WO2022085802A1 - ろ過膜のファウリングの重要因子算出装置、ファウリング発生予測装置、重要因子算出方法、ファウリング発生予測方法、プログラム、学習済モデル、記憶媒体および学習済モデルの作成方法 - Google Patents

ろ過膜のファウリングの重要因子算出装置、ファウリング発生予測装置、重要因子算出方法、ファウリング発生予測方法、プログラム、学習済モデル、記憶媒体および学習済モデルの作成方法 Download PDF

Info

Publication number
WO2022085802A1
WO2022085802A1 PCT/JP2021/039305 JP2021039305W WO2022085802A1 WO 2022085802 A1 WO2022085802 A1 WO 2022085802A1 JP 2021039305 W JP2021039305 W JP 2021039305W WO 2022085802 A1 WO2022085802 A1 WO 2022085802A1
Authority
WO
WIPO (PCT)
Prior art keywords
filtration
filtration membrane
predictor
prediction
membrane
Prior art date
Application number
PCT/JP2021/039305
Other languages
English (en)
French (fr)
Inventor
大稀 横山
淳 菊地
大河 朝倉
篤之 黒谷
Original Assignee
国立研究開発法人理化学研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人理化学研究所 filed Critical 国立研究開発法人理化学研究所
Priority to JP2022557630A priority Critical patent/JPWO2022085802A1/ja
Publication of WO2022085802A1 publication Critical patent/WO2022085802A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N20/00Machine learning

Definitions

  • the present invention relates to a technique for predicting fouling (clogging, etc.) of a filtration membrane, and particularly to a technique for predicting an important factor of fouling of a filtration membrane in a wastewater treatment system.
  • Wastewater treatment by filtration is a technique widely used to improve the quality of wastewater.
  • the filtration treatment technique is used in the case of maintaining the water quality of the breeding aquarium in aquaculture on land, or in the case of purifying domestic wastewater / industrial wastewater in order to discharge it into a river.
  • a filtration membrane is used to separate the solid components contained in the wastewater from the treated water, and when fouling of the filtration membrane occurs, the load power to the pump increases or the filtration membrane is replaced. -Since cleaning is required, the cost of wastewater treatment may increase. Therefore, there is a demand for a technique for searching for an important factor of fouling in a filtration membrane and a technique for predicting the occurrence of fouling.
  • Non-Patent Document 1 proposes a technique for acquiring an NMR (Nuclear Magnetic Resonance) spectrum of an organic substance adhering to the film surface, comparing the spectral shapes of each film, and inferring an important factor for fouling generation. Has been done. However, the technique does not provide a calculation process for deriving a fouling-causing substance from NMR spectral information.
  • NMR Nuclear Magnetic Resonance
  • Non-Patent Document 2 proposes a technique of constructing a neural network and predicting the membrane differential pressure using a prediction model obtained by learning by machine learning.
  • the neural network constructed by this technique is not suitable for analysis of time series data.
  • prediction models are created for the number of combinations of parameters input to the prediction model, and the parameters contributing to the increase in the membrane differential pressure are specified by comparing the outputs from the respective prediction models. .. In this method, when the number of parameters is huge, it may not be realistic to create a predictive model for each parameter combination and search for important factors.
  • Non-Patent Document 3 a prediction model for predicting membrane differential pressure is created using a recurrent neural network.
  • Non-Patent Document 3 only discloses a technique for verifying the accuracy of a prediction model, and has no suggestion or disclosure of calculating an important factor contributing to an increase in membrane differential pressure.
  • An object of the present invention is to accurately predict important factors that cause fouling of the filtration membrane.
  • the important factor calculation device is It is an important factor calculation device that calculates substances that cause fouling of filtration membranes. From the NMR spectrum, using learning data in which the intensity at each chemical shift in the NMR (Nuclear Magnetic Resonance) spectrum of the organic substance adhering to the filter film is used as an explanatory variable and the integrated intensity, which is the sum of the intensities of the NMR spectrum, is used as the objective variable.
  • a learning unit that learns a predictor that predicts the integrated intensity
  • An output unit that outputs information indicating a causative substance that contributes to the prediction of the integrated intensity based on the learning result of the predictor, and an output unit. It is characterized by having.
  • the explanatory variables may be the strength of each chemical shift in the high molecular weight substance and / or the low molecular weight substance of the organic substance.
  • the predictor may be learned by machine learning by an algorithm for regression or classification.
  • the output unit may output the chemical shifts in which the contribution of the prediction of the integrated intensity for each chemical shift is equal to or greater than the threshold value or a predetermined number of higher chemical shifts as the chemical shifts contributing to the prediction of the integrated intensity. ..
  • the important factor calculation device is It is an important factor calculation device that calculates the important factors that cause fouling of the filtration membrane. Prediction of predicting the filtration performance of the filtration membrane after a unit time step from time-series data of a plurality of parameters including a parameter indicating the filtration performance of the filtration membrane and a parameter indicating the water quality of the wastewater treatment system in which the filtration membrane is used.
  • the learning department that learns vessels and An output unit that outputs parameters that contribute to the prediction of the filtration performance of the filtration membrane after the unit time step from the predictor. It is characterized by having.
  • the learning unit learns the predictor using time-series data whose values are changed for each parameter indicating the water quality, and the output unit makes predictions when the changed time-series data is used.
  • a parameter that contributes to the prediction of the filtration performance of the filtration membrane may be output based on the degree of decrease in accuracy.
  • the parameters indicating the water quality include pH, oxidation-reduction potential, dissolved oxygen concentration, turbidity, temperature, hydrogen sulfide concentration, nitrate concentration, ammonia concentration, conductivity, salt concentration, chloride concentration, and total dissolved solid matter concentration.
  • the parameter indicating the filtration performance of the filtration membrane may be a differential pressure or a filtration flow rate.
  • the predictor may be learned by machine learning by a recurrent neural network.
  • the fouling occurrence prediction device is It is a fouling occurrence prediction device that predicts the occurrence of fouling in the filtration membrane. From the time-series data of a plurality of parameters including a parameter indicating the filtration performance of the filtration membrane and a parameter indicating the water quality of the wastewater treatment system in which the filtration membrane is used, the filtration performance of the filtration membrane after a unit time step and the plurality of the filtration membranes.
  • a predictor that outputs parameter estimates and A prediction means for predicting the filtration performance until after a predetermined time step by repeating the prediction in which the estimated value by the predictor is input to the predictor again.
  • the present invention can also be regarded as a prediction method in which the above processing is executed by a computer. That is, another aspect of the present invention is a method of calculating important factors executed by a computer. Prediction of predicting the integrated intensity from the NMR spectrum using learning data with the intensity at each chemical shift in the NMR spectrum of the organic substance adhering to the filter membrane as the explanatory variable and the integrated intensity as the objective variable, which is the sum of the intensities of the NMR spectrum. Steps to learn the vessel and Based on the learning result of the predictor, a step of outputting information indicating a causative substance that contributes to the prediction of the integrated intensity, and It is characterized by including. Further, another aspect of the present invention is a method for calculating important factors executed by a computer.
  • a predictor that predicts the filtration performance of the filtration membrane after a unit time step from time-series data of multiple parameters including a parameter indicating the filtration performance of the filtration membrane and a parameter indicating the water quality of the wastewater treatment system in which the filtration membrane is used. Steps to learn and A step of outputting a parameter contributing to the prediction of the filtration performance of the filtration membrane after the unit time step from the predictor, and a step of outputting the parameter. It is characterized by including. Further, another aspect of the present invention is a fouling occurrence prediction method executed by a computer.
  • the filtration performance of the filter membrane After a unit time step and the plurality of parameters.
  • the step of predicting the filtration performance until after a predetermined time step, and the step of predicting the filtration performance.
  • the predictor indicates a parameter indicating the filtration performance of the first filtration membrane in the first filtration system and the water quality of the wastewater treatment system in which the first filtration membrane is used.
  • the prediction model trained using the first training data based on the observation values of a plurality of parameters including the parameters is used as a parameter showing the filtration performance of the second filtration membrane in the second filtration system and the second filtration membrane. It may be obtained by learning by transfer learning using the second learning data based on the observation values of a plurality of parameters including the parameter indicating the water quality of the wastewater treatment system in which is used.
  • the present invention can also be regarded as a program for causing a computer to execute the above method.
  • the present invention can also be regarded as a trained model and a method for creating a trained model for performing the above method.
  • the present invention can also be regarded as a computer-readable storage medium that stores the program or the trained model.
  • FIG. 5A is a graph showing cross-validation of predicted values and measured values of prediction processing in one embodiment
  • FIG. 5B is a graph showing the importance of each chemical shift in one embodiment.
  • It is a schematic block diagram of the filtration system in one Embodiment. It is a flowchart of the important factor calculation process of the occurrence of fouling in one Embodiment.
  • FIG. 10A is a graph showing cross-validation of the predicted value and the measured value of the membrane differential pressure in one embodiment
  • FIG. 10B is a graph showing the importance of each parameter in the prediction of the membrane differential pressure in one embodiment. .. It is a flowchart of the prediction model creation process of transfer learning in one modification.
  • data obtained from filtration membranes and filtration tanks is used in wastewater treatment systems using filtration technology.
  • the following embodiments can be applied without being limited to the onshore aquaculture system and the membrane separation activated sludge method system described later.
  • the filtration membrane treated with wastewater is collected from the filtration tank, and the NMR spectrum of the organic substance adhering to the surface of the filtration membrane is measured. Then, using the obtained NMR spectrum data using a machine learning algorithm, a prediction model for predicting an important factor for the occurrence of fouling in the filtration membrane is created. Thereby, by inputting the NMR spectrum data of the filtration membrane into the created prediction model, it is possible to identify an important factor having a high degree of contribution to the fouling of the filtration membrane.
  • FIG. 1 shows a schematic configuration of the aquaculture system used in this embodiment.
  • the culture system 1 includes a breeding tank 11, a primary filtration tank 12, a pump 13, a filtration membrane 14, pressure sensors 15 and 16, a flow rate sensor 17, and a water storage tank 18.
  • the breeding tank 11 is a water tank for breeding the fish 10.
  • the primary filtration tank 12 is a water tank that stores water for filtering the water 19 in the breeding tank.
  • the pump 13 is a pump that takes in water from the primary filtration tank 12.
  • the filtration membrane 14 filters the water sucked up by the pump 13.
  • the pressure sensor 15 measures the water pressure of water before passing through the filtration membrane 14.
  • the pressure sensor 16 measures the water pressure of water that has passed through the filtration membrane 14.
  • the flow rate sensor 17 measures the flow rate of water that has passed through the filtration membrane 14.
  • the water storage tank 18 is a water tank that stores water that has passed through the filtration membrane 14.
  • the fish 10 is a common puffer fish as an example, and the culture system 1 performs a filtration process at 7 ml / min for 680 minutes. Then, the filtration membrane 14 after the filtration treatment is collected. Here, 60 samples of the filtration membrane 14 that has undergone the same filtration treatment are collected. The organic matter adhering to the surface of the recovered filtration membrane 14 is extracted with a Kpi solution. The Kpi solution, which is an extract, is mixed with an internal standard having a specified concentration. Then, spectral data is acquired by performing proton nuclear magnetic resonance ( 1 H-NMR) measurement on the extracted organic matter.
  • 1 H-NMR proton nuclear magnetic resonance
  • a predictor For the acquired spectral data, a predictor (prediction model) is constructed by a machine learning algorithm with the intensity for each chemical shift as the explanatory variable and the integrated intensity, which is the sum of the intensities, as the objective variable by the important factor calculation device.
  • the explanatory variables use the intensity of each chemical shift in three pulse programs (watergate for measuring the entire organic matter, diffusion-edited for measuring the high molecular weight material of the organic matter, and 2D-Jres for measuring the low molecular weight material of the organic matter). Note that these three types of pulse programs are examples, and other pulse programs may be used instead, or may be combined with other pulse programs.
  • FIG. 2 shows the configuration of an important factor calculation device 100 for calculating an important factor that causes fouling.
  • the important factor calculation device 100 includes a learning data acquisition unit 111, a preprocessing unit 112, a learning unit 113, a predictor 115, and an important factor output unit 116 as its functional units.
  • the important factor calculation device 100 is a computer (information processing device) including an arithmetic processor, a storage device, an input device, an output device, a communication device, and the like, and these functions are realized by the arithmetic processor executing a program.
  • the learning data acquisition unit 111 acquires the learning data 114 (NMR spectrum data) used for learning the predictor 115 from the culture system 1. Further, the pretreatment unit 112 corrects the intensity of the NMR spectrum data by unifying the spectrum intensity of the internal standard with all the collected filtration membranes 14. Since the strength correction can be realized by using a well-known technique, the description thereof will be omitted in detail. Further, the pretreatment unit 112 generates an integrated intensity of 1 H-NMR (watergate) as an index of the total amount of organic substances in the filtration membrane 14. As an example, the pretreatment unit 112 generates integrated intensity by binning and numerically converting NMR spectrum data for each chemical shift of 0.01 ppm.
  • 1 H-NMR watergate
  • the learning unit 113 uses the NMR spectrum data corrected by the pretreatment unit 112 and the integrated intensity generated by the pretreatment unit 112 to perform each chemistry in three types of pulse programs (watergate, diffusion-edited, 2D-Jres). Using the shift intensity as an explanatory variable, a prediction model 115 that predicts the integrated intensity of 1 H-NMR (watergate) by a machine learning algorithm is created. The strength of the chemical shift in at least one of these three types of pulse programs may be adopted as an explanatory variable.
  • the machine learning algorithm used here includes a support vector machine, a neural network, a deep neural network, and the like. Further, these may be for the purpose of regression or may be for the purpose of classification. Further, it is also possible to perform ensemble learning in which a plurality of learning algorithms are combined to create one learning model.
  • the main substances measured by the watergate pulse program are saccharides (glucose, galactose, etc.), proteins / amino acids (betaine, glutamine, valine, isoleucine, etc.), lipids, organic acids (lactic acid, succinic acid, formic acid, etc.). Etc.) and so on.
  • the main substances measured by the diffusion-edited pulse program are polymer substances, such as sugars (glucose, galactose, etc.) and proteins.
  • the main substances measured by the 2D-Jres pulse program are low molecular weight substances such as amino acids (betaine, taurine, glutamine, isoleucine, etc.) and organic acids (lactic acid, succinic acid, formic acid, etc.).
  • FIG. 3 is a graph showing an example of the strength corresponding to the chemical shift of the substance attached to the filter obtained from the filter of one sample in the present embodiment.
  • the integrated intensity is the total (integral) of the intensities in each chemical shift.
  • FIG. 4 is a flowchart showing the flow of the prediction process performed by the important factor calculation device 100.
  • the important factor calculation device 100 will be described with reference to FIG.
  • step S101 the learning data acquisition unit 111 acquires NMR spectrum data obtained by the above-described processing for the filtration membrane treated with wastewater in the filtration tank of the culture system 1 as training data 114.
  • step S102 the preprocessing unit 112 corrects the intensity of the NMR spectrum data acquired by the learning data acquisition unit 111. Further, the pretreatment unit 112 generates the integrated intensity from the NMR spectrum data.
  • step S103 the learning unit 113 learns the predictor 115 for predicting the integrated intensity from the NMR spectrum data by using the set of the NMR spectrum data and the integrated intensity obtained in step S102 as the learning data. As described above, for example, the random forest method is used as the machine learning algorithm.
  • step S104 the important factor output unit 116 performs a highly important chemical shift based on the learning result in step S103, which is an important factor (substance that causes fouling) that contributes to the occurrence of fouling of the filter membrane. ) Is output to a display device, a storage device, or the like (not shown) connected to the important factor prediction device 100.
  • the important factor output unit 116 may specify a chemical shift whose importance is equal to or higher than a threshold value or a higher predetermined number of chemical shifts as important factors, and output the specified important factors.
  • the important factor output unit 116 may output the importance of each chemical shift.
  • the important factor output unit 116 may specify a substance name corresponding to a chemical shift of high importance and output the specified substance name.
  • FIG. 5A is a graph showing an example of the relationship between the predicted value and the measured value of the strength indicating an important factor contributing to the occurrence of fouling of the filtration membrane in the present embodiment.
  • FIG. 5A shows the predicted value and the actual measurement of the integrated intensity (total spectral intensity) by the above three types of pulse programs (watergate, diffusion-edited (“diffedt” in the figure), 2D-Jres (“2dj” in the figure)). Shows cross-validation of values.
  • FIG. 5B is a graph showing the degree of contribution (“importance” in the figure) for each chemical shift in the prediction of intensity.
  • the predictor in the present embodiment can be appropriately learned and the important factors can be appropriately predicted. Understand. Then, it can be said that the important factors predicted by the above-mentioned processing of the important factor predictor of the present embodiment can be regarded as important factors contributing to the actual occurrence of fouling of the filtration membrane.
  • a peak of contribution can be detected in the graph, and it can be seen that the chemical shift showing this peak can be regarded as an important factor contributing to the actual occurrence of fouling of the filtration membrane.
  • the important factor output unit 116 may output the graph shown in FIG. 5B, or may output a specific chemical shift or substance name derived from the graph.
  • a quantitative filtration treatment test is performed by a filtration treatment system using a membrane separation active sludge method using methane fermentation wastewater, and a membrane differential pressure, filtration flow rate, water quality (pH, ORP (oxidation-reduction potential), O 2 ) are performed. , Turbidity, etc.) get time series data.
  • machine learning by a recurrent neural network (RNN) suitable for machine learning of time-series data is performed to create a prediction model, and the degree of contribution (importance) in the prediction of membrane differential pressure is calculated.
  • the prediction model is used to predict the membrane differential pressure, which is an index of the occurrence of fouling of the filtration membrane.
  • FIG. 6 shows a schematic configuration of the filtration system of the membrane separation activated sludge method used in the present embodiment.
  • the filtration system 2 of the membrane separation active sludge method includes a raw water tank 21, a filtration treatment tank 22, a water storage tank 23, pumps 24, 25, 26, an air diffuser tube 27, a filtration film 28, and a pressure sensor 29. It has a flow sensor 30 and various water quality sensors 31.
  • the raw water tank 21 is a tank for storing the drainage raw water 32.
  • the pump 24 is a pump that sends the drainage raw water 32 from the raw water tank 21 to the filtration treatment tank 22.
  • the pump 25 is a pump that sends air to the air diffuser pipe 27, and the air diffuser pipe 27 performs aeration cleaning of the filtration membrane 28.
  • the filtration membrane 28 is.
  • the wastewater pumped up by the pump 26 is filtered.
  • the pressure sensor 29 measures the pressure of water that has passed through the filtration membrane 28.
  • the flow rate sensor 30 measures the flow rate of water that has passed through the filtration membrane 28.
  • the water quality sensor 31 measures the water quality of the drainage 33 of the filtration treatment tank.
  • the water storage tank 23 is a tank for storing water 34 that has passed through the filtration membrane 28.
  • the important factor can be predicted by using the apparatus having the same configuration as the important factor calculation apparatus 100 in the first embodiment, but the data acquired mainly by the learning data acquisition unit 111 and the preprocessing.
  • the processing of the unit 112, the learning processing of the learning unit 113, and the like are different from those of the first embodiment.
  • the learning data acquisition unit 111 of the important factor calculation device 100 has a film difference at preset time intervals such as every hour, every 6 hours, and every day from various sensors provided in the filtration system 2.
  • Time-series data of pressure, filtration flow rate, and water quality (pH, ORP (oxidation-reduction potential), dissolved oxygen concentration, turbidity, etc.) are acquired as training data 114.
  • the pre-processing unit 112 performs outlier processing, missing value interpolation, data integration, and normalization processing.
  • the preprocessing unit 112 excludes or interpolates outliers and missing values as necessary.
  • k-nearest neighbor method MissForest, Bayesian PCA (Bayesian Principal Component Analysis, BPCA), Established PCA (Probabilistic Principal Component Analysis, PPCA), Singular Value Decomposition (SVD), median, mean, etc. Should be adopted. Missing value interpolation is particularly effective when the data has periodicity or has little variation. Normalization is a process in which the minimum value is 0 and the maximum value is 1.
  • the min-max method using the minimum and maximum values in the data, the z-score method in which the average is set to 0 and the variance is set to 1 may be used.
  • the preprocessing unit 112 may perform discretization processing for converting continuous data into discrete data and data compression processing (eigenvalue decomposition), if necessary.
  • the learning unit 113 learns the predictor (prediction model) 115 that outputs an estimated value of the membrane pressure difference after a predetermined unit time elapses of the explanatory variables included in the input data from the time series data acquired by the learning data acquisition unit 111.
  • the predetermined time can be appropriately determined, and may be determined according to the time interval for acquiring the time series data acquired from the sensor. Since prediction is performed based on time-series data, the predictor 115 is equipped with a recurrent neural network (RNN), specifically, Simple RNN, Long Short-Term Memory (LSTM), Gated Recurrent Unit (GRU), etc. It is available.
  • RNN recurrent neural network
  • LSTM Long Short-Term Memory
  • GRU Gated Recurrent Unit
  • the algorithm of the predictor 115 may be based on machine learning such as a support vector machine, a neural network, or a deep neural network, in addition to the decision tree analysis method and the boosting method.
  • machine learning such as a support vector machine, a neural network, or a deep neural network
  • ensemble learning in which a plurality of learning algorithms are combined to create one learning model.
  • the implementation program of the machine learning algorithm can output the estimated value after the unit time of each item from the time series data of the explanatory variables as the objective variable, and can predict the environmental factor intended as the effect of this embodiment. As long as it is a thing, it does not matter what kind it is. For example, you can implement a machine learning program that builds a predictive model by using the Keras package of Python language and using the TensorFlow package as a backend to perform calculations.
  • the explanatory variable and the objective variable of the predictor 115 are the same, and the estimated value after a predetermined time step (after a unit time) is output for the same item as the input time series data.
  • the explanatory variables and objective variables used in this embodiment include various parameters indicating the filtering performance of the filtering membrane such as membrane differential pressure and filtering flow rate, as well as pH, OPR, dissolved oxygen concentration, and turbidity of the water to be filtered.
  • the learning unit 113 randomly replaces the feature quantities of the parameters in the time series data by the Permutation Importance method, and the prediction accuracy is lowered based on the error from the estimated value of the film pressure difference obtained by the predictor 115.
  • the important factor output unit 116 outputs the important factor specified by the learning unit 113 and the predictor 115 to a display device or a storage device (not shown) connected to the important factor prediction device 100.
  • FIG. 7 is a flowchart showing the flow of the important factor prediction process performed by the important factor calculation device 100 in the present embodiment.
  • the learning data acquisition unit 111 acquires the time series data of the above explanatory variables.
  • the preprocessing unit 112 performs the above interpolation processing on the time series data acquired in step S201.
  • step S203 the learning unit 113 learns the predictor 115 by machine learning using the time-series data that has been interpolated, and creates a prediction model. Then, in step S204, the importance of each explanatory variable in the membrane differential pressure prediction is calculated by using the learning unit 113 and the predictor 115 by the Permutation Importance method, and the parameter having a high contribution to the membrane pressure difference is specified as an important factor. .. Then, the important factor output unit 116 outputs the specified important factor.
  • FIG. 8 shows a configuration according to an embodiment of the fouling generation prediction device 300 for predicting the occurrence of fouling of the filtration membrane.
  • the fouling occurrence prediction device 300 includes an input data acquisition unit 301, a prediction unit 302, a predictor 303, and an output unit 304 as its functional units.
  • the fouling occurrence prediction device 300 is a computer (information processing unit) including an arithmetic processor, a storage device, an input device, an output device, a communication device, and the like, and these functions are realized by the arithmetic processor executing a program. ..
  • FIG. 9 is a flowchart showing the flow of the fouling prediction process performed by the fouling occurrence prediction device 300.
  • the fouling occurrence prediction device 300 will be described with reference to FIGS. 8 and 9.
  • the predictor 303 is learned based on the above time series data.
  • step S301 the input data acquisition unit 301 acquires the latest time-series data obtained from the sensor of the filtration system 2.
  • the time step may be appropriately determined such as 1 minute, 1 hour, and 1 day.
  • the predictor 302 inputs the data during the latest A time step to the predictor 303, predicts the data (estimated value of the film pressure difference) of the next time step, and further inputs the data to the predictor 303.
  • N may be any value as long as it is an integer of 2 or more.
  • step S303 the prediction unit 302 fouls the filtration membrane when the estimated value becomes equal to or more than a predetermined threshold value based on the estimated value of the membrane pressure difference until after the N time step. Is expected to occur. Then, when the prediction unit 302 predicts that the fouling of the filtration membrane will occur, the output unit 304 displays the occurrence of the fouling of the filtration membrane by a display device or a storage device (not shown) connected to the fouling generation prediction device 300. Notify via a device or the like.
  • FIG. 10A is a graph showing an example of the relationship between the predicted value and the measured value of the membrane differential pressure (kPa) in the present embodiment.
  • FIG. 10B shows an example of the importance of each explanatory variable in the membrane differential pressure prediction calculated by the prediction unit 302.
  • the prediction of the membrane differential pressure by the prediction model of the present embodiment correlates with the actual measurement.
  • water quality-related parameters such as oxygen concentration are also important in predicting membrane differential pressure. It turns out that it is expensive.
  • the fouling of the filtration membrane can be predicted based on the monitoring data regarding the membrane differential pressure of the filtration membrane of the filtration system.
  • the sequential data is input to the trained training data, and the sequential data including the predicted value is re-input to the trained model, so that the future is one step ahead. Not only that, it is possible to predict the future in the long term.
  • the predictor uses the data for 3 time steps (3 unit hours) to predict the data after 1 time step, but uses the data for a longer time step for 1 time. You may predict the data after the step.
  • improvement of prediction accuracy can be expected, and especially if the periodicity of data is reflected in learning, it greatly contributes to improvement of prediction accuracy.
  • lengthening the time step the possibility of encountering missing value data increases, so it is advisable to determine the time step in consideration of this point as well.
  • the prediction model which is the trained model described above, is transplanted to unlearned data of another system, and the prediction model of the transfer source is used even when the data of the transplant destination is small.
  • Transfer learning is possible to build a highly accurate prediction model, which makes it possible to improve generalization performance.
  • a transfer learning method a method of learning the weight of a new layer by fixing the weight of the trained network and a method of re-learning the weight of the entire model with the weight of the trained network as the initial value (so-called fine). Tuning) etc.
  • a graph graphing the measured values of a plurality of sensors that output a plurality of parameters including a parameter indicating the filtration performance of the filtration membrane and a parameter indicating the water quality of the wastewater treatment system in which the filtration membrane is used.
  • the time-series behavior of a plurality of sensors that output a plurality of parameters including a parameter indicating the filtration performance of the filtration membrane and a parameter indicating the water quality of the wastewater treatment system in which the filtration membrane is used is mathematically expressed.
  • FIG. 11 shows an example of a flowchart of a process for creating a prediction model of transfer learning executed by the learning unit 113 when transfer learning is performed in this modified example.
  • This flowchart is executed instead of step S203 of the above embodiment.
  • the learning unit 113 has a parameter indicating the filtration performance of the filtration membrane as the first filtration membrane and the wastewater in which the filtration membrane is used at the transfer source (transplant source) of the prediction model as the first filtration system.
  • a trained prediction model is acquired by the treatment described in the above embodiment.
  • step S402 the learning unit 113 acquires time-series data at the transfer destination of the prediction model in the same manner as the process described in step S201 above.
  • step S403 the prediction model acquired in S401 is read, the parameters of the 1st to k-1st hidden layers of the neural network structure are fixed, and the kth to nth hidden layers are updated.
  • step S404 the learning unit 113 has a parameter indicating the filtration performance of the filtration membrane as the second filtration membrane at the transfer destination of the prediction model as the second filtration system, and the wastewater treatment in which the filtration membrane is used.
  • the model is relearned using the observation values of multiple parameters including the parameter indicating the water quality of the system, and the prediction model by transfer learning is obtained by adjusting the parameters.
  • step S204 the importance of each explanatory variable is calculated using the learning unit 113 and the predictor 115 by the Permutation Importance method, and the contribution to the membrane pressure difference is contributed. Identify high-degree parameters as important factors.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Theoretical Computer Science (AREA)
  • Software Systems (AREA)
  • Evolutionary Computation (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Data Mining & Analysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medical Informatics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Hydrology & Water Resources (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

ろ過膜のファウリングの発生要因となる重要因子を精度よく予測する。 予測装置は、ろ過膜のファウリングの原因となる物質を算出する重要因子算出装置であって、前記ろ過膜に付着した有機物のNMRスペクトルにおける各化学シフトにおける強度を説明変数、前記NMRスペクトルの強度の総和である積算強度を目的変数とする学習データを用いて、NMRスペクトルから積算強度を予測する予測器を学習する学習部と、前記予測器の学習結果に基づいて、前記積算強度の予測に寄与する原因物質を示す情報を出力する出力部と、を備える。

Description

ろ過膜のファウリングの重要因子算出装置、ファウリング発生予測装置、重要因子算出方法、ファウリング発生予測方法、プログラム、学習済モデル、記憶媒体および学習済モデルの作成方法
 本発明は、ろ過膜のファウリング(目詰まりなど)を予測する技術に関し、特に排水処理系におけるろ過膜のファウリングの重要因子を予測する技術に関する。
 ろ過による排水処理は、排水の水質を改善する際に広く利用されている技術である。例えば、陸上養殖において飼育水槽の水質を維持する場合や、生活排水・産業排水を河川へ放流するために浄化する場合等にろ過処理技術が用いられる。
 ろ過処理においては、排水中に含まれる固形成分と処理水とを固液分離するためのろ過膜が用いられ、ろ過膜のファウリングが発生すると、ポンプに対する負荷電力が増大したりろ過膜の交換・洗浄が必要となったりするため、排水処理におけるコストが増大する可能性がある。そこで、ろ過膜のファウリングの重要因子を探索する技術やファウリングの発生を予測する技術が求められている。
 非特許文献1では、膜表面に付着した有機物のNMR(Nuclear Magnetic Resonance;核磁気共鳴)スペクトルを取得し、膜ごとのスペクトルの形を比較してファウリング発生の重要因子を推論する技術が提案されている。しかしながら、当該技術は、NMRスペクトル情報からファウリング原因物質を導き出す計算処理を提供するものではない。
 また、非特許文献2では、ニューラルネットワークを構築し、機械学習による学習を行って得られる予測モデルを用いて膜差圧の予測を行う技術が提案されている。しかしながら、当該技術によって構築したニューラルネットワークは、時系列データの解析に適していない。また、非特許文献2では、予測モデルに入力されるパラメータの組み合わせの数だけ予測モデルを作成し、それぞれの予測モデルからの出力を比較することで膜差圧の上昇に寄与するパラメータを特定する。この手法ではパラメータ数が膨大である場合、それぞれのパラメータの組み合わせについて予測モデルを作成して重要因子を探索することは現実的でない可能性がある。
 非特許文献3では、再帰型ニューラルネットワークを用いて、膜差圧を予測する予測モデルを作成している。しかしながら、非特許文献3では、予測モデルの精度を検証する技術について開示するのみで、膜差圧の上昇に寄与する重要因子を算出することについては示唆も開示もない。
Yamamura, H., Kimura, K., & Watanabe, Y. (2007). Mechanism involved in the evolution of physically irreversible fouling in microfiltration and ultrafiltration membranes used for drinking water treatment. Environmental science & technology, 41(19), 6789-6794. Schmitt, F., Banu, R., Yeom, I. T., & Do, K. U. (2018). Development of artificial neural networks to predict membrane fouling in an anoxic-aerobic membrane bioreactor treating domestic wastewater. Biochemical Engineering Journal, 133, 47-58. Yusuf, Z., Wahab, N. A., & Sahlan, S. (2017). Modeling of Filtration Process Using PSO-Neural Network. Journal of Telecommunication, Electronic and Computer Engineering (JTEC), 9(3), 15-19.
 本発明は、ろ過膜のファウリングの発生要因となる重要因子を精度よく予測することを目的とする。
 本発明の一態様に係る重要因子算出装置は、
 ろ過膜のファウリングの原因となる物質を算出する重要因子算出装置であって、
 前記ろ過膜に付着した有機物のNMR(Nuclear Magnetic Resonance)スペクトルにおける各化学シフトにおける強度を説明変数、前記NMRスペクトルの強度の総和である積算強度を目的変数とする学習データを用いて、NMRスペクトルから積算強度を予測する予測器を学習する学習部と、
 前記予測器の学習結果に基づいて、前記積算強度の予測に寄与する原因物質を示す情報を出力する出力部と、
 を備える、ことを特徴とする。
 本開示において、前記説明変数は、前記有機物の高分子物質および/または低分子物質における化学シフトごとの強度であってもよい。また、前記予測器は、回帰または分類を目的とするアルゴリズムによる機械学習によって学習されてもよい。また、前記出力部は、化学シフトごとの前記積算強度の予測の寄与度が閾値以上であるまたは上位所定数の化学シフトを、前記積算強度の予測に寄与する前記化学シフトとして出力してもよい。
 さらに、本発明の一態様に係る重要因子算出装置は、
 ろ過膜のファウリングの原因となる重要因子を算出する重要因子算出装置であって、
 前記ろ過膜のろ過性能を示すパラメータと前記ろ過膜が用いられる排水処理系の水質を示すパラメータを含む複数のパラメータの時系列データから、単位タイムステップ後の前記ろ過膜のろ過性能を予測する予測器を学習する学習部と、
 前記予測器から、前記単位タイムステップ後の前記ろ過膜のろ過性能の予測に寄与するパラメータを出力する出力部と、
 を備える、ことを特徴とする。
 本開示において、前記学習部は、前記水質を示すパラメータごとに値を変更した時系列データを用いて前記予測器を学習し、前記出力部は、前記変更した時系列データを用いた場合の予測精度の低下の度合いを基に、前記ろ過膜のろ過性能の予測に寄与するパラメータを出力してもよい。また、前記水質を示すパラメータは、pH、酸化還元電位、溶存酸素濃度、濁度、温度、硫化水素濃度、硝酸濃度、アンモニア濃度、導電率、塩分濃度、塩化物濃度、総溶解固形物濃度、総浮遊物質濃度、紫外線吸光光度、色度、元素濃度、亜硝酸濃度、リン酸濃度、BOD(生物化学的酸素要求量)、COD(化学的酸素要求量)、ATP(アデノシン三リン酸)量、NMRスペクトルにおける化学シフトにおける強度、微生物の割合の少なくとも1つを含んでいればよい。また、前記ろ過膜のろ過性能を示すパラメータは、差圧またはろ過流量であってもよい。また、前記予測器は、再帰型ニューラルネットワークによる機械学習によって学習されてもよい。
 さらに、本発明の一態様に係るファウリング発生予測装置は、
 ろ過膜のファウリングの発生を予測するファウリング発生予測装置であって、
 前記ろ過膜のろ過性能を示すパラメータと前記ろ過膜が用いられる排水処理系の水質を示すパラメータを含む複数のパラメータの時系列データから、単位タイムステップ後の前記ろ過膜のろ過性能および前記複数のパラメータの推定値を出力する予測器と、
 前記予測器による推定値を再び前記予測器の入力とする予測を繰り返すことにより、所定タイムステップ後までのろ過性能を予測する予測手段と、
 前記所定タイムステップまでにろ過性能パラメータが閾値以下または閾値以上となる場合に、ファウリングが発生することを通知する通知手段と、
 を備える、ことを特徴とする。
 本発明はまた、上記の処理をコンピュータによって実行する予測方法と捉えることができる。すなわち、本発明の他の態様は、コンピュータによって実行される重要因子算出方法であって、
 ろ過膜に付着した有機物のNMRスペクトルにおける各化学シフトにおける強度を説明変数、前記NMRスペクトルの強度の総和である積算強度を目的変数とする学習データを用いて、NMRスペクトルから積算強度を予測する予測器を学習するステップと、
 前記予測器の学習結果に基づいて、前記積算強度の予測に寄与する原因物質を示す情報を出力するステップと、
 を含む、ことを特徴とする。
 また、本発明の他の態様は、コンピュータによって実行される重要因子算出方法であって、
 ろ過膜のろ過性能を示すパラメータと前記ろ過膜が用いられる排水処理系の水質を示すパラメータを含む複数のパラメータの時系列データから、単位タイムステップ後の前記ろ過膜のろ過性能を予測する予測器を学習するステップと、
 前記予測器から、前記単位タイムステップ後の前記ろ過膜のろ過性能の予測に寄与するパラメータを出力するステップと、
 を含む、ことを特徴とする。
 また、本発明の他の態様は、コンピュータによって実行されるファウリング発生予測方法であって、
 ろ過膜のろ過性能を示すパラメータと前記ろ過膜が用いられる排水処理系の水質を示すパラメータを含む複数のパラメータの時系列データから、単位タイムステップ後の前記ろ過膜のろ過性能および前記複数のパラメータの推定値を出力する予測器による推定値を再び前記予測器の入力とする予測を繰り返すことにより、所定タイムステップ後までのろ過性能を予測するステップと、
 前記所定タイムステップまでにろ過性能パラメータが閾値以下または閾値以上となる場合に、ファウリングが発生することを通知するステップと、
 を含む、ことを特徴とする。
 また、本開示の重要因子算出装置において、前記予測器は、第1のろ過システムにおける第1のろ過膜のろ過性能を示すパラメータと前記第1のろ過膜が用いられる排水処理系の水質を示すパラメータを含む複数のパラメータの観測値に基づく第1の学習データを用いて学習された予測モデルを、第2のろ過システムにおける第2のろ過膜のろ過性能を示すパラメータと前記第2のろ過膜が用いられる排水処理系の水質を示すパラメータを含む複数のパラメータの観測値に基づく第2の学習データを用いた転移学習によって学習することにより得られてもよい。
 本発明はまた、上記方法をコンピュータに実行させるためのプログラムとして捉えることができる。本発明はまた、上記方法を行うための学習済モデルおよび学習済モデルの作成方法として捉えることができる。本発明はまた、当該プログラムまたは学習済モデルを記憶したコンピュータ可読記憶媒体として捉えることもできる。
 本発明によれば、ろ過膜のファウリングの発生要因となる重要因子を精度よく予測することができる。
一実施形態における養殖システムの概略構成図である。 一実施形態における重要因子算出装置の機能ブロック図である。 一実施形態におけるNMRスペクトルデータを示すグラフである。 一実施形態におけるファウリング発生の重要因子算出処理のフローチャートである。 図5Aは、一実施形態における予測処理の予測値と実測値の交差検証を示すグラフであり、図5Bは、一実施形態における化学シフトごとの重要度を示すグラフである。 一実施形態におけるろ過システムの概略構成図である。 一実施形態におけるファウリング発生の重要因子算出処理のフローチャートである。 一実施形態におけるファウリング発生予測装置の機能ブロック図である。 一実施形態におけるファウリング発生予測処理のフローチャートである。 図10Aは、一実施形態における膜差圧の予測値と実測値の交差検証を示すグラフであり、図10Bは、一実施形態における膜差圧の予測におけるパラメータごとの重要度を示すグラフである。 一変形例における、転移学習の予測モデル作成処理のフローチャートである。
 以下では、図面を参照しながら、この発明を実施するための形態を説明するが、本発明はこれに限定されない。以下で説明する各実施形態の構成要素は、適宜組み合わせることができる。
 以下の実施形態では、ろ過技術を用いた排水処理系においてろ過膜やろ過槽から得られるデータを用いる。ただし、ろ過膜を用いる排水処理系であれば、後述の陸上養殖システムや膜分離活性汚泥法のシステムに限らず以下の実施形態を適用することができる。
<第1実施形態>
 以下、第1実施形態について説明する。第1実施形態では、ろ過槽から排水処理を行ったろ過膜を回収し、ろ過膜の表面に付着した有機物のNMRスペクトルを測定する。そして、得られるNMRスペクトルデータを機械学習アルゴリズムを用いて、ろ過膜のファウリング発生の重要因子を予測する予測モデルを作成する。これにより、作成した予測モデルにろ過膜のNMRスペクトルデータを入力することで、当該ろ過膜のファウリングに寄与する度合いの高い重要因子を特定することができる。
(養殖システムの概要)
 図1に、本実施形態で用いられる養殖システムの概略構成を示す。図1に示すように、養殖システム1は、飼育槽11、一次ろ過槽12、ポンプ13、ろ過膜14、圧力センサ15、16、流量センサ17、貯水槽18を有する。飼育槽11は、魚10を飼育する水槽である。一次ろ過槽12は、飼育槽の水19をろ過するために貯水する水槽である。ポンプ13は、一次ろ過槽12から取水するポンプである。ろ過膜14は、ポンプ13によって吸い上げられた水をろ過する。圧力センサ15は、ろ過膜14を通過する前の水の水圧を測定する。圧力センサ16は、ろ過膜14を通過した水の水圧を測定する。流量センサ17は、ろ過膜14を通過した水の流量を測定する。貯水槽18は、ろ過膜14を通過した水を貯留する水槽である。
 本実施形態では、一例として魚10がコモンフグであり、養殖システム1において7ml/分で680分間のろ過処理を行うことを想定する。そして、ろ過処理後のろ過膜14を回収する。なお、ここでは、同様のろ過処理を行ったろ過膜14を60サンプル回収する。回収したろ過膜14の表面に付着した有機物をKpi溶液で抽出する。抽出液であるKpi溶液には、規定濃度の内部標準を混合しておく。そして、抽出した有機物に対してプロトン核磁気共鳴(H-NMR)測定を行うことでスペクトルデータを取得する。取得したスペクトルデータは、重要因子算出装置によって、化学シフトごとの強度を説明変数、強度の総和である積算強度を目的変数として、機械学習アルゴリズムにより予測器(予測モデル)を構築する。説明変数は、3種類のパルスプログラム(有機物全体を測定するwatergate、有機物の高分子物質を測定するdiffusion-edited、有機物の低分子物質を測定する2D-Jres)における各化学シフトの強度を用いる。なお、これら3種類のパルスプログラムは一例であり、代わりに他のパルスプログラムを用いてもよいし、他のパルスプログラムと組み合わされてもよい。
(重要因子の算出)
 図2は、ファウリングの原因となる重要因子を算出するための重要因子算出装置100の構成を示す。重要因子算出装置100は、学習データ取得部111、前処理部112、学習部113、予測器115、重要因子出力部116をその機能部として含む。重要因子算出装置100は、演算プロセッサ、記憶装置、入力装置、出力装置、通信装置等を含むコンピュータ(情報処理装置)であり、演算プロセッサがプログラムを実行することによってこれらの機能が実現される。
 本実施形態では、学習データ取得部111は、予測器115の学習に用いる学習データ114(NMRスペクトルデータ)を養殖システム1から取得する。また、前処理部112は、内部標準のスペクトル強度を、回収したすべてのろ過膜14で統一することで、NMRスペクトルデータの強度を補正する。強度の補正は、周知の技術を用いて実現できるため、詳細については説明を省略する。さらに、前処理部112は、ろ過膜14の有機物の総量の指標として、H-NMR(watergate)の積算強度を生成する。一例として、前処理部112は、NMRスペクトルデータを化学シフト0.01ppmごとにビン化および数値情報化することで、積算強度を生成する。
 学習部113は、前処理部112によって補正されたNMRスペクトルデータや前処理部112によって生成された積算強度を用いて、3種類のパルスプログラム(watergate、diffusion-edited、2D-Jres)における各化学シフトの強度を説明変数に、機械学習アルゴリズムによってH-NMR(watergate)の積算強度を予測する予測モデル115を作成する。なお、これら3種類のパルスプログラムの少なくとも1つのプログラムにおける化学シフトの強度が説明変数として採用されればよい。
 また、ここで用いられる機械学習アルゴリズムとして、決定木分析法、ブースティング法の他、サポート・ベクター・マシン、ニューラルネットワーク、ディープニューラルネットワークなどが挙げられる。また、これらは回帰を目的とするものであっても、分類を目的とするものであってもよい。さらに、学習アルゴリズムの複数を組み合わせて1つの学習モデルを作成するアンサンブル学習とすることも可能である。
 本実施形態において、watergateパルスプログラムによって測定される主な物質は、糖類(グルコース・ガラクトース等)、タンパク質・アミノ酸(ベタイン、グルタミン、バリン、イソロイシン等)、脂質、有機酸(乳酸、コハク酸、ギ酸等)などである。またdiffusion-editedパルスプログラムによって測定される主な物質は高分子物質であり、糖類(グルコース・ガラクトース等)、タンパク質などである。また、2D-Jresパルスプログラムによって測定される主な物質は低分子物質であり、アミノ酸(ベタイン、タウリン、グルタミン、イソロイシン等)、有機酸(乳酸、コハク酸、ギ酸等)などである。
 図3は、本実施形態において、1サンプルのフィルタから得られるフィルタに付着した物質の化学シフトに対応する強度の一例を示すグラフである。また、各化学シフトにおける強度を合計(積分)したものが積算強度である。
(ファウリング発生の重要因子の予測)
 図4は、重要因子算出装置100が行う予測処理の流れを示すフローチャートである。以下、図4を参照して、重要因子算出装置100について説明する。
 ステップS101において、学習データ取得部111は、養殖システム1のろ過槽で排水処理を行ったろ過膜について上記の説明の処理によって得られるNMRスペクトルデータを学習データ114として取得する。
 次に、ステップS102において、前処理部112は、学習データ取得部111が取得したNMRスペクトルデータの強度を補正する。また、前処理部112は、NMRスペクトルデータから積算強度を生成する。次に、ステップS103において、学習部113は、ステップS102によって得られるNMRスペクトルデータと積算強度の組を学習データとして用いて、NMRスペクトルデータから積算強度を予測するための予測器115を学習する。上述したように、機械学習アルゴリズムには、例えば、ランダムフォレスト法が用いられる。
 予測器115の学習処理において、積算強度の予測に寄与する各化学シフトの重要度が求められる。そこで、ステップS104において、重要因子出力部116は、ステップS103での学習結果を基に、重要度が高い化学シフトを、ろ過膜のファウリング発生に寄与する重要因子(ファウリングの原因となる物質)を示す情報として、重要因子予測装置100に接続されている図示しない表示装置や記憶装置などに出力する。重要因子出力部116は、重要度が閾値以上の化学シフトや上位所定数の化学シフトを重要因子として特定し、特定した重要因子を出力してもよい。あるいは、重要因子出力部116は、各化学シフトの重要度を出力してもよい。また、重要因子出力部116は、重要度が高い化学シフトに対応する物質名を特定して、特定した物質名を出力してもよい。
 図5Aは、本実施形態において、ろ過膜のファウリング発生に寄与する重要因子を示す強度の予測値と実測値との関係の一例を示すグラフである。図5Aには、上記の3種類のパルスプログラム(watergate、diffusion-edited(図中「diffedt」)、2D-Jres(図中「2dj」))による積算強度(スペクトル総和強度)の予測値と実測値の交差検証を示す。また、図5Bは、強度の予測における化学シフトごとの寄与度(図中「重要度」)を示すグラフである。
 図5Aに示すように、強度の予測値と実測値の相関が線形的であることから、本実施形態における予測器の学習が適切に行われ、重要因子の予測も適切に行うことができることがわかる。そして、本実施形態の重要因子予測装置の上記処理により予測される重要因子が、実際のろ過膜のファウリング発生に寄与する重要因子とみなすことができるといえる。
 また、図5Bに示すように、グラフにおいて寄与度のピークが検出でき、このピークを示す化学シフトを、実際のろ過膜のファウリング発生に寄与する重要因子とみなすことができることがわかる。特に、図5Bのグラフにおいて、高分子有機物の情報が抽出されるdiffusion-editedパルスプログラムでは、顕著に高い4つのピークが検出され、これらは糖類、タンパク質、脂質のピークと一致する。このことから、これらの有機物が、ろ過膜に付着する有機物を増大させる原因物質、ひいてはろ過膜のファウリング発生に寄与する重要因子であると考えることができる。なお、上述したように、重要因子出力部116は図5Bに示すグラフを出力してもよいし、当該グラフから導かれる特定の化学シフトあるいは物質名を出力してもよい。
 本実施形態によれば、上記の予測モデルを用いて、ろ過膜のファウリングの発生に寄与する度合いが高い重要因子を予測することができ、排水処理系においてファウリングの発生しやすさを評価するためにどのような水質をモニタリングすればよいか、またファウリング発生を遅延させるためにどの物質を除去すればよいかを特定することができる。これにより、ろ過膜のファウリング発生をより低減することが可能な養殖システムを実現することができる。また、ファウリングと各種物質組成の関係を記述したシミュレーションモデルを利用した機械学習(TD(Temporal Difference)学習、Q学習、DQN(Deep Q-Network)などの強化学習)を行い、ファウリングの程度が最も低くなる各種構成物質の存在比の最適値予測が可能である。
<第2実施形態>
 次に、第2実施形態について説明する。第2実施形態では、メタン発酵排水を用いた、膜分離活性汚泥法によるろ過処理システムで定量ろ過処理試験を行い、膜差圧、ろ過流量、水質(pH、ORP(酸化還元電位)、O、濁度など)の時系列データを取得する。そして、時系列データの機械学習に適した再帰型ニューラルネットワーク(RNN)による機械学習を行って予測モデルを作成し、膜差圧の予測における寄与の度合い(重要度)を算出する。さらに、予測モデルを用いて、ろ過膜のファウリング発生の指標となる膜差圧の予測を行う。
 (膜分離活性汚泥法のろ過システムの概要)
図6に、本実施形態で用いられる膜分離活性汚泥法のろ過システムの概略構成を示す。図6に示すように、膜分離活性汚泥法のろ過システム2は、原水タンク21、ろ過処理タンク22、貯水タンク23、ポンプ24、25、26、散気管27、ろ過膜28、圧力センサ29、流量センサ30、各種水質センサ31を有する。原水タンク21は、排液原水32を貯留するタンクである。ポンプ24は、排液原水32を原水タンク21からろ過処理タンク22に送るポンプである。ポンプ25は、散気管27に空気を送るポンプであり、散気管27は、ろ過膜28の曝気洗浄を行うものである。ろ過膜28は。ポンプ26でくみ上げられた排水のろ過を行う。圧力センサ29は、ろ過膜28を通過した水の圧力を測定する。流量センサ30は、ろ過膜28を通過した水の流量を測定する。水質センサ31は、ろ過処理タンク排液33の水質を測定するものである。貯水タンク23は、ろ過膜28を通過した水34を貯水するタンクである。
(予測器の学習および重要因子の算出)
 本実施形態では、第1実施形態における重要因子算出装置100と同様の構成を備える装置を用いて重要因子の予測を行うことができるが、主に学習データ取得部111が取得するデータ、前処理部112の処理、学習部113の学習処理などが第1実施形態とは異なる。本実施形態では、重要因子算出装置100の学習データ取得部111は、ろ過システム2に設けられた各種センサから1時間ごと、6時間ごと、1日ごとなどあらかじめ設定された時間間隔で、膜差圧、ろ過流量、水質(pH、ORP(酸化還元電位)、溶存酸素濃度、濁度など)の時系列データを学習データ114として取得する。
 前処理部112は、外れ値処理、欠損値補間、データ統合、正規化の処理を行う。前処理部112は、外れ値や欠損値を、必要に応じて除外あるいは補間する。補間には、k近傍法、MissForest、ベイジアンPCA(Bayesian Principal Component Analysis、BPCA)、確立的PCA(Probabilistic Principal Component Analysis、PPCA)、Singular Value Decomposition(SVD)、中央値、平均値などを利用した値を採用すればよい。欠損値補間は、データが周期性を有する場合や変動が少ない場合に特に有効である。正規化は、最小値を0、最大値を1とするようにする処理である。なお、データ中の最小値と最大値を使うmin-max法、平均を0、分散を1として処理するz-score法などを利用してもよい。前処理部112は、必要に応じて、連続データを離散データに変換する離散化処理、およびデータの圧縮処理(固有値分解)を行ってもよい。
 学習部113は、学習データ取得部111が取得した時系列データから、入力データに含まれる説明変数の所定の単位時間経過後の膜圧差の推定値を出力する予測器(予測モデル)115の学習を行う。ここで、所定時間は、適宜決定でき、センサから取得する時系列データの取得の時間間隔に応じて決定されてもよい。時系列データに基づく予測を行うことから、予測器115には、再帰型ニューラルネットワーク(RNN)、具体的には、Simple RNN, Long Short-Term Memory(LSTM)、Gated Recurrent Unit(GRU)などを利用可能である。また、予測器115のアルゴリズムは、決定木分析法、ブースティング法の他、サポート・ベクター・マシン、ニューラルネットワーク、ディープニューラルネットワークなどの機械学習によるものでもよい。特に時系列モデルの構築には再帰型ニューラルネットワークを利用するのが好ましい。また、これらは回帰を目的とするものであっても、分類を目的とするものであってもよい。さらに、学習アルゴリズムの複数を組み合わせて一つの学習モデルを作成するアンサンブル学習とすることも可能である。
 また、機械学習のアルゴリズムの実装プログラムは、説明変数の時系列データから各項目の単位時間後の推定値を目的変数として出力して、本実施形態の効果として意図する環境因子の予測が可能なものである限り、種類は問わない。例えば、Python言語のKerasパッケージを用いてTensorFlowパッケージをバックエンドとして機能させて計算することで予測モデルを構築する機械学習のプログラムを実装できる。
 本実施形態では、予測器115の説明変数と目的変数は同じであり、入力される時系列データと同じ項目について所定タイムステップ後(単位時間後)の推定値が出力される。なお、本実施形態で用いる説明変数および目的変数としては、膜差圧、ろ過流量などのろ過膜のろ過性能を示す各種パラメータの他、ろ過する水のpH、OPR、溶存酸素濃度、濁度、温度、硫化水素濃度、硝酸濃度、アンモニア濃度、導電率、塩分濃度、塩化物濃度、総溶解固形物濃度(TDS)、総浮遊物質濃度(TSS)、紫外線吸光光度(UV)、色度、各種元素濃度(炭素濃度、総窒素濃度、総リン濃度等)、亜硝酸濃度、リン酸濃度、BOD(生物化学的酸素要求量)、COD(化学的酸素要求量)、ATP(アデノシン三リン酸)量、NMRスペクトルの各化学シフトにおける強度、次世代シーケンサーで得られる各種微生物の割合などの水質を示す各種パラメータが挙げられる。
 また、学習部113は、Permutation Importance法により、時系列データにおけるパラメータの特徴量をランダムに入れ替えて、予測器115によって得られる膜圧差の推定値との誤差を基に、予測精度がどれだけ低下したかを特定することで、膜差圧予測における各説明変数の重要度を算出し、膜圧差への寄与度が高いパラメータを重要因子として特定する。そして、重要因子出力部116は、学習部113と予測器115によって特定された重要因子を重要因子予測装置100に接続されている図示しない表示装置や記憶装置などに出力する。
 図7は、本実施形態において重要因子算出装置100が行う重要因子予測処理の流れを示すフローチャートである。ステップS201において、学習データ取得部111は、上記の説明変数の時系列データを取得する。次に、ステップS202において、前処理部112は、ステップS201において取得した時系列データに対して上記の補間処理を行う。
 次に、ステップS203において、学習部113は、補間処理がされた時系列データを用いた機械学習によって、上記の予測器115の学習を行い、予測モデルを作成する。そして、ステップS204において、Permutation Importance法により学習部113と予測器115を用いて膜差圧予測における各説明変数の重要度を算出し、膜圧差への寄与度が高いパラメータを重要因子として特定する。そして、重要因子出力部116は、特定された重要因子を出力する。
(ファウリング発生予測)
 図8は、ろ過膜のファウリング発生を予測するためのファウリング発生予測装置300の一実施形態に係る構成を示す。ファウリング発生予測装置300は、入力データ取得部301、予測部302、予測器303、出力部304をその機能部として含む。ファウリング発生予測装置300は、演算プロセッサ、記憶装置、入力装置、出力装置、通信装置等を含むコンピュータ(情報処理装置)であり、演算プロセッサがプログラムを実行することによってこれらの機能が実現される。
 図9は、ファウリング発生予測装置300が行うファウリング予測処理の流れを示すフローチャートである。以下、図8および図9を参照して、ファウリング発生予測装置300について説明する。なお、本実施形態において、予測器303は、上記の時系列データに基づいて学習されているとする。
 まず、ステップS301において、入力データ取得部301は、ろ過システム2のセンサから得られる直近の時系列データを取得する。ここでは、所定のタイムステップを決めて3タイムステップ分(A=3)の時系列データ305を取得する。なお、タイムステップとしては、1分、1時間、1日など適宜決められてよい。
 ループL1において、予測部302は、直近のAタイムステップの間のデータを予測器303に入力して次のタイムステップのデータ(膜圧差の推定値)を予測し、それをさらに予測器303に再帰させることを繰り返してNタイムステップ目までのデータを予測する(ステップS302)。具体的には、A=3として、まずT-1タイムステップ目からT-3タイムステップ目の時系列データからTタイムステップ目のデータを予測し、Tタイムステップ目の予測データとT-1,T-2タイムステップ目の時系列データからT+1タイムステップ目のデータを予測し、T+1,Tタイムステップ目の予測データとT-1タイムステップ目の時系列データからT+2タイムステップ目のデータを予測する。これを繰り返すことで、Nタイムステップ目までのデータの予測値を算出し長期予測が可能となる。ここで、例えばNは2以上の整数であれば任意の値であってよい。
 Nタイムステップ目までの予測が完了したら、ステップS303において、予測部302はNタイムステップ後までの膜圧差の推定値に基づいて、推定値が所定閾値以上となる場合に、ろ過膜のファウリングが発生すると予測する。そして、出力部304は、予測部302によってろ過膜のファウリングが発生すると予測された場合に、ろ過膜のファウリング発生を、ファウリング発生予測装置300に接続されている図示しない表示装置や記憶装置などを介して通知する。
 図10Aは、本実施形態における膜差圧(kPa)の予測値と実測値の関係の一例を示すグラフである。また、図10Bは、予測部302によって算出された膜差圧予測における各説明変数の重要度の一例を示す。図10Aに示すように、データ点が略線形的に連なっていることから、本実施形態の予測モデルによる膜差圧の予測が実測と相関があることがわかる。また、図10Bに示すように、本実施形態の膜差圧予測において、圧力、ろ過流量、ろ過時間の運転性能の他、酸素濃度といった水質に関連するパラメータも膜差圧の予測における重要度が高いことがわかる。
 本実施形態によれば、ろ過システムのろ過膜の膜差圧に関するモニタリングデータを基にろ過膜のファウリングを予測することができる。また、膜差圧の予測に対する寄与の度合いが高いパラメータの予測結果を基に、ろ過システムにどのような種類のセンサを設ければよいかも特定できるため、より効率的なろ過膜のファウリングの予測が可能となる。また、本実施形態に係るろ過膜のファウリング予測によれば、逐次データを学習済み学習データに入力し、予測値を含む逐次データを学習済みモデルに再入力することで、1ステップ先の未来だけではなく長期先の未来の予測も可能になる。
<変形例>
 上記の説明では、予測器は、3タイムステップ分(3単位時間分)のデータを用いて1タイムステップ後のデータを予測するものとしたがより長いタイムステップ分のデータを使用して1タイムステップ後のデータを予測してもよい。タイムステップを長くすることで、予測精度の向上が期待でき、特にデータの周期性が学習に反映されれば予測精度の向上に大きく寄与する。一方、タイムステップを長くすることで欠損値データに遭遇する可能性も高まるので、この点も考慮してタイムステップを決定するとよい。
 また、別の変形例として、上記の学習済モデルである予測モデル(予測器)は、他の系の未学習データに移植し、移植先のデータが少ない場合でも、転移元の予測モデルを利用した高精度な予測モデルを構築する転移学習が可能であり、これにより汎化性能の向上が可能である。なお、転移学習の手法として、学習済のネットワークの重みを固定して新たな層の重みを学習する手法、学習済のネットワークの重みを初期値としてモデル全体の重みを再学習する手法(いわゆるファインチューニング)等がある。さらに、学習アルゴリズムの複数を組み合わせて1つの予測モデルを作成するアンサンブル学習とすることも可能である。また、ろ過システムの構成図(図6)を考慮した予測モデルを構築することも可能である。例えば、設置箇所に基づいて各センサの計測値をグラフ化することで機械学習(Graph Conventional Network(GCN)やGraph Recurrent Neural Network(GRNN)などのグラフニューラルネットワーク)による予測をすることも可能である。この場合、上記の実施形態において、ろ過膜のろ過性能を示すパラメータとろ過膜が用いられる排水処理系の水質を示すパラメータを含む複数のパラメータを出力する複数のセンサの計測値をグラフ化したグラフ表現の機械学習により、単位タイムステップ後のろ過膜のろ過性能を予測する予測器を学習する。また、ろ過システムの各工程を行列データとして機械学習するプロセスマイニングを行うことも可能である。この場合、上記の実施形態において、ろ過膜のろ過工程を行列データとして機械学習するプロセスマイニングを行うことによって、任意の単位タイムステップ時または後のろ過膜のろ過性能の最適プロセスを予測する予測器を学習する。これにより、工程の効率化の探索をすることも可能である。その他、各センサの時系列挙動を数理式で定義したファウリングのシミュレーションモデルを利用した機械学習(TD学習、Q学習、DQNなどの強化学習)を行うことも可能である。この場合、上記の実施形態において、ろ過膜のろ過性能を示すパラメータとろ過膜が用いられる排水処理系の水質を示すパラメータを含む複数のパラメータを出力する複数のセンサの時系列挙動を数理式で定義したファウリングのシミュレーションモデルを利用した機械学習により、任意の単位タイムステップ時または後のろ過膜のろ過性能の最適値を予測する予測器を学習する。これにより、ろ過システムの設定値(パラメータ)の最適値予測探索が可能である。
 図11に、本変形例で転移学習を行う場合における、学習部113が実行する転移学習の予測モデルを作成する処理のフローチャートの一例を示す。本フローチャートは、上記実施形態のステップS203の代わりに実行される。ステップS401において、学習部113は、第1のろ過システムとしての予測モデルの転移元(移植元)において、第1のろ過膜としてのろ過膜のろ過性能を示すパラメータと当該ろ過膜が用いられる排水処理系の水質を示すパラメータを含む複数のパラメータの観測値を用いて、上記の実施形態で説明した処理によって学習済の予測モデルを取得する。次にステップS402において、学習部113は、予測モデルの転移先において、上記のステップS201で説明した処理と同様に時系列データを取得する。
 次に、ステップS403において、S401において取得した予測モデルを読み込み、ニューラルネットワーク構造の1からk-1番目の隠れ層のパラメータを固定し、kからn番目の隠れ層を更新する。次に、ステップS404において、学習部113は、第2のろ過システムとしての予測モデルの転移先における、第2のろ過膜としてのろ過膜のろ過性能を示すパラメータと当該ろ過膜が用いられる排水処理系の水質を示すパラメータを含む複数のパラメータの観測値を用いてモデルを再学習し、パラメータの調整を行うことで転移学習による予測モデルを得る。そして、学習部113が本フローチャートを終了すると、処理は上記のステップS204に進み、Permutation Importance法により学習部113と予測器115を用いて各説明変数の重要度を算出し、膜圧差への寄与度が高いパラメータを重要因子として特定する。
100:重要因子算出装置 111:学習データ取得部 112:前処理部 113:学習部 115:予測器
300:ファウリング発生予測装置 301:入力データ取得部 302:予測部 303:予測器 304:出力部

Claims (33)

  1.  ろ過膜のファウリングの原因となる重要因子を算出する重要因子算出装置であって、
     前記ろ過膜のろ過性能を示すパラメータと前記ろ過膜が用いられる排水処理系の水質を示すパラメータを含む複数のパラメータの時系列データから、単位タイムステップ後の前記ろ過膜のろ過性能を予測する予測器を学習する学習部と、
     前記予測器から、前記単位タイムステップ後の前記ろ過膜のろ過性能の予測に寄与するパラメータを出力する出力部と、
     を備える、重要因子算出装置。
  2.  前記学習部は、前記水質を示すパラメータごとに値を変更した時系列データを用いて前記予測器を学習し、
     前記出力部は、前記変更した時系列データを用いた場合の予測精度の低下の度合いを基に、前記ろ過膜のろ過性能の予測に寄与するパラメータを出力する、
     請求項1に記載の重要因子算出装置。
  3.  前記水質を示すパラメータは、pH、酸化還元電位、溶存酸素濃度、濁度、温度、硫化水素濃度、硝酸濃度、アンモニア濃度、導電率、塩分濃度、塩化物濃度、総溶解固形物濃度、総浮遊物質濃度、紫外線吸光光度、色度、元素濃度、亜硝酸濃度、リン酸濃度、BOD(生物化学的酸素要求量)、COD(化学的酸素要求量)、ATP(アデノシン三リン酸)量、NMRスペクトルにおける化学シフトにおける強度、微生物の割合の少なくとも1つを含む、
     請求項1または2に記載の重要因子算出装置。
  4.  前記ろ過膜のろ過性能を示すパラメータは、差圧またはろ過流量である、
     請求項1から3のいずれか1項に記載の重要因子算出装置。
  5.  前記予測器は、回帰または分類を目的とするアルゴリズムによる機械学習によって学習される、
     請求項1から4のいずれか1項に記載の重要因子算出装置。
  6.  ろ過膜のファウリングの発生を予測するファウリング発生予測装置であって、
     前記ろ過膜のろ過性能を示すパラメータと前記ろ過膜が用いられる排水処理系の水質を示すパラメータを含む複数のパラメータの時系列データから、単位タイムステップ後の前記ろ過膜のろ過性能および前記複数のパラメータの推定値を出力する予測器と、
     前記予測器による推定値を再び前記予測器の入力とする予測を繰り返すことにより、所定タイムステップ後までのろ過性能を予測する予測手段と、
     前記所定タイムステップまでにろ過性能パラメータが閾値以下または閾値以上となる場合に、ファウリングが発生することを通知する通知手段と、
     を備える、ファウリング発生予測装置。
  7.  ろ過膜のファウリングの原因となる物質を算出する重要因子算出装置であって、
     前記ろ過膜に付着した有機物のNMR(Nuclear Magnetic Resonance)スペクトルにおける各化学シフトにおける強度を説明変数、前記NMRスペクトルの強度の総和である積算強度を目的変数とする学習データを用いて、NMRスペクトルから積算強度を予測する予測器を学習する学習部と、
     前記予測器の学習結果に基づいて、前記積算強度の予測に寄与する原因物質を示す情報を出力する出力部と、
     を備える、重要因子算出装置。
  8.  前記説明変数は、前記有機物の高分子物質および/または低分子物質における化学シフトごとの強度である、
     請求項1に記載の重要因子算出装置。
  9.  前記予測器は、回帰または分類を目的とするアルゴリズムによる機械学習によって学習される、
     請求項7または8に記載の重要因子算出装置。
  10.  前記出力部は、化学シフトごとの前記積算強度の予測の寄与度が閾値以上であるまたは上位所定数の化学シフトを、前記積算強度の予測に寄与する前記化学シフトとして出力する、
     請求項7から9のいずれか1項に記載の重要因子算出装置。
  11.  ろ過膜に付着した有機物のNMRスペクトルにおける各化学シフトにおける強度を説明変数、前記NMRスペクトルの強度の総和である積算強度を目的変数とする学習データを用いて、NMRスペクトルから積算強度を予測する予測器を学習するステップと、
     前記予測器の学習結果に基づいて、前記積算強度の予測に寄与する原因物質を示す情報を出力するステップと、
     を含む、重要因子算出方法。
  12.  ろ過膜のろ過性能を示すパラメータと前記ろ過膜が用いられる排水処理系の水質を示すパラメータを含む複数のパラメータの時系列データから、単位タイムステップ後の前記ろ過膜のろ過性能を予測する予測器を学習するステップと、
     前記予測器から、前記単位タイムステップ後の前記ろ過膜のろ過性能の予測に寄与するパラメータを出力するステップと、
     を含む、重要因子算出方法。
  13.  ろ過膜のろ過性能を示すパラメータと前記ろ過膜が用いられる排水処理系の水質を示すパラメータを含む複数のパラメータの時系列データから、単位タイムステップ後の前記ろ過膜のろ過性能および前記複数のパラメータの推定値を出力する予測器による推定値を再び前記予測器の入力とする予測を繰り返すことにより、所定タイムステップ後までのろ過性能を予測するステップと、
     前記所定タイムステップまでにろ過性能パラメータが閾値以下または閾値以上となる場合に、ファウリングが発生することを通知するステップと、
     を含む、ファウリング発生予測方法。
  14.  請求項11から13のいずれか1項に記載の方法の各ステップをコンピュータに実行させるプログラム。
  15.  ろ過膜に付着した有機物のNMRスペクトルにおける各化学シフトにおける強度を説明変数、前記NMRスペクトルの強度の総和である積算強度を目的変数とする学習データを用いて、NMRスペクトルから積算強度を予測する予測器を含み、
     前記予測器の学習結果に基づいて、前記積算強度の予測に寄与する原因物質を示す情報を出力するよう、コンピュータを機能させるための学習済モデル。
  16.  ろ過膜のろ過性能を示すパラメータと前記ろ過膜が用いられる排水処理系の水質を示すパラメータを含む複数のパラメータの時系列データから、単位タイムステップ後の前記ろ過膜のろ過性能を予測する予測器を含み、
     前記予測器から、前記単位タイムステップ後の前記ろ過膜のろ過性能の予測に寄与するパラメータを出力するよう、コンピュータを機能させるための学習済モデル。
  17.  ろ過膜のろ過性能を示すパラメータと前記ろ過膜が用いられる排水処理系の水質を示すパラメータを含む複数のパラメータの時系列データから、単位タイムステップ後の前記ろ過膜のろ過性能および前記複数のパラメータの推定値を出力する予測器を含み、
     前記予測器による推定値を再び前記予測器の入力とする予測を繰り返すことにより、所定タイムステップ後までのろ過性能を予測し、前記所定タイムステップまでにろ過性能が閾値以下となる場合に、ファウリングが発生することを通知するよう、コンピュータを機能させるための学習済モデル。
  18.  請求項14に記載のプログラムまたは請求項15から17のいずれか1項に記載の学習済モデルを記憶した記憶媒体。
  19.  ろ過膜に付着した有機物のNMRスペクトルにおける各化学シフトにおける強度を説明変数、前記NMRスペクトルの強度の総和である積算強度を目的変数とする学習データを用いて、NMRスペクトルから積算強度を予測する予測器を学習するステップと、
     前記予測器の学習結果に基づいて、前記積算強度の予測に寄与する原因物質を示す情報を出力する学習済モデルを作成するステップと、
    を含む学習済モデルの作成方法。
  20.  ろ過膜のろ過性能を示すパラメータと前記ろ過膜が用いられる排水処理系の水質を示すパラメータを含む複数のパラメータの時系列データから、単位タイムステップ後の前記ろ過膜のろ過性能を予測する予測器を学習するステップと、
     前記予測器から、前記単位タイムステップ後の前記ろ過膜のろ過性能の予測に寄与するパラメータを出力する学習済モデルを作成するステップと、
    を含む学習済モデルの作成方法。
  21.  ろ過膜のろ過性能を示すパラメータと前記ろ過膜が用いられる排水処理系の水質を示すパラメータを含む複数のパラメータの時系列データから、単位タイムステップ後の前記ろ過膜のろ過性能および前記複数のパラメータの推定値を出力する予測器を学習するステップと、
     前記予測器による推定値を再び前記予測器の入力とする予測を繰り返すことにより、所定タイムステップ後までのろ過性能を予測し、前記所定タイムステップまでにろ過性能が閾値以下となる場合に、ファウリングが発生することを通知する学習済モデルを作成するステップと、
    を含む学習済モデルの作成方法。
  22.  前記予測器は、第1のろ過システムにおける第1のろ過膜のろ過性能を示すパラメータと前記第1のろ過膜が用いられる排水処理系の水質を示すパラメータを含む複数のパラメータの観測値に基づく第1の学習データを用いて学習された予測モデルを、第2のろ過システムにおける第2のろ過膜のろ過性能を示すパラメータと前記第2のろ過膜が用いられる排水処理系の水質を示すパラメータを含む複数のパラメータの観測値に基づく第2の学習データを用いた転移学習によって学習することにより得られる、請求項1から5のいずれか1項に記載の重要因子算出装置。
  23.  前記予測器は、第1のろ過システムにおける第1のろ過膜のろ過性能を示すパラメータと前記第1のろ過膜が用いられる排水処理系の水質を示すパラメータを含む複数のパラメータの観測値に基づく第1の学習データを用いて学習された予測モデルを、第2のろ過システムにおける第2のろ過膜のろ過性能を示すパラメータと前記第2のろ過膜が用いられる排水処理系の水質を示すパラメータを含む複数のパラメータの観測値に基づく第2の学習データを用いた転移学習によって学習することにより得られる、請求項16に記載の学習済モデル。
  24.  前記予測器は、第1のろ過システムにおける第1のろ過膜のろ過性能を示すパラメータと前記第1のろ過膜が用いられる排水処理系の水質を示すパラメータを含む複数のパラメータの観測値に基づく第1の学習データを用いて学習された予測モデルを、第2のろ過システムにおける第2のろ過膜のろ過性能を示すパラメータと前記第2のろ過膜が用いられる排水処理系の水質を示すパラメータを含む複数のパラメータの観測値に基づく第2の学習データを用いた転移学習によって学習することにより得られる、請求項20に記載の学習済モデルの作成方法。
  25.  ろ過膜のファウリングの原因となる重要因子を算出する重要因子算出装置であって、
     前記ろ過膜のろ過性能を示すパラメータと前記ろ過膜が用いられる排水処理系の水質を示すパラメータを含む複数のパラメータを出力する複数のセンサの計測値をグラフ化したグラフ表現の機械学習により、単位タイムステップ後の前記ろ過膜のろ過性能を予測する予測器を学習する学習部と、
     前記予測器から、前記単位タイムステップ後の前記ろ過膜のろ過性能の予測に寄与するパラメータを出力する出力部と、
     を備える、重要因子算出装置。
  26.  ろ過膜のファウリングの原因となる重要因子を算出する重要因子算出装置であって、
     前記ろ過膜のろ過工程を行列データとして機械学習するプロセスマイニングを行うことによって、任意の単位タイムステップ時または後の前記ろ過膜のろ過性能の最適プロセスを予測する予測器を学習する学習部と、
     前記予測器から、前記単位タイムステップ時または後の前記ろ過膜のろ過性能の最適プロセスの予測に寄与するパラメータを出力する出力部と、
     を備える、重要因子算出装置。
  27.  ろ過膜のファウリングの原因となる重要因子を算出する重要因子算出装置であって、
     前記ろ過膜のろ過性能を示すパラメータと前記ろ過膜が用いられる排水処理系の水質を示すパラメータを含む複数のパラメータを出力する複数のセンサの時系列挙動を数理式で定義したファウリングのシミュレーションモデルを利用した機械学習により、任意の単位タイムステップ時または後の前記ろ過膜のろ過性能の最適値を予測する予測器を学習する学習部と、
     前記予測器から、前記単位タイムステップ時または後の前記ろ過膜のろ過性能の予測に寄与するパラメータの最適値を出力する出力部と、
     を備える、重要因子算出装置。
  28.  ろ過膜のろ過性能を示すパラメータと前記ろ過膜が用いられる排水処理系の水質を示すパラメータを含む複数のパラメータを出力する複数のセンサの計測値をグラフ化したグラフ表現の機械学習により学習された、単位タイムステップ後の前記ろ過膜のろ過性能を予測する予測器を含み、
     前記予測器から、前記単位タイムステップ後の前記ろ過膜のろ過性能の予測に寄与するパラメータを出力するよう、コンピュータを機能させるための学習済モデル。
  29.  ろ過膜のろ過工程を行列データとして機械学習するプロセスマイニングを行うことによって学習された、任意の単位タイムステップ時または後の前記ろ過膜のろ過性能の最適プロセスを予測する予測器を含み、
     前記予測器から、前記単位タイムステップ時または後の前記ろ過膜のろ過性能の最適プロセスの予測に寄与するパラメータを出力するよう、コンピュータを機能させるための学習済モデル。
  30.  ろ過膜のろ過性能を示すパラメータと前記ろ過膜が用いられる排水処理系の水質を示すパラメータを含む複数のパラメータを出力する複数のセンサの時系列挙動を数理式で定義したファウリングのシミュレーションモデルを利用した機械学習により学習された、任意の単位タイムステップ時または後の前記ろ過膜のろ過性能の最適値を予測する予測器を含み、
     前記予測器から、前記単位タイムステップ時または後の前記ろ過膜のろ過性能の予測に寄与するパラメータの最適値を出力するよう、コンピュータを機能させるための学習済モデル。
  31.  ろ過膜のろ過性能を示すパラメータと前記ろ過膜が用いられる排水処理系の水質を示すパラメータを含む複数のパラメータを出力する複数のセンサの計測値をグラフ化したグラフ表現の機械学習により、単位タイムステップ後の前記ろ過膜のろ過性能を予測する予測器を学習するステップと、
     前記予測器から、前記単位タイムステップ後の前記ろ過膜のろ過性能の予測に寄与するパラメータを出力する学習済モデルを作成するステップと、
    を含む学習済モデルの作成方法。
  32.  ろ過膜のろ過工程を行列データとして機械学習するプロセスマイニングを行うことによって、任意の単位タイムステップ時または後の前記ろ過膜のろ過性能の最適プロセスを予測する予測器を学習するステップと、
     前記予測器から、前記単位タイムステップ時または後の前記ろ過膜のろ過性能の最適プロセスの予測に寄与するパラメータを出力する学習済モデルを作成するステップと、
    を含む学習済モデルの作成方法。
  33.  ろ過膜のろ過性能を示すパラメータと前記ろ過膜が用いられる排水処理系の水質を示すパラメータを含む複数のパラメータを出力する複数のセンサの時系列挙動を数理式で定義したファウリングのシミュレーションモデルを利用した機械学習により、任意の単位タイムステップ時または後の前記ろ過膜のろ過性能の最適値を予測する予測器を学習するステップと、
     前記予測器から、前記単位タイムステップ時または後の前記ろ過膜のろ過性能の予測に寄与するパラメータの最適値を出力する学習済モデルを作成するステップと、
    を含む学習済モデルの作成方法。
PCT/JP2021/039305 2020-10-23 2021-10-25 ろ過膜のファウリングの重要因子算出装置、ファウリング発生予測装置、重要因子算出方法、ファウリング発生予測方法、プログラム、学習済モデル、記憶媒体および学習済モデルの作成方法 WO2022085802A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022557630A JPWO2022085802A1 (ja) 2020-10-23 2021-10-25

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-178381 2020-10-23
JP2020178381 2020-10-23

Publications (1)

Publication Number Publication Date
WO2022085802A1 true WO2022085802A1 (ja) 2022-04-28

Family

ID=81290666

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/039305 WO2022085802A1 (ja) 2020-10-23 2021-10-25 ろ過膜のファウリングの重要因子算出装置、ファウリング発生予測装置、重要因子算出方法、ファウリング発生予測方法、プログラム、学習済モデル、記憶媒体および学習済モデルの作成方法

Country Status (2)

Country Link
JP (1) JPWO2022085802A1 (ja)
WO (1) WO2022085802A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012192315A (ja) * 2011-03-15 2012-10-11 Toshiba Corp ファウリング生成の予測方法及び膜ろ過システム
JP2014136210A (ja) * 2013-01-18 2014-07-28 Toshiba Corp 膜ファウリング診断・制御装置、膜ファウリング診断・制御方法及び膜ファウリング診断・制御プログラム
JP2019155257A (ja) * 2018-03-12 2019-09-19 栗田工業株式会社 分離膜の汚染状況評価方法
JP2019206000A (ja) * 2019-07-04 2019-12-05 水ing株式会社 分離膜の汚染状態分析方法、その方法を用いるろ過対象水の水質評価方法、及び分離膜の汚染状態分析方法を行うためのろ過システム
WO2020021688A1 (ja) * 2018-07-26 2020-01-30 三菱電機株式会社 水処理プラントおよび水処理プラントの運転方法
US20200254391A1 (en) * 2019-02-11 2020-08-13 Doosan Heavy Industries & Construction Co., Ltd. Method of predicting membrane fouling in reverse osmosis process

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012192315A (ja) * 2011-03-15 2012-10-11 Toshiba Corp ファウリング生成の予測方法及び膜ろ過システム
JP2014136210A (ja) * 2013-01-18 2014-07-28 Toshiba Corp 膜ファウリング診断・制御装置、膜ファウリング診断・制御方法及び膜ファウリング診断・制御プログラム
JP2019155257A (ja) * 2018-03-12 2019-09-19 栗田工業株式会社 分離膜の汚染状況評価方法
WO2020021688A1 (ja) * 2018-07-26 2020-01-30 三菱電機株式会社 水処理プラントおよび水処理プラントの運転方法
US20200254391A1 (en) * 2019-02-11 2020-08-13 Doosan Heavy Industries & Construction Co., Ltd. Method of predicting membrane fouling in reverse osmosis process
JP2019206000A (ja) * 2019-07-04 2019-12-05 水ing株式会社 分離膜の汚染状態分析方法、その方法を用いるろ過対象水の水質評価方法、及び分離膜の汚染状態分析方法を行うためのろ過システム

Also Published As

Publication number Publication date
JPWO2022085802A1 (ja) 2022-04-28

Similar Documents

Publication Publication Date Title
Haimi et al. Data-derived soft-sensors for biological wastewater treatment plants: An overview
Mirbagheri et al. Evaluation and prediction of membrane fouling in a submerged membrane bioreactor with simultaneous upward and downward aeration using artificial neural network-genetic algorithm
Zhang et al. Backwash sequence optimization of a pilot-scale ultrafiltration membrane system using data-driven modeling for parameter forecasting
US11484843B2 (en) Method of predicting membrane fouling in reverse osmosis process
Han et al. Hierarchical neural network modeling approach to predict sludge volume index of wastewater treatment process
Odabaşı et al. Investigation of the factors affecting reverse osmosis membrane performance using machine-learning techniques
Yaqub et al. Modeling nutrient removal by membrane bioreactor at a sewage treatment plant using machine learning models
Viet et al. Development of artificial intelligence-based models for the prediction of filtration performance and membrane fouling in an osmotic membrane bioreactor
Zhao et al. Cleaning decision model of MBR membrane based on Bandelet neural network optimized by improved Bat algorithm
KR102311657B1 (ko) 하폐수 처리 스마트 관리 시스템
Zhu et al. Machine learning modelling of a membrane capacitive deionization (MCDI) system for prediction of long-term system performance and optimization of process control parameters in remote brackish water desalination
Han et al. An intelligent detecting system for permeability prediction of MBR
Li et al. Application of deep learning for predicting the treatment performance of real municipal wastewater based on one-year operation of two anaerobic membrane bioreactors
Nam et al. Dual-objective optimization for energy-saving and fouling mitigation in MBR plants using AI-based influent prediction and an integrated biological-physical model
Wu et al. Data-driven intelligent warning method for membrane fouling
Zhong et al. Water quality prediction of MBR based on machine learning: A novel dataset contribution analysis method
Ba-Alawi et al. Explainable multisensor fusion-based automatic reconciliation and imputation of faulty and missing data in membrane bioreactor plants for fouling alleviation and energy saving
Qambar et al. Development of local and global wastewater biochemical oxygen demand real-time prediction models using supervised machine learning algorithms
Klanderman et al. Case studies in real-time fault isolation in a decentralized wastewater treatment facility
Ludwig et al. An advanced simulation model for membrane bioreactors: development, calibration and validation
WO2022085802A1 (ja) ろ過膜のファウリングの重要因子算出装置、ファウリング発生予測装置、重要因子算出方法、ファウリング発生予測方法、プログラム、学習済モデル、記憶媒体および学習済モデルの作成方法
Heo et al. Digitally-transformed early-warning protocol for membrane cleaning based on a fouling-cumulative sum chart: Application to a full-scale MBR plant
Wang et al. Predictive modeling based on artificial neural networks for membrane fouling in a large pilot-scale anaerobic membrane bioreactor for treating real municipal wastewater
Sanchis-Perucho et al. Direct membrane filtration of municipal wastewater: studying the most suitable conditions for minimizing fouling rate in commercial porous membranes at demonstration scale
Dologlu et al. Data driven identification of industrial reverse osmosis membrane process

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21882941

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022557630

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21882941

Country of ref document: EP

Kind code of ref document: A1