输出给所述电动机。
  5. 如权利要求3所述的方法,其特征在于,所述修正扭矩信息包括第一修正扭矩系数和第二修正扭矩系数;其中,所述第一修正扭矩系数为所述目标扭矩与所述当前扭矩之间差值与所述当前扭矩的第一占比,所述第二修正扭矩系数为所述目标扭矩变量与所述扭矩变量之间差值与所述扭矩变量的第二占比;
    所述基于所述修正扭矩信息对输出给所述电动汽车中电动机的扭矩进行控制,包括:
    将所述修正扭矩和所述第一修正系数对应的扭矩值进行叠加,得到第二扭矩;
    将所述修正扭矩变量和所述第二修正系数对应的扭矩值进行叠加,得到第二扭矩变量;
    将所述第二扭矩和所述第二扭矩变量输出给所述电动机。
  6. 如权利要求3-5中任一项所述的方法,其特征在于,利用所述历史运行信息确定所述用于表征所述电动汽车的运行信息与修正扭矩信息关系的对象的过程为:
    对于多个历史运行参数中的每一历史时刻运行信息,在确定历史时刻加速踏板开度值发生变化时,记录所述历史时刻的运行参数以及所述历史时刻之后的预设时长对应所述电动汽车的目标扭矩;
    利用每一历史时刻运行信息以及每一历史时刻运行信息对应的电动汽车的目标扭矩,建立所述第一对应关系;
    利用所述每一历史时刻运行信息对应的电动汽车的目标扭矩与所述每一时刻对应的基本扭矩信息,建立所述第二对应关系。
  7. 如权利要求1或2所述的方法,其特征在于,所述用于表征所述电动汽车的运行信息与修正扭矩信息关系的对象包括用于表征所述电动汽车的运行信息与修正扭矩信息关系的模型;
    所述基于所述运行信息以及预先设定的用于表征所述电动汽车的运行信息与修正扭矩信息关系的对象,确定所述电动汽车的修正扭矩信息,包括:
    将所述运行信息输入至已训练的所述模型中,根据输出结果确定修正扭矩信息。
  8. 一种电动汽车的扭矩控制装置,其特征在于,包括:
    获取单元,用于获取所述电动汽车的运行信息,所述电动汽车的运行信息中至少包括所述汽车当前的车速信息、加速踏板开度变化率以及加速踏板开度值,所述加速踏板开度变化率为单位时间内所述加速踏板开度值的变化率;
    确定单元,用于基于所述运行信息以及预先设定的用于表征所述电动汽车的运行信息与修正扭矩信息关系的对象,确定所述电动汽车的修正扭矩信息,所述表征电动汽车运行信息与修正扭矩信息关系的对象是利用所述电动汽车的历史运行信息确定的;
    处理单元,用于基于所述修正扭矩信息对输出给所述电动汽车中电动机的扭矩进行控制。
  9. 如权利要求8所述的装置,其特征在于,所述车速信息包括以下部分或者全部:所述电动汽车的车速、电动机的转速、电动机的当前扭矩、所述电动机的扭矩变量以及所述电动汽车的加速度;
    其中,所述加速度为单位时间内所述电动汽车的车速的变化值,所述扭矩变量为单位时间内所述当前扭矩的变化值。
  10. 如权利要求9所述的装置,其特征在于,所述用于表征所述电动汽车的运行信息与修正扭矩信息关系的对象包括:所述运行信息与目标扭矩信息的第一对应关系以及所述目标扭矩信息、基本扭矩信息与所述修正扭矩信息的第二对应关系,所述目标扭矩信息包括目标扭矩与目标扭矩变量;其中,所述基本扭矩信息为所述电动汽车当前驾驶模式基于所述加速踏板开度值和所述加速踏板变换率计算得到的;所述基本扭矩信息包括:基本扭矩和扭矩变量,基本扭矩变量为单元时间内基本扭矩的变化值;
    所述确定单元具体用于:
    基于所述运行信息以及所述第一对应关系,确定所述目标扭矩信息;
    基于所述目标扭矩信息、基本扭矩信息以及所述第二对应关系,确定所述修正扭矩信息。
  11. 如权利要求10所述的装置,其特征在于,所述修正扭矩信息包括修正扭矩和修正扭矩变量;其中,所述修正扭矩为所述目标扭矩与所述当前扭矩的差值,所述修正扭矩变量为所述目标扭矩变量与所述扭矩变量的差值;
    所述处理单元具体用于:
    将所述修正扭矩和所述基本扭矩进行叠加,得到第一扭矩;
    将所述修正扭矩变量和所述基本扭矩变量进行叠加,得到第一扭矩变量;
    将所述第一扭矩和所述第一扭矩变量输出给所述电动机。
  12. 如权利要求10所述的装置,其特征在于,所述修正扭矩信息包括第一修正扭矩系数和第二修正扭矩系数;其中,所述第一修正扭矩系数为所述目标扭矩与所述当前扭矩之间差值与所述当前扭矩的第一占比,所述第二修正扭矩系数为所述目标扭矩变量与所述扭矩变量之间差值与所述扭矩变量的第二占比;
    所述处理单元具体用于:
    将所述修正扭矩和所述第一修正系数对应的扭矩值进行叠加,得到第二扭矩;
    将所述修正扭矩变量和所述第二修正系数对应的扭矩值进行叠加,得到第二扭矩变量;
    将所述第二扭矩和所述第二扭矩变量输出给所述电动机。
  13. 如权利要求10-12中任一项所述的装置,其特征在于,所述处理单元还用于采用以下步骤建立所述用于表征所述电动汽车的运行信息与修正扭矩信息关系的对象:
    对于多个历史运行参数中的每一历史时刻运行信息,在确定历史时刻加速踏板开度值发生变化时,记录所述历史时刻的运行参数以及所述历史时刻之后的预设时长对应所述电动汽车的目标扭矩;
    利用每一历史时刻运行信息以及每一历史时刻运行信息对应的电动汽车的目标扭矩,建立所述第一对应关系;
    利用所述每一历史时刻运行信息对应的电动汽车的目标扭矩与所述每一时刻对应的基本扭矩信息,建立所述第二对应关系。
  14. 如权利要求8或9中任一项所述的装置,其特征在于,所述用于表征所述电动汽车的运行信息与修正扭矩信息关系的对象包括用于表征所述电动汽车的运行信息与修正扭矩信息关系的模型;所述确定单元具体用于:
    将所述运行信息输入至已训练的所述模型中,根据输出结果确定修正扭矩信息。
  15. 一种电动汽车的扭矩控制设备,其特征在于,包括至少一个处理器与至少一个存储器耦合:
    所述至少一个处理器,用于执行所述至少一个存储器中存储的计算机程序或指令,以使得所述扭矩控制设备执行如权利要求1-7中任一项所述的方法。
  16. 一种可读存储介质,其特征在于,包括程序或指令,当所述程序或指令被执行时,如权利要求1-7中任一项所述的方法被执行。
  17. 一种电动汽车,其特征在于,包括:控制器、电动机和加速踏板;
    所述电动机用于接收所述控制器的控制指令,并根据接收的所述控制指令转动;
    所述控制器用于执行如权利要求1-7中任一项所述的方法。
PCT/CN2020/125673 2020-10-31 2020-10-31 一种电动汽车的扭矩控制方法、装置、设备及其存储介质 WO2022088154A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2020/125673 WO2022088154A1 (zh) 2020-10-31 2020-10-31 一种电动汽车的扭矩控制方法、装置、设备及其存储介质
CN202080004667.2A CN112638695B (zh) 2020-10-31 2020-10-31 一种电动汽车的扭矩控制方法、装置、设备及其存储介质
EP20959315.1A EP4227145A4 (en) 2020-10-31 2020-10-31 ELECTRIC VEHICLE TORQUE ADJUSTMENT METHOD, APPARATUS, DEVICE, AND STORAGE MEDIUM

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/125673 WO2022088154A1 (zh) 2020-10-31 2020-10-31 一种电动汽车的扭矩控制方法、装置、设备及其存储介质

Publications (1)

Publication Number Publication Date
WO2022088154A1 true WO2022088154A1 (zh) 2022-05-05

Family

ID=75291198

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/125673 WO2022088154A1 (zh) 2020-10-31 2020-10-31 一种电动汽车的扭矩控制方法、装置、设备及其存储介质

Country Status (3)

Country Link
EP (1) EP4227145A4 (zh)
CN (1) CN112638695B (zh)
WO (1) WO2022088154A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024038336A1 (en) * 2022-08-19 2024-02-22 Tula eTechnology, Inc. Methods of real-time prediction of torque modulation parameters

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114211969B (zh) * 2021-12-15 2024-03-22 威睿电动汽车技术(宁波)有限公司 用于电动车辆的电机控制方法、控制单元及车辆
CN114572014B (zh) * 2022-02-07 2023-12-22 达闼机器人股份有限公司 设备控制方法、装置、电子设备及存储介质
CN115489336B (zh) * 2022-09-28 2023-07-25 同济大学 基于大数据的电机扭矩输出优化方法和装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6434472B1 (en) * 1997-04-25 2002-08-13 Hitachi, Ltd. Automotive control apparatus and method
CN103935264A (zh) * 2014-04-29 2014-07-23 大连理工大学 一种电动汽车驾驶员需求转矩计算方法
CN106585426A (zh) * 2016-12-23 2017-04-26 潍柴动力股份有限公司 一种电机扭矩控制方法和装置
CN107487224A (zh) * 2016-07-20 2017-12-19 宝沃汽车(中国)有限公司 一种整车控制方法和系统
CN109733406A (zh) * 2019-01-22 2019-05-10 湖南普西智能科技有限责任公司 基于模糊控制与动态规划的纯电动汽车行驶策略控制方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7140460B2 (en) * 2002-08-26 2006-11-28 Nissan Motor Co., Ltd. Vehicle driving force control apparatus
TWI471239B (zh) * 2011-10-21 2015-02-01 Automotive Res & Testing Ct Vehicle Yaw Stability Control Method and Its System
CN103661391B (zh) * 2013-10-11 2016-04-13 吉林省高新电动汽车有限公司 纯电动客车驱动控制方法
CN104192023B (zh) * 2014-08-22 2016-09-14 江苏大学 一种纯电动汽车起步时动力需求匹配和优化的方法
CN106853780B (zh) * 2015-12-08 2019-09-20 北京宝沃汽车有限公司 电动汽车及其扭矩解析方法和扭矩解析系统
CN111098717B (zh) * 2019-12-20 2021-07-30 中国第一汽车股份有限公司 一种电动汽车的单踏板控制方法、装置及系统
CN111731112B (zh) * 2020-07-03 2021-11-30 东风汽车有限公司 电动汽车电机扭矩控制方法、存储介质和电子设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6434472B1 (en) * 1997-04-25 2002-08-13 Hitachi, Ltd. Automotive control apparatus and method
CN103935264A (zh) * 2014-04-29 2014-07-23 大连理工大学 一种电动汽车驾驶员需求转矩计算方法
CN107487224A (zh) * 2016-07-20 2017-12-19 宝沃汽车(中国)有限公司 一种整车控制方法和系统
CN106585426A (zh) * 2016-12-23 2017-04-26 潍柴动力股份有限公司 一种电机扭矩控制方法和装置
CN109733406A (zh) * 2019-01-22 2019-05-10 湖南普西智能科技有限责任公司 基于模糊控制与动态规划的纯电动汽车行驶策略控制方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4227145A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024038336A1 (en) * 2022-08-19 2024-02-22 Tula eTechnology, Inc. Methods of real-time prediction of torque modulation parameters

Also Published As

Publication number Publication date
CN112638695B (zh) 2022-07-12
EP4227145A1 (en) 2023-08-16
CN112638695A (zh) 2021-04-09
EP4227145A4 (en) 2024-01-24

Similar Documents

Publication Publication Date Title
WO2022088154A1 (zh) 一种电动汽车的扭矩控制方法、装置、设备及其存储介质
US9540787B2 (en) Motor graders and circle drives associated with the same
JP5152003B2 (ja) 前後加速度制御装置
US8818645B2 (en) Vehicle control apparatus
US10762724B2 (en) Vehicle control device, server, vehicle motor control system, and vehicle motor control method
CN110311594A (zh) 双电机同步控制方法、系统及计算机可读存储介质
US8770019B2 (en) Test rig for dynamic test assignments on internal combustion engines, and method for operating a test rig of this kind
JP2016507209A (ja) 異なるモータで作動される2駆動輪を備える車両の機械トルク制御システム
JPWO2018220751A1 (ja) 状態監視装置、並びに機器システム
CN109398472A (zh) 转向角调节器
US9616769B2 (en) Torque control apparatus and method for drive motor
US20120323416A1 (en) Pre-emptive output torque reduction for a transient speed event and prioritization of inertia
US10227074B2 (en) Method for controlling sense of shift difference and 4-wheel drive vehicle applying the same
WO2016125438A1 (ja) 車載用電動機制御装置
CN104340203B (zh) 停车操作控制设备及其控制方法
TWI421178B (zh) 智慧型多輪獨立動力輪之差速控制方法及其裝置
CN112930277B (zh) 用于校准两个电动马达的装置和方法
US9557731B2 (en) Control device of gear processing machine
US20070132421A1 (en) Time constant automatic estimation method, time constant automatic estimation apparatus and servo motor control system
CN103707886B (zh) 用于车辆中电机的控制策略
US10179583B2 (en) Vehicle subsystem coordination and control
CN105610359A (zh) 发电机功率输出控制方法、装置及系统
US20220258745A1 (en) Method and device for predictive vehicle control
CN114977935A (zh) 具有脉宽调制切换的动态控制的电驱动组件
JP5818934B2 (ja) モータ制御装置、モータ制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20959315

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020959315

Country of ref document: EP

Effective date: 20230509

NENP Non-entry into the national phase

Ref country code: DE