WO2022085049A1 - モータ駆動装置、電動送風機、電気掃除機及びハンドドライヤ - Google Patents

モータ駆動装置、電動送風機、電気掃除機及びハンドドライヤ Download PDF

Info

Publication number
WO2022085049A1
WO2022085049A1 PCT/JP2020/039274 JP2020039274W WO2022085049A1 WO 2022085049 A1 WO2022085049 A1 WO 2022085049A1 JP 2020039274 W JP2020039274 W JP 2020039274W WO 2022085049 A1 WO2022085049 A1 WO 2022085049A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
motor
phase motor
phase
drive device
Prior art date
Application number
PCT/JP2020/039274
Other languages
English (en)
French (fr)
Inventor
裕次 ▲高▼山
和徳 畠山
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2020/039274 priority Critical patent/WO2022085049A1/ja
Priority to JP2022556836A priority patent/JP7403681B2/ja
Publication of WO2022085049A1 publication Critical patent/WO2022085049A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/16Circuit arrangements for detecting position
    • H02P6/18Circuit arrangements for detecting position without separate position detecting elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/26Arrangements for controlling single phase motors

Definitions

  • the present disclosure relates to a motor drive device for driving a single-phase motor, an electric blower equipped with a single-phase motor driven by the motor drive device, an electric vacuum cleaner, and a hand dryer.
  • Patent Document 1 in a method of starting a three-phase brushless motor without a position sensor, the initial position of the rotor is set by one energization, and the rotation speed of the motor is increased based on the information of the set initial position. , A method of detecting the position of the rotor after the rotation speed has increased is disclosed.
  • Patent Document 1 is a technique related to position sensorless control, shortening the acceleration time even in control with a position sensor is particularly useful in an application requiring a high acceleration rate.
  • the present disclosure has been made in view of the above, and an object of the present disclosure is to obtain a motor drive device capable of shortening the acceleration time when accelerating a single-phase motor.
  • the motor drive device is a motor drive device that drives a single-phase motor in order to solve the above-mentioned problems and achieve the object.
  • the motor drive device includes an inverter and a first detector.
  • the inverter converts the DC voltage into an AC voltage and applies the converted AC voltage to the single-phase motor.
  • the first detector detects a first physical quantity that correlates with the motor-induced voltage induced in the single-phase motor.
  • the inverter applies the first voltage to the single-phase motor in the first period, and in the second period after the application of the first voltage, the polarity of the first voltage is reversed. Apply voltage.
  • the first physical quantity detected by the first detector tends to increase with the increase in the rotation speed of the single-phase motor.
  • the acceleration time when accelerating the single-phase motor can be shortened.
  • Sectional drawing which provides the explanation of the structure of the single-phase motor in Embodiment 1.
  • the figure which shows the torque characteristic of the single-phase motor shown in FIG. Circuit diagram of the inverter shown in FIG.
  • a circuit diagram showing a modified example of the inverter shown in FIG. A block diagram showing a functional part that generates a pulse width modulation (PWM) signal among the functional parts of the control unit shown in FIG. 1.
  • PWM pulse width modulation
  • FIG. 7 A block diagram showing another example of the carrier comparison unit shown in FIG. The figure which shows the waveform example of the main part when it operated using the carrier comparison part shown in FIG.
  • Configuration diagram of the vacuum cleaner according to the second embodiment Configuration diagram of the hand dryer according to the second embodiment
  • FIG. 1 is a block diagram showing a configuration of a motor drive system 1 including a motor drive device 2 according to the first embodiment.
  • the motor drive system 1 shown in FIG. 1 includes a single-phase motor 12, a motor drive device 2, and a battery 10.
  • the motor drive device 2 is a drive device that supplies AC power to the single-phase motor 12 to drive the single-phase motor 12.
  • the battery 10 is a DC power source that supplies DC power to the motor drive device 2.
  • the motor drive device 2 includes an inverter 11, an analog-digital converter 30, a control unit 25, and a drive signal generation unit 32.
  • the inverter 11 and the single-phase motor 12 are connected by two connecting lines 18a and 18b.
  • the motor drive system 1 includes voltage detectors 20 and 21 and current detectors 22 and 24.
  • the motor drive system 1 is a so-called position sensorless control drive system that does not use a position sensor signal for detecting the rotation position of the rotor 12a.
  • the voltage detector 20 is a detector that detects the DC voltage Vdc output from the battery 10 to the motor drive device 2.
  • the DC voltage V dc is the output voltage of the battery 10 and is the voltage applied to the inverter 11.
  • the voltage detector 21 is a detector that detects the AC voltage Vac generated between the connection lines 18a and 18b.
  • the AC voltage V ac is a voltage obtained by superimposing the motor applied voltage applied by the inverter 11 to the single-phase motor 12 and the motor-induced voltage induced by the single-phase motor 12.
  • the detected value of the voltage detector 21 is a physical quantity that correlates with the motor-induced voltage. Therefore, in this paper, the detected value of the voltage detector 21 may be described as "a first physical quantity that correlates with the motor-induced voltage".
  • the state in which the inverter 11 has stopped operating and the inverter 11 is not outputting a voltage is referred to as "gate off”. Further, the voltage output by the inverter 11 is appropriately referred to as an "inverter output voltage”.
  • the current detector 22 is a detector that detects the motor current Im .
  • the motor current Im is an alternating current flowing in and out between the inverter 11 and the single-phase motor 12.
  • the motor current Im is equal to the alternating current flowing through the windings (not shown in FIG. 1) wound around the stator 12b of the single-phase motor 12.
  • Examples of the current detector 22 include a current transformer (CT) or a current detector that detects a current using a shunt resistor.
  • the current detector 24 is a detector that detects the power supply current I dc .
  • the power supply current I dc is a direct current flowing between the battery 10 and the inverter 11.
  • the current detector 24 is generally configured to use a shunt resistor as shown in the figure.
  • the detected value of the power supply current I dc flowing through the current detector 24 is converted into a voltage value and input to the analog-digital converter 30.
  • the detection value of the current detector 24 is appropriately referred to as "shunt voltage”.
  • the shunt voltage which is the detected value of the power supply current I dc , has a correlation with the motor current Im .
  • the shunt voltage may be described as "a second physical quantity that correlates with the motor current Im ".
  • the current detector 24 may be referred to as a "second detector”.
  • the single-phase motor 12 is used as a rotary electric machine for rotating an electric blower (not shown). Electric blowers are mounted on devices such as vacuum cleaners and hand dryers.
  • the inverter 11 is a power converter that converts the DC voltage Vdc applied from the battery 10 into an AC voltage.
  • the inverter 11 supplies AC power to the single-phase motor 12 by applying the converted AC voltage to the single-phase motor 12.
  • the analog-to-digital converter 30 is a signal converter that converts analog data into digital data.
  • the analog-digital converter 30 converts the detected value of the DC voltage V dc detected by the voltage detector 20 and the detected value of the AC voltage V ac detected by the voltage detector 21 into digital data, and causes the control unit 25. Output. Further, the analog-digital converter 30 converts the detected value of the motor current Im detected by the current detector 22 and the detected value of the power supply current I dc detected by the current detector 24 into digital data, and the control unit 25. Output to.
  • the control unit 25 is referred to as PWM signals Q1, Q2, Q3, Q4 (hereinafter, appropriately referred to as "Q1 to Q4") based on the digital output value 30a converted by the analog digital converter 30 and the voltage amplitude command V *. ) Is generated.
  • the voltage amplitude command V * will be described later.
  • the drive signal generation unit 32 has drive signals S1, S2, S3, S4 for driving the switching element in the inverter 11 based on the PWM signals Q1 to Q4 output from the control unit 25 (hereinafter, appropriately “S1 to”. S4 ") is generated.
  • the control unit 25 has a processor 31, a carrier generation unit 33, and a memory 34.
  • the processor 31 generates PWM signals Q1 to Q4 for performing PWM control.
  • the processor 31 is a processing unit that performs various operations related to PWM control and advance angle control.
  • a CPU Central Processing Unit
  • a microprocessor a microcomputer
  • a microcomputer a microcomputer
  • a DSP Digital Signal Processor
  • LSI Large Scale Integration
  • the program read by the processor 31 is stored in the memory 34.
  • the memory 34 is also used as a work area when the processor 31 performs arithmetic processing.
  • the memory 34 is generally a non-volatile or volatile semiconductor memory such as a RAM (Random Access Memory), a flash memory, an EPROM (Erasable Project ROM), or an EEPROM (registered trademark) (Electrically EPROM). Details of the configuration of the carrier generation unit 33 will be described later.
  • FIG. 2 is a cross-sectional view for explaining the structure of the single-phase motor 12 in the first embodiment.
  • FIG. 2 shows the cross-sectional shapes of the rotor 12a and the stator 12b of the single-phase permanent magnet brushless motor as an example of the single-phase motor 12 used in the embodiment.
  • the rotor 12a is fitted to the shaft 12c and is configured to be rotatable in the direction of the arrow shown in the figure, that is, counterclockwise.
  • Four permanent magnets are arranged in the circumferential direction on the rotor 12a. These four permanent magnets are arranged so that the magnetizing directions are alternately reversed in the circumferential direction to form a magnetic pole in the rotor 12a.
  • the case where the number of magnetic poles of the rotor 12a is 4 poles is illustrated, but the number of magnetic poles of the rotor 12a may be other than 4 poles.
  • a stator 12b is arranged around the rotor 12a.
  • the stator 12b is configured by connecting four divided cores 12d in an annular shape.
  • the split core 12d has an asymmetrically shaped tooth 12e.
  • a winding 12f is wound around the teeth 12e.
  • the teeth 12e has a first tip portion 12e1 and a second tip portion 12e2 protruding toward the rotor 12a.
  • the side ahead of the rotation direction is the first tip portion 12e1, and the side behind the rotation direction is the second tip portion 12e2.
  • the distance between the first tip portion 12e1 and the rotor 12a is referred to as a "first gap” and is represented by G1.
  • the distance between the second tip portion 12e2 and the rotor 12a is called a "second gap” and is represented by G2.
  • G1 ⁇ G2 between the first gap G1 and the second gap G2.
  • the single-phase motor 12 may be a motor having a structure in which a permanent magnet is arranged on the surface of the rotor 12a (Surface Permanent Magnet: SPM), or a magnet-embedded type (Interior) in which the permanent magnet is embedded inside the rotor 12a. It may be a motor having a Permanent Magnet (IPM) structure.
  • SPM Surface Permanent Magnet
  • IPM Permanent Magnet
  • the single-phase motor 12 is a motor having an SPM structure, there is an effect that the torque pulsation due to the reluctance torque can be reduced. Further, when the single-phase motor 12 is a motor having an IPM structure, there is an effect that the structure for holding the permanent magnet becomes easy.
  • FIG. 3 is a diagram showing changes in the rotor position when the single-phase motor 12 shown in FIG. 2 is excited.
  • FIG. 4 is a diagram showing torque characteristics of the single-phase motor 12 shown in FIG.
  • the stop position of the rotor 12a is shown in the upper part of FIG.
  • the magnetic pole center line representing the center of the magnetic pole and the tooth center line representing the structural center of the stator 12b are deviated so that the magnetic pole center line precedes the rotation direction. This occurs because the single-phase motor 12 has a structure having an asymmetrically shaped teeth 12e. With this structure, the torque characteristics as shown in FIG. 4 appear.
  • the curve K1 shown by the solid line represents the motor torque
  • the curve K2 shown by the broken line represents the cogging torque.
  • the motor torque is the torque generated in the rotor 12a by the current flowing through the winding of the stator 12b.
  • the cogging torque is the torque generated in the rotor 12a by the magnetic force of the permanent magnet when no current is flowing in the winding of the stator 12b. Take the counterclockwise direction to the positive torque.
  • the horizontal axis of FIG. 4 represents the machine angle
  • the stop position of the rotor 12a whose magnetic pole center line coincides with the teeth center line is the machine angle 0 °.
  • the cogging torque is positive when the mechanical angle is 0 °. Therefore, the rotor 12a rotates counterclockwise and stops at the position of the mechanical angle ⁇ 1 where the cogging torque becomes zero.
  • the position of the mechanical angle ⁇ 1 is the stop position shown in the upper part of FIG.
  • FIG. 5 is a circuit diagram of the inverter 11 shown in FIG.
  • the inverter 11 has a plurality of switching elements 51, 52, 53, 54 (hereinafter, appropriately referred to as “51 to 54”) to be bridge-connected.
  • the switching elements 51 and 52 constitute the first leg, the leg 5A.
  • the leg 5A is a series circuit in which a switching element 51, which is a first switching element, and a switching element 52, which is a second switching element, are connected in series.
  • the switching elements 53 and 54 constitute the second leg, the leg 5B.
  • the leg 5B is a series circuit in which a switching element 53, which is a third switching element, and a switching element 54, which is a fourth switching element, are connected in series.
  • the legs 5A and 5B are connected between the DC bus 16a on the high potential side and the DC bus 16b on the low potential side so as to be in parallel with each other. As a result, the legs 5A and 5B are connected in parallel to both ends of the battery 10.
  • the switching elements 51 and 53 are located on the high potential side, and the switching elements 52 and 54 are located on the low potential side.
  • the high potential side is referred to as an "upper arm” and the low potential side is referred to as a "lower arm”. Therefore, the switching element 51 of the leg 5A may be referred to as a "first switching element of the upper arm”, and the switching element 52 of the leg 5A may be referred to as a "second switching element of the lower arm”.
  • the switching element 53 of the leg 5B may be referred to as a "third switching element of the upper arm”, and the switching element 54 of the leg 5B may be referred to as a "fourth switching element of the lower arm”.
  • connection end 6A between the switching element 51 and the switching element 52 and the connection end 6B between the switching element 53 and the switching element 54 form an AC end in the bridge circuit.
  • a single-phase motor 12 is connected between the connection end 6A and the connection end 6B.
  • MOSFET Metal-Oxide-Semiconductor Field-Effective Transistor
  • FET Field-Effective Transistor
  • the switching element 51 is formed with a body diode 51a connected in parallel between the drain and the source of the switching element 51.
  • the switching element 52 is formed with a body diode 52a connected in parallel between the drain and the source of the switching element 52.
  • the switching element 53 is formed with a body diode 53a connected in parallel between the drain and the source of the switching element 53.
  • the switching element 54 is formed with a body diode 54a connected in parallel between the drain and the source of the switching element 54.
  • Each of the plurality of body diodes 51a, 52a, 53a, 54a is a parasitic diode formed inside the MOSFET and is used as a freewheeling diode. A separate freewheeling diode may be connected. Further, instead of the MOSFET, an insulated gate bipolar transistor (IGBT) may be used.
  • IGBT insulated gate bipolar transistor
  • the switching elements 51 to 54 are not limited to MOSFETs formed of silicon-based materials, and may be MOSFETs formed of wide bandgap (Wide Band Gap: WBG) semiconductors such as silicon carbide, gallium nitride, gallium oxide, or diamond.
  • WBG Wide Band Gap
  • WBG semiconductors have higher withstand voltage and heat resistance than silicon semiconductors. Therefore, by using a WBG semiconductor for at least one of the plurality of switching elements 51 to 54, the withstand voltage resistance and the allowable current density of the switching element are increased, and the semiconductor module incorporating the switching element can be miniaturized.
  • WBG semiconductors have high heat resistance. Therefore, it is possible to reduce the size of the heat radiating portion for radiating the heat generated in the semiconductor module. In addition, it is possible to simplify the heat dissipation structure that dissipates heat generated by the semiconductor module.
  • FIG. 6 is a circuit diagram showing a modified example of the inverter 11 shown in FIG.
  • the inverter 11A shown in FIG. 6 has shunt resistors 55a and 55b added to the configuration of the inverter 11 shown in FIG.
  • the shunt resistor 55a is a detector for detecting the current flowing through the leg 5A
  • the shunt resistor 55b is a detector for detecting the current flowing through the leg 5B.
  • the shunt resistor 55a is connected between the terminal on the low potential side of the switching element 52 and the DC bus 16b
  • the shunt resistor 55b is connected to the terminal on the low potential side of the switching element 54 and the DC bus. It is connected to 16b.
  • the current detector 22 shown in FIG. 1 can be omitted.
  • the detected values of the shunt resistors 55a and 55b are sent to the processor 31 via the analog-digital converter 30.
  • the processor 31 implements activation control, which will be described later, based on the detected values of the shunt resistors 55a and 55b.
  • the shunt resistor 55a is not limited to that of FIG. 6 as long as it can detect the current flowing through the leg 5A.
  • the shunt resistor 55a is located between the DC bus 16a and the terminal on the high potential side of the switching element 51, between the terminal on the low potential side of the switching element 51 and the connection end 6A, or between the connection end 6A and the high potential of the switching element 52. It may be arranged between the terminal on the side.
  • the shunt resistor 55b is between the DC bus 16a and the terminal on the high potential side of the switching element 53, between the terminal on the low potential side of the switching element 53 and the connection end 6B, or between the connection end 6B and the switching element 54. It may be arranged between the terminal on the high potential side of the.
  • the on-resistance of the MOFFET may be used to detect the current with the voltage generated across the on-resistance.
  • FIG. 7 is a block diagram showing a functional part that generates a PWM signal among the functional parts of the control unit 25 shown in FIG.
  • the carrier comparison unit 38 is input with the advance angle controlled advance phase ⁇ v and the reference phase ⁇ e used when generating the voltage command V m described later.
  • the reference phase ⁇ e is a phase obtained by converting the rotor mechanical angle, which is the angle of the rotor 12a from the reference position, into an electric angle.
  • the motor drive device 2 according to the first embodiment has a so-called position sensorless control configuration that does not use the position sensor signal from the position sensor. Therefore, the rotor mechanical angle and the reference phase ⁇ e are estimated by calculation.
  • the "advance angle phase” referred to here is a phase representing the "advance angle” which is the "advance angle” of the voltage command Vm .
  • the "advance angle” referred to here is a phase difference between the motor applied voltage applied to the winding 12f of the stator 12b and the motor induced voltage induced in the winding 12f of the stator 12b.
  • the “advance angle” takes a positive value when the voltage applied to the motor is ahead of the voltage induced by the motor.
  • the carrier comparison unit 38 in addition to the advance phase ⁇ v and the reference phase ⁇ e , the carrier generated by the carrier generation unit 33, the DC voltage V dc , and the voltage which is the amplitude value of the voltage command V m . Amplitude command V * is input.
  • the carrier comparison unit 38 generates PWM signals Q1 to Q4 based on the carrier, the advance phase ⁇ v , the reference phase ⁇ e , the DC voltage V dc , and the voltage amplitude command V *.
  • FIG. 8 is a block diagram showing an example of the carrier comparison unit 38 shown in FIG. 7.
  • FIG. 8 shows the detailed configuration of the carrier comparison unit 38A and the carrier generation unit 33.
  • a triangular wave carrier moving up and down between “0” and “1” is shown.
  • the PWM control of the inverter 11 includes synchronous PWM control and asynchronous PWM control. In the case of synchronous PWM control, it is necessary to synchronize the carrier with the advance phase ⁇ v . On the other hand, in the case of asynchronous PWM control, it is not necessary to synchronize the carrier with the advance phase ⁇ v .
  • the carrier comparison unit 38A has an absolute value calculation unit 38a, a division unit 38b, a multiplication unit 38c, a multiplication unit 38d, a multiplication unit 38f, an addition unit 38e, a comparison unit 38g, a comparison unit 38h, and an output inversion unit. It has 38i and an output inversion unit 38j.
  • the absolute value calculation unit 38a calculates the absolute value
  • is divided by the DC voltage V dc detected by the voltage detector 20.
  • the output of the division unit 38b is the modulation factor.
  • the battery voltage which is the output voltage of the battery 10, fluctuates as the current continues to flow.
  • the value of the modulation factor can be adjusted so that the motor applied voltage does not decrease due to the decrease in the battery voltage.
  • the multiplication unit 38c calculates a sine value of “ ⁇ e + ⁇ v ”, which is the reference phase ⁇ e plus the advance phase ⁇ v .
  • the calculated sine value of " ⁇ e + ⁇ v " is multiplied by the modulation factor which is the output of the division unit 38b.
  • "1/2" is multiplied by the voltage command Vm , which is the output of the multiplication unit 38c.
  • Vm which is the output of the multiplication unit 38c.
  • the addition unit 38e "1/2" is added to the output of the multiplication unit 38d.
  • "-1" is multiplied by the output of the addition unit 38e.
  • the output of the addition unit 38e is input to the comparison unit 38g as a positive voltage command Vm1 for driving the two switching elements 51 and 53 of the upper arm among the plurality of switching elements 51 to 54, and is input to the comparison unit 38g of the multiplication unit 38f.
  • the output is input to the comparison unit 38h as a negative voltage command Vm2 for driving the two switching elements 52 and 54 of the lower arm.
  • the comparison unit 38 g the positive voltage command V m1 and the amplitude of the carrier are compared.
  • the output of the output inversion unit 38i in which the output of the comparison unit 38g is inverted becomes the PWM signal Q1 to the switching element 51, and the output of the comparison unit 38g becomes the PWM signal Q2 to the switching element 52.
  • the negative voltage command Vm2 and the amplitude of the carrier are compared.
  • the output of the output inversion unit 38j which is the inverted output of the comparison unit 38h, is the PWM signal Q3 to the switching element 53, and the output of the comparison unit 38h is the PWM signal Q4 to the switching element 54.
  • the output inverting unit 38i does not turn on the switching element 51 and the switching element 52 at the same time
  • the output inverting unit 38j does not turn on the switching element 53 and the switching element 54 at the same time.
  • FIG. 9 is a diagram showing an example of waveforms of a main part when operated using the carrier comparison unit 38A shown in FIG.
  • the waveform of the positive voltage command V m1 output from the addition unit 38e, the waveform of the negative voltage command V m2 output from the multiplication unit 38f, the waveforms of the PWM signals Q1 to Q4, and the inverter output are shown.
  • the voltage waveform is shown.
  • the PWM signal Q1 becomes “Low” when the positive voltage command V m1 is larger than the carrier, and becomes “High” when the positive voltage command V m1 is smaller than the carrier.
  • the PWM signal Q2 is an inverted signal of the PWM signal Q1.
  • the PWM signal Q3 becomes “Low” when the negative voltage command V m2 is larger than the carrier, and becomes “High” when the negative voltage command V m2 is smaller than the carrier.
  • the PWM signal Q4 is an inverted signal of the PWM signal Q3.
  • the circuit shown in FIG. 8 is configured with “Low Active", but even if each signal is configured with "High Active” having opposite values. good.
  • the waveform of the inverter output voltage shows a voltage pulse due to the difference voltage between the PWM signal Q1 and the PWM signal Q4 and a voltage pulse due to the difference voltage between the PWM signal Q3 and the PWM signal Q2. These voltage pulses are applied to the single-phase motor 12 as the motor applied voltage.
  • Bipolar modulation and unipolar modulation are known as modulation methods used when generating PWM signals Q1 to Q4.
  • Bipolar modulation is a modulation method that outputs a voltage pulse that changes with a positive or negative potential every cycle of the voltage command Vm .
  • Unipolar modulation is a modulation method that outputs a voltage pulse that changes at three potentials in each cycle of the voltage command Vm , that is, a voltage pulse that changes between a positive potential, a negative potential, and a zero potential.
  • the waveform shown in FIG. 9 is due to unipolar modulation.
  • any modulation method may be used. In applications where it is necessary to control the motor current waveform to a more sinusoidal wave, it is preferable to adopt unipolar modulation having a lower harmonic content than bipolar modulation.
  • the waveform shown in FIG. 9 shows four switchings of the switching elements 51 and 52 constituting the leg 5A and the switching elements 53 and 54 constituting the leg 5B during the half-cycle T / 2 period of the voltage command V m . It is obtained by a method of switching the element. This method is called “both-sided PWM" because the switching operation is performed by both the positive side voltage command V m1 and the negative side voltage command V m2 . On the other hand, in one half cycle of one cycle T of the voltage command V m , the switching operation of the switching elements 51 and 52 is suspended, and in the other half cycle of the one cycle T of the voltage command V m , the switching operation is suspended. There is also a method of suspending the switching operation of the switching elements 53 and 54.
  • one-sided PWM This method is called “one-sided PWM”.
  • double-sided PWM mode the operation mode operated by double-sided PWM
  • one-sided PWM mode the operation mode operated by one-sided PWM
  • the PWM signal by "two-sided PWM” may be called “two-sided PWM signal”
  • the PWM signal by "one-sided PWM” may be called “one-sided PWM signal”.
  • FIG. 10 is a block diagram showing another example of the carrier comparison unit 38 shown in FIG. 7.
  • FIG. 10 shows an example of a one-sided PWM signal generation circuit, and specifically, a detailed configuration of a carrier comparison unit 38B and a carrier generation unit 33 is shown.
  • the configuration of the carrier generation unit 33 shown in FIG. 10 is the same as or equivalent to that shown in FIG.
  • the configuration of the carrier comparison unit 38B shown in FIG. 10 the same or equivalent components as the carrier comparison unit 38A shown in FIG. 8 are designated by the same reference numerals.
  • the carrier comparison unit 38B has an absolute value calculation unit 38a, a division unit 38b, a multiplication unit 38c, a multiplication unit 38k, an addition unit 38m, an addition unit 38n, a comparison unit 38g, a comparison unit 38h, and an output inversion. It has a unit 38i and an output inversion unit 38j.
  • the absolute value calculation unit 38a calculates the absolute value
  • is divided by the DC voltage V dc detected by the voltage detector 20. Even in the configuration of FIG. 10, the output of the division unit 38b is the modulation factor.
  • the multiplication unit 38c calculates a sine value of “ ⁇ e + ⁇ v ”, which is the reference phase ⁇ e plus the advance phase ⁇ v .
  • the calculated sine value of " ⁇ e + ⁇ v " is multiplied by the modulation factor which is the output of the division unit 38b.
  • "-1" is multiplied by the voltage command Vm , which is the output of the multiplication unit 38c.
  • Vm which is the output of the multiplication unit 38c.
  • “1” is added to the voltage command Vm which is the output of the multiplication unit 38c.
  • "1" is added to the output of the multiplication unit 38k, that is, the inverted output of the voltage command Vm .
  • the output of the addition unit 38m is input to the comparison unit 38g as a first voltage command Vm3 for driving the two switching elements 51 and 53 of the upper arm among the plurality of switching elements 51 to 54.
  • the output of the addition unit 38n is input to the comparison unit 38h as a second voltage command Vm4 for driving the two switching elements 52 and 54 of the lower arm.
  • the comparison unit 38 g the first voltage command V m3 and the amplitude of the carrier are compared.
  • the output of the output inversion unit 38i in which the output of the comparison unit 38g is inverted becomes the PWM signal Q1 to the switching element 51, and the output of the comparison unit 38g becomes the PWM signal Q2 to the switching element 52.
  • the second voltage command Vm4 and the amplitude of the carrier are compared.
  • the output of the output inversion unit 38j which is the inverted output of the comparison unit 38h, is the PWM signal Q3 to the switching element 53, and the output of the comparison unit 38h is the PWM signal Q4 to the switching element 54.
  • the output inverting unit 38i does not turn on the switching element 51 and the switching element 52 at the same time
  • the output inverting unit 38j does not turn on the switching element 53 and the switching element 54 at the same time.
  • FIG. 11 is a diagram showing an example of waveforms of a main part when operated using the carrier comparison unit 38B shown in FIG.
  • the waveform of the first voltage command V m3 output from the adder 38 m the waveform of the second voltage command V m4 output from the adder 38n, the waveforms of the PWM signals Q1 to Q4, and the inverter output are shown.
  • the voltage waveform is shown.
  • the waveform portion of the first voltage command V m3 whose amplitude value is larger than the peak value of the carrier and the second voltage command V m4 whose amplitude value is larger than the peak value of the carrier.
  • the corrugated portion is represented by a flat straight line.
  • the PWM signal Q1 becomes “Low” when the first voltage command V m3 is larger than the carrier, and becomes “High” when the first voltage command V m3 is smaller than the carrier.
  • the PWM signal Q2 is an inverted signal of the PWM signal Q1.
  • the PWM signal Q3 becomes “Low” when the second voltage command V m4 is larger than the carrier, and becomes “High” when the second voltage command V m4 is smaller than the carrier.
  • the PWM signal Q4 is an inverted signal of the PWM signal Q3.
  • the circuit shown in FIG. 10 is configured with “Low Active", but even if each signal is configured with "High Active” having opposite values. good.
  • the waveform of the inverter output voltage shows a voltage pulse due to the difference voltage between the PWM signal Q1 and the PWM signal Q4 and a voltage pulse due to the difference voltage between the PWM signal Q3 and the PWM signal Q2. These voltage pulses are applied to the single-phase motor 12 as the motor applied voltage.
  • the switching element 52 is controlled to be always on in one half cycle of one cycle T of the voltage command V m , and the one cycle T of the voltage command V m is controlled.
  • the switching element 54 is controlled to be always on.
  • FIG. 11 is an example, in which the switching element 51 is controlled to be always on in one half cycle, and the switching element 53 is controlled to be always on in the other half cycle. Is also possible. That is, the waveform shown in FIG. 11 is characterized in that at least one of the switching elements 51 to 54 is controlled to be in the ON state in the half cycle of the voltage command V m .
  • the waveform of the inverter output voltage is unipolar modulation that changes at three potentials in each cycle of the voltage command V m .
  • bipolar modulation may be used instead of unipolar modulation, but in applications where it is necessary to control the motor current waveform to a more sinusoidal wave, it is preferable to adopt unipolar modulation.
  • FIG. 12 is a block diagram showing a functional configuration for calculating the advance angle phase ⁇ v input to the carrier comparison unit 38 shown in FIG. 7.
  • the function of calculating the advance angle phase ⁇ v can be realized by the rotation speed calculation unit 42 and the advance angle phase calculation unit 44.
  • the rotation speed calculation unit 42 calculates the rotation speed ⁇ of the single-phase motor 12 based on the detection value of the motor current Im detected by the current detector 22. Further, the rotation speed calculation unit 42 calculates the reference phase ⁇ e based on the detected value of the motor current Im.
  • the reference phase ⁇ e is a phase obtained by converting the rotor mechanical angle, which is the angle of the rotor 12a from the reference position, into an electric angle.
  • the rotor machine angle is a calculated value calculated inside the rotation speed calculation unit 42.
  • the advance phase phase calculation unit 44 calculates the advance phase phase ⁇ v based on the rotation speed ⁇ , the reference phase ⁇ e , and the motor-induced voltage.
  • the motor induced voltage can be obtained from the detected value of the AC voltage Vac .
  • the detected value of the AC voltage Vac includes the motor applied voltage applied to the single-phase motor 12 by the inverter 11 and the motor-induced voltage induced by the single-phase motor 12. Of these voltages, the motor-induced voltage can be detected during the gate-off period when the inverter 11 does not output the voltage. The details of the calculation method of the advance phase ⁇ v will be described later.
  • FIG. 13 is a first diagram used for explaining the operation of the main part in the first embodiment.
  • FIG. 14 is a second diagram used for explaining the operation of the main part in the first embodiment.
  • the above-mentioned FIGS. 2 and 3 are examples in which the single-phase motor 12 having the asymmetrically shaped teeth 12e is the drive target, but the single-phase motor to be driven has the structure of FIGS. 2 and 3. Not limited. That is, the method of the first embodiment is not limited to the case where the teeth 12e has an asymmetrical shape, and can be applied even when the teeth 12e has a symmetrical shape.
  • FIG. 13 shows an operation waveform when the rotation speed when accelerating the single-phase motor 12 is low.
  • FIG. 14 shows an operation waveform when the rotation speed when accelerating the single-phase motor 12 is high.
  • the high speed or low speed referred to here means a relative relationship between the two, and the first control shown in FIG. 13 and the second control shown in FIG. 14 are switched at a preset rotation speed. That is, when the preset rotation speed is set to the "first rotation speed" and the rotation speed of the single-phase motor 12 is less than the first rotation speed, the single-phase motor is controlled by the first control shown in FIG. 12 is driven. Then, when the rotation speed of the single-phase motor 12 is equal to or higher than the first rotation speed, the single-phase motor 12 is driven by the second control shown in FIG.
  • the waveform of the motor-induced voltage is shown in the upper part of FIG. In the lower part of FIG. 13, the waveform of the motor applied voltage and the waveform of the motor induced voltage are shown.
  • the gate-on period in which the inverter 11 gates on is indicated by a coarse hatch pattern
  • the gate-off period in which the inverter 11 gates off is indicated by a fine hatch pattern.
  • the gate-on period T1 is a period in which the polarity of the motor applied voltage is positive
  • the gate-on period T2 is a period in which the polarity of the motor applied voltage is negative.
  • the gate-on period T1 may be referred to as the "first period” and the gate-on period T2 may be referred to as the "second period”.
  • the gate-off period T3 may be referred to as an "application stop period”.
  • T4 represents a period of 1 ⁇ 2 of the rotation cycle of the single-phase motor 12, that is, a rotation half cycle.
  • one cycle of the electric angle is described as one rotation cycle, but one cycle of the rotor mechanical angle may be one rotation cycle.
  • a voltage having a positive polarity is applied during the gate-on period T1.
  • the voltage of this polarity is called "first voltage”.
  • the gate-on period T1 begins at the zero crossing point where the polarity of the motor-induced voltage switches from negative to positive.
  • a voltage having a negative polarity is applied.
  • the voltage of this polarity is called "second voltage”.
  • the gate-on period T2 begins at the zero crossing point where the polarity of the motor-induced voltage switches from positive to negative.
  • FIG. 13 illustrates a case where the first voltage and the second voltage are voltages of one pulse, but the present invention is not limited to this.
  • the first voltage and the second voltage may be voltages of a plurality of PWM-controlled pulse trains.
  • the polarity switching of the motor applied voltage is performed based on the rotation speed of the single-phase motor 12 and the motor-induced voltage.
  • the gate-off period T3 since the inverter 11 is gate-off, the motor-induced voltage can be detected by the voltage detector 21. Therefore, it is possible to detect the zero crossing point of the motor induced voltage.
  • the zero cross point is a phase obtained by converting the rotor mechanical angle into an electric angle, and it is also possible to use the reference phase ⁇ e obtained by calculation.
  • the zero crossing point of the motor-induced voltage is set as the switching point of the polarity of the motor applied voltage. That is, when the rotation speed is less than the first rotation speed, the first threshold value is set to a zero value. Therefore, the gate-on period T1 or the gate-on period T2 is started at the zero crossing point of the motor induced voltage. Then, by repeating the gate-on periods T1 and T2, rotational torque is applied to the single-phase motor 12, and the single-phase motor 12 accelerates and rotates.
  • the length of the gate-on periods T1 and T2 and the amplitude of the motor applied voltage can be determined based on the duty ratio, the modulation factor and the rotation speed.
  • the duty ratio is the ratio of the gate-on periods T1 and T2 to the rotation half cycle T4.
  • the motor-induced voltage may be calculated based on the detection value of the voltage detector 20 or the detection value of the current detector 24.
  • a control means for reducing the output voltage of the battery 10 to zero or a mechanism for disconnecting the electrical connection between the battery 10 and the inverter 11 is required.
  • FIG. 14 shows the waveform of the motor-induced voltage
  • the lower part shows the waveform of the motor applied voltage and the waveform of the motor-induced voltage.
  • the hatching patterns attached to the gate-on period and the gate-off period are the same as those in FIG.
  • the polarity of the motor applied voltage is switched based on the rotation speed of the single-phase motor 12 and the motor-induced voltage.
  • the motor-induced voltage can be detected by the voltage detector 21.
  • a first voltage having a positive polarity is applied.
  • the gate-on period ⁇ 1 starts when the absolute value of the amplitude of the motor-induced voltage reaches ⁇ V.
  • a second voltage having a negative polarity is applied in the gate-on period ⁇ 2 .
  • the gate-on period ⁇ 2 starts when the absolute value of the amplitude of the motor-induced voltage reaches ⁇ V. That is, in the second control, the value of ⁇ V to be compared with the absolute value of the amplitude of the motor-induced voltage is set as the first threshold value.
  • the first threshold value is a positive value.
  • the inverter 11 inverts the polarity of the voltage applied to the single-phase motor 12 each time the absolute value of the amplitude of the motor-induced voltage reaches the first threshold value. Further, in the second control, the first threshold value is set so as to have an increasing tendency with respect to the increase in the rotation speed. Note that FIG. 14 illustrates a case where the first voltage and the second voltage are voltages of one pulse, but the present invention is not limited to this.
  • the first voltage and the second voltage may be voltages of a plurality of PWM-controlled pulse trains.
  • the duty ratios T1 / T4, ⁇ 1 / ⁇ 4, T2 / T4, ⁇ 2 / ⁇ 4 contribute to the motor applied voltage
  • the first threshold value ⁇ V is the lead angle phase ⁇ v which is the phase difference of the motor applied voltage with respect to the motor induced voltage. Contribute to.
  • the reactance component ( ⁇ L) is smaller than at high speeds. Therefore, as for the motor current flowing through the single-phase motor 12, the phase delay of the motor applied voltage with respect to the motor current is smaller at low speed than at high speed.
  • a small phase lag means a large power factor. If the power factor is large, it is possible to apply an effective motor torque to the single-phase motor 12.
  • the reactance component ( ⁇ L) becomes large.
  • the phase delay of the motor applied voltage with respect to the motor current becomes large, but by increasing the advance phase ⁇ v , it is possible to suppress the decrease in the power factor.
  • the motor-induced voltage generated in the single-phase motor 12 increases as the rotation speed increases. When the motor induced voltage is large, the overcurrent can be suppressed even if the inverter output voltage is increased. Therefore, by increasing the inverter output voltage according to the increase in the rotation speed, it is possible to shorten the acceleration time while suppressing the overcurrent.
  • the first threshold value ⁇ V is controlled to increase as the rotation speed increases, and the advance phase ⁇ v is increased. Since a high power factor can be maintained by this control, the acceleration torque applied to the single-phase motor 12 can be efficiently obtained, and the electric power supplied to the single-phase motor 12 can be effectively utilized.
  • the inverter applies a first voltage to the single-phase motor during the first period when the single-phase motor is accelerating, and the inverter has a first voltage.
  • a second voltage in which the polarity of the first voltage is reversed is applied.
  • an application stop period for stopping the application of the first voltage.
  • the first physical quantity detected by the first detector is controlled so as to tend to increase with the increase in the rotation speed of the single-phase motor.
  • the absolute value of the average value of the first voltage and the second voltage is controlled so as to tend to increase with the increase of the rotation speed. Since the motor-induced voltage increases as the rotation speed increases, overcurrent can be suppressed even if the inverter output voltage is increased. Therefore, it is possible to shorten the acceleration time while suppressing the overcurrent.
  • the distance between the permanent magnet provided in the rotor and the substrate provided with the magnetic pole position sensor becomes short.
  • the substrate is arranged at a position that obstructs the flow of the wind generated by the blades, which increases the pressure loss of the air passage. The increase in pressure loss becomes a factor that deteriorates the suction power of the vacuum cleaner and lowers the suction power.
  • the application example is an electric blower
  • the gas sucked by the electric blower contains a large amount of water
  • the amount of water that directly collides with the substrate increases.
  • a voltage is applied to the substrate
  • ionized metal moves between the electrodes to cause a short circuit, which may cause ion migration.
  • dust or dust accumulating on the substrate there is a concern about a short circuit caused by dust or dust accumulating on the substrate.
  • a method of applying a moisture-proof agent to the substrate or a method of isolating the substrate from the air passage is adopted, but both of them lead to an increase in manufacturing cost.
  • the degree of freedom in board placement is increased, so that the board can be placed while avoiding the air passage.
  • the amount of water that directly collides with the substrate is reduced, so that the occurrence of ion migration can be suppressed and the amount of the moisture-proofing agent can be reduced.
  • the degree of freedom in arranging the substrate is increased, the quality of the substrate can be improved by arranging the substrate outside the housing.
  • the position sensor is a magnetic pole position sensor
  • the accuracy of the mounting work for correctly detecting the magnetic pole position is required, and it is necessary to carry out the position adjusting work according to the mounting position. For this reason, it becomes difficult to control the manufacturing, and the manufacturing cost including the installation work increases.
  • the inverter and the single-phase motor can be configured separately. This makes it possible to reduce the restrictions when applying the product. For example, when the application example is a product used in a water place or the like, the inverter can be isolated from the position of the water place or the like and arranged.
  • the configuration is equipped with a current detector.
  • the current detector can detect a motor abnormality such as a shaft lock or a phase loss by detecting the motor current. This makes it possible to safely stop without a position sensor.
  • a second threshold value for determining an overcurrent is set. Then, when the shunt voltage reaches the second threshold value, it is determined that the motor is abnormal. Further, when it is determined that the motor is abnormal, the output of the inverter is cut off. By doing so, it is possible to detect a motor abnormality and safely stop the operation of the product.
  • Embodiment 2 In the second embodiment, an application example of the motor drive device 2 described in the first embodiment will be described.
  • the motor drive device 2 described above can be used, for example, in a vacuum cleaner.
  • a product such as an electric vacuum cleaner that is used immediately after the power is turned on, the effect of shortening the start-up time of the motor drive device 2 according to the first and second embodiments is increased.
  • FIG. 15 is a configuration diagram of the vacuum cleaner 61 according to the second embodiment.
  • the vacuum cleaner 61 shown in FIG. 15 is a so-called stick-type vacuum cleaner.
  • the vacuum cleaner 61 includes a battery 10 shown in FIG. 1, a motor driving device 2 shown in FIG. 1, an electric blower 64 driven by a single-phase motor 12 shown in FIG. 1, and dust collector.
  • a chamber 65, a sensor 68, a suction port 63, an extension pipe 62, and an operation unit 66 are provided.
  • the user who uses the vacuum cleaner 61 has an operation unit 66 and operates the vacuum cleaner 61.
  • the motor drive device 2 of the vacuum cleaner 61 drives the electric blower 64 using the battery 10 as a power source. By driving the electric blower 64, dust is sucked from the suction port 63. The sucked dust is collected in the dust collecting chamber 65 via the extension pipe 62.
  • the stick-type vacuum cleaner is illustrated in FIG. 15, it is not limited to the stick-type vacuum cleaner.
  • the technique of the present disclosure can be applied to any product as long as it is an electric device equipped with an electric blower.
  • FIG. 15 shows a configuration in which the battery 10 is used as a power source, but the present invention is not limited to this. Instead of the battery 10, an AC power supply supplied from an outlet may be used.
  • the above-mentioned motor drive device can be used for, for example, a hand dryer.
  • a hand dryer the shorter the time from inserting the hand to driving the electric blower, the better the user's usability. Therefore, the effect of shortening the start-up time of the motor drive device 2 according to the first and second embodiments is greatly exhibited.
  • FIG. 16 is a block diagram of the hand dryer 90 according to the second embodiment.
  • the hand dryer 90 includes the motor drive device 2 shown in FIG. 1, the casing 91, the hand detection sensor 92, the water receiving unit 93, the drain container 94, the cover 96, the sensor 97, and the intake air. It includes a port 98 and an electric blower 95 driven by the single-phase motor 12 shown in FIG.
  • the sensor 97 is either a gyro sensor or a motion sensor.
  • the hand dryer 90 when a hand is inserted into the hand insertion portion 99 at the upper part of the water receiving portion 93, water is blown off by the blown air by the electric blower 95, and the blown water is collected by the water receiving portion 93. After that, it is stored in the drain container 94.
  • the position sensor is a sensitive sensor, high-precision mounting accuracy is required for the installation position of the position sensor.
  • it is necessary to make adjustments according to the mounting position of the position sensor.
  • the position sensorless configuration the position sensor itself becomes unnecessary, and the adjustment step of the position sensor can be eliminated. As a result, the manufacturing cost can be significantly reduced.
  • the quality of the product can be improved because the position sensor is not affected by the secular variation.
  • the inverter and the single-phase motor can be configured separately. This makes it possible to relax restrictions on the product. For example, in the case of a product used in a water place with a large amount of water, the mounting position of the inverter in the product can be arranged at a place far from the water place. As a result, the possibility of failure of the inverter can be reduced, and the reliability of the device can be improved.
  • the motor drive device 2 can be widely applied to an electric device on which a motor is mounted.
  • Examples of electrical equipment equipped with motors are incinerators, crushers, dryers, dust collectors, printing machines, cleaning machines, confectionery machines, tea making machines, woodworking machines, plastic extruders, cardboard machines, packaging machines, hot air generators. , OA equipment, and electric blowers.
  • the electric blower is a blowing means for transporting an object, sucking dust, or for general blowing and exhausting.
  • the configuration shown in the above embodiments is an example, and can be combined with another known technique, or can be combined with each other, and deviates from the gist. It is also possible to omit or change a part of the configuration to the extent that it does not.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

モータ駆動装置(2)は、直流電圧を交流電圧に変換し、変換した交流電圧を単相モータ(12)に印加するインバータ(11)と、単相モータ(12)に誘起されるモータ誘起電圧を検出する電圧検出器(21)とを備える。単相モータ(12)の加速時において、インバータ(11)は、第1の期間に単相モータ(12)に第1電圧を印加し、第1電圧の印加後の第2の期間に、第1電圧の極性を反転した第2電圧を印加する。第1の期間と第2の期間との間には、第1電圧の印加を停止する印加停止期間が存在する。印加停止期間において、電圧検出器(21)によって検出されるモータ誘起電圧は、単相モータ(12)の回転速度の増加に対して増加傾向である。

Description

モータ駆動装置、電動送風機、電気掃除機及びハンドドライヤ
 本開示は、単相モータを駆動するモータ駆動装置、モータ駆動装置によって駆動される単相モータを搭載した電動送風機、電気掃除機及びハンドドライヤに関する。
 従来、モータを安価に駆動するための手段として、位置センサを用いずにモータ電流に基づいてモータの回転子位置を推定する位置センサレス制御が広く知られている。下記特許文献1には、三相のブラシレスモータを位置センサレスで起動する方法において、1回の通電でロータの初期位置を設定し、設定した初期位置の情報に基づいてモータの回転速度を上昇させ、回転速度が上昇した後に、ロータの位置検出を行う方法が開示されている。
特開平1-308192号公報
 しかしながら、上記特許文献1の技術は、回転速度が上昇した後にロータの位置検出を再度行う必要がある。このため、規定の回転速度に達するまでの時間が長くかかるという課題がある。モータが単相モータである場合も、同様な課題が生ずる。なお、特許文献1は、位置センサレス制御に関する技術であるが、位置センサ付き制御においても、加速時間の短縮化を図ることは、特に、高加速レートが求められるアプリケーションにおいて有用である。
 本開示は、上記に鑑みてなされたものであって、単相モータを加速する際の加速時間の短縮化を図ることができるモータ駆動装置を得ることを目的とする。
 上述した課題を解決し、目的を達成するため、本開示に係るモータ駆動装置は、単相モータを駆動するモータ駆動装置である。モータ駆動装置は、インバータと、第1の検出器と、を備える。インバータは、直流電圧を交流電圧に変換し、変換した交流電圧を単相モータに印加する。第1の検出器は、単相モータに誘起されるモータ誘起電圧と相関のある第1の物理量を検出する。単相モータの加速時において、インバータは、第1の期間に単相モータに第1電圧を印加し、第1電圧の印加後の第2の期間に、第1電圧の極性を反転した第2電圧を印加する。第1の期間と第2の期間との間には、第1電圧の印加を停止する印加停止期間が存在する。印加停止期間において、第1の検出器によって検出される第1の物理量は、単相モータの回転速度の増加に対して増加傾向である。
 本開示に係るモータ駆動装置によれば、単相モータを加速する際の加速時間の短縮化を図ることができるという効果を奏する。
実施の形態1に係るモータ駆動装置を含むモータ駆動システムの構成を示すブロック図 実施の形態1における単相モータの構造の説明に供する断面図 図2に示す単相モータを励磁した際のロータ位置の変化を示す図 図2に示す単相モータのトルク特性を示す図 図1に示すインバータの回路図 図5に示すインバータの変形例を示す回路図 図1に示す制御部の機能部位のうちのパルス幅変調(Pulse Width Modulation:PWM)信号を生成する機能部位を示すブロック図 図7に示すキャリア比較部の一例を示すブロック図 図8に示すキャリア比較部を用いて動作させたときの要部の波形例を示す図 図7に示すキャリア比較部の他の例を示すブロック図 図10に示すキャリア比較部を用いて動作させたときの要部の波形例を示す図 図7に示されるキャリア比較部へ入力される進角位相を算出するための機能構成を示すブロック図 実施の形態1における要部の動作説明に使用する第1の図 実施の形態1における要部の動作説明に使用する第2の図 実施の形態2に係る電気掃除機の構成図 実施の形態2に係るハンドドライヤの構成図
 以下に添付図面を参照し、本開示の実施の形態に係るモータ駆動装置、電動送風機、電気掃除機及びハンドドライヤを図面に基づいて詳細に説明する。
実施の形態1.
 図1は、実施の形態1に係るモータ駆動装置2を含むモータ駆動システム1の構成を示すブロック図である。図1に示すモータ駆動システム1は、単相モータ12と、モータ駆動装置2と、バッテリ10と、を備える。モータ駆動装置2は、単相モータ12に交流電力を供給して単相モータ12を駆動する駆動装置である。バッテリ10は、モータ駆動装置2に直流電力を供給する直流電源である。
 モータ駆動装置2は、インバータ11と、アナログディジタル変換器30と、制御部25と、駆動信号生成部32とを備える。インバータ11と単相モータ12は、2本の接続線18a,18bによって接続されている。
 モータ駆動システム1は、電圧検出器20,21及び電流検出器22,24を備えている。モータ駆動システム1は、ロータ12aの回転位置を検出するための位置センサ信号を用いない、いわゆる位置センサレス制御の駆動システムである。
 電圧検出器20は、バッテリ10からモータ駆動装置2に出力される直流電圧Vdcを検出する検出器である。直流電圧Vdcは、バッテリ10の出力電圧であり、インバータ11への印加電圧である。
 電圧検出器21は、接続線18a,18b間に生じる交流電圧Vacを検出する検出器である。交流電圧Vacは、インバータ11が単相モータ12に印加するモータ印加電圧と、単相モータ12によって誘起されるモータ誘起電圧とが重畳された電圧である。インバータ11が動作を停止し、単相モータ12が回転している場合、モータ誘起電圧が観測される。従って、電圧検出器21の検出値は、モータ誘起電圧と相関のある物理量である。このため、本稿では、電圧検出器21の検出値を「モータ誘起電圧と相関のある第1の物理量」と記載する場合がある。また、本稿では、インバータ11が動作を停止し、インバータ11が電圧を出力していない状態を「ゲートオフ」と呼ぶ。また、インバータ11が出力する電圧を、適宜「インバータ出力電圧」と呼ぶ。
 電流検出器22は、モータ電流Iを検出する検出器である。モータ電流Iは、インバータ11と単相モータ12との間で流出入する交流電流である。モータ電流Iは、単相モータ12のステータ12bに巻かれている、図1では不図示の巻線に流れる交流電流に等しい。電流検出器22には、変流器(Current Transformer:CT)、又はシャント抵抗を用いて電流を検出する電流検出器を例示できる。
 電流検出器24は、電源電流Idcを検出する検出器である。電源電流Idcは、バッテリ10とインバータ11との間に流れる直流電流である。電流検出器24としては、図示のようにシャント抵抗を用いる構成が一般的である。電流検出器24に流れる電源電流Idcの検出値は、電圧値に変換されてアナログディジタル変換器30に入力される。なお、本稿では、電流検出器24の検出値を、適宜「シャント電圧」と呼ぶ。また、電源電流Idcの検出値であるシャント電圧は、モータ電流Iと相関関係がある。即ち、モータ電流Iが増加すればシャント電圧も増加し、モータ電流Iが減少すればシャント電圧も減少する。このため、本稿では、シャント電圧を「モータ電流Iと相関のある第2の物理量」と記載する場合がある。また、本稿では、電流検出器24を「第2の検出器」と呼ぶ場合がある。
 単相モータ12は、不図示の電動送風機を回転させる回転電機として利用される。電動送風機は、電気掃除機及びハンドドライヤといった装置に搭載される。
 インバータ11は、バッテリ10から印加される直流電圧Vdcを交流電圧に変換する電力変換器である。インバータ11は、変換した交流電圧を単相モータ12に印加することで、単相モータ12に交流電力を供給する。
 アナログディジタル変換器30は、アナログデータをディジタルデータに変換する信号変換器である。アナログディジタル変換器30は、電圧検出器20によって検出された直流電圧Vdcの検出値、及び電圧検出器21によって検出された交流電圧Vacの検出値をディジタルデータに変換して制御部25に出力する。また、アナログディジタル変換器30は、電流検出器22によって検出されたモータ電流Iの検出値、及び電流検出器24によって検出され電源電流Idcの検出値をディジタルデータに変換して制御部25に出力する。
 制御部25は、アナログディジタル変換器30で変換されたディジタル出力値30aと、電圧振幅指令V*とに基づいて、PWM信号Q1,Q2,Q3,Q4(以下、適宜「Q1~Q4」と表記)を生成する。電圧振幅指令V*については、後述する。
 駆動信号生成部32は、制御部25から出力されるPWM信号Q1~Q4に基づいて、インバータ11内のスイッチング素子を駆動するための駆動信号S1,S2,S3,S4(以下、適宜「S1~S4」と表記)を生成する。
 制御部25は、プロセッサ31、キャリア生成部33及びメモリ34を有する。プロセッサ31は、PWM制御を行うためのPWM信号Q1~Q4を生成する。プロセッサ31は、PWM制御及び進角制御に関する各種演算を行う処理部である。プロセッサ31としては、CPU(Central Processing Unit)、マイクロプロセッサ、マイコン、マイクロコンピュータ、DSP(Digital Signal Processor)、又はシステムLSI(Large Scale Integration)を例示できる。
 メモリ34には、プロセッサ31によって読みとられるプログラムが保存される。メモリ34は、プロセッサ31が演算処理を行う際の作業領域としても使用される。メモリ34は、RAM(Random Access Memory)、フラッシュメモリ、EPROM(Erasable Programmable ROM)、EEPROM(登録商標)(Electrically EPROM)といった不揮発性又は揮発性の半導体メモリが一般的である。キャリア生成部33の構成の詳細は後述する。
 図2は、実施の形態1における単相モータ12の構造の説明に供する断面図である。図2には、実施の形態で用いる単相モータ12の一例として、単相の永久磁石ブラシレスモータのロータ12a及びステータ12bの断面形状が示されている。
 ロータ12aはシャフト12cに嵌合され、図示の矢印方向、即ち反時計回りに回転可能に構成される。ロータ12aには、4個の永久磁石が周方向に配列されている。これらの4個の永久磁石は、着磁方向が周方向に交互に反転するように配置され、ロータ12aにおける磁極を形成する。なお、実施の形態1では、ロータ12aの磁極数が4極の場合を例示するが、ロータ12aの磁極数は4極以外でもよい。
 ロータ12aの周囲には、ステータ12bが配置される。ステータ12bは、4つの分割コア12dが環状に連結されて構成されている。
 分割コア12dは、非対称形状のティース12eを有する。ティース12eには、巻線12fが巻回されている。ティース12eは、ロータ12a側に突出する第1先端部12e1及び第2先端部12e2を有する。回転方向に対し、回転方向の先にある側が第1先端部12e1であり、回転方向の後にある側が第2先端部12e2である。ここで、第1先端部12e1とロータ12aとの距離を「第1ギャップ」と呼び、G1で表す。また、第2先端部12e2とロータ12aとの距離を「第2ギャップ」と呼び、G2で表す。第1ギャップG1と第2ギャップG2との間には、G1<G2の関係がある。
 なお、単相モータ12は、永久磁石をロータ12aの表面に配置する(Surface Permanent Magnet:SPM)構造のモータであってもよいし、永久磁石をロータ12aの内部に埋め込む磁石埋込型(Interior Permanent Magnet:IPM)構造のモータであってもよい。単相モータ12がSPM構造のモータである場合、リラクタンストルクによるトルク脈動を小さくできるという効果がある。また、単相モータ12がIPM構造のモータである場合、永久磁石を保持する構造が容易になるという効果がある。
 図3は、図2に示す単相モータ12を励磁した際のロータ位置の変化を示す図である。図4は、図2に示す単相モータ12のトルク特性を示す図である。図3の上段部には、ロータ12aの停止位置が示されている。ロータ12aの停止位置において、磁極の中心を表す磁極中心線と、ステータ12bの構造的な中心を表すティース中心線とは、回転方向に対して磁極中心線が先行するようにずれている。これは、単相モータ12が非対称形状のティース12eを有する構造であるために生ずる。この構造により、図4に示すようなトルク特性が表れる。
 図4において、実線で示す曲線K1はモータトルク、破線で示す曲線K2はコギングトルクを表している。モータトルクは、ステータ12bの巻線に流れる電流によってロータ12aに発生するトルクである。コギングトルクは、ステータ12bの巻線に電流が流れていないときに永久磁石の磁力によってロータ12aに発生するトルクである。反時計方向をトルクの正にとる。また、図4の横軸は機械角を表しており、磁極中心線がティース中心線に一致するロータ12aの停止位置が機械角0°である。図4に示されるように、機械角0°のときのコギングトルクは正である。このため、ロータ12aは反時計方向に回転し、コギングトルクがゼロとなる機械角θ1の位置で停止する。この機械角θ1の位置が、図3の上段部に示す停止位置である。
 図2に示す単相モータ12の場合、ロータ12aの停止位置は2箇所ある。停止位置の1つは、上述した図3の上段部に示す停止位置であり、もう1つは図3の下段部に示す停止位置である。巻線12fに直流電圧を印加すると、反時計回りに回転し、図3の中段部に示す励磁中の状態を経て図3の下段部に示す状態で停止する。図3の例の場合、直流電圧の印加によってティース12eに発生する磁力が、対向するロータ12aの磁極と同極であるため、回転方向にトルクがかかり、ロータ12aは回転する。そして、ある時間が経過し、ティース12eに発生する磁力と、対向するロータ12aの磁極とが異極となる図3の下段部の位置で安定的に停止する。
 図5は、図1に示すインバータ11の回路図である。インバータ11は、ブリッジ接続される複数のスイッチング素子51,52,53,54(以下、適宜「51~54」と表記)を有する。
 スイッチング素子51,52は、第1のレグであるレグ5Aを構成する。レグ5Aは、第1のスイッチング素子であるスイッチング素子51と、第2のスイッチング素子であるスイッチング素子52とが直列に接続された直列回路である。
 スイッチング素子53,54は、第2のレグであるレグ5Bを構成する。レグ5Bは、第3のスイッチング素子であるスイッチング素子53と、第4のスイッチング素子であるスイッチング素子54とが直列に接続された直列回路である。
 レグ5A,5Bは、高電位側の直流母線16aと低電位側の直流母線16bとの間に、互いに並列になるように接続される。これにより、レグ5A,5Bは、バッテリ10の両端に並列に接続される。
 スイッチング素子51,53は、高電位側に位置し、スイッチング素子52,54は、低電位側に位置する。一般的に、インバータ回路では、高電位側は「上アーム」と称され、低電位側は「下アーム」と称される。よって、レグ5Aのスイッチング素子51を「上アームの第1のスイッチング素子」と呼び、レグ5Aのスイッチング素子52を「下アームの第2のスイッチング素子」と呼ぶ場合がある。同様に、レグ5Bのスイッチング素子53を「上アームの第3のスイッチング素子」と呼び、レグ5Bのスイッチング素子54を「下アームの第4のスイッチング素子」と呼ぶ場合がある。
 スイッチング素子51とスイッチング素子52との接続端6Aと、スイッチング素子53とスイッチング素子54との接続端6Bとは、ブリッジ回路における交流端を構成する。接続端6Aと接続端6Bとの間には、単相モータ12が接続される。
 スイッチング素子51~54のそれぞれには、金属酸化膜半導体電界効果型トランジスタであるMOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor)が使用される。MOSFETは、FET(Field-Effect Transistor)の一例である。
 スイッチング素子51には、スイッチング素子51のドレインとソースとの間に並列接続されるボディダイオード51aが形成される。スイッチング素子52には、スイッチング素子52のドレインとソースとの間に並列接続されるボディダイオード52aが形成される。スイッチング素子53には、スイッチング素子53のドレインとソースとの間に並列接続されるボディダイオード53aが形成される。スイッチング素子54には、スイッチング素子54のドレインとソースとの間に並列接続されるボディダイオード54aが形成される。複数のボディダイオード51a,52a,53a,54aのそれぞれは、MOSFETの内部に形成される寄生ダイオードであり、還流ダイオードとして使用される。なお、別途の還流ダイオードを接続してもよい。また、MOSFETに代えて絶縁ゲートバイポーラトランジスタ(Insulated Gate Bipolar Transistor:IGBT)を用いてもよい。
 スイッチング素子51~54は、シリコン系材料により形成されたMOSFETに限定されず、炭化珪素、窒化ガリウム、酸化ガリウム又はダイヤモンドといったワイドバンドギャップ(Wide Band Gap:WBG)半導体により形成されたMOSFETでもよい。
 一般的にWBG半導体はシリコン半導体に比べて耐電圧及び耐熱性が高い。そのため、複数のスイッチング素子51~54のうちの少なくとも1つにWBG半導体を用いることにより、スイッチング素子の耐電圧性及び許容電流密度が高くなり、スイッチング素子を組み込んだ半導体モジュールを小型化できる。また、WBG半導体は、耐熱性も高い。このため、半導体モジュールで発生した熱を放熱するための放熱部の小型化が可能である。また、半導体モジュールで発生した熱を放熱する放熱構造の簡素化が可能である。
 また、図6は、図5に示すインバータ11の変形例を示す回路図である。図6に示すインバータ11Aは、図5に示すインバータ11の構成において、更にシャント抵抗55a,55bを追加したものである。シャント抵抗55aは、レグ5Aに流れる電流を検出するための検出器であり、シャント抵抗55bは、レグ5Bに流れる電流を検出するための検出器である。図6に示すように、シャント抵抗55aは、スイッチング素子52の低電位側の端子と、直流母線16bとの間に接続され、シャント抵抗55bは、スイッチング素子54の低電位側の端子と直流母線16bとの間に接続されている。シャント抵抗55a,55bを備えるインバータ11Aを用いた場合、図1に示す電流検出器22は、省略することができる。この構成の場合、シャント抵抗55a,55bの検出値は、アナログディジタル変換器30を介してプロセッサ31に送られる。プロセッサ31は、シャント抵抗55a,55bの検出値に基づいて、後述する起動制御を実施する。
 なお、シャント抵抗55aは、レグ5Aに流れる電流を検出できるものであればよく、図6のものに限定されない。シャント抵抗55aは、直流母線16aとスイッチング素子51の高電位側の端子との間、スイッチング素子51の低電位側の端子と接続端6Aとの間、又は接続端6Aとスイッチング素子52の高電位側の端子との間に配置されるものであってもよい。同様に、シャント抵抗55bは、直流母線16aとスイッチング素子53の高電位側の端子との間、スイッチング素子53の低電位側の端子と接続端6Bとの間、又は接続端6Bとスイッチング素子54の高電位側の端子との間に配置されるものであってもよい。また、シャント抵抗55a,55bに代え、MOFFETのオン抵抗を利用し、オン抵抗の両端に生じる電圧で電流検出を行う構成としてもよい。
 図7は、図1に示す制御部25の機能部位のうちのPWM信号を生成する機能部位を示すブロック図である。
 図7において、キャリア比較部38には、後述する電圧指令Vを生成するときに用いる進角制御された進角位相θと基準位相θとが入力される。基準位相θは、ロータ12aの基準位置からの角度であるロータ機械角を電気角に換算した位相である。なお、前述したように、実施の形態1に係るモータ駆動装置2は、位置センサからの位置センサ信号を用いない、いわゆる位置センサレス制御の構成である。このため、ロータ機械角及び基準位相θは、演算によって推定される。また、ここで言う「進角位相」とは、電圧指令Vの「進み角」である「進角」を位相で表したものである。更に、ここで言う「進み角」とは、ステータ12bの巻線12fに印加されるモータ印加電圧と、ステータ12bの巻線12fに誘起されるモータ誘起電圧との間の位相差である。なお、モータ印加電圧がモータ誘起電圧よりも進んでいるときに「進み角」は正の値をとる。
 また、キャリア比較部38には、進角位相θと基準位相θとに加え、キャリア生成部33で生成されたキャリアと、直流電圧Vdcと、電圧指令Vの振幅値である電圧振幅指令V*とが入力される。キャリア比較部38は、キャリア、進角位相θ、基準位相θ、直流電圧Vdc及び電圧振幅指令V*に基づいて、PWM信号Q1~Q4を生成する。
 図8は、図7に示すキャリア比較部38の一例を示すブロック図である。図8には、キャリア比較部38A及びキャリア生成部33の詳細構成が示されている。
 図8において、キャリア生成部33には、キャリアの周波数であるキャリア周波数f[Hz]が設定される。キャリア周波数fの矢印の先には、キャリア波形の一例として、“0”と“1”との間を上下する三角波キャリアが示される。インバータ11のPWM制御には、同期PWM制御と非同期PWM制御とがある。同期PWM制御の場合、進角位相θにキャリアを同期させる必要がある。一方、非同期PWM制御の場合、進角位相θにキャリアを同期させる必要はない。
 キャリア比較部38Aは、図8に示すように、絶対値演算部38a、除算部38b、乗算部38c、乗算部38d、乗算部38f、加算部38e、比較部38g、比較部38h、出力反転部38i及び出力反転部38jを有する。
 絶対値演算部38aでは、電圧振幅指令V*の絶対値|V*|が演算される。除算部38bでは、絶対値|V*|が、電圧検出器20で検出された直流電圧Vdcによって除算される。図8の構成では、除算部38bの出力が変調率となる。バッテリ10の出力電圧であるバッテリ電圧は、電流を流し続けることにより変動する。一方、絶対値|V*|を直流電圧Vdcで除算することにより、変調率の値を調整し、バッテリ電圧の低下によってモータ印加電圧が低下しないようにできる。
 乗算部38cでは、基準位相θに進角位相θを加えた“θ+θ”の正弦値が演算される。演算された“θ+θ”の正弦値は、除算部38bの出力である変調率に乗算される。乗算部38dでは、乗算部38cの出力である電圧指令Vに“1/2”が乗算される。加算部38eでは、乗算部38dの出力に“1/2”が加算される。乗算部38fでは、加算部38eの出力に“-1”が乗算される。加算部38eの出力は、複数のスイッチング素子51~54のうち、上アームの2つのスイッチング素子51,53を駆動するための正側電圧指令Vm1として比較部38gに入力され、乗算部38fの出力は、下アームの2つのスイッチング素子52,54を駆動するための負側電圧指令Vm2として比較部38hに入力される。
 比較部38gでは、正側電圧指令Vm1と、キャリアの振幅とが比較される。比較部38gの出力を反転した出力反転部38iの出力は、スイッチング素子51へのPWM信号Q1となり、比較部38gの出力は、スイッチング素子52へのPWM信号Q2となる。同様に、比較部38hでは、負側電圧指令Vm2と、キャリアの振幅とが比較される。比較部38hの出力を反転した出力反転部38jの出力は、スイッチング素子53へのPWM信号Q3となり、比較部38hの出力は、スイッチング素子54へのPWM信号Q4となる。出力反転部38iにより、スイッチング素子51とスイッチング素子52とが同時にオンされることはなく、出力反転部38jにより、スイッチング素子53とスイッチング素子54とが同時にオンされることはない。
 図9は、図8に示すキャリア比較部38Aを用いて動作させたときの要部の波形例を示す図である。図9には、加算部38eから出力される正側電圧指令Vm1の波形と、乗算部38fから出力される負側電圧指令Vm2の波形と、PWM信号Q1~Q4の波形と、インバータ出力電圧の波形とが示されている。
 PWM信号Q1は、正側電圧指令Vm1がキャリアよりも大きいときに“ロー(Low)”となり、正側電圧指令Vm1がキャリアよりも小さいときに“ハイ(High)”となる。PWM信号Q2は、PWM信号Q1の反転信号である。PWM信号Q3は、負側電圧指令Vm2がキャリアよりも大きいときに“ロー(Low)”となり、負側電圧指令Vm2がキャリアよりも小さいときに“ハイ(High)”となる。PWM信号Q4は、PWM信号Q3の反転信号である。このように、図8に示される回路は、“ローアクティブ(Low Active)”で構成されているが、それぞれの信号が逆の値となる“ハイアクティブ(High Active)”で構成されていてもよい。
 インバータ出力電圧の波形は、図9に示されるように、PWM信号Q1とPWM信号Q4との差電圧による電圧パルスと、PWM信号Q3とPWM信号Q2との差電圧による電圧パルスとが表れる。これらの電圧パルスが、モータ印加電圧として、単相モータ12に印加される。
 PWM信号Q1~Q4を生成する際に使用する変調方式としては、バイポーラ変調と、ユニポーラ変調とが知られている。バイポーラ変調は、電圧指令Vの1周期ごとに正又は負の電位で変化する電圧パルスを出力する変調方式である。ユニポーラ変調は、電圧指令Vの1周期ごとに3つの電位で変化する電圧パルス、即ち正の電位と負の電位と零の電位とに変化する電圧パルスを出力する変調方式である。図9に示される波形は、ユニポーラ変調によるものである。実施の形態1に係るモータ駆動装置2においては、何れの変調方式を用いてもよい。なお、モータ電流波形をより正弦波に制御する必要がある用途では、バイポーラ変調よりも、高調波含有率が少ないユニポーラ変調を採用することが好ましい。
 また、図9に示される波形は、電圧指令Vの半周期T/2の期間において、レグ5Aを構成するスイッチング素子51,52と、レグ5Bを構成するスイッチング素子53,54の4つのスイッチング素子をスイッチング動作させる方式によって得られる。この方式は、正側電圧指令Vm1と負側電圧指令Vm2の双方でスイッチング動作させることから、「両側PWM」と呼ばれる。これに対し、電圧指令Vの1周期Tのうちの一方の半周期では、スイッチング素子51,52のスイッチング動作を休止させ、電圧指令Vの1周期Tのうちの他方の半周期では、スイッチング素子53,54のスイッチング動作を休止させる方式もある。この方式は、「片側PWM」と呼ばれる。以下、「片側PWM」について説明する。なお、以下の説明において、両側PWMで動作させる動作モードを「両側PWMモード」と呼び、片側PWMで動作させる動作モードを「片側PWMモード」と呼ぶ。また、「両側PWM」によるPWM信号を「両側PWM信号」と呼び、「片側PWM」によるPWM信号を「片側PWM信号」と呼ぶ場合がある。
 図10は、図7に示すキャリア比較部38の他の例を示すブロック図である。図10には、片側PWM信号の生成回路の一例が示され、具体的には、キャリア比較部38B及びキャリア生成部33の詳細構成が示されている。なお、図10に示されるキャリア生成部33の構成は、図8に示されるものと同一又は同等である。また、図10に示されるキャリア比較部38Bの構成において、図8に示されるキャリア比較部38Aと同一又は同等の構成部には同一の符号を付して示している。
 キャリア比較部38Bは、図10に示されるように、絶対値演算部38a、除算部38b、乗算部38c、乗算部38k、加算部38m、加算部38n、比較部38g、比較部38h、出力反転部38i及び出力反転部38jを有する。
 絶対値演算部38aでは、電圧振幅指令V*の絶対値|V*|が演算される。除算部38bでは、絶対値|V*|が、電圧検出器20で検出された直流電圧Vdcによって除算される。図10の構成でも、除算部38bの出力が変調率となる。
 乗算部38cでは、基準位相θに進角位相θを加えた“θ+θ”の正弦値が演算される。演算された“θ+θ”の正弦値は、除算部38bの出力である変調率に乗算される。乗算部38kでは、乗算部38cの出力である電圧指令Vに“-1”が乗算される。加算部38mでは、乗算部38cの出力である電圧指令Vに“1”が加算される。加算部38nでは、乗算部38kの出力、即ち電圧指令Vの反転出力に“1”が加算される。加算部38mの出力は、複数のスイッチング素子51~54のうち、上アームの2つのスイッチング素子51,53を駆動するための第1電圧指令Vm3として比較部38gに入力される。加算部38nの出力は、下アームの2つのスイッチング素子52,54を駆動するための第2電圧指令Vm4として比較部38hに入力される。
 比較部38gでは、第1電圧指令Vm3と、キャリアの振幅とが比較される。比較部38gの出力を反転した出力反転部38iの出力は、スイッチング素子51へのPWM信号Q1となり、比較部38gの出力は、スイッチング素子52へのPWM信号Q2となる。同様に、比較部38hでは、第2電圧指令Vm4と、キャリアの振幅とが比較される。比較部38hの出力を反転した出力反転部38jの出力は、スイッチング素子53へのPWM信号Q3となり、比較部38hの出力は、スイッチング素子54へのPWM信号Q4となる。出力反転部38iにより、スイッチング素子51とスイッチング素子52とが同時にオンされることはなく、出力反転部38jにより、スイッチング素子53とスイッチング素子54とが同時にオンされることはない。
 図11は、図10に示すキャリア比較部38Bを用いて動作させたときの要部の波形例を示す図である。図11には、加算部38mから出力される第1電圧指令Vm3の波形と、加算部38nから出力される第2電圧指令Vm4の波形と、PWM信号Q1~Q4の波形と、インバータ出力電圧の波形とが示されている。なお、図11では、便宜的に、キャリアのピーク値よりも振幅値が大きくなる第1電圧指令Vm3の波形部分と、キャリアのピーク値よりも振幅値が大きくなる第2電圧指令Vm4の波形部分は、フラットな直線で表されている。
 PWM信号Q1は、第1電圧指令Vm3がキャリアよりも大きいときに“ロー(Low)”となり、第1電圧指令Vm3がキャリアよりも小さいときに“ハイ(High)”となる。PWM信号Q2は、PWM信号Q1の反転信号である。PWM信号Q3は、第2電圧指令Vm4がキャリアよりも大きいときに“ロー(Low)”となり、第2電圧指令Vm4がキャリアよりも小さいときに“ハイ(High)”となる。PWM信号Q4は、PWM信号Q3の反転信号である。このように、図10に示される回路は、“ローアクティブ(Low Active)”で構成されているが、それぞれの信号が逆の値となる“ハイアクティブ(High Active)”で構成されていてもよい。
 インバータ出力電圧の波形は、図11に示されるように、PWM信号Q1とPWM信号Q4との差電圧による電圧パルスと、PWM信号Q3とPWM信号Q2との差電圧による電圧パルスとが表れる。これらの電圧パルスが、モータ印加電圧として、単相モータ12に印加される。
 図11に示される波形では、電圧指令Vの1周期Tのうちの一方の半周期では、スイッチング素子51,52のスイッチング動作が休止し、電圧指令Vの1周期Tのうちの他方の半周期では、スイッチング素子53,54のスイッチング動作が休止している。
 また、図11に示される波形では、電圧指令Vの1周期Tのうちの一方の半周期では、スイッチング素子52は常時オン状態となるように制御され、電圧指令Vの1周期Tのうちの他方の半周期では、スイッチング素子54は常時オン状態となるように制御される。なお、図11は一例であり、一方の半周期では、スイッチング素子51が常時オン状態となるように制御され、他方の半周期では、スイッチング素子53が常時オン状態となるように制御される場合も有り得る。即ち、図11に示される波形には、電圧指令Vの半周期において、スイッチング素子51~54のうちの少なくとも1つがオン状態となるように制御されるという特徴がある。
 また、図11において、インバータ出力電圧の波形は、電圧指令Vの1周期ごとに3つの電位で変化するユニポーラ変調となる。前述の通り、ユニポーラ変調に代えてバイポーラ変調を用いてもよいが、モータ電流波形をより正弦波に制御する必要がある用途では、ユニポーラ変調を採用することが好ましい。
 図12は、図7に示されるキャリア比較部38へ入力される進角位相θを算出するための機能構成を示すブロック図である。進角位相θの算出機能は、図12に示されるように、回転速度算出部42と、進角位相算出部44とによって実現できる。回転速度算出部42は、電流検出器22によって検出されたモータ電流Iの検出値に基づいて単相モータ12の回転速度ωを算出する。また、回転速度算出部42は、モータ電流Iの検出値に基づいて、基準位相θを算出する。前述したように、基準位相θは、ロータ12aの基準位置からの角度であるロータ機械角を電気角に換算した位相である。ロータ機械角は、回転速度算出部42の内部で演算される演算値である。
 進角位相算出部44は、回転速度ω、基準位相θ及びモータ誘起電圧に基づいて進角位相θを算出する。モータ誘起電圧は、交流電圧Vacの検出値により取得することができる。前述したように、交流電圧Vacの検出値には、インバータ11が単相モータ12に印加するモータ印加電圧と、単相モータ12によって誘起されるモータ誘起電圧とが含まれている。これらの電圧のうち、モータ誘起電圧は、インバータ11が電圧を出力していないゲートオフ期間に検出することができる。進角位相θの算出手法の詳細は、後述する。
 次に、実施の形態1に係るモータ駆動装置2の駆動制御の要点である単相モータ12の加速制御について、図13及び図14を参照して説明する。図13は、実施の形態1における要部の動作説明に使用する第1の図である。図14は、実施の形態1における要部の動作説明に使用する第2の図である。なお、上述の図2及び図3は、非対称形状のティース12eを有する単相モータ12を駆動対象とする例であるが、駆動対象の単相モータは、図2及び図3の構造のものに限定されない。即ち、実施の形態1の手法は、ティース12eが非対称形状である場合に限定されず、ティース12eが対称形状である場合においても適用可能である。
 図13には、単相モータ12を加速するときの回転速度が低速である場合の動作波形が示されている。また、図14には、単相モータ12を加速するときの回転速度が高速である場合の動作波形が示されている。ここで言う高速又は低速は、両者の相対的な関係を意味するものであり、図13に示す第1の制御と図14に示す第2の制御とは、予め設定された回転速度で切り替える。即ち、予め設定された回転速度を「第1の回転速度」とするとき、単相モータ12の回転速度が第1の回転速度未満のときは、図13に示す第1の制御で単相モータ12を駆動する。そして、単相モータ12の回転速度が第1の回転速度以上のときは、図14に示す第2の制御で単相モータ12を駆動する。
 次に、第1及び第2の制御の詳細について、図13及び図14を参照して説明する。まず、図13を参照して第1の制御について説明する。
 図13の上段部にはモータ誘起電圧の波形が示されている。図13の下段部には、モータ印加電圧の波形と、モータ誘起電圧の波形とが示されている。下段部において、インバータ11がゲートオンするゲートオン期間は粗いハッチングパターンで示され、インバータ11がゲートオフするゲートオフ期間は細かなハッチングパターンで示されている。ゲートオン期間T1はモータ印加電圧の極性が正の期間であり、ゲートオン期間T2はモータ印加電圧の極性が負の期間である。ゲートオン期間T1とゲートオン期間T2との間には、ゲートオフ期間T3が存在する。
 なお、本稿では、ゲートオン期間T1を「第1の期間」と呼び、ゲートオン期間T2を「第2の期間」と呼ぶ場合がある。また、ゲートオフ期間T3を「印加停止期間」と呼ぶ場合がある。また、T4は、単相モータ12の回転周期の1/2の期間、即ち回転半周期を表している。回転半周期T4、ゲートオン期間T1,T2及びゲートオフ期間T3との間には、T4=T1+T3及びT4=T2+T3の関係がある。なお、本稿では、電気角の1周期を1回転周期として説明するが、ロータ機械角の1周期を1回転周期としてもよい。
 前述したように、ゲートオン期間T1では、正の極性の電圧が印加される。本稿では、この極性の電圧を「第1電圧」と呼ぶ。ゲートオン期間T1は、モータ誘起電圧の極性が負から正に切り替わるゼロクロス点から始まる。また、ゲートオン期間T2では、負の極性の電圧が印加される。本稿では、この極性の電圧を「第2電圧」と呼ぶ。ゲートオン期間T2は、モータ誘起電圧の極性が正から負に切り替わるゼロクロス点から始まる。なお、図13では、第1電圧及び第2電圧が1パルスの電圧である場合を例示しているが、これに限定されない。第1電圧及び第2電圧は、PWM制御された複数のパルス列の電圧でもよい。
 第1の制御において、モータ印加電圧の極性の切り替えは、単相モータ12の回転速度及びモータ誘起電圧に基づいて行われる。ゲートオフ期間T3では、インバータ11がゲートオフしているので、電圧検出器21によってモータ誘起電圧の検出が可能である。従って、モータ誘起電圧のゼロクロス点の検出も可能である。なお、ゼロクロス点は、ロータ機械角を電気角に換算した位相であり、演算によって求められている基準位相θを用いることも可能である。
 単相モータ12の回転速度が第1の回転速度未満である場合、モータ誘起電圧のゼロクロス点をモータ印加電圧の極性の切り替え点とする。即ち、回転速度が第1の回転速度未満である場合、第1の閾値は零値に設定される。従って、モータ誘起電圧のゼロクロス点において、ゲートオン期間T1又はゲートオン期間T2が開始される。そして、ゲートオン期間T1,T2が繰り返されることにより、単相モータ12には回転トルクが付与され、単相モータ12は加速して回転する。
 ゲートオン期間T1,T2の長さ、及びモータ印加電圧の振幅は、デューティ比、変調率及び回転速度に基づいて決定することができる。デューティ比は回転半周期T4に対するゲートオン期間T1,T2の比である。
 なお、モータ誘起電圧を電圧検出器21にて直接検出する手法に代え、電圧検出器20の検出値、又は電流検出器24の検出値に基づいてモータ誘起電圧を算出してもよい。なお、電圧検出器20の検出値を用いる場合には、バッテリ10の出力電圧をゼロにする制御手段、又はバッテリ10とインバータ11との間の電気的接続を切り離す機構が必要である。
 次に、図14を参照して第2の制御について説明する。図13と同様に、図14の上段部にはモータ誘起電圧の波形が示され、下段部にはモータ印加電圧の波形とモータ誘起電圧の波形とが示されている。ゲートオン期間及びゲートオフ期間に付しているハッチングパターンも図13と同じである。
 第2の制御において、モータ印加電圧の極性の切り替えは、単相モータ12の回転速度及びモータ誘起電圧に基づいて行われる。ゲートオフ期間τ3では、インバータ11がゲートオフしているので、電圧検出器21によってモータ誘起電圧の検出が可能である。
 ゲートオン期間τ1では、正の極性の第1電圧が印加される。ゲートオン期間τ1は、モータ誘起電圧の振幅の絶対値がΔVに到達したときから始まる。また、ゲートオン期間τ2では、負の極性の第2電圧が印加される。ゲートオン期間τ2は、モータ誘起電圧の振幅の絶対値がΔVに到達したときから始まる。即ち、第2の制御では、モータ誘起電圧の振幅の絶対値と比較するΔVの値が第1の閾値に設定される。図14に示すように、第1の閾値は正値である。インバータ11は、モータ誘起電圧の振幅の絶対値が第1の閾値に到達する都度、単相モータ12に印加する電圧の極性を反転する。また、第2の制御において、第1の閾値は、回転速度の増加に対して増加傾向となるように設定される。なお、図14では、第1電圧及び第2電圧が1パルスの電圧である場合を例示しているが、これに限定されない。第1電圧及び第2電圧は、PWM制御された複数のパルス列の電圧でもよい。
 なお、図14においても図13と同様に、ゲートオン期間τ1を「第1の期間」と呼び、ゲートオン期間τ2を「第2の期間」と呼ぶ場合がある。また、ゲートオフ期間τ3を「印加停止期間」と呼ぶ場合がある。また、回転半周期τ4、ゲートオン期間τ1,τ2及びゲートオフ期間τ3との間には、τ4=τ1+τ3及びτ4=τ2+τ3の関係がある。また、ゲートオン期間τ1,τ2の長さ、及びモータ印加電圧の振幅は、デューティ比、変調率及び回転速度に基づいて決定することができる。
 次に、実施の形態1の第1の制御におけるデューティ比T1/T4,T2/T4,第2の制御におけるデューティ比τ1/τ4,τ2/τ4、及び第2の制御における第1の閾値ΔVの意義について説明する。
 まず、デューティ比T1/T4,τ1/τ4,T2/T4,τ2/τ4はモータ印加電圧に寄与し、第1の閾値ΔVはモータ誘起電圧に対するモータ印加電圧の位相差である進角位相θに寄与する。加速時において、回転速度が低い低速時においては、高速時と比較して、リアクタンス成分(ωL)が小さい。このため、単相モータ12に流れるモータ電流は、高速時と比較すると、低速時の方が、モータ電流に対するモータ印加電圧の位相遅れが小さい。位相遅れが小さいことは、力率が大きいことを意味する。力率が大きければ、単相モータ12に対して、有効なモータトルクを付与することが可能となる。
 また、高速時においては、リアクタンス成分(ωL)が大きくなる。このとき、モータ電流に対するモータ印加電圧の位相遅れが大きくなるが、進角位相θを大きくすることで、力率が小さくなるのを抑制することができる。更に、単相モータ12に発生するモータ誘起電圧は、回転速度の増加に応じて増大する。モータ誘起電圧が大きい場合、インバータ出力電圧を大きくしても過電流を抑制することができる。このため、回転速度の増加に応じてインバータ出力電圧を大きくすることで、過電流を抑制しつつ、加速時間の短縮化を図ることが可能となる。
 上記の制御動作を実現するため、実施の形態1の制御では、回転速度の増加に応じて第1の閾値ΔVが大きくなるように制御して、進角位相θを増加させる。この制御により、高い力率を維持できるので、単相モータ12に付与する加速トルクを効率良く得ることができ、単相モータ12に供給する電力を有効に活用することが可能となる。
 以上説明したように、実施の形態1に係るモータ駆動装置によれば、インバータは、単相モータの加速時において、第1の期間に単相モータに第1電圧を印加し、第1電圧の印加後の第2の期間に、第1電圧の極性を反転した第2電圧を印加する。第1の期間と第2の期間との間には、第1電圧の印加を停止する印加停止期間が存在する。この印加停止期間において、第1の検出器によって検出される第1の物理量は、単相モータの回転速度の増加に対して増加傾向となるように制御される。このような制御により、回転速度の増加に対して、モータ印加電圧の極性の切り替えタイミングがモータ誘起電圧のゼロクロス点よりも進みの方向に制御される。これにより、単相モータ12に付与する加速トルクを効率良く得ることができ、単相モータ12に供給する電力を有効に活用することが可能となる。
 また、実施の形態1に係るモータ駆動装置によれば、第1電圧及び第2電圧の平均値の絶対値は、回転速度の増加に対して増加傾向となるように制御される。回転速度の増加に応じてモータ誘起電圧は増大するので、インバータ出力電圧を大きくしても過電流を抑制することができる。従って、過電流を抑制しつつ、加速時間の短縮化を図ることが可能となる。
 次に、実施の形態1に係るモータ駆動装置2において、単相モータ12を位置センサレスで駆動することによる効果について説明する。
 まず、適用例が電気掃除機であり、位置センサとして磁極位置センサが用いられる場合、ロータに具備される永久磁石と、磁極位置センサを備えた基板との距離が近くなる。この場合、羽根で発生させた風の流れを妨げる位置に基板を配置することとなり、風路の圧力損失を増大させてしまう。圧力損失の増大は、電気掃除機の吸い込み仕事率を悪化させ、吸引力を低下させてしまう要因となる。
 これに対し、位置センサレスでは、位置センサを備えないことから基板配置の自由度が増えるので、基板を風路に対し平行に配置することができる。これにより、基板が風路を遮断しないので、風路の圧力損失を抑制し、吸引力を向上させることができる。その結果、電気掃除機の吸い込み仕事率を向上させることが可能となる。
 また、適用例が電動送風機である場合において、電動送風機が吸引した気体に水分が多く含まれている場合、基板に直接衝突する水分量が多くなる。この場合、基板に電圧を印加した際に、電極間をイオン化した金属が移動して短絡が生じるという、イオンマイグレーションの発生が懸念される。更に、塵又は埃が基板に堆積することに起因して発生する短絡が懸念される。この対策として、防湿剤を基板に塗布すること、又は基板を風路から隔離する方法が採られるが、何れも製造コストの増大を招く。
 これに対し、位置センサレスでは、位置センサを備えないことから基板配置の自由度が増えるので、風路を避けて基板を配置することができる。これにより、基板に直接衝突する水分量が減少するので、イオンマイグレーションの発生を抑制し、防湿剤の量を低減することができる。また、基板配置の自由度が増加しているので、基板を筺体の外部に配置することで、基板の品質を向上させることができる。
 また、位置センサが磁極位置センサである場合、磁極位置を正しく検出するための取り付け作業の精度が要求されると共に、取り付け位置に応じた位置調整作業を実施する必要がある。このため、製造上の管理が難しくなり、設置作業を含めた製造コストの増大を招く。
 これに対し、位置センサレスでは、位置センサを取り付ける設置工程、及び取り付け後の調整工程が不要であるので、製造コストの大幅な削減が可能となる。また、位置センサの経年変化による影響が発生しないので、製品の品質を向上させることができる。
 更に、位置センサレスでは、位置センサを必要としないため、インバータと単相モータとを分離して構成することができる。これにより、製品適用時の制約を小さくできる。例えば、適用例が水場等で使用する製品である場合、水場等の位置からインバータを隔離して配置することができる。
 また、位置センサレスの場合、電流検出器を備えた構成となる。電流検出器は、モータ電流を検出することで、軸ロック又は欠相といったモータ異常を検知可能である。これにより、位置センサが無くても、安全に停止させることができる。
 なお、モータ異常を検出するには、例えば過電流を判定するための第2の閾値を設定する。そして、シャント電圧が第2の閾値に到達した場合には、モータ異常と判定する。更に、モータ異常と判定した場合には、インバータの出力を遮断する。このようにすれば、モータ異常を検出して、製品の動作を安全に停止することができる。
実施の形態2.
 実施の形態2では、実施の形態1で説明したモータ駆動装置2の応用例について説明する。上述したモータ駆動装置2は、例えば電気掃除機に用いることができる。電気掃除機のように、電源の投入直後から直ぐに使用する製品の場合、実施の形態1,2に係るモータ駆動装置2が有する起動時間短縮による効果が大きくなる。
 図15は、実施の形態2に係る電気掃除機61の構成図である。図15に示す電気掃除機61は、いわゆるスティック型の電気掃除機である。図15において、電気掃除機61は、図1に示されるバッテリ10と、図1に示されるモータ駆動装置2と、図1に示される単相モータ12により駆動される電動送風機64と、集塵室65と、センサ68と、吸込口体63と、延長管62と、操作部66とを備える。
 電気掃除機61を使用するユーザは、操作部66を持ち、電気掃除機61を操作する。電気掃除機61のモータ駆動装置2は、バッテリ10を電源として電動送風機64を駆動する。電動送風機64が駆動されることにより、吸込口体63からごみの吸込みが行われる。吸込まれたごみは、延長管62を介して集塵室65へ集められる。
 なお、図15では、スティック型の電気掃除機を例示したが、スティック型の電気掃除機に限定されるものではない。電動送風機を搭載した電気機器であれば、任意の製品に本開示の技術を適用できる。
 また、図15は、バッテリ10を電源として用いる構成であるが、これに限定されない。バッテリ10に代えて、コンセントから供給する交流電源を用いる構成でもよい。
 また、上述したモータ駆動装置は、例えばハンドドライヤに用いることができる。ハンドドライヤの場合、手を挿入してから電動送風機を駆動するまでの時間が短い程、ユーザの使用感は向上する。このため、実施の形態1,2に係るモータ駆動装置2が有する起動時間短縮の効果が大いに発揮される。
 図16は、実施の形態2に係るハンドドライヤ90の構成図である。図16において、ハンドドライヤ90は、図1に示されるモータ駆動装置2と、ケーシング91と、手検知センサ92と、水受け部93と、ドレン容器94と、カバー96と、センサ97と、吸気口98と、図1に示される単相モータ12により駆動される電動送風機95とを備える。ここで、センサ97は、ジャイロセンサ及び人感センサの何れかである。ハンドドライヤ90では、水受け部93の上部にある手挿入部99に手が挿入されることにより、電動送風機95による送風で水が吹き飛ばされ、吹き飛ばされた水は、水受け部93で集められた後、ドレン容器94に溜められる。
 上述した電気掃除機61及びハンドドライヤ90は、何れも実施の形態1,2に係るモータ駆動装置2を備えた位置センサレスの製品であるため、以下に示す効果が得られる。
 まず、位置センサレスの構成の場合、位置センサが無くても起動することができるため、位置センサの材料費、加工費等のコストを削減することができる。また、位置センサが無いため、位置センサの取り付けずれによる性能影響を無くすことができる。これにより、安定した性能を確保することができる。
 また、位置センサはセンシティブなセンサであるため、位置センサの設置位置に関して、高精度な取り付け精度が要求される。また、取り付け後に位置センサの取り付け位置に応じた調整が必要になる。これに対し、位置センサレスの構成の場合、位置センサそのものが不要となり、位置センサの調整工程も排除することができる。これにより、製造コストを大幅に削減することができる。また、位置センサの経年変化による影響が発生しないため、製品の品質を向上させることができる。
 また、位置センサレスの構成の場合、位置センサが不要であるため、インバータと単相モータとを分離して構成することができる。これにより、製品に対する制約を緩和することが可能となる。例えば、水分の多い水場で使用する製品の場合、製品におけるインバータの搭載位置を水場から遠い箇所に配置することができる。これにより、インバータが故障する可能性を小さくできるので、装置の信頼性を高めることができる。
 また、位置センサレスの構成の場合、位置センサに代えて配置した電流検出器により、モータ電流又はインバータ電流を検出することで、軸ロック及び欠相と言ったモータの異常を検知することができる。このため、位置センサが無くても、製品を安全に停止させることができる。
 以上の通り、実施の形態1,2に係るモータ駆動装置2を電気掃除機及びハンドドライヤに適用した構成例を説明したが、これらの例に限定されない。モータ駆動装置2は、モータが搭載された電気機器に広く適用することができる。モータが搭載された電気機器の例は、焼却炉、粉砕機、乾燥機、集塵機、印刷機械、クリーニング機械、製菓機械、製茶機械、木工機械、プラスチック押出機、ダンボール機械、包装機械、熱風発生機、OA機器、及び電動送風機である。電動送風機は、物体輸送用、吸塵用、又は一般送排風用の送風手段である。
 なお、以上の実施の形態に示した構成は、一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、実施の形態同士を組み合わせることも可能であるし、要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。
 1 モータ駆動システム、2 モータ駆動装置、5A,5B レグ、6A,6B 接続端、10 バッテリ、11,11A インバータ、12 単相モータ、12a ロータ、12b ステータ、12c シャフト、12d 分割コア、12e ティース、12e1 第1先端部、12e2 第2先端部、12f 巻線、16a,16b 直流母線、18a,18b 接続線、20,21 電圧検出器、22,24 電流検出器、25 制御部、30 アナログディジタル変換器、30a ディジタル出力値、31 プロセッサ、32 駆動信号生成部、33 キャリア生成部、34 メモリ、38,38A,38B キャリア比較部、38a 絶対値演算部、38b 除算部、38c,38d,38f,38k 乗算部、38e,38m,38n 加算部、38g,38h 比較部、38i,38j 出力反転部、42 回転速度算出部、44 進角位相算出部、51,52,53,54 スイッチング素子、51a,52a,53a,54a ボディダイオード、55a,55b シャント抵抗、61 電気掃除機、62 延長管、63 吸込口体、64,95 電動送風機、65 集塵室、66 操作部、68,97 センサ、90 ハンドドライヤ、91 ケーシング、92 手検知センサ、93 水受け部、94 ドレン容器、96 カバー、98 吸気口、99 手挿入部。

Claims (11)

  1.  単相モータを駆動するモータ駆動装置であって、
     直流電圧を交流電圧に変換し、変換した前記交流電圧を前記単相モータに印加するインバータと、
     前記単相モータに誘起されるモータ誘起電圧と相関のある第1の物理量を検出する第1の検出器と、
     を備え、
     前記単相モータの加速時において、前記インバータは、第1の期間に前記単相モータに第1電圧を印加し、前記第1電圧の印加後の第2の期間に、前記第1電圧の極性を反転した第2電圧を印加し、
     前記第1の期間と前記第2の期間との間には、前記第1電圧の印加を停止する印加停止期間が存在し、
     前記印加停止期間において、前記第1の検出器によって検出される前記第1の物理量は、前記単相モータの回転速度の増加に対して増加傾向である
     モータ駆動装置。
  2.  前記インバータは、前記第1の物理量の絶対値が第1の閾値に到達する都度、前記単相モータに印加する電圧の極性を反転する
     請求項1に記載のモータ駆動装置。
  3.  前記単相モータの回転速度が予め設定された第1の回転速度未満である場合、前記第1の閾値は零値に設定され、
     前記単相モータの回転速度が前記第1の回転速度以上である場合、前記第1の閾値は正値に設定され、且つ前記第1の閾値は前記回転速度の増加に対して増加傾向である
     請求項2に記載のモータ駆動装置。
  4.  前記第1電圧及び前記第2電圧の平均値の絶対値は、前記回転速度の増加に対して増加傾向である
     請求項1から3の何れか1項に記載のモータ駆動装置。
  5.  前記単相モータは位置センサレスで駆動される
     請求項1から4の何れか1項に記載のモータ駆動装置。
  6.  前記単相モータに流れる電流と相関のある第2の物理量を検出する第2の検出器を備え、
     前記第2の物理量が第2の閾値に到達した際には、前記インバータは動作を停止する
     請求項1から5の何れか1項に記載のモータ駆動装置。
  7.  前記インバータは、ブリッジ接続される複数のスイッチング素子を有し、
     複数の前記スイッチング素子のうちの少なくとも1つはワイドバンドギャップ半導体で形成されている
     請求項1から6の何れか1項に記載のモータ駆動装置。
  8.  前記ワイドバンドギャップ半導体は、炭化珪素、窒化ガリウム、酸化ガリウム又はダイヤモンドである
     請求項7に記載のモータ駆動装置。
  9.  請求項1から8の何れか1項に記載のモータ駆動装置を備えた電動送風機。
  10.  請求項9に記載の電動送風機を備えた電気掃除機。
  11.  請求項9に記載の電動送風機を備えたハンドドライヤ。
PCT/JP2020/039274 2020-10-19 2020-10-19 モータ駆動装置、電動送風機、電気掃除機及びハンドドライヤ WO2022085049A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2020/039274 WO2022085049A1 (ja) 2020-10-19 2020-10-19 モータ駆動装置、電動送風機、電気掃除機及びハンドドライヤ
JP2022556836A JP7403681B2 (ja) 2020-10-19 2020-10-19 モータ駆動装置、電動送風機、電気掃除機及びハンドドライヤ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/039274 WO2022085049A1 (ja) 2020-10-19 2020-10-19 モータ駆動装置、電動送風機、電気掃除機及びハンドドライヤ

Publications (1)

Publication Number Publication Date
WO2022085049A1 true WO2022085049A1 (ja) 2022-04-28

Family

ID=81290295

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/039274 WO2022085049A1 (ja) 2020-10-19 2020-10-19 モータ駆動装置、電動送風機、電気掃除機及びハンドドライヤ

Country Status (2)

Country Link
JP (1) JP7403681B2 (ja)
WO (1) WO2022085049A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6311085A (ja) * 1986-06-30 1988-01-18 Aichi Electric Co Ltd 1相ブラシレスモ−タの駆動方法及び駆動装置
JP2013005533A (ja) * 2011-06-14 2013-01-07 Semiconductor Components Industries Llc 単相ブラシレスモータの駆動回路
JP2013081375A (ja) * 2013-02-06 2013-05-02 Mitsuba Corp ブラシレスモータの駆動装置及び制御方法、ブラシレスファンモータの駆動装置及び制御方法
WO2018073869A1 (ja) * 2016-10-17 2018-04-26 三菱電機株式会社 モータ駆動装置、電動送風機、電気掃除機及びハンドドライヤー

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6311085B1 (ja) 2018-02-05 2018-04-11 マクセル株式会社 画像の復号化装置および画像の復号化方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6311085A (ja) * 1986-06-30 1988-01-18 Aichi Electric Co Ltd 1相ブラシレスモ−タの駆動方法及び駆動装置
JP2013005533A (ja) * 2011-06-14 2013-01-07 Semiconductor Components Industries Llc 単相ブラシレスモータの駆動回路
JP2013081375A (ja) * 2013-02-06 2013-05-02 Mitsuba Corp ブラシレスモータの駆動装置及び制御方法、ブラシレスファンモータの駆動装置及び制御方法
WO2018073869A1 (ja) * 2016-10-17 2018-04-26 三菱電機株式会社 モータ駆動装置、電動送風機、電気掃除機及びハンドドライヤー

Also Published As

Publication number Publication date
JP7403681B2 (ja) 2023-12-22
JPWO2022085049A1 (ja) 2022-04-28

Similar Documents

Publication Publication Date Title
JP6644159B2 (ja) モータ駆動装置、電動送風機、電気掃除機及びハンドドライヤー
JP6671516B2 (ja) モータ駆動装置、電動送風機、電気掃除機及びハンドドライヤ
WO2018229874A1 (ja) モータ駆動装置、電動送風機、電気掃除機及びハンドドライヤ
JP7237198B2 (ja) モータ駆動装置、電気掃除機及び手乾燥機
JP6847195B2 (ja) モータ駆動装置、電動送風機、電気掃除機及びハンドドライヤー
JP7076637B2 (ja) モータ駆動装置、電動送風機、電気掃除機及びハンドドライヤ
WO2022085049A1 (ja) モータ駆動装置、電動送風機、電気掃除機及びハンドドライヤ
JP7150151B2 (ja) モータ駆動装置、電動送風機、電気掃除機及びハンドドライヤ
JP7237197B2 (ja) モータ駆動装置、電気掃除機及び手乾燥機
WO2022085050A1 (ja) モータ駆動装置、電動送風機、電気掃除機及びハンドドライヤ
WO2022085048A1 (ja) モータ駆動装置、電動送風機、電気掃除機及びハンドドライヤ
WO2023181181A1 (ja) モータ駆動装置、電動送風機、電気掃除機及びハンドドライヤ
WO2023181182A1 (ja) モータ駆動装置、電動送風機、電気掃除機及びハンドドライヤ
JP6910538B2 (ja) モータ駆動装置、電気掃除機及び手乾燥機
JP6636224B1 (ja) モータ駆動装置、電気掃除機及び手乾燥機
JP6616055B1 (ja) モータ駆動装置、電気掃除機及び手乾燥機
JP7150152B2 (ja) モータ駆動装置、電動送風機、電気掃除機及びハンドドライヤ
WO2019180968A1 (ja) モータ駆動装置、電気掃除機及び手乾燥機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20958605

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022556836

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20958605

Country of ref document: EP

Kind code of ref document: A1