WO2022085563A1 - Resin composition, bonding film, laminate with resin composition layer, laminate, and electromagnetic wave shield film - Google Patents

Resin composition, bonding film, laminate with resin composition layer, laminate, and electromagnetic wave shield film Download PDF

Info

Publication number
WO2022085563A1
WO2022085563A1 PCT/JP2021/038077 JP2021038077W WO2022085563A1 WO 2022085563 A1 WO2022085563 A1 WO 2022085563A1 JP 2021038077 W JP2021038077 W JP 2021038077W WO 2022085563 A1 WO2022085563 A1 WO 2022085563A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
resin composition
mass
composition according
polyester polyurethane
Prior art date
Application number
PCT/JP2021/038077
Other languages
French (fr)
Japanese (ja)
Inventor
雅弘 鳥居
勝 安藤
祐弥 沖村
真 平川
Original Assignee
東亞合成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東亞合成株式会社 filed Critical 東亞合成株式会社
Priority to CN202180071594.3A priority Critical patent/CN116390855A/en
Priority to KR1020237017369A priority patent/KR20230113299A/en
Priority to JP2022557443A priority patent/JPWO2022085563A1/ja
Publication of WO2022085563A1 publication Critical patent/WO2022085563A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/40Layered products comprising a layer of synthetic resin comprising polyurethanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/75Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/544Silicon-containing compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/02Compositions of unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups
    • C08L101/06Compositions of unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups containing oxygen atoms
    • C08L101/08Carboxyl groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/04Polyurethanes
    • C08L75/06Polyurethanes from polyesters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/04Non-macromolecular additives inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J163/00Adhesives based on epoxy resins; Adhesives based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J175/00Adhesives based on polyureas or polyurethanes; Adhesives based on derivatives of such polymers
    • C09J175/04Polyurethanes
    • C09J175/06Polyurethanes from polyesters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/10Adhesives in the form of films or foils without carriers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/30Adhesives in the form of films or foils characterised by the adhesive composition
    • C09J7/35Heat-activated
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J9/00Adhesives characterised by their physical nature or the effects produced, e.g. glue sticks
    • C09J9/02Electrically-conducting adhesives
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate

Definitions

  • a printed wiring board particularly a flexible printed wiring board or a build-up method multi-layer printing, which has high adhesive strength to a polyimide film or metal, has heat resistance and moisture heat resistance of a cured product, and has excellent liquid stability and workability.
  • the present invention relates to a polyester polyurethane resin composition as an effective member for manufacturing a wiring board. Further, it has a bonding film in which the resin composition is attached to a release film, a laminate with a resin composition layer in which the resin composition is attached to a base film, and a layer formed by curing the resin composition.
  • the present invention relates to an electromagnetic wave shielding film that is attached to a laminate, a flexible printed wiring board, or the like and is suitably used for shielding electromagnetic noise generated from an electric circuit.
  • Flexible printed wiring boards can be mounted three-dimensionally and at high density even in a limited space, so their applications are expanding.
  • related products of flexible printed wiring boards have been diversified, and the demand for them is increasing.
  • a flexible copper-clad laminate in which a copper foil is bonded to a polyimide film
  • a flexible printed wiring board in which an electronic circuit is formed on a flexible copper-clad laminate
  • a flexible printed wiring board and a reinforcing plate are bonded.
  • Patent Document 1 describes (A) a solvent-soluble polyamide resin solid at 25 ° C., (B) a phenoxy resin, (C) an epoxy resin containing no halogen atom, and (D) a structure represented by the following general formula (1).
  • the epoxy resin (C) is an epoxy resin having three or more epoxy groups in one molecule, and the content of the phenoxy resin (B) is the polyamide resin (C).
  • a halogen-free flame-retardant adhesive composition is described.
  • Patent Document 2 contains two or more carboxyl groups in the molecule, has a number average molecular weight of 5,000 to 100,000, and has a molecular weight of 1,500 to 10,000 per carboxyl group. It contains a polyester polymer (a), an epoxy resin (b) containing two or more epoxy groups in the molecule, and an epoxy resin curing accelerator (c), and retains thermoplasticity at 5 ° C. for a period of 5 months or more.
  • a laminate characterized by having a curable resin composition laminated on at least one surface of a polyimide film, a polyester film, or a metal foil, and a curable resin composition of the laminate are cured.
  • a laminate laminated on a metal foil (including a metal circuit) is described.
  • Patent Document 3 contains a carboxyl group, has an acid value (unit: equivalent / 106 g) of 100 or more and 1000 or less, and has a number average molecular weight of 5.0 ⁇ 10 3 or more and 1.0 ⁇ 10 5 . It contains a polyurethane resin (a) having a glass transition temperature of ⁇ 10 ° C. or higher and 70 ° C. or lower, an epoxy resin (b) containing a nitrogen atom, and an epoxy resin (c) having a dicyclopentadiene skeleton. Described is a resin composition for an adhesive in which the blending ratio of the resin (b) is 0.1% by mass or more and 20% by mass or less of the entire epoxy resin contained in the resin composition.
  • the problem to be solved by the present invention is that the obtained cured product is stored in a high temperature and high humidity environment (85 ° C. 85% RH) for a long period of time (1,000 hours) and in a cold cycle test (for example, ⁇ 40 ° C./125). It is an object of the present invention to provide a resin composition having excellent conductivity regardless of which test is performed after 1,000 cycles of ° C.). Another problem to be solved by the present invention is to provide a bonding film using the resin composition, a laminate with a resin composition layer, a laminate, or an electromagnetic wave shielding film.
  • the means for solving the above-mentioned problems include the following aspects.
  • a resin containing a polyester polyurethane resin (A) and an epoxy resin (B), and the diisocyanate component constituting the polyester polyurethane resin (A) contains a diisocyanate compound having a hydrocarbon group having 8 to 14 carbon atoms.
  • the content of the polyester polyurethane resin (A) is 10% by mass to 90% by mass with respect to the total amount of D)
  • the content of the resin (C) having a carboxy group or a carboxylic acid anhydride structure is The resin composition according to any one of ⁇ 1> to ⁇ 3>, which is 5% by mass to 70% by mass.
  • ⁇ 6> The resin composition according to any one of ⁇ 1> to ⁇ 5>, which further contains an organic filler (F).
  • ⁇ 7> The resin composition according to any one of ⁇ 1> to ⁇ 6>, wherein the diisocyanate compound having a hydrocarbon group having 8 to 14 carbon atoms has an alicyclic structure.
  • ⁇ 8> The resin composition according to any one of ⁇ 1> to ⁇ 7>, wherein the diol component constituting the polyester polyurethane resin (A) contains a diol compound having a hydrocarbon group having 5 to 32 carbon atoms.
  • the polyester polyurethane resin (A) contains a polyester polyurethane resin having a polyester structure having a number average molecular weight of 8,000 to 30,000. .. ⁇ 11>
  • the content of the resin (C) having a carboxy group or a carboxylic acid anhydride structure is 1 part by mass to 100 parts by mass with respect to 100 parts by mass of the polyester polyurethane resin (A) ⁇ 1> to ⁇ 15>.
  • the resin (C) having a carboxy group or a carboxylic acid anhydride structure contains at least one of a polyamide resin having an acid value and a resin having an acid-modified polyolefin structure ⁇ 1> to ⁇ 16>.
  • the resin composition according to any one of the above. ⁇ 18> The resin composition according to any one of ⁇ 1> to ⁇ 17>, which further contains a metal filler (G).
  • the content of the metal filler (G) is the polyester polyurethane resin (A), the epoxy resin (B), the resin (C) having a carboxy group or a carboxylic acid anhydride structure, and an optional component in the resin composition.
  • the resin composition according to ⁇ 18> which is 10 parts by mass to 350 parts by mass with respect to 100 parts by mass of the total amount of the imidazole silane compound (D) which may be contained as.
  • a B-stage-shaped resin composition layer obtained by partially curing the resin composition according to any one of ⁇ 1> to ⁇ 20> and contacting at least one surface of the resin composition layer. A bonding film with a release film.
  • a laminate with a resin composition layer comprising a cured layer obtained by curing the resin composition and a base film in contact with at least one surface of the resin composition layer, the B-stage resin composition layer, or the cured layer. .. ⁇ 23> A laminate provided with a cured layer obtained by curing the resin composition according to any one of ⁇ 1> to ⁇ 20>.
  • a flexible copper-clad laminate comprising a copper foil, a cured layer obtained by curing the resin composition according to any one of ⁇ 1> to ⁇ 20>, and a base material.
  • a flexible flat cable including a copper wiring, a cured layer obtained by curing the resin composition according to any one of ⁇ 1> to ⁇ 20>, and a coating material.
  • An electromagnetic wave shielding film having a cured layer obtained by curing the resin composition.
  • the obtained cured product is stored in a high temperature and high humidity environment (85 ° C. 85% RH) for a long period of time (1,000 hours) and in a cold cycle test (for example, -40 ° C./125 ° C.). It is possible to provide a resin composition having excellent conductivity even after 000 cycles). Further, according to the present invention, it is possible to provide a bonding film using the resin composition, a laminate with a resin composition layer, a laminate, or an electromagnetic wave shielding film.
  • the amount of each component in the composition means the total amount of the plurality of substances present in the composition when a plurality of substances corresponding to each component are present in the composition, unless otherwise specified. do.
  • the term “process” is included in this term not only as an independent process but also as long as the intended purpose of the process is achieved even if it cannot be clearly distinguished from other processes.
  • “% by mass” and “% by weight” are synonymous, and “parts by mass” and “parts by weight” are synonymous.
  • the combination of two or more preferred embodiments is a more preferred embodiment.
  • (meth) acrylic means both acrylic and methacrylic, or either of them.
  • the hydrocarbon chain may be described by a simplified structural formula omitting the symbols of carbon (C) and hydrogen (H).
  • the resin composition of the present invention contains a polyester polyurethane resin (A) and an epoxy resin (B), and the diisocyanate component constituting the polyester polyurethane resin (A) has a hydrocarbon group having 8 to 14 carbon atoms. Contains diisocyanate compounds.
  • the resin composition of the present invention can be suitably used as an adhesive composition, more preferably as an adhesive composition for polyimide adhesion or metal adhesion, and an adhesive composition for adhesion between polyimide and metal. It can be particularly preferably used as a product.
  • the present inventors have found that the obtained cured product does not have sufficient conductivity in a high temperature and high humidity environment and after a cold cycle test.
  • the diisocyanate component containing two kinds of resins, the polyester polyurethane resin (A) and the epoxy resin (B) and constituting the polyester polyurethane resin (A) has 8 to 14 carbon atoms.
  • the detailed mechanism is unknown due to the inclusion of the diisocyanate compound having a hydrocarbon group, these two resins act synergistically with each other and complement each other to further constitute the polyester polyurethane resin (A).
  • the isocyanate component to be formed contains a diisocyanate compound having a hydrocarbon group having 8 to 14 carbon atoms, the hydrophobicity of the resin is improved and the moisture resistance is improved, so that the obtained cured product is under high temperature and high humidity. It was also found that the resin composition having excellent conductivity can be provided even after the thermal cycle test due to the stress relaxing effect of the resin components of the polyester polyurethane resin (A) and the epoxy resin (B). ..
  • the resin composition of the present invention contains two types of resins, a polyester polyurethane resin (A) and an epoxy resin (B), and the molecular weight per urethane bond in the polyester polyurethane resin (A) is 200 to 8.
  • the diisocyanate component constituting the polyester polyurethane resin (A) is 000, and contains a diisocyanate compound having a hydrocarbon group having 8 to 14 carbon atoms, so that it is excellent in flame retardancy, initial and post-solder treatment. Also, it has excellent heat resistance.
  • polyester polyurethane resin (A) and the like are also referred to as “component (A)” and the like.
  • the resin composition of the present invention contains a polyester polyurethane resin (A), and the diisocyanate component constituting the polyester polyurethane resin (A) contains a diisocyanate compound having a hydrocarbon group having 8 to 14 carbon atoms.
  • the polyester polyurethane resin (A) may be a resin having two or more ester bonds and two or more urethane bonds, but is preferably a resin having a polyester chain and two or more urethane bonds.
  • the polyester polyurethane resin (A) is preferably a resin obtained by at least reacting a polyester polyol, a polyisocyanate, and a chain extender as a raw material thereof, and a polyester polyol, a polyisocyanate, and a diol compound are used. It is more preferable that the resin is at least reacted.
  • the polyester portion of the polyester polyurethane resin (A) is preferably formed from an acid component and an alcohol component.
  • the acid component a polyvalent carboxylic acid compound is preferable, and a dicarboxylic acid compound is more preferable.
  • a sulfocarboxylic acid compound or the like can also be used.
  • an aromatic acid is preferably mentioned.
  • the alcohol component a polyhydric alcohol compound is preferable, and a diol compound is more preferable.
  • the polyester portion may be formed of a hydroxycarboxylic acid compound.
  • the aromatic acid is 30 among the total acid components from the viewpoint of adhesiveness, heat resistance and moisture heat resistance. It is preferably mol% or more, more preferably 45 mol% or more, and particularly preferably 60 mol% or more.
  • aromatic acids include aromatic dicarboxylic acids such as terephthalic acid, isophthalic acid, orthophthalic acid, naphthalenedicarboxylic acid, biphenyldicarboxylic acid, and 5-hydroxyisophthalic acid. Also, sulfoterephthalic acid, 5-sulfoisophthalic acid, 4-sulfophthalic acid, 4-sulfonaphthalene-2,7-dicarboxylic acid, 5- (4-sulfophenoxy) isophthalic acid, sulfoterephthalic acid, their metal salts, and their metals.
  • aromatic dicarboxylic acids such as terephthalic acid, isophthalic acid, orthophthalic acid, naphthalenedicarboxylic acid, biphenyldicarboxylic acid, and 5-hydroxyisophthalic acid.
  • sulfoterephthalic acid 5-sulfoisophthalic acid
  • 4-sulfophthalic acid 4-sulfonaphthalene
  • Aromatic dicarboxylic acid having a sulfonic acid group or a sulfonic acid base such as an ammonium salt of, p-hydroxybenzoic acid, p-hydroxyphenylpropionic acid, p-hydroxyphenylacetic acid, 6-hydroxy-2-naphthoic acid, 4,4 -Aromatic oxycarboxylic acids such as bis (p-hydroxyphenyl) valeric acid can be mentioned.
  • the acid component preferably contains terephthalic acid and / or isophthalic acid, and is particularly preferably terephthalic acid and / or isophthalic acid.
  • the acid component may be a derivative of an acid compound such as an ester at the time of resin synthesis.
  • Other acid components include alicyclic dicarboxylic acids such as 1,4-cyclohexanedicarboxylic acid, 1,3-cyclohexanedicarboxylic acid, 1,2-cyclohexanedicarboxylic acid and its acid anhydride, succinic acid, and adipic acid. , Azelaic acid, sebacic acid, dodecanedioic acid, dimer acid and other aliphatic dicarboxylic acids can be mentioned.
  • an aliphatic diol compound an aliphatic diol compound, an alicyclic diol compound, an aromatic-containing diol compound, an ether bond-containing diol compound and the like are preferably mentioned.
  • aliphatic diol compounds include ethylene glycol, 1,2-propylene diol, 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, neopentyl glycol, and 1,6-hexane.
  • Diol 3-methyl-1,5-pentanediol, 1,9-nonanediol, 2-butyl-2-ethyl-1,3-propanediol, hydroxypivalate neopentyl glycol ester, dimethylol heptane, 2,2 , 4-trimethyl-1,3-pentanediol and the like.
  • alicyclic diol compounds include 1,4-cyclohexanediol, 1,4-cyclohexanedimethanol, tricyclodecanediol, tricyclodecanedimethylol, spiroglycol, hydrogenated bisphenol A, and ethylene of hydrogenated bisphenol A.
  • Examples thereof include an oxide adduct and a propylene oxide adduct.
  • aromatic-containing diol compounds include paraxylene glycol, methaxylene glycol, orthoxylene glycol, 1,4-phenylene glycol, ethylene oxide adduct of 1,4-phenylene glycol, bisphenol A, and ethylene of bisphenol A.
  • Examples thereof include glycols obtained by adding 1 to several mols of ethylene oxide or propylene oxide to two phenolic hydroxyl groups of bisphenols such as an oxide adduct and a propylene oxide adduct.
  • ether bond-containing diol compound examples include diethylene glycol, triethylene glycol, dipropylene glycol, polyethylene glycol, polypropylene glycol, polytetramethylene glycol, neopentyl glycol ethylene oxide adduct, neopentyl glycol propylene oxide adduct, and the like. ..
  • diols a diol having a side chain such as neopentyl glycol or 2-butyl-2-ethyl-1,3-propanediol is a phase with an epoxy resin, a carboxy group, a resin having a carboxylic acid anhydride structure, or the like. Preferred for solubility and solution stability reasons.
  • the diol component constituting the polyester polyurethane resin (A) contains a diol having a side chain from the viewpoint of compatibility with an epoxy resin, a resin having a carboxy group or a carboxylic acid anhydride structure, and solution stability. Is preferable.
  • the chain extender constituting the polyester polyurethane resin (A) from the viewpoint of compatibility with an epoxy resin, a resin having a carboxy group or a carboxylic acid anhydride structure, solution stability, and conductivity, the side It is more preferable to include a diol having a chain.
  • the polyester polyurethane resin (A) is made of a polyester polyol and a poly as raw materials from the viewpoints of compatibility with an epoxy resin, a resin having a carboxy group or a carboxylic acid anhydride structure, solution stability, and conductivity. More preferably, it is a resin obtained by reacting isocyanate with at least a diol having a side chain.
  • the side chain in the diol having a side chain is preferably an alkyl group, and the number of carbon atoms of the alkyl group may be, for example, 1, 2, 3, 4, or 5. This also applies to the diols having side chains described below. Examples of the diol having a side chain include neopentyl glycol, 2-butyl-2-ethyl-1,3-propanediol, and 2,2-dimethylol propionic acid.
  • the polyester polyurethane resin (A) is preferably composed of at least a diol component from the viewpoint of conductivity after the initial stage of the obtained cured product, after soldering, after a long-term reliability test, or after a thermal cycle test.
  • the diol component constituting the polyester polyurethane resin (A) is a hydrocarbon having 5 to 32 carbon atoms from the viewpoint of conductivity at the initial stage of the obtained cured product, after soldering, after a long-term reliability test or after a thermal cycle test.
  • a diol compound having a group more preferably to contain a diol compound having a hydrocarbon group having 5 to 16 carbon atoms, and particularly preferably to contain a diol compound having a hydrocarbon group having 7 to 12 carbon atoms. ..
  • the diol compound having a hydrocarbon group having 5 to 32 carbon atoms has an alicyclic structure or two from the viewpoint of conductivity at the initial stage of the obtained cured product, after soldering, after a long-term reliability test or after a thermal cycle test. It is preferable to include a diol compound having the above side chains, more preferably to contain a diol compound having two or more side chains, and particularly preferably to contain a diol compound having two side chains.
  • the diol compound having a hydrocarbon group having 5 to 32 carbon atoms may be a diol component constituting the polyester moiety or a diol component constituting the polyurethane moiety, but in the initial stage of the obtained cured product, From the viewpoint of conductivity after soldering, after a long-term reliability test, or after a thermal cycle test, the diol component constituting the polyurethane portion is preferable.
  • a hydroxycarboxylic acid compound having a hydroxy group and a carboxy group in the molecular structure can also be used as a raw material for polyester, and 5-hydroxyisophthalic acid, p-hydroxybenzoic acid, p-hydroxyphenityl alcohol, p.
  • 5-hydroxyisophthalic acid, p-hydroxybenzoic acid, p-hydroxyphenityl alcohol, p examples thereof include -hydroxyphenylpropionic acid, p-hydroxyphenylacetic acid, 6-hydroxy-2-naphthoic acid, 4,4-bis (p-hydroxyphenyl) valeric acid and the like.
  • a component constituting the polyester portion of the polyester polyurethane resin (A) 0.1 mol% to 5 mol with respect to the total acid component or the total polyhydric alcohol component constituting the polyester portion for the purpose of introducing a branched skeleton as necessary. % Or more trifunctional or higher polycarboxylic acids and / or polyols may be copolymerized.
  • a cured layer is obtained by reacting with a curing agent, the introduction of a branched skeleton increases the terminal group concentration (reaction point) of the resin, and a cured layer having a high crosslink density can be obtained.
  • trifunctional or higher functional polycarboxylic acids examples include trimellitic acid, trimesic acid, ethylene glycol bis (anhydrotrimericate), glycerol tris (anhydrotrimericate), trimellitic anhydride, and pyromerit anhydride.
  • Acid PMDA
  • Oxydiphthalic Acid Dianhydride ODPA
  • BTDA 4,4'-benzophenone tetracarboxylic acid dianhydride
  • 3,3', 4,4'-diphenyltetracarboxylic acid di examples include trimellitic acid, trimesic acid, ethylene glycol bis (anhydrotrimericate), glycerol tris (anhydrotrimericate), trimellitic anhydride, and pyromerit anhydride.
  • Acid PMDA
  • Oxydiphthalic Acid Dianhydride ODPA
  • BTDA 3,3', 4,4'-benzophenone tetracarboxylic acid dianhydride
  • BPDA 4,4'-diphenylsulfone tetracarboxylic acid dianhydride
  • DSDA 3,3', 4,4'-diphenylsulfone tetracarboxylic acid dianhydride
  • 6FDA 4,4'-(hexafluoroisopropylidene) diphthalic acid dianhydride
  • BSAA propane dianhydride
  • trifunctional or higher functional polyols glycerin, trimethylolpropane, trimethylolpropane, pentaerythritol and the like can be used.
  • a trifunctional or higher functional polycarboxylic acid and / or polyol is used, it is preferably 0.1 mol% to 5 mol%, more preferably 0.1 mol, based on the total acid component or the total polyhydric alcohol component. It is preferable to copolymerize in the range of% to 3 mol%.
  • Acid addition can be performed.
  • a monocarboxylic acid, a dicarboxylic acid, or a polyfunctional carboxylic acid compound is used for acid addition, the molecular weight is lowered by the ester exchange, so that it is preferable to use an acid anhydride.
  • the acid anhydrides include succinic anhydride, maleic anhydride, orthophthalic acid, 2,5-norbornnedicarboxylic acid anhydride, tetrahydrophthalic anhydride, trimellitic anhydride, pyromellitic anhydride (PMDA), and oxydiphthalic dianhydride.
  • ODPA 3,3', 4,4'-benzophenone tetracarboxylic acid dianhydride
  • BTDA 3,3', 4,4'-benzophenone tetracarboxylic acid dianhydride
  • BPDA 3,3', 4,4'-diphenyltetracarboxylic acid dianhydride
  • DSDA 4,4'-Diphenylsulfonate tetracarboxylic dianhydride
  • 6FDA 4,4'-(hexafluoroisopropylidene) diphthalate dianhydride
  • BSAA propane dianhydride
  • Acid addition can be performed directly in a bulk state after polycondensation of polyester, or can be added as a solution of polyester.
  • the reaction in the bulk state is fast, but gelation may occur if a large amount of acid is added, and the reaction is at a high temperature, so care must be taken to block oxygen gas and prevent oxidation. be.
  • acid addition in a solution state has a slow reaction, but a large amount of carboxy group can be stably introduced.
  • the polyurethane portion of the polyester polyurethane resin (A) is composed of at least a diisocyanate component.
  • the diisocyanate component contains a diisocyanate compound having a hydrocarbon group having 8 to 14 carbon atoms.
  • the methylene group in the hydrocarbon group may be replaced with a non-reactive bond such as —O—, —S—, —CO—, —COO—, —OCO—.
  • the amount of the diisocyanate compound having a hydrocarbon group having 8 to 14 carbon atoms in the diisocyanate component is usually 70 mol% or more, preferably 90 mol% or more, and may be 100 mol%.
  • the polyurethane portion of the polyester polyurethane resin (A) may be composed of a monofunctional or trifunctional or higher functional isocyanate component in addition to the diisocyanate component.
  • the number of carbon atoms of the hydrocarbon group in the diisocyanate compound having a hydrocarbon group having 8 to 14 carbon atoms is 8 from the viewpoint of conductivity after soldering of the obtained cured product, after a long-term reliability test, and after a thermal cycle test. It is preferably ⁇ 12, and more preferably 8-10.
  • the diisocyanate compound having a hydrocarbon group having 8 to 14 carbon atoms has an alicyclic structure from the viewpoint of conductivity after soldering of the obtained cured product, after a long-term reliability test, and after a thermal cycle test. Is preferable.
  • the polyester polyurethane resin (A) preferably has a diisocyanate component in an amount of 5 to 50 molar equivalents with respect to 1 molar equivalent of the polyester portion.
  • the polyester polyurethane resin (A) preferably has 10 mol to 100 mol equivalents of urethane bonds with respect to 1 mol equivalent of the polyester portion.
  • the polyisocyanate used for producing the polyester polyurethane resin (A) is one of diisocyanates, its dimer (uretdione), its trimer (isocyanurate, triol adduct, burette), or two of them.
  • the above mixture may be used.
  • diisocyanate component diphenylmethane diisocyanate, 3,3'-dimethoxy-4,4'-biphenylenediocyanate, 1,5-naphthalenediocyanate, 2,6-naphthalenediocyanate, 4,4'-diisocyanate diphenyl ether, m-xyli
  • diisocyanate component diphenylmethane diisocyanate, 3,3'-dimethoxy-4,4'-biphenylenediocyanate, 1,5-naphthalenediocyanate, 2,6-naphthalenediocyanate, 4,4'-diisocyanate diphenyl ether, m-xyli
  • examples thereof include range isocyanate, 1,3-bis (isocyanatomethyl) cyclohexane, 1,4-bis (isocyanatomethyl) cyclohexane, methylene bis (4-cyclohexyldiisocyanate), iso
  • an aliphatic or alicyclic diisocyanate compound is preferable, and an alicyclic diisocyanate compound is particularly preferable, from the viewpoints of transparency, after soldering of the obtained cured product, after a long-term reliability test, and after a thermal cycle test. ..
  • 1,3-bis (isocyanatomethyl) cyclohexane, 1,4-bis (isocyanatomethyl) cyclohexane, and methylenebis (4-cyclohexyl) are considered from the viewpoint of easy availability and conductivity after the thermal cycle test.
  • Diisocyanate) or norbornane diisocyanate is preferable, and 1,3-bis (isocyanatomethyl) cyclohexane is particularly preferable.
  • a chain extender may be used if necessary.
  • the chain extender include diol compounds already described as constituents of the polyester moiety, compounds having one carboxy group and two hydroxy groups such as dimethylolpropionic acid and dimethylolbutanoic acid.
  • a diol compound is preferable from the viewpoint of conductivity, a diol compound having a side chain is more preferable, and a diol compound having a branched chain is particularly preferable.
  • the diol compound having a side chain is selected from the group consisting of neopentyl glycol, 2-butyl-2-ethyl-1,3-propanediol, and 2,2-dimethylolpropionic acid from the viewpoint of conductivity. It is preferable to contain at least one compound, and at least one compound selected from the group consisting of neopentyl glycol and 2-butyl-2-ethyl-1,3-propanediol, and 2,2-dimethylol. It is particularly preferred to include propionic acid.
  • a polyamino compound may be used as the chain extender, but in one embodiment, the polyester polyurethane resin (A) may preferably contain no urea bond.
  • the method for producing the polyester polyurethane resin (A) is not particularly limited, and a known method can be used.
  • the polyester polyol, the polyisocyanate, and if necessary, the chain extender may be charged together in the reaction vessel, or may be charged separately.
  • the ratio of the functional group of the isocyanate group / hydroxy group is preferably 0.9 or more with respect to the total hydroxyl value of the polyester polyol and the chain extender in the system and the total isocyanate group of the polyisocyanate.
  • the reaction is carried out at 1 or less, more preferably 0.98 or more and 1.02 or less, and particularly preferably 1.
  • this reaction can be produced by reacting in the presence or absence of a solvent inert to the isocyanate group.
  • the solvents include ester solvents (ethyl acetate, butyl acetate, ethyl butyrate, etc.), ether solvents (dioxane, tetrahydrofuran, diethyl ether, etc.), ketone solvents (cyclohexanone, methyl ethyl ketone, methyl isobutyl ketone, etc.), aromatic carbonization.
  • Hydrogen-based solvents (benzene, toluene, xylene, etc.) and mixed solvents thereof can be mentioned, but ethyl acetate and methyl ethyl ketone are preferable from the viewpoint of reducing the environmental load.
  • the reaction device is not limited to a reaction can equipped with a stirring device, and a mixing and kneading device such as a kneader or a twin-screw extruder can also be used.
  • catalysts used in ordinary urethane reactions such as tin-based catalysts (trimethyltin laurate, dimethyltindilaurate, trimethyltinhydroxide, dimethyltindihydroxide, stanas octoate, etc.), lead-based A catalyst (red oleate, red-2-ethylhexoate, etc.), an amine-based catalyst (triethylamine, tributylamine, morpholine, diazabicyclooctane, diazabicycloundecene, etc.) and the like can be used.
  • tin-based catalysts trimethyltin laurate, dimethyltindilaurate, trimethyltinhydroxide, dimethyltindihydroxide, stanas octoate, etc.
  • lead-based A catalyst red oleate, red-2-ethylhexoate, etc.
  • an amine-based catalyst triethylamine, tributylamine, morph
  • the glass transition temperature (Tg) of the polyester portion of the polyester polyurethane resin (A) is preferably 40 ° C. to 150 ° C., preferably 45 ° C. to 120 ° C. from the viewpoint of adhesiveness, conductivity, and heat resistance. More preferably, it is more preferably 50 ° C to 90 ° C, and particularly preferably 60 ° C to 70 ° C.
  • the glass transition temperature (Tg) of the polyester polyurethane resin (A) is preferably 30 ° C. to 150 ° C., preferably 40 ° C. to 140 ° C. from the viewpoint of adhesiveness, conductivity, and heat resistance. Is more preferable, 50 ° C to 90 ° C is further preferable, and 60 ° C to 70 ° C is particularly preferable.
  • the number average molecular weight (Mn) of the polyester polyurethane resin (A) is preferably 5,000 to 100,000, preferably 10,000 to 80,000 from the viewpoint of conductivity and heat resistance. More preferably, it is more preferably 20,000 to 60,000, and particularly preferably 25,000 to 50,000.
  • the values of the number average molecular weight (Mn) and the weight average molecular weight (Mw) of the resin in the present invention can be obtained by gel permeation chromatography (GPC).
  • the molecular weight per urethane bond in the polyester polyurethane resin (A) is preferably 200 to 8,000, more preferably 200 to 5,000, from the viewpoint of conductivity and heat resistance. It is more preferably 300 to 2,000, particularly preferably 400 to 1,500, and most preferably 700 to 1,000.
  • the molecular weight per urethane bond in the polyester polyurethane resin (A) is Y /. It becomes X.
  • the number of moles of isocyanate groups reacted with 1 mol of the polyester polyol which is the raw material of the polyester polyurethane resin (A) shall be regarded as "the number of urethane bonds in the polyester polyurethane resin (A)". You can also.
  • the acid value of the polyester polyurethane resin (A) is preferably 0 mgKOH / g to 50 mgKOH / g, more preferably 0.1 mgKOH / g to 20 mgKOH / g, from the viewpoint of adhesiveness and conductivity. , 0.1 mgKOH / g to 5 mgKOH / g, more preferably 1.0 mgKOH / g to 5.0 mgKOH / g.
  • the acid value of the polyester polyurethane resin (A) is preferably 20 mgKOH / g or less, and particularly preferably 5.0 mgKOH / g or less, from the viewpoint of heat resistance.
  • the acid value is determined by neutralizing and titrating the sample with a potassium hydroxide benzyl alcohol solution using a phenolphthalein solution as an indicator.
  • the polyurethane polyurethane resin (A) preferably contains a polyester polyurethane resin having a polyester structure having a number average molecular weight of 1,000 to 50,000 from the viewpoints of adhesiveness, conductivity, and heat resistance. It is more preferable to contain a polyester polyurethane resin having a polyester structure having an average molecular weight of 2,000 to 40,000, and further preferably to contain a polyester polyurethane resin having a polyester structure having a number average molecular weight of 3,000 to 30,000.
  • polyester polyurethane resin having a polyester structure having a number average molecular weight of 8,000 to 30,000 it is particularly preferable to contain a polyester polyurethane resin having a polyester structure having a number average molecular weight of 8,000 to 30,000, and a polyester polyurethane resin having a polyester structure having a number average molecular weight of 15,000 to 30,000 is most preferable.
  • the resin composition of the present invention may contain the polyester polyurethane resin (A) alone or in combination of two or more.
  • the content of the polyester polyurethane resin (A) is preferably 5% by mass to 90% by mass, preferably 10% by mass, based on the total solid content of the resin composition from the viewpoint of adhesiveness, conductivity, and heat resistance. It is more preferably% to 80% by mass, further preferably 20% by mass to 75% by mass, and particularly preferably 30% by mass to 70% by mass.
  • the content of the polyester polyurethane resin (A) is the polyester polyurethane resin (A), the epoxy resin (B) and the carboxy group or the carboxylic acid in the resin composition from the viewpoint of adhesiveness, conductivity and heat resistance.
  • the resin composition of the present invention contains an epoxy resin (B).
  • the epoxy resin (B) is a component that imparts adhesiveness, heat resistance in a cured portion after adhesion, and the like.
  • the epoxy resin (B) in the present invention includes not only a polymer compound having an epoxy group but also a low molecular compound having an epoxy group.
  • the number of epoxy groups in the epoxy resin (B) is preferably 2 or more.
  • Examples of the epoxy resin (B) include orthophthalic acid diglycidyl ester, isophthalic acid diglycidyl ester, terephthalic acid diglycidyl ester, p-hydroxybenzoic acid diglycidyl ester, tetrahydrophthalic acid diglycidyl ester, and succinic acid diglycidyl ester.
  • Glycidyl esters such as adipic acid diglycidyl ester, sebacic acid diglycidyl ester, trimellitic acid triglycidyl ester; diglycidyl ether of bisphenol A and its oligomers, ethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, 1,4-butane.
  • novolak type epoxy resins such as phenol novolac epoxy resin, o-cresol novolak epoxy resin, bisphenol A novolak epoxy resin and the like can be mentioned.
  • the epoxy resin (B) preferably contains a bisphenol A type epoxy resin and / or a novolak type epoxy resin from the viewpoint of adhesiveness and heat resistance.
  • the epoxy resin (B) preferably contains a compound having three or more epoxy groups in one molecule in order to exhibit high heat resistance after curing.
  • the cross-linking reactivity with the polyester urethane resin (A) and the resin (C) having a carboxy group or a carboxylic acid anhydride structure is compared with the case where an epoxy resin having two epoxy groups is used. Is high, and sufficient heat resistance can be obtained.
  • the content of the compound having three or more epoxy groups in one molecule of the epoxy resin (B) is preferably 15% by mass or more with respect to the total mass of the epoxy resin (B) from the viewpoint of heat resistance. , 20% by mass or more is more preferable, and 25% by mass or more is particularly preferable.
  • the resin composition of the present invention may contain the epoxy resin (B) alone or in combination of two or more.
  • the content of the epoxy resin (B) is the polyester polyurethane resin (A), the epoxy resin (B) and the carboxy group or the carboxylic acid anhydride structure in the resin composition from the viewpoint of adhesiveness, conductivity and heat resistance. It is preferably 1% by mass to 60% by mass, and 2% by mass to 40% by mass, based on the total amount of the resin (C) having the above and the imidazole silane compound (D) which may be contained as an optional component. Is more preferable, and 3% by mass to 20% by mass is particularly preferable.
  • the resin composition of the present invention contains a resin (C) having a carboxy group or a carboxylic acid anhydride structure from the viewpoint of conductivity after soldering of the obtained cured product, after a long-term reliability test, and after a thermal cycle test. Is preferable.
  • the resin (C) having a carboxy group or a carboxylic acid anhydride structure is preferably solid at 25 ° C.
  • the resin (C) having a carboxy group or a carboxylic acid anhydride structure is not particularly limited as long as it is a resin soluble in an organic solvent described later, and specific examples thereof include polyamide resins, polyolefin resins, and acrylic resins. Examples thereof include copolymers. Among them, the resin (C) having a carboxy group or a carboxylic acid anhydride structure is a polyamide resin, a polyolefin resin and these from the viewpoint of conductivity after soldering of the obtained cured product, after a long-term reliability test and after a thermal cycle test.
  • the polyamide resin is a condensed resin obtained by using a dibasic acid and a diamine as a monomer, and is preferably a resin obtained by using two or more kinds of dibasic acids and two or more kinds of diamines.
  • the dibasic acid include adipic acid, sebacic acid, azelaic acid, undecanedioic acid, dodecanedioic acid, dimer acid, isophthalic acid, terephthalic acid, and sodium 5-sulfoisophthalate.
  • the diamine examples include hexamethylenediamine, heptamethylenediamine, p-diaminomethylcyclohexane, bis (p-aminocyclohexyl) methane, m-xylenediamine, piperazine, and isophorone diamine.
  • the polyamide resin may be a block copolymer. It is preferable to include piperazine in the diamine component for the reason of improving the adhesiveness.
  • the content thereof is preferably 1.0 mol% or more, preferably 20 mol, when the total amount of the diamine components constituting the resin (C) having a carboxy group or a carboxylic acid anhydride structure is 100 mol%. It is more preferable to contain% or more.
  • the polyamide resin contains a structural unit derived from an aliphatic dibasic acid and a structural unit derived from an alicyclic diamine, the polyamide resin has excellent solubility in a solvent. Further, even if the adhesive composition containing such a polyamide resin is stored for a long period of time, there is almost no increase in viscosity and good adhesiveness to a wide range of adherends is exhibited, which is preferable.
  • the polyamide resin may appropriately contain structural units derived from aminocarboxylic acids, lactams and the like.
  • aminocarboxylic acids include 11-aminoundecanoic acid, 12-aminododecanoic acid, 4-aminomethylbenzoic acid, 4-aminomethylcyclohexanecarboxylic acid and the like
  • lactams include ⁇ -. Examples thereof include caprolactam, ⁇ -laurolactam, ⁇ -pyrrolidone, ⁇ -piperidone and the like.
  • the polyamide resin may appropriately contain a structural unit derived from polyalkylene glycol for the purpose of imparting flexibility.
  • the polyalkylene glycol include polyethylene glycol, polypropylene glycol, polytetramethylene glycol, a block or random copolymer of ethylene oxide and propylene oxide, a block or random copolymer of ethylene oxide and tetrahydrofuran, and the like. Can be mentioned.
  • the structural unit derived from the polyalkylene glycol may be contained alone or in two or more kinds.
  • the polyamide resin is, for example, a nylon 6 / nylon 66 copolymer, a nylon 6 / nylon 6-10 copolymer, a nylon 6 / nylon 66 / nylon 6-10 copolymer, and a nylon 6 / nylon 66 / nylon 11 copolymer.
  • Nylon 6 / Nylon 66 / Nylon 12 copolymer Nylon 6 / Nylon 6-10 / Nylon 6-11 copolymer, Nylon 6 / Nylon 11 / Isophorone diamine copolymer, Nylon 6 / Nylon 66 / Nylon 6 It can have a composition such as a copolymer, nylon 6 / nylon 6-10 / nylon 12 copolymer and the like.
  • the modified polyamide resin is made into an alcohol-soluble nylon resin by adding formaldehyde and alcohol to the unmodified polyamide resin and introducing an alkoxymethyl group into the nitrogen atom constituting the amide bond.
  • Specific examples thereof include modified polyamide resins obtained by alkoxymethylating 6-nylon, 66-nylon and the like.
  • the introduction of the N-alkoxymethyl group contributes to a decrease in melting point, an increase in flexibility, and an improvement in solubility in a solvent, and the introduction rate is appropriately set according to the purpose.
  • the resin having a polyolefin structure is not particularly limited, and examples thereof include polyethylene, polypropylene, polybutene, and copolymers thereof. Further, the resin having a polyolefin structure may be a copolymer of an olefin and another ethylenically unsaturated compound, or may be a block copolymer of a polyolefin and a polycondensation resin.
  • the resin having a polyolefin structure includes a styrene-butadiene copolymer, a styrene-butadiene-styrene block copolymer, a styrene-ethylene / propylene-styrene block copolymer, a styrene-ethylene / butylene-styrene block copolymer, and the like. It may be a styrene resin such as a styrene-isoprene / butadiene-styrene block copolymer or a styrene-isoprene-styrene block copolymer. Among them, the resin having an acid-modified polyolefin structure is preferably an acid-modified polyolefin resin.
  • the method for introducing a carboxy group or a carboxylic acid anhydride structure into the polyamide resin and the resin having a polyolefin structure is not particularly limited, but a method for copolymerizing an unsaturated carboxylic acid anhydride or a resin can be used. Examples thereof include a method of modifying with a carboxylic acid anhydride. Specifically, for example, a resin obtained by graft-polymerizing a polyolefin resin such as polypropylene with an unsaturated carboxylic acid anhydride such as maleic anhydride, itaconic anhydride, acrylic acid, or methacrylic acid, or dibasic acid with respect to diamine.
  • Examples thereof include a polyamide resin using a compound having a structure.
  • the acid value of the resin (C) having a carboxy group or a carboxylic acid anhydride structure is not particularly limited as long as it has at least a carboxy group or a carboxylic acid anhydride structure, but is not particularly limited, but is 0.1 mgKOH / g to 200 mgKOH / g. It is preferably 1 mgKOH / g to 100 mgKOH / g, more preferably 2 mgKOH / g to 50 mgKOH / g, and particularly preferably 5 mgKOH / g to 30 mgKOH / g.
  • the amine value of the resin (C) having a carboxy group or a carboxylic acid anhydride structure is not particularly limited. Generally, when the amine value of the polyamide resin is high, the reaction between the amino group and the epoxy group is fast, and good curability can be obtained by heat treatment in a short time, but on the other hand, a carboxy group or a carboxylic acid anhydride structure can be obtained. Immediately after mixing the resin (C) and the epoxy resin (B) having the above, the reaction gradually proceeds, and the viscosity of the composition is significantly increased or gelled. Therefore, curability and stability can be achieved at the same time by selecting the amine value of the resin (C) having a carboxy group or a carboxylic acid anhydride structure.
  • the preferred range of the amine value of the resin (C) having a carboxy group or a carboxylic acid anhydride structure is 1 mgKOH / g to 6 mgKOH / g.
  • the melting point of the resin (C) having a carboxy group or a carboxylic acid anhydride structure is not particularly limited, but is preferably 50 ° C. to 220 ° C. from the viewpoint of solubility in a solvent and heat resistance of the cured product. It is in the range, more preferably in the range of 70 ° C to 180 ° C.
  • Examples of the solvent for dissolving the resin (C) having a carboxy group or a carboxylic acid anhydride structure include methanol, ethanol, isopropyl alcohol, n-propyl alcohol, isobutyl alcohol, n-butyl alcohol, benzyl alcohol and ethylene glycol monomethyl ether.
  • Alcohols such as propylene glycol monomethyl ether, diethylene glycol monomethyl ether, diacetone alcohol; ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, methyl amyl ketone, cyclohexanone, isophorone; aromatic charcoal such as toluene, xylene, ethylbenzene, mesitylene, etc. Hydrogens; Examples thereof include esters such as methyl acetate, ethyl acetate, ethylene glycol monomethyl ether acetate, and 3-methoxybutyl acetate. These solvents may be used alone or in combination of two or more.
  • the resin composition of the present invention may contain one kind of resin (C) having a carboxy group or a carboxylic acid anhydride structure alone, or may contain two or more kinds.
  • the content of the resin (C) having a carboxy group or a carboxylic acid anhydride structure is the polyester polyurethane resin (A) and the epoxy resin (B) in the resin composition from the viewpoint of adhesiveness, conductivity, and heat resistance.
  • the polyester polyurethane resin (A), the epoxy resin (B) and the carboxy group or the carboxylic acid anhydride structure in the resin composition are preferably 5% by mass to 70% by mass, more preferably 30% by mass to 50% by mass, and particularly preferably 30% by mass to 50% by mass.
  • the content of the polyester polyurethane resin (A) is 10% by mass to 90% by mass with respect to the total amount of the resin (C) having the above and the imidazole silane compound (D) which may be contained as an optional component.
  • the content of the resin (C) having a carboxy group or a carboxylic acid anhydride structure is preferably 5% by mass to 70% by mass.
  • the content of the resin (C) having a carboxy group or a carboxylic acid anhydride structure is the polyester polyurethane resin (A) 100 from the viewpoint of adhesiveness, conductivity and heat resistance. It is preferably 1 part by mass to 100 parts by mass, preferably 20 parts by mass to 100 parts by mass, further preferably 50 parts by mass to 95 parts by mass, and 70 parts by mass to 90 parts by mass. It is particularly preferable that it is by mass. Further, the content of the resin (C) having a carboxy group or a carboxylic acid anhydride structure is preferably less than or equal to the content of the polyester polyurethane resin (A) from the viewpoint of adhesiveness, conductivity and heat resistance. , It is more preferable that the content is smaller than the content of the polyester polyurethane resin (A).
  • the content of the polyester polyurethane resin (A) and the resin (C) having a carboxy group or a carboxylic acid anhydride structure in the resin composition is determined in the resin composition from the viewpoints of adhesiveness, conductivity, and heat resistance.
  • the total amount of the polyester polyurethane resin (A), the epoxy resin (B) and the resin (C) having a carboxy group or a carboxylic acid anhydride structure, and the imidazole silane compound (D) which may be contained as an optional component. , 50% by mass to 98% by mass, more preferably 70% by mass to 97% by mass, and particularly preferably 75% by mass to 95% by mass.
  • the resin composition of the present invention preferably contains the imidazole silane compound (D) from the viewpoint of conductivity and adhesiveness.
  • the imidazole silane compound (D) is a compound having one or more imidazole ring structures and one or more silane structures, and is presumed to act as a curing agent for the epoxy resin (B).
  • the imidazole silane compound (D) is preferably a compound having one imidazole ring structure and one silyl group from the viewpoint of conductivity and adhesiveness.
  • a compound represented by the following formula (D) or an acid adduct thereof is preferably mentioned from the viewpoint of conductivity and adhesiveness.
  • R 1 and R 2 independently represent a hydrogen atom, a saturated hydrocarbon group, an unsaturated hydrocarbon group or an aryl group, and each of the above groups may have a substituent
  • R 3 and R 4 each independently represent a hydrogen atom or an alkyl group, at least one of R 3 is an alkyl group, the alkyl group may have a substituent
  • n is an integer of 1 to 3.
  • R 6 represents a hydrogen atom or a hydroxy group
  • R 7 represents a hydrogen atom, an alkyl group or an aryl group
  • R 8 and R 9 are independent of each other.
  • Hydrogen atom, alkyl group or aryl group, each group may have a substituent
  • the wavy line portion represents a bond position with another structure.
  • the adhesiveness to a metal is improved. It is presumed that this is because the silane structure and the imidazole ring structure show high affinity with both the metal surface and the resin (C) having a carboxy group or a carboxylic acid anhydride structure, and the adhesion is improved by the interaction thereof. .. Further, since the imidazole ring structure can also react with the epoxy resin (B), it is presumed that this adhesiveness improving effect can be maintained even in the reflow step described later.
  • the imidazole silane compound (D) is preferably a compound having an imidazole ring structure as a first functional group and an alkoxysilyl group as a second functional group in one molecule.
  • the imidazole ring in the imidazole ring structure may have a substituent such as a saturated hydrocarbon group or an unsaturated hydrocarbon group.
  • R 1 , R 2 , R 3 and R 4 are alkyl groups, the preferred number of carbon atoms is 1 to 3.
  • Examples of the imidazole ring structure constituting the imidazole silane compound (D) include an imidazole ring structure, a 2-alkylimidazole ring structure, a 2,4-dialkylimidazole ring structure, and a 4-vinylimidazole ring structure.
  • the alkoxysilyl group and the imidazole ring structure are alkylene groups or groups in which a part of the alkylene group is substituted with at least one of the formulas (D2) to (D5). It is preferable that they are bonded via.
  • the carbon number of the alkylene group in R5 of the formula ( D) is preferably 1 to 10, and more preferably 3 to 7.
  • the imidazole silane compound (D) can be suitably synthesized by, for example, a reaction between the imidazole compound and a 3-glycidoxyalkylsilane compound or the like. Further, the imidazole silane compound (D) may be a silanol compound produced by hydrolysis of an alkoxysilyl group, a polyorganosiloxane compound produced by a dehydration condensation reaction of the silanol compound, or a mixture thereof. good.
  • the acids added to the compound represented by the formula (D) include acetic acid, lactic acid, salicylic acid, benzoic acid, adipic acid, phthalic acid, citric acid, tartrate acid, maleic acid, trimellitic acid, phosphoric acid and isocyanuric acid. And so on. These can be used alone or in combination of two or more.
  • the imidazole silane compound (D) is more preferably a compound represented by the following formula (D6) or formula (D7) or an acid adduct thereof from the viewpoint of conductivity and adhesiveness. ..
  • R 1 and R 2 independently represent a hydrogen atom, a saturated hydrocarbon group, an unsaturated hydrocarbon group or an aryl group, and each of the above groups has a substituent.
  • R 3 and R 4 may each independently represent a hydrogen atom or an alkyl group, at least one of R 3 is an alkyl group, and the alkyl group may have a substituent, where n is.
  • An integer of 1 to 3 is represented, R 5'represents an alkylene group, and R 6 represents a hydrogen atom or a hydroxy group.
  • the carbon number of the alkylene group in R5'of the formulas (D6) and (D7) is preferably 1 to 10, and more preferably 3 to 7.
  • imidazole silane compound (D) examples include 1- (2-hydroxy-3-trimethoxysilylpropoxypropyl) imidazole, 1- (2-hydroxy-3-triethoxysilylpropoxypropyl) imidazole, 1- (2).
  • the compound represented by the formula (D6) or the formula (D7) or an acid adduct thereof is preferable because it has good heat resistance and good solubility in a solvent. Acid adducts are more preferred.
  • the compound represented by the formula (D6) is an imidazole compound such as imidazole, 2-alkylimidazole, 2,4 dialkylimidazole, 4-vinylimidazole, 3-glycidoxypropyltrialkoxysilane, 3-glycidoxy. It can be preferably obtained by reacting with a 3-glycidoxypropylsilane compound such as propyldialkoxyalkylsilane or 3-glycidoxypropylalkoxydialkylsilane. Of these, a reaction product of imidazole and 3-glycidoxypropyltrimethoxysilane is particularly preferable.
  • the compound represented by the formula (D7) can be preferably obtained by reacting the imidazole compound with 3-methacryloyloxypropyltrimethoxysilane or the like.
  • the resin composition of the present invention may contain the imidazole silane compound (D) alone or in combination of two or more.
  • the content of the imidazole silane compound (D) has a polyester polyurethane resin (A), an epoxy resin (B), a carboxy group or a carboxylic acid anhydride structure in the resin composition from the viewpoint of conductivity and adhesiveness. It is preferably 0.05% by mass to 20% by mass, more preferably 0.1% by mass to 10% by mass, based on the total amount of the resin (C) and the imidazole silane compound (D). It is particularly preferably from% by mass to 5% by mass.
  • the resin composition of the present invention contains an inorganic filler (E) from the viewpoint of the extensibility of the obtained cured product, the initial stage of the obtained cured product, after soldering, after a long-term reliability test, and after a thermal cycle test. It is more preferable to contain an inorganic filler (E) and an organic filler (F) described later.
  • the inorganic filler (E) in the present specification is a filler made of a metal or an alloy thereof, that is, an inorganic filler other than the metal filler (G) described later.
  • the inorganic filler (E) is not particularly limited, and for example, non-conductive inorganic fillers such as calcium carbonate particles, titanium oxide particles, aluminum oxide particles, zinc oxide particles, talc particles, and silica particles, carbon black particles, and the like.
  • non-conductive inorganic fillers such as calcium carbonate particles, titanium oxide particles, aluminum oxide particles, zinc oxide particles, talc particles, and silica particles, carbon black particles, and the like.
  • examples include conductive inorganic fillers.
  • at least one kind of particles selected from the group consisting of talc particles and silica particles is preferable from the viewpoint of conductivity after the initial stage of the obtained cured product, after soldering, after a long-term reliability test and after a thermal cycle test.
  • Talc particles are more preferred.
  • the average particle size of the inorganic filler (E) is not particularly limited, but the conductivity, coatability, and coating thickness adjustability of the obtained cured product at the initial stage, after soldering, after a long-term reliability test, and after a thermal cycle test are not particularly limited. From the viewpoint, it is preferably 0.001 ⁇ m to 50 ⁇ m, more preferably 0.005 ⁇ m to 30 ⁇ m, and particularly preferably 0.01 ⁇ m to 10 ⁇ m.
  • the average particle size of the filler in the present specification was obtained by measuring the filler with a tornado dry powder sample module using a laser diffraction / scattering method particle size distribution measuring device LS 13320 (manufactured by Beckman Coulter). The average particle size of the particle size, which is the D50 average particle size and the integrated value of the particles is 50%, was used.
  • the resin composition of the present invention may contain the inorganic filler (E) alone or in combination of two or more, but the obtained cured product has long-term reliability in the initial stage and after soldering. From the viewpoint of conductivity after the test and the thermal cycle test, it is preferable to contain two or more kinds, and it is more preferable to contain two kinds.
  • the content of the inorganic filler (E) is a polyester polyurethane resin (A), an epoxy resin (B) and a carboxy group or a carboxylic acid anhydride structure in the resin composition from the viewpoint of adhesiveness, conductivity and curability.
  • the resin composition of the present invention preferably contains an organic filler (F) from the viewpoint of the extensibility, conductivity, and moisture and heat resistance of the obtained cured product.
  • the organic filler (F) usually contains a resin as a main component and is non-conductive.
  • examples of the organic filler (F) include (meth) acrylic resin particles, polybutadiene particles, nylon fine particles, polyolefin particles, polyester particles, polycarbonate particles, polyvinyl alcohol particles, polyvinyl ether particles, polyvinyl butyral particles, silicone rubber particles, and polyurethane particles. , Phenolic resin particles, polytetrafluorinated ethylene particles and the like.
  • the organic filler has been found to have an effect of enhancing the compatibility of the polyester polyurethane resin (A), the epoxy resin (B) and the resin (C) having a carboxy group or a carboxylic acid anhydride structure when dissolved. Further, from the viewpoint of further improving the compatibility and liquid stability of these resins, silicone particles, polybutadiene particles, (meth) acrylic resin particles, or polyurethane particles are particularly preferable.
  • the average particle size of the organic filler (F) is not particularly limited, but is preferably 0.5 ⁇ m to 50 ⁇ m, more preferably 1 ⁇ m to 30 ⁇ m, from the viewpoint of coatability and coat thickness adjustability.
  • the resin composition of the present invention may contain the organic filler (F) alone or in combination of two or more.
  • the content of the organic filler (F) is the polyester polyurethane resin (A), the epoxy resin (B) and the carboxy group or the carboxylic acid anhydride structure in the resin composition from the viewpoint of adhesiveness, conductivity and curability. It is preferably 1 part by mass to 50 parts by mass with respect to 100 parts by mass of the total amount of the resin (C) having the above and the imidazole silane compound (D) which may be contained as an optional component. It is more preferably 40 parts by mass, and particularly preferably 10 parts by mass to 20 parts by mass.
  • the resin composition of the present invention preferably contains a metal filler (G) from the viewpoint of conductivity and heat resistance.
  • the metal filler (G) is usually conductive.
  • the metal filler (G) preferably includes metal particles made of a conductive metal such as gold, platinum, silver, copper or nickel or an alloy thereof. Further, particles having a metal or resin as a nuclei instead of particles having a single composition and having a coating layer formed of a highly conductive material are also preferable from the viewpoint of cost reduction.
  • the nucleus is preferably made of at least one material selected from the group consisting of nickel, silica, copper and resin, and more preferably made of a conductive metal or an alloy thereof.
  • the coating layer is preferably a layer made of a material having excellent conductivity, and preferably a layer made of a conductive metal or a conductive polymer.
  • the conductive metal include gold, platinum, silver, tin, manganese, indium and the like, and alloys thereof.
  • the conductive polymer include polyaniline and polyacetylene. Among these, silver is preferable from the viewpoint of conductivity.
  • the particles composed of the core and the coating layer preferably have a coating layer at a ratio of 1 part by mass to 40 parts by mass with respect to 100 parts by mass of the core. It is more preferable to have a coating layer in a proportion of about 30 parts by mass.
  • the particles composed of the nucleolus and the coating layer are preferably particles in which the coating layer completely covers the nucleolus.
  • the coating layer completely covers the nucleolus.
  • a part of the nucleolus may be exposed. Even in such a case, if the conductive substance covers 70% or more of the surface area of the nucleus, it is easy to maintain the conductivity.
  • the shape of the metal filler (G) is not limited as long as the desired conductivity can be obtained. Specifically, for example, spherical shape, flake shape, leaf shape, dendritic shape, plate shape, needle shape, rod shape, or grape shape is preferable.
  • the average particle size of the metal filler (G) is preferably 1 ⁇ m to 100 ⁇ m, more preferably 3 ⁇ m to 50 ⁇ m, and particularly preferably 4 ⁇ m to 15 ⁇ m from the viewpoint of conductivity and storage stability. preferable.
  • the average particle size of the metal filler (G) is obtained from an average value of about 20 particles randomly selected in an enlarged image (about 1,000 to 10,000 times) of an electron microscope. You can also do it.
  • the average particle size is also preferably 1 ⁇ m to 100 ⁇ m, more preferably 3 ⁇ m to 50 ⁇ m.
  • the metal filler (G) has a major axis direction and a minor axis direction (for example, rod-shaped particles)
  • the average particle diameter is calculated from the length in the major axis direction.
  • the resin composition of the present invention may contain the metal filler (G) alone or in combination of two or more.
  • the content of the metal filler (G) is the polyester polyurethane resin (A), the epoxy resin (B) and the carboxy group or the carboxylic acid anhydride in the resin composition from the viewpoint of conductivity, heat resistance, and storage stability. It is preferably 1 part by mass to 500 parts by mass, more preferably 10 parts by mass to 350 parts by mass, and 10 parts by mass to 50 parts by mass with respect to 100 parts by mass of the total amount of the resin (C) having a structure. It is particularly preferable that it is a part.
  • the resin composition of the present invention may contain additives other than the above-mentioned components.
  • additives include thermoplastic resins other than those described above, tackifiers, flame retardants, curing agents, curing accelerators, coupling agents, heat aging inhibitors, leveling agents, defoaming agents, solvents and the like. , Can be contained to the extent that it does not affect the function of the resin composition.
  • thermoplastic resin examples include phenoxy resin, polyester resin, polycarbonate resin, polyphenylene oxide resin, polyurethane resin, polyacetal resin, polyethylene resin, polypropylene resin, polyvinyl resin and the like. These thermoplastic resins may be used alone or in combination of two or more.
  • tackifier examples include kumaron-inden resin, terpene resin, terpene-phenol resin, rosin resin, pt-butylphenol-acetylene resin, phenol-formaldehyde resin, xylene-formaldehyde resin, petroleum hydrocarbon resin, and the like. Examples thereof include hydrogenated hydrocarbon resins and terepine resins. These tackifiers may be used alone or in combination of two or more.
  • the flame retardant may be either an organic flame retardant or an inorganic flame retardant.
  • organic flame retardant include melamine phosphate, melamine polyphosphate, guanidine phosphate, guanidine polyphosphate, ammonium phosphate, ammonium polyphosphate, ammonium phosphate amide ammonium, polyphosphate amide ammonium, phosphate carbamate, and polyphosphate carbamate.
  • Aluminum Trisdiphenylphosphite Aluminum Trismethylethylphosphinate, Aluminum Trisdiphenylphosphinate, Zinc bisdiethylphosphinate, Zinc bismethylethylphosphinate, Zinc bisdiphenylphosphite, Titanyl bisdiphenylphosphite, Titanium tetrakisdiethylphosphinate , Phosphate-based flame retardants such as titanyl bismethylethylphosphinate, titanium tetrakismethylethylphosphinate, titanyl bisdiphenylphosphinate, titanium tetrakisdiphenylphosphinate; triazine compounds such as melamine, melam, melamine cyanurate, and cyanuric acid compounds.
  • Isocyanuric acid compound triazole compound, tetrazole compound, diazo compound, urea and other nitrogen-based flame retardant; silicone compound, silane compound and other silicon-based flame retardant.
  • the inorganic flame retardant include metal hydroxides such as aluminum hydroxide, magnesium hydroxide, zirconium hydroxide, barium hydroxide, and calcium hydroxide; tin oxide, aluminum oxide, magnesium oxide, zirconium oxide, and zinc oxide.
  • Metal oxides such as molybdenum oxide and nickel oxide; zinc carbonate, magnesium carbonate, calcium carbonate, barium carbonate, zinc borate, hydrated glass and the like can be mentioned. These flame retardants may be used alone or in combination of two or more.
  • the curing agent is a component for forming a crosslinked structure by reaction with the epoxy resin (B), and is, for example, an amine-based curing agent such as an aliphatic diamine, an aliphatic polyamine, a cyclic aliphatic diamine, and an aromatic diamine.
  • Acid-based curing agents such as polyamide amine-based curing agents, aliphatic polyvalent carboxylic acids, alicyclic polyvalent carboxylic acids, aromatic polyvalent carboxylic acids and their acid anhydrides; basicity such as dicyandiamide and organic acid dihydrazide.
  • Examples thereof include an active hydrogen-based curing agent; a polypeptide-based curing agent; a novolak resin-based curing agent; a urea resin-based curing agent; and a melamine resin-based curing agent. These curing agents may be used alone or in combination of two or more.
  • Examples of the aliphatic diamine-based curing agent include ethylenediamine, 1,3-diaminopropane, 1,4-diaminobutane, hexamethylenediamine, polymethylenediamine, polyetherdiamine, 2,5-dimethylhexamethylenediamine, and trimethylhexamethylenediamine. And so on.
  • Examples of the aliphatic polyamine-based curing agent include diethylenetriamine, iminobis (hexamethylene) triamine, trihexatetramine, tetraethylenepentamine, aminoethylethanolamine, tri (methylamino) hexane, dimethylaminopropylamine, diethylaminopropylamine, and methylimino.
  • Examples include bispropylamine.
  • cyclic aliphatic diamine-based curing agent examples include mensendiamine, isophoronediamine, bis (4-amino-3-methyldicyclohexyl) methane, diaminodicyclohexylmethane, bis (aminomethyl) cyclohexane, N-ethylaminopiperazin, 3, Examples thereof include 9-bis (3-aminopropyl) 2,4,8,10-tetraoxaspiro [5.5] undecane and a hydrogenated product of methylylenediamine.
  • aromatic diamine-based curing agent examples include metaphenylenediamine, diaminodiphenylmethane, diaminodiphenylsulfone, diaminodiethyldiphenylmethane, and metaxylylenediamine.
  • Examples of the aliphatic polyvalent carboxylic acid-based curing agent and the acid anhydride-based curing agent include succinic acid, adipic acid, dodecenyl succinic anhydride, polyadipic acid anhydride, polyazeline acid anhydride, polysevacinic acid anhydride and the like.
  • Examples of the alicyclic polyvalent carboxylic acid-based curing agent and acid anhydride-based curing agent include methyltetrahydrophthalic acid, methylhexahydrophthalic acid, methylhymic acid, hexahydrophthalic acid, tetrahydrophthalic acid, and trialkyltetrahydrophthalic acid. , Methylcyclodicarboxylic acid and their acid anhydrides and the like.
  • aromatic polyvalent carboxylic acid-based curing agent and the acid anhydride-based curing agent examples include phthalic acid, trimellitic acid, pyromellitic acid, benzophenone tetracarboxylic acid, ethylene glycol glycol bistrimellitic acid, glycerol tristrimeric acid and their substances. Acid anhydride and the like can be mentioned.
  • polymercaptan-based curing agent examples include mercaptolated epoxy resin and mercaptopropionic acid ester.
  • novolak-based curing agent examples include phenol novolac-based curing agents and cresol novolak-based curing agents.
  • the content of the curing agent is such that the functional group equivalent is 1 molar equivalent of the epoxy group of the epoxy resin (B) from the viewpoint of adhesiveness and heat resistance.
  • the functional group equivalent is 1 molar equivalent of the epoxy group of the epoxy resin (B) from the viewpoint of adhesiveness and heat resistance.
  • it is preferably set to be in the range of 0.2 molar equivalent to 2.5 molar equivalent, and more preferably in the range of 0.4 molar equivalent to 2.0 molar equivalent.
  • the curing accelerator is a component used for the purpose of accelerating the reaction of the epoxy resin (B), and includes a tertiary amine-based curing accelerator, a tertiary amine salt-based curing accelerator, an imidazole-based curing accelerator, and the like. Can be used. These curing accelerators may be used alone or in combination of two or more.
  • tertiary amine-based curing accelerator examples include benzyldimethylamine, 2- (dimethylaminomethyl) phenol, 2,4,6-tris (dimethylaminomethyl) phenol, tetramethylguanidine, triethanolamine, N, N'-.
  • examples thereof include dimethylpiperazine, triethylenediamine, 1,8-diazabicyclo [5.4.0] undecene and the like.
  • examples thereof include novolak resin salt and 1,5-diazabicyclo [4.3.0] nonen's formate, octylate, p-toluenesulfonate, o-phthalate, phenol salt or phenolnovolak resin salt. Be done.
  • imidazole-based curing accelerator examples include 2-methylimidazole, 2-undecylimidazole, 2-heptadecylimidazole, 1,2-dimethylimidazole, 2-methyl-4-ethylimidazole, 2-phenylimidazole, and 2-phenyl-.
  • the content of the curing accelerator is preferably 1 with respect to 100 parts by mass of the epoxy resin (B) from the viewpoint of adhesiveness and heat resistance. It is in the range of 10 parts by mass, particularly preferably 2 parts by mass to 5 parts by mass.
  • Examples of the coupling agent include vinyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, p-styryltrimethoxysilane, 3-methacryloxypropylmethyldimethoxysilane, 3-acryloxypropyltrimethoxysilane, and N.
  • a silane-based coupling agent such as imidazole silane; a titanate-based coupling agent; an aluminate-based coupling agent; a zirconium-based coupling agent and the like. These may be used individually by 1 type, or may be used in combination of 2 or more type.
  • heat antiaging agent examples include 2,6-di-tert-butyl-4-methylphenol and n-octadecyl-3- (3', 5'-di-tert-butyl-4'-hydroxyphenyl) propione.
  • Phenol-based antioxidants such as methane; dilauryl-3,3'-thiodipropionate , Dimyristyl-3,3'-dithiopropionate and other sulfur-based antioxidants; trisnonylphenylphosphite, tris (2,4-di-tert-butylphenyl) phosphite and other phosphorus-based antioxidants, etc. Be done. These may be used individually by 1 type, or may be used in combination of 2 or more type.
  • the resin composition of the present invention can be prepared by mixing a polyester polyurethane resin (A), an epoxy resin (B), and, if necessary, other components. Since the resin composition of the present invention is preferably used in the state of a solution or a dispersion, it preferably contains a solvent. Examples of the solvent include alcohols such as methanol, ethanol, isopropyl alcohol, n-propyl alcohol, isobutyl alcohol, n-butyl alcohol, benzyl alcohol, ethylene glycol monomethyl ether, propylene glycol monomethyl ether, diethylene glycol monomethyl ether, and diacetone alcohol.
  • the solvent include alcohols such as methanol, ethanol, isopropyl alcohol, n-propyl alcohol, isobutyl alcohol, n-butyl alcohol, benzyl alcohol, ethylene glycol monomethyl ether, propylene glycol monomethyl ether, diethylene glycol monomethyl ether, and diacetone alcohol.
  • Ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, methyl amyl ketone, cyclohexanone, isophorone; aromatic hydrocarbons such as toluene, xylene, ethylbenzene, mesitylene; methyl acetate, ethyl acetate, ethylene glycol monomethyl ether acetate, Esters such as 3-methoxybutyl acetate; aliphatic hydrocarbons such as hexane, heptane, cyclohexane, methylcyclohexane and the like can be mentioned. These solvents may be used alone or in combination of two or more.
  • the resin composition of the present invention is a solution containing a solvent or a dispersion liquid, coating on an adherend and formation of a resin composition layer can be smoothly performed, and a resin composition layer having a desired thickness can be obtained. It can be easily obtained.
  • the solvent has a solid content concentration of preferably 3% by mass to 80% by mass, more preferably 10% by mass or more, from the viewpoint of workability including coating film forming property. It is used so as to be in the range of 50% by mass.
  • a suitable adherend according to the resin composition of the present invention comprises a polymer material such as a polyimide resin, a polyether ether ketone resin, a polyphenylene sulfide resin, an aramid resin, and a liquid crystal polymer; and a metal material such as copper, aluminum, and stainless steel. It is an object.
  • the shape of the adherend is not particularly limited. Then, two members made of the same material or different materials as an adherend can be adhered to each other by the resin composition of the present invention to produce an integrated composite. Further, it is possible to manufacture a product having an adhesive resin composition layer, such as the following coverlay film and bonding sheet.
  • the laminate with the resin composition layer of the present invention is a laminate using the resin composition of the present invention, and is formed by partially curing the resin composition layer made of the resin composition of the present invention and the resin composition.
  • the B-stage shape of the resin composition layer means a semi-cured state in which a part of the resin composition layer begins to cure, and a state in which the curing of the resin composition layer further progresses by heating or the like. Is.
  • the resin composition layer made of the resin composition of the present invention is preferably a layer in which at least a part of the solvent is removed from the resin composition of the present invention.
  • the laminate with the resin composition layer of the present invention and the laminate of the present invention preferably have a base material, and more preferably have a layer made of the resin composition of the present invention on the base material.
  • the base material is not particularly limited, and a known base material can be used. Further, the base material is preferably a film-like base material (base material film).
  • the base film is preferably a resin film, more preferably a polyimide film or an aramid film, and particularly preferably a polyimide film.
  • the polyimide film or the aramid film is not particularly limited as long as it has an electrical insulating property, and may be a film made of only a polyimide resin or an aramid resin, a film containing the resin and an additive, or the like.
  • a surface treatment may be applied to the side on which the resin composition layer is formed.
  • the thickness of the base material is not particularly limited, but is preferably 3 ⁇ m to 125 ⁇ m.
  • the thickness of the resin composition layer is preferably 5 ⁇ m to 50 ⁇ m, more preferably 10 ⁇ m to 40 ⁇ m.
  • the resin composition of the present invention containing a solvent is applied to the surface of a base film such as a polyimide film to form a resin composition layer. Later, by removing at least a part of the solvent from the resin composition layer, a laminate having a B-stage resin composition layer can be produced.
  • the drying temperature at the time of removing the solvent is preferably 40 ° C to 250 ° C, more preferably 70 ° C to 170 ° C. The drying is performed by passing the laminate coated with the resin composition through a furnace in which hot air drying, far infrared ray heating, high frequency induction heating and the like are performed.
  • the laminate with the resin composition layer of the present invention may further have a releasable film on the surface of the resin composition layer for storage or the like, if necessary.
  • a releasable film known films such as polyethylene terephthalate film, polyethylene film, polypropylene film, silicone releasable paper, polyolefin resin coated paper, polymethylpentene (TPX) film, and fluororesin film are used.
  • the thickness of the B-stage resin composition layer is preferably 5 ⁇ m to 100 ⁇ m, more preferably 5 ⁇ m to 70 ⁇ m, further preferably 5 ⁇ m to 50 ⁇ m, and particularly preferably 10 ⁇ m to 40 ⁇ m. preferable.
  • the thickness of the base film and the resin composition layer is selected depending on the application, but the base film tends to be thinner in order to improve the electrical characteristics.
  • the preferred thickness of the base film is the same as the preferred thickness of the base film described above.
  • the ratio (A / B) of the thickness (A) of the resin composition layer to the thickness (B) of the base film is 1 or more and 10 or less. It is preferable, and it is more preferable that it is 1 or more and 5 or less. Further, it is preferable that the thickness of the resin composition layer is thicker than the thickness of the base film.
  • the method for producing the laminate of the present invention is, for example, the same as in the case of the laminate with the resin composition layer of the present invention after the resin composition of the present invention containing a solvent is applied to the surface of the base film. Then, the surface of the formed resin composition layer and the adherend are brought into surface contact with each other, and laminating, for example, thermal laminating at 80 ° C. to 150 ° C. is performed. Next, a method of heat-pressing the laminate (base film / resin composition layer / adherend) and further curing the resin composition layer by after-cure to form a cured layer is preferable.
  • the conditions for heat crimping are not particularly limited as long as they can be crimped, but are preferably 150 ° C.
  • the conditions for aftercure are not particularly limited, but are preferably 100 ° C to 200 ° C and 30 minutes to 4 hours.
  • the thickness of the cured layer is preferably 5 ⁇ m to 100 ⁇ m, more preferably 5 ⁇ m to 70 ⁇ m, further preferably 5 ⁇ m to 50 ⁇ m, and particularly preferably 10 ⁇ m to 40 ⁇ m.
  • the adherend is not particularly limited, and examples thereof include those described above. Among them, a metal adherend is preferably mentioned, a copper foil or a plated copper foil is more preferably mentioned, and a gold-plated copper foil is particularly preferably mentioned. Further, the shape and size of the adherend are not particularly limited, and known ones can be used.
  • a flexible copper-clad laminate may be mentioned. That is, the flexible copper-clad laminate of the present invention has a cured layer obtained by curing the resin composition made of the resin composition of the present invention, and the polyimide film or the aramid film and the resin composition of the present invention are cured. It is preferable that the cured layer made of the resin and the copper foil are laminated.
  • the cured layer and the copper foil may be formed on both sides of a polyimide film or an aramid film. Since the resin composition of the present invention has excellent adhesiveness to articles containing copper, the flexible copper-clad laminate of the present invention has excellent stability as an integrated product.
  • the structure of the polyimide film or the aramid film is the same as that of the polyimide film or the aramid film in the coverlay film of the present invention described above.
  • the thickness of the cured layer is preferably 5 ⁇ m to 50 ⁇ m, more preferably 10 ⁇ m to 40 ⁇ m.
  • the copper foil is not particularly limited, and electrolytic copper foil, rolled copper foil and the like can be used. Further, the copper foil may be plated with a known metal or alloy such as gold or silver.
  • Examples of the embodiment of the laminate with the resin composition layer of the present invention include a bonding film, an electromagnetic wave shielding film, a coverlay film and the like, which will be described later.
  • the bonding film of the present invention uses the resin composition of the present invention, and is a B-stage resin composition layer obtained by partially curing the resin composition of the present invention and at least the resin composition layer. It is preferable to provide a release film in contact with one surface. Further, the bonding film of the present invention is also an embodiment of the laminate with the resin composition layer of the present invention, which will be described later.
  • the bonding film of the present invention may have an embodiment in which a resin composition layer is provided between two releasable films. As the releasable film, a known one as described above is used.
  • the thickness of the releasable film is preferably 20 ⁇ m to 100 ⁇ m.
  • the thickness of the resin composition layer is preferably 5 ⁇ m to 100 ⁇ m, more preferably 10 ⁇ m to 60 ⁇ m.
  • the resin composition of the present invention containing a solvent is applied to the surface of a releasable film, and then the above-mentioned laminate with the resin composition layer of the present invention is used.
  • a method of drying in the same manner as in the case is preferably mentioned.
  • the electromagnetic wave shielding film of the present invention uses the resin composition of the present invention, and is a resin composition layer made of the resin composition of the present invention and a B-stage resin obtained by partially curing the resin composition. It is preferable to have a composition layer or a cured layer obtained by curing the resin composition. Further, the electromagnetic wave shielding film of the present invention preferably has the resin composition layer and the protective layer.
  • the protective layer is not particularly limited as long as it is a layer made of an insulating resin composition, and any known layer can be used. Further, the protective layer may use the resin component used in the resin composition of the present invention. Further, the protective layer may be formed of two or more layers having different compositions and hardness.
  • the protective layer includes a curing accelerator, a tackifier, an antioxidant, a pigment, a dye, a plasticizer, an ultraviolet absorber, an antifoaming agent, a leveling agent, a filler, a flame retardant, and a viscosity control, if necessary. Agents, anti-blocking agents and the like may be included.
  • the thickness of the resin composition layer in the electromagnetic wave shielding film of the present invention is not particularly limited, but is preferably 3 ⁇ m to 30 ⁇ m from the viewpoint of conductivity and connectivity with the ground circuit.
  • the resin composition for a protective layer is coated and dried on one surface of a peelable film to form a protective layer, and the resin composition of the present invention is coated and dried on the protective layer to form a resin composition layer.
  • the method of forming the above can be mentioned.
  • the manufacturing method as exemplified it is possible to obtain an electromagnetic wave shielding film in a laminated state of a resin composition layer / protective layer / peelable film.
  • a method for providing the resin composition layer and the protective layer conventionally known coating methods such as gravure coating method, kiss coating method, die coating method, lip coating method, comma coating method, blade coating method, roll coating method and knife coating method are used. , Spray coat method, bar coat method, spin coat method, dip coat method and the like.
  • the electromagnetic wave shielding film of the present invention can be adhered onto a printed wiring board by, for example, a hot press.
  • the resin composition layer becomes soft by heating and flows into a gland portion provided on the printed wiring board by pressurization. As a result, the ground circuit and the conductive adhesive are electrically connected, and the shielding effect can be enhanced.
  • polyester resin PES-1 had a number average molecular weight of 7,000 and a glass transition point of 60 ° C.
  • polyester polyurethane resin a1 (1) Synthesis of polyester polyurethane resin a1 In a flask equipped with a stirrer, a reflux dehydrator and a distillation tube, 600 parts by mass of PES-360HVXM30, 100 parts by mass of toluene, 2-butyl-2-ethyl-1,3-propanediol 30 parts by mass was charged. After raising the temperature to 120 ° C. and distilling 100 parts by mass of the solvent containing water, the temperature was lowered to 105 ° C., and 0.4 parts by mass of 2,2-bis (hydroxymethyl) propionic acid was charged and dissolved. ..
  • Epoxy resin (B) The following commercially available products were used. (1) Epoxy resin b1 Bisphenol A novolak type epoxy resin "EPICLON N-865" manufactured by DIC Corporation (trade name) (2) Epoxy resin b2 Bisphenol A type epoxy resin "jER 1055" manufactured by Mitsubishi Chemical Corporation (trade name)
  • Polyamide resin c2 was synthesized as follows. A flask equipped with a stirrer, a reflux dehydrator and a distillation tube was charged with 485 parts by mass of dimer acid, 100 parts by mass of hexamethylenediamine and 120 parts by mass of distilled water. After raising the temperature to 120 ° C. and distilling water, the temperature was raised to 240 ° C. at a rate of 20 ° C./hour, and the reaction was continued for 3 hours to obtain the polyamide resin c2. The amine value of this resin was 4.5 mgKOH / g, and the acid value was 10.5 mgKOH / g.
  • the polyolefin resin c1 had a weight average molecular weight of 80,000 and an acid value of 10 mgKOH / g.
  • the content ratio of the graft portion in the polyolefin resin c1 was 1.5% by mass.
  • Polyolefin Resin c4 (Resin having no carboxy group and carboxylic acid anhydride structure) Using a metallocene catalyst as a polymerization catalyst, 80% by mass of a propylene unit and 20% by mass of a butene unit were reacted to obtain a polyolefin resin c4. ..
  • the polyolefin resin c4 had a weight average molecular weight of 100,000.
  • Inorganic filler (E) (1) Inorganic filler e1 Talc “SG-95” manufactured by Nippon Talc Co., Ltd. (trade name; average particle size 2.5 ⁇ m) (2) Inorganic filler e2 Aerosil “R972” (trade name; average particle size 16 nm, silica particles), obtained from Toshin Kasei Co., Ltd.
  • Organic filler (F) (1) Organic filler f1 Urethane beads "TK-800T” manufactured by Negami Kogyo Co., Ltd. (trade name; average particle size 8 ⁇ m) (2) Organic filler f2 Acrylic beads “J-4P” manufactured by Negami Kogyo Co., Ltd. (trade name; average particle size 2.2 ⁇ m)
  • Metal filler Copper powder "FCC-115A” manufactured by Fukuda Metal Foil Powder Industry Co., Ltd. (trade name, particle size distribution, the amount of particles of 45 ⁇ m or less exceeds 90% by mass, the amount of particles of 45 ⁇ m to 63 ⁇ m is less than 10% by mass, 63 ⁇ m The amount of particles of ⁇ 75 ⁇ m is less than 3% by mass.)
  • Solvent A mixed solvent consisting of toluene, methyl isobutyl ketone and 2-propanol (mass ratio 100: 20: 20)
  • Examples 1 to 29 and Comparative Example 1 The above raw materials are added to a flask equipped with a stirrer at the ratio shown in Table 2, and the mixture is stirred under heating at 60 ° C. for 6 hours to add the component (A), the component (B), the component (C), and the imidazole silane to the solvent.
  • a liquid adhesive composition was produced by dissolving a compound and a curing accelerator and dispersing an inorganic filler, an organic filler, a metal filler, and a flame retardant. Then, a coverlay film, a bonding sheet, and adhesive test pieces A and B were prepared using all of these liquid adhesive compositions, and the following evaluations (i) to (ix) were performed. The evaluation results are shown in Table 2.
  • Adhesive Test Piece A A rolled copper foil with a thickness of 35 ⁇ m manufactured by Fukuda Metal Foil Powder Industry Co., Ltd. was prepared. Then, the mirror surface was superposed so as to be in contact with the adhesive layer surface of the coverlay film, and laminating was performed under the conditions of 150 ° C., 0.3 MPa, and 1 m / min. The obtained laminate (polyimide film / adhesive layer / copper foil) is heated at 150 ° C. and 3 MPa for 5 minutes and pressure-bonded, and then after-cured at 160 ° C. for 2 hours in an oven. By doing so, an adhesion test piece A was obtained.
  • Bonding Sheet A releasable PET film with a thickness of 35 ⁇ m was prepared. Then, a mixture in which the liquid adhesive composition and the copper powder "FCC-115A" manufactured by Fukuda Metal Foil Powder Industry Co., Ltd. are blended on the surface so as to be 15% by mass of the total solid content resin is added to the thickness after drying. The roll was applied so as to have a diameter of 25 ⁇ m, and the mixture was dried at 140 ° C. for 2 minutes to obtain a bonding sheet having an adhesive layer.
  • Adhesion Test Piece B A copper circuit pattern is formed on the surfaces of a nickel-plated SUS304 plate with a thickness of 300 ⁇ m and a polyimide film with a thickness of 25 ⁇ m, and the circuit pattern has a diameter of 1 mm.
  • the nickel-plated surface of the SUS304 plate is laminated so as to be in contact with the adhesive layer surface of the bonding sheet, and laminating is performed under the conditions of 150 ° C., 0.3 MPa, and 1 m / min to form a laminate (SUS plate).
  • a flexible printed wiring board (a copper foil circuit was formed on a polyimide having a thickness of 25 ⁇ m on the surface of the exposed adhesive layer, and a diameter of 1 mm was formed on the copper foil circuit.
  • the peel strength reduction rate of less than 15% compared to the initial stage is "A”
  • the peel strength reduction rate is 15% or more and less than 30%
  • the peel strength reduction rate is 30% or more and less than 50% is "C”, 50%.
  • D The above is displayed as "D”.
  • test piece taken out from the solder bath was measured in accordance with JIS C 6481, and the 180 ° peeling adhesive strength (N / cm) when the polyimide film was peeled off from the gold-plated copper foil at 23 ° C.
  • the width of the adhesion test piece at the time of measurement was 10 mm, and the tensile speed was 50 mm / min.
  • the width of the adhesion test piece at the time of measurement was 10 mm.
  • connection resistance value (initial, connection resistance)
  • SUS plate of the adhesion test piece B SUS plate / adhesive layer / flexible printed wiring board
  • copper foil circuit of the flexible printed wiring board was measured with a resistance value measuring device.
  • the connection resistance value of less than 0.3 ⁇ is "A”
  • the connection resistance value of 0.3 ⁇ or more and less than 0.5 ⁇ is "B”
  • the connection resistance value of 0.5 ⁇ or more and 1 ⁇ or less is "C”.
  • Those with 1 ⁇ or more and 3 ⁇ or less are displayed as “D”, and those with more than 3 ⁇ are displayed as “E”.
  • connection resistance value Conductivity after soldering (Conductivity after soldering, connection resistance)
  • the adhesion test piece B was floated in a solder bath at 260 ° C. for 60 seconds. Then, the connection resistance value between the SUS plate of the adhesion test piece B taken out from the solder bath and the copper foil circuit of the flexible printed wiring plate was measured with a resistance value measuring device. As a result, the connection resistance value of less than 0.3 ⁇ is "A”, the connection resistance value of 0.3 ⁇ or more and less than 0.5 ⁇ is "B”, and the connection resistance value of 0.5 ⁇ or more and 1 ⁇ or less is "C”. Those with 1 ⁇ or more and 3 ⁇ or less are displayed as “D”, and those with more than 3 ⁇ are displayed as “E”.
  • connection resistance value Conductivity after long-term reliability test (conductivity after storage at 85 ° C for 85% RH for 1,000 hours, connection resistance)
  • the adhesion test piece B was left in a constant temperature and humidity chamber at 85 ° C. and 85% RH for 1,000 hours.
  • the connection resistance value between the SUS plate of the adhesion test piece B and the copper foil circuit of the flexible printed wiring plate was measured with a resistance value measuring device.
  • the connection resistance value of less than 0.3 ⁇ is "A”
  • the connection resistance value of 0.3 ⁇ or more and less than 0.5 ⁇ is "B”
  • the connection resistance value of 0.5 ⁇ or more and 1 ⁇ or less is "C”.
  • Those with 1 ⁇ or more and 3 ⁇ or less are displayed as “D”, and those with more than 3 ⁇ are displayed as “E”.
  • connection resistance Conductivity after thermal cycle test (connection resistance)
  • the adhesion test piece B is placed in a high-temperature (125 ° C) and low-temperature (-40 ° C) thermal shock tester, held at -40 ° C for 30 minutes, and then held at 125 ° C for 30 minutes.
  • the connection resistance value between the SUS plate of the adhesive test piece B and the copper foil circuit of the flexible printed wiring plate was measured with a resistance value measuring device.
  • the connection resistance value of less than 0.3 ⁇ is "A”
  • the connection resistance value of 0.3 ⁇ or more and less than 0.5 ⁇ is "B”
  • the connection resistance value of 0.5 ⁇ or more and 1 ⁇ or less is "C”.
  • Those with 1 ⁇ or more and 3 ⁇ or less are displayed as “D”, and those with more than 3 ⁇ are displayed as “E”.
  • the unit of the numerical value of each component column in the resin composition composition shown in Table 2 is a mass part.
  • the obtained cured product was stored for a long period of time and cooled in a high temperature and high humidity environment as compared with the resin composition of Comparative Example 1. It was a resin composition having excellent conductivity regardless of which test was performed after the cycle test. Further, in the resin compositions of Examples 1 to 29, the obtained cured product has an initial peeling adhesive strength, a peeling adhesive strength after soldering, a peeling adhesive strength after a long-term reliability test, flame retardancy, and initial conductivity. It was also excellent in properties and conductivity after soldering.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Laminated Bodies (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

A resin composition comprising a polyester-polyurethane resin (A) and an epoxy resin (B), in which an isocyante component constituting the polyester-polyurethane resin (A) comprises an isocynate compound that has a hydrocarbon group having 8 to 14 carbon atoms; and a bonding film, a laminate with a resin composition layer, a laminate, or an electromagnetic wave shield film, in which the resin composition is used.

Description

樹脂組成物、ボンディングフィルム、樹脂組成物層付き積層体、積層体、及び、電磁波シールドフィルムResin composition, bonding film, laminate with resin composition layer, laminate, and electromagnetic wave shielding film
 本発明は、ポリイミドフィルムや金属に対する接着力が高く、硬化物が耐熱性及び耐湿熱性を有し、液安定性や加工性に優れた、プリント配線板特にフレキシブルプリント配線板やビルドアップ法多層プリント配線板を製造するための有効な部材としてのポリエステルポリウレタン系樹脂組成物に関する。更には、前記樹脂組成物を離型フィルムに貼着したボンディングフィルム、前記樹脂組成物を基材フィルムに貼着した樹脂組成物層付き積層体、前記樹脂組成物を硬化してなる層を有する積層体、並びにフレキシブルプリント配線板などに貼着して、電気回路から発生する電磁ノイズを遮蔽する用途に好適に用いられる電磁波シールドフィルムに関する。 INDUSTRIAL APPLICABILITY According to the present invention, a printed wiring board, particularly a flexible printed wiring board or a build-up method multi-layer printing, which has high adhesive strength to a polyimide film or metal, has heat resistance and moisture heat resistance of a cured product, and has excellent liquid stability and workability. The present invention relates to a polyester polyurethane resin composition as an effective member for manufacturing a wiring board. Further, it has a bonding film in which the resin composition is attached to a release film, a laminate with a resin composition layer in which the resin composition is attached to a base film, and a layer formed by curing the resin composition. The present invention relates to an electromagnetic wave shielding film that is attached to a laminate, a flexible printed wiring board, or the like and is suitably used for shielding electromagnetic noise generated from an electric circuit.
 フレキシブルプリント配線板は、限られたスペースでも立体的且つ高密度の実装が可能であるため、その用途が拡大しつつある。そして、近年、電子機器の小型化、軽量化等に伴い、フレキシブルプリント配線板の関連製品は多様化して、その需要が増大している。このような関連製品としては、ポリイミドフィルムに銅箔を貼り合わせたフレキシブル銅張積層板、フレキシブル銅張積層板に電子回路を形成したフレキシブルプリント配線板、フレキシブルプリント配線板と補強板を貼り合せた補強板付きフレキシブルプリント配線板、フレキシブル銅張積層板或いはフレキシブルプリント配線板を重ねて接合した多層板等があり、例えば、フレキシブル銅張積層板を製造する場合、ポリイミドフィルムと銅箔とを接着させるために、通常、接着剤が用いられる。 Flexible printed wiring boards can be mounted three-dimensionally and at high density even in a limited space, so their applications are expanding. In recent years, along with the miniaturization and weight reduction of electronic devices, related products of flexible printed wiring boards have been diversified, and the demand for them is increasing. As such related products, a flexible copper-clad laminate in which a copper foil is bonded to a polyimide film, a flexible printed wiring board in which an electronic circuit is formed on a flexible copper-clad laminate, and a flexible printed wiring board and a reinforcing plate are bonded. There are flexible printed wiring boards with reinforcing plates, flexible copper-clad laminates, multi-layer boards made by stacking and joining flexible printed wiring boards, and for example, when manufacturing flexible copper-clad laminates, the polyimide film and copper foil are bonded together. For this purpose, an adhesive is usually used.
 従来の接着剤組成物、又は、従来の積層体としては、特許文献1~3に記載の方法が知られている。
 特許文献1には、(A)25℃で固体の溶剤可溶性ポリアミド樹脂、(B)フェノキシ樹脂、(C)ハロゲン原子を含まないエポキシ樹脂、及び(D)下記一般式(1)で示される構造を有するリン系難燃剤を含有し、前記エポキシ樹脂(C)は、1分子中に3個以上のエポキシ基を有するエポキシ樹脂であり、前記フェノキシ樹脂(B)の含有量は、前記ポリアミド樹脂(A)100質量部に対して100~450質量部であり、前記エポキシ樹脂(C)の含有量は、前記ポリアミド樹脂(A)及び前記フェノキシ樹脂(B)の合計100質量部に対して1~60質量部であり、前記リン系難燃剤(D)の含有量は、前記ポリアミド樹脂(A)及び前記フェノキシ樹脂(B)の合計100質量部に対して5~100質量部であることを特徴とするハロゲンフリー難燃性接着剤組成物が記載されている。
As a conventional adhesive composition or a conventional laminated body, the methods described in Patent Documents 1 to 3 are known.
Patent Document 1 describes (A) a solvent-soluble polyamide resin solid at 25 ° C., (B) a phenoxy resin, (C) an epoxy resin containing no halogen atom, and (D) a structure represented by the following general formula (1). The epoxy resin (C) is an epoxy resin having three or more epoxy groups in one molecule, and the content of the phenoxy resin (B) is the polyamide resin (C). A) It is 100 to 450 parts by mass with respect to 100 parts by mass, and the content of the epoxy resin (C) is 1 to 450 parts by mass with respect to the total of 100 parts by mass of the polyamide resin (A) and the phenoxy resin (B). It is 60 parts by mass, and the content of the phosphorus-based flame retardant (D) is 5 to 100 parts by mass with respect to a total of 100 parts by mass of the polyamide resin (A) and the phenoxy resin (B). A halogen-free flame-retardant adhesive composition is described.
 また、特許文献2には、分子中に2個以上のカルボキシル基を含み、数平均分子量が5,000~100,000、且つカルボキシル基1個当たりの分子量が1,500~10,000であるポリエステル系重合体(a)、分子中に2個以上のエポキシ基を含むエポキシ樹脂(b)、エポキシ樹脂硬化促進剤(c)を含有し、5℃において5ヶ月以上の期間、熱可塑性を保持し得る硬化性樹脂組成物がポリイミド系フィルム、又はポリエステル系フィルム又は金属箔の少なくとも片面に積層されていることを特徴とする積層体、及び該積層体の硬化性樹脂組成物が硬化されて、金属箔(金属の回路を含む)上に積層されている積層体が記載されている。 Further, Patent Document 2 contains two or more carboxyl groups in the molecule, has a number average molecular weight of 5,000 to 100,000, and has a molecular weight of 1,500 to 10,000 per carboxyl group. It contains a polyester polymer (a), an epoxy resin (b) containing two or more epoxy groups in the molecule, and an epoxy resin curing accelerator (c), and retains thermoplasticity at 5 ° C. for a period of 5 months or more. A laminate characterized by having a curable resin composition laminated on at least one surface of a polyimide film, a polyester film, or a metal foil, and a curable resin composition of the laminate are cured. A laminate laminated on a metal foil (including a metal circuit) is described.
 また、特許文献3には、カルボキシル基を含有し、酸価(単位:当量/10g)が100以上1000以下であり、数平均分子量が5.0×10以上1.0×10以下であり、ガラス転移温度が-10℃以上70℃以下であるポリウレタン樹脂(a)、窒素原子を含有するエポキシ樹脂(b)、ジシクロペンタジエン骨格を有するエポキシ樹脂(c)、を含有し、前記樹脂(b)の配合比率が、樹脂組成物に含まれるエポキシ樹脂全体の0.1質量%以上20質量%以下である接着剤用樹脂組成物が記載されている。 Further, Patent Document 3 contains a carboxyl group, has an acid value (unit: equivalent / 106 g) of 100 or more and 1000 or less, and has a number average molecular weight of 5.0 × 10 3 or more and 1.0 × 10 5 . It contains a polyurethane resin (a) having a glass transition temperature of −10 ° C. or higher and 70 ° C. or lower, an epoxy resin (b) containing a nitrogen atom, and an epoxy resin (c) having a dicyclopentadiene skeleton. Described is a resin composition for an adhesive in which the blending ratio of the resin (b) is 0.1% by mass or more and 20% by mass or less of the entire epoxy resin contained in the resin composition.
特許第5846290号公報Japanese Patent No. 5846290 特開2005-125724号公報Japanese Unexamined Patent Publication No. 2005-125724 特開2010-84005号公報Japanese Unexamined Patent Publication No. 2010-84005
 本発明が解決しようとする課題は、得られる硬化物が、高温高湿環境下(85℃85%RH)において長期(1,000時間)保管後及び冷熱サイクル試験(例えば、-40℃/125℃を1,000サイクル)後のどちらの試験後であっても、導電性に優れる樹脂組成物を提供することである。
 本発明が解決しようとする他の課題は、前記樹脂組成物を用いたボンディングフィルム、樹脂組成物層付き積層体、積層体又は電磁波シールドフィルムを提供することである。
The problem to be solved by the present invention is that the obtained cured product is stored in a high temperature and high humidity environment (85 ° C. 85% RH) for a long period of time (1,000 hours) and in a cold cycle test (for example, −40 ° C./125). It is an object of the present invention to provide a resin composition having excellent conductivity regardless of which test is performed after 1,000 cycles of ° C.).
Another problem to be solved by the present invention is to provide a bonding film using the resin composition, a laminate with a resin composition layer, a laminate, or an electromagnetic wave shielding film.
 前記課題を解決するための手段には、以下の態様が含まれる。
<1> ポリエステルポリウレタン樹脂(A)と、エポキシ樹脂(B)とを含有し、ポリエステルポリウレタン樹脂(A)を構成するジイソシアネート成分が、炭素数8~14の炭化水素基を有するジイソシアネート化合物を含む樹脂組成物。
<2> カルボキシ基又はカルボン酸無水物構造を有する樹脂(C)を更に含有する<1>に記載の樹脂組成物。
<3> ポリエステルポリウレタン樹脂(A)におけるウレタン結合1個当たりの分子量が、200~8,000である<1>又は<2>に記載の樹脂組成物。
<4> 前記樹脂組成物におけるポリエステルポリウレタン樹脂(A)、エポキシ樹脂(B)及びカルボキシ基又はカルボン酸無水物構造を有する樹脂(C)、並びに、任意成分として含有してもよいイミダゾールシラン化合物(D)の合計量に対して、ポリエステルポリウレタン樹脂(A)の含有量が、10質量%~90質量%であり、かつカルボキシ基又はカルボン酸無水物構造を有する樹脂(C)の含有量が、5質量%~70質量%である<1>~<3>のいずれか1つに記載の樹脂組成物。
<5> 無機フィラー(E)を更に含有する<1>~<4>のいずれか1つに記載の樹脂組成物。
<6> 有機フィラー(F)を更に含有する<1>~<5>のいずれか1つに記載の樹脂組成物。
<7> 前記炭素数8~14の炭化水素基を有するジイソシアネート化合物が、脂環式構造を有する<1>~<6>のいずれか1つに記載の樹脂組成物。
<8> ポリエステルポリウレタン樹脂(A)を構成するジオール成分が、炭素数5~32の炭化水素基を有するジオール化合物を含む<1>~<7>のいずれか1つに記載の樹脂組成物。
<9> 前記炭素数5~32の炭化水素基を有するジオール化合物が、脂環式構造又は2つ以上の側鎖を有するジオール化合物を含む<8>に記載の樹脂組成物。
<10> ポリエステルポリウレタン樹脂(A)が、数平均分子量が8,000~30,000のポリエステル構造を有するポリエステルポリウレタン樹脂を含む<1>~<9>のいずれか1つに記載の樹脂組成物。
<11> ポリエステルポリウレタン樹脂(A)の数平均分子量が、10,000~80,000である<1>~<10>のいずれか1つに記載の樹脂組成物。
<12> ポリエステルポリウレタン樹脂(A)の酸価が、0.1mgKOH/g~20mgKOH/gである<1>~<11>のいずれか1つに記載の樹脂組成物。
<13> ポリエステルポリウレタン樹脂(A)のガラス転移温度が、30℃~150℃である<1>~<12>のいずれか1つに記載の樹脂組成物。
<14> エポキシ樹脂(B)の含有量が、ポリエステルポリウレタン樹脂(A)100質量部に対し、1質量部~30質量部である<1>~<13>のいずれか1つに記載の樹脂組成物。
<15> エポキシ樹脂(B)が、ビスフェノールA型エポキシ樹脂及び/又はノボラック型エポキシ樹脂を含む<1>~<14>のいずれか1つに記載の樹脂組成物。
<16> カルボキシ基又はカルボン酸無水物構造を有する樹脂(C)の含有量が、ポリエステルポリウレタン樹脂(A)100質量部に対し、1質量部~100質量部である<1>~<15>のいずれか1つに記載の樹脂組成物。
<17> カルボキシ基又はカルボン酸無水物構造を有する樹脂(C)が、酸価を有するポリアミド樹脂、及び、酸変性されたポリオレフィン構造を有する樹脂の少なくともいずれかを含む<1>~<16>のいずれか1つに記載の樹脂組成物。
<18> 金属フィラー(G)を更に含有する<1>~<17>のいずれか1つに記載の樹脂組成物。
<19> 金属フィラー(G)の含有量が、前記樹脂組成物におけるポリエステルポリウレタン樹脂(A)、エポキシ樹脂(B)及びカルボキシ基又はカルボン酸無水物構造を有する樹脂(C)、並びに、任意成分として含有してもよいイミダゾールシラン化合物(D)の合計量100質量部に対して、10質量部~350質量部である<18>に記載の樹脂組成物。
<20> 金属フィラー(G)が、導電フィラーである<18>又は<19>に記載の樹脂組成物。
<21> <1>~<20>のいずれか1つに記載の樹脂組成物を一部硬化してなるBステージ状の樹脂組成物層と、前記樹脂組成物層の少なくとも一方の面に接する離型フィルムとを備えるボンディングフィルム。
<22> <1>~<20>のいずれか1つに記載の樹脂組成物からなる樹脂組成物層、前記樹脂組成物を一部硬化してなるBステージ状の樹脂組成物層、又は、前記樹脂組成物を硬化してなる硬化層と、前記樹脂組成物層、Bステージ状の樹脂組成物層又は硬化層の少なくとも一方の面に接する基材フィルムとを備える樹脂組成物層付き積層体。
<23> <1>~<20>のいずれか1つに記載の樹脂組成物を硬化してなる硬化層を備える積層体。
<24> 銅箔と、<1>~<20>のいずれか1つに記載の樹脂組成物を硬化してなる硬化層と、基材とを備えるフレキシブル銅張積層板。
<25> 銅配線と、<1>~<20>のいずれか1つに記載の樹脂組成物を硬化してなる硬化層と、被覆材とを備えるフレキシブルフラットケーブル。
<26> <1>~<20>のいずれか1つに記載の樹脂組成物からなる樹脂組成物層、前記樹脂組成物を一部硬化してなるBステージ状の樹脂組成物層、又は、前記樹脂組成物を硬化してなる硬化層を有する電磁波シールドフィルム。
The means for solving the above-mentioned problems include the following aspects.
<1> A resin containing a polyester polyurethane resin (A) and an epoxy resin (B), and the diisocyanate component constituting the polyester polyurethane resin (A) contains a diisocyanate compound having a hydrocarbon group having 8 to 14 carbon atoms. Composition.
<2> The resin composition according to <1>, which further contains a resin (C) having a carboxy group or a carboxylic acid anhydride structure.
<3> The resin composition according to <1> or <2>, wherein the polyester polyurethane resin (A) has a molecular weight of 200 to 8,000 per urethane bond.
<4> The polyester polyurethane resin (A), the epoxy resin (B), the resin (C) having a carboxy group or a carboxylic acid anhydride structure in the resin composition, and the imidazole silane compound which may be contained as an optional component ( The content of the polyester polyurethane resin (A) is 10% by mass to 90% by mass with respect to the total amount of D), and the content of the resin (C) having a carboxy group or a carboxylic acid anhydride structure is The resin composition according to any one of <1> to <3>, which is 5% by mass to 70% by mass.
<5> The resin composition according to any one of <1> to <4>, which further contains the inorganic filler (E).
<6> The resin composition according to any one of <1> to <5>, which further contains an organic filler (F).
<7> The resin composition according to any one of <1> to <6>, wherein the diisocyanate compound having a hydrocarbon group having 8 to 14 carbon atoms has an alicyclic structure.
<8> The resin composition according to any one of <1> to <7>, wherein the diol component constituting the polyester polyurethane resin (A) contains a diol compound having a hydrocarbon group having 5 to 32 carbon atoms.
<9> The resin composition according to <8>, wherein the diol compound having a hydrocarbon group having 5 to 32 carbon atoms contains a diol compound having an alicyclic structure or two or more side chains.
<10> The resin composition according to any one of <1> to <9>, wherein the polyester polyurethane resin (A) contains a polyester polyurethane resin having a polyester structure having a number average molecular weight of 8,000 to 30,000. ..
<11> The resin composition according to any one of <1> to <10>, wherein the polyester polyurethane resin (A) has a number average molecular weight of 10,000 to 80,000.
<12> The resin composition according to any one of <1> to <11>, wherein the polyester polyurethane resin (A) has an acid value of 0.1 mgKOH / g to 20 mgKOH / g.
<13> The resin composition according to any one of <1> to <12>, wherein the polyester polyurethane resin (A) has a glass transition temperature of 30 ° C to 150 ° C.
<14> The resin according to any one of <1> to <13>, wherein the content of the epoxy resin (B) is 1 part by mass to 30 parts by mass with respect to 100 parts by mass of the polyester polyurethane resin (A). Composition.
<15> The resin composition according to any one of <1> to <14>, wherein the epoxy resin (B) contains a bisphenol A type epoxy resin and / or a novolak type epoxy resin.
<16> The content of the resin (C) having a carboxy group or a carboxylic acid anhydride structure is 1 part by mass to 100 parts by mass with respect to 100 parts by mass of the polyester polyurethane resin (A) <1> to <15>. The resin composition according to any one of the above.
<17> The resin (C) having a carboxy group or a carboxylic acid anhydride structure contains at least one of a polyamide resin having an acid value and a resin having an acid-modified polyolefin structure <1> to <16>. The resin composition according to any one of the above.
<18> The resin composition according to any one of <1> to <17>, which further contains a metal filler (G).
<19> The content of the metal filler (G) is the polyester polyurethane resin (A), the epoxy resin (B), the resin (C) having a carboxy group or a carboxylic acid anhydride structure, and an optional component in the resin composition. The resin composition according to <18>, which is 10 parts by mass to 350 parts by mass with respect to 100 parts by mass of the total amount of the imidazole silane compound (D) which may be contained as.
<20> The resin composition according to <18> or <19>, wherein the metal filler (G) is a conductive filler.
<21> A B-stage-shaped resin composition layer obtained by partially curing the resin composition according to any one of <1> to <20> and contacting at least one surface of the resin composition layer. A bonding film with a release film.
<22> A resin composition layer made of the resin composition according to any one of <1> to <20>, a B-stage resin composition layer obtained by partially curing the resin composition, or a B-stage resin composition layer. A laminate with a resin composition layer comprising a cured layer obtained by curing the resin composition and a base film in contact with at least one surface of the resin composition layer, the B-stage resin composition layer, or the cured layer. ..
<23> A laminate provided with a cured layer obtained by curing the resin composition according to any one of <1> to <20>.
<24> A flexible copper-clad laminate comprising a copper foil, a cured layer obtained by curing the resin composition according to any one of <1> to <20>, and a base material.
<25> A flexible flat cable including a copper wiring, a cured layer obtained by curing the resin composition according to any one of <1> to <20>, and a coating material.
<26> A resin composition layer made of the resin composition according to any one of <1> to <20>, a B-stage resin composition layer obtained by partially curing the resin composition, or a B-stage resin composition layer. An electromagnetic wave shielding film having a cured layer obtained by curing the resin composition.
 本発明によれば、得られる硬化物が、高温高湿環境下(85℃85%RH)において長期(1,000時間)保管後及び冷熱サイクル試験(例えば、-40℃/125℃を1,000サイクル)後であっても、導電性に優れる樹脂組成物を提供することができる。
 また、本発明によれば、前記樹脂組成物を用いたボンディングフィルム、樹脂組成物層付き積層体、積層体又は電磁波シールドフィルムを提供することができる。
According to the present invention, the obtained cured product is stored in a high temperature and high humidity environment (85 ° C. 85% RH) for a long period of time (1,000 hours) and in a cold cycle test (for example, -40 ° C./125 ° C.). It is possible to provide a resin composition having excellent conductivity even after 000 cycles).
Further, according to the present invention, it is possible to provide a bonding film using the resin composition, a laminate with a resin composition layer, a laminate, or an electromagnetic wave shielding film.
 以下に記載する構成要件の説明は、本発明の代表的な実施形態に基づいてなされることがあるが、本発明はそのような実施態様に限定されるものではない。なお、本願明細書において「~」とはその前後に記載される数値を下限値及び上限値として含む意味で使用される。
 本明細書中に段階的に記載されている数値範囲において、一つの数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本明細書中に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。
 本発明において、組成物中の各成分の量は、組成物中に各成分に該当する物質が複数存在する場合、特に断らない限り、組成物中に存在する前記複数の物質の合計量を意味する。
 本発明において、「工程」との語は、独立した工程だけでなく、他の工程と明確に区別できない場合であっても工程の所期の目的が達成されれば、本用語に含まれる。
 本発明において、「質量%」と「重量%」とは同義であり、「質量部」と「重量部」とは同義である。
 また、本発明において、2以上の好ましい態様の組み合わせは、より好ましい態様である。
 また、本明細書において、「(メタ)アクリル」はアクリル及びメタクリルの双方、又は、いずれかを表す。
 更に、本明細書における化合物の一部において、炭化水素鎖を炭素(C)及び水素(H)の記号を省略した簡略構造式で記載する場合もある。
 以下において、本発明の内容について詳細に説明する。
The description of the constituent elements described below may be based on a representative embodiment of the present invention, but the present invention is not limited to such embodiments. In the specification of the present application, "-" is used to mean that the numerical values described before and after it are included as the lower limit value and the upper limit value.
In the numerical range described stepwise in the present specification, the upper limit value or the lower limit value described in one numerical range may be replaced with the upper limit value or the lower limit value of another numerical range described stepwise. good. Further, in the numerical range described in the present specification, the upper limit value or the lower limit value of the numerical range may be replaced with the value shown in the examples.
In the present invention, the amount of each component in the composition means the total amount of the plurality of substances present in the composition when a plurality of substances corresponding to each component are present in the composition, unless otherwise specified. do.
In the present invention, the term "process" is included in this term not only as an independent process but also as long as the intended purpose of the process is achieved even if it cannot be clearly distinguished from other processes.
In the present invention, "% by mass" and "% by weight" are synonymous, and "parts by mass" and "parts by weight" are synonymous.
Further, in the present invention, the combination of two or more preferred embodiments is a more preferred embodiment.
Further, in the present specification, "(meth) acrylic" means both acrylic and methacrylic, or either of them.
Further, in some of the compounds in the present specification, the hydrocarbon chain may be described by a simplified structural formula omitting the symbols of carbon (C) and hydrogen (H).
Hereinafter, the contents of the present invention will be described in detail.
(樹脂組成物)
 本発明の樹脂組成物は、ポリエステルポリウレタン樹脂(A)と、エポキシ樹脂(B)とを含有し、ポリエステルポリウレタン樹脂(A)を構成するジイソシアネート成分が、炭素数8~14の炭化水素基を有するジイソシアネート化合物を含む。
 本発明の樹脂組成物は、接着剤組成物として好適に用いることができ、ポリイミド接着用又は金属接着用接着剤組成物としてより好適に用いることができ、ポリイミドと金属との接着用接着剤組成物として特に好適に用いることができる。
(Resin composition)
The resin composition of the present invention contains a polyester polyurethane resin (A) and an epoxy resin (B), and the diisocyanate component constituting the polyester polyurethane resin (A) has a hydrocarbon group having 8 to 14 carbon atoms. Contains diisocyanate compounds.
The resin composition of the present invention can be suitably used as an adhesive composition, more preferably as an adhesive composition for polyimide adhesion or metal adhesion, and an adhesive composition for adhesion between polyimide and metal. It can be particularly preferably used as a product.
 従来の樹脂組成物は、得られる硬化物が、高温高湿環境下及び冷熱サイクル試験後では、導電性が十分でないことを本発明者らは見出した。
 本発明者らが鋭意検討した結果、ポリエステルポリウレタン樹脂(A)及びエポキシ樹脂(B)の2種の樹脂を含有し、ポリエステルポリウレタン樹脂(A)を構成するジイソシアネート成分が、炭素数8~14の炭化水素基を有するジイソシアネート化合物を含むことにより、詳細な機構は不明であるが、これら2種の樹脂が互いに協奏的に作用し、また、互いに補完し、更に、ポリエステルポリウレタン樹脂(A)を構成するイソシアネート成分が、炭素数8~14の炭化水素基を有するジイソシアネート化合物を含むため、樹脂の疎水性が向上し、耐湿性が向上するため、得られる硬化物が、高温高湿下であっても導電性に優れ、更にポリエステルポリウレタン樹脂(A)及びエポキシ樹脂(B)の樹脂成分による応力緩和効果によって、冷熱サイクル試験後であっても、導電性に優れる樹脂組成物を提供できることを見出した。
The present inventors have found that the obtained cured product does not have sufficient conductivity in a high temperature and high humidity environment and after a cold cycle test.
As a result of diligent studies by the present inventors, the diisocyanate component containing two kinds of resins, the polyester polyurethane resin (A) and the epoxy resin (B) and constituting the polyester polyurethane resin (A), has 8 to 14 carbon atoms. Although the detailed mechanism is unknown due to the inclusion of the diisocyanate compound having a hydrocarbon group, these two resins act synergistically with each other and complement each other to further constitute the polyester polyurethane resin (A). Since the isocyanate component to be formed contains a diisocyanate compound having a hydrocarbon group having 8 to 14 carbon atoms, the hydrophobicity of the resin is improved and the moisture resistance is improved, so that the obtained cured product is under high temperature and high humidity. It was also found that the resin composition having excellent conductivity can be provided even after the thermal cycle test due to the stress relaxing effect of the resin components of the polyester polyurethane resin (A) and the epoxy resin (B). ..
 また、本発明の樹脂組成物は、ポリエステルポリウレタン樹脂(A)及びエポキシ樹脂(B)の2種の樹脂を含有し、ポリエステルポリウレタン樹脂(A)におけるウレタン結合1個当たりの分子量が、200~8,000であり、ポリエステルポリウレタン樹脂(A)を構成するジイソシアネート成分が、炭素数8~14の炭化水素基を有するジイソシアネート化合物を含むことにより、難燃性、初期及びはんだ処理後の導電性に優れ、また、耐熱性にも優れる。 Further, the resin composition of the present invention contains two types of resins, a polyester polyurethane resin (A) and an epoxy resin (B), and the molecular weight per urethane bond in the polyester polyurethane resin (A) is 200 to 8. The diisocyanate component constituting the polyester polyurethane resin (A) is 000, and contains a diisocyanate compound having a hydrocarbon group having 8 to 14 carbon atoms, so that it is excellent in flame retardancy, initial and post-solder treatment. Also, it has excellent heat resistance.
 以下、本発明について詳細に説明する。
 また、本明細書においては、「ポリエステルポリウレタン樹脂(A)」等を「成分(A)」等ともいう。
Hereinafter, the present invention will be described in detail.
Further, in the present specification, "polyester polyurethane resin (A)" and the like are also referred to as "component (A)" and the like.
<ポリエステルポリウレタン樹脂(A)>
 本発明の樹脂組成物は、ポリエステルポリウレタン樹脂(A)を含有し、ポリエステルポリウレタン樹脂(A)を構成するジイソシアネート成分が、炭素数8~14の炭化水素基を有するジイソシアネート化合物を含む。
 ポリエステルポリウレタン樹脂(A)は、2以上のエステル結合と2以上のウレタン結合とを有する樹脂であればよいが、ポリエステル鎖と2以上のウレタン結合とを有する樹脂であることが好ましい。
 また、ポリエステルポリウレタン樹脂(A)は、その原料としてポリエステルポリオールと、ポリイソシアネートと、鎖延長剤とを少なくとも反応させてなる樹脂であることが好ましく、ポリエステルポリオールと、ポリイソシアネートと、ジオール化合物とを少なくとも反応させてなる樹脂であることがより好ましい。
<Polyester polyurethane resin (A)>
The resin composition of the present invention contains a polyester polyurethane resin (A), and the diisocyanate component constituting the polyester polyurethane resin (A) contains a diisocyanate compound having a hydrocarbon group having 8 to 14 carbon atoms.
The polyester polyurethane resin (A) may be a resin having two or more ester bonds and two or more urethane bonds, but is preferably a resin having a polyester chain and two or more urethane bonds.
Further, the polyester polyurethane resin (A) is preferably a resin obtained by at least reacting a polyester polyol, a polyisocyanate, and a chain extender as a raw material thereof, and a polyester polyol, a polyisocyanate, and a diol compound are used. It is more preferable that the resin is at least reacted.
 ポリエステルポリウレタン樹脂(A)におけるポリエステル部分は、酸成分とアルコール成分とから形成されることが好ましい。
 酸成分としては、多価カルボン酸化合物が好ましく、ジカルボン酸化合物がより好ましい。また、酸成分としては、スルホカルボン酸化合物等も用いることができる。更に、酸成分としては、芳香族酸が好ましく挙げられる。
 アルコール成分としては、多価アルコール化合物が好ましく、ジオール化合物がより好ましい。
 また、前記ポリエステル部分は、ヒドロキシカルボン酸化合物により形成されていてもよい。
 ポリエステルポリウレタン樹脂(A)のポリエステル部分を構成する全酸成分の合計量を100モル%としたとき、接着性、耐熱性及び耐湿熱性の観点から、前記全酸成分のうち、芳香族酸が30モル%以上であることが好ましく、45モル%以上であることがより好ましく、60モル%以上であることが特に好ましい。
The polyester portion of the polyester polyurethane resin (A) is preferably formed from an acid component and an alcohol component.
As the acid component, a polyvalent carboxylic acid compound is preferable, and a dicarboxylic acid compound is more preferable. Further, as the acid component, a sulfocarboxylic acid compound or the like can also be used. Further, as the acid component, an aromatic acid is preferably mentioned.
As the alcohol component, a polyhydric alcohol compound is preferable, and a diol compound is more preferable.
Further, the polyester portion may be formed of a hydroxycarboxylic acid compound.
When the total amount of the total acid components constituting the polyester portion of the polyester polyurethane resin (A) is 100 mol%, the aromatic acid is 30 among the total acid components from the viewpoint of adhesiveness, heat resistance and moisture heat resistance. It is preferably mol% or more, more preferably 45 mol% or more, and particularly preferably 60 mol% or more.
 芳香族酸の例としては、テレフタル酸、イソフタル酸、オルソフタル酸、ナフタレンジカルボン酸、ビフェニルジカルボン酸、5-ヒドロキシイソフタル酸等の芳香族ジカルボン酸が例示できる。また、スルホテレフタル酸、5-スルホイソフタル酸、4-スルホフタル酸、4-スルホナフタレン-2,7-ジカルボン酸、5-(4-スルホフェノキシ)イソフタル酸、スルホテレフタル酸、それらの金属塩、それらのアンモニウム塩などのスルホン酸基又はスルホン酸塩基を有する芳香族ジカルボン酸、p-ヒドロキシ安息香酸、p-ヒドロキシフェニルプロピオン酸、p-ヒドロキシフェニル酢酸、6-ヒドロキシ-2-ナフトエ酸、4,4-ビス(p-ヒドロキシフェニル)バレリック酸などの芳香族オキシカルボン酸等を挙げることができる。これらの中でも、接着性の観点から、酸成分としては、テレフタル酸、及び/又は、イソフタル酸を含むことが好ましく、テレフタル酸、及び/又は、イソフタル酸であること特に好ましい。
 また、前記酸成分は、樹脂合成時においては、エステル等の酸化合物の誘導体であってもよい。
Examples of aromatic acids include aromatic dicarboxylic acids such as terephthalic acid, isophthalic acid, orthophthalic acid, naphthalenedicarboxylic acid, biphenyldicarboxylic acid, and 5-hydroxyisophthalic acid. Also, sulfoterephthalic acid, 5-sulfoisophthalic acid, 4-sulfophthalic acid, 4-sulfonaphthalene-2,7-dicarboxylic acid, 5- (4-sulfophenoxy) isophthalic acid, sulfoterephthalic acid, their metal salts, and their metals. Aromatic dicarboxylic acid having a sulfonic acid group or a sulfonic acid base such as an ammonium salt of, p-hydroxybenzoic acid, p-hydroxyphenylpropionic acid, p-hydroxyphenylacetic acid, 6-hydroxy-2-naphthoic acid, 4,4 -Aromatic oxycarboxylic acids such as bis (p-hydroxyphenyl) valeric acid can be mentioned. Among these, from the viewpoint of adhesiveness, the acid component preferably contains terephthalic acid and / or isophthalic acid, and is particularly preferably terephthalic acid and / or isophthalic acid.
Further, the acid component may be a derivative of an acid compound such as an ester at the time of resin synthesis.
 また、その他の酸成分としては、1,4-シクロヘキサンジカルボン酸、1,3-シクロヘキサンジカルボン酸、1,2-シクロヘキサンジカルボン酸とその酸無水物などの脂環族ジカルボン酸、コハク酸、アジピン酸、アゼライン酸、セバシン酸、ドデカン二酸、ダイマー酸などの脂肪族ジカルボン酸を挙げることができる。 Other acid components include alicyclic dicarboxylic acids such as 1,4-cyclohexanedicarboxylic acid, 1,3-cyclohexanedicarboxylic acid, 1,2-cyclohexanedicarboxylic acid and its acid anhydride, succinic acid, and adipic acid. , Azelaic acid, sebacic acid, dodecanedioic acid, dimer acid and other aliphatic dicarboxylic acids can be mentioned.
 一方、多価アルコール成分は、脂肪族ジオール化合物、脂環族ジオール化合物、芳香族含有ジオール化合物、エーテル結合含有ジオール化合物などが好ましく挙げられる。
 脂肪族ジオール化合物の例としては、エチレングリコール、1,2-プロピレンジオール、1,3-プロパンジオール、1,4-ブタンジオール、1,5-ペンタンジオ-ル、ネオペンチルグリコール、1,6-ヘキサンジオール、3-メチル-1,5-ペンタンジオール、1,9-ノナンジオール、2-ブチル-2-エチル-1,3-プロパンジオール、ヒドロキシピバリン酸ネオペンチルグリコールエステル、ジメチロールヘプタン、2,2,4-トリメチル-1,3-ペンタンジオール等を挙げることができる。
 脂環族ジオール化合物の例としては、1,4-シクロヘキサンジオール、1,4-シクロヘキサンジメタノール、トリシクロデカンジオール、トリシクロデカンジメチロール、スピログリコール、水素化ビスフェノールA、水素化ビスフェノールAのエチレンオキサイド付加物及びプロピレンオキサイド付加物等を挙げることができる。
 芳香族含有ジオール化合物の例としては、パラキシレングリコール、メタキシレングリコ-ル、オルトキシレングリコール、1,4-フェニレングリコール、1,4-フェニレングリコールのエチレンオキサイド付加物、ビスフェノールA、ビスフェノールAのエチレンオキサイド付加物及びプロピレンオキサイド付加物等の、ビスフェノール類の2つのフェノール性水酸基にエチレンオキサイド又はプロピレンオキサイドをそれぞれ1~数モル付加して得られるグリコール類等を例示できる。
 エーテル結合含有ジオール化合物の例としては、ジエチレングリコール、トリエチレングリコール、ジプロピレングリコール、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール、ネオペンチルグリコールエチレンオキサイド付加物、ネオペンチルグリコールプロピレンオキサイド付加物等が挙げられる。
 これらジオールの中でも、ネオペンチルグリコールや2-ブチル-2-エチル-1,3-プロパンジオール等の側鎖を有するジオールが、エポキシ樹脂、カルボキシ基又はカルボン酸無水物構造を有する樹脂等との相溶性及び溶液安定性の理由で好ましい。
 すなわち、ポリエステルポリウレタン樹脂(A)を構成するジオール成分は、エポキシ樹脂、カルボキシ基又はカルボン酸無水物構造を有する樹脂等との相溶性及び溶液安定性の観点から、側鎖を有するジオールを含むことが好ましい。
 中でも、エポキシ樹脂、カルボキシ基又はカルボン酸無水物構造を有する樹脂等との相溶性、溶液安定性、及び、導電性の観点から、ポリエステルポリウレタン樹脂(A)を構成する前記鎖延長剤として、側鎖を有するジオールを含むことがより好ましい。すなわち、ポリエステルポリウレタン樹脂(A)は、エポキシ樹脂、カルボキシ基又はカルボン酸無水物構造を有する樹脂等との相溶性、溶液安定性、及び、導電性の観点から、その原料としてポリエステルポリオールと、ポリイソシアネートと、側鎖を有するジオールとを少なくとも反応させてなる樹脂であることがより好ましい。
 側鎖を有するジオールにおける側鎖は、好ましくはアルキル基であり、アルキル基の炭素数は、例えば、1、2、3、4、5の何れかであってよい。これは、以降で記載される側鎖を有するジオールにおいても同様である。
 側鎖を有するジオールとしては、例えば、ネオペンチルグリコール、2-ブチル-2-エチル-1,3-プロパンジオール、及び、2,2-ジメチロールプロピオン酸などが挙げられる。
On the other hand, as the polyhydric alcohol component, an aliphatic diol compound, an alicyclic diol compound, an aromatic-containing diol compound, an ether bond-containing diol compound and the like are preferably mentioned.
Examples of aliphatic diol compounds include ethylene glycol, 1,2-propylene diol, 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, neopentyl glycol, and 1,6-hexane. Diol, 3-methyl-1,5-pentanediol, 1,9-nonanediol, 2-butyl-2-ethyl-1,3-propanediol, hydroxypivalate neopentyl glycol ester, dimethylol heptane, 2,2 , 4-trimethyl-1,3-pentanediol and the like.
Examples of alicyclic diol compounds include 1,4-cyclohexanediol, 1,4-cyclohexanedimethanol, tricyclodecanediol, tricyclodecanedimethylol, spiroglycol, hydrogenated bisphenol A, and ethylene of hydrogenated bisphenol A. Examples thereof include an oxide adduct and a propylene oxide adduct.
Examples of aromatic-containing diol compounds include paraxylene glycol, methaxylene glycol, orthoxylene glycol, 1,4-phenylene glycol, ethylene oxide adduct of 1,4-phenylene glycol, bisphenol A, and ethylene of bisphenol A. Examples thereof include glycols obtained by adding 1 to several mols of ethylene oxide or propylene oxide to two phenolic hydroxyl groups of bisphenols such as an oxide adduct and a propylene oxide adduct.
Examples of the ether bond-containing diol compound include diethylene glycol, triethylene glycol, dipropylene glycol, polyethylene glycol, polypropylene glycol, polytetramethylene glycol, neopentyl glycol ethylene oxide adduct, neopentyl glycol propylene oxide adduct, and the like. ..
Among these diols, a diol having a side chain such as neopentyl glycol or 2-butyl-2-ethyl-1,3-propanediol is a phase with an epoxy resin, a carboxy group, a resin having a carboxylic acid anhydride structure, or the like. Preferred for solubility and solution stability reasons.
That is, the diol component constituting the polyester polyurethane resin (A) contains a diol having a side chain from the viewpoint of compatibility with an epoxy resin, a resin having a carboxy group or a carboxylic acid anhydride structure, and solution stability. Is preferable.
Among them, as the chain extender constituting the polyester polyurethane resin (A), from the viewpoint of compatibility with an epoxy resin, a resin having a carboxy group or a carboxylic acid anhydride structure, solution stability, and conductivity, the side It is more preferable to include a diol having a chain. That is, the polyester polyurethane resin (A) is made of a polyester polyol and a poly as raw materials from the viewpoints of compatibility with an epoxy resin, a resin having a carboxy group or a carboxylic acid anhydride structure, solution stability, and conductivity. More preferably, it is a resin obtained by reacting isocyanate with at least a diol having a side chain.
The side chain in the diol having a side chain is preferably an alkyl group, and the number of carbon atoms of the alkyl group may be, for example, 1, 2, 3, 4, or 5. This also applies to the diols having side chains described below.
Examples of the diol having a side chain include neopentyl glycol, 2-butyl-2-ethyl-1,3-propanediol, and 2,2-dimethylol propionic acid.
 ポリエステルポリウレタン樹脂(A)は、得られる硬化物の初期、はんだ後、長期信頼性試験後又は冷熱サイクル試験後の導電性の観点から、ジオール成分から少なくとも構成されることが好ましい。
 また、ポリエステルポリウレタン樹脂(A)を構成するジオール成分は、得られる硬化物の初期、はんだ後、長期信頼性試験後又は冷熱サイクル試験後の導電性の観点から、炭素数5~32の炭化水素基を有するジオール化合物を含むことが好ましく、炭素数5~16の炭化水素基を有するジオール化合物を含むことがより好ましく、炭素数7~12の炭化水素基を有するジオール化合物を含むことが特に好ましい。
 前記炭素数5~32の炭化水素基を有するジオール化合物は、得られる硬化物の初期、はんだ後、長期信頼性試験後又は冷熱サイクル試験後の導電性の観点から、脂環式構造又は2つ以上の側鎖を有するジオール化合物を含むことが好ましく、2つ以上の側鎖を有するジオール化合物を含むことがより好ましく、2つの側鎖を有するジオール化合物を含むことが特に好ましい。
 また、炭素数5~32の炭化水素基を有するジオール化合物は、ポリエステル部分を構成するジオール成分であっても、ポリウレタン部分を構成するジオール成分であってもよいが、得られる硬化物の初期、はんだ後、長期信頼性試験後又は冷熱サイクル試験後の導電性の観点から、ポリウレタン部分を構成するジオール成分であることが好ましい。
The polyester polyurethane resin (A) is preferably composed of at least a diol component from the viewpoint of conductivity after the initial stage of the obtained cured product, after soldering, after a long-term reliability test, or after a thermal cycle test.
The diol component constituting the polyester polyurethane resin (A) is a hydrocarbon having 5 to 32 carbon atoms from the viewpoint of conductivity at the initial stage of the obtained cured product, after soldering, after a long-term reliability test or after a thermal cycle test. It is preferable to contain a diol compound having a group, more preferably to contain a diol compound having a hydrocarbon group having 5 to 16 carbon atoms, and particularly preferably to contain a diol compound having a hydrocarbon group having 7 to 12 carbon atoms. ..
The diol compound having a hydrocarbon group having 5 to 32 carbon atoms has an alicyclic structure or two from the viewpoint of conductivity at the initial stage of the obtained cured product, after soldering, after a long-term reliability test or after a thermal cycle test. It is preferable to include a diol compound having the above side chains, more preferably to contain a diol compound having two or more side chains, and particularly preferably to contain a diol compound having two side chains.
Further, the diol compound having a hydrocarbon group having 5 to 32 carbon atoms may be a diol component constituting the polyester moiety or a diol component constituting the polyurethane moiety, but in the initial stage of the obtained cured product, From the viewpoint of conductivity after soldering, after a long-term reliability test, or after a thermal cycle test, the diol component constituting the polyurethane portion is preferable.
 また、分子構造の中に、ヒドロキシ基とカルボキシ基を有する、ヒドロキシカルボン酸化合物もポリエステル原料として使用することができ、5-ヒドロキシイソフタル酸、p-ヒドロキシ安息香酸、p-ヒドロキシフェニチルアルコール、p-ヒドロキシフェニルプロピオン酸、p-ヒドロキシフェニル酢酸、6-ヒドロキシ-2-ナフトエ酸、4,4-ビス(p-ヒドロキシフェニル)バレリック酸等を例示できる。 Further, a hydroxycarboxylic acid compound having a hydroxy group and a carboxy group in the molecular structure can also be used as a raw material for polyester, and 5-hydroxyisophthalic acid, p-hydroxybenzoic acid, p-hydroxyphenityl alcohol, p. Examples thereof include -hydroxyphenylpropionic acid, p-hydroxyphenylacetic acid, 6-hydroxy-2-naphthoic acid, 4,4-bis (p-hydroxyphenyl) valeric acid and the like.
 ポリエステルポリウレタン樹脂(A)のポリエステル部分を構成する成分として、必要により分岐骨格を導入する目的で、ポリエステル部分を構成する全酸成分あるいは全多価アルコール成分に対し、0.1モル%~5モル%程度の3官能以上のポリカルボン酸類及び/又はポリオール類を共重合しても構わない。特に硬化剤と反応させて硬化層を得る場合、分岐骨格を導入することにより、樹脂の末端基濃度(反応点)が増え、架橋密度が高い、硬化層を得ることができる。その場合の3官能以上のポリカルボン酸の例としてはトリメリット酸、トリメシン酸、エチレングリコールビス(アンヒドロトリメリテート)、グリセロールトリス(アンヒドロトリメリテート)、無水トリメリット酸、無水ピロメリット酸(PMDA)、オキシジフタル酸二無水物(ODPA)、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物(BTDA)、3,3’,4,4’-ジフェニルテトラカルボン酸二無水物(BPDA)、3,3’,4,4’-ジフェニルスルホンテトラカルボン酸二無水物(DSDA)、4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸二無水物(6FDA)、2,2’-ビス[(ジカルボキシフェノキシ)フェニル]プロパン二無水物(BSAA)などの化合物等が使用できる。一方、3官能以上のポリオールの例としては、グリセリン、トリメチロ-ルエタン、トリメチロールプロパン、ペンタエリスリトール等が使用できる。3官能以上のポリカルボン酸及び/又はポリオ-ルを使用する場合は、全酸成分あるいは全多価アルコール成分に対し、好ましくは0.1モル%~5モル%、より好ましくは0.1モル%~3モル%の範囲で共重合することがよい。 As a component constituting the polyester portion of the polyester polyurethane resin (A), 0.1 mol% to 5 mol with respect to the total acid component or the total polyhydric alcohol component constituting the polyester portion for the purpose of introducing a branched skeleton as necessary. % Or more trifunctional or higher polycarboxylic acids and / or polyols may be copolymerized. In particular, when a cured layer is obtained by reacting with a curing agent, the introduction of a branched skeleton increases the terminal group concentration (reaction point) of the resin, and a cured layer having a high crosslink density can be obtained. Examples of trifunctional or higher functional polycarboxylic acids include trimellitic acid, trimesic acid, ethylene glycol bis (anhydrotrimericate), glycerol tris (anhydrotrimericate), trimellitic anhydride, and pyromerit anhydride. Acid (PMDA), Oxydiphthalic Acid Dianhydride (ODPA), 3,3', 4,4'-benzophenone tetracarboxylic acid dianhydride (BTDA), 3,3', 4,4'-diphenyltetracarboxylic acid di. Anhydride (BPDA), 3,3', 4,4'-diphenylsulfone tetracarboxylic acid dianhydride (DSDA), 4,4'-(hexafluoroisopropylidene) diphthalic acid dianhydride (6FDA), 2, Compounds such as 2'-bis [(dicarboxyphenoxy) phenyl] propane dianhydride (BSAA) can be used. On the other hand, as examples of trifunctional or higher functional polyols, glycerin, trimethylolpropane, trimethylolpropane, pentaerythritol and the like can be used. When a trifunctional or higher functional polycarboxylic acid and / or polyol is used, it is preferably 0.1 mol% to 5 mol%, more preferably 0.1 mol, based on the total acid component or the total polyhydric alcohol component. It is preferable to copolymerize in the range of% to 3 mol%.
 ポリエステルポリウレタン樹脂(A)のポリエステル部分には、必要によりカルボキシ基を導入する目的で、ポリエステル部分を構成する全酸成分あるいは全多価アルコール成分に対し、0.1モル%~10モル%程度の酸付加を行うことができる。酸付加にモノカルボン酸、ジカルボン酸、多官能カルボン酸化合物を用いると、エステル交換により分子量の低下が起こるので、酸無水物を用いることが好ましい。
 酸無水物としては、無水コハク酸、無水マレイン酸、オルソフタル酸、2,5-ノルボルネンジカルボン酸無水物、テトラヒドロ無水フタル酸、無水トリメリット酸、無水ピロメリット酸(PMDA)、オキシジフタル酸二無水物(ODPA)、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物(BTDA)、3,3’,4,4’-ジフェニルテトラカルボン酸二無水物(BPDA)、3,3’,4,4’-ジフェニルスルホンテトラカルボン酸二無水物(DSDA)、4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸二無水物(6FDA)、2,2’-ビス[(ジカルボキシフェノキシ)フェニル]プロパン二無水物(BSAA)などの化合物が使用できる。
 酸付加は、ポリエステル重縮合後、バルク状態で直接行う方法と、ポリエステルを溶液化し付加する方法がある。バルク状態での反応は、速度が速いが、多量に酸付加を行うとゲル化が起こることがあり、かつ高温での反応になるので、酸素ガスを遮断し酸化を防ぐなどの注意が必要である。一方、溶液状態での酸付加は、反応は遅いが、多量のカルボキシ基を安定に導入することができる。
About 0.1 mol% to 10 mol% with respect to the total acid component or the total polyhydric alcohol component constituting the polyester portion for the purpose of introducing a carboxy group into the polyester portion of the polyester polyurethane resin (A) if necessary. Acid addition can be performed. When a monocarboxylic acid, a dicarboxylic acid, or a polyfunctional carboxylic acid compound is used for acid addition, the molecular weight is lowered by the ester exchange, so that it is preferable to use an acid anhydride.
The acid anhydrides include succinic anhydride, maleic anhydride, orthophthalic acid, 2,5-norbornnedicarboxylic acid anhydride, tetrahydrophthalic anhydride, trimellitic anhydride, pyromellitic anhydride (PMDA), and oxydiphthalic dianhydride. (ODPA), 3,3', 4,4'-benzophenone tetracarboxylic acid dianhydride (BTDA), 3,3', 4,4'-diphenyltetracarboxylic acid dianhydride (BPDA), 3,3' , 4,4'-Diphenylsulfonate tetracarboxylic dianhydride (DSDA), 4,4'-(hexafluoroisopropylidene) diphthalate dianhydride (6FDA), 2,2'-bis [(dicarboxyphenoxy) Phenyl] Compounds such as propane dianhydride (BSAA) can be used.
Acid addition can be performed directly in a bulk state after polycondensation of polyester, or can be added as a solution of polyester. The reaction in the bulk state is fast, but gelation may occur if a large amount of acid is added, and the reaction is at a high temperature, so care must be taken to block oxygen gas and prevent oxidation. be. On the other hand, acid addition in a solution state has a slow reaction, but a large amount of carboxy group can be stably introduced.
 ポリエステルポリウレタン樹脂(A)のポリウレタン部分は、ジイソシアネート成分から少なくとも構成される。
 また、前記ジイソシアネート成分は、炭素数8~14の炭化水素基を有するジイソシアネート化合物を含む。ここで、炭化水素基中のメチレン基は-O-、-S-、-CO-、-COO-、-OCO-などの非反応性の結合で置き換えられてもよい。ジイソシアネート成分における炭素数8~14の炭化水素基を有するジイソシアネート化合物の量は、通常70モル%以上であり、好ましくは90モル%以上であり、100モル%であってもよい。
 また、ポリエステルポリウレタン樹脂(A)のポリウレタン部分は、ジイソシアネート成分以外に、1官能又は3官能以上のイソシアネート成分から構成されていてもよい。
 前記炭素数8~14の炭化水素基を有するジイソシアネート化合物における炭化水素基の炭素数としては、得られる硬化物のはんだ後、長期信頼性試験後及び冷熱サイクル試験後の導電性の観点から、8~12であることが好ましく、8~10であることがより好ましい。
 また、前記炭素数8~14の炭化水素基を有するジイソシアネート化合物は、得られる硬化物のはんだ後、長期信頼性試験後及び冷熱サイクル試験後の導電性の観点から、脂環式構造を有することが好ましい。
The polyurethane portion of the polyester polyurethane resin (A) is composed of at least a diisocyanate component.
Further, the diisocyanate component contains a diisocyanate compound having a hydrocarbon group having 8 to 14 carbon atoms. Here, the methylene group in the hydrocarbon group may be replaced with a non-reactive bond such as —O—, —S—, —CO—, —COO—, —OCO—. The amount of the diisocyanate compound having a hydrocarbon group having 8 to 14 carbon atoms in the diisocyanate component is usually 70 mol% or more, preferably 90 mol% or more, and may be 100 mol%.
Further, the polyurethane portion of the polyester polyurethane resin (A) may be composed of a monofunctional or trifunctional or higher functional isocyanate component in addition to the diisocyanate component.
The number of carbon atoms of the hydrocarbon group in the diisocyanate compound having a hydrocarbon group having 8 to 14 carbon atoms is 8 from the viewpoint of conductivity after soldering of the obtained cured product, after a long-term reliability test, and after a thermal cycle test. It is preferably ~ 12, and more preferably 8-10.
Further, the diisocyanate compound having a hydrocarbon group having 8 to 14 carbon atoms has an alicyclic structure from the viewpoint of conductivity after soldering of the obtained cured product, after a long-term reliability test, and after a thermal cycle test. Is preferable.
 ポリエステルポリウレタン樹脂(A)は、接着性の観点から、ポリエステル部分1モル当量に対し、ジイソシアネート成分が5モル当量~50モル当量であることが好ましい。言い換えると、ポリエステルポリウレタン樹脂(A)は、接着性の観点から、ポリエステル部分1モル当量に対し、ウレタン結合が10モル~100モル当量存在することが好ましい。 From the viewpoint of adhesiveness, the polyester polyurethane resin (A) preferably has a diisocyanate component in an amount of 5 to 50 molar equivalents with respect to 1 molar equivalent of the polyester portion. In other words, from the viewpoint of adhesiveness, the polyester polyurethane resin (A) preferably has 10 mol to 100 mol equivalents of urethane bonds with respect to 1 mol equivalent of the polyester portion.
 ポリエステルポリウレタン樹脂(A)の製造に使用するポリイソシアネートは、ジイソシアネート、その二量体(ウレトジオン)、その三量体(イソシアヌレート、トリオール付加物、ビューレット)等の一種、又は、それらの二種以上の混合物であってもよい。例えば、ジイソシアネート成分としては、ジフェニルメタンジイソシアネート、3,3’-ジメトキシ-4,4’-ビフェニレンジイソシアネート、1,5-ナフタレンジイソシアネート、2,6-ナフタレンジイソシアネート、4,4’-ジイソシアネートジフェニルエーテル、m-キシリレンジイソシアネート、1,3-ビス(イソシアナトメチル)シクロヘキサン、1,4-ビス(イソシアナトメチル)シクロヘキサン、メチレンビス(4-シクロヘキシルジイソシアネート)、イソホロンジイソシアネート、ノルボルナンジイソシアネート、ノルボルネンジイソシアネート等が挙げられる。
 中でも、透明性、得られる硬化物のはんだ後、長期信頼性試験後及び冷熱サイクル試験後の導電性の観点から、脂肪族又は脂環族のジイソシアネート化合物が好ましく、脂環族ジイソシアネート化合物が特に好ましい。また、入手のし易さ、及び、冷熱サイクル試験後の導電性の観点から、1,3-ビス(イソシアナトメチル)シクロヘキサン、1,4-ビス(イソシアナトメチル)シクロヘキサン、メチレンビス(4-シクロヘキシルジイソシアネート)、又は、ノルボルナンジイソシアネート好ましく、1,3-ビス(イソシアナトメチル)シクロヘキサンが特に好ましい。
The polyisocyanate used for producing the polyester polyurethane resin (A) is one of diisocyanates, its dimer (uretdione), its trimer (isocyanurate, triol adduct, burette), or two of them. The above mixture may be used. For example, as the diisocyanate component, diphenylmethane diisocyanate, 3,3'-dimethoxy-4,4'-biphenylenediocyanate, 1,5-naphthalenediocyanate, 2,6-naphthalenediocyanate, 4,4'-diisocyanate diphenyl ether, m-xyli Examples thereof include range isocyanate, 1,3-bis (isocyanatomethyl) cyclohexane, 1,4-bis (isocyanatomethyl) cyclohexane, methylene bis (4-cyclohexyldiisocyanate), isophorone diisocyanate, norbornan diisocyanate, norbornene diisocyanate and the like.
Among them, an aliphatic or alicyclic diisocyanate compound is preferable, and an alicyclic diisocyanate compound is particularly preferable, from the viewpoints of transparency, after soldering of the obtained cured product, after a long-term reliability test, and after a thermal cycle test. .. In addition, 1,3-bis (isocyanatomethyl) cyclohexane, 1,4-bis (isocyanatomethyl) cyclohexane, and methylenebis (4-cyclohexyl) are considered from the viewpoint of easy availability and conductivity after the thermal cycle test. Diisocyanate) or norbornane diisocyanate is preferable, and 1,3-bis (isocyanatomethyl) cyclohexane is particularly preferable.
 ポリエステルポリウレタン樹脂(A)を製造する上で、必要により鎖延長剤を使用してもよい。
 鎖延長剤としては、ポリエステル部分の構成成分として既に記載したジオール化合物や、ジメチロールプロピオン酸、ジメチロールブタン酸等の1つのカルボキシ基と2つのヒドロキシ基とを有する化合物等が挙げられる。
 中でも、鎖延長剤としては、導電性の観点から、ジオール化合物が好ましく、側鎖を有するジオール化合物がより好ましく、分岐鎖を有するジオール化合物が特に好ましい。
 側鎖を有するジオール化合物としては、導電性の観点から、ネオペンチルグリコール、2-ブチル-2-エチル-1,3-プロパンジオール、及び、2,2-ジメチロールプロピオン酸よりなる群から選ばれた少なくとも1種の化合物を含むことが好ましく、ネオペンチルグリコール及び2-ブチル-2-エチル-1,3-プロパンジオールよりなる群から選ばれた少なくとも1種の化合物と、2,2-ジメチロールプロピオン酸とを含むことが特に好ましい。
 鎖延長剤として、ポリアミノ化合物を使用してもよいが、一実施形態においては、ポリエステルポリウレタン樹脂(A)は、ウレア結合を含まないものが好ましい場合がある。
In producing the polyester polyurethane resin (A), a chain extender may be used if necessary.
Examples of the chain extender include diol compounds already described as constituents of the polyester moiety, compounds having one carboxy group and two hydroxy groups such as dimethylolpropionic acid and dimethylolbutanoic acid.
Among them, as the chain extender, a diol compound is preferable from the viewpoint of conductivity, a diol compound having a side chain is more preferable, and a diol compound having a branched chain is particularly preferable.
The diol compound having a side chain is selected from the group consisting of neopentyl glycol, 2-butyl-2-ethyl-1,3-propanediol, and 2,2-dimethylolpropionic acid from the viewpoint of conductivity. It is preferable to contain at least one compound, and at least one compound selected from the group consisting of neopentyl glycol and 2-butyl-2-ethyl-1,3-propanediol, and 2,2-dimethylol. It is particularly preferred to include propionic acid.
A polyamino compound may be used as the chain extender, but in one embodiment, the polyester polyurethane resin (A) may preferably contain no urea bond.
 ポリエステルポリウレタン樹脂(A)の製造方法としては、特に制限はなく、公知の方法を用いることができる。例えば、ポリエステルポリオール及びポリイソシアネート、必要により前記鎖延長剤を一括して反応容器に仕込んでもよいし、分割して仕込んでもよい。いずれにしても、系内のポリエステルポリオール及び鎖延長剤の水酸基価の合計と、ポリイソシアネートのイソシアネート基の合計について、イソシアネート基/ヒドロキシ基の官能基の比率が、好ましくは0.9以上1.1以下、より好ましくは0.98以上1.02以下、特に好ましくは1で反応させる。またこの反応は、イソシアネート基に対して不活性な溶媒の存在下又は非存在下に反応させることにより製造することができる。その溶媒としては、エステル系溶媒(酢酸エチル、酢酸ブチル、酪酸エチルなど)、エーテル系溶媒(ジオキサン、テトラヒドロフラン、ジエチルエーテルなど)、ケトン系溶媒(シクロヘキサノン、メチルエチルケトン、メチルイソブチルケトンなど)、芳香族炭化水素系溶媒(ベンゼン、トルエン、キシレンなど)及びこれらの混合溶媒が挙げられるが、環境負荷の低減の観点から、酢酸エチルやメチルエチルケトンが好ましい。反応装置としては、撹拌装置の具備した反応缶に限らず、ニーダー、二軸押出機のような混合混練装置も使用できる。 The method for producing the polyester polyurethane resin (A) is not particularly limited, and a known method can be used. For example, the polyester polyol, the polyisocyanate, and if necessary, the chain extender may be charged together in the reaction vessel, or may be charged separately. In any case, the ratio of the functional group of the isocyanate group / hydroxy group is preferably 0.9 or more with respect to the total hydroxyl value of the polyester polyol and the chain extender in the system and the total isocyanate group of the polyisocyanate. The reaction is carried out at 1 or less, more preferably 0.98 or more and 1.02 or less, and particularly preferably 1. Further, this reaction can be produced by reacting in the presence or absence of a solvent inert to the isocyanate group. The solvents include ester solvents (ethyl acetate, butyl acetate, ethyl butyrate, etc.), ether solvents (dioxane, tetrahydrofuran, diethyl ether, etc.), ketone solvents (cyclohexanone, methyl ethyl ketone, methyl isobutyl ketone, etc.), aromatic carbonization. Hydrogen-based solvents (benzene, toluene, xylene, etc.) and mixed solvents thereof can be mentioned, but ethyl acetate and methyl ethyl ketone are preferable from the viewpoint of reducing the environmental load. The reaction device is not limited to a reaction can equipped with a stirring device, and a mixing and kneading device such as a kneader or a twin-screw extruder can also be used.
 ウレタン反応を促進させるため、通常のウレタン反応において用いられる触媒、例えば、錫系触媒(トリメチルチンラウレート、ジメチルチンジラウレート、トリメチルチンヒドロキサイド、ジメチルチンジヒドロキサイド、スタナスオクトエートなど)、鉛系触媒(レッドオレート、レッド-2-エチルヘキソエートなど)アミン系触媒(トリエチルアミン、トリブチルアミン、モルホリン、ジアザビシクロオクタン、ジアザビシクロウンデセンなど)等を使用することができる。 To promote the urethane reaction, catalysts used in ordinary urethane reactions, such as tin-based catalysts (trimethyltin laurate, dimethyltindilaurate, trimethyltinhydroxide, dimethyltindihydroxide, stanas octoate, etc.), lead-based A catalyst (red oleate, red-2-ethylhexoate, etc.), an amine-based catalyst (triethylamine, tributylamine, morpholine, diazabicyclooctane, diazabicycloundecene, etc.) and the like can be used.
 ポリエステルポリウレタン樹脂(A)におけるポリエステル部分のガラス転移温度(Tg)は、接着性、導電性、及び、耐熱性の観点から、40℃~150℃であることが好ましく、45℃~120℃であることがより好ましく、50℃~90℃であることが更に好ましく、60℃~70℃であることが特に好ましい。
 また、ポリエステルポリウレタン樹脂(A)のガラス転移温度(Tg)は、接着性、導電性、及び、耐熱性の観点から、30℃~150℃であることが好ましく、40℃~140℃であることがより好ましく、50℃~90℃であることが更に好ましく、60℃~70℃であることが特に好ましい。
The glass transition temperature (Tg) of the polyester portion of the polyester polyurethane resin (A) is preferably 40 ° C. to 150 ° C., preferably 45 ° C. to 120 ° C. from the viewpoint of adhesiveness, conductivity, and heat resistance. More preferably, it is more preferably 50 ° C to 90 ° C, and particularly preferably 60 ° C to 70 ° C.
The glass transition temperature (Tg) of the polyester polyurethane resin (A) is preferably 30 ° C. to 150 ° C., preferably 40 ° C. to 140 ° C. from the viewpoint of adhesiveness, conductivity, and heat resistance. Is more preferable, 50 ° C to 90 ° C is further preferable, and 60 ° C to 70 ° C is particularly preferable.
 ポリエステルポリウレタン樹脂(A)の数平均分子量(Mn)は、導電性、及び、耐熱性の観点から、5,000~100,000であることが好ましく、10,000~80,000であることがより好ましく、20,000~60,000であることが更に好ましく、25,000~50,000であることが特に好ましい。
 なお、本発明における樹脂の数平均分子量(Mn)、及び、重量平均分子量(Mw)の値は、ゲルパーミエーションクロマトグラフィー(GPC)により得ることができる。
The number average molecular weight (Mn) of the polyester polyurethane resin (A) is preferably 5,000 to 100,000, preferably 10,000 to 80,000 from the viewpoint of conductivity and heat resistance. More preferably, it is more preferably 20,000 to 60,000, and particularly preferably 25,000 to 50,000.
The values of the number average molecular weight (Mn) and the weight average molecular weight (Mw) of the resin in the present invention can be obtained by gel permeation chromatography (GPC).
 ポリエステルポリウレタン樹脂(A)におけるウレタン結合1個当たりの分子量は、導電性、及び、耐熱性の観点から、200~8,000であることが好ましく、200~5,000であることがより好ましく、300~2,000であることが更に好ましく、400~1,500であることが特に好ましく、700~1,000であることが最も好ましい。
 例えば、ポリエステルポリウレタン樹脂(A)において、1分子当たり40個のウレタン結合が存在し、数平均分子量が32,000である場合は、32,000/40=800となり、ウレタン結合1個あたりの分子量は800となる。このように、ポリエステルポリウレタン樹脂(A)が、1分子当たりX個のウレタン結合を有し、数平均分子量がYである場合、ポリエステルポリウレタン樹脂(A)におけるウレタン結合1個当たりの分子量はY/Xとなる。原料組成から算出する場合に、ポリエステルポリウレタン樹脂(A)の原料であるポリエステルポリオール1モルに対して反応させたイソシアネート基のモル数を「ポリエステルポリウレタン樹脂(A)におけるウレタン結合の個数」とみなすこともできる。
The molecular weight per urethane bond in the polyester polyurethane resin (A) is preferably 200 to 8,000, more preferably 200 to 5,000, from the viewpoint of conductivity and heat resistance. It is more preferably 300 to 2,000, particularly preferably 400 to 1,500, and most preferably 700 to 1,000.
For example, in the polyester polyurethane resin (A), when 40 urethane bonds are present per molecule and the number average molecular weight is 32,000, 32,000/40 = 800, and the molecular weight per urethane bond is 32,000. Is 800. As described above, when the polyester polyurethane resin (A) has X urethane bonds per molecule and the number average molecular weight is Y, the molecular weight per urethane bond in the polyester polyurethane resin (A) is Y /. It becomes X. When calculating from the raw material composition, the number of moles of isocyanate groups reacted with 1 mol of the polyester polyol which is the raw material of the polyester polyurethane resin (A) shall be regarded as "the number of urethane bonds in the polyester polyurethane resin (A)". You can also.
 ポリエステルポリウレタン樹脂(A)の酸価は、接着性、及び、導電性の観点から、0mgKOH/g~50mgKOH/gであることが好ましく、0.1mgKOH/g~20mgKOH/gであることがより好ましく、0.1mgKOH/g~5mgKOH/gであることが更に好ましく、1.0mgKOH/g~5.0mgKOH/gであることが特に好ましい。
 また、ポリエステルポリウレタン樹脂(A)の酸価は、耐熱性の観点からは、20mgKOH/g以下であることが好ましく、5.0mgKOH/g以下であることが特に好ましい。
 本発明における樹脂の酸価の測定方法は、フェノールフタレイン溶液を指示薬として、試料を水酸化カリウムベンジルアルコール溶液で中和滴定して酸価を求めるものとする。
The acid value of the polyester polyurethane resin (A) is preferably 0 mgKOH / g to 50 mgKOH / g, more preferably 0.1 mgKOH / g to 20 mgKOH / g, from the viewpoint of adhesiveness and conductivity. , 0.1 mgKOH / g to 5 mgKOH / g, more preferably 1.0 mgKOH / g to 5.0 mgKOH / g.
The acid value of the polyester polyurethane resin (A) is preferably 20 mgKOH / g or less, and particularly preferably 5.0 mgKOH / g or less, from the viewpoint of heat resistance.
In the method for measuring the acid value of the resin in the present invention, the acid value is determined by neutralizing and titrating the sample with a potassium hydroxide benzyl alcohol solution using a phenolphthalein solution as an indicator.
 中でも、ポリエステルポリウレタン樹脂(A)は、接着性、導電性、及び、耐熱性の観点から、数平均分子量が1,000~50,000のポリエステル構造を有するポリエステルポリウレタン樹脂を含むことが好ましく、数平均分子量が2,000~40,000のポリエステル構造を有するポリエステルポリウレタン樹脂を含むことがより好ましく、数平均分子量が3,000~30,000のポリエステル構造を有するポリエステルポリウレタン樹脂を含むことが更に好ましく、数平均分子量が8,000~30,000のポリエステル構造を有するポリエステルポリウレタン樹脂を含むことが特に好ましく、数平均分子量が15,000~30,000のポリエステル構造を有するポリエステルポリウレタン樹脂が最も好ましい。 Among them, the polyurethane polyurethane resin (A) preferably contains a polyester polyurethane resin having a polyester structure having a number average molecular weight of 1,000 to 50,000 from the viewpoints of adhesiveness, conductivity, and heat resistance. It is more preferable to contain a polyester polyurethane resin having a polyester structure having an average molecular weight of 2,000 to 40,000, and further preferably to contain a polyester polyurethane resin having a polyester structure having a number average molecular weight of 3,000 to 30,000. It is particularly preferable to contain a polyester polyurethane resin having a polyester structure having a number average molecular weight of 8,000 to 30,000, and a polyester polyurethane resin having a polyester structure having a number average molecular weight of 15,000 to 30,000 is most preferable.
 本発明の樹脂組成物は、ポリエステルポリウレタン樹脂(A)を、1種単独で含有していても、2種以上を含有していてもよい。
 ポリエステルポリウレタン樹脂(A)の含有量は、接着性、導電性、及び、耐熱性の観点から、樹脂組成物の全固形分量に対し、5質量%~90質量%であることが好ましく、10質量%~80質量%であることがより好ましく、20質量%~75質量%であることが更に好ましく、30質量%~70質量%であることが特に好ましい。
 また、ポリエステルポリウレタン樹脂(A)の含有量は、接着性、導電性、及び、耐熱性の観点から、前記樹脂組成物におけるポリエステルポリウレタン樹脂(A)、エポキシ樹脂(B)及びカルボキシ基又はカルボン酸無水物構造を有する樹脂(C)、並びに、任意成分として含有してもよいイミダゾールシラン化合物(D)の合計量に対して、5質量%~90質量%であることが好ましく、10質量%~90質量%であることがより好ましく、10質量%~70質量%であることが更に好ましく、30質量%~70質量%であることが特に好ましい。
The resin composition of the present invention may contain the polyester polyurethane resin (A) alone or in combination of two or more.
The content of the polyester polyurethane resin (A) is preferably 5% by mass to 90% by mass, preferably 10% by mass, based on the total solid content of the resin composition from the viewpoint of adhesiveness, conductivity, and heat resistance. It is more preferably% to 80% by mass, further preferably 20% by mass to 75% by mass, and particularly preferably 30% by mass to 70% by mass.
Further, the content of the polyester polyurethane resin (A) is the polyester polyurethane resin (A), the epoxy resin (B) and the carboxy group or the carboxylic acid in the resin composition from the viewpoint of adhesiveness, conductivity and heat resistance. It is preferably 5% by mass to 90% by mass, preferably 10% by mass or more, based on the total amount of the resin (C) having an anhydride structure and the imidazole silane compound (D) which may be contained as an optional component. It is more preferably 90% by mass, further preferably 10% by mass to 70% by mass, and particularly preferably 30% by mass to 70% by mass.
<エポキシ樹脂(B)>
 本発明の樹脂組成物は、エポキシ樹脂(B)を含有する。
 エポキシ樹脂(B)は、接着性や接着後の硬化部における耐熱性等を与える成分である。本発明におけるエポキシ樹脂(B)には、エポキシ基を有する高分子化合物だけでなく、エポキシ基を有する低分子化合物も含まれる。エポキシ樹脂(B)におけるエポキシ基の数は、2以上であることが好ましい。
 エポキシ樹脂(B)としては、例えば、オルトフタル酸ジグリシジルエステル、イソフタル酸ジグリシジルエステル、テレフタル酸ジグリシジルエステル、p-ヒドロキシ安息香酸ジグリシジルエステル、テトラヒドロフタル酸ジグリシジルエステル、コハク酸ジグリシジルエステル、アジピン酸ジグリシジルエステル、セバシン酸ジグリシジルエステル、トリメリット酸トリグリシジルエステル等のグリシジルエステル;ビスフェノールAのジグリシジルエーテル及びそのオリゴマー、エチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、1,4-ブタンジオールジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル、ペンタエリスリトールテトラグリシジルエーテル、テトラフェニルグリシジルエーテルエタン、トリフェニルグリシジルエーテルエタン、ソルビトールのポリグリシジルエーテル、ポリグリセロールのポリグリシジルエーテル等のグリシジルエーテル類;フェノールノボラックエポキシ樹脂、o-クレゾールノボラックエポキシ樹脂、ビスフェノールAノボラックエポキシ樹脂等のノボラック型エポキシ樹脂等が挙げられる。
 また、難燃性を付与した臭素化ビスフェノールA型エポキシ樹脂、リン含有エポキシ樹脂、ジシクロペンタジエン骨格含有エポキシ樹脂、ナフタレン骨格含有エポキシ樹脂、アントラセン型エポキシ樹脂、ターシャリーブチルカテコール型エポキシ樹脂、ビフェニル型エポキシ樹脂及びビスフェノールS型エポキシ樹脂等も用いることができる。
 中でも、エポキシ樹脂(B)は、接着性、及び、耐熱性の観点から、ビスフェノールA型エポキシ樹脂及び/又はノボラック型エポキシ樹脂を含むことが好ましい。
<Epoxy resin (B)>
The resin composition of the present invention contains an epoxy resin (B).
The epoxy resin (B) is a component that imparts adhesiveness, heat resistance in a cured portion after adhesion, and the like. The epoxy resin (B) in the present invention includes not only a polymer compound having an epoxy group but also a low molecular compound having an epoxy group. The number of epoxy groups in the epoxy resin (B) is preferably 2 or more.
Examples of the epoxy resin (B) include orthophthalic acid diglycidyl ester, isophthalic acid diglycidyl ester, terephthalic acid diglycidyl ester, p-hydroxybenzoic acid diglycidyl ester, tetrahydrophthalic acid diglycidyl ester, and succinic acid diglycidyl ester. Glycidyl esters such as adipic acid diglycidyl ester, sebacic acid diglycidyl ester, trimellitic acid triglycidyl ester; diglycidyl ether of bisphenol A and its oligomers, ethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, 1,4-butane. Diol diglycidyl ether, 1,6-hexanediol diglycidyl ether, trimethylolpropane triglycidyl ether, pentaerythritol tetraglycidyl ether, tetraphenyl glycidyl ether ethane, triphenyl glycidyl ether ethane, sorbitol polyglycidyl ether, polyglycerol poly Glycidyl ethers such as glycidyl ether; novolak type epoxy resins such as phenol novolac epoxy resin, o-cresol novolak epoxy resin, bisphenol A novolak epoxy resin and the like can be mentioned.
In addition, flame-retardant brominated bisphenol A type epoxy resin, phosphorus-containing epoxy resin, dicyclopentadiene skeleton-containing epoxy resin, naphthalene skeleton-containing epoxy resin, anthracene type epoxy resin, tertiary butyl catechol type epoxy resin, biphenyl type Epoxy resins, bisphenol S-type epoxy resins and the like can also be used.
Above all, the epoxy resin (B) preferably contains a bisphenol A type epoxy resin and / or a novolak type epoxy resin from the viewpoint of adhesiveness and heat resistance.
 本発明においては、硬化後における高い耐熱性を発現させるために、エポキシ樹脂(B)は、1分子中に3個以上のエポキシ基を有する化合物を含むことが好ましい。このような化合物を用いると、エポキシ基が2個のエポキシ樹脂を用いた場合に比べて、ポリエステルウレタン樹脂(A)及びカルボキシ基又はカルボン酸無水物構造を有する樹脂(C)との架橋反応性が高くなり、十分な耐熱性が得られる。
 エポキシ樹脂(B)における1分子中に3個以上のエポキシ基を有する化合物の含有量は、耐熱性の観点から、エポキシ樹脂(B)の全質量に対し、15質量%以上であることが好ましく、20質量%以上であることがより好ましく、25質量%以上であることが特に好ましい。
In the present invention, the epoxy resin (B) preferably contains a compound having three or more epoxy groups in one molecule in order to exhibit high heat resistance after curing. When such a compound is used, the cross-linking reactivity with the polyester urethane resin (A) and the resin (C) having a carboxy group or a carboxylic acid anhydride structure is compared with the case where an epoxy resin having two epoxy groups is used. Is high, and sufficient heat resistance can be obtained.
The content of the compound having three or more epoxy groups in one molecule of the epoxy resin (B) is preferably 15% by mass or more with respect to the total mass of the epoxy resin (B) from the viewpoint of heat resistance. , 20% by mass or more is more preferable, and 25% by mass or more is particularly preferable.
 本発明の樹脂組成物は、エポキシ樹脂(B)を、1種単独で含有していても、2種以上を含有していてもよい。
 エポキシ樹脂(B)の含有量は、接着性、導電性、及び、耐熱性の観点から、前記樹脂組成物におけるポリエステルポリウレタン樹脂(A)、エポキシ樹脂(B)及びカルボキシ基又はカルボン酸無水物構造を有する樹脂(C)、並びに、任意成分として含有してもよいイミダゾールシラン化合物(D)の合計量に対して、1質量%~60質量%であることが好ましく、2質量%~40質量%であることがより好ましく、3質量%~20質量%であることが特に好ましい。
The resin composition of the present invention may contain the epoxy resin (B) alone or in combination of two or more.
The content of the epoxy resin (B) is the polyester polyurethane resin (A), the epoxy resin (B) and the carboxy group or the carboxylic acid anhydride structure in the resin composition from the viewpoint of adhesiveness, conductivity and heat resistance. It is preferably 1% by mass to 60% by mass, and 2% by mass to 40% by mass, based on the total amount of the resin (C) having the above and the imidazole silane compound (D) which may be contained as an optional component. Is more preferable, and 3% by mass to 20% by mass is particularly preferable.
<カルボキシ基又はカルボン酸無水物構造を有する樹脂(C)>
 本発明の樹脂組成物は、得られる硬化物のはんだ後、長期信頼性試験後及び冷熱サイクル試験後の導電性の観点から、カルボキシ基又はカルボン酸無水物構造を有する樹脂(C)を含有することが好ましい。
 カルボキシ基又はカルボン酸無水物構造を有する樹脂(C)は、25℃で固体であることが好ましい。
 カルボキシ基又はカルボン酸無水物構造を有する樹脂(C)は、後述する有機溶剤に可溶な樹脂であれば、特に限定されず、具体例としては、ポリアミド樹脂、ポリオレフィン樹脂、アクリル樹脂、これらの共重合体等が挙げられる。
 中でも、カルボキシ基又はカルボン酸無水物構造を有する樹脂(C)は、得られる硬化物のはんだ後、長期信頼性試験後及び冷熱サイクル試験後の導電性の観点から、ポリアミド樹脂、ポリオレフィン樹脂及びこれらの共重合体よりなる群から選ばれた少なくとも1種の樹脂を含むことが好ましく、酸価を有するポリアミド樹脂、及び、酸変性されたポリオレフィン構造を有する樹脂の少なくともいずれかを含むことがより好ましく、酸価を有するポリアミド樹脂を含むことが特に好ましい。
<Resin (C) having a carboxy group or a carboxylic acid anhydride structure>
The resin composition of the present invention contains a resin (C) having a carboxy group or a carboxylic acid anhydride structure from the viewpoint of conductivity after soldering of the obtained cured product, after a long-term reliability test, and after a thermal cycle test. Is preferable.
The resin (C) having a carboxy group or a carboxylic acid anhydride structure is preferably solid at 25 ° C.
The resin (C) having a carboxy group or a carboxylic acid anhydride structure is not particularly limited as long as it is a resin soluble in an organic solvent described later, and specific examples thereof include polyamide resins, polyolefin resins, and acrylic resins. Examples thereof include copolymers.
Among them, the resin (C) having a carboxy group or a carboxylic acid anhydride structure is a polyamide resin, a polyolefin resin and these from the viewpoint of conductivity after soldering of the obtained cured product, after a long-term reliability test and after a thermal cycle test. It is preferable to contain at least one resin selected from the group consisting of the copolymers of the above, and more preferably to contain at least one of a polyamide resin having an acid value and a resin having an acid-modified polyolefin structure. , It is particularly preferable to contain a polyamide resin having an acid value.
 ポリアミド樹脂は、モノマーとして、二塩基酸及びジアミンを用いて得られた縮合樹脂であり、好ましくは、2種類以上の二塩基酸及び2種類以上のジアミンを用いて得られた樹脂である。前記二塩基酸としては、具体的には、アジピン酸、セバシン酸、アゼライン酸、ウンデカン二酸、ドデカン二酸、ダイマー酸、イソフタル酸、テレフタル酸、5-スルホイソフタル酸ナトリウム等が挙げられる。また、前記ジアミンとしては、具体的には、ヘキサメチレンジアミン、ヘプタメチレンジアミン、p-ジアミノメチルシクロヘキサン、ビス(p-アミノシクロヘキシル)メタン、m-キシレンジアミン、ピペラジン、イソホロンジアミン等が挙げられる。
 ポリアミド樹脂はブロック共重合体であってもよい。
 前記ジアミン成分においてピペラジンを含むと接着性向上の理由から好ましい。その含有量はカルボキシ基又はカルボン酸無水物構造を有する樹脂(C)を構成するジアミン成分の合計量を100モル%としたときに、ピペラジンを1.0モル%以上含むことが好ましく、20モル%以上含むことがより好ましい。
 ポリアミド樹脂が、特に、脂肪族二塩基酸に由来する構成単位と脂環式ジアミンに由来する構成単位とを含む場合、溶剤への溶解性に優れる。また、このようなポリアミド樹脂を含む接着性組成物を長期間保存しても、粘度の上昇がほとんどなく、広範囲な被着体に対して良好な接着性を示すため、好ましい。
The polyamide resin is a condensed resin obtained by using a dibasic acid and a diamine as a monomer, and is preferably a resin obtained by using two or more kinds of dibasic acids and two or more kinds of diamines. Specific examples of the dibasic acid include adipic acid, sebacic acid, azelaic acid, undecanedioic acid, dodecanedioic acid, dimer acid, isophthalic acid, terephthalic acid, and sodium 5-sulfoisophthalate. Specific examples of the diamine include hexamethylenediamine, heptamethylenediamine, p-diaminomethylcyclohexane, bis (p-aminocyclohexyl) methane, m-xylenediamine, piperazine, and isophorone diamine.
The polyamide resin may be a block copolymer.
It is preferable to include piperazine in the diamine component for the reason of improving the adhesiveness. The content thereof is preferably 1.0 mol% or more, preferably 20 mol, when the total amount of the diamine components constituting the resin (C) having a carboxy group or a carboxylic acid anhydride structure is 100 mol%. It is more preferable to contain% or more.
When the polyamide resin contains a structural unit derived from an aliphatic dibasic acid and a structural unit derived from an alicyclic diamine, the polyamide resin has excellent solubility in a solvent. Further, even if the adhesive composition containing such a polyamide resin is stored for a long period of time, there is almost no increase in viscosity and good adhesiveness to a wide range of adherends is exhibited, which is preferable.
 ポリアミド樹脂は、アミノカルボン酸、ラクタム類等に由来する構成単位を、適宜、含んでもよい。前記アミノカルボン酸としては、具体的には、11-アミノウンデカン酸、12-アミノドデカン酸、4-アミノメチル安息香酸、4-アミノメチルシクロヘキサンカルボン酸等が挙げられ、ラクタム類としては、ε-カプロラクタム、ω-ラウロラクタム、α-ピロリドン、α-ピペリドン等が挙げられる。 The polyamide resin may appropriately contain structural units derived from aminocarboxylic acids, lactams and the like. Specific examples of the aminocarboxylic acid include 11-aminoundecanoic acid, 12-aminododecanoic acid, 4-aminomethylbenzoic acid, 4-aminomethylcyclohexanecarboxylic acid and the like, and examples of lactams include ε-. Examples thereof include caprolactam, ω-laurolactam, α-pyrrolidone, α-piperidone and the like.
 また、ポリアミド樹脂は、柔軟性を付与させる目的で、ポリアルキレングリコールに由来する構造単位を、適宜、含んでもよい。前記ポリアルキレングリコールとしては、具体的には、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール、エチレンオキサイドとプロピレンオキサイドとのブロック又はランダム共重合体、エチレンオキサイドとテトラヒドロフランとのブロック又はランダム共重合体等が挙げられる。ポリアルキレングリコールに由来する構造単位は、単独で含まれてよいし、2種以上で含まれてもよい。 Further, the polyamide resin may appropriately contain a structural unit derived from polyalkylene glycol for the purpose of imparting flexibility. Specific examples of the polyalkylene glycol include polyethylene glycol, polypropylene glycol, polytetramethylene glycol, a block or random copolymer of ethylene oxide and propylene oxide, a block or random copolymer of ethylene oxide and tetrahydrofuran, and the like. Can be mentioned. The structural unit derived from the polyalkylene glycol may be contained alone or in two or more kinds.
 ポリアミド樹脂は、例えば、ナイロン6/ナイロン66共重合体、ナイロン6/ナイロン6-10共重合体、ナイロン6/ナイロン66/ナイロン6-10共重合体、ナイロン6/ナイロン66/ナイロン11共重合体、ナイロン6/ナイロン66/ナイロン12共重合体、ナイロン6/ナイロン6-10/ナイロン6-11共重合体、ナイロン6/ナイロン11/イソホロンジアミン共重合体、ナイロン6/ナイロン66/ナイロン6共重合体、ナイロン6/ナイロン6-10/ナイロン12共重合体等の構成を有することができる。 The polyamide resin is, for example, a nylon 6 / nylon 66 copolymer, a nylon 6 / nylon 6-10 copolymer, a nylon 6 / nylon 66 / nylon 6-10 copolymer, and a nylon 6 / nylon 66 / nylon 11 copolymer. Combined, Nylon 6 / Nylon 66 / Nylon 12 copolymer, Nylon 6 / Nylon 6-10 / Nylon 6-11 copolymer, Nylon 6 / Nylon 11 / Isophorone diamine copolymer, Nylon 6 / Nylon 66 / Nylon 6 It can have a composition such as a copolymer, nylon 6 / nylon 6-10 / nylon 12 copolymer and the like.
 次に、前記変性ポリアミド樹脂は、未変性ポリアミド樹脂に、ホルムアルデヒドとアルコ-ルとを付加させ、アミド結合を構成する窒素原子にアルコキシメチル基を導入することによってアルコール可溶性ナイロン樹脂としたものである。具体的には、6-ナイロン、66-ナイロン等をアルコキシメチル化した変性ポリアミド樹脂が挙げられる。そして、N-アルコキシメチル基の導入は、融点の低下、可とう性の増大、溶剤への溶解性の向上に寄与するものであり、目的に応じて、導入率が、適宜、設定される。 Next, the modified polyamide resin is made into an alcohol-soluble nylon resin by adding formaldehyde and alcohol to the unmodified polyamide resin and introducing an alkoxymethyl group into the nitrogen atom constituting the amide bond. .. Specific examples thereof include modified polyamide resins obtained by alkoxymethylating 6-nylon, 66-nylon and the like. The introduction of the N-alkoxymethyl group contributes to a decrease in melting point, an increase in flexibility, and an improvement in solubility in a solvent, and the introduction rate is appropriately set according to the purpose.
 ポリオレフィン構造を有する樹脂としては、特に制限はないが、ポリエチレン、ポリプロピレン、ポリブテン、及び、これらの共重合体が挙げられる。また、ポリオレフィン構造を有する樹脂は、オレフィンと他のエチレン性不飽和化合物との共重合体であってもよいし、ポリオレフィンと重縮合樹脂とのブロック共重合体であってもよい。例えば、ポリオレフィン構造を有する樹脂は、スチレン-ブタジエン共重合体、スチレン-ブタジエン-スチレンブロック共重合体、スチレン-エチレン/プロピレン-スチレンブロック共重合体、スチレン-エチレン/ブチレン-スチレンブロック共重合体、スチレン-イソプレン/ブタジエン-スチレンブロック共重合体、スチレン-イソプレン-スチレンブロック共重合体等のスチレン系樹脂であってもよい。
 中でも、酸変性されたポリオレフィン構造を有する樹脂は、酸変性されたポリオレフィン樹脂であることが好ましい。
The resin having a polyolefin structure is not particularly limited, and examples thereof include polyethylene, polypropylene, polybutene, and copolymers thereof. Further, the resin having a polyolefin structure may be a copolymer of an olefin and another ethylenically unsaturated compound, or may be a block copolymer of a polyolefin and a polycondensation resin. For example, the resin having a polyolefin structure includes a styrene-butadiene copolymer, a styrene-butadiene-styrene block copolymer, a styrene-ethylene / propylene-styrene block copolymer, a styrene-ethylene / butylene-styrene block copolymer, and the like. It may be a styrene resin such as a styrene-isoprene / butadiene-styrene block copolymer or a styrene-isoprene-styrene block copolymer.
Among them, the resin having an acid-modified polyolefin structure is preferably an acid-modified polyolefin resin.
 また、前記ポリアミド樹脂、及び、ポリオレフィン構造を有する樹脂に、カルボキシ基又はカルボン酸無水物構造を導入する方法としては、特に制限はないが、不飽和カルボン酸無水物を共重合する方法、樹脂をカルボン酸無水物により変性する方法等が挙げられる。具体的には、例えば、ポリプロピレン等のポリオレフィン樹脂に、無水マレイン酸、無水イタコン酸、アクリル酸、メタクリル酸等の不飽和カルボン酸無水物をグラフト重合させてなる樹脂、ジアミンに対して二塩基酸を過剰に反応させて得られる酸末端を有するポリアミド樹脂、ポリアミド樹脂にカルボン酸無水物を反応させて得られる樹脂、原料のカルボン酸成分として、無水ピロメリット酸等の2以上のカルボン酸無水物構造を有する化合物を用いたポリアミド樹脂等が挙げられる。 The method for introducing a carboxy group or a carboxylic acid anhydride structure into the polyamide resin and the resin having a polyolefin structure is not particularly limited, but a method for copolymerizing an unsaturated carboxylic acid anhydride or a resin can be used. Examples thereof include a method of modifying with a carboxylic acid anhydride. Specifically, for example, a resin obtained by graft-polymerizing a polyolefin resin such as polypropylene with an unsaturated carboxylic acid anhydride such as maleic anhydride, itaconic anhydride, acrylic acid, or methacrylic acid, or dibasic acid with respect to diamine. A polyamide resin having an acid terminal obtained by excessively reacting the above, a resin obtained by reacting a polyamide resin with a carboxylic acid anhydride, and two or more carboxylic acid anhydrides such as pyromellitic anhydride as a raw material carboxylic acid component. Examples thereof include a polyamide resin using a compound having a structure.
 カルボキシ基又はカルボン酸無水物構造を有する樹脂(C)の酸価は、カルボキシ基又はカルボン酸無水物構造を少なくとも有していればよく、特に限定されないが、0.1mgKOH/g~200mgKOH/gであることが好ましく、1mgKOH/g~100mgKOH/gであることがより好ましく、2mgKOH/g~50mgKOH/gであることが更に好ましく、5mgKOH/g~30mgKOH/gであることが特に好ましい。 The acid value of the resin (C) having a carboxy group or a carboxylic acid anhydride structure is not particularly limited as long as it has at least a carboxy group or a carboxylic acid anhydride structure, but is not particularly limited, but is 0.1 mgKOH / g to 200 mgKOH / g. It is preferably 1 mgKOH / g to 100 mgKOH / g, more preferably 2 mgKOH / g to 50 mgKOH / g, and particularly preferably 5 mgKOH / g to 30 mgKOH / g.
 カルボキシ基又はカルボン酸無水物構造を有する樹脂(C)のアミン価は、特に限定されない。一般に、ポリアミド樹脂のアミン価が高いと、アミノ基とエポキシ基との反応が早く、短い時間での加熱処理で良好な硬化性が得られるが、その一方で、カルボキシ基又はカルボン酸無水物構造を有する樹脂(C)及びエポキシ樹脂(B)の混合直後から、徐々に反応が進み、組成物の粘度が大幅に上昇したりゲル化したりする。そのため、カルボキシ基又はカルボン酸無水物構造を有する樹脂(C)のアミン価の選択により、硬化性と安定性とを両立させることができる。カルボキシ基又はカルボン酸無水物構造を有する樹脂(C)のアミン価の好ましい範囲は、1mgKOH/g~6mgKOH/gである。 The amine value of the resin (C) having a carboxy group or a carboxylic acid anhydride structure is not particularly limited. Generally, when the amine value of the polyamide resin is high, the reaction between the amino group and the epoxy group is fast, and good curability can be obtained by heat treatment in a short time, but on the other hand, a carboxy group or a carboxylic acid anhydride structure can be obtained. Immediately after mixing the resin (C) and the epoxy resin (B) having the above, the reaction gradually proceeds, and the viscosity of the composition is significantly increased or gelled. Therefore, curability and stability can be achieved at the same time by selecting the amine value of the resin (C) having a carboxy group or a carboxylic acid anhydride structure. The preferred range of the amine value of the resin (C) having a carboxy group or a carboxylic acid anhydride structure is 1 mgKOH / g to 6 mgKOH / g.
 また、カルボキシ基又はカルボン酸無水物構造を有する樹脂(C)の融点は、特に限定されないが、溶剤への溶解性、及び、硬化物の耐熱性の観点から、好ましくは50℃~220℃の範囲であり、より好ましくは70℃~180℃の範囲である。 The melting point of the resin (C) having a carboxy group or a carboxylic acid anhydride structure is not particularly limited, but is preferably 50 ° C. to 220 ° C. from the viewpoint of solubility in a solvent and heat resistance of the cured product. It is in the range, more preferably in the range of 70 ° C to 180 ° C.
 カルボキシ基又はカルボン酸無水物構造を有する樹脂(C)を溶解する溶剤としては、例えば、メタノール、エタノール、イソプロピルアルコール、n-プロピルアルコール、イソブチルアルコール、n-ブチルアルコール、ベンジルアルコール、エチレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテル、ジエチレングリコールモノメチルエーテル、ジアセトンアルコール等のアルコール類;アセトン、メチルエチルケトン、メチルイソブチルケトン、メチルアミルケトン、シクロヘキサノン、イソホロン等のケトン類;トルエン、キシレン、エチルベンゼン、メシチレン等の芳香族炭化水素類;酢酸メチル、酢酸エチル、エチレングリコールモノメチルエーテルアセテ-ト、3-メトキシブチルアセテート等のエステル類等が挙げられる。これらの溶剤は、単独で用いてよいし、2種以上を組み合わせて用いてもよい。 Examples of the solvent for dissolving the resin (C) having a carboxy group or a carboxylic acid anhydride structure include methanol, ethanol, isopropyl alcohol, n-propyl alcohol, isobutyl alcohol, n-butyl alcohol, benzyl alcohol and ethylene glycol monomethyl ether. , Alcohols such as propylene glycol monomethyl ether, diethylene glycol monomethyl ether, diacetone alcohol; ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, methyl amyl ketone, cyclohexanone, isophorone; aromatic charcoal such as toluene, xylene, ethylbenzene, mesitylene, etc. Hydrogens; Examples thereof include esters such as methyl acetate, ethyl acetate, ethylene glycol monomethyl ether acetate, and 3-methoxybutyl acetate. These solvents may be used alone or in combination of two or more.
 本発明の樹脂組成物は、カルボキシ基又はカルボン酸無水物構造を有する樹脂(C)を、1種単独で含有していても、2種以上を含有していてもよい。
 カルボキシ基又はカルボン酸無水物構造を有する樹脂(C)の含有量は、接着性、導電性、及び、耐熱性の観点から、前記樹脂組成物におけるポリエステルポリウレタン樹脂(A)、エポキシ樹脂(B)及びカルボキシ基又はカルボン酸無水物構造を有する樹脂(C)、並びに、任意成分として含有してもよいイミダゾールシラン化合物(D)の合計量に対して、5質量%~90質量%であることが好ましく、5質量%~70質量%であることがより好ましく、30質量%~50質量%であることが特に好ましい。
 また、本発明の樹脂組成物において、接着性、導電性、及び、耐熱性の観点から、前記樹脂組成物におけるポリエステルポリウレタン樹脂(A)、エポキシ樹脂(B)及びカルボキシ基又はカルボン酸無水物構造を有する樹脂(C)、並びに、任意成分として含有してもよいイミダゾールシラン化合物(D)の合計量に対して、ポリエステルポリウレタン樹脂(A)の含有量が、10質量%~90質量%であり、かつカルボキシ基又はカルボン酸無水物構造を有する樹脂(C)の含有量が、5質量%~70質量%であることが好ましい。
The resin composition of the present invention may contain one kind of resin (C) having a carboxy group or a carboxylic acid anhydride structure alone, or may contain two or more kinds.
The content of the resin (C) having a carboxy group or a carboxylic acid anhydride structure is the polyester polyurethane resin (A) and the epoxy resin (B) in the resin composition from the viewpoint of adhesiveness, conductivity, and heat resistance. And 5% by mass to 90% by mass with respect to the total amount of the resin (C) having a carboxy group or a carboxylic acid anhydride structure and the imidazole silane compound (D) which may be contained as an optional component. It is preferably 5% by mass to 70% by mass, more preferably 30% by mass to 50% by mass, and particularly preferably 30% by mass to 50% by mass.
Further, in the resin composition of the present invention, from the viewpoint of adhesiveness, conductivity and heat resistance, the polyester polyurethane resin (A), the epoxy resin (B) and the carboxy group or the carboxylic acid anhydride structure in the resin composition. The content of the polyester polyurethane resin (A) is 10% by mass to 90% by mass with respect to the total amount of the resin (C) having the above and the imidazole silane compound (D) which may be contained as an optional component. The content of the resin (C) having a carboxy group or a carboxylic acid anhydride structure is preferably 5% by mass to 70% by mass.
 更に、本発明の樹脂組成物において、接着性、導電性、及び、耐熱性の観点から、カルボキシ基又はカルボン酸無水物構造を有する樹脂(C)の含有量は、ポリエステルポリウレタン樹脂(A)100質量部に対し、1質量部~100質量部であることが好ましく、20質量部~100質量部であることが好ましく、50質量部~95質量部であることが更に好ましく、70質量部~90質量部であることが特に好ましい。
 また、カルボキシ基又はカルボン酸無水物構造を有する樹脂(C)の含有量は、接着性、導電性、及び、耐熱性の観点から、ポリエステルポリウレタン樹脂(A)の含有量以下であることが好ましく、ポリエステルポリウレタン樹脂(A)の含有量より少ない量であることがより好ましい。
Further, in the resin composition of the present invention, the content of the resin (C) having a carboxy group or a carboxylic acid anhydride structure is the polyester polyurethane resin (A) 100 from the viewpoint of adhesiveness, conductivity and heat resistance. It is preferably 1 part by mass to 100 parts by mass, preferably 20 parts by mass to 100 parts by mass, further preferably 50 parts by mass to 95 parts by mass, and 70 parts by mass to 90 parts by mass. It is particularly preferable that it is by mass.
Further, the content of the resin (C) having a carboxy group or a carboxylic acid anhydride structure is preferably less than or equal to the content of the polyester polyurethane resin (A) from the viewpoint of adhesiveness, conductivity and heat resistance. , It is more preferable that the content is smaller than the content of the polyester polyurethane resin (A).
 前記樹脂組成物におけるポリエステルポリウレタン樹脂(A)及びカルボキシ基又はカルボン酸無水物構造を有する樹脂(C)の含有量は、接着性、導電性、及び、耐熱性の観点から、前記樹脂組成物におけるポリエステルポリウレタン樹脂(A)、エポキシ樹脂(B)及びカルボキシ基又はカルボン酸無水物構造を有する樹脂(C)、並びに、任意成分として含有してもよいイミダゾールシラン化合物(D)の合計量に対して、50質量%~98質量%であることが好ましく、70質量%~97質量%であることがより好ましく、75質量%~95質量%であることが特に好ましい。 The content of the polyester polyurethane resin (A) and the resin (C) having a carboxy group or a carboxylic acid anhydride structure in the resin composition is determined in the resin composition from the viewpoints of adhesiveness, conductivity, and heat resistance. With respect to the total amount of the polyester polyurethane resin (A), the epoxy resin (B) and the resin (C) having a carboxy group or a carboxylic acid anhydride structure, and the imidazole silane compound (D) which may be contained as an optional component. , 50% by mass to 98% by mass, more preferably 70% by mass to 97% by mass, and particularly preferably 75% by mass to 95% by mass.
<イミダゾールシラン化合物(D)>
 本発明の樹脂組成物は、導電性、及び、接着性の観点から、イミダゾールシラン化合物(D)を含有することが好ましい。
 イミダゾールシラン化合物(D)は、1以上のイミダゾール環構造と1以上のシラン構造とを有する化合物であり、エポキシ樹脂(B)の硬化剤として作用すると推定される。
 イミダゾールシラン化合物(D)は、導電性、及び、接着性の観点から、1つのイミダゾール環構造と1つのシリル基とを有する化合物であることが好ましい。
 また、イミダゾールシラン化合物(D)としては、導電性、及び、接着性の観点から、下記式(D)で表される化合物、又は、その酸付加物が好ましく挙げられる。
<Imidazole silane compound (D)>
The resin composition of the present invention preferably contains the imidazole silane compound (D) from the viewpoint of conductivity and adhesiveness.
The imidazole silane compound (D) is a compound having one or more imidazole ring structures and one or more silane structures, and is presumed to act as a curing agent for the epoxy resin (B).
The imidazole silane compound (D) is preferably a compound having one imidazole ring structure and one silyl group from the viewpoint of conductivity and adhesiveness.
Further, as the imidazole silane compound (D), a compound represented by the following formula (D) or an acid adduct thereof is preferably mentioned from the viewpoint of conductivity and adhesiveness.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 式(D)中、R及びRはそれぞれ独立に、水素原子、飽和炭化水素基、不飽和炭化水素基又はアリール基を表し、前記各基は置換基を有していてもよく、R及びRはそれぞれ独立に、水素原子又はアルキル基を表し、Rの少なくとも1つはアルキル基であり、前記アルキル基は置換基を有していてもよく、nは1~3の整数を表し、Rはアルキレン基、又は、アルキレン基の一部が、式(D2)~式(D5)の少なくともいずれかで置換されている基を表す。 In the formula (D), R 1 and R 2 independently represent a hydrogen atom, a saturated hydrocarbon group, an unsaturated hydrocarbon group or an aryl group, and each of the above groups may have a substituent, and R 3 and R 4 each independently represent a hydrogen atom or an alkyl group, at least one of R 3 is an alkyl group, the alkyl group may have a substituent, and n is an integer of 1 to 3. Represents an alkylene group, or a group in which a part of the alkylene group is substituted with at least one of the formulas (D2) to (D5).
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 式(D2)、式(D3)及び式(D5)中、Rは水素原子又はヒドロキシ基を表し、Rは水素原子、アルキル基又はアリール基を表し、R及びRはそれぞれ独立に、水素原子、アルキル基又はアリール基を表し、前記各基は置換基を有していてもよく、波線部分は他の構造との結合位置を表す。 In formula (D2), formula (D3) and formula (D5), R 6 represents a hydrogen atom or a hydroxy group, R 7 represents a hydrogen atom, an alkyl group or an aryl group, and R 8 and R 9 are independent of each other. , Hydrogen atom, alkyl group or aryl group, each group may have a substituent, and the wavy line portion represents a bond position with another structure.
 イミダゾールシラン化合物(D)、特に前記式(D)で表される化合物を含有すると、金属、特に金メッキされた銅箔に対する接着性が向上する。これは、シラン構造及びイミダゾール環構造が金属表面及びカルボキシ基又はカルボン酸無水物構造を有する樹脂(C)のいずれとも高い親和性を示すために、その相互作用により接着性が向上すると推定される。更に、イミダゾール環構造は、エポキシ樹脂(B)とも反応し得るため、後述するリフロー工程でもこの接着性向上作用を維持することができると推定される。 When the imidazole silane compound (D), particularly the compound represented by the above formula (D), is contained, the adhesiveness to a metal, particularly a gold-plated copper foil is improved. It is presumed that this is because the silane structure and the imidazole ring structure show high affinity with both the metal surface and the resin (C) having a carboxy group or a carboxylic acid anhydride structure, and the adhesion is improved by the interaction thereof. .. Further, since the imidazole ring structure can also react with the epoxy resin (B), it is presumed that this adhesiveness improving effect can be maintained even in the reflow step described later.
 イミダゾールシラン化合物(D)は、一分子中に第1官能基としてイミダゾール環構造を、第2官能基としてアルコキシシリル基を共に有する化合物であることが好ましい。
 前記イミダゾール環構造におけるイミダゾール環は、飽和炭化水素基、不飽和炭化水素基等の置換基を有していてもよい。
 式(D)において、R、R、R及びRがアルキル基の場合に、その好ましい炭素数は1~3である。
 イミダゾールシラン化合物(D)を構成するイミダゾール環構造としては、イミダゾール環構造、2-アルキルイミダゾール環構造、2,4-ジアルキルイミダゾール環構造及び4-ビニルイミダゾール環構造等が挙げられる。
 イミダゾールシラン化合物(D)において、前記アルコキシシリル基とイミダゾール環構造とは、アルキレン基、又は、アルキレン基の一部が、式(D2)~式(D5)の少なくともいずれかで置換されている基を介して結合されていることが好ましい。
 式(D)のRにおける前記アルキレン基の炭素数は、1~10であることが好ましく、3~7であることがより好ましい。
 イミダゾールシラン化合物(D)は、例えば、イミダゾール化合物と3-グリシドキシアルキルシラン化合物等との反応により好適に合成することができる。
 また、イミダゾールシラン化合物(D)は、アルコキシシリル基の加水分解により生じるシラノール化合物であっても、シラノール化合物の脱水縮合反応により生じるポリオルガノシロキサン化合物であってもよく、これらの混合物であってもよい。
 また、式(D)で表される化合物に付加する酸としては、酢酸、乳酸、サリチル酸、安息香酸、アジピン酸、フタル酸、クエン酸、酒石酸、マレイン酸、トリメリット酸、リン酸及びイソシアヌル酸等が挙げられる。これらは、1種単独で、又は、2種以上を併せて用いることができる。
The imidazole silane compound (D) is preferably a compound having an imidazole ring structure as a first functional group and an alkoxysilyl group as a second functional group in one molecule.
The imidazole ring in the imidazole ring structure may have a substituent such as a saturated hydrocarbon group or an unsaturated hydrocarbon group.
In the formula (D), when R 1 , R 2 , R 3 and R 4 are alkyl groups, the preferred number of carbon atoms is 1 to 3.
Examples of the imidazole ring structure constituting the imidazole silane compound (D) include an imidazole ring structure, a 2-alkylimidazole ring structure, a 2,4-dialkylimidazole ring structure, and a 4-vinylimidazole ring structure.
In the imidazole silane compound (D), the alkoxysilyl group and the imidazole ring structure are alkylene groups or groups in which a part of the alkylene group is substituted with at least one of the formulas (D2) to (D5). It is preferable that they are bonded via.
The carbon number of the alkylene group in R5 of the formula ( D) is preferably 1 to 10, and more preferably 3 to 7.
The imidazole silane compound (D) can be suitably synthesized by, for example, a reaction between the imidazole compound and a 3-glycidoxyalkylsilane compound or the like.
Further, the imidazole silane compound (D) may be a silanol compound produced by hydrolysis of an alkoxysilyl group, a polyorganosiloxane compound produced by a dehydration condensation reaction of the silanol compound, or a mixture thereof. good.
The acids added to the compound represented by the formula (D) include acetic acid, lactic acid, salicylic acid, benzoic acid, adipic acid, phthalic acid, citric acid, tartrate acid, maleic acid, trimellitic acid, phosphoric acid and isocyanuric acid. And so on. These can be used alone or in combination of two or more.
 また、イミダゾールシラン化合物(D)としては、導電性、及び、接着性の観点から、下記式(D6)又は式(D7)で表される化合物、又は、その酸付加物であることがより好ましい。 Further, the imidazole silane compound (D) is more preferably a compound represented by the following formula (D6) or formula (D7) or an acid adduct thereof from the viewpoint of conductivity and adhesiveness. ..
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 式(D6)及び式(D7)中、R及びRはそれぞれ独立に、水素原子、飽和炭化水素基、不飽和炭化水素基又はアリール基を表し、前記各基は置換基を有していてもよく、R及びRはそれぞれ独立に、水素原子又はアルキル基を表し、Rの少なくとも1つはアルキル基であり、前記アルキル基は置換基を有していてもよく、nは1~3の整数を表し、R5’はアルキレン基を表し、Rは水素原子又はヒドロキシ基を表す。 In the formula (D6) and the formula (D7), R 1 and R 2 independently represent a hydrogen atom, a saturated hydrocarbon group, an unsaturated hydrocarbon group or an aryl group, and each of the above groups has a substituent. R 3 and R 4 may each independently represent a hydrogen atom or an alkyl group, at least one of R 3 is an alkyl group, and the alkyl group may have a substituent, where n is. An integer of 1 to 3 is represented, R 5'represents an alkylene group, and R 6 represents a hydrogen atom or a hydroxy group.
 式(D6)及び式(D7)のR5’におけるアルキレン基の炭素数は、1~10であることが好ましく、3~7であることがより好ましい。 The carbon number of the alkylene group in R5'of the formulas (D6) and (D7) is preferably 1 to 10, and more preferably 3 to 7.
 イミダゾールシラン化合物(D)の具体例としては、1-(2-ヒドロキシ-3-トリメトキシシリルプロポキシプロピル)イミダゾール、1-(2-ヒドロキシ-3-トリエトキシシリルプロポキシプロピル)イミダゾール、1-(2-ヒドロキシ-3-トリプロポキシシリルプロポキシプロピル)イミダゾール、1-(2-ヒドロキシ-3-トリブトキシシリルプロポキシプロピル)イミダゾール、1-(2-ヒドロキシ-3-トリエトキシシリルプロポキシプロピル)-2-メチルイミダゾール、1-(2-ヒドロキシ-3-トリエトキシシリルプロポキシプロピル)-4-メチルイミダゾール、1-(3-オキソ-4-トリメトキシシリルプロポキシプロピル)イミダゾール、1-(3-トリメトキシシリルプロピルアミノ)イミダゾール等が挙げられる。 Specific examples of the imidazole silane compound (D) include 1- (2-hydroxy-3-trimethoxysilylpropoxypropyl) imidazole, 1- (2-hydroxy-3-triethoxysilylpropoxypropyl) imidazole, 1- (2). -Hydroxy-3-tripropoxysilylpropoxypropyl) imidazole, 1- (2-hydroxy-3-tributoxysilylpropoxypropyl) imidazole, 1- (2-hydroxy-3-triethoxysilylpropoxypropyl) -2-methylimidazole , 1- (2-Hydroxy-3-triethoxysilylpropoxypropyl) -4-methylimidazole, 1- (3-oxo-4-trimethoxysilylpropoxypropyl) imidazole, 1- (3-trimethoxysilylpropylamino) Examples include imidazole.
 中でも、前記式(D6)又は式(D7)で表される化合物又はその酸付加物は、耐熱性が良好で、溶剤に対する溶解性もよいため、好ましく、式(D6)で表される化合物の酸付加物がより好ましい。 Among them, the compound represented by the formula (D6) or the formula (D7) or an acid adduct thereof is preferable because it has good heat resistance and good solubility in a solvent. Acid adducts are more preferred.
 前記式(D6)で表される化合物は、イミダゾール、2-アルキルイミダゾール、2,4ジアルキルイミダゾール、4-ビニルイミダゾール等のイミダゾール化合物と、3-グリシドキシプロピルトリアルコキシシラン、3-グリシドキシプロピルジアルコキシアルキルシラン、3-グリシドキシプロピルアルコキシジアルキルシラン等の3-グリシドキシプロピルシラン化合物とを反応させる等により好適に得ることができる。これらのうち特に好ましいのは、イミダゾールと3-グリシドキシプロピルトリメトキシシランとの反応物である。
 前記式(D7)で表される化合物は、イミダゾール化合物と、3-メタクリロイルオキシプロピルトリメトキシシラン等とを反応させる等により好適に得ることができる。
The compound represented by the formula (D6) is an imidazole compound such as imidazole, 2-alkylimidazole, 2,4 dialkylimidazole, 4-vinylimidazole, 3-glycidoxypropyltrialkoxysilane, 3-glycidoxy. It can be preferably obtained by reacting with a 3-glycidoxypropylsilane compound such as propyldialkoxyalkylsilane or 3-glycidoxypropylalkoxydialkylsilane. Of these, a reaction product of imidazole and 3-glycidoxypropyltrimethoxysilane is particularly preferable.
The compound represented by the formula (D7) can be preferably obtained by reacting the imidazole compound with 3-methacryloyloxypropyltrimethoxysilane or the like.
 本発明の樹脂組成物は、イミダゾールシラン化合物(D)を、1種単独で含有していても、2種以上を含有していてもよい。
 イミダゾールシラン化合物(D)の含有量は、導電性、及び、接着性の観点から、前記樹脂組成物におけるポリエステルポリウレタン樹脂(A)、エポキシ樹脂(B)、カルボキシ基又はカルボン酸無水物構造を有する樹脂(C)及びイミダゾールシラン化合物(D)の合計量に対して、0.05質量%~20質量%であることが好ましく、0.1質量%~10質量%であることがより好ましく、1質量%~5質量%であることが特に好ましい。
The resin composition of the present invention may contain the imidazole silane compound (D) alone or in combination of two or more.
The content of the imidazole silane compound (D) has a polyester polyurethane resin (A), an epoxy resin (B), a carboxy group or a carboxylic acid anhydride structure in the resin composition from the viewpoint of conductivity and adhesiveness. It is preferably 0.05% by mass to 20% by mass, more preferably 0.1% by mass to 10% by mass, based on the total amount of the resin (C) and the imidazole silane compound (D). It is particularly preferably from% by mass to 5% by mass.
<無機フィラー(E)>
 本発明の樹脂組成物は、得られる硬化物の伸び性、得られる硬化物の初期、はんだ後、長期信頼性試験後及び冷熱サイクル試験後の導電性の観点から、無機フィラー(E)を含有することが好ましく、無機フィラー(E)及び後述する有機フィラー(F)を含有することがより好ましい。
 なお、本明細書における無機フィラー(E)は、金属又はその合金からなるフィラー、すなわち、後述する金属フィラー(G)以外の無機フィラーとする。
<Inorganic filler (E)>
The resin composition of the present invention contains an inorganic filler (E) from the viewpoint of the extensibility of the obtained cured product, the initial stage of the obtained cured product, after soldering, after a long-term reliability test, and after a thermal cycle test. It is more preferable to contain an inorganic filler (E) and an organic filler (F) described later.
The inorganic filler (E) in the present specification is a filler made of a metal or an alloy thereof, that is, an inorganic filler other than the metal filler (G) described later.
 無機フィラー(E)としては、特に制限はないが、例えば、炭酸カルシウム粒子、酸化チタン粒子、酸化アルミニウム粒子、酸化亜鉛粒子、タルク粒子、シリカ粒子等の非導電性無機フィラーやカーボンブラック粒子等の導電性無機フィラーが挙げられる。
 中でも、得られる硬化物の初期、はんだ後、長期信頼性試験後及び冷熱サイクル試験後の導電性の観点から、タルク粒子、及び、シリカ粒子よりなる群から選ばれた少なくとも1種の粒子が好ましく、タルク粒子がより好ましい。
The inorganic filler (E) is not particularly limited, and for example, non-conductive inorganic fillers such as calcium carbonate particles, titanium oxide particles, aluminum oxide particles, zinc oxide particles, talc particles, and silica particles, carbon black particles, and the like. Examples include conductive inorganic fillers.
Among them, at least one kind of particles selected from the group consisting of talc particles and silica particles is preferable from the viewpoint of conductivity after the initial stage of the obtained cured product, after soldering, after a long-term reliability test and after a thermal cycle test. , Talc particles are more preferred.
 無機フィラー(E)の平均粒子径は、特に限定されないが、得られる硬化物の初期、はんだ後、長期信頼性試験後及び冷熱サイクル試験後の導電性、塗布性、並びに、塗布厚調整性の観点から、0.001μm~50μmであることが好ましく、0.005μm~30μmであることがより好ましく、0.01μm~10μmであることが特に好ましい。
 なお、本明細書におけるフィラーの平均粒子径は、レーザー回折・散乱法粒度分布測定装置LS 13320(ベックマン・コールター社製)を使用し、トルネードドライパウダーサンプルモジュールにて、フィラーを測定して得たD50平均粒子径であり、粒子の積算値が50%である粒度の直径の平均粒子径を用いた。
The average particle size of the inorganic filler (E) is not particularly limited, but the conductivity, coatability, and coating thickness adjustability of the obtained cured product at the initial stage, after soldering, after a long-term reliability test, and after a thermal cycle test are not particularly limited. From the viewpoint, it is preferably 0.001 μm to 50 μm, more preferably 0.005 μm to 30 μm, and particularly preferably 0.01 μm to 10 μm.
The average particle size of the filler in the present specification was obtained by measuring the filler with a tornado dry powder sample module using a laser diffraction / scattering method particle size distribution measuring device LS 13320 (manufactured by Beckman Coulter). The average particle size of the particle size, which is the D50 average particle size and the integrated value of the particles is 50%, was used.
 本発明の樹脂組成物は、無機フィラー(E)を、1種単独で含有していても、2種以上を含有していてもよいが、得られる硬化物の初期、はんだ後、長期信頼性試験後及び冷熱サイクル試験後の導電性の観点から、2種以上含有することが好ましく、2種含有することがより好ましい。
 無機フィラー(E)の含有量は、接着性、導電性、及び、硬化性の観点から、前記樹脂組成物におけるポリエステルポリウレタン樹脂(A)、エポキシ樹脂(B)及びカルボキシ基又はカルボン酸無水物構造を有する樹脂(C)、並びに、任意成分として含有してもよいイミダゾールシラン化合物(D)の合計量100質量部に対して、0.1質量部~50質量部であることが好ましく、0.5質量部~20質量部であることがより好ましく、1質量部~10質量部であることが特に好ましい。
The resin composition of the present invention may contain the inorganic filler (E) alone or in combination of two or more, but the obtained cured product has long-term reliability in the initial stage and after soldering. From the viewpoint of conductivity after the test and the thermal cycle test, it is preferable to contain two or more kinds, and it is more preferable to contain two kinds.
The content of the inorganic filler (E) is a polyester polyurethane resin (A), an epoxy resin (B) and a carboxy group or a carboxylic acid anhydride structure in the resin composition from the viewpoint of adhesiveness, conductivity and curability. It is preferably 0.1 part by mass to 50 parts by mass with respect to 100 parts by mass of the total amount of the resin (C) having the above and the imidazole silane compound (D) which may be contained as an optional component. It is more preferably 5 parts by mass to 20 parts by mass, and particularly preferably 1 part by mass to 10 parts by mass.
<有機フィラー(F)>
 本発明の樹脂組成物は、得られる硬化物の伸び性、導電性、及び、耐湿熱性の観点から、有機フィラー(F)を含有することが好ましい。有機フィラー(F)は通常は樹脂を主成分とし、非導電性である。
 有機フィラー(F)としては、例えば、(メタ)アクリル樹脂粒子、ポリブタジエン粒子、ナイロン微粒子、ポリオレフィン粒子、ポリエステル粒子、ポリカーボネート粒子、ポリビニルアルコール粒子、ポリビニルエーテル粒子、ポリビニルブチラール粒子、シリコーンゴム粒子、ポリウレタン粒子、フェノール樹脂粒子、ポリ四弗化エチレン粒子等が挙げられる。
 有機フィラーは、ポリエステルポリウレタン樹脂(A)、エポキシ樹脂(B)及びカルボキシ基又はカルボン酸無水物構造を有する樹脂(C)と溶解させた場合に、これら樹脂の相溶性を高める効果を見出した。更に、これら樹脂の相溶性や液安定性をより向上させる観点から、シリコーン粒子、ポリブタジエン粒子、(メタ)アクリル樹脂粒子、又は、ポリウレタン粒子が特に好ましい。
<Organic filler (F)>
The resin composition of the present invention preferably contains an organic filler (F) from the viewpoint of the extensibility, conductivity, and moisture and heat resistance of the obtained cured product. The organic filler (F) usually contains a resin as a main component and is non-conductive.
Examples of the organic filler (F) include (meth) acrylic resin particles, polybutadiene particles, nylon fine particles, polyolefin particles, polyester particles, polycarbonate particles, polyvinyl alcohol particles, polyvinyl ether particles, polyvinyl butyral particles, silicone rubber particles, and polyurethane particles. , Phenolic resin particles, polytetrafluorinated ethylene particles and the like.
The organic filler has been found to have an effect of enhancing the compatibility of the polyester polyurethane resin (A), the epoxy resin (B) and the resin (C) having a carboxy group or a carboxylic acid anhydride structure when dissolved. Further, from the viewpoint of further improving the compatibility and liquid stability of these resins, silicone particles, polybutadiene particles, (meth) acrylic resin particles, or polyurethane particles are particularly preferable.
 有機フィラー(F)の平均粒子径は、特に限定されないが、塗布性、及び、塗布厚調整性の観点から、0.5μm~50μmであることが好ましく、1μm~30μmであることがより好ましい。 The average particle size of the organic filler (F) is not particularly limited, but is preferably 0.5 μm to 50 μm, more preferably 1 μm to 30 μm, from the viewpoint of coatability and coat thickness adjustability.
 本発明の樹脂組成物は、有機フィラー(F)を、1種単独で含有していても、2種以上を含有していてもよい。
 有機フィラー(F)の含有量は、接着性、導電性、及び、硬化性の観点から、前記樹脂組成物におけるポリエステルポリウレタン樹脂(A)、エポキシ樹脂(B)及びカルボキシ基又はカルボン酸無水物構造を有する樹脂(C)、並びに、任意成分として含有してもよいイミダゾールシラン化合物(D)の合計量100質量部に対して、1質量部~50質量部であることが好ましく、5質量部~40質量部であることがより好ましく、10質量部~20質量部であることが特に好ましい。
The resin composition of the present invention may contain the organic filler (F) alone or in combination of two or more.
The content of the organic filler (F) is the polyester polyurethane resin (A), the epoxy resin (B) and the carboxy group or the carboxylic acid anhydride structure in the resin composition from the viewpoint of adhesiveness, conductivity and curability. It is preferably 1 part by mass to 50 parts by mass with respect to 100 parts by mass of the total amount of the resin (C) having the above and the imidazole silane compound (D) which may be contained as an optional component. It is more preferably 40 parts by mass, and particularly preferably 10 parts by mass to 20 parts by mass.
<金属フィラー(G)>
 本発明の樹脂組成物は、導電性、及び、耐熱性の観点から、金属フィラー(G)を含有することが好ましい。金属フィラー(G)は通常は導電性である。
 金属フィラー(G)としては、金、白金、銀、銅、ニッケルなどの導電性金属又はその合金からなる金属粒子が好ましく挙げられる。また、単一組成の粒子ではなく金属や樹脂を核体とし、その被覆層を導電性が高い素材で形成した粒子も、コストダウンの観点から好ましい。前記核体は、ニッケル、シリカ、銅及び樹脂よりなる群から選択される少なくとも1種の材質からなることが好ましく、導電性の金属又はその合金からなることがより好ましい。前記被覆層は、導電性が優れる材質からなる層であることが好ましく、導電性金属又は導電性ポリマーからなる層であることが好ましい。
 導電性金属は、例えば、金、白金、銀、錫、マンガン、及び、インジウム等、並びにその合金が挙げられる。また、導電性ポリマーは、ポリアニリン、ポリアセチレン等が挙げられる。これらの中でも、導電性の面から、銀が好ましい。
<Metal filler (G)>
The resin composition of the present invention preferably contains a metal filler (G) from the viewpoint of conductivity and heat resistance. The metal filler (G) is usually conductive.
The metal filler (G) preferably includes metal particles made of a conductive metal such as gold, platinum, silver, copper or nickel or an alloy thereof. Further, particles having a metal or resin as a nuclei instead of particles having a single composition and having a coating layer formed of a highly conductive material are also preferable from the viewpoint of cost reduction. The nucleus is preferably made of at least one material selected from the group consisting of nickel, silica, copper and resin, and more preferably made of a conductive metal or an alloy thereof. The coating layer is preferably a layer made of a material having excellent conductivity, and preferably a layer made of a conductive metal or a conductive polymer.
Examples of the conductive metal include gold, platinum, silver, tin, manganese, indium and the like, and alloys thereof. Examples of the conductive polymer include polyaniline and polyacetylene. Among these, silver is preferable from the viewpoint of conductivity.
 前記核体と被覆層とからなる粒子は、コスト及び導電性の観点から、核体100質量部に対して、1質量部~40質量部の割合で被覆層を有することが好ましく、5質量部~30質量部の割合で被覆層を有することがより好ましい。 From the viewpoint of cost and conductivity, the particles composed of the core and the coating layer preferably have a coating layer at a ratio of 1 part by mass to 40 parts by mass with respect to 100 parts by mass of the core. It is more preferable to have a coating layer in a proportion of about 30 parts by mass.
 前記核体と被覆層からなる粒子は、被覆層が核体を完全に覆っている粒子であることが好ましい。しかし、実際には、核体の一部が露出する場合がある。このような場合でも核体表面面積の70%以上を導電性物質が覆っていれば、導電性を維持しやすい。 The particles composed of the nucleolus and the coating layer are preferably particles in which the coating layer completely covers the nucleolus. However, in reality, a part of the nucleolus may be exposed. Even in such a case, if the conductive substance covers 70% or more of the surface area of the nucleus, it is easy to maintain the conductivity.
 金属フィラー(G)の形状は、所望の導電性が得られればよく形状は限定されない。具体的には、例えば、球状、フレーク状、葉状、樹枝状、プレート状、針状、棒状、又は、ブドウ状が好ましい。 The shape of the metal filler (G) is not limited as long as the desired conductivity can be obtained. Specifically, for example, spherical shape, flake shape, leaf shape, dendritic shape, plate shape, needle shape, rod shape, or grape shape is preferable.
 金属フィラー(G)の平均粒子径は、導電性、及び、貯蔵安定性の観点から、1μm~100μmであることが好ましく、3μm~50μmであることがより好ましく、4μm~15μmであることが特に好ましい。
 なお、金属フィラー(G)の平均粒子径は、前述した方法以外に、電子顕微鏡の拡大画像(約千倍~1万倍)において無作為に選定した約20個の粒子を平均した数値から求めることもできる。この場合の平均粒子径も1μm~100μmが好ましく、3μm~50μmがより好ましい。なお、金属フィラー(G)に長軸方向と短軸方向が有る場合(例えば棒状粒子)は、長軸方向の長さで平均粒子径を算出する。
The average particle size of the metal filler (G) is preferably 1 μm to 100 μm, more preferably 3 μm to 50 μm, and particularly preferably 4 μm to 15 μm from the viewpoint of conductivity and storage stability. preferable.
In addition to the method described above, the average particle size of the metal filler (G) is obtained from an average value of about 20 particles randomly selected in an enlarged image (about 1,000 to 10,000 times) of an electron microscope. You can also do it. In this case, the average particle size is also preferably 1 μm to 100 μm, more preferably 3 μm to 50 μm. When the metal filler (G) has a major axis direction and a minor axis direction (for example, rod-shaped particles), the average particle diameter is calculated from the length in the major axis direction.
 本発明の樹脂組成物は、金属フィラー(G)を、1種単独で含有していても、2種以上を含有していてもよい。
 金属フィラー(G)の含有量は、導電性、耐熱性、及び、貯蔵安定性の観点から、前記樹脂組成物におけるポリエステルポリウレタン樹脂(A)、エポキシ樹脂(B)及びカルボキシ基又はカルボン酸無水物構造を有する樹脂(C)の合計量100質量部に対して、1質量部~500質量部であることが好ましく、10質量部~350質量部であることがより好ましく、10質量部~50質量部であることが特に好ましい。
The resin composition of the present invention may contain the metal filler (G) alone or in combination of two or more.
The content of the metal filler (G) is the polyester polyurethane resin (A), the epoxy resin (B) and the carboxy group or the carboxylic acid anhydride in the resin composition from the viewpoint of conductivity, heat resistance, and storage stability. It is preferably 1 part by mass to 500 parts by mass, more preferably 10 parts by mass to 350 parts by mass, and 10 parts by mass to 50 parts by mass with respect to 100 parts by mass of the total amount of the resin (C) having a structure. It is particularly preferable that it is a part.
 本発明の樹脂剤組成物は、前述した成分以外の他の添加剤を含有していてもよい。
 他の添加剤としては、前述した以外の他の熱可塑性樹脂、粘着付与剤、難燃剤、硬化剤、硬化促進剤、カップリング剤、熱老化防止剤、レベリング剤、消泡剤及び溶剤等を、樹脂組成物の機能に影響を与えない程度に含有することができる。
The resin composition of the present invention may contain additives other than the above-mentioned components.
Other additives include thermoplastic resins other than those described above, tackifiers, flame retardants, curing agents, curing accelerators, coupling agents, heat aging inhibitors, leveling agents, defoaming agents, solvents and the like. , Can be contained to the extent that it does not affect the function of the resin composition.
 前記他の熱可塑性樹脂としては、例えば、フェノキシ樹脂、ポリエステル樹脂、ポリカーボネート樹脂、ポリフェニレンオキシド樹脂、ポリウレタン樹脂、ポリアセタール樹脂、ポリエチレン系樹脂、ポリプロピレン系樹脂及びポリビニル系樹脂等が挙げられる。これらの熱可塑性樹脂は、1種単独で用いてもよいし、2種以上を併用してもよい。 Examples of the other thermoplastic resin include phenoxy resin, polyester resin, polycarbonate resin, polyphenylene oxide resin, polyurethane resin, polyacetal resin, polyethylene resin, polypropylene resin, polyvinyl resin and the like. These thermoplastic resins may be used alone or in combination of two or more.
 前記粘着付与剤としては、例えば、クマロン-インデン樹脂、テルペン樹脂、テルペン-フェノール樹脂、ロジン樹脂、p-t-ブチルフェノール-アセチレン樹脂、フェノール-ホルムアルデヒド樹脂、キシレン-ホルムアルデヒド樹脂、石油系炭化水素樹脂、水素添加炭化水素樹脂、テレピン系樹脂等を挙げることができる。これらの粘着付与剤は、1種単独で用いてもよいし、2種以上を併用してもよい。 Examples of the tackifier include kumaron-inden resin, terpene resin, terpene-phenol resin, rosin resin, pt-butylphenol-acetylene resin, phenol-formaldehyde resin, xylene-formaldehyde resin, petroleum hydrocarbon resin, and the like. Examples thereof include hydrogenated hydrocarbon resins and terepine resins. These tackifiers may be used alone or in combination of two or more.
 前記難燃剤は、有機系難燃剤及び無機系難燃剤のいずれでもよい。
 有機系難燃剤としては、例えば、リン酸メラミン、ポリリン酸メラミン、リン酸グアニジン、ポリリン酸グアニジン、リン酸アンモニウム、ポリリン酸アンモニウム、リン酸アミドアンモニウム、ポリリン酸アミドアンモニウム、リン酸カルバメート、ポリリン酸カルバメート、トリスジエチルホスフィン酸アルミニウム、トリスメチルエチルホスフィン酸アルミニウム、トリスジフェニルホスフィン酸アルミニウム、ビスジエチルホスフィン酸亜鉛、ビスメチルエチルホスフィン酸亜鉛、ビスジフェニルホスフィン酸亜鉛、ビスジエチルホスフィン酸チタニル、テトラキスジエチルホスフィン酸チタン、ビスメチルエチルホスフィン酸チタニル、テトラキスメチルエチルホスフィン酸チタン、ビスジフェニルホスフィン酸チタニル、テトラキスジフェニルホスフィン酸チタン等のリン系難燃剤;メラミン、メラム、メラミンシアヌレート等のトリアジン系化合物や、シアヌル酸化合物、イソシアヌル酸化合物、トリアゾール系化合物、テトラゾール化合物、ジアゾ化合物、尿素等の窒素系難燃剤;シリコーン化合物、シラン化合物等のケイ素系難燃剤等が挙げられる。
 また、無機系難燃剤としては、水酸化アルミニウム、水酸化マグネシウム、水酸化ジルコニウム、水酸化バリウム、水酸化カルシウム等の金属水酸化物;酸化スズ、酸化アルミニウム、酸化マグネシウム、酸化ジルコニウム、酸化亜鉛、酸化モリブデン、酸化ニッケル等の金属酸化物;炭酸亜鉛、炭酸マグネシウム、炭酸カルシウム、炭酸バリウム、ホウ酸亜鉛、水和ガラス等が挙げられる。
 これらの難燃剤は、1種単独で用いてもよいし、2種以上を併用することができる。
The flame retardant may be either an organic flame retardant or an inorganic flame retardant.
Examples of the organic flame retardant include melamine phosphate, melamine polyphosphate, guanidine phosphate, guanidine polyphosphate, ammonium phosphate, ammonium polyphosphate, ammonium phosphate amide ammonium, polyphosphate amide ammonium, phosphate carbamate, and polyphosphate carbamate. , Aluminum Trisdiphenylphosphite, Aluminum Trismethylethylphosphinate, Aluminum Trisdiphenylphosphinate, Zinc bisdiethylphosphinate, Zinc bismethylethylphosphinate, Zinc bisdiphenylphosphite, Titanyl bisdiphenylphosphite, Titanium tetrakisdiethylphosphinate , Phosphate-based flame retardants such as titanyl bismethylethylphosphinate, titanium tetrakismethylethylphosphinate, titanyl bisdiphenylphosphinate, titanium tetrakisdiphenylphosphinate; triazine compounds such as melamine, melam, melamine cyanurate, and cyanuric acid compounds. , Isocyanuric acid compound, triazole compound, tetrazole compound, diazo compound, urea and other nitrogen-based flame retardant; silicone compound, silane compound and other silicon-based flame retardant.
Examples of the inorganic flame retardant include metal hydroxides such as aluminum hydroxide, magnesium hydroxide, zirconium hydroxide, barium hydroxide, and calcium hydroxide; tin oxide, aluminum oxide, magnesium oxide, zirconium oxide, and zinc oxide. Metal oxides such as molybdenum oxide and nickel oxide; zinc carbonate, magnesium carbonate, calcium carbonate, barium carbonate, zinc borate, hydrated glass and the like can be mentioned.
These flame retardants may be used alone or in combination of two or more.
 前記硬化剤は、エポキシ樹脂(B)との反応により架橋構造を形成するための成分であり、例えば、脂肪族ジアミン、脂肪族系ポリアミン、環状脂肪族ジアミン及び芳香族ジアミン等のアミン系硬化剤、ポリアミドアミン系硬化剤、脂肪族多価カルボン酸、脂環式多価カルボン酸、芳香族多価カルボン酸及びそれらの酸無水物等の酸系硬化剤;ジシアンジアミドや有機酸ジヒドラジド等の塩基性活性水素系硬化剤;ポリメルカプタン系硬化剤;ノボラック樹脂系硬化剤;ユリア樹脂系硬化剤;メラミン樹脂系硬化剤等が挙げられる。
 これらの硬化剤は、1種単独で用いてもよいし、2種以上を組み合わせて使用することができる。
The curing agent is a component for forming a crosslinked structure by reaction with the epoxy resin (B), and is, for example, an amine-based curing agent such as an aliphatic diamine, an aliphatic polyamine, a cyclic aliphatic diamine, and an aromatic diamine. Acid-based curing agents such as polyamide amine-based curing agents, aliphatic polyvalent carboxylic acids, alicyclic polyvalent carboxylic acids, aromatic polyvalent carboxylic acids and their acid anhydrides; basicity such as dicyandiamide and organic acid dihydrazide. Examples thereof include an active hydrogen-based curing agent; a polypeptide-based curing agent; a novolak resin-based curing agent; a urea resin-based curing agent; and a melamine resin-based curing agent.
These curing agents may be used alone or in combination of two or more.
 脂肪族ジアミン系硬化剤としては、エチレンジアミン、1,3-ジアミノプロパン、1,4-ジアミノブタン、ヘキサメチレンジアミン、ポリメチレンジアミン、ポリエーテルジアミン、2,5-ジメチルヘキサメチレンジアミン、トリメチルヘキサメチレンジアミン等が挙げられる。 Examples of the aliphatic diamine-based curing agent include ethylenediamine, 1,3-diaminopropane, 1,4-diaminobutane, hexamethylenediamine, polymethylenediamine, polyetherdiamine, 2,5-dimethylhexamethylenediamine, and trimethylhexamethylenediamine. And so on.
 脂肪族ポリアミン系硬化剤としては、ジエチレントリアミン、イミノビス(ヘキサメチレン)トリアミン、トリヘキサテトラミン、テトラエチレンペンタミン、アミノエチルエタノールアミン、トリ(メチルアミノ)ヘキサン、ジメチルアミノプロピルアミン、ジエチルアミノプロピルアミン、メチルイミノビスプロピルアミン等が挙げられる。 Examples of the aliphatic polyamine-based curing agent include diethylenetriamine, iminobis (hexamethylene) triamine, trihexatetramine, tetraethylenepentamine, aminoethylethanolamine, tri (methylamino) hexane, dimethylaminopropylamine, diethylaminopropylamine, and methylimino. Examples include bispropylamine.
 環状脂肪族ジアミン系硬化剤としては、メンセンジアミン、イソホロンジアミン、ビス(4-アミノ-3-メチルジシクロへキシル)メタン、ジアミノジシクロヘキシルメタン、ビス(アミノメチル)シクロヘキサン、N-エチルアミノピペラジン、3,9-ビス(3-アミノプロピル)2,4,8,10-テトラオキサスピロ[5.5]ウンデカン、メタキシリレンジアミンの水添物等が挙げられる。 Examples of the cyclic aliphatic diamine-based curing agent include mensendiamine, isophoronediamine, bis (4-amino-3-methyldicyclohexyl) methane, diaminodicyclohexylmethane, bis (aminomethyl) cyclohexane, N-ethylaminopiperazin, 3, Examples thereof include 9-bis (3-aminopropyl) 2,4,8,10-tetraoxaspiro [5.5] undecane and a hydrogenated product of methylylenediamine.
 芳香族ジアミン系硬化剤としては、メタフェニレンジアミン、ジアミノジフェニルメタン、ジアミノジフェニルスルホン、ジアミノジエチルジフェニルメタン、メタキシリレンジアミン等が挙げられる。 Examples of the aromatic diamine-based curing agent include metaphenylenediamine, diaminodiphenylmethane, diaminodiphenylsulfone, diaminodiethyldiphenylmethane, and metaxylylenediamine.
 脂肪族多価カルボン酸系硬化剤及び酸無水物系硬化剤としては、コハク酸、アジピン酸、ドデセニル無水コハク酸、ポリアジピン酸無水物、ポリアゼライン酸無水物、ポリセバシン酸無水物等が挙げられる。 Examples of the aliphatic polyvalent carboxylic acid-based curing agent and the acid anhydride-based curing agent include succinic acid, adipic acid, dodecenyl succinic anhydride, polyadipic acid anhydride, polyazeline acid anhydride, polysevacinic acid anhydride and the like.
 脂環式多価カルボン酸系硬化剤及び酸無水物系硬化剤としては、メチルテトラヒドロフタル酸、メチルヘキサヒドロフタル酸、メチルハイミック酸、ヘキサヒドロフタル酸、テトラヒドロフタル酸、トリアルキルテトラヒドロフタル酸、メチルシクロジカルボン酸及びそれらの酸無水物等が挙げられる。 Examples of the alicyclic polyvalent carboxylic acid-based curing agent and acid anhydride-based curing agent include methyltetrahydrophthalic acid, methylhexahydrophthalic acid, methylhymic acid, hexahydrophthalic acid, tetrahydrophthalic acid, and trialkyltetrahydrophthalic acid. , Methylcyclodicarboxylic acid and their acid anhydrides and the like.
 芳香族多価カルボン酸系硬化剤及び酸無水物系硬化剤としては、フタル酸、トリメリット酸、ピロメリット酸、ベンゾフェノンテトラカルボン酸、エチレングリコールグリコールビストリメリット酸、グリセロールトリストリメリット酸及びそれらの酸無水物等が挙げられる。 Examples of the aromatic polyvalent carboxylic acid-based curing agent and the acid anhydride-based curing agent include phthalic acid, trimellitic acid, pyromellitic acid, benzophenone tetracarboxylic acid, ethylene glycol glycol bistrimellitic acid, glycerol tristrimeric acid and their substances. Acid anhydride and the like can be mentioned.
 ポリメルカプタン系硬化剤としては、メルカプト化エポキシ樹脂、メルカプトプロピオン酸エステル等が挙げられる。 Examples of the polymercaptan-based curing agent include mercaptolated epoxy resin and mercaptopropionic acid ester.
 ノボラック系硬化剤としては、フェノールノボラック系硬化剤、クレゾールノボラック系硬化剤等が挙げられる。 Examples of the novolak-based curing agent include phenol novolac-based curing agents and cresol novolak-based curing agents.
 本発明の樹脂組成物が前記硬化剤を含有する場合、硬化剤の含有量は、その官能基当量が、接着性、及び、耐熱性の観点から、エポキシ樹脂(B)のエポキシ基1モル当量に対して、好ましくは0.2モル当量~2.5モル当量の範囲、より好ましくは0.4モル当量~2.0モル当量の範囲となるように設定される。 When the resin composition of the present invention contains the curing agent, the content of the curing agent is such that the functional group equivalent is 1 molar equivalent of the epoxy group of the epoxy resin (B) from the viewpoint of adhesiveness and heat resistance. On the other hand, it is preferably set to be in the range of 0.2 molar equivalent to 2.5 molar equivalent, and more preferably in the range of 0.4 molar equivalent to 2.0 molar equivalent.
 前記硬化促進剤は、エポキシ樹脂(B)の反応を促進させる目的で使用する成分であり、第三級アミン系硬化促進剤、第三級アミン塩系硬化促進剤及びイミダゾール系硬化促進剤等を使用することができる。
 これらの硬化促進剤は、1種単独で用いてもよいし、2種以上を組み合わせて使用することができる。
The curing accelerator is a component used for the purpose of accelerating the reaction of the epoxy resin (B), and includes a tertiary amine-based curing accelerator, a tertiary amine salt-based curing accelerator, an imidazole-based curing accelerator, and the like. Can be used.
These curing accelerators may be used alone or in combination of two or more.
 第三アミン系硬化促進剤としては、ベンジルジメチルアミン、2-(ジメチルアミノメチル)フェノール、2,4,6-トリス(ジメチルアミノメチル)フェノール、テトラメチルグアニジン、トリエタノールアミン、N,N’-ジメチルピペラジン、トリエチレンジアミン、1,8-ジアザビシクロ[5.4.0]ウンデセン等が挙げられる。 Examples of the tertiary amine-based curing accelerator include benzyldimethylamine, 2- (dimethylaminomethyl) phenol, 2,4,6-tris (dimethylaminomethyl) phenol, tetramethylguanidine, triethanolamine, N, N'-. Examples thereof include dimethylpiperazine, triethylenediamine, 1,8-diazabicyclo [5.4.0] undecene and the like.
 第三アミン塩系硬化促進剤としては、1,8-ジアザビシクロ[5.4.0]ウンデセンの、ギ酸塩、オクチル酸塩、p-トルエンスルホン酸塩、o-フタル酸塩、フェノール塩又はフェノールノボラック樹脂塩や、1,5-ジアザビシクロ[4.3.0]ノネンの、ギ酸塩、オクチル酸塩、p-トルエンスルホン酸塩、o-フタル酸塩、フェノール塩又はフェノールノボラック樹脂塩等が挙げられる。 As the tertiary amine salt-based curing accelerator, 1,8-diazabicyclo [5.4.0] undecene, formate, octylate, p-toluenesulfonate, o-phthalate, phenol salt or phenol Examples thereof include novolak resin salt and 1,5-diazabicyclo [4.3.0] nonen's formate, octylate, p-toluenesulfonate, o-phthalate, phenol salt or phenolnovolak resin salt. Be done.
 イミダゾール系硬化促進剤としては、2-メチルイミダゾール、2-ウンデシルイミダゾール、2-ヘプタデシルイミダゾール、1,2-ジメチルイミダゾール、2-メチル-4-エチルイミダゾール、2-フェニルイミダゾール、2-フェニル-4-メチルイミダゾール、1-ベンジル-2-メチルイミダゾール、1-ベンジル-2-フェニルイミダゾール、2,4-ジアミノ-6-[2’-メチルイミダゾリル-(1’)]-エチル-s-トリアジン、2,4-ジアミノ-6-[2’-ウンデシルイミダゾリル-(1’)]-エチル-s-トリアジン、2,4-ジアミノ-6-[2’-エチル-4’-メチルイミダゾリル-(1’)]-エチル-s-トリアジン、2,4-ジアミノ-6-[2’-メチルイミダゾリル-(1’)]-エチル-s-トリアジンイソシアヌル酸付加物、2-フェニルイミダゾールイソシアヌル酸付加物、2-フェニル-4,5-ジヒドロキシメチルイミダゾール、2-フェニル-4-メチル-5-ヒドロキシメチルイミダゾール等が挙げられる。 Examples of the imidazole-based curing accelerator include 2-methylimidazole, 2-undecylimidazole, 2-heptadecylimidazole, 1,2-dimethylimidazole, 2-methyl-4-ethylimidazole, 2-phenylimidazole, and 2-phenyl-. 4-Methylimidazole, 1-benzyl-2-methylimidazole, 1-benzyl-2-phenylimidazole, 2,4-diamino-6- [2'-methylimidazolyl- (1')]-ethyl-s-triazine, 2,4-Diamino-6- [2'-undecylimidazolyl- (1')]-ethyl-s-triazine, 2,4-diamino-6- [2'-ethyl-4'-methylimidazolyl- (1') ')]-Ethyl-s-triazine, 2,4-diamino-6- [2'-methylimidazolyl- (1')]-ethyl-s-triazine isocyanuric acid adduct, 2-phenylimidazole isocyanuric acid adduct, Examples thereof include 2-phenyl-4,5-dihydroxymethylimidazole and 2-phenyl-4-methyl-5-hydroxymethylimidazole.
 本発明の樹脂組成物が硬化促進剤を含有する場合、前記硬化促進剤の含有量は、接着性、及び、耐熱性の観点から、エポキシ樹脂(B)100質量部に対して、好ましくは1質量部~10質量部の範囲、特に好ましくは2質量部~5質量部の範囲である。 When the resin composition of the present invention contains a curing accelerator, the content of the curing accelerator is preferably 1 with respect to 100 parts by mass of the epoxy resin (B) from the viewpoint of adhesiveness and heat resistance. It is in the range of 10 parts by mass, particularly preferably 2 parts by mass to 5 parts by mass.
 また、前記カップリング剤としては、ビニルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、p-スチリルトリメトキシシラン、3-メタクリロキシプロピルメチルジメトキシシラン、3-アクリロキシプロピルトリメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルメチルジメトシキシラン、3-ウレイドプロピルトリエトキシシラン、3-メルカプトプロピルメチルジメトキシシラン、ビス(トリエトキシシリルプロピル)テトラスルフィド、3-イソシアネートプロピルトリエトキシシラン、イミダゾールシラン等のシラン系カップリング剤;チタネート系カップリング剤;アルミネート系カップリング剤;ジルコニウム系カップリング剤等が挙げられる。これらは、1種単独で用いてよいし、2種以上を組み合わせて用いてもよい。 Examples of the coupling agent include vinyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, p-styryltrimethoxysilane, 3-methacryloxypropylmethyldimethoxysilane, 3-acryloxypropyltrimethoxysilane, and N. -2- (Aminoethyl) -3-aminopropylmethyldimethoxylan, 3-ureidopropyltriethoxysilane, 3-mercaptopropylmethyldimethoxysilane, bis (triethoxysilylpropyl) tetrasulfide, 3-isoxypropyltriethoxysilane , A silane-based coupling agent such as imidazole silane; a titanate-based coupling agent; an aluminate-based coupling agent; a zirconium-based coupling agent and the like. These may be used individually by 1 type, or may be used in combination of 2 or more type.
 前記熱老化防止剤としては、2,6-ジ-tert-ブチル-4-メチルフェノ-ル、n-オクタデシル-3-(3’,5’-ジ-tert-ブチル-4’-ヒドロキシフェニル)プロピオネ-ト、テトラキス〔メチレン-3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネ-ト〕メタン等のフェノ-ル系酸化防止剤;ジラウリル-3,3’-チオジプロピオネ-ト、ジミリスチル-3,3’-ジチオプロピオネ-ト等のイオウ系酸化防止剤;トリスノニルフェニルホスファイト、トリス(2,4-ジ-tert-ブチルフェニル)ホスファイト等のリン系酸化防止剤等が挙げられる。これらは、1種単独で用いてよいし、2種以上を組み合わせて用いてもよい。 Examples of the heat antiaging agent include 2,6-di-tert-butyl-4-methylphenol and n-octadecyl-3- (3', 5'-di-tert-butyl-4'-hydroxyphenyl) propione. -To, tetrakis [methylene-3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate] Phenol-based antioxidants such as methane; dilauryl-3,3'-thiodipropionate , Dimyristyl-3,3'-dithiopropionate and other sulfur-based antioxidants; trisnonylphenylphosphite, tris (2,4-di-tert-butylphenyl) phosphite and other phosphorus-based antioxidants, etc. Be done. These may be used individually by 1 type, or may be used in combination of 2 or more type.
 本発明の樹脂組成物は、ポリエステルポリウレタン樹脂(A)、エポキシ樹脂(B)、及び、必要に応じ、その他成分を混合することにより調製することができる。
 本発明の樹脂組成物は、溶液又は分散液の状態で好ましく用いられることから、溶剤を含有することが好ましい。
 溶剤としては、例えば、メタノール、エタノール、イソプロピルアルコール、n-プロピルアルコール、イソブチルアルコール、n-ブチルアルコール、ベンジルアルコール、エチレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテル、ジエチレングリコールモノメチルエーテル、ジアセトンアルコール等のアルコール類;アセトン、メチルエチルケトン、メチルイソブチルケトン、メチルアミルケトン、シクロヘキサノン、イソホロン等のケトン類;トルエン、キシレン、エチルベンゼン、メシチレン等の芳香族炭化水素類;酢酸メチル、酢酸エチル、エチレングリコールモノメチルエーテルアセテ-ト、3-メトキシブチルアセテート等のエステル類;ヘキサン、ヘプタン、シクロヘキサン、メチルシクロヘキサン等の脂肪族炭化水素類等が挙げられる。これらの溶剤は、1種単独で用いてよいし、2種以上を組み合わせて用いてもよい。本発明の樹脂組成物が溶剤を含む溶液又は分散液であると、被着体への塗工及び樹脂組成物層の形成を円滑に行うことができ、所望の厚さの樹脂組成物層を容易に得ることができる。
The resin composition of the present invention can be prepared by mixing a polyester polyurethane resin (A), an epoxy resin (B), and, if necessary, other components.
Since the resin composition of the present invention is preferably used in the state of a solution or a dispersion, it preferably contains a solvent.
Examples of the solvent include alcohols such as methanol, ethanol, isopropyl alcohol, n-propyl alcohol, isobutyl alcohol, n-butyl alcohol, benzyl alcohol, ethylene glycol monomethyl ether, propylene glycol monomethyl ether, diethylene glycol monomethyl ether, and diacetone alcohol. Ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, methyl amyl ketone, cyclohexanone, isophorone; aromatic hydrocarbons such as toluene, xylene, ethylbenzene, mesitylene; methyl acetate, ethyl acetate, ethylene glycol monomethyl ether acetate, Esters such as 3-methoxybutyl acetate; aliphatic hydrocarbons such as hexane, heptane, cyclohexane, methylcyclohexane and the like can be mentioned. These solvents may be used alone or in combination of two or more. When the resin composition of the present invention is a solution containing a solvent or a dispersion liquid, coating on an adherend and formation of a resin composition layer can be smoothly performed, and a resin composition layer having a desired thickness can be obtained. It can be easily obtained.
 本発明の樹脂組成物が溶剤を含む場合、塗膜形成性を含む作業性等の観点から、溶剤は、固形分濃度が、好ましくは3質量%~80質量%、より好ましくは10質量%~50質量%の範囲となるように用いられる。 When the resin composition of the present invention contains a solvent, the solvent has a solid content concentration of preferably 3% by mass to 80% by mass, more preferably 10% by mass or more, from the viewpoint of workability including coating film forming property. It is used so as to be in the range of 50% by mass.
 本発明の樹脂組成物による好適な被着体は、ポリイミド樹脂、ポリエーテルエーテルケトン樹脂、ポリフェニレンサルファイド樹脂、アラミド樹脂、液晶ポリマー等の高分子材料;銅、アルミニウム、ステンレス等の金属材料等からなる物体である。被着体の形状は、特に限定されない。そして、被着体としての、同一材料又は異なる材料からなる2つの部材同士を、本発明の樹脂組成物により接着させて、一体化した複合化物を製造することができる。また、以下のカバーレイフィルム、ボンディングシート等のように、接着性を有する樹脂組成物層を有する製品を製造することができる。 A suitable adherend according to the resin composition of the present invention comprises a polymer material such as a polyimide resin, a polyether ether ketone resin, a polyphenylene sulfide resin, an aramid resin, and a liquid crystal polymer; and a metal material such as copper, aluminum, and stainless steel. It is an object. The shape of the adherend is not particularly limited. Then, two members made of the same material or different materials as an adherend can be adhered to each other by the resin composition of the present invention to produce an integrated composite. Further, it is possible to manufacture a product having an adhesive resin composition layer, such as the following coverlay film and bonding sheet.
(樹脂組成物層付き積層体、及び、積層体)
 本発明の樹脂組成物層付き積層体は、本発明の樹脂組成物を用いた積層体であり、本発明の樹脂組成物からなる樹脂組成物層、前記樹脂組成物を一部硬化してなるBステージ状の樹脂組成物層、又は、前記樹脂組成物を硬化してなる硬化層と、前記樹脂組成物層、Bステージ状の樹脂組成物層又は硬化層の少なくとも一方の面に接する基材フィルムとを備えることが好ましい。
 本発明において、樹脂組成物層がBステージ状であるとは、樹脂組成物層の一部が硬化し始めた半硬化状態をいい、加熱等により、樹脂組成物層の硬化が更に進行する状態である。
 また、本発明の樹脂組成物からなる前記樹脂組成物層は、溶剤を含む樹脂組成物を用いる場合、本発明の樹脂組成物から溶剤の少なくとも一部を除去した層であることが好ましい。
(Laminate with resin composition layer and laminate)
The laminate with the resin composition layer of the present invention is a laminate using the resin composition of the present invention, and is formed by partially curing the resin composition layer made of the resin composition of the present invention and the resin composition. A base material in contact with at least one surface of the B-stage-shaped resin composition layer or the cured layer obtained by curing the resin composition and the resin composition layer, the B-stage-shaped resin composition layer or the cured layer. It is preferable to include a film.
In the present invention, the B-stage shape of the resin composition layer means a semi-cured state in which a part of the resin composition layer begins to cure, and a state in which the curing of the resin composition layer further progresses by heating or the like. Is.
Further, when the resin composition containing the solvent is used, the resin composition layer made of the resin composition of the present invention is preferably a layer in which at least a part of the solvent is removed from the resin composition of the present invention.
 本発明の樹脂組成物層付き積層体、及び、本発明の積層体は、基材を有することが好ましく、基材上に本発明の樹脂組成物からなる層を有することがより好ましい。
 基材としては、特に制限はなく、公知の基材を用いることができる。
 また、基材としては、フィルム状の基材(基材フィルム)であることが好ましい。
 基材フィルムとしては、樹脂フィルムであることが好ましく、ポリイミドフィルム又はアラミドフィルムであることがより好ましく、ポリイミドフィルムであることが特に好ましい。
 前記ポリイミドフィルム又はアラミドフィルムは、電気的絶縁性を有するものであれば、特に限定されず、ポリイミド樹脂又はアラミド樹脂のみからなるフィルム、その樹脂と添加剤とを含むフィルム等とすることができ、樹脂組成物層が形成される側には、表面処理が施されていてもよい。
 前記基材の厚さは、特に制限はないが、3μm~125μmであることが好ましい。
 また、前記樹脂組成物層の厚さは、5μm~50μmであることが好ましく、10μm~40μmであることがより好ましい。
The laminate with the resin composition layer of the present invention and the laminate of the present invention preferably have a base material, and more preferably have a layer made of the resin composition of the present invention on the base material.
The base material is not particularly limited, and a known base material can be used.
Further, the base material is preferably a film-like base material (base material film).
The base film is preferably a resin film, more preferably a polyimide film or an aramid film, and particularly preferably a polyimide film.
The polyimide film or the aramid film is not particularly limited as long as it has an electrical insulating property, and may be a film made of only a polyimide resin or an aramid resin, a film containing the resin and an additive, or the like. A surface treatment may be applied to the side on which the resin composition layer is formed.
The thickness of the base material is not particularly limited, but is preferably 3 μm to 125 μm.
The thickness of the resin composition layer is preferably 5 μm to 50 μm, more preferably 10 μm to 40 μm.
 本発明の樹脂組成物層付き積層体を製造する方法としては、例えば、溶剤を含む本発明の樹脂組成物を、ポリイミドフィルム等の基材フィルムの表面に塗布して樹脂組成物層を形成した後、前記樹脂組成物層から前記溶剤の少なくとも一部を除去することにより、Bステージ状の樹脂組成物層を有する積層体を製造することができる。
 前記溶剤を除去するときの乾燥温度は、40℃~250℃であることが好ましく、70℃~170℃であることがより好ましい。
 乾燥は、樹脂組成物が塗布された積層体を、熱風乾燥、遠赤外線加熱、及び高周波誘導加熱等がなされる炉の中を通過させることにより行われる。
 本発明の樹脂組成物層付き積層体は、必要に応じて、前記樹脂組成物層の表面に、保管等のため、離型性フィルムを更に有していてもよい。
 前記離型性フィルムとしては、ポリエチレンテレフタレートフィルム、ポリエチレンフィルム、ポリプロピレンフィルム、シリコーン離型処理紙、ポリオレフィン樹脂コート紙、ポリメチルペンテン(TPX)フィルム、フッ素系樹脂フィルム等の公知のものが用いられる。
As a method for producing a laminate with a resin composition layer of the present invention, for example, the resin composition of the present invention containing a solvent is applied to the surface of a base film such as a polyimide film to form a resin composition layer. Later, by removing at least a part of the solvent from the resin composition layer, a laminate having a B-stage resin composition layer can be produced.
The drying temperature at the time of removing the solvent is preferably 40 ° C to 250 ° C, more preferably 70 ° C to 170 ° C.
The drying is performed by passing the laminate coated with the resin composition through a furnace in which hot air drying, far infrared ray heating, high frequency induction heating and the like are performed.
The laminate with the resin composition layer of the present invention may further have a releasable film on the surface of the resin composition layer for storage or the like, if necessary.
As the releasable film, known films such as polyethylene terephthalate film, polyethylene film, polypropylene film, silicone releasable paper, polyolefin resin coated paper, polymethylpentene (TPX) film, and fluororesin film are used.
 Bステージ状の樹脂組成物層の厚さは、5μm~100μmであることが好ましく、5μm~70μmであることがより好ましく、5μm~50μmであることが更に好ましく、10μm~40μmであることが特に好ましい。
 前記基材フィルム及び樹脂組成物層の厚さは用途により選択されるが、電気特性を向上させるために基材フィルムはより薄くなる傾向にある。前記基材フィルムの好ましい厚さとしては、前述した前記基材の好ましい厚さと同様である。
 本発明の樹脂組成物層付き積層体においては、樹脂組成物層の厚さ(A)と、基材フィルムの厚さ(B)との比(A/B)は、1以上10以下であることが好ましく、1以上5以下であることがより好ましい。更に、樹脂組成物層の厚さが、基材フィルムの厚さより厚いことが好ましい。
The thickness of the B-stage resin composition layer is preferably 5 μm to 100 μm, more preferably 5 μm to 70 μm, further preferably 5 μm to 50 μm, and particularly preferably 10 μm to 40 μm. preferable.
The thickness of the base film and the resin composition layer is selected depending on the application, but the base film tends to be thinner in order to improve the electrical characteristics. The preferred thickness of the base film is the same as the preferred thickness of the base film described above.
In the laminate with the resin composition layer of the present invention, the ratio (A / B) of the thickness (A) of the resin composition layer to the thickness (B) of the base film is 1 or more and 10 or less. It is preferable, and it is more preferable that it is 1 or more and 5 or less. Further, it is preferable that the thickness of the resin composition layer is thicker than the thickness of the base film.
 本発明の積層体を製造する方法としては、例えば、基材フィルムの表面に、溶剤を含む本発明の樹脂組成物を塗工した後、本発明の樹脂組成物層付き積層体の場合と同様にして乾燥し、次いで、形成した樹脂組成物層の表面と被着体とを面接触させ、ラミネート、例えば、80℃~150℃で熱ラミネートを行う。次いで、この積層体(基材フィルム/樹脂組成物層/被着体)を加熱圧着し、更にアフターキュアにより樹脂組成物層を硬化し硬化層とする方法が好適に挙げられる。
 加熱圧着の条件は、圧着可能であれば、特に制限はないが、好ましくは、150℃~200℃、及び、圧力1MPa~3MPaの条件で1分間~60分間とすることができる。また、アフターキュアの条件は、特に制限はないが、好ましくは100℃~200℃、30分~4時間とすることができる。
 硬化層の厚さは、5μm~100μmであることが好ましく、5μm~70μmであることがより好ましく、5μm~50μmであることが更に好ましく、10μm~40μmであることが特に好ましい。
 被着体は、特に制限はなく、前述したものが挙げられる。中でも、金属被着体が好ましく挙げられ、銅箔、又は、めっきされた銅箔がより好ましく挙げられ、金めっきされた銅箔が特に好ましく挙げられる。
 また、被着体の形状及び大きさ等についても、特に制限はなく、公知のものを用いることができる。
The method for producing the laminate of the present invention is, for example, the same as in the case of the laminate with the resin composition layer of the present invention after the resin composition of the present invention containing a solvent is applied to the surface of the base film. Then, the surface of the formed resin composition layer and the adherend are brought into surface contact with each other, and laminating, for example, thermal laminating at 80 ° C. to 150 ° C. is performed. Next, a method of heat-pressing the laminate (base film / resin composition layer / adherend) and further curing the resin composition layer by after-cure to form a cured layer is preferable.
The conditions for heat crimping are not particularly limited as long as they can be crimped, but are preferably 150 ° C. to 200 ° C. and a pressure of 1 MPa to 3 MPa for 1 minute to 60 minutes. The conditions for aftercure are not particularly limited, but are preferably 100 ° C to 200 ° C and 30 minutes to 4 hours.
The thickness of the cured layer is preferably 5 μm to 100 μm, more preferably 5 μm to 70 μm, further preferably 5 μm to 50 μm, and particularly preferably 10 μm to 40 μm.
The adherend is not particularly limited, and examples thereof include those described above. Among them, a metal adherend is preferably mentioned, a copper foil or a plated copper foil is more preferably mentioned, and a gold-plated copper foil is particularly preferably mentioned.
Further, the shape and size of the adherend are not particularly limited, and known ones can be used.
 また、本発明の積層体の一実施態様としては、フレキシブル銅張積層板が挙げられる。
 すなわち、本発明のフレキシブル銅張積層板は、本発明の樹脂組成物からなる樹脂組成物を硬化してなる硬化層を有し、ポリイミドフィルム又はアラミドフィルムと、本発明の樹脂組成物を硬化してなる硬化層と、銅箔とが積層していることが好ましい。
 発明のフレキシブル銅張積層板において、前記硬化層及び前記銅箔は、ポリイミドフィルム又はアラミドフィルムの両面に形成されていてもよい。本発明の樹脂組成物は、銅を含む物品との接着性に優れるので、本発明のフレキシブル銅張積層板は、一体化物として安定性に優れる。
Further, as one embodiment of the laminated body of the present invention, a flexible copper-clad laminate may be mentioned.
That is, the flexible copper-clad laminate of the present invention has a cured layer obtained by curing the resin composition made of the resin composition of the present invention, and the polyimide film or the aramid film and the resin composition of the present invention are cured. It is preferable that the cured layer made of the resin and the copper foil are laminated.
In the flexible copper-clad laminate of the present invention, the cured layer and the copper foil may be formed on both sides of a polyimide film or an aramid film. Since the resin composition of the present invention has excellent adhesiveness to articles containing copper, the flexible copper-clad laminate of the present invention has excellent stability as an integrated product.
 前記ポリイミドフィルム又はアラミドフィルムの構成は、前述した本発明のカバーレイフィルムにおけるポリイミドフィルム又はアラミドフィルムと同様である。
 前記硬化層の厚さは、5μm~50μmであることが好ましく、10μm~40μmであることがより好ましい。
 また、前記銅箔は、特に限定されず、電解銅箔、圧延銅箔等を用いることができる。
 更に、前記銅箔は、金又は銀等の公知の金属又は合金によりめっきされたものであってもよい。
The structure of the polyimide film or the aramid film is the same as that of the polyimide film or the aramid film in the coverlay film of the present invention described above.
The thickness of the cured layer is preferably 5 μm to 50 μm, more preferably 10 μm to 40 μm.
Further, the copper foil is not particularly limited, and electrolytic copper foil, rolled copper foil and the like can be used.
Further, the copper foil may be plated with a known metal or alloy such as gold or silver.
 本発明の樹脂組成物層付き積層体の一実施態様としては、後述するボンディングフィルム、電磁波シールドフィルム、カバーレイフィルム等が挙げられる。 Examples of the embodiment of the laminate with the resin composition layer of the present invention include a bonding film, an electromagnetic wave shielding film, a coverlay film and the like, which will be described later.
-ボンディングフィルム-
 本発明のボンディングフィルムは、本発明の樹脂組成物を用いたものであり、本発明の樹脂組成物を一部硬化してなるBステージ状の樹脂組成物層と、前記樹脂組成物層の少なくとも一方の面に接する離型フィルムとを備えることが好ましい。
 また、本発明のボンディングフィルムは、後述する本発明の樹脂組成物層付き積層体の一実施態様でもある。
 なお、本発明のボンディングフィルムは、2枚の離型性フィルムの間に樹脂組成物層を備える態様であってもよい。
 前記離型性フィルムとしては、前述したような公知のものが用いられる。
 前記離型性フィルムの厚さは、20μm~100μmであることが好ましい。
 また、前記樹脂組成物層の厚さは、5μm~100μmであることが好ましく、10μm~60μmであることがより好ましい。
-Bonding film-
The bonding film of the present invention uses the resin composition of the present invention, and is a B-stage resin composition layer obtained by partially curing the resin composition of the present invention and at least the resin composition layer. It is preferable to provide a release film in contact with one surface.
Further, the bonding film of the present invention is also an embodiment of the laminate with the resin composition layer of the present invention, which will be described later.
The bonding film of the present invention may have an embodiment in which a resin composition layer is provided between two releasable films.
As the releasable film, a known one as described above is used.
The thickness of the releasable film is preferably 20 μm to 100 μm.
The thickness of the resin composition layer is preferably 5 μm to 100 μm, more preferably 10 μm to 60 μm.
 本発明のボンディングシートを製造する方法としては、例えば、離型性フィルムの表面に、溶剤を含む本発明の樹脂組成物を塗工した後、前述した本発明の樹脂組成物層付き積層体の場合と同様にして乾燥する方法が好ましく挙げられる。 As a method for producing the bonding sheet of the present invention, for example, the resin composition of the present invention containing a solvent is applied to the surface of a releasable film, and then the above-mentioned laminate with the resin composition layer of the present invention is used. A method of drying in the same manner as in the case is preferably mentioned.
-電磁波シールドフィルム-
 本発明の電磁波シールドフィルムは、本発明の樹脂組成物を用いたものであり、本発明の樹脂組成物からなる樹脂組成物層、前記樹脂組成物を一部硬化してなるBステージ状の樹脂組成物層、又は、前記樹脂組成物を硬化してなる硬化層を有することが好ましい。
 また、本発明の電磁波シールドフィルムは、前記樹脂組成物層と、保護層とを有することが好ましい。
 保護層としては、絶縁性樹脂組成物からなる層であれば特に限定されず、公知の任意のものを使用することができる。また、保護層は、本発明の樹脂組成物に使用される樹脂成分を使用してもよい。更に、保護層は、組成や硬度が異なる2以上の層から形成されていてもよい。
 また、保護層には、必要に応じて硬化促進剤、粘着性付与剤、酸化防止剤、顔料、染料、可塑剤、紫外線吸収剤、消泡剤、レベリング剤、充填剤、難燃剤、粘度調節剤、ブロッキング防止剤等が含まれていてもよい。
-Electromagnetic wave shield film-
The electromagnetic wave shielding film of the present invention uses the resin composition of the present invention, and is a resin composition layer made of the resin composition of the present invention and a B-stage resin obtained by partially curing the resin composition. It is preferable to have a composition layer or a cured layer obtained by curing the resin composition.
Further, the electromagnetic wave shielding film of the present invention preferably has the resin composition layer and the protective layer.
The protective layer is not particularly limited as long as it is a layer made of an insulating resin composition, and any known layer can be used. Further, the protective layer may use the resin component used in the resin composition of the present invention. Further, the protective layer may be formed of two or more layers having different compositions and hardness.
In addition, the protective layer includes a curing accelerator, a tackifier, an antioxidant, a pigment, a dye, a plasticizer, an ultraviolet absorber, an antifoaming agent, a leveling agent, a filler, a flame retardant, and a viscosity control, if necessary. Agents, anti-blocking agents and the like may be included.
 本発明の電磁波シールドフィルムにおける樹脂組成物層の厚さは、特に制限はないが、導電性、及び、グランド回路との接続性の観点から、3μm~30μmであることが好ましい。 The thickness of the resin composition layer in the electromagnetic wave shielding film of the present invention is not particularly limited, but is preferably 3 μm to 30 μm from the viewpoint of conductivity and connectivity with the ground circuit.
 次に本発明の電磁波シールドフィルムの製造方法の具体的態様について説明する。
 例えば、剥離性フィルムの一方の面に保護層用樹脂組成物をコーティング及び乾燥し、保護層を形成し、前記保護層上に、本発明の樹脂組成物をコーティング及び乾燥し、樹脂組成物層を形成する方法等を挙げることができる。
 例示したような製造方法により、樹脂組成物層/保護層/剥離性フィルムという積層状態の電磁波シールドフィルムを得ることができる。
Next, a specific embodiment of the method for manufacturing the electromagnetic wave shielding film of the present invention will be described.
For example, the resin composition for a protective layer is coated and dried on one surface of a peelable film to form a protective layer, and the resin composition of the present invention is coated and dried on the protective layer to form a resin composition layer. The method of forming the above can be mentioned.
By the manufacturing method as exemplified, it is possible to obtain an electromagnetic wave shielding film in a laminated state of a resin composition layer / protective layer / peelable film.
 樹脂組成物層及び保護層を設ける方法としては、従来公知のコーティング方法、例えば、グラビアコート方式、キスコート方式、ダイコート方式、リップコート方式、コンマコート方式、ブレードコート方式、ロールコート方式、ナイフコート方式、スプレーコート方式、バーコート方式、スピンコート方式、ディップコート方式等により行うことができる。 As a method for providing the resin composition layer and the protective layer, conventionally known coating methods such as gravure coating method, kiss coating method, die coating method, lip coating method, comma coating method, blade coating method, roll coating method and knife coating method are used. , Spray coat method, bar coat method, spin coat method, dip coat method and the like.
 本発明の電磁波シールドフィルムは、例えば、熱プレスによってプリント配線板上に接着させることができる。前記樹脂組成物層は、加熱により軟かくなり、加圧により、プリント配線板上に設けられたグランド部に流れ込む。これによって、グランド回路と導電性接着剤とが電気的に接続され、シールド効果を高めることができる。 The electromagnetic wave shielding film of the present invention can be adhered onto a printed wiring board by, for example, a hot press. The resin composition layer becomes soft by heating and flows into a gland portion provided on the printed wiring board by pressurization. As a result, the ground circuit and the conductive adhesive are electrically connected, and the shielding effect can be enhanced.
 以下、実施例に基づいて本発明を具体的に説明する。なお、本発明は、これらの実施例により限定されるものではない。また、以下において「部」及び「%」は、特に断らない限り、「質量部」及び「質量%」をそれぞれ意味する。 Hereinafter, the present invention will be specifically described based on examples. The present invention is not limited to these examples. Further, in the following, "parts" and "%" mean "parts by mass" and "% by mass", respectively, unless otherwise specified.
<<使用した原料>>
1.ポリエステルポリウレタン樹脂(A)
 ポリエステルポリウレタンの製造に使用するポリエステルとして、市販品及び合成品を用いた。
<< Raw materials used >>
1. 1. Polyester polyurethane resin (A)
As the polyester used for producing polyester polyurethane, commercially available products and synthetic products were used.
<市販品>
 市販品は東亞合成(株)製のアロンメルトPES-360HVXM30及びアロンメルトPES-310S30を用いた。PES-360HVXM30の数平均分子量は20,000、ガラス転移点は65℃であった。PES-310S30の数平均分子量は20,000、ガラス転移点は8℃であった。
<Commercial product>
As commercial products, Aronmelt PES-360HVXM30 and Aronmelt PES-310S30 manufactured by Toagosei Co., Ltd. were used. The number average molecular weight of PES-360HVXM30 was 20,000, and the glass transition point was 65 ° C. The number average molecular weight of PES-310S30 was 20,000, and the glass transition point was 8 ° C.
<ポリエステル樹脂(PES-1)の合成>
 撹拌装置、窒素導入管、留出管、温度計を備えたフラスコに、テレフタル酸ジメチル201質量部、エチレングリコール86質量部、ネオペンチルグリコール140質量部、トリメチロールプロパン0.9質量部及び触媒として酢酸亜鉛を0.22質量部仕込み、窒素を導入しながら昇温し、150℃~180℃でメタノールを留出させた後、イソフタル酸183質量部、トリメチロールプロパン0.6質量部及び三酸化アンチモン0.12質量部加えて、180℃~210℃で水を留出させた後、引き続き、徐々に減圧にしながら、230℃で200Paの減圧下で6時間反応を続けた。得られたポリエステル樹脂PES-1は、数平均分子量7,000,ガラス転移点60℃であった。核磁気共鳴(NMR)分析によるモノマー組成は、モル比でテレフタル酸/イソフタル酸/エチレングリコール/ネオペンチルグリコール=48/52/43/56であった。合成したポリエステル樹脂を180質量部とり、トルエン378質量部、メチルイソブチルケトン42質量部加えてポリエステル溶液とした。
<Synthesis of polyester resin (PES-1)>
In a flask equipped with a stirrer, a nitrogen introduction tube, a distillate tube, and a thermometer, 201 parts by mass of dimethyl terephthalate, 86 parts by mass of ethylene glycol, 140 parts by mass of neopentyl glycol, 0.9 parts by mass of trimethylolpropane, and as a catalyst. 0.22 parts by mass of zinc acetate was charged, the temperature was raised while introducing nitrogen, and after distilling methanol at 150 ° C to 180 ° C, 183 parts by mass of isophthalic acid, 0.6 parts by mass of trimethylolpropane and trioxide were added. After 0.12 parts by mass of Antimon was added and water was distilled off at 180 ° C. to 210 ° C., the reaction was continued for 6 hours at 230 ° C. under a reduced pressure of 200 Pa while gradually reducing the pressure. The obtained polyester resin PES-1 had a number average molecular weight of 7,000 and a glass transition point of 60 ° C. The monomer composition by nuclear magnetic resonance (NMR) analysis was terephthalic acid / isophthalic acid / ethylene glycol / neopentyl glycol = 48/52/43/56 in molar ratio. 180 parts by mass of the synthesized polyester resin was taken, and 378 parts by mass of toluene and 42 parts by mass of methyl isobutyl ketone were added to prepare a polyester solution.
<ポリエステルポリウレタン樹脂a1の合成>
(1)ポリエステルポリウレタン樹脂a1の合成
 撹拌機、還流脱水装置及び蒸留管を備えたフラスコに、PES-360HVXM30 600質量部、トルエン100質量部、2-ブチル-2-エチル-1,3-プロパンジオール30質量部を仕込んだ。温度を120℃に昇温して水を含む溶媒を100質量部留出させた後に、温度を105℃に下げ、2,2-ビス(ヒドロキシメチル)プロピオン酸0.4質量部仕込み溶解させた。その後、三井化学(株)製コスモネートNBDI(NBDI)を42質量部添加し、30分後にジラウリン酸ジブチルすずを0.2質量部加えた。所定の分子量に到達するまで反応を継続した後、トルエン/2-プロパノールで希釈して固形分濃度を30%に調整したポリエステルウレタン樹脂a1の溶液を得た。その時の数平均分子量は35,000であり、酸価は2mgKOH/gであった。
<Synthesis of polyester polyurethane resin a1>
(1) Synthesis of polyester polyurethane resin a1 In a flask equipped with a stirrer, a reflux dehydrator and a distillation tube, 600 parts by mass of PES-360HVXM30, 100 parts by mass of toluene, 2-butyl-2-ethyl-1,3-propanediol 30 parts by mass was charged. After raising the temperature to 120 ° C. and distilling 100 parts by mass of the solvent containing water, the temperature was lowered to 105 ° C., and 0.4 parts by mass of 2,2-bis (hydroxymethyl) propionic acid was charged and dissolved. .. Then, 42 parts by mass of Cosmonate NBDI (NBDI) manufactured by Mitsui Chemicals, Inc. was added, and after 30 minutes, 0.2 parts by mass of dibutyltin dilaurate was added. After continuing the reaction until the predetermined molecular weight was reached, a solution of polyester urethane resin a1 was obtained by diluting with toluene / 2-propanol and adjusting the solid content concentration to 30%. The number average molecular weight at that time was 35,000, and the acid value was 2 mgKOH / g.
<ポリエステルポリウレタン樹脂a2~a12の合成>
 ポリエステルポリウレタン樹脂a1の合成法に関して、表1に示すポリエステル、ジオール及びジイソシアネートを表の質量部になるように変更したこと以外は、ポリエステルポリウレタン樹脂a1の合成法と同様に合成を行った。
<Synthesis of polyester polyurethane resins a2 to a12>
Regarding the synthetic method of the polyester polyurethane resin a1, the synthesis was carried out in the same manner as the synthetic method of the polyester polyurethane resin a1 except that the polyester, diol and diisocyanate shown in Table 1 were changed to be the parts by mass in the table.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 上述した以外の表1に記載の略称を以下に説明する。
 タケネート600:1,3-ビス(イソシアナトメチル)シクロヘキサン、三井化学(株)製
 HDMI:メチレンビス(4-シクロヘキシルジイソシアネート)、万華化学ジャパン(株)製、商品名WANNATE(登録商標) HMDI
 HDI:ヘキサメチレンジイソシアネート、東ソー(株)製、商品名HDI
 ダイマージオール:ダイマー酸を還元して得られる炭素数36のジオール、クローダジャパン(株)製、商品名PRIPOL2033
The abbreviations shown in Table 1 other than those described above will be described below.
Takenate 600: 1,3-bis (isocyanatomethyl) cyclohexane, manufactured by Mitsui Chemicals, Inc. HDMI: methylenebis (4-cyclohexyldiisocyanate), manufactured by Manka Chemicals Japan Co., Ltd., trade name WANNAME (registered trademark) HMDI
HDI: Hexamethylene diisocyanate, manufactured by Tosoh Corporation, trade name HDI
Dimer diol: A diol having 36 carbon atoms obtained by reducing dimer acid, manufactured by Croda Japan Co., Ltd., trade name PRIPOL 2033.
2.エポキシ樹脂(B)
 下記の市販品を用いた。
(1)エポキシ樹脂b1
 DIC(株)製ビスフェノールAノボラック型エポキシ樹脂「EPICLON N-865」(商品名)
(2)エポキシ樹脂b2
 三菱ケミカル(株)製ビスフェノールA型エポキシ樹脂「jER 1055」(商品名)
2. 2. Epoxy resin (B)
The following commercially available products were used.
(1) Epoxy resin b1
Bisphenol A novolak type epoxy resin "EPICLON N-865" manufactured by DIC Corporation (trade name)
(2) Epoxy resin b2
Bisphenol A type epoxy resin "jER 1055" manufactured by Mitsubishi Chemical Corporation (trade name)
3.カルボキシ基又はカルボン酸無水物構造を有する樹脂(C)
(1)ポリアミド樹脂c1の合成
 ポリアミド樹脂c1を以下のとおり合成した。
 撹拌機、還流脱水装置及び蒸留管を備えたフラスコに、アゼライン酸65質量部、ドデカン二酸190質量部、ピペラジン100質量部及び蒸留水120質量部を仕込んだ。温度を120℃に昇温して水を留出させた後に、20℃/時間の割合で240℃にまで昇温し、3時間反応を継続してポリアミド樹脂c1を得た。この樹脂のアミン価は4.5mgKOH/g、酸価は10.5mgKOH/gであった。
3. 3. Resin (C) having a carboxy group or a carboxylic acid anhydride structure
(1) Synthesis of Polyamide Resin c1 Polyamide resin c1 was synthesized as follows.
A flask equipped with a stirrer, a reflux dehydrator and a distillation tube was charged with 65 parts by mass of azelaic acid, 190 parts by mass of dodecanedioic acid, 100 parts by mass of piperazine and 120 parts by mass of distilled water. After raising the temperature to 120 ° C. and distilling water, the temperature was raised to 240 ° C. at a rate of 20 ° C./hour, and the reaction was continued for 3 hours to obtain the polyamide resin c1. The amine value of this resin was 4.5 mgKOH / g, and the acid value was 10.5 mgKOH / g.
(2)ポリアミド樹脂c2の合成
 ポリアミド樹脂c2を以下のとおり合成した。
 撹拌機、還流脱水装置及び蒸留管を備えたフラスコに、ダイマー酸485質量部、ヘキサメチレンジアミン100質量部及び蒸留水120質量部を仕込んだ。温度を120℃に昇温して水を留出させた後に、20℃/時間の割合で240℃にまで昇温し、3時間反応を継続してポリアミド樹脂c2を得た。この樹脂のアミン価は4.5mgKOH/g、酸価は10.5mgKOH/gであった。
(2) Synthesis of Polyamide Resin c2 Polyamide resin c2 was synthesized as follows.
A flask equipped with a stirrer, a reflux dehydrator and a distillation tube was charged with 485 parts by mass of dimer acid, 100 parts by mass of hexamethylenediamine and 120 parts by mass of distilled water. After raising the temperature to 120 ° C. and distilling water, the temperature was raised to 240 ° C. at a rate of 20 ° C./hour, and the reaction was continued for 3 hours to obtain the polyamide resin c2. The amine value of this resin was 4.5 mgKOH / g, and the acid value was 10.5 mgKOH / g.
(3)ポリオレフィン樹脂c3の合成
 メタロセン触媒を重合触媒として製造した、プロピレン単位80質量%及びブテン単位20質量%からなるプロピレン-ブテンランダム共重合体100質量部、無水マレイン酸1質量部、メタクリル酸ラウリル0.3質量部及びジ-t-ブチルパーオキサイド0.4質量部を、シリンダー部の最高温度を170℃に設定した二軸押出機を用いて混練反応した。その後、押出機内にて減圧脱気を行い、残留する未反応物を除去して、ポリオレフィン樹脂c1を製造した。ポリオレフィン樹脂c1は、重量平均分子量が8万、酸価が10mgKOH/gであった。また、ポリオレフィン樹脂c1におけるグラフト部分の含有割合は、1.5質量%であった。
(3) Synthesis of Polyolefin Resin c3 100 parts by mass of a propylene-butene random copolymer composed of 80% by mass of a propylene unit and 20% by mass of a butene unit, 1 part by mass of maleic anhydride, and methacrylic acid produced by using a metallocene catalyst as a polymerization catalyst. 0.3 parts by mass of lauryl and 0.4 parts by mass of dit-butyl peroxide were kneaded and reacted using a twin-screw extruder in which the maximum temperature of the cylinder part was set to 170 ° C. Then, degassing under reduced pressure was performed in the extruder to remove the residual unreacted material to produce the polyolefin resin c1. The polyolefin resin c1 had a weight average molecular weight of 80,000 and an acid value of 10 mgKOH / g. The content ratio of the graft portion in the polyolefin resin c1 was 1.5% by mass.
(4)ポリオレフィン樹脂c4(カルボキシ基及びカルボン酸無水物構造を有しない樹脂)の合成
 メタロセン触媒を重合触媒として、プロピレン単位80質量%及びブテン単位20質量%を反応させ、ポリオレフィン樹脂c4を得た。ポリオレフィン樹脂c4は、重量平均分子量が10万であった。
(4) Synthesis of Polyolefin Resin c4 (Resin having no carboxy group and carboxylic acid anhydride structure) Using a metallocene catalyst as a polymerization catalyst, 80% by mass of a propylene unit and 20% by mass of a butene unit were reacted to obtain a polyolefin resin c4. .. The polyolefin resin c4 had a weight average molecular weight of 100,000.
4.イミダゾールシラン化合物(D)
 1-(2-ヒドロキシ-3-トリメトキシシリルプロポキシプロピル)イミダゾール
4. Imidazole silane compound (D)
1- (2-Hydroxy-3-trimethoxysilylpropoxypropyl) imidazole
5.無機フィラー(E)
(1)無機フィラーe1
 日本タルク(株)製タルク「SG-95」(商品名;平均粒径2.5μm)
(2)無機フィラーe2
 アエロジル「R972」(商品名;平均粒径16nm、シリカ粒子)、東新化成(株)より入手
5. Inorganic filler (E)
(1) Inorganic filler e1
Talc "SG-95" manufactured by Nippon Talc Co., Ltd. (trade name; average particle size 2.5 μm)
(2) Inorganic filler e2
Aerosil "R972" (trade name; average particle size 16 nm, silica particles), obtained from Toshin Kasei Co., Ltd.
6.有機フィラー(F)
(1)有機フィラーf1
 根上工業(株)製ウレタンビーズ「TK-800T」(商品名;平均粒径8μm)
(2)有機フィラーf2
 根上工業(株)製アクリルビーズ「J-4P」(商品名;平均粒径2.2μm)
6. Organic filler (F)
(1) Organic filler f1
Urethane beads "TK-800T" manufactured by Negami Kogyo Co., Ltd. (trade name; average particle size 8 μm)
(2) Organic filler f2
Acrylic beads "J-4P" manufactured by Negami Kogyo Co., Ltd. (trade name; average particle size 2.2 μm)
7.金属フィラー(G)
 福田金属箔粉工業(株)製銅粉「FCC-115A」(商品名、粒度分布において、45μm以下の粒子が90質量%を超える量、45μm~63μmの粒子が10質量%未満の量、63μm~75μmの粒子が3質量%未満の量である。)
7. Metal filler (G)
Copper powder "FCC-115A" manufactured by Fukuda Metal Foil Powder Industry Co., Ltd. (trade name, particle size distribution, the amount of particles of 45 μm or less exceeds 90% by mass, the amount of particles of 45 μm to 63 μm is less than 10% by mass, 63 μm The amount of particles of ~ 75 μm is less than 3% by mass.)
8.難燃剤
 クラリアント社製ホスフィン酸金属塩「Exolit OP935」(商品名)
8. Flame Retardant Clariant phosphinic acid metal salt "Exolit OP935" (trade name)
9.硬化促進剤
 四国化成工業(株)製イミダゾール系硬化促進剤「キュアゾールC11-Z」(商品名)
9. Curing Accelerator Shikoku Chemicals Corporation imidazole-based curing accelerator "Curesol C11-Z" (trade name)
10.溶剤
 トルエン、メチルイソブチルケトン及び2-プロパノールからなる混合溶媒(質量比=100:20:20)
10. Solvent A mixed solvent consisting of toluene, methyl isobutyl ketone and 2-propanol (mass ratio = 100: 20: 20)
(実施例1~29、及び、比較例1)
 撹拌装置付きフラスコに、上記の原料を表2に示す割合で添加し、60℃加温下で6時間撹拌して、溶剤に成分(A)、成分(B)、成分(C)、イミダゾールシラン化合物、硬化促進剤を溶解させ、無機フィラー、有機フィラー、金属フィラー、難燃剤を分散させることにより、液状接着剤組成物を製造した。その後、これらすべての液状接着剤組成物を用いて、カバーレイフィルム、ボンディングシート、並びに、接着試験片A、及びBを作製し、下記の(i)~(ix)の評価を行った。評価結果を表2に示す。
(Examples 1 to 29 and Comparative Example 1)
The above raw materials are added to a flask equipped with a stirrer at the ratio shown in Table 2, and the mixture is stirred under heating at 60 ° C. for 6 hours to add the component (A), the component (B), the component (C), and the imidazole silane to the solvent. A liquid adhesive composition was produced by dissolving a compound and a curing accelerator and dispersing an inorganic filler, an organic filler, a metal filler, and a flame retardant. Then, a coverlay film, a bonding sheet, and adhesive test pieces A and B were prepared using all of these liquid adhesive compositions, and the following evaluations (i) to (ix) were performed. The evaluation results are shown in Table 2.
(1)カバーレイフィルムの作製
 厚さ25μmポリイミドフィルムの表面に、液状接着剤組成物を、乾燥後の厚さが15μmとなるようロ-ル塗布し、120℃で2分間乾燥させて、接着剤層を有するカバーレイフィルムを得た。
(1) Preparation of Coverlay Film A liquid adhesive composition is rolled onto the surface of a 25 μm-thick polyimide film so that the thickness after drying is 15 μm, dried at 120 ° C. for 2 minutes, and adhered. A coverlay film having an agent layer was obtained.
(2)接着試験片Aの作製
 福田金属箔粉工業(株)製厚さ35μmの圧延処理銅箔を用意した。そして、鏡面を上記カバーレイフィルムの接着剤層面に接触するように重ね合わせ、150℃、0.3MPa、1m/分の条件でラミネ-トを行った。得られた積層体(ポリイミドフィルム/接着剤層/銅箔)を、150℃、3MPaの条件で5分間加熱して圧着した後、更に、オ-ブンにて160℃で2時間のアフターキュアを行うことにより、接着試験片Aを得た。
(2) Preparation of Adhesive Test Piece A A rolled copper foil with a thickness of 35 μm manufactured by Fukuda Metal Foil Powder Industry Co., Ltd. was prepared. Then, the mirror surface was superposed so as to be in contact with the adhesive layer surface of the coverlay film, and laminating was performed under the conditions of 150 ° C., 0.3 MPa, and 1 m / min. The obtained laminate (polyimide film / adhesive layer / copper foil) is heated at 150 ° C. and 3 MPa for 5 minutes and pressure-bonded, and then after-cured at 160 ° C. for 2 hours in an oven. By doing so, an adhesion test piece A was obtained.
(3)ボンディングシートの作製
 厚さ35μm離型性PETフィルムを用意した。そして、その表面に、液状接着剤組成物と福田金属箔粉工業(株)製銅粉「FCC-115A」を固形分樹脂全体の15質量%になるように配合した混合物を、乾燥後の厚さが25μmとなるようロ-ル塗布し、140℃で2分間乾燥させて、接着剤層を有するボンディングシートを得た。
(3) Preparation of Bonding Sheet A releasable PET film with a thickness of 35 μm was prepared. Then, a mixture in which the liquid adhesive composition and the copper powder "FCC-115A" manufactured by Fukuda Metal Foil Powder Industry Co., Ltd. are blended on the surface so as to be 15% by mass of the total solid content resin is added to the thickness after drying. The roll was applied so as to have a diameter of 25 μm, and the mixture was dried at 140 ° C. for 2 minutes to obtain a bonding sheet having an adhesive layer.
(4)接着試験片Bの作製
 厚さ300μmの、ニッケルめっきされたSUS304板、及び、厚さ25μmのポリイミドフィルムの表面に銅の回路パターンが形成されており、回路パターン上に、直径1mmのスルーホールを有する厚さ37.5μmのカバーレイフィルムが積層された、フレキシブルプリント配線板を用意した。初めに、SUS304板のニッケルめっき処理面を上記ボンディングシートの接着剤層面に接触するように重ね合わせ、150℃、0.3MPa、1m/分の条件でラミネ-トを行い、積層体(SUS板/接着剤層/離型性PETフィルム)を得た。その後、離型性PETフィルムを剥がして、露出した接着剤層の表面に、フレキシブルプリント配線板(厚みさ25μmのポリイミド上に銅箔回路が形成されており、その銅箔回路上に直径1mmのスルーホールを有する厚み37.5μmのカバーレイフィルムが積層された配線板)に150℃、3MPaの条件で5分間加熱圧着した後、更にオ-ブンにて160℃で2時間のアフタ-キュアを行うことにより、接着試験片B(SUS板/接着剤層/フレキシブルプリント配線板)を作製した。
(4) Preparation of Adhesion Test Piece B A copper circuit pattern is formed on the surfaces of a nickel-plated SUS304 plate with a thickness of 300 μm and a polyimide film with a thickness of 25 μm, and the circuit pattern has a diameter of 1 mm. A flexible printed wiring board on which a coverlay film having a thickness of 37.5 μm having a through hole was laminated was prepared. First, the nickel-plated surface of the SUS304 plate is laminated so as to be in contact with the adhesive layer surface of the bonding sheet, and laminating is performed under the conditions of 150 ° C., 0.3 MPa, and 1 m / min to form a laminate (SUS plate). / Adhesive layer / Releasable PET film) was obtained. After that, the releasable PET film was peeled off, and a flexible printed wiring board (a copper foil circuit was formed on a polyimide having a thickness of 25 μm on the surface of the exposed adhesive layer, and a diameter of 1 mm was formed on the copper foil circuit. A wiring board on which a coverlay film having a thickness of 37.5 μm having a through hole is laminated) is heat-pressed for 5 minutes at 150 ° C. and 3 MPa, and then after-cured at 160 ° C. for 2 hours in an oven. By doing so, an adhesion test piece B (SUS plate / adhesive layer / flexible printed wiring board) was produced.
(i)はく離接着強さ
 接着性を評価するために、JIS C 6481「プリント配線板用銅張積層板試験方法」に準拠し、温度23℃及び引張速度50mm/分の条件で、各接着試験片Aの銅箔をポリイミドフィルムから剥がすときの180°はく離接着強さ(N/mm)を測定した。測定時の接着試験片の幅は10mmとした。その結果、剥離強度が0.5N/mm以上のものを「A」、0.35N/mm以上0.5N/mm未満のものを「B」、0.35N/mm未満のものを「C」として表示した。
(I) Peeling Adhesive Strength In order to evaluate the adhesiveness, each adhesive test is performed under the conditions of JIS C 6481 "Copper-clad laminate test method for printed wiring board", temperature 23 ° C. and tensile speed 50 mm / min. The 180 ° peeling adhesive strength (N / mm) when the copper foil of the piece A was peeled off from the polyimide film was measured. The width of the adhesion test piece at the time of measurement was 10 mm. As a result, the peel strength of 0.5 N / mm or more is "A", the peel strength of 0.35 N / mm or more and less than 0.5 N / mm is "B", and the peel strength of less than 0.35 N / mm is "C". Displayed as.
(ii)長期湿熱試験後のはく離接着強さ
 85℃85%RH1,000時間保管した後の接着性を評価するために、JIS C 6481「プリント配線板用銅張積層板試験方法」に準拠し、温度23℃及び引張速度50mm/分の条件で、各接着試験片Aの銅箔をポリイミドフィルムから剥がすときの180°はく離接着強さ(N/mm)を測定した。測定時の接着試験片の幅は10mmとした。その結果、初期と比べて剥離強度減少率が15%未満のものを「A」、15%以上30%未満のものを「B」、30%以上50%未満のものを「C」、50%以上のものを「D」として表示した。
(Ii) Peeling adhesion strength after long-term moist heat test In order to evaluate the adhesiveness after storage at 85 ° C for 85% RH 1,000 hours, it complies with JIS C 6481 "Copper-clad laminate test method for printed wiring boards". The 180 ° peeling adhesion strength (N / mm) when the copper foil of each adhesion test piece A was peeled off from the polyimide film was measured under the conditions of a temperature of 23 ° C. and a tensile speed of 50 mm / min. The width of the adhesion test piece at the time of measurement was 10 mm. As a result, the peel strength reduction rate of less than 15% compared to the initial stage is "A", the peel strength reduction rate is 15% or more and less than 30% is "B", and the peel strength reduction rate is 30% or more and less than 50% is "C", 50%. The above is displayed as "D".
(iii)はんだ耐熱性(はんだ時の外観、はんだ処理後のはく離接着強さ)
 JIS C 6481(1996)に準拠し、下記の条件で試験を行った。
 ポリイミドフィルムの面を上にして、前記接着試験片Aを260℃のはんだ浴に60秒間浮かべ、接着剤層の膨れ、剥がれ等の外観異常の有無を目視により評価した。その結果、マイクロボイドや膨れ及び剥がれ等の外観異常が確認されなかったものを「A」、マイクロボイドがわずかに見られたものを「B」、膨れ及び剥がれ等の外観異常が確認されたものを「C」として表示した。
 更に、前記はんだ浴から取出した試験片をJIS C 6481に準拠し、23℃において、ポリイミドフィルムを金めっきされた銅箔から剥がすときの180°はく離接着強さ(N/cm)を測定した。測定時の接着試験片の幅は10mmとし、引張速度は50mm/分とした。測定時の接着試験片の幅は10mmとした。その結果、初期と比べて剥離強度減少率が15%未満のものを「A」、15%以上30%未満のものを「B」、30%以上50%未満のものを「C」、50%以上のものを「D」として表示した。
(Iii) Solder heat resistance (appearance at the time of soldering, peeling adhesive strength after soldering)
The test was conducted under the following conditions in accordance with JIS C 6481 (1996).
The adhesion test piece A was floated in a solder bath at 260 ° C. for 60 seconds with the side of the polyimide film facing up, and the presence or absence of appearance abnormalities such as swelling and peeling of the adhesive layer was visually evaluated. As a result, "A" was found to have no abnormal appearance such as microvoids, swelling and peeling, "B" was found to have slight microvoids, and abnormal appearance such as swelling and peeling was confirmed. Was displayed as "C".
Further, the test piece taken out from the solder bath was measured in accordance with JIS C 6481, and the 180 ° peeling adhesive strength (N / cm) when the polyimide film was peeled off from the gold-plated copper foil at 23 ° C. The width of the adhesion test piece at the time of measurement was 10 mm, and the tensile speed was 50 mm / min. The width of the adhesion test piece at the time of measurement was 10 mm. As a result, the peel strength reduction rate of less than 15% compared to the initial stage is "A", the peel strength reduction rate is 15% or more and less than 30% is "B", and the peel strength reduction rate is 30% or more and less than 50% is "C", 50%. The above is displayed as "D".
(iv)難燃性
 前記カバーレイフィルムを160℃で2時間加熱硬化させ、Undewriters Laboratories社が定めるUL-94に準拠して難燃性の評価を行った。試験に合格(VTM-0クラス)のものを「A」、不合格のものを「F」として表示した。
(Iv) Flame Retardant The coverlay film was heat-cured at 160 ° C. for 2 hours, and the flame retardancy was evaluated according to UL-94 defined by Undewriters Laboratories. Those that passed the test (VTM-0 class) were displayed as "A", and those that failed were displayed as "F".
(v)導電性(初期、接続抵抗)
 上記接着試験片B(SUS板/接着剤層/フレキシブルプリント配線板)のSUS板とフレキシブルプリント配線板の銅箔回路との間の接続抵抗値を抵抗値測定器で測定した。その結果、接続抵抗値が0.3Ω未満のものを「A」、接続抵抗値が0.3Ω以上0.5Ω未満のものを「B」、0.5Ω以上1Ω以下のものを「C」、1Ω以上3Ω以下のものを「D」、3Ωを超えたものを「E」として表示した。
(V) Conductivity (initial, connection resistance)
The connection resistance value between the SUS plate of the adhesion test piece B (SUS plate / adhesive layer / flexible printed wiring board) and the copper foil circuit of the flexible printed wiring board was measured with a resistance value measuring device. As a result, the connection resistance value of less than 0.3Ω is "A", the connection resistance value of 0.3Ω or more and less than 0.5Ω is "B", and the connection resistance value of 0.5Ω or more and 1Ω or less is "C". Those with 1Ω or more and 3Ω or less are displayed as “D”, and those with more than 3Ω are displayed as “E”.
(vi)はんだ処理後の導電性(はんだ後導電性、接続抵抗)
 上記接着試験片Bを260℃のはんだ浴に60秒間浮かべた。その後、はんだ浴から取出した接着試験片BのSUS板とフレキシブルプリント配線板の銅箔回路との間の接続抵抗値を抵抗値測定器で測定した。その結果、接続抵抗値が0.3Ω未満のものを「A」、接続抵抗値が0.3Ω以上0.5Ω未満のものを「B」、0.5Ω以上1Ω以下のものを「C」、1Ω以上3Ω以下のものを「D」、3Ωを超えたものを「E」として表示した。
(Vi) Conductivity after soldering (Conductivity after soldering, connection resistance)
The adhesion test piece B was floated in a solder bath at 260 ° C. for 60 seconds. Then, the connection resistance value between the SUS plate of the adhesion test piece B taken out from the solder bath and the copper foil circuit of the flexible printed wiring plate was measured with a resistance value measuring device. As a result, the connection resistance value of less than 0.3Ω is "A", the connection resistance value of 0.3Ω or more and less than 0.5Ω is "B", and the connection resistance value of 0.5Ω or more and 1Ω or less is "C". Those with 1Ω or more and 3Ω or less are displayed as “D”, and those with more than 3Ω are displayed as “E”.
(vii)長期信頼性試験後の導電性(85℃85%RH1,000時間保管後導電性、接続抵抗)
 上記接着試験片Bを85℃、85%RHの恒温恒湿槽に1,000時間放置した。その後、接着試験片BのSUS板とフレキシブルプリント配線板の銅箔回路との間の接続抵抗値を抵抗値測定器で測定した。その結果、接続抵抗値が0.3Ω未満のものを「A」、接続抵抗値が0.3Ω以上0.5Ω未満のものを「B」、0.5Ω以上1Ω以下のものを「C」、1Ω以上3Ω以下のものを「D」、3Ωを超えたものを「E」として表示した。
(Vii) Conductivity after long-term reliability test (conductivity after storage at 85 ° C for 85% RH for 1,000 hours, connection resistance)
The adhesion test piece B was left in a constant temperature and humidity chamber at 85 ° C. and 85% RH for 1,000 hours. Then, the connection resistance value between the SUS plate of the adhesion test piece B and the copper foil circuit of the flexible printed wiring plate was measured with a resistance value measuring device. As a result, the connection resistance value of less than 0.3Ω is "A", the connection resistance value of 0.3Ω or more and less than 0.5Ω is "B", and the connection resistance value of 0.5Ω or more and 1Ω or less is "C". Those with 1Ω or more and 3Ω or less are displayed as “D”, and those with more than 3Ω are displayed as “E”.
(viii)冷熱サイクル試験後の導電性(接続抵抗)
 上記接着試験片Bを高温(125℃)、低温(-40℃)の冷熱衝撃試験機に入れ、-40℃で30分保持し、その後、125℃で30分保持する冷熱サイクルを1サイクルとして1,000サイクル実施した後、接着試験片BのSUS板とフレキシブルプリント配線板の銅箔回路との間の接続抵抗値を抵抗値測定器で測定した。その結果、接続抵抗値が0.3Ω未満のものを「A」、接続抵抗値が0.3Ω以上0.5Ω未満のものを「B」、0.5Ω以上1Ω以下のものを「C」、1Ω以上3Ω以下のものを「D」、3Ωを超えたものを「E」として表示した。
(Viii) Conductivity after thermal cycle test (connection resistance)
The adhesion test piece B is placed in a high-temperature (125 ° C) and low-temperature (-40 ° C) thermal shock tester, held at -40 ° C for 30 minutes, and then held at 125 ° C for 30 minutes. After 1,000 cycles, the connection resistance value between the SUS plate of the adhesive test piece B and the copper foil circuit of the flexible printed wiring plate was measured with a resistance value measuring device. As a result, the connection resistance value of less than 0.3Ω is "A", the connection resistance value of 0.3Ω or more and less than 0.5Ω is "B", and the connection resistance value of 0.5Ω or more and 1Ω or less is "C". Those with 1Ω or more and 3Ω or less are displayed as “D”, and those with more than 3Ω are displayed as “E”.
(ix)樹脂組成物の貯蔵安定性
 表1に記載の組成を有する実施例1~29及び比較例1の接着剤組成物(樹脂組成物)を、それぞれガラス瓶に入れ密封し、5℃で所定時間保管し組成物の結晶性を観察した。所定時間保管後、接着剤組成物のゲル化又は液分離が確認された点を貯蔵安定性不良と見なし、評価を行った。
<評価基準>
 A:1週間以上ゲル化又は液分離が確認されなかった。
 F:1週間未満でゲル化又は液分離が生じた。
(Ix) Storage Stability of Resin Compositions The adhesive compositions (resin compositions) of Examples 1 to 29 and Comparative Example 1 having the compositions shown in Table 1 are placed in glass bottles, sealed, and prescribed at 5 ° C. It was stored for a long time and the crystallinity of the composition was observed. After storage for a predetermined time, the point where gelation or liquid separation of the adhesive composition was confirmed was regarded as poor storage stability and evaluated.
<Evaluation criteria>
A: No gelation or liquid separation was confirmed for 1 week or longer.
F: Gelation or liquid separation occurred in less than 1 week.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 なお、表2に記載の樹脂組成物組成における各成分欄の数値の単位は、質量部である。 In addition, the unit of the numerical value of each component column in the resin composition composition shown in Table 2 is a mass part.
 前記表2に示す結果から明らかなように、実施例1~29の樹脂組成物は、比較例1の樹脂組成物に比べ、得られる硬化物が、高温高湿環境下において長期保管後及び冷熱サイクル試験後のどちらの試験後であっても、導電性に優れる樹脂組成物であった。
 また、実施例1~29の樹脂組成物は、得られる硬化物が、初期はく離接着強さ、はんだ後のはく離接着強さ、長期信頼性試験後のはく離接着強さ、難燃性、初期導電性、及び、はんだ後の導電性にも優れるものであった。
As is clear from the results shown in Table 2, in the resin compositions of Examples 1 to 29, the obtained cured product was stored for a long period of time and cooled in a high temperature and high humidity environment as compared with the resin composition of Comparative Example 1. It was a resin composition having excellent conductivity regardless of which test was performed after the cycle test.
Further, in the resin compositions of Examples 1 to 29, the obtained cured product has an initial peeling adhesive strength, a peeling adhesive strength after soldering, a peeling adhesive strength after a long-term reliability test, flame retardancy, and initial conductivity. It was also excellent in properties and conductivity after soldering.
 2020年10月23日に出願された日本国特許出願第2020-178234号の開示は、その全体が参照により本明細書に取り込まれる。
 本明細書に記載された全ての文献、特許出願、及び、技術規格は、個々の文献、特許出願、及び、技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。
The disclosure of Japanese Patent Application No. 2020-178234, filed October 23, 2020, is incorporated herein by reference in its entirety.
All documents, patent applications, and technical standards described herein are to the same extent as if the individual documents, patent applications, and technical standards were specifically and individually stated to be incorporated by reference. Is incorporated herein by reference.

Claims (26)

  1.  ポリエステルポリウレタン樹脂(A)と、
     エポキシ樹脂(B)とを含有し、
     ポリエステルポリウレタン樹脂(A)を構成するジイソシアネート成分が、炭素数8~14の炭化水素基を有するジイソシアネート化合物を含む
     樹脂組成物。
    Polyester polyurethane resin (A) and
    Containing epoxy resin (B),
    A resin composition in which the diisocyanate component constituting the polyester polyurethane resin (A) contains a diisocyanate compound having a hydrocarbon group having 8 to 14 carbon atoms.
  2.  カルボキシ基又はカルボン酸無水物構造を有する樹脂(C)を更に含有する請求項1に記載の樹脂組成物。 The resin composition according to claim 1, further containing a resin (C) having a carboxy group or a carboxylic acid anhydride structure.
  3.  ポリエステルポリウレタン樹脂(A)におけるウレタン結合1個当たりの分子量が、200~8,000である請求項1又は請求項2に記載の樹脂組成物。 The resin composition according to claim 1 or 2, wherein the polyester polyurethane resin (A) has a molecular weight of 200 to 8,000 per urethane bond.
  4.  前記樹脂組成物におけるポリエステルポリウレタン樹脂(A)、エポキシ樹脂(B)及びカルボキシ基又はカルボン酸無水物構造を有する樹脂(C)、並びに、任意成分として含有してもよいイミダゾールシラン化合物(D)の合計量に対して、ポリエステルポリウレタン樹脂(A)の含有量が、10質量%~90質量%であり、かつカルボキシ基又はカルボン酸無水物構造を有する樹脂(C)の含有量が、5質量%~70質量%である請求項1~請求項3のいずれか1項に記載の樹脂組成物。 The polyester polyurethane resin (A), the epoxy resin (B) and the resin (C) having a carboxy group or a carboxylic acid anhydride structure in the resin composition, and the imidazole silane compound (D) which may be contained as an optional component. The content of the polyester polyurethane resin (A) is 10% by mass to 90% by mass with respect to the total amount, and the content of the resin (C) having a carboxy group or a carboxylic acid anhydride structure is 5% by mass. The resin composition according to any one of claims 1 to 3, which is ~ 70% by mass.
  5.  無機フィラー(E)を更に含有する請求項1~請求項4のいずれか1項に記載の樹脂組成物。 The resin composition according to any one of claims 1 to 4, further containing an inorganic filler (E).
  6.  有機フィラー(F)を更に含有する請求項1~請求項5のいずれか1項に記載の樹脂組成物。 The resin composition according to any one of claims 1 to 5, further containing an organic filler (F).
  7.  前記炭素数8~14の炭化水素基を有するジイソシアネート化合物が、脂環式構造を有する請求項1~請求項6のいずれか1項に記載の樹脂組成物。 The resin composition according to any one of claims 1 to 6, wherein the diisocyanate compound having a hydrocarbon group having 8 to 14 carbon atoms has an alicyclic structure.
  8.  ポリエステルポリウレタン樹脂(A)を構成するジオール成分が、炭素数5~32の炭化水素基を有するジオール化合物を含む請求項1~請求項7のいずれか1項に記載の樹脂組成物。 The resin composition according to any one of claims 1 to 7, wherein the diol component constituting the polyester polyurethane resin (A) contains a diol compound having a hydrocarbon group having 5 to 32 carbon atoms.
  9.  前記炭素数5~32の炭化水素基を有するジオール化合物が、脂環式構造又は2つ以上の側鎖を有するジオール化合物を含む請求項8に記載の樹脂組成物。 The resin composition according to claim 8, wherein the diol compound having a hydrocarbon group having 5 to 32 carbon atoms contains an alicyclic structure or a diol compound having two or more side chains.
  10.  ポリエステルポリウレタン樹脂(A)が、数平均分子量が8,000~30,000のポリエステル構造を有するポリエステルポリウレタン樹脂を含む請求項1~請求項9のいずれか1項に記載の樹脂組成物。 The resin composition according to any one of claims 1 to 9, wherein the polyester polyurethane resin (A) contains a polyester polyurethane resin having a polyester structure having a number average molecular weight of 8,000 to 30,000.
  11.  ポリエステルポリウレタン樹脂(A)の数平均分子量が、10,000~80,000である請求項1~請求項10のいずれか1項に記載の樹脂組成物。 The resin composition according to any one of claims 1 to 10, wherein the polyester polyurethane resin (A) has a number average molecular weight of 10,000 to 80,000.
  12.  ポリエステルポリウレタン樹脂(A)の酸価が、0.1mgKOH/g~20mgKOH/gである請求項1~請求項11のいずれか1項に記載の樹脂組成物。 The resin composition according to any one of claims 1 to 11, wherein the polyester polyurethane resin (A) has an acid value of 0.1 mgKOH / g to 20 mgKOH / g.
  13.  ポリエステルポリウレタン樹脂(A)のガラス転移温度が、30℃~150℃である請求項1~請求項12のいずれか1項に記載の樹脂組成物。 The resin composition according to any one of claims 1 to 12, wherein the polyester polyurethane resin (A) has a glass transition temperature of 30 ° C to 150 ° C.
  14.  エポキシ樹脂(B)の含有量が、ポリエステルポリウレタン樹脂(A)100質量部に対し、1質量部~30質量部である請求項1~請求項13のいずれか1項に記載の樹脂組成物。 The resin composition according to any one of claims 1 to 13, wherein the content of the epoxy resin (B) is 1 part by mass to 30 parts by mass with respect to 100 parts by mass of the polyester polyurethane resin (A).
  15.  エポキシ樹脂(B)が、ビスフェノールA型エポキシ樹脂及び/又はノボラック型エポキシ樹脂を含む請求項1~請求項14のいずれか1項に記載の樹脂組成物。 The resin composition according to any one of claims 1 to 14, wherein the epoxy resin (B) contains a bisphenol A type epoxy resin and / or a novolak type epoxy resin.
  16.  カルボキシ基又はカルボン酸無水物構造を有する樹脂(C)の含有量が、ポリエステルポリウレタン樹脂(A)100質量部に対し、1質量部~100質量部である請求項1~請求項15のいずれか1項に記載の樹脂組成物。 Any of claims 1 to 15, wherein the content of the resin (C) having a carboxy group or a carboxylic acid anhydride structure is 1 part by mass to 100 parts by mass with respect to 100 parts by mass of the polyester polyurethane resin (A). The resin composition according to item 1.
  17.  カルボキシ基又はカルボン酸無水物構造を有する樹脂(C)が、酸価を有するポリアミド樹脂、及び、酸変性されたポリオレフィン構造を有する樹脂の少なくともいずれかを含む請求項1~請求項16のいずれか1項に記載の樹脂組成物。 Any of claims 1 to 16, wherein the resin (C) having a carboxy group or a carboxylic acid anhydride structure contains at least one of a polyamide resin having an acid value and a resin having an acid-modified polyolefin structure. The resin composition according to item 1.
  18.  金属フィラー(G)を更に含有する請求項1~請求項17のいずれか1項に記載の樹脂組成物。 The resin composition according to any one of claims 1 to 17, further containing a metal filler (G).
  19.  金属フィラー(G)の含有量が、前記樹脂組成物におけるポリエステルポリウレタン樹脂(A)、エポキシ樹脂(B)及びカルボキシ基又はカルボン酸無水物構造を有する樹脂(C)、並びに、任意成分として含有してもよいイミダゾールシラン化合物(D)の合計量100質量部に対して、10質量部~350質量部である請求項18に記載の樹脂組成物。 The content of the metal filler (G) is contained in the polyester polyurethane resin (A), the epoxy resin (B) and the resin (C) having a carboxy group or a carboxylic acid anhydride structure in the resin composition, and as an optional component. The resin composition according to claim 18, which is 10 parts by mass to 350 parts by mass with respect to 100 parts by mass of the total amount of the imidazole silane compound (D) which may be used.
  20.  金属フィラー(G)が、導電フィラーである請求項18又は請求項19に記載の樹脂組成物。 The resin composition according to claim 18 or 19, wherein the metal filler (G) is a conductive filler.
  21.  請求項1~請求項20のいずれか1項に記載の樹脂組成物を一部硬化してなるBステージ状の樹脂組成物層と、前記樹脂組成物層の少なくとも一方の面に接する離型フィルムとを備えるボンディングフィルム。 A release film in contact with a B-stage resin composition layer obtained by partially curing the resin composition according to any one of claims 1 to 20 and at least one surface of the resin composition layer. Bonding film with and.
  22.  請求項1~請求項20のいずれか1項に記載の樹脂組成物からなる樹脂組成物層、前記樹脂組成物を一部硬化してなるBステージ状の樹脂組成物層、又は、前記樹脂組成物を硬化してなる硬化層と、前記樹脂組成物層、Bステージ状の樹脂組成物層又は硬化層の少なくとも一方の面に接する基材フィルムとを備える樹脂組成物層付き積層体。 A resin composition layer made of the resin composition according to any one of claims 1 to 20, a B-stage resin composition layer obtained by partially curing the resin composition, or the resin composition. A laminate with a resin composition layer comprising a cured layer obtained by curing an object and a base film in contact with at least one surface of the resin composition layer, the B-stage resin composition layer, or the cured layer.
  23.  請求項1~請求項20のいずれか1項に記載の樹脂組成物を硬化してなる硬化層を備える積層体。 A laminate provided with a cured layer obtained by curing the resin composition according to any one of claims 1 to 20.
  24.  銅箔と、請求項1~請求項20のいずれか1項に記載の樹脂組成物を硬化してなる硬化層と、基材とを備えるフレキシブル銅張積層板。 A flexible copper-clad laminate comprising a copper foil, a cured layer obtained by curing the resin composition according to any one of claims 1 to 20, and a base material.
  25.  銅配線と、請求項1~請求項20のいずれか1項に記載の樹脂組成物を硬化してなる硬化層と、被覆材とを備えるフレキシブルフラットケーブル。 A flexible flat cable including a copper wiring, a cured layer obtained by curing the resin composition according to any one of claims 1 to 20, and a covering material.
  26.  請求項1~請求項20のいずれか1項に記載の樹脂組成物からなる樹脂組成物層、前記樹脂組成物を一部硬化してなるBステージ状の樹脂組成物層、又は、前記樹脂組成物を硬化してなる硬化層を有する電磁波シールドフィルム。 A resin composition layer made of the resin composition according to any one of claims 1 to 20, a B-stage resin composition layer obtained by partially curing the resin composition, or the resin composition. An electromagnetic wave shielding film having a cured layer formed by curing an object.
PCT/JP2021/038077 2020-10-23 2021-10-14 Resin composition, bonding film, laminate with resin composition layer, laminate, and electromagnetic wave shield film WO2022085563A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202180071594.3A CN116390855A (en) 2020-10-23 2021-10-14 Resin composition, adhesive film, laminate with resin composition layer, laminate, and electromagnetic wave shielding film
KR1020237017369A KR20230113299A (en) 2020-10-23 2021-10-14 Resin composition, bonding film, laminate with resin composition layer, laminate, and electromagnetic wave shielding film
JP2022557443A JPWO2022085563A1 (en) 2020-10-23 2021-10-14

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020178234 2020-10-23
JP2020-178234 2020-10-23

Publications (1)

Publication Number Publication Date
WO2022085563A1 true WO2022085563A1 (en) 2022-04-28

Family

ID=81290455

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/038077 WO2022085563A1 (en) 2020-10-23 2021-10-14 Resin composition, bonding film, laminate with resin composition layer, laminate, and electromagnetic wave shield film

Country Status (5)

Country Link
JP (1) JPWO2022085563A1 (en)
KR (1) KR20230113299A (en)
CN (1) CN116390855A (en)
TW (1) TW202222977A (en)
WO (1) WO2022085563A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7223090B1 (en) 2021-09-28 2023-02-15 古河電気工業株式会社 Adhesive composition, film-like adhesive, semiconductor package using film-like adhesive, and manufacturing method thereof
WO2024009969A1 (en) * 2022-07-06 2024-01-11 東亞合成株式会社 Adhesive composition, bonding film, laminate with adhesive composition layer, laminate, and electromagnetic wave shield film

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006274258A (en) * 2005-03-04 2006-10-12 Showa Denko Kk Thermosetting resin composition
JP2007270137A (en) * 2006-03-09 2007-10-18 Showa Denko Kk Thermosetting resin composition and uses thereof
JP2015110769A (en) * 2013-11-07 2015-06-18 東洋インキScホールディングス株式会社 Conductive adhesive, conductive adhesive sheet, wiring device, and method for manufacturing wiring device
JP2015228457A (en) * 2014-06-02 2015-12-17 デクセリアルズ株式会社 Conductive adhesive for solar cell, solar cell module, and manufacturing method of solar cell module
WO2017110591A1 (en) * 2015-12-25 2017-06-29 昭和電工株式会社 Novel polyurethane, curable composition, overcoat film, and flexible wiring board and production method therefor
WO2017183608A1 (en) * 2016-04-19 2017-10-26 株式会社カネカ Printed wiring board and method for manufacturing same
WO2017204218A1 (en) * 2016-05-23 2017-11-30 タツタ電線株式会社 Electroconductive adhesive composition
JP2020164870A (en) * 2014-09-24 2020-10-08 東亞合成株式会社 Adhesive composition and laminate with adhesive layer using the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5846290U (en) 1981-09-19 1983-03-29 株式会社明電舎 Control circuit of current type three-phase inverter
JP3849789B2 (en) 2003-10-20 2006-11-22 東洋紡績株式会社 Laminated body
JP5304152B2 (en) 2008-09-30 2013-10-02 東洋紡株式会社 RESIN COMPOSITION FOR ADHESIVE, ADHESIVE CONTAINING THE SAME, ADHESIVE SHEET AND PRINTED WIRING BOARD CONTAINING THE SAME AS ADHESIVE LAYER

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006274258A (en) * 2005-03-04 2006-10-12 Showa Denko Kk Thermosetting resin composition
JP2007270137A (en) * 2006-03-09 2007-10-18 Showa Denko Kk Thermosetting resin composition and uses thereof
JP2015110769A (en) * 2013-11-07 2015-06-18 東洋インキScホールディングス株式会社 Conductive adhesive, conductive adhesive sheet, wiring device, and method for manufacturing wiring device
JP2015228457A (en) * 2014-06-02 2015-12-17 デクセリアルズ株式会社 Conductive adhesive for solar cell, solar cell module, and manufacturing method of solar cell module
JP2020164870A (en) * 2014-09-24 2020-10-08 東亞合成株式会社 Adhesive composition and laminate with adhesive layer using the same
WO2017110591A1 (en) * 2015-12-25 2017-06-29 昭和電工株式会社 Novel polyurethane, curable composition, overcoat film, and flexible wiring board and production method therefor
WO2017183608A1 (en) * 2016-04-19 2017-10-26 株式会社カネカ Printed wiring board and method for manufacturing same
WO2017204218A1 (en) * 2016-05-23 2017-11-30 タツタ電線株式会社 Electroconductive adhesive composition

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7223090B1 (en) 2021-09-28 2023-02-15 古河電気工業株式会社 Adhesive composition, film-like adhesive, semiconductor package using film-like adhesive, and manufacturing method thereof
WO2023053566A1 (en) * 2021-09-28 2023-04-06 古河電気工業株式会社 Composition for adhesive agent, film-like adhesive agent, semiconductor package using film-like adhesive agent, and production method therefor
JP2023048247A (en) * 2021-09-28 2023-04-07 古河電気工業株式会社 Composition for adhesive and film-shaped adhesive, semiconductor package using film-shaped adhesive and method for producing the same
WO2024009969A1 (en) * 2022-07-06 2024-01-11 東亞合成株式会社 Adhesive composition, bonding film, laminate with adhesive composition layer, laminate, and electromagnetic wave shield film

Also Published As

Publication number Publication date
KR20230113299A (en) 2023-07-28
CN116390855A (en) 2023-07-04
JPWO2022085563A1 (en) 2022-04-28
TW202222977A (en) 2022-06-16

Similar Documents

Publication Publication Date Title
JP5743042B1 (en) Polyurethane resin composition, adhesive composition using the same, laminate and printed wiring board
EP3165554A1 (en) Heat-curable resin composition, polyamide, adhesive sheet, cured article, and printed wiring board
JP5846290B2 (en) Halogen-free flame retardant adhesive composition
JP2012131967A (en) Thermosetting resin composition containing carboxy group-containing modified ester resin
JP2011094037A (en) Flame-retardant adhesive composition, flame-retardant adhesive sheet, and flexible printed wiring board
JP7135970B2 (en) resin composition
JP2023181334A (en) Resin composition, bonding film, laminate with resin composition layer, laminate, and electromagnetic shield film
JP2009096940A (en) Flame-retardant adhesive composition, coverlay, adhesive sheet, and flexible printed wiring board
JP6565373B2 (en) Electrode sheet and sensor using the same
WO2022085563A1 (en) Resin composition, bonding film, laminate with resin composition layer, laminate, and electromagnetic wave shield film
CN114040943B (en) Resin composition, laminate with resin composition layer, laminate, and electromagnetic wave shielding film
JP2023138760A (en) resin composition
JP2016026552A (en) Electrode sheet and sensor made therewith
JP5776621B2 (en) Adhesive composition, coverlay film and adhesive sheet using the same
JP7351201B2 (en) resin composition
TW202128871A (en) Resin composition, cured product of resin composition, resin sheet, printed wiring board, flexible substrate, and semiconductor device wherein the resin composition contains a polymer containing a butadiene skeleton, an inorganic filler, and a benzoxazine compound containing a substituted or unsubstituted allyl group
TWI849148B (en) Resin composition, laminate having resin composition layer, laminate, and electromagnetic wave shielding film
WO2021106960A1 (en) Resin composition, multilayer body with resin composition layer, multilayer body, flexible copper-clad laminate, flexible flat cable, and electromagnetic shielding film
WO2024009969A1 (en) Adhesive composition, bonding film, laminate with adhesive composition layer, laminate, and electromagnetic wave shield film
JP2024007384A (en) Adhesive agent composition and adhesive agent

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21882704

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022557443

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21882704

Country of ref document: EP

Kind code of ref document: A1