WO2022087991A1 - 旋转观测装置的安装校准方法、飞行器及存储介质 - Google Patents

旋转观测装置的安装校准方法、飞行器及存储介质 Download PDF

Info

Publication number
WO2022087991A1
WO2022087991A1 PCT/CN2020/124955 CN2020124955W WO2022087991A1 WO 2022087991 A1 WO2022087991 A1 WO 2022087991A1 CN 2020124955 W CN2020124955 W CN 2020124955W WO 2022087991 A1 WO2022087991 A1 WO 2022087991A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
aircraft
blade
observation
angle
Prior art date
Application number
PCT/CN2020/124955
Other languages
English (en)
French (fr)
Inventor
陈文平
王俊喜
吴鑫
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to PCT/CN2020/124955 priority Critical patent/WO2022087991A1/zh
Priority to CN202080075400.2A priority patent/CN114698383A/zh
Publication of WO2022087991A1 publication Critical patent/WO2022087991A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/86Combinations of radar systems with non-radar systems, e.g. sonar, direction finder

Definitions

  • the present application relates to the technical field of aircraft, and in particular, to an installation and calibration method of a rotating observation device, an aircraft, and a storage medium.
  • the rotating observation device when the rotating observation device is installed on the aircraft, such as the installation process of the rotating radar device and the rotating ultrasonic device, it is generally necessary to perform error calibration on the installation of the rotating observation device.
  • the error calibration is mainly based on the results of measuring instruments such as a spirit level. Calibrate the mounting position of the rotating sighting device.
  • measuring instruments such as level gauges are prone to introduce artificial errors, and at the same time, installation deviations caused by external forces and other factors cannot be avoided after calibration, thereby reducing the installation accuracy.
  • the embodiments of the present application provide an installation and calibration method, an aircraft, and a storage medium of a rotary observation device, which aim to improve the installation accuracy of the rotary observation device.
  • an embodiment of the present application provides a method for installing and calibrating a rotating observation device, where the rotating observation device is installed on an aircraft, and the method for installing and calibrating includes:
  • the theoretical position of the blade is obtained, and the installation error of the rotating observation device is determined according to the observation position and the theoretical position.
  • an embodiment of the present application further provides an aircraft, the aircraft comprising:
  • a rotating observation device which is mounted on the gantry and can be rotated relative to the gantry to measure surrounding objects of the rotating observation device;
  • the memory is used to store a computer program;
  • the processor is used to execute the computer program and implement the following steps when executing the computer program:
  • the theoretical position of the blade is obtained, and the installation error of the rotating observation device is determined according to the observation position and the theoretical position.
  • an embodiment of the present application further provides a computer-readable storage medium, where the computer-readable storage medium stores a computer program, and when the computer program is executed by a processor, the processor implements the implementation of the present application.
  • the installation and calibration method, the aircraft, and the storage medium of the rotary observation device disclosed in the embodiments of the present application can calibrate the installation error of the rotary observation device through the Doppler information corresponding to the blades, thereby improving the installation accuracy of the rotary observation device.
  • FIG. 1 is a schematic structural diagram of an aircraft provided by an embodiment of the present application.
  • FIG. 2 is a schematic structural diagram of a rotating observation device provided by an embodiment of the present application.
  • FIG. 3 is a schematic flowchart of steps of a method for installing and calibrating a rotating observation device provided by an embodiment of the present application;
  • FIG. 4 is a schematic diagram of a radar coordinate system provided by an embodiment of the present application.
  • FIG. 5 is a schematic diagram of a coordinate system corresponding to an aircraft and a rotating observation device provided by an embodiment of the present application;
  • FIG. 6 is a schematic diagram of the effect of a target observed by a rotating observation device provided in an embodiment of the present application.
  • FIG. 7 is a schematic flowchart of steps for determining the observation position of a blade according to an embodiment of the present application.
  • FIG. 8 is a schematic diagram of the effect of the area division corresponding to an aircraft blade provided by an embodiment of the present application.
  • FIG. 9 is a schematic flowchart of another step for determining the observation position of the blade provided by the embodiment of the present application.
  • FIG. 10 is a schematic block diagram of an aircraft provided by an embodiment of the present application.
  • Rotating observation devices such as rotating radar devices or rotating ultrasonic devices, can be installed on the aircraft, and during the flight of the aircraft, they are used to measure the surrounding targets of the aircraft, such as obstacles, to ensure the safety of flight.
  • the embodiments of the present application provide an installation and calibration method, an aircraft, and a storage medium of a rotating observation device.
  • the rotating observation device is installed on the aircraft, and completes the rotation observation according to the Doppler information corresponding to the blades of the aircraft.
  • the calibration of the device to improve the installation accuracy of the rotating observation device.
  • FIG. 1 shows the structure of an aircraft 100 provided by an embodiment of the present application.
  • the aircraft 100 may include a power system, a control system, a frame 10 and a rotating observation device 20 .
  • the frame may include a fuselage and a foot frame (also called a landing gear).
  • the fuselage may include a center frame and one or more arms connected to the center frame, the one or more arms extending radially from the center frame.
  • the tripod is connected with the fuselage, and is used for supporting the aircraft 100 when it is landed.
  • the power system may include one or more electronic governors (referred to as ESCs for short), one or more propellers, and one or more motors corresponding to the one or more propellers, wherein the motors are connected between the electronic governors and the propellers.
  • the motor and the propeller are arranged on the arm of the aircraft 100; the electronic governor is used to receive the driving signal generated by the control system, and provide driving current to the motor according to the driving signal to control the rotation speed of the motor.
  • the motor is used to drive the propeller to rotate, thereby providing power for the flight of the aircraft 100, and the power enables the aircraft 100 to achieve one or more degrees of freedom movement.
  • aircraft 100 may rotate about one or more axes of rotation.
  • the above-mentioned rotation axes may include a roll axis, a yaw axis, and a pitch axis.
  • the motor may be a DC motor or a permanent magnet synchronous motor.
  • the motor may be a brushless motor or a brushed motor.
  • the control system may include a controller and a sensing system.
  • the controller is used to control the flight of the aircraft 100.
  • the flight of the aircraft 100 can be controlled according to the attitude information measured by the sensing system.
  • the controller may control the aircraft 100 according to pre-programmed instructions.
  • the sensing system is used to measure the attitude information of the aircraft 100, that is, the position information and state information of the aircraft 100 in space, such as three-dimensional position, three-dimensional angle, three-dimensional velocity, three-dimensional acceleration and three-dimensional angular velocity.
  • the sensing system may include at least one of a gyroscope, an ultrasonic sensor, an electronic compass, an inertial measurement unit (Inertial Measurement Unit, IMU), a visual sensor, a global navigation satellite system, a barometer, and other sensors.
  • the global navigation satellite system may be the Global Positioning System (GPS).
  • a rotating observation device 20 is mounted on the tripod of the aircraft 100.
  • the rotating observation device 20 is connected in communication with the control system.
  • the rotating observation device 20 transmits the collected observation data to the control system for processing by the control system. .
  • the aircraft 100 may include two or more tripods, and the rotating observation device 20 is mounted on one of the tripods.
  • the rotation observation device 20 may also be mounted on other positions of the aircraft 100 , which is not specifically limited.
  • the rotating observation device 20 when the rotating observation device 20 is installed on the aircraft 100 , there may be installation errors in the horizontal direction and/or the vertical direction, wherein the vertical direction is the direction corresponding to the rotation axis of the rotating observation device 20 . It is understood that the rotation axis of the rotating observation device 20 is parallel to the vertical direction, and the horizontal direction is relatively perpendicular to the rotation axis of the rotating observation device 20 .
  • the rotating radar device mainly includes a radio frequency front-end module and a signal processing module.
  • the radio frequency front-end module may include a transmitting antenna and a receiving antenna.
  • the transmitting antenna is used to send signals to surrounding targets and receive
  • the antenna is used to receive the signal reflected by the surrounding target, and the signal processing module is responsible for generating the modulated signal and processing and analyzing the collected intermediate frequency signal.
  • the aircraft 100 includes an unmanned aerial vehicle, and the unmanned aerial vehicle includes a rotary-wing type unmanned aerial vehicle, such as a quad-rotor unmanned aerial vehicle, a hexa-rotor unmanned aerial vehicle, an eight-rotor unmanned aerial vehicle, or a fixed-wing unmanned aerial vehicle or a rotary-wing unmanned aerial vehicle.
  • a rotary-wing type unmanned aerial vehicle such as a quad-rotor unmanned aerial vehicle, a hexa-rotor unmanned aerial vehicle, an eight-rotor unmanned aerial vehicle, or a fixed-wing unmanned aerial vehicle or a rotary-wing unmanned aerial vehicle.
  • a rotary-wing type unmanned aerial vehicle such as a quad-rotor unmanned aerial vehicle, a hexa-rotor unmanned aerial vehicle, an eight-rotor unmanned aerial vehicle, or a fixed-wing unmanned aerial vehicle or a rotary-wing unmanned aerial vehicle.
  • the combination of type and fixed-wing UAV is not limited here.
  • FIG. 3 is a schematic flowchart of steps of an installation and calibration method for a rotating observation device provided by an embodiment of the present application.
  • the installation and calibration method can be applied to an aircraft.
  • the rotating observation device of the aircraft is calibrated to improve the installation accuracy of the rotating observation device.
  • the installation calibration method includes steps S101 to S103.
  • the theoretical position is a preset position of the blade when the blade is installed. In other words, the theoretical position is the position where the staff expects the blade to be installed during installation.
  • Doppler information corresponding to one or more blades of the aircraft may be acquired.
  • the Doppler information is due to the fact that the blades of the aircraft are still rotating during the rotation measurement of the rotation measurement device, so there is a Doppler effect between the two, which in turn generates Doppler information.
  • the Doppler information includes at least position information and velocity information, and of course other information, such as energy information, may be specifically the amplitude of the collected signal, which is not limited here.
  • the location information may be distance information and angle information, such as distance information and angle information measured in a radar coordinate system.
  • the rotating radar device is the coordinate origin O
  • A indicates that the target is obtained by measurement
  • the distance information is the distance from the target A to the coordinate origin O, which can specifically represent is r
  • the angle information is the angle of the target A in the radar coordinate system, including the angle in the horizontal direction and the angle in the vertical direction, expressed as ⁇
  • the position information located in the radar coordinate system can be Converted to the position information (x, y, z) of the Cartesian coordinate system, the specific conversion formula is as follows:
  • each blade of the aircraft can be measured, and each blade corresponds to multiple sets of Doppler information, and each set of the Doppler information includes position information and velocity. information, thereby facilitating the use of one or more sets of Doppler information.
  • the Doppler information corresponding to the blades of the aircraft is obtained based on the rotating observation device. Specifically, the blades of the aircraft are determined from the multiple surrounding targets measured by the rotating observation device, so that the blade of the aircraft can be determined according to the observation information of the blades of the aircraft. Doppler information corresponding to the blade.
  • the Doppler information corresponding to the blades of the aircraft is obtained based on the rotating observation device. Specifically, the observation data obtained when the rotating observation device measures the surrounding targets can be obtained, and the Doppler information corresponding to the blades of the aircraft can be extracted from the observation data. Le information.
  • the surrounding targets not only include the blades of the aircraft, but also other targets, such as trees, buildings, mountains, etc., so it is necessary to determine the blades of the aircraft from these surrounding targets, and extract the Dopp corresponding to the blades of the aircraft Le information.
  • the rotating observation device is installed on the aircraft in a rigid connection, for example, the rotating radar device is installed on the tripod of the aircraft, the relative position of the blade of the aircraft relative to the rotating radar device is almost unchanged.
  • the position information is also closely related to the installation position of the rotating radar device, so not only can other targets be filtered out according to the relative position, but also the installation error of the rotating radar device can be determined according to the measured position information and velocity information.
  • the installation position of the rotating radar device is determined by the overall structure of the aircraft.
  • the rotating radar device is located at point O, and the four blades are respectively ABCD.
  • point O as the center of the circle, establish a coordinate system XOY, take the nose direction of the aircraft as X, and take the right side of the nose direction as Y, then the coordinates of the centers of the four blades A(x A , y A ), B(x B ,y B ), C(x C ,y C ) and D(x D ,y D ).
  • the relative distance from the blades to the rotating radar device can be determined according to the coordinates of the centers of the four blades, that is, the relative position of the blades of the aircraft to the rotating radar device, so as to filter out other surrounding targets except the blades according to the relative distance.
  • the observation information of the surrounding objects is extracted from the observation data, the observation information at least includes distance information, angle information and speed information about the surrounding objects (that is, the objects located around the rotating observation device measured by the rotating observation device).
  • the blades of the aircraft are determined from the surrounding objects. That is, based on the distance information and speed information, it is determined from the surrounding objects which objects are the blades of the aircraft.
  • the Doppler information of the blade is determined according to the distance information and the angle information in the observation information corresponding to the blade.
  • the observation information of the surrounding target is extracted from the observation data, and specifically, signal processing may be performed on the observation data to obtain the observation information of the surrounding target, wherein the signal processing at least includes constant false alarm detection processing.
  • Constant False-Alarm Rate CFAR is a technique in which the radar system discriminates the signal and noise output by the receiver under the condition that the false alarm probability is kept constant to determine whether the target signal exists.
  • the observation information of the surrounding target detected by the rotating radar device can be determined, wherein the observation information at least includes distance information, angle information and speed information.
  • the fixed relative distance from the blade to the rotating radar device can be used to filter out other surrounding targets, and then the distance information and angle information in the observation information corresponding to the blade of the aircraft and the blade can be determined. Doppler information of the blade.
  • in order to quickly determine the blades of an aircraft from surrounding objects in order to quickly determine the blades of an aircraft from surrounding objects.
  • Determine the blades of the aircraft from the surrounding targets according to the distance information and speed information Specifically, you can first filter out the stationary targets in the surrounding targets according to the speed information; then filter out the moving targets with a distance greater than the blade position according to the distance information, and then obtain the aircraft. of the paddle.
  • the stationary target can be determined according to the speed information (the speed of the stationary target is zero or almost zero)
  • the blades of the aircraft are determined according to the distance information, so that the blades of the aircraft can be quickly determined from the surrounding targets.
  • Fig. 6 shows that the rotating observation device measures the target observation information around the aircraft.
  • the targets around the aircraft include stationary targets and moving targets. Since the rotating observation device is rigidly connected to the aircraft, it moves. The target is the blade, and the stationary target is other parts on the aircraft or the interference target. Therefore, the stationary target can be filtered out through the speed information, which can improve the accuracy of data processing.
  • the observation information includes energy information
  • the interference target can be filtered out according to the energy information, because the energy of the interference target is less than the energy of the blades of the aircraft, so the accuracy of the observation information of the blades of the aircraft can be improved to improve the accuracy of the observation information of the blades of the aircraft. Ensure the accuracy of the Doppler information corresponding to the blades, thereby improving the installation accuracy of the rotating observation device.
  • the Doppler information of the blade is determined according to the distance information and angle information in the observation information corresponding to the blade. Specifically, the distance information and angle information in the observation information can be converted into the Cartesian coordinate system. Position information; the position information of the Cartesian coordinate system and the velocity information corresponding to the distance information and angle information are fused to obtain the Doppler information of the blade.
  • the distance information and angle information of the observation information of the blade measured by the rotating radar device are expressed as Using the radar coordinate system-Cartesian coordinate system conversion formula, we can convert Convert to the position information P i (x i ,y i ,z i ) of the Cartesian coordinate system, and then the distance information ri and angle information The corresponding velocity information vi and the position information P i (x i , y i , z i ) of the Cartesian coordinate system are fused to obtain the Doppler information P i (x i , y i , z i ) of the blade.
  • the Doppler information of multiple blades of the aircraft and multiple sets of Doppler information of each blade can be determined.
  • the aircraft includes four blades, each blade ( A moving target) will include multiple sets of Doppler information P n (x n , y n , z n , v n ).
  • the observation position of the blade can be determined according to the Doppler information, and the observation position can be understood as the position information of the blade obtained by measuring the aircraft by the rotating observation device. Specifically, the observation position of each blade can be determined according to multiple sets of Doppler information corresponding to each blade.
  • determining the observation position of the blade according to the Doppler information specifically includes steps S1021 and S1022 .
  • the area corresponding to the blade is divided according to the installation position of the blade of the aircraft.
  • the aircraft includes four blades, which can be divided into four areas according to the installation position of each blade, which are Area 1 corresponding to blade A, area 2 corresponding to blade B, area 3 corresponding to blade C, and area 4 corresponding to blade D. It can be understood that, if the aircraft includes six blades, six areas can be correspondingly divided.
  • the target Doppler information may be determined from the multiple sets of Doppler information according to the variance of the multiple sets of Doppler information, and the position information in the target Doppler information may be used as the centroid position.
  • Doppler information correspondingly, the average position of the blade A can be expressed as E A (x, y, z, v), and the variance of each set of Doppler information of the blade A D A (x, y, z, v).
  • the position information of the set of Doppler information is used as the centroid position, and the preset threshold is used for
  • the size of the evaluation variance can be set according to the actual application, and the setting of the preset threshold can ensure that at least one set of variances of the multiple sets of Doppler information of the blade A satisfies the condition. If the variance of the multiple sets of Doppler information is less than or equal to the preset threshold, any set of the multiple sets of Doppler information satisfying the condition may be selected to determine the centroid position.
  • the position of the centroid of the paddle B, the paddle C, and the paddle D can also be determined in the above manner, and the centroid position is the observation position of the paddle.
  • the observation position of the blade is determined according to the Doppler information, and a clustering algorithm may also be used to cluster multiple sets of the Doppler information to determine the observation position of the blade.
  • the clustering algorithm includes at least one of K-means clustering algorithm, DBscan clustering algorithm and mean-shift clustering algorithm.
  • the K-means clustering algorithm is used as an example for introduction. As shown in Figure 9, the clustering algorithm is used to determine the observation position of the blade, including steps S102a and S102b:
  • S102a determine the K value of K-means according to the quantity of described aircraft blade, described K value is equal to the quantity of described aircraft blade;
  • S102b Determine K cluster center points from multiple sets of Doppler information according to the K value, and perform clustering on the multiple sets of Doppler information to determine the observation position of the blade.
  • the K value of K-means is equal to 4
  • the multiple sets of Doppler information P n (x n ,y n ,z n ,v n ) of all blades of the aircraft will be determined.
  • K clustering groups are obtained, and the center points of the K clustering groups can be corresponding to the position information as the observation position of the blade.
  • the variance of each Doppler information of the K cluster groups may be calculated, so as to obtain a
  • the target Doppler information is determined from the group Doppler information, and the position information in the target Doppler information is used as the position of the centroid, thereby obtaining the observation position of each blade.
  • the theoretical position of the blade needs to be obtained, and then the installation error of the rotating observation device is determined according to the observation position and the theoretical position.
  • the theoretical position of the blade includes the theoretical installation angle, so the installation error of the rotating observation device is determined according to the observation position and the theoretical position, and the observation position in the Cartesian coordinate system can be converted into polar coordinates
  • the distance angle information of the system; the angle installation error of the blade is determined according to the theoretical installation angle and the angle in the distance angle information.
  • the distance and angle information in the polar coordinate system includes first angle information and second angle information
  • the first angle information is the angle of the target object relative to the rotation observation device in the horizontal direction
  • the second angle information is the relative rotation angle of the target object.
  • the angular installation error includes a first angular installation error and/or a second angular installation error.
  • the first angle installation error and/or the second angle installation error corresponding to each blade of the aircraft can be determined.
  • One of the installation angle errors can be selected to calibrate the rotation observation device, and of course it is preferable to use the first angle installation error and the second angle installation error to calibrate the rotation observation device.
  • the error corresponding to the first angle installation error is determined according to the first angle installation error and/or the second angle installation error corresponding to each blade of the aircraft
  • the average value and/or the average error value corresponding to the installation error of the second angle; the average value of the error corresponding to the installation error of the first angle and/or the average value of the error corresponding to the installation error of the second angle is taken as the rotation
  • the installation error of the observation device is to be calibrated for the rotating observation device.
  • the observation position E (x A , y B , z C ) in the Cartesian coordinate system can be converted into polar coordinates, specifically It can be converted to the radar coordinate system according to the inverse process of the conversion formula from the radar coordinate system to the Cartesian coordinate system, which will not be described in detail here.
  • the average value of the errors corresponding to the first angle installation error is the average value of the first installation angle errors of the four blades, which can be expressed as
  • the average value of the error corresponding to the second angle installation error is the average value of the second installation angle error of the four blades, which can be expressed as where M is equal to 4.
  • the installation error can be sent to the control terminal of the aircraft, such as a mobile phone, and the installation error is displayed on the mobile phone to prompt the user to calibrate the rotation observation device according to the installation error.
  • the above-mentioned installation and calibration method of the rotating observation device is completed under the condition that the blades of the aircraft are rotated.
  • the operating state of the aircraft is not limited, for example, the operating state of the aircraft can be the flying state, the hovering state, etc. .
  • the installation and calibration method of the rotating observation device provided in the embodiment of the present application can use the Doppler information of the blade to realize the installation and calibration of the rotating observation device, and can improve the calibration accuracy compared with using a static target as a reference or using a mechanical mechanism for calibration. Further, the installation accuracy of the rotating observation device is improved, thereby ensuring the flight safety of the aircraft.
  • FIG. 10 is a schematic block diagram of an aircraft provided by an embodiment of the present application. As shown in FIG. 10 , the aircraft 100 also includes at least one or more processors 201 and a memory 202 .
  • the processor 201 may be, for example, a micro-controller unit (Micro-controller Unit, MCU), a central processing unit (Central Processing Unit, CPU), or a digital signal processor (Digital Signal Procesor, DSP) or the like.
  • MCU Micro-controller Unit
  • CPU Central Processing Unit
  • DSP Digital Signal Procesor
  • the memory 202 may be a Flash chip, a read-only memory (ROM, Read-Only Memory) magnetic disk, an optical disk, a U disk, or a removable hard disk, and the like.
  • ROM Read-Only Memory
  • the memory 202 is used for storing a computer program; the processor 201 is used for executing the computer program, and when executing the computer program, executes the installation and calibration method of the rotation observation device as described in any one of the above.
  • the processor is configured to execute the computer program and implement the following steps when executing the computer program:
  • Doppler information corresponding to the blade of the aircraft Based on the rotating observation device, obtain Doppler information corresponding to the blade of the aircraft; determine the observation position of the blade according to the Doppler information; obtain the theoretical position of the blade, according to the observation The position and the theoretical position determine the installation error of the rotating observation device.
  • each blade of the aircraft corresponds to multiple sets of Doppler information, and each set of the Doppler information includes position information and velocity information.
  • the rotating observation device includes at least one of a rotating radar device and a rotating ultrasonic device.
  • the acquiring Doppler information corresponding to the blades of the aircraft based on the rotation observation device includes:
  • observation data obtained when the rotating observation device measures surrounding targets; and extracting Doppler information corresponding to the blades of the aircraft from the observation data.
  • the extracting Doppler information corresponding to the blades of the aircraft from the observation data includes:
  • the observation information of the surrounding target is extracted from the observation data, and the observation information includes at least distance information, angle information and speed information; according to the distance information and speed information, the distance information of the aircraft is determined from the surrounding targets. a blade; and determining the Doppler information of the blade according to the distance information and angle information in the observation information corresponding to the blade.
  • the extracting observation information of the surrounding target from the observation data includes:
  • Signal processing is performed on the observation data to obtain observation information of the surrounding target, wherein the signal processing at least includes constant false alarm detection processing.
  • the determining the blades of the aircraft from the surrounding targets according to the distance information and the speed information includes:
  • the stationary objects among the surrounding objects are filtered; and according to the distance information, moving objects whose distance is greater than the position of the blades are filtered out to obtain the blades of the aircraft.
  • the observation information includes energy information; the processor is further configured to:
  • the interference target is filtered out according to the energy information, wherein the energy of the interference target is smaller than the energy of the blade of the aircraft.
  • determining the Doppler information of the blade according to the distance information and angle information in the observation information corresponding to the blade includes:
  • the theoretical position of the blade includes a theoretical installation angle; and the determining the installation error of the rotating observation device according to the observation position and the theoretical position includes:
  • the distance and angle information includes first angle information and second angle information
  • the first angle information is an angle of the target object relative to the rotating observation device in a horizontal direction
  • the second angle information is The angle of the target relative to the rotating observation device in the vertical direction.
  • the angular installation error includes a first angular installation error and/or a second angular installation error.
  • the processor is used to implement:
  • the processor is used to implement:
  • the first angle installation error and/or the second angle installation error corresponding to each blade of the aircraft determine the error average value corresponding to the first angle installation error and/or the error corresponding to the second angle installation error Average value; the average value of errors corresponding to the installation error of the first angle and/or the average value of errors corresponding to the installation error of the second angle is taken as the installation error of the rotation observation device.
  • the determining the observation position of the blade according to the Doppler information includes:
  • the area is divided according to the installation position of the blade of the aircraft.
  • determining the position of the centroid corresponding to the blade according to the Doppler information corresponding to the blade, as the observation position includes:
  • target Doppler information is determined from the multiple sets of Doppler information, and the position information in the target Doppler information is used as the centroid position.
  • the determining the observation position of the blade according to the Doppler information includes:
  • the clustering algorithm includes at least one of a K-means clustering algorithm, a DBscan clustering algorithm, and a mean-shift clustering algorithm.
  • the clustering of multiple sets of the Doppler information according to a clustering algorithm to determine the observation position of the blade includes:
  • K value of K-means is determined according to the number of the aircraft blades, and the K value is equal to the number of the aircraft blades; K cluster center points are determined from multiple sets of Doppler information according to the K value, The multiple sets of Doppler information are clustered to determine the observation position of the blade.
  • the embodiments of the present application further provide a computer-readable storage medium, where the computer-readable storage medium stores a computer program, the computer program includes program instructions, and the processor executes the program instructions to implement the above implementation The steps of any one of the installation and calibration methods of the rotary observation device provided in the example.
  • the computer-readable storage medium may be an internal storage unit of the aircraft described in any of the foregoing embodiments, such as a memory or internal memory of the aircraft.
  • the computer-readable storage medium may also be an external storage device of the aircraft, such as a plug-in hard disk, a smart memory card (Smart Media Card, SMC), a secure digital (Secure Digital, SD) card equipped on the aircraft , Flash Card (Flash Card) and so on.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

一种旋转观测装置的安装校准方法、飞行器及存储介质,该方法包括:基于所述旋转观测装置,获取所述飞行器的桨叶对应的多普勒信息(S101);根据所述多普勒信息确定所述桨叶的观测位置(S102);获取所述桨叶的理论位置,根据所述观测位置和理论位置确定所述旋转观测装置的安装误差(S103)。

Description

旋转观测装置的安装校准方法、飞行器及存储介质 技术领域
本申请涉及飞行器技术领域,尤其涉及一种旋转观测装置的安装校准方法、飞行器以及存储介质。
背景技术
目前,在旋转观测装置安装在飞行器上时,具体比如旋转雷达装置和旋转超声波装置的安装过程中,一般需要对旋转观测装置的安装进行误差校准,误差校准主要是依据水平仪等测量仪器的结果,对旋转观测装置的安装位置进行校准。但是,水平仪等测量仪器容易引入人工误差,同时不能避免在校准后由于外力等因素造成了安装偏差,进而降低了安装精度。
发明内容
本申请提实施例供了一种旋转观测装置的安装校准方法、飞行器及存储介质,旨在提高旋转观测装置的安装精度。
第一方面,本申请实施例提供了一种旋转观测装置的安装校准方法,所述旋转观测装置安装在飞行器上,所述安装校准方法包括:
基于所述旋转观测装置,获取所述飞行器的桨叶对应的多普勒信息;
根据所述多普勒信息确定所述桨叶的观测位置;
获取所述桨叶的理论位置,根据所述观测位置和理论位置确定所述旋转观测装置的安装误差。
第二方面,本申请实施例还提供了一种飞行器,所述飞行器包括:
机架;
旋转观测装置,所述旋转观测装置安装在所述机架上,能够相对所述机架旋转以测量所述旋转观测装置的周围目标;
处理器和存储器;
其中,所述存储器用于存储计算机程序;所述处理器,用于执行所述计算机程序并在执行所述计算机程序时,实现如下步骤:
基于所述旋转观测装置,获取所述飞行器的桨叶对应的多普勒信息;
根据所述多普勒信息确定所述桨叶的观测位置;
获取所述桨叶的理论位置,根据所述观测位置和理论位置确定所述旋转观测装置的安装误差。
第三方面,本申请实施例还提供了一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时使所述处理器实现如本申请实施例提供的任一项所述的安装校准方法的步骤。
本申请实施例公开的旋转观测装置的安装校准方法、飞行器及存储介质,可以通过桨叶对应的多普勒信息校准旋转观测装置的安装误差,由此可以提高旋转观测装置的安装精度。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本申请。
附图说明
为了更清楚地说明本申请实施例技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例提供的一种飞行器的结构示意图;
图2是本申请实施例提供的一种旋转观测装置的结构示意图;
图3是本申请实施例提供的一种旋转观测装置的安装校准方法的步骤示意流程图;
图4是本申请实施例提供的雷达坐标系的示意图;
图5是本申请实施例提供的飞行器和旋转观测装置对应的坐标系的示意图;
图6是本申请实施例提供的旋转观测装置观测到目标的效果示意图;
图7是本申请实施例提供的一种确定桨叶的观测位置的步骤示意流程图;
图8是本申请实施例提供的飞行器桨叶对应区域划分的效果示意图;
图9是本申请实施例提供的另一种确定桨叶的观测位置的步骤示意流程图;
图10是本申请实施例提供的一种飞行器的示意框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
还应当理解,在此本申请说明书中所使用的术语仅仅是出于描述特定实施例的目的而并不意在限制本申请。如在本申请说明书和所附权利要求书中所使用的那样,除非上下文清楚地指明其它情况,否则单数形式的“一”、“一个”及“该”意在包括复数形式。
还应当进一步理解,在本申请说明书和所附权利要求书中使用的术语“和/或”是指相关联列出的项中的一个或多个的任何组合以及所有可能组合,并且包括这些组合。
附图中所示的流程图仅是示例说明,不是必须包括所有的内容和操作/步骤,也不是必须按所描述的顺序执行。例如,有的操作/步骤还可以分解、组合或部分合并,因此实际执行的顺序有可能根据实际情况改变。
旋转观测装置,比如旋转雷达装置或旋转超声波装置,可以安装在飞行器上,在飞行器的飞行过程中,用于测量飞行器的周围目标,比如障碍物等,以确保飞行的安全性。
但是,在旋转观测装置的安装过程中可能会存在安装误差,比如旋转雷达装置在安装过程中存在安装误差,同时在使用过程中由于长时间的工作,会出现安装位置变化等现象,进而影响测量的准确度。然而,现有的安装校准方法主要是通过机械机构或者周围静止的物体进行手动校准,校准精度不够,因此消除安装误差。
为此,本申请的实施例提供了一种旋转观测装置的安装校准方法、飞行器及存储介质,该旋转观测装置安装在飞行器上,根据飞行器的桨叶对应的多普勒信息,完成对旋转观测装置的校准,以提高旋转观测装置的安装精度。
下面结合附图,对本申请的一些实施方式作详细说明。在不冲突的情况下,下述的实施例及实施例中的特征可以相互组合。
请参阅图1,图1示出了本申请实施例提供的一种飞行器100的结构,如图1所示,飞行器100可以包括动力系统、控制系统、机架10和旋转观测装置20。
其中,机架可以包括机身和脚架(也称为起落架)。机身可以包括中心架以及与中心架连接的一个或多个机臂,一个或多个机臂呈辐射状从中心架延伸出。脚架与机身连接,用于在飞行器100着陆时起支撑作用。
动力系统可以包括一个或多个电子调速器(简称为电调)、一个或多个螺旋桨以及与一个或多个螺旋桨相对应的一个或多个电机,其中电机连接在电子调速器与螺旋桨之间,电机和螺旋桨设置在飞行器100的机臂上;电子调速器用于接收控制系统产生的驱动信号,并根据驱动信号提供驱动电流给电机,以控制电机的转速。
电机用于驱动螺旋桨旋转,从而为飞行器100的飞行提供动力,该动力使得飞行器100能够实现一个或多个自由度的运动。在某些实施例中,飞行器100可以围绕一个或多个旋转轴旋转。例如,上述旋转轴可以包括横滚轴、偏航轴和俯仰轴。应理解,电机可以是直流电机,也可以是永磁同步电机。或者,电机可以是无刷电机,也可以是有刷电机。
控制系统可以包括控制器和传感系统。控制器用于控制飞行器100的飞行,例如,可以根据传感系统测量的姿态信息控制飞行器100的飞行。应理解,控制器可以按照预先编好的程序指令对飞行器100进行控制。传感系统用于测量飞行器100的姿态信息,即飞行器100在空间的位置信息和状态信息,例如,三维位置、三维角度、三维速度、三维加速度和三维角速度等。传感系统例如可以包括陀螺仪、超声传感器、电子罗盘、惯性测量单元(Inertial Measurement Unit,IMU)、视觉传感器、全球导航卫星系统和气压计等传感器中的至少一种。例如,全球导航卫星系统可以是全球定位系统(Global Positioning System,GPS)。
如图1所示,飞行器100的脚架上搭载有旋转观测装置20,该旋转观测装置20与控制系统通信连接,旋转观测装置20将采集到的观测数据传输至控制系统,由控制系统进行处理。
需要说明的是,飞行器100可以包括两个或两个以上脚架,旋转观测装置 20搭载在其中一个脚架上。旋转观测装置20也可以搭载在飞行器100的其他位置,对此不作具体限定。
请参阅图2所示,旋转观测装置20安装在飞行器100上,可能在水平方向和/或竖直方向上均存在安装误差,其中竖直方向为旋转观测装置20旋转轴对应的方向,具体可以理解为旋转观测装置20的旋转轴与该竖直方向平行,相对地,水平方向与旋转观测装置20的旋转轴垂直。
以下将以旋转观测装置为旋转雷达装置为例进行介绍,旋转雷达装置主要包括射频前端模块和信号处理模块,射频前端模块可以包括发射天线和接收天线,发射天线用于向周围目标发送信号,接收天线用于接收被周围目标反射回来的信号,信号处理模块负责产生调制信号以及对采集的中频信号进行处理分析。
飞行器100包括无人机,该无人机包括旋翼型无人机,例如四旋翼无人机、六旋翼无人机、八旋翼无人机,也可以是固定翼无人机,还可以是旋翼型与固定翼无人机的组合,在此不作限定。
应理解,上述对于飞行器100各组成部分的命名仅是出于标识的目的,并不应理解为对本说明书的实施例的限制。
请参阅图3,图3是本申请实施例提供的一种旋转观测装置的安装校准方法的步骤示意流程图,该安装校准方法可以应用于飞行器中,通过执行该安装校准方法,实现对安装在飞行器的旋转观测装置进行校准,以提高旋转观测装置的安装精度。
如图3所示,该安装校准方法包括步骤S101至步骤S103。
S101、基于所述旋转观测装置,获取所述飞行器的桨叶对应的多普勒信息;
S102、根据所述多普勒信息确定所述桨叶的观测位置;
S103、获取所述桨叶的理论位置,根据所述观测位置和理论位置确定所述旋转观测装置的安装误差。在一个实施方式中,所述理论位置为安装桨叶时,桨叶的预设位置。或者说,所述理论位置为安装时,工作人员期望桨叶被安装的位置。
在获取飞行器的桨叶对应的多普勒信息时,可以获取飞行器的一个或多个桨叶对应的多普勒信息。其中,该多普勒信息是由于旋转测量装置在旋转测量过程中,飞行器的桨叶仍然在转动,因此两者之间存在多普勒效应,进而会产 生多普勒信息。在本申请的实施例中,多普勒信息至少包括位置信息和速度信息,当然还可以包括其他信息,比如能量信息,具体可以为采集信号的幅值大小,在此不做限定。其中,位置信息可以为距离信息和角度信息,比如在雷达坐标系下测量的距离信息和角度信息。
示例性的,如图4所示,在图4示出的雷达坐标系中,旋转雷达装置为坐标原点O,A表示测量得到目标,距离信息为目标A到坐标原点O的距离,具体可以表示为r,角度信息为目标A在雷达坐标系下的角度,包括在水平方向的角度和竖直方向的角度,分别表示为θ和
Figure PCTCN2020124955-appb-000001
为了方便处理可以将位于雷达坐标系的位置信息
Figure PCTCN2020124955-appb-000002
转换为笛卡尔坐标系的位置信息(x,y,z),具体的转换公式如下:
Figure PCTCN2020124955-appb-000003
需要说明的是,在旋转观测装置测量周围目标时,可以测量到飞行器每个桨叶,每个桨叶均对应多组多普勒信息,每组所述多普勒信息均包括位置信息和速度信息,由此方便使用一组或多组多普勒信息。
基于旋转观测装置获取飞行器的桨叶对应的多普勒信息,具体是从旋转观测装置测量到的多个周围目标中,确定飞行器的桨叶,由此可以根据飞行器的桨叶的观测信息确定该桨叶对应的多普勒信息。
示例性的,基于旋转观测装置获取飞行器的桨叶对应的多普勒信息,具体可以获取旋转观测装置对周围目标进行测量时得到的观测数据,从观测数据中提取飞行器的桨叶对应的多普勒信息。
其中,周围目标除了包括飞行器的桨叶外,还会包括其他目标,比如树木、建筑、山体等等,因此需要从这些周围目标中确定飞行器的桨叶,并提取飞行器的桨叶对应的多普勒信息。
由于旋转观测装置安装在飞行器上为刚性连接,比如旋转雷达装置安装在飞行器的脚架上,因此飞行器的桨叶相对该旋转雷达装置的相对位置几乎不变,同时旋转雷达装置检测到桨叶的位置信息与旋转雷达装置的安装位置也是密切相关的,由此不仅可以根据该相对位置滤除其他目标,还可以根据测量到的位置信息和速度信息确定旋转雷达装置的安装误差。
示例性的,如图5所示,旋转雷达装置的安装位置由飞行器的整体结构确定,比如,旋转雷达装置位于O点,四个桨叶分别为ABCD。以O点为圆心, 建立坐标系XOY,以飞行器的机头方向为X,以机头方向的右侧为Y,则四个桨叶中心的坐标A(x A,y A),B(x B,y B),C(x C,y C)和D(x D,y D)。由此可以根据四个桨叶中心的坐标确定桨叶到旋转雷达装置的相对距离,即飞行器的桨叶到旋转雷达装置的相对位置,以便根据该相对距离滤除桨叶外的其他周围目标。
示例性的,从观测数据中提取周围目标的观测信息,该观测信息至少包括关于周围目标(即,旋转观测装置测量到的位于旋转观测装置周围的目标)的距离信息、角度信息和速度信息。根据所述距离信息和速度信息,从所述周围目标中确定所述飞行器的桨叶。也就是说,根据所述距离信息和速度信息,从所述周围目标中确定哪些目标是所述飞行器的桨叶。根据所述桨叶对应的观测信息中的距离信息和角度信息,确定所述桨叶的多普勒信息。
从所述观测数据中提取所述周围目标的观测信息,具体可以对所述观测数据进行信号处理,得到所述周围目标的观测信息,其中,所述信号处理至少包括恒虚警检测处理。恒虚警检测(Constant False-Alarm Rate,CFAR)是雷达系统在保持虚警概率恒定条件下对接收机输出的信号与噪声作判别以确定目标信号是否存在的技术,由此利用恒虚警检测可以确定旋转雷达装置检测周围目标的观测信息,其中,该观测信息中至少包括距离信息、角度信息和速度信息。
在确定周围目标的观测信息后,可以利用桨叶到旋转雷达装置固定的相对距离滤除其他周围目标,进而确定飞行器的桨叶以及桨叶对应的观测信息中的距离信息和角度信息,作为所述桨叶的多普勒信息。
在一些实施例中,为了快速地从周围目标中确定飞行器的桨叶。根据距离信息和速度信息从周围目标中确定飞行器的桨叶,具体可以先根据速度信息滤除周围目标中的静止目标;再根据距离信息,滤除距离大于桨叶位置的运动目标,进而得到飞行器的桨叶。
由于很多测量的目标相对旋转观测装置都是静止的,但是飞行器的桨叶是相对旋转观测装置是运动的,由此可以根据速度信息确定静止目标(静止目标的速度为零或者几乎为零),把静止目标滤除后,再根据距离信息确定飞行器的桨叶,由此可以快速从周围目标中确定飞行器的桨叶。
示例性的,如图6所示,图6示出了旋转观测装置测量飞行器周围的目标观测信息,飞行器周围的目标包括静止目标和运动目标,由于旋转观测装置与飞行器是刚性连接的,因此运动目标为桨叶,静止目标为飞行器上其他部件或 者是干扰目标,由此通过速度信息滤除静止目标,可以提高数据处理的精度。
在一些实施例中,观测信息包括能量信息,可以根据能量信息滤除干扰目标,因为干扰目标的能量小于飞行器的桨叶的能量,由此可以提高飞行器的桨叶的观测信息的准确度,以确保桨叶对应的多普勒信息的准确度,进而提高旋转观测装置的安装精度。
在一些实施例中,根据桨叶对应的观测信息中的距离信息和角度信息,确定桨叶的多普勒信息,具体可以将观测信息中的距离信息和角度信息,转换为笛卡尔坐标系的位置信息;将笛卡尔坐标系的位置信息和与所述距离信息、角度信息对应的速度信息进行融合,得到桨叶的多普勒信息。
示例性的,旋转雷达装置测量桨叶的观测信息的距离信息和角度信息表示为
Figure PCTCN2020124955-appb-000004
利用雷达坐标系-笛卡尔坐标系转换公式,可以将
Figure PCTCN2020124955-appb-000005
转为笛卡尔坐标系的位置信息P i(x i,y i,z i),再将该距离信息r i、角度信息
Figure PCTCN2020124955-appb-000006
对应的速度信息v i与笛卡尔坐标系的位置信息P i(x i,y i,z i)进行融合,得到桨叶的多普勒信息P i(x i,y i,z i)。
需要说明的是,可以确定飞行器的多个桨叶的多普勒信息,以及每个桨叶的多组多普勒信息,如图6所示,飞行器包括四个桨叶,每个桨叶(运动目标)会包括多组多普勒信息息P n(x n,y n,z n,v n)。
在确定飞行器的桨叶的多普勒信息后,可以根据多普勒信息确定桨叶的观测位置,该观测位置可以理解为旋转观测装置对飞行器进行测量,得到的桨叶的位置信息。具体地,可以根据每个桨叶对应的多组多普勒信息,确定每个桨叶的观测位置。
在一些实施例中,为了快速且准确地确定桨叶的观测位置,以提高旋转观测装置的安装精度。如图7所示,根据多普勒信息确定桨叶的观测位置,具体包括步骤S1021和步骤S1022。
S1021、确定所述飞行器的桨叶对应的区域;
S1022、根据所述桨叶对应的多普勒信息,确定所述桨叶对应的质心位置,作为观测位置。
其中,桨叶对应区域为根据飞行器的桨叶的安装位置进行划分的,比如如图8所示,飞行器包括四个桨叶,可以根据每个桨叶的安装位置对应划分四个区域,分别为桨叶A对应的区域1,桨叶B对应的区域2,桨叶C对应的区域 3和桨叶D对应的区域4。可以理解的是,若飞行器包括六个桨叶,则可以对应划分六个区域。
在确定飞行器的桨叶对应的区域后,可以确定位于该桨叶对应区域内的多组多普勒信息,根据桨叶对应的多普勒信息,确定位于对应区域内的桨叶对应的质心位置,作为观测位置。
其中,在确定质心位置时,具体可以根据多组多普勒信息的方差,从多组多普勒信息中确定目标多普勒信息,以及将目标多普勒信息中的位置信息作为质心位置。
比如,以桨叶A为例,其对应的多组多普勒信息为P n(x n,y n,z n,v n),n为大于1整数,比如n=10,则有10组多普勒信息,相应地,桨叶A的平均位置可以表示为E A(x,y,z,v),以及该桨叶A的每组多普勒信息的方差D A(x,y,z,v)。
其中,
Figure PCTCN2020124955-appb-000007
若桨叶A的每组多普勒信息的方差D A(x,y,z,v)小于或等于预设阈值,将该组多普勒信息位置信息作为质心位置,该预设阈值用于评价方差的大小,可根据实际应用进行设定,该预设阈值的设定确保桨叶A的多组多普勒信息有至少一组的方差满足条件即可。若有多组多普勒信息的方差小于或等于该预设阈值,则可以从满足条件的多组多普勒信息选择任一组确定质心位置。
同理,按照上述方式还可以确定桨叶B、桨叶C和桨叶D的质心位置,该质心位置即为桨叶的观测位置。
在另一些实施例中,根据多普勒信息确定桨叶的观测位置,还可以采用聚类算法对多组所述多普勒信息进行聚类,以确定桨叶的观测位置。其中,聚类算法包括K-means聚类算法、DBscan聚类算法和均值漂移聚类算法中的至少一种。
具体地,以K-means聚类算法为例进行介绍,如图9所示,采用聚类算法确定桨叶的观测位置,包括步骤S102a和步骤S102b:
S102a、根据所述飞行器桨叶的数量确定K-means的K值,所述K值等于 所述飞行器桨叶的数量;
S102b、根据所述K值从多组多普勒信息中确定K个聚类中心点,对所述多组多普勒信息进行聚类,以确定所述桨叶的观测位置。
比如,飞行器桨叶的数量为4个,则K-means的K值等于4,将确定的飞行器所有桨叶的多组多普勒信息P n(x n,y n,z n,v n)作为聚类样本,并在从多组多普勒信息P n(x n,y n,z n,v n)随机抽选K个作为K-means的聚类中心点μ k,其中,聚类中心表示为C={C 1,C 2,...C k},在计算每组P n(x n,y n,z n,v n)与聚类中心的距离,将聚类样本中的多普勒信息按照最小距离分配到最近的聚类中心,得到K个聚类族,再重新计算每个聚类族的聚类中心点,具体可以将聚类族的均值作为聚类中心点,重新对聚类样本进行聚类,直至K个聚类族的聚类中心点不再改变为止,聚类结束。
在聚类结束后,得到K个聚类族,可以将K个聚类族的中心点对应为位置信息作为桨叶的观测位置。
在一些实施例中,为了得到更为准确的观测位置,在聚类结束后,可以计算K个聚类族的每个多普勒信息的方差,以根据方差从每个聚类族中的多组多普勒信息中确定目标多普勒信息,以及将所述目标多普勒信息中的位置信息作为质心位置,进而得到每个桨叶的观测位置。
在确定飞行器的桨叶的观测位置后,需要获取桨叶的理论位置,再根据观测位置和理论位置确定所述旋转观测装置的安装误差。
在本申请的实施例中,桨叶的理论位置包括理论的安装角度,因此根据观测位置和理论位置确定所述旋转观测装置的安装误差,可以将位于笛卡尔坐标系的观测位置转换为极坐标系的距离角度信息;根据所述理论的安装角度和所述距离角度信息中的角度,确定所述桨叶的角度安装误差。
在一些实施例中,极坐标系下的距离角度信息包括第一角度信息和第二角度信息,第一角度信息为目标物相对旋转观测装置在水平方向的角度,第二角度信息为目标物相对旋转观测装置在竖直方向的角度。相应地,所述角度安装误差包括第一角度安装误差和/或第二角度安装误差。
因此在确定所述桨叶的角度安装误差时,可以确定所述飞行器每个桨叶对应的第一角度安装误差和/或第二角度安装误差。可以选择其中一个安装角度误差对旋转观测装置进行校准,当然优选地是采用第一角度安装误差和第二角度 安装误差对旋转观测装置进行校准。
在一些实施例中,为了提高旋转观测装置的安装精度,根据所述飞行器每个桨叶对应的第一角度安装误差和/或第二角度安装误差,确定所述第一角度安装误差对应的误差平均值和/或所述第二角度安装误差对应的误差平均值;将所述第一角度安装误差对应的误差平均值和/或所述第二角度安装误差对应的误差平均值作为所述旋转观测装置的安装误差,对旋转观测装置进行校准。
示例性的,比如桨叶A的观测位置E(x A,y B,z C),可以将位于笛卡尔坐标系的观测位置E(x A,y B,z C)转换为极坐标,具体可以根据雷达坐标系-笛卡尔坐标系的转换公式的逆过程,在此不做详细介绍,转换到雷达坐标系
Figure PCTCN2020124955-appb-000008
若获取桨叶的理论位置为θ' A
Figure PCTCN2020124955-appb-000009
则旋转雷达装置相对桨叶A的安装误差为Δθ A
Figure PCTCN2020124955-appb-000010
其中Δθ A=θ' AA
Figure PCTCN2020124955-appb-000011
其中Δθ A为旋转观测装置相对桨叶A第一角度安装误差,
Figure PCTCN2020124955-appb-000012
为旋转观测装置相对桨叶A第二角度安装误差。同理可以确定旋转雷达装置相对桨叶B、桨叶C和桨叶D的两个角度安装误差,分别表示为Δθ B
Figure PCTCN2020124955-appb-000013
Δθ C
Figure PCTCN2020124955-appb-000014
Δθ D
Figure PCTCN2020124955-appb-000015
示例性的,第一角度安装误差对应的误差平均值为四个桨叶的第一安装角度误差的平均值,可以表示为
Figure PCTCN2020124955-appb-000016
第二角度安装误差对应的误差平均值为四个桨叶的第二安装角度误差的平均值,可以表示为
Figure PCTCN2020124955-appb-000017
其中M等于4。
在确定旋转观测装置的安装误差之后,可以将该安装误差发送给飞行器的控制终端,比如手机,在手机上显示该安装误差,以提示用户根据该安装误差对旋转观测装置进行校准。
需要说明的是,上述旋转观测装置的安装校准方法,是在飞行器的桨叶转动的情况下完成的,当不限定飞行器的运行状态,比如飞行器的运行状态可以是飞行状态、悬停状态等等。
本申请实施例提供的旋转观测装置的安装校准方法,可以利用桨叶的多普勒信息实现对旋转观测装置的安装校准,相对采用静止目标作为参照或者使用机械机构进行校准,可以提高校准精度,进而提高了旋转观测装置的安装精度, 由此可以确保飞行器的飞行安全性。
请参阅图10,图10是本申请实施例提供的一种飞行器的示意性框图。如图10所示,该飞行器100还至少包括一个或多个处理器201和存储器202。
处理器201例如可以是微控制单元(Micro-controller Unit,MCU)、中央处理单元(Central Processing Unit,CPU)或数字信号处理器(Digital Signal Procesor,DSP)等。
存储器202可以是Flash芯片、只读存储器(ROM,Read-Only Memory)磁盘、光盘、U盘或移动硬盘等。
其中,存储器202用于存储计算机程序;处理器201用于执行所述计算机程序并在执行所述计算机程序时,执行如上任一项所述的旋转观测装置的安装校准方法。
示例性的,所述处理器,用于执行所述计算机程序并在执行所述计算机程序时,实现如下步骤:
基于所述旋转观测装置,获取所述飞行器的桨叶对应的多普勒信息;根据所述多普勒信息确定所述桨叶的观测位置;获取所述桨叶的理论位置,根据所述观测位置和理论位置确定所述旋转观测装置的安装误差。
在一些实施例中,所述飞行器每个桨叶对应多组多普勒信息,每组所述多普勒信息包括位置信息和速度信息。
在一些实施例中,所述旋转观测装置包括旋转雷达装置和旋转超声波装置中的至少一种。
在一些实施例中,所述基于所述旋转观测装置,获取所述飞行器的桨叶对应的多普勒信息,包括:
获取所述旋转观测装置对周围目标进行测量时得到的观测数据;从所述观测数据中,提取所述飞行器的桨叶对应的多普勒信息。
在一些实施例中,所述从所述观测数据中,提取所述飞行器的桨叶对应的多普勒信息,包括:
从所述观测数据中提取所述周围目标的观测信息,所述观测信息至少包括距离信息、角度信息和速度信息;根据所述距离信息和速度信息,从所述周围目标中确定所述飞行器的桨叶;以及根据所述桨叶对应的观测信息中的距离信息和角度信息,确定所述桨叶的多普勒信息。
在一些实施例中,所述从所述观测数据中提取所述周围目标的观测信息,包括:
对所述观测数据进行信号处理,得到所述周围目标的观测信息,其中,所述信号处理至少包括恒虚警检测处理。
在一些实施例中,所述根据所述距离信息和速度信息,从所述周围目标中确定所述飞行器的桨叶,包括:
根据所述速度信息滤除所述周围目标中的静止目标;以及根据所述距离信息,再滤除距离大于桨叶位置的运动目标,得到确定所述飞行器的桨叶。
在一些实施例中,所述观测信息包括能量信息;所述处理器还用于实现:
根据所述能量信息滤除干扰目标,其中,所述干扰目标的能量小于所述飞行器的桨叶的能量。
在一些实施例中,所述根据所述桨叶对应的观测信息中的距离信息和角度信息,确定所述桨叶的多普勒信息,包括:
将所述观测信息中的距离信息和角度信息,转换为笛卡尔坐标系的位置信息;将所述位置信息和与所述距离信息、角度信息对应的速度信息进行融合,得到所述桨叶的多普勒信息。
在一些实施例中,所述桨叶的理论位置包括理论的安装角度;所述根据所述观测位置和理论位置确定所述旋转观测装置的安装误差,包括:
将位于笛卡尔坐标系的观测位置转换为极坐标系的距离角度信息;根据所述理论的安装角度和所述距离角度信息中的角度,确定所述桨叶的角度安装误差。
在一些实施例中,所述距离角度信息包括第一角度信息和第二角度信息,所述第一角度信息为目标物相对所述旋转观测装置在水平方向的角度,所述第二角度信息为目标物相对所述旋转观测装置在竖直方向的角度。
在一些实施例中,所述角度安装误差包括第一角度安装误差和/或第二角度安装误差。
在一些实施例中,所述处理器用于实现:
确定所述飞行器每个桨叶对应的第一角度安装误差和/或第二角度安装误差。
在一些实施例中,所述处理器用于实现:
根据所述飞行器每个桨叶对应的第一角度安装误差和/或第二角度安装误差,确定所述第一角度安装误差对应的误差平均值和/或所述第二角度安装误差对应的误差平均值;将所述第一角度安装误差对应的误差平均值和/或所述第二角度安装误差对应的误差平均值作为所述旋转观测装置的安装误差。
在一些实施例中,所述根据所述多普勒信息确定所述桨叶的观测位置,包括:
确定所述飞行器的桨叶对应的区域;根据所述桨叶对应的多普勒信息,确定所述桨叶对应的质心位置,作为观测位置。
在一些实施例中,所述区域为根据所述飞行器的桨叶的安装位置进行划分的。
在一些实施例中,所述根据所述桨叶对应的多普勒信息,确定所述桨叶对应的质心位置,作为观测位置,包括:
根据多组多普勒信息的方差,从所述多组多普勒信息中确定目标多普勒信息,以及将所述目标多普勒信息中的位置信息作为质心位置。
在一些实施例中,所述根据所述多普勒信息确定所述桨叶的观测位置,包括:
根据聚类算法对多组所述多普勒信息进行聚类,以确定所述桨叶的观测位置。
在一些实施例中,所述聚类算法包括K-means聚类算法、DBscan聚类算法和均值漂移聚类算法中的至少一种。
在一些实施例中,所述根据聚类算法对多组所述多普勒信息进行聚类,以确定所述桨叶的观测位置,包括:
根据所述飞行器桨叶的数量确定K-means的K值,所述K值等于所述飞行器桨叶的数量;根据所述K值从多组多普勒信息中确定K个聚类中心点,对所述多组多普勒信息进行聚类,以确定所述桨叶的观测位置。
本申请的实施例中还提供一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序中包括程序指令,所述处理器执行所述程序指令,实现上述实施例提供的任一种所述的旋转观测装置的安装校准方法的步骤。
其中,所述计算机可读存储介质可以是前述任一实施例所述的飞行器的内 部存储单元,例如所述飞行器的存储器或内存。所述计算机可读存储介质也可以是所述飞行器的外部存储设备,例如所述飞行器上配备的插接式硬盘,智能存储卡(Smart Media Card,SMC),安全数字(Secure Digital,SD)卡,闪存卡(Flash Card)等。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (41)

  1. 一种旋转观测装置的安装校准方法,其特征在于,所述旋转观测装置安装在飞行器上,所述安装校准方法包括:
    基于所述旋转观测装置,获取所述飞行器的桨叶对应的多普勒信息;
    根据所述多普勒信息确定所述桨叶的观测位置;
    获取所述桨叶的理论位置,根据所述观测位置和理论位置确定所述旋转观测装置的安装误差。
  2. 根据权利要求1所述的方法,其特征在于,所述飞行器每个桨叶对应多组多普勒信息,每组所述多普勒信息包括位置信息和速度信息。
  3. 根据权利要求1所述的方法,其特征在于,所述旋转观测装置包括旋转雷达装置和旋转超声波装置中的至少一种。
  4. 根据权利要求1所述的方法,其特征在于,所述基于所述旋转观测装置,获取所述飞行器的桨叶对应的多普勒信息,包括:
    获取所述旋转观测装置对周围目标进行测量时得到的观测数据;
    从所述观测数据中,提取所述飞行器的桨叶对应的多普勒信息。
  5. 根据权利要求4所述的方法,其特征在于,所述从所述观测数据中,提取所述飞行器的桨叶对应的多普勒信息,包括:
    从所述观测数据中提取所述周围目标的观测信息,所述观测信息至少包括距离信息、角度信息和速度信息;
    根据所述距离信息和速度信息,从所述周围目标中确定所述飞行器的桨叶;以及
    根据所述桨叶对应的观测信息中的距离信息和角度信息,确定所述桨叶的多普勒信息。
  6. 根据权利要求5所述的方法,其特征在于,所述从所述观测数据中提取所述周围目标的观测信息,包括:
    对所述观测数据进行信号处理,得到所述周围目标的观测信息,其中,所述信号处理至少包括恒虚警检测处理。
  7. 根据权利要求5所述的方法,其特征在于,所述根据所述距离信息和速度信息,从所述周围目标中确定所述飞行器的桨叶,包括:
    根据所述速度信息滤除所述周围目标中的静止目标;以及
    根据所述距离信息,再滤除距离大于桨叶位置的运动目标,得到确定所述飞行器的桨叶。
  8. 根据权利要求5所述的方法,其特征在于,所述观测信息包括能量信息;所述方法还包括:
    根据所述能量信息滤除干扰目标,其中,所述干扰目标的能量小于所述飞行器的桨叶的能量。
  9. 根据权利要求5所述的方法,其特征在于,所述根据所述桨叶对应的观测信息中的距离信息和角度信息,确定所述桨叶的多普勒信息,包括:
    将所述观测信息中的距离信息和角度信息,转换为笛卡尔坐标系的位置信息;
    将所述位置信息和与所述距离信息、角度信息对应的速度信息进行融合,得到所述桨叶的多普勒信息。
  10. 根据权利要求9所述的方法,其特征在于,所述桨叶的理论位置包括理论的安装角度;所述根据所述观测位置和理论位置确定所述旋转观测装置的安装误差,包括:
    将位于笛卡尔坐标系的观测位置转换为极坐标系的距离角度信息;
    根据所述理论的安装角度和所述距离角度信息中的角度,确定所述桨叶的角度安装误差。
  11. 根据权利要求9所述的方法,其特征在于,所述距离角度信息包括第一角度信息和第二角度信息,所述第一角度信息为目标物相对所述旋转观测装置在水平方向的角度,所述第二角度信息为目标物相对所述旋转观测装置在竖直方向的角度。
  12. 根据权利要求10所述的方法,其特征在于,所述角度安装误差包括第一角度安装误差和/或第二角度安装误差。
  13. 根据权利要求10所述的方法,其特征在于,所述方法包括:
    确定所述飞行器每个桨叶对应的第一角度安装误差和/或第二角度安装误差。
  14. 根据权利要求11所述的方法,其特征在于,所述方法包括:
    根据所述飞行器每个桨叶对应的第一角度安装误差和/或第二角度安装误差,确定所述第一角度安装误差对应的误差平均值和/或所述第二角度安装误差对应的误差平均值;
    将所述第一角度安装误差对应的误差平均值和/或所述第二角度安装误差对应的误差平均值作为所述旋转观测装置的安装误差。
  15. 根据权利要求1至14任一项所述的方法,其特征在于,所述根据所述多普勒信息确定所述桨叶的观测位置,包括:
    确定所述飞行器的桨叶对应的区域;
    根据所述桨叶对应的多普勒信息,确定所述桨叶对应的质心位置,作为观测位置。
  16. 根据权利要求15所述的方法,其特征在于,所述区域为根据所述飞行器的桨叶的安装位置进行划分的。
  17. 根据权利要求15所述的方法,其特征在于,所述根据所述桨叶对应的多普勒信息,确定所述桨叶对应的质心位置,作为观测位置,包括:
    根据多组多普勒信息的方差,从所述多组多普勒信息中确定目标多普勒信息,以及将所述目标多普勒信息中的位置信息作为质心位置。
  18. 根据权利要求1至14任一项所述的方法,其特征在于,所述根据所述多普勒信息确定所述桨叶的观测位置,包括:
    根据聚类算法对多组所述多普勒信息进行聚类,以确定所述桨叶的观测位置。
  19. 根据权利要求18所述的方法,其特征在于,所述聚类算法包括K-means聚类算法、DBscan聚类算法和均值漂移聚类算法中的至少一种。
  20. 根据权利要求18所述的方法,其特征在于,所述根据聚类算法对多组所述多普勒信息进行聚类,以确定所述桨叶的观测位置,包括:
    根据所述飞行器桨叶的数量确定K-means的K值,所述K值等于所述飞行器桨叶的数量;
    根据所述K值从多组多普勒信息中确定K个聚类中心点,对所述多组多普勒信息进行聚类,以确定所述桨叶的观测位置。
  21. 一种飞行器,其特征在于,所述飞行器包括:
    机架;
    旋转观测装置,所述旋转观测装置安装在所述机架上,能够相对所述机架旋转以测量所述旋转观测装置的周围目标;
    处理器和存储器;
    其中,所述存储器用于存储计算机程序;所述处理器,用于执行所述计算机程序并在执行所述计算机程序时,实现如下步骤:
    基于所述旋转观测装置,获取所述飞行器的桨叶对应的多普勒信息;
    根据所述多普勒信息确定所述桨叶的观测位置;
    获取所述桨叶的理论位置,根据所述观测位置和理论位置确定所述旋转观测装置的安装误差。
  22. 根据权利要求21所述的飞行器,其特征在于,所述飞行器每个桨叶对应多组多普勒信息,每组所述多普勒信息包括位置信息和速度信息。
  23. 根据权利要求21所述的飞行器,其特征在于,所述旋转观测装置包括旋转雷达装置和旋转超声波装置中的至少一种。
  24. 根据权利要求21所述的飞行器,其特征在于,所述基于所述旋转观测装置,获取所述飞行器的桨叶对应的多普勒信息,包括:
    获取所述旋转观测装置对周围目标进行测量时得到的观测数据;
    从所述观测数据中,提取所述飞行器的桨叶对应的多普勒信息。
  25. 根据权利要求24所述的飞行器,其特征在于,所述从所述观测数据中,提取所述飞行器的桨叶对应的多普勒信息,包括:
    从所述观测数据中提取所述周围目标的观测信息,所述观测信息至少包括距离信息、角度信息和速度信息;
    根据所述距离信息和速度信息,从所述周围目标中确定所述飞行器的桨叶;以及
    根据所述桨叶对应的观测信息中的距离信息和角度信息,确定所述桨叶的多普勒信息。
  26. 根据权利要求25所述的飞行器,其特征在于,所述从所述观测数据中提取所述周围目标的观测信息,包括:
    对所述观测数据进行信号处理,得到所述周围目标的观测信息,其中,所述信号处理至少包括恒虚警检测处理。
  27. 根据权利要求25所述的飞行器,其特征在于,所述根据所述距离信息和速度信息,从所述周围目标中确定所述飞行器的桨叶,包括:
    根据所述速度信息滤除所述周围目标中的静止目标;以及
    根据所述距离信息,再滤除距离大于桨叶位置的运动目标,得到确定所述飞行器的桨叶。
  28. 根据权利要求25所述的飞行器,其特征在于,所述观测信息包括能量信息;所述处理器用于实现:
    根据所述能量信息滤除干扰目标,其中,所述干扰目标的能量小于所述飞行器的桨叶的能量。
  29. 根据权利要求25所述的飞行器,其特征在于,所述根据所述桨叶对应的观测信息中的距离信息和角度信息,确定所述桨叶的多普勒信息,包括:
    将所述观测信息中的距离信息和角度信息,转换为笛卡尔坐标系的位置信息;
    将所述位置信息和与所述距离信息、角度信息对应的速度信息进行融合,得到所述桨叶的多普勒信息。
  30. 根据权利要求29所述的飞行器,其特征在于,所述桨叶的理论位置包括理论的安装角度;所述根据所述观测位置和理论位置确定所述旋转观测装置的安装误差,包括:
    将位于笛卡尔坐标系的观测位置转换为极坐标系的距离角度信息;
    根据所述理论的安装角度和所述距离角度信息中的角度,确定所述桨叶的角度安装误差。
  31. 根据权利要求29所述的飞行器,其特征在于,所述距离角度信息包括第一角度信息和第二角度信息,所述第一角度信息为目标物相对所述旋转观测装置在水平方向的角度,所述第二角度信息为目标物相对所述旋转观测装置在竖直方向的角度。
  32. 根据权利要求30所述的飞行器,其特征在于,所述角度安装误差包括第一角度安装误差和/或第二角度安装误差。
  33. 根据权利要求30所述的飞行器,其特征在于,所述处理器用于实现:
    确定所述飞行器每个桨叶对应的第一角度安装误差和/或第二角度安装误差。
  34. 根据权利要求31所述的飞行器,其特征在于,所述处理器用于实现:
    根据所述飞行器每个桨叶对应的第一角度安装误差和/或第二角度安装误差,确定所述第一角度安装误差对应的误差平均值和/或所述第二角度安装误差对应的误差平均值;
    将所述第一角度安装误差对应的误差平均值和/或所述第二角度安装误差对应的误差平均值作为所述旋转观测装置的安装误差。
  35. 根据权利要求21至34任一项所述的飞行器,其特征在于,所述根据所述多普勒信息确定所述桨叶的观测位置,包括:
    确定所述飞行器的桨叶对应的区域;
    根据所述桨叶对应的多普勒信息,确定所述桨叶对应的质心位置,作为观测位置。
  36. 根据权利要求35所述的飞行器,其特征在于,所述区域为根据所述飞行器的桨叶的安装位置进行划分的。
  37. 根据权利要求35所述的飞行器,其特征在于,所述根据所述桨叶对应的多普勒信息,确定所述桨叶对应的质心位置,作为观测位置,包括:
    根据多组多普勒信息的方差,从所述多组多普勒信息中确定目标多普勒信息,以及将所述目标多普勒信息中的位置信息作为质心位置。
  38. 根据权利要求21至34任一项所述的飞行器,其特征在于,所述根据所述多普勒信息确定所述桨叶的观测位置,包括:
    根据聚类算法对多组所述多普勒信息进行聚类,以确定所述桨叶的观测位置。
  39. 根据权利要求38所述的飞行器,其特征在于,所述聚类算法包括K-means聚类算法、DBscan聚类算法和均值漂移聚类算法中的至少一种。
  40. 根据权利要求38所述的飞行器,其特征在于,所述根据聚类算法对多组所述多普勒信息进行聚类,以确定所述桨叶的观测位置,包括:
    根据所述飞行器桨叶的数量确定K-means的K值,所述K值等于所述飞行器桨叶的数量;
    根据所述K值从多组多普勒信息中确定K个聚类中心点,对所述多组多普勒信息进行聚类,以确定所述桨叶的观测位置。
  41. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存 储有计算机程序,所述计算机程序被处理器执行时使所述处理器实现如权利要求1至20任一项所述的安装校准方法的步骤。
PCT/CN2020/124955 2020-10-29 2020-10-29 旋转观测装置的安装校准方法、飞行器及存储介质 WO2022087991A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2020/124955 WO2022087991A1 (zh) 2020-10-29 2020-10-29 旋转观测装置的安装校准方法、飞行器及存储介质
CN202080075400.2A CN114698383A (zh) 2020-10-29 2020-10-29 旋转观测装置的安装校准方法、飞行器及存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/124955 WO2022087991A1 (zh) 2020-10-29 2020-10-29 旋转观测装置的安装校准方法、飞行器及存储介质

Publications (1)

Publication Number Publication Date
WO2022087991A1 true WO2022087991A1 (zh) 2022-05-05

Family

ID=81381752

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/124955 WO2022087991A1 (zh) 2020-10-29 2020-10-29 旋转观测装置的安装校准方法、飞行器及存储介质

Country Status (2)

Country Link
CN (1) CN114698383A (zh)
WO (1) WO2022087991A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020033769A1 (en) * 2000-09-20 2002-03-21 Bass Charles David System for signal emitter location using rotational doppler measurement
CN102608596A (zh) * 2012-02-29 2012-07-25 北京航空航天大学 一种用于机载惯性/多普勒雷达组合导航系统的信息融合方法
CN107607928A (zh) * 2017-08-14 2018-01-19 北京理工大学 一种旋翼激光多普勒及微多普勒复合信号仿真器
CN108181623A (zh) * 2017-11-29 2018-06-19 山东航天电子技术研究所 一种基于积累等效三点法的旋翼目标微多普勒检测方法
CN110146853A (zh) * 2019-06-03 2019-08-20 浙江大学 一种飞行器旋翼微动特征提取方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020033769A1 (en) * 2000-09-20 2002-03-21 Bass Charles David System for signal emitter location using rotational doppler measurement
CN102608596A (zh) * 2012-02-29 2012-07-25 北京航空航天大学 一种用于机载惯性/多普勒雷达组合导航系统的信息融合方法
CN107607928A (zh) * 2017-08-14 2018-01-19 北京理工大学 一种旋翼激光多普勒及微多普勒复合信号仿真器
CN108181623A (zh) * 2017-11-29 2018-06-19 山东航天电子技术研究所 一种基于积累等效三点法的旋翼目标微多普勒检测方法
CN110146853A (zh) * 2019-06-03 2019-08-20 浙江大学 一种飞行器旋翼微动特征提取方法

Also Published As

Publication number Publication date
CN114698383A (zh) 2022-07-01

Similar Documents

Publication Publication Date Title
WO2020103049A1 (zh) 旋转微波雷达的地形预测方法、装置、系统和无人机
US20200265730A1 (en) Terrain prediction method, device and system, and unmanned aerial vehicle
US20170123035A1 (en) Autonomous magnetometer calibration
WO2021087701A1 (zh) 起伏地面的地形预测方法、装置、雷达、无人机和作业控制方法
WO2021087702A1 (zh) 坡地的地形预测方法、装置、雷达、无人机和作业控制方法
WO2019000328A1 (zh) 无人机的控制方法、控制终端和无人机
CN113933818A (zh) 激光雷达外参的标定的方法、设备、存储介质及程序产品
CN107111321B (zh) 控制方法、控制装置、飞行控制系统与多旋翼无人机
CN205540290U (zh) 一种具有超声波测距装置的多旋翼无人机
WO2021081958A1 (zh) 地形检测方法、可移动平台、控制设备、系统及存储介质
CN109725649A (zh) 一种基于气压计/imu/gps多传感器融合的旋翼无人机定高算法
CN108536163A (zh) 一种单面结构环境下的动力学模型/激光雷达组合导航方法
US20210229810A1 (en) Information processing device, flight control method, and flight control system
WO2022087991A1 (zh) 旋转观测装置的安装校准方法、飞行器及存储介质
CN112154480B (zh) 可移动平台的定位方法、装置、可移动平台及存储介质
CN110388917B (zh) 飞行器单目视觉尺度估计方法和装置、飞行器导航系统及飞行器
Høglund Autonomous inspection of wind turbines and buildings using an UAV
CN110906922A (zh) 无人机位姿信息的确定方法及装置、存储介质、终端
CN110892286A (zh) 连续波雷达的地形预测方法、装置、系统和无人机
WO2021087785A1 (zh) 地形检测方法、可移动平台、控制设备、系统及存储介质
WO2022126397A1 (zh) 传感器的数据融合方法、设备及存储介质
CN110412632B (zh) 无人驾驶设备的航向的确定方法及装置、系统
WO2022094962A1 (zh) 飞行器的悬停方法、飞行器及存储介质
CN114199220A (zh) 一种无人机空中在线磁罗盘校准方法和装置
WO2020041959A1 (zh) 连续波雷达的地形预测方法、装置、系统和无人机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20959154

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20959154

Country of ref document: EP

Kind code of ref document: A1