WO2022086112A1 - Method for analyzing ultrasound data obtained by passing through multiple layers - Google Patents

Method for analyzing ultrasound data obtained by passing through multiple layers Download PDF

Info

Publication number
WO2022086112A1
WO2022086112A1 PCT/KR2021/014557 KR2021014557W WO2022086112A1 WO 2022086112 A1 WO2022086112 A1 WO 2022086112A1 KR 2021014557 W KR2021014557 W KR 2021014557W WO 2022086112 A1 WO2022086112 A1 WO 2022086112A1
Authority
WO
WIPO (PCT)
Prior art keywords
ultrasound data
identifying
layers
noise
peak
Prior art date
Application number
PCT/KR2021/014557
Other languages
French (fr)
Korean (ko)
Inventor
박대우
박동찬
Original Assignee
국립암센터
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 국립암센터 filed Critical 국립암센터
Priority to US18/044,896 priority Critical patent/US20230371921A1/en
Publication of WO2022086112A1 publication Critical patent/WO2022086112A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/52Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/5215Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data
    • A61B8/5223Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data for extracting a diagnostic or physiological parameter from medical diagnostic data
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/08Detecting organic movements or changes, e.g. tumours, cysts, swellings
    • A61B8/0833Detecting organic movements or changes, e.g. tumours, cysts, swellings involving detecting or locating foreign bodies or organic structures
    • A61B8/085Detecting organic movements or changes, e.g. tumours, cysts, swellings involving detecting or locating foreign bodies or organic structures for locating body or organic structures, e.g. tumours, calculi, blood vessels, nodules
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/08Detecting organic movements or changes, e.g. tumours, cysts, swellings
    • A61B8/0858Detecting organic movements or changes, e.g. tumours, cysts, swellings involving measuring tissue layers, e.g. skin, interfaces
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/08Detecting organic movements or changes, e.g. tumours, cysts, swellings
    • A61B8/0875Detecting organic movements or changes, e.g. tumours, cysts, swellings for diagnosis of bone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/52Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/5207Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of raw data to produce diagnostic data, e.g. for generating an image
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/52Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/5269Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving detection or reduction of artifacts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/58Testing, adjusting or calibrating the diagnostic device
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/58Testing, adjusting or calibrating the diagnostic device
    • A61B8/587Calibration phantoms

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biomedical Technology (AREA)
  • Veterinary Medicine (AREA)
  • Medical Informatics (AREA)
  • Physics & Mathematics (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Physiology (AREA)
  • Vascular Medicine (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Rheumatology (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

The present invention relates to a method for analyzing ultrasound data obtained by passing through multiple layers, comprising the steps of: reducing noise in the ultrasound data; identifying an interface between layers by identifying the peak of the ultrasound data after removal of the noise; and differentiating each layer by identifying an attenuation coefficient of the ultrasound data after removal of the noise.

Description

복수의 층을 통과하여 얻은 초음파 데이터를 분석하는 방법How to analyze ultrasound data obtained by passing through multiple layers
본 발명은 복수의 층을 통과하여 얻은 초음파 데이터를 분석하는 방법에 관한 것이다.The present invention relates to a method for analyzing ultrasound data obtained through a plurality of layers.
건강 상태의 조사에 있어, 신체의 조성을 정확히 파악하는 것이 중요하다. 신체 조성(구성)의 변화는 많은 질병과 관련되어 있으며, 신체 조성의 변화를 통해 질병의 발생이나 건강상태 등을 파악할 수 있다.In the investigation of health conditions, it is important to accurately grasp the composition of the body. Changes in body composition (composition) are related to many diseases, and the occurrence of diseases or health status can be identified through changes in body composition.
신체의 조성 중 근육, 지방 및 뼈의 두께를 측정하기 위해 초음파를 이용하는 방법이 있다. 초음파는 검사가 용이하며 사용하기 편리한 장점이 있다.There is a method using ultrasound to measure the thickness of muscle, fat, and bone among the composition of the body. Ultrasound has the advantage of being easy to test and convenient to use.
그런데 기존의 초음파를 이용하는 방법은 근육 내 지방 등의 다른 반사데이터에 의해 층간의 구분이 어려운 문제가 있었다.However, the existing method using ultrasound has a problem in that it is difficult to distinguish between layers due to other reflected data such as fat in the muscles.
따라서 본 발명의 목적은 복수의 층을 통과하여 얻은 초음파 데이터를 분석하는 방법을 제공하는 것이다.Accordingly, it is an object of the present invention to provide a method for analyzing ultrasound data obtained through a plurality of layers.
상기 본 발명의 목적은 복수의 층을 통과하여 얻은 초음파 데이터를 분석하는 방법에 있어서, 상기 초음파 데이터의 노이즈를 줄이는 단계; 상기 노이즈 제거 후 상기 초음파 데이터의 피크를 파악하여 층간의 계면을 파악하는 단계; 상기 노이즈 제거 후 상기 초음파 데이터의 감쇄계수를 파악하여 각 층을 식별하는 단계를 포함하는 것에 의해 달성된다.An object of the present invention is to provide a method for analyzing ultrasound data obtained by passing through a plurality of layers, the method comprising: reducing noise of the ultrasound data; identifying an interface between layers by identifying a peak of the ultrasound data after the noise is removed; It is achieved by including the step of identifying each layer by identifying an attenuation coefficient of the ultrasound data after the noise is removed.
상기 노이즈를 줄이는 단계는, 대역 내 잡음 제거 단계; 대역 외 잡음 제거 단계; 대역 통과 필터링된 상기 초음파 데이터에서 피크 위치를 보존하는 단계; 및 상기 초음파 데이터를 진폭 데이터로 변환하는 단계를 포함할 수 있다.The reducing of the noise may include: removing in-band noise; out-of-band noise cancellation step; preserving peak positions in the band pass filtered ultrasound data; and converting the ultrasound data into amplitude data.
상기 피크 위치 보존은 제로-페이즈 필터링 방법으로 수행되며, 상기 진폭 데이터 변환은 힐버트 트랜스폼으로 수행될 수 있다.The peak position preservation may be performed by a zero-phase filtering method, and the amplitude data transformation may be performed by a Hilbert transform.
상기 층간의 계면을 파악하는 단계는, 국부적 최대값을 구하는 단계를 포함하며, 상기 국부적 최대값은 MPD(minimum peak distance)와 MPP(minimum peak prominence)를 이용하여 얻을 수 있다.The step of recognizing the interface between the layers includes obtaining a local maximum value, and the local maximum value can be obtained using a minimum peak distance (MPD) and a minimum peak prominence (MPP).
상기 층간의 계면 파악 후에, 상기 계면간의 초음파 이동 속도를 이용하여 각 층의 두께를 파악하는 단계를 더 포함할 수 있다.After determining the interface between the layers, the method may further include determining the thickness of each layer by using the ultrasonic movement speed between the interfaces.
상기 복수의 층은 뼈, 근육 및 지방 중 적어도 2개를 포함할 수 있다.The plurality of layers may include at least two of bone, muscle, and fat.
상기 각 층을 식별하는 단계는, 감쇄계수를 알고 있는 팬텀로부터 얻은 초음파 데이터를 이용해 탐촉자의 회절특성을 보정하는 단계를 더 포함할 수 있다.The step of identifying each layer may further include correcting the diffraction characteristics of the transducer using ultrasound data obtained from a phantom for which the attenuation coefficient is known.
본 발명에 따르면 복수의 층을 통과하여 얻은 초음파 데이터를 분석하는 방법이 제공된다.According to the present invention, there is provided a method of analyzing ultrasound data obtained through a plurality of layers.
도 1은 본 발명의 일실시예에 따른 초음파 데이터의 분석방법을 나타낸 순서도이고,1 is a flowchart illustrating a method for analyzing ultrasound data according to an embodiment of the present invention;
도 2a 내지 도 2c는 본 발명의 실험예에서 샘플의 준비과정을 나타낸 것이고,2a to 2c show the preparation process of the sample in the experimental example of the present invention,
도 3은 본 발명의 실험예에서 초음파 데이터의 분석과정을 나타낸 것이고,Figure 3 shows the analysis process of ultrasound data in the experimental example of the present invention,
도 4a 내지 도 4e는 본 발명의 실험예에서 초음파 데이터의 단계별 분석과 MR 이미지를 나타낸 것이고,4a to 4e show step-by-step analysis of ultrasound data and MR images in an experimental example of the present invention;
도 5a 및 도 5b는 본 발명의 실험예에서 초음파 데이터의 분석으로 얻은 두께와 MR 이미지로 얻은 두께와의 상관관계를 나타내는 그래프이다. 5A and 5B are graphs showing the correlation between the thickness obtained by the analysis of ultrasound data and the thickness obtained by the MR image in the experimental example of the present invention.
이하 도면을 참조하여 본 발명을 더욱 상세히 설명한다.Hereinafter, the present invention will be described in more detail with reference to the drawings.
첨부된 도면은 본 발명의 기술적 사상을 더욱 구체적으로 설명하기 위하여 도시한 일 예에 불과하므로 본 발명의 사상이 첨부된 도면에 한정되는 것은 아니다. 첨부된 도면은 설명을 위해 각 부분의 두께나 길이 등이 과장되어 표현되어 있을 수 있다.Since the accompanying drawings are merely examples shown in order to explain the technical idea of the present invention in more detail, the spirit of the present invention is not limited to the accompanying drawings. In the accompanying drawings, the thickness or length of each part may be exaggerated for explanation.
전술한 실시예들은 본 발명을 설명하기 위한 예시로서, 본 발명이 이에 한정되는 것은 아니다. 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자라면 이로부터 다양하게 변형하여 본 발명을 실시하는 것이 가능할 것이므로, 본 발명의 기술적 보호범위는 첨부된 특허청구범위에 의해 정해져야 할 것이다.The above-described embodiments are examples for explaining the present invention, and the present invention is not limited thereto. Those of ordinary skill in the art to which the present invention pertains will be able to practice the present invention with various modifications therefrom, so the technical protection scope of the present invention should be defined by the appended claims.
이하의 설명에서는 초음파 데이터를 분석하여 동물 내지 인간의 조직, 특히 근육/지방/뼈의 식별 및 두께를 파악하는 방법을 예시해 설명하나, 본 발명은 이에 한정되지 않는다. 본 발명의 분석 방법은 다양한 복수의 층을 통과하여 얻은 초음파 데이터를 분석하는 데 사용될 수 있다.The following description exemplifies and describes a method for identifying and identifying animal or human tissue, particularly muscle/fat/bone, by analyzing ultrasound data, but the present invention is not limited thereto. The analysis method of the present invention may be used to analyze ultrasound data obtained through a plurality of various layers.
도 1을 참조하여 본 발명에 따른 초음파 데이터의 분석방법을 설명한다. 도 1은 본 발명의 일실시예에 따른 초음파 데이터의 분석방법을 나타낸 순서도이다.An ultrasound data analysis method according to the present invention will be described with reference to FIG. 1 . 1 is a flowchart illustrating a method of analyzing ultrasound data according to an embodiment of the present invention.
본 발명이 적용되는 초음파 데이터는, 예를 들어, 팔이나 다리와 같은 신체에 초음파 프로브(탐촉자)를 접촉시켜서 얻을 수 있다.Ultrasound data to which the present invention is applied may be obtained by, for example, contacting an ultrasonic probe (probe) with a body such as an arm or a leg.
먼저, 초음파 데이터의 노이즈를 감소시킨다(S110).First, noise of ultrasound data is reduced (S110).
노이즈 감소는, 이에 한정되지는 않으나, (1) 대역 내 잡음 제거 단계, (2) 대역 외 잡음 제거 단계, (3) 대역 통과 필터링된 초음파 데이터에서 피크 위치를 보존하는 단계 및 (4) 초음파 데이터를 진폭 데이터로 변환하는 단계를 포함할 수 있다. 이들 단계의 순서는 변화될 수 있다.Noise reduction includes, but is not limited to, (1) in-band noise cancellation, (2) out-of-band noise cancellation, (3) preserving peak positions in bandpass filtered ultrasound data, and (4) ultrasound data may include the step of converting to amplitude data. The order of these steps may be varied.
이들 각 단계는 공지의 방법을 이용하여 수행될 수 있으며, 예를 들어, 피크 위치 보존은 제로-페이즈 필터링 방법으로 수행되며, 진폭 데이터 변환은 힐버트 트랜스폼으로 수행될 수 있다.Each of these steps may be performed using a known method, for example, peak position preservation may be performed by a zero-phase filtering method, and amplitude data transformation may be performed by a Hilbert transform.
다음으로, 노이즈 제거 후 초음파 데이터의 피크를 파악하여 층간의 계면을 파악한다(S120).Next, after noise removal, the peak of the ultrasound data is identified to determine the interface between the layers ( S120 ).
이 단계에서는 국부적 최대값을 구하는 단계를 포함한다. 국부적 최대값은, 이에 한정되지 않으나, MPD(minimum peak distance)와 MPP(minimum peak prominence)를 이용하여 얻을 수 있다.This step includes finding a local maximum. The local maximum value is not limited thereto, but may be obtained using a minimum peak distance (MPD) and a minimum peak prominence (MPP).
다음으로, 노이즈 제거 후 초음파 데이터의 감쇄계수를 파악하여 각 층을 식별한다(S130).Next, each layer is identified by identifying an attenuation coefficient of the ultrasound data after noise is removed ( S130 ).
감쇄계수는, 이에 한정되지 않으나, 다음의 방법으로 구할 수 있다.The attenuation coefficient is not limited thereto, but can be obtained by the following method.
먼저 시간영역(time domain)의 초음파 데이터를 주파수영역(frequency domain)으로 변경한다. 이후 주파수영역에서 각 조직 깊이에서 중심점(centroid)를 계산한다. 다음으로, 중심점이 조직 깊이에 따라 변하는 것 즉, 주파수 변화(frequency shift)를 계산한다. 마지막으로, 관심영역(ROI) 내에 깊이에 따른 중심점 변화를 곡선접합(linear regression)을 이용해서 감쇄계수를 구한다.First, ultrasound data in a time domain is changed into a frequency domain. Then, the centroid is calculated at each tissue depth in the frequency domain. Next, a change in the central point according to the tissue depth, that is, a frequency shift, is calculated. Finally, the attenuation coefficient is obtained using linear regression for the change of the center point according to the depth in the region of interest (ROI).
각 층별로 고유한 감쇄계수의 범위가 있으며, 구해진 감쇄계수와 비교하여 각 층을 식별한다.Each layer has its own range of attenuation coefficients, and each layer is identified by comparing it with the obtained attenuation coefficient.
이 단계에서는 감쇄계수를 알고 있는 팬텀로부터 얻은 초음파 데이터를 이용해 탐촉자의 회절특성을 보정할 수 있다.In this step, the diffraction characteristics of the transducer can be corrected using the ultrasonic data obtained from the phantom with known attenuation coefficient.
마지막으로, 각 층의 두께를 파악한다(S140). 각 층의 두께는 파악된 계면간의 초음파 이동 속도를 이용하여 구할 수 있다.Finally, the thickness of each layer is determined (S140). The thickness of each layer can be obtained by using the ultrasonic movement speed between the identified interfaces.
이상의 본 발명에서 노이즈 제거 이후의 순서는 변경될 수 있다. 예를 들어 감쇄계수를 구한 후 계면을 파악할 수 있으며, 두께를 파악한 이후에 감쇄계수를 구할 수도 있다.In the present invention, the order after noise removal may be changed. For example, the interface can be identified after obtaining the attenuation coefficient, and the attenuation coefficient can be obtained after determining the thickness.
본 발명에 따르면 각 층의 식별과 두께를 파악할 수 있으며, 초음파 데이터의 국부적 최대값을 이용한 진정한 피크 (true peak) 파악 및 각 층의 식별은 근육 내 지방 등의 다른 반사데이터를 제외하고 각 계면의 두께를 파악할 수 있도록 한다. 또한, 초음파 데이터로부터 지방 및 근육량 측정을 동시에 수행할 수 있다.According to the present invention, the identification and thickness of each layer can be determined, and the identification of a true peak using the local maximum value of the ultrasound data and identification of each layer is performed at each interface except for other reflection data such as intramuscular fat. to determine the thickness. Also, it is possible to simultaneously measure fat and muscle mass from ultrasound data.
이하 실험예를 통해 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail through experimental examples.
측정대상의 준비Preparation of measurement target
도 2a, 도 2b 및 도 2c는 측정대상의 준비를 순차적으로 나타낸 것이다. 정육점에서 돼지 앞다리 3개를 구매하였으며, 절단을 통해 16개의 샘플로 만들었다. 각 샘플은 일정한 크기를 갖도록 하였으며, 각각의 샘플이 피하지방, 근육 및 뼈를 포함하도록 하였다. 샘플에는 검은 색 잉크로 초음파 측정할 위치를 표시하였다.2a, 2b and 2c sequentially show the preparation of the measurement target. Three pig forelimbs were purchased from a butcher's shop, and 16 samples were made by amputation. Each sample was made to have a certain size, and each sample was made to include subcutaneous fat, muscle, and bone. The sample was marked with black ink where the ultrasonic measurement was to be performed.
초음파 데이터 획득Ultrasound data acquisition
16개 샘플에 대해 검은 색 잉크로 표시한 부분에서 초음파 데이터를 얻었다.Ultrasound data were obtained in areas marked with black ink for 16 samples.
2.25-MHz single-element focused transducer (BioSono Inc., USA)를 ultrasonic pulser/receiver (Model XTR-2020, MKC Inc., Korea)로 여기시키고, 얻어진 초음파 데이터를 20-MS/s sampling rate에서 oscilloscope (Model DSO1012A, Keysight Technologies, Korea)를 이용하여 디지털화하고 컴퓨터에 저장하였다. 각 위치별로 5번 스캔하였으며, 데이터는 분리하여 저장하였다.A 2.25-MHz single-element focused transducer (BioSono Inc., USA) was excited with an ultrasonic pulser/receiver (Model XTR-2020, MKC Inc., Korea), and the obtained ultrasonic data was analyzed with an oscilloscope (at a 20-MS/s sampling rate). It was digitized using Model DSO1012A, Keysight Technologies, Korea) and stored in a computer. Each location was scanned 5 times, and the data were stored separately.
초음파 데이터 분석Ultrasound data analysis
초음파 데이터의 분석은 MATLAB (Mathworks, Natick, USA)을 이용하여 수행하였으며, 자세한 내용은 도 3을 참조하여 설명한다.Analysis of ultrasound data was performed using MATLAB (Mathworks, Natick, USA), and details will be described with reference to FIG. 3 .
도 3은 본 실험예에서 수행된 데이터 처리의 개요도이다.3 is a schematic diagram of data processing performed in the present experimental example.
스텝 1 Step 1
M세그먼트에 대한 인-밴드(in-band) 노이즈를 감소시키기 위해 세그먼트 평균화를 수행했다.Segment averaging was performed to reduce in-band noise for the M-segment.
[규칙 제91조에 의한 정정 23.11.2021] 
Figure WO-DOC-CHEMICAL-1
[Correction 23.11.2021 under Rule 91]
Figure WO-DOC-CHEMICAL-1
여기서 S(n)은 평균화된 초음파 데이터(signal)이며, sm(n)은 m번째 초음파(RF) 세그먼트이고, M은 각 측정의 펄스 숫자이고 N은 펄스 반복 구간 동안에서의 디지털화된 펄스의 개수이다. 세그먼트 평균화 이후, 500kHz와 5MHz의 컷오프 주파수로 5th-order Butterworth bandpass filter를 이용해 대역외 노이즈를 억제하였으며 초음파 데이터에서 피크 위치를 보존하기 위해 zero-phase filtering을 사용하였다. 마지막으로 log-compressed envelope signals을 얻기 위해 힐버트 트랜스폼과 로그 압축을 수행하였다.where S(n) is the averaged ultrasound data (signal), s m (n) is the mth ultrasound (RF) segment, M is the number of pulses in each measurement, and N is the number of digitized pulses during the pulse repetition interval. is the number After segment averaging, out-of-band noise was suppressed using a 5th-order Butterworth bandpass filter with cutoff frequencies of 500 kHz and 5 MHz, and zero-phase filtering was used to preserve the peak positions in the ultrasound data. Finally, Hilbert transform and log compression were performed to obtain log-compressed envelope signals.
스텝 2 step 2
조직 계면은 로그-압축된 진폭신호 내에서 국부적 최대값을 파악하여 식별한다. 국부적 최대 알고리즘은 최소 피크 거리(MPD, minimum peak distance)와 최소 피크 프로미넌스(MPP, minimum peak prominence)를 필요로 한다. MPD는 감지된 피크들 간의 최소 분리를 결정한다; 따라서, MPP는 피크 지속거리보다 커야 한다. 피크의 프로미넌스는 다른 피크와 비교되는 자신의 고유한 높이는 나타내다. 1um의 MPD와 10dB의 MPP를 이용하여 조직 경계에서 반사되어 발생한 강한 피크와 백스캐터링에 의한 진폭변동에 의해 발생한 약한 피크를 구분할 수 있다. 감지된 강한 피크를 이용하여 피하지방, 근육 및 뼈 사이의 계면간의 초음파 파동 이동시간을 정했다. 이로부터 피하지방과 근육의 두께는 조직을 통과하는 소리의 속도(1547m/s)와 초음파 파동 이동시간의 절반을 곱하여 얻었다.Tissue interfaces are identified by finding local maxima within the log-compressed amplitude signal. The local maximum algorithm requires a minimum peak distance (MPD) and a minimum peak prominence (MPP). MPD determines the minimum separation between detected peaks; Therefore, the MPP must be greater than the peak duration. The prominence of a peak indicates its intrinsic height compared to other peaks. Using MPD of 1 μm and MPP of 10 dB, strong peaks generated by reflection from the tissue boundary and weak peaks generated by amplitude fluctuations due to backscattering can be distinguished. Using the detected strong peak, the ultrasonic wave transit time between the subcutaneous fat, muscle and bone interface was determined. From this, the thickness of the subcutaneous fat and muscle was obtained by multiplying the speed of sound passing through the tissue (1547 m/s) by half of the ultrasonic wave travel time.
스텝 3 step 3
피하지방, 근육 및 뼈를 각 조직의 국부적 감쇄계수를 구하여 식별하였다. 감쇄계수는 1us의 윈도우 크기와 5개의 독립적 초음파(RF) 라인을 가지는 frequency-shift estimator를 이용하여 계산하였다. 트랜듀서의 회절 영향은 조직-유사 팬텀(PeripheralVascular Doppler FlowPhantom; Model 524; ATS Laboratories, USA)으로부터 측정된 0.511 dB/cm/MHz의 감쇄계수를 가지는 균일한 레퍼런스 팬텀으로 보정하였다.Subcutaneous fat, muscle, and bone were identified by obtaining the local attenuation coefficients of each tissue. The attenuation coefficient was calculated using a frequency-shift estimator with a window size of 1 μs and 5 independent ultrasound (RF) lines. The diffraction effect of the transducer was corrected with a uniform reference phantom having an attenuation coefficient of 0.511 dB/cm/MHz measured from a tissue-like phantom (PeripheralVascular Doppler FlowPhantom; Model 524; ATS Laboratories, USA).
MRI를 이용한 검증Verification using MRI
Bruker Biospec 7T system (BioSpec 70/20 USR; Bruker, Germany)를 이용해 초음파 측정과 동일한 위치에서 각 샘플에 대해 MRI 데이터를 얻었다.MRI data were obtained for each sample at the same location as the ultrasound measurements using a Bruker Biospec 7T system (BioSpec 70/20 USR; Bruker, Germany).
도 4a 내지 도 4e는 초음파 데이터의 처리 과정과 해당되는 MR 이미지를 나타낸 것이다. 도 4a는 초음파 데이터를 전압에 대한 초음파 파동 이동시간으로 나타낸 것이다. 도 4b는 세그먼트 평균화 및 밴드패스 필터링한 초음파 데이터를 나타낸 것이다. 도 4c는 로그 압축된 진폭 데이터를 보여주는 것이며, (a) 16.2s, (b) 25.0s, and (c) 66.2s의 3개의 프로미넌스 피크를 포함하다. 도 4d는 세 개의 피크를 포함하여 시간 대 주파수 맵을 나타낸다. 계산 결과 피하지방과 근육의 두께는 각각 6.8mm와 31.9mm였다. 도 4e는 해당 샘플의 MRI 스캔을 나타낸다. 노란선이 초음파 측정 방향이다. MRI로 얻은 피하지방과 근육의 두께가 초음파 데이터의 처리를 통해 얻은 값과 유사함을 확인할 수 있다.4A to 4E show a process of processing ultrasound data and corresponding MR images. 4A is a graph showing ultrasonic wave travel time with respect to voltage. 4B illustrates segment averaging and bandpass filtering ultrasound data. 4C shows log-compressed amplitude data, including three prominence peaks of (a) 16.2s, (b) 25.0s, and (c) 66.2s. Figure 4d shows a time versus frequency map including three peaks. As a result of calculation, the thickness of subcutaneous fat and muscle were 6.8 mm and 31.9 mm, respectively. Figure 4e shows an MRI scan of that sample. The yellow line is the ultrasonic measurement direction. It can be confirmed that the thickness of subcutaneous fat and muscle obtained by MRI is similar to the value obtained through processing of ultrasound data.
16개 샘플에 대한 피하지방, 근육 및 뼈의 감쇄계수는 다음 표 1과 같다.The attenuation coefficients of subcutaneous fat, muscle, and bone for 16 samples are shown in Table 1 below.
Tissuetissue attenuation coefficient(dB/cm/MHz)attenuation coefficient (dB/cm/MHz)
fatfat 1.8859±0.35991.8859±0.3599
musclemuscle 1.0982±0.34051.0982±0.3405
bonebone 4.5703±0.82984.5703±0.8298
도 5a 및 도 5b는 MRI로부터 얻은 조직 두께와 초음파 데이터의 분석을 통해 얻은 두께와의 비교를 나타낸 것이다.MRI로부터 얻은 값과 초음파 데이터 분석을 통해 얻은 값의 상관도가 매우 높음을 확인할 수 있다.5A and 5B show a comparison between the tissue thickness obtained from MRI and the thickness obtained through the analysis of ultrasound data. It can be seen that the correlation between the value obtained from the MRI and the value obtained through the analysis of the ultrasound data is very high.

Claims (7)

  1. 복수의 층을 통과하여 얻은 초음파 데이터를 분석하는 방법에 있어서,In the method of analyzing ultrasound data obtained by passing through a plurality of layers,
    상기 초음파 데이터의 노이즈를 줄이는 단계;reducing noise of the ultrasound data;
    상기 노이즈 제거 후 상기 초음파 데이터의 피크를 파악하여 층간의 계면을 파악하는 단계;identifying an interface between layers by identifying a peak of the ultrasound data after the noise is removed;
    상기 노이즈 제거 후 상기 초음파 데이터의 감쇄계수를 파악하여 각 층을 식별하는 단계를 포함하는 방법.and identifying each layer by identifying an attenuation coefficient of the ultrasound data after the noise is removed.
  2. 제1항에 있어서,According to claim 1,
    상기 노이즈를 줄이는 단계는,The step of reducing the noise is
    대역 내 잡음 제거 단계;In-band noise cancellation step;
    대역 외 잡음 제거 단계;out-of-band noise cancellation step;
    대역 통과 필터링된 상기 초음파 데이터에서 피크 위치를 보존하는 단계; 및preserving peak positions in the band pass filtered ultrasound data; and
    상기 초음파 데이터를 진폭 데이터로 변환하는 단계를 포함하는 방법.converting the ultrasound data into amplitude data.
  3. 제2항에 있어서,3. The method of claim 2,
    상기 피크 위치 보존은 제로-페이즈 필터링 방법으로 수행되며,The peak position preservation is performed by a zero-phase filtering method,
    상기 진폭 데이터 변환은 힐버트 트랜스폼으로 수행되는 방법.wherein the amplitude data transformation is performed with a Hilbert transform.
  4. 제1항에 있어서,According to claim 1,
    상기 층간의 계면을 파악하는 단계는,The step of identifying the interface between the layers is
    국부적 최대값을 구하는 단계를 포함하며,finding a local maximum,
    상기 국부적 최대값은 MPD(minimum peak distance)와 MPP(minimum peak prominence)를 이용하여 얻는 방법.The local maximum value is obtained using a minimum peak distance (MPD) and a minimum peak prominence (MPP).
  5. 제1항에 있어서,According to claim 1,
    상기 층간의 계면 파악 후에,After understanding the interface between the layers,
    상기 계면간의 초음파 이동 속도를 이용하여 각 층의 두께를 파악하는 단계를 더 포함하는 방법.The method further comprising the step of determining the thickness of each layer using the ultrasonic movement speed between the interface.
  6. 제1항에 있어서,According to claim 1,
    상기 복수의 층은 뼈, 근육 및 지방 중 적어도 2개를 포함하는 방법.wherein the plurality of layers comprises at least two of bone, muscle and fat.
  7. 제1항에 있어서,According to claim 1,
    상기 각 층을 식별하는 단계는,The step of identifying each layer is
    감쇄계수를 알고 있는 팬텀으로부터 얻은 초음파 데이터를 이용해 탐촉자의 회절특성을 보정하는 단계를 더 포함하는 방법.The method further comprising the step of correcting the diffraction characteristics of the transducer using the ultrasound data obtained from the phantom of which the attenuation coefficient is known.
PCT/KR2021/014557 2020-10-21 2021-10-19 Method for analyzing ultrasound data obtained by passing through multiple layers WO2022086112A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/044,896 US20230371921A1 (en) 2020-10-21 2021-10-19 Method for analyzing ultrasound data obtained by passing through multiple layers

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020200136576A KR102561391B1 (en) 2020-10-21 2020-10-21 Method for analyzing ultrasound data obtained from multiple layers
KR10-2020-0136576 2020-10-21

Publications (1)

Publication Number Publication Date
WO2022086112A1 true WO2022086112A1 (en) 2022-04-28

Family

ID=81289919

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/014557 WO2022086112A1 (en) 2020-10-21 2021-10-19 Method for analyzing ultrasound data obtained by passing through multiple layers

Country Status (3)

Country Link
US (1) US20230371921A1 (en)
KR (1) KR102561391B1 (en)
WO (1) WO2022086112A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140027989A (en) * 2011-04-14 2014-03-07 리전츠 오브 더 유니버스티 오브 미네소타 Vascular characterization using ultrasound imaging
US20160302764A1 (en) * 2012-07-12 2016-10-20 Covidien Lp System and method for detecting critical structures using ultrasound
US20170079613A1 (en) * 2013-09-13 2017-03-23 Fujifilm Corporation Ultrasound diagnostic apparatus and method of producing ultrasound image
US20200000436A1 (en) * 2010-08-02 2020-01-02 Jointvue, Llc Method and Apparatus for Three Dimensional Reconstruction of a Joint Using Ultrasound
KR20200067168A (en) * 2017-10-13 2020-06-11 더 클리블랜드 클리닉 파운데이션 Advanced ultrasound detection of different tissue types

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8679019B2 (en) 2007-12-03 2014-03-25 Bone Index Finland Oy Method for measuring of thicknesses of materials using an ultrasound technique
JP6081744B2 (en) 2012-09-03 2017-02-15 ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー Ultrasonic diagnostic equipment
JP2015039521A (en) 2013-08-22 2015-03-02 セイコーエプソン株式会社 Image processing system, ultrasonic measurement system and image processing method
JP6179290B2 (en) 2013-09-11 2017-08-16 セイコーエプソン株式会社 ULTRASONIC MEASURING DEVICE, ULTRASONIC IMAGING DEVICE, AND ULTRASONIC MEASURING DEVICE CONTROL METHOD
JP6303448B2 (en) * 2013-11-29 2018-04-04 セイコーエプソン株式会社 Ultrasonic measuring device
KR20180014134A (en) 2018-01-26 2018-02-07 주식회사 웨이전스 A Device for Measuring Obesity Personally and A Method for the Same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200000436A1 (en) * 2010-08-02 2020-01-02 Jointvue, Llc Method and Apparatus for Three Dimensional Reconstruction of a Joint Using Ultrasound
KR20140027989A (en) * 2011-04-14 2014-03-07 리전츠 오브 더 유니버스티 오브 미네소타 Vascular characterization using ultrasound imaging
US20160302764A1 (en) * 2012-07-12 2016-10-20 Covidien Lp System and method for detecting critical structures using ultrasound
US20170079613A1 (en) * 2013-09-13 2017-03-23 Fujifilm Corporation Ultrasound diagnostic apparatus and method of producing ultrasound image
KR20200067168A (en) * 2017-10-13 2020-06-11 더 클리블랜드 클리닉 파운데이션 Advanced ultrasound detection of different tissue types

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DE LORENZO DANILO, DE MOMI ELENA, BERETTA ELISA, CERVERI PIETRO, PERONA FRANCO, FERRIGNO GIANCARLO: "Experimental validation of A-mode ultrasound acquisition system for computer assisted orthopaedic surgery", ALGORITHMS AND TECHNOLOGIES FOR MULTISPECTRAL, HYPERSPECTRAL, AND ULTRASPECTRAL IMAGERY XIX - PROCEEDINGS OF SPIE, SPIE, US, vol. 7265, 26 February 2009 (2009-02-26), US, pages 726502, XP055923846, ISSN: 0277-786X, ISBN: 978-1-5106-4548-6, DOI: 10.1117/12.811736 *
PARK DAE WOO; PARK DONG CHAN; CHUNG SEUNG HYUN: "Ultrasound Signal Processing Technique for Subcutaneous-Fat and Muscle Thicknesses Measurements", IEEE ACCESS, IEEE, USA, vol. 7, 1 January 1900 (1900-01-01), USA , pages 155203 - 155208, XP011755984, DOI: 10.1109/ACCESS.2019.2949073 *

Also Published As

Publication number Publication date
US20230371921A1 (en) 2023-11-23
KR20220052524A (en) 2022-04-28
KR102561391B1 (en) 2023-07-31

Similar Documents

Publication Publication Date Title
Kuc Clinical application of an ultrasound attenuation coefficient estimation technique for liver pathology characterization
Dines et al. Ultrasonic attenuation tomography of soft tissues
US4858124A (en) Method for enhancement of ultrasonic image data
EP0760625B1 (en) Apparatus for tissue characterization by ultrasound
Kuc et al. Variation of acoustic attenuation coefficient slope estimates for in vivo liver
JP4749592B2 (en) Method and apparatus for automatically setting sample gate in pulsed Doppler ultrasound imaging
CN117056642B (en) Microwave data processing method and system
WO2022086112A1 (en) Method for analyzing ultrasound data obtained by passing through multiple layers
CN108720870A (en) A kind of fatty liver detecting system based on ultrasonic attenuation coefficient
JPH0324868B2 (en)
Lazaro Noise reduction in ultrasonic NDT using discrete wavelet transform processing
Kuc Processing of diagnostic ultrasound signals
Sommer et al. Stochastic frequency-domain tissue characterization: application to human spleens ‘in vivo’
Oster et al. A specific QRS detector for Electrocardiography during MRI: using Wavelets and Local Regularity Characterization
Paunksnis et al. Ultrasound quantitative evaluation of human eye cataract
US20230404536A1 (en) Method for renal cell carcinoma diagnosis by means of ultrasonic signals analysis and ultrasound images
Wei et al. Improving local PCA in pseudo phase space for fetal heart rate estimation from single lead abdominal ECG
Kozaitis Improved feature detection in ecg signals through denoising
Bayer et al. In vivo characterization of intraocular membranes
Tane et al. Power spectrum analysis of ultrasonic radio-frequency signals on cataracts
Fish et al. Multichannel pulsed Doppler imaging: Measurement accuracy and beam/vessel angle estimation
Godo et al. 1Pa5-9 Basic Study on Frequency Characteristics in Reflected Ultrasound Signal of Lower Limb Edema Using FDTD Method
Lasaygues et al. Ultrasonic tomography of long bone: resolution and quantification
Lasaygues et al. Quantitative Ultrasonic Tomography of Long Bones: Distorded Born Iterative Process
CN114403921A (en) Shear wave velocity estimation method and system based on real-time curve tracking technology

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21883181

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21883181

Country of ref document: EP

Kind code of ref document: A1