WO2022085047A1 - Determination device, determination system, and determination method - Google Patents

Determination device, determination system, and determination method Download PDF

Info

Publication number
WO2022085047A1
WO2022085047A1 PCT/JP2020/039260 JP2020039260W WO2022085047A1 WO 2022085047 A1 WO2022085047 A1 WO 2022085047A1 JP 2020039260 W JP2020039260 W JP 2020039260W WO 2022085047 A1 WO2022085047 A1 WO 2022085047A1
Authority
WO
WIPO (PCT)
Prior art keywords
manhole
determination
determination unit
inspection cycle
determines
Prior art date
Application number
PCT/JP2020/039260
Other languages
French (fr)
Japanese (ja)
Inventor
久稔 笠原
陽祐 竹内
陽介 岡村
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to JP2022556834A priority Critical patent/JP7460932B2/en
Priority to PCT/JP2020/039260 priority patent/WO2022085047A1/en
Publication of WO2022085047A1 publication Critical patent/WO2022085047A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M99/00Subject matter not provided for in other groups of this subclass
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N17/00Investigating resistance of materials to the weather, to corrosion, or to light

Definitions

  • the present invention relates to a determination device, a determination system, and a determination method.
  • Neutralization is a phenomenon in which concrete, which was alkaline at the time of casting, gradually becomes neutral from the surface (interface between concrete and air) due to carbon dioxide in the atmosphere. Corrosion does not proceed because the internal reinforcing bars form a passivation in an alkaline environment, but corrosion progresses in a neutral environment. Therefore, the neutralization causes the internal reinforcing bars to corrode and reduce the wall thickness, which reduces the strength of the reinforced concrete.
  • the rate of progress of neutralization in reinforced concrete structures differs depending on the environment, material conditions, etc. (see, for example, Non-Patent Document 1). Therefore, if the reinforced concrete structure is classified according to the neutralization progress speed and an appropriate inspection time and inspection cycle are assigned, maintenance can be carried out more efficiently. For example, for a reinforced concrete structure in which neutralization hardly progresses, the inspection cycle may be extended from the current one.
  • the neutralization progress rate is not reflected in the inspection cycle and inspection time for reinforced concrete structures.
  • the reason why it has not been reflected is that it may take a lot of work to grasp the progress of neutralization.
  • the purpose of the present disclosure made in view of such circumstances is to provide a determination device, a determination system, and a determination method that enable efficient maintenance of a reinforced concrete structure.
  • the determination device determines the inspection cycle of the reinforced concrete structure based on the determination unit for determining whether or not the accumulated water is present inside the reinforced concrete structure and the determination result by the determination unit. It has a decision unit.
  • the determination system includes a moisture detection sensor that detects whether or not moisture is present in the water collecting portion inside the reinforced concrete structure, and the inside of the reinforced concrete structure based on the information detected by the moisture detection sensor.
  • a determination unit for determining whether or not the accumulated water is present, and a determination unit for determining the inspection cycle of the reinforced concrete structure based on the determination result by the determination unit are provided.
  • the inspection cycle of the reinforced concrete structure is determined based on the step of determining whether or not the accumulated water is present inside the reinforced concrete structure and the determination result of the determination step. Including steps.
  • the determination device 100 is an device that determines the inspection cycle of the reinforced concrete structure.
  • Examples of the reinforced concrete structure include a manhole 2.
  • the manhole 2 is, for example, a standard product communication manhole.
  • the manhole 2 includes a neck portion 210, a skeleton portion 220, an iron lid 230, and the like.
  • the neck portion 210 has, for example, a substantially cylindrical shape
  • the skeleton portion 220 has, for example, a substantially rectangular parallelepiped shape.
  • the iron lid 230 has a substantially cylindrical shape and fits into the manhole hole which is the entrance / exit of the manhole 2.
  • the neck 210 and the skeleton 220 are made of reinforced concrete.
  • the skeleton portion 220 includes an upper floor slab 221, a lower floor slab 222, and a side wall portion 223.
  • the interior S of the manhole 2 is surrounded by the ceiling surface R of the upper floor slab 221 in the skeleton 220, the wall surface J of the side wall 223 in the skeleton 220, the floor surface F of the lower floor slab 222 in the skeleton 220, and the like.
  • a water collecting portion (recessed portion) 224 for the purpose of collecting water is provided on the floor surface F of the lower floor slab 222 in the skeleton portion 220.
  • the accumulated water 3 that flows into the internal S of the manhole 2 due to rainfall or the like has a structure of being accumulated from the water collecting portion 224. Once the pooled water 3 flows into the internal S of the manhole 2, it is difficult for it to flow out and does not disappear naturally.
  • the horizontal axis indicates the age of the material (the period after the concrete is placed) [year]
  • the vertical axis indicates the neutralization depth [mm].
  • the neutralization depth in the manhole 2 in which the reservoir water 3 is present is indicated by a black circle
  • the neutralization depth in the manhole 2 in which the reservoir water 3 is not present is indicated by a white circle.
  • the neutralization depth when the reservoir water 3 does not exist in the inner S of the manhole 2 is larger than the neutralization depth when the reservoir water 3 exists in the inner S of the manhole 2. I understand. That is, it can be seen that when the pooled water 3 does not exist in the inside S of the manhole 2, the neutralization proceeds, but when the pooled water 3 exists in the inside S of the manhole 2, the neutralization hardly progresses.
  • the neutralization progress rate in the manhole 2 depends on whether or not the reservoir 3 is present in the internal S of the manhole 2, and the neutralization progress rate in the manhole 2 when the reservoir 3 is not present is the reservoir. It is presumed that it is faster than the neutralization progress rate in the manhole 2 in the presence of water 3. That is, it is presumed that determining the presence or absence of the accumulated water 3 in the inner S of the manhole 2 is appropriate from the viewpoint of determining the neutralization progress rate in the manhole 2.
  • the determination device 100 includes an input unit 110, a control unit 120, a storage unit 130, and an output unit 140.
  • the determination device 100 may further include a communication unit.
  • the input unit 110 accepts input of various information.
  • the input unit 110 may be any device as long as it can be operated by an operator, and may be, for example, a microphone, a touch panel, a keyboard, a mouse, or the like.
  • the operator inspects the inside S of the manhole 2, visually confirms whether or not the accumulated water exists inside the manhole 2, and indicates whether or not the accumulated water exists inside the manhole 2.
  • the accumulated water information may be input using the input unit 110.
  • the accumulated water information is input to the control unit 120.
  • the accumulated water information may be stored in the storage unit 130 in advance as a database by being input by an operator into, for example, Excel (registered trademark).
  • the input unit 110 may be integrated with the determination device 100 or may be provided separately.
  • the control unit 120 may be configured by dedicated hardware, a general-purpose processor, or a processor specialized for a specific process.
  • the control unit 120 includes a determination unit 121 and a determination unit 122.
  • the determination unit 121 determines whether or not the accumulated water 3 exists in the internal S of the manhole 2 based on the accumulated water information stored in the storage unit 130 or the accumulated water information directly input by the operator. .. Then, the determination unit 121 outputs the determination result to the determination unit 122.
  • the determination unit 121 determines to the determination unit 122 that the accumulated water 3 exists in the internal S of the manhole 2. Output. For example, when the determination unit 121 determines that the accumulated water 3 does not exist in the internal S of the manhole 2 based on the accumulated water information, the determination unit 122 determines the determination result that the accumulated water 3 does not exist in the internal S of the manhole 2. Output to.
  • the determination unit 122 determines the inspection cycle of the manhole 2 based on the determination result input from the determination unit 121.
  • the determination unit 122 may further determine the inspection time of the manhole 2 based on the determined inspection cycle.
  • the determination unit 122 determines that the inspection cycle of the manhole 2 is extended from the conventional inspection cycle based on the determination result that the accumulated water 3 exists in the internal S of the manhole 2 input from the determination unit 121. ..
  • the determination unit 122 determines that the inspection cycle of the manhole 2 is the same as the conventional inspection cycle based on the determination result that the accumulated water 3 does not exist in the internal S of the manhole 2 input from the determination unit 121. do.
  • the determination unit 122 determines the specific number of years for the inspection cycle, for example, referring to FIG. 9, the year 2000 is theoretically based on a humidity of about 85% and a water-cement ratio of about 77%. The above is considered to be appropriate, but this inspection cycle is only a theoretical value. In fact, when the determination unit 122 determines the inspection cycle, it considers not only the deterioration of the manhole 2 (for example, deterioration due to neutralization) but also the deterioration of the cable and the metal member supporting the cable. There is a need. Therefore, it is preferable that the determination unit 122 determines the inspection cycle in consideration of the deterioration data of various members stored in the storage unit 130 in addition to the determination result input from the determination unit 121. In addition to the deterioration of various members, the equipment may be destroyed by an unexpected external force, and making the inspection cycle too long is a risk. Therefore, it is more preferable that the determination unit 122 determines the inspection cycle on the assumption of such an external force.
  • the storage unit 130 includes one or more memories, and may include, for example, a semiconductor memory, a magnetic memory, an optical memory, and the like. Each memory included in the storage unit 130 may function as, for example, a main storage device, an auxiliary storage device, or a cache memory. Each memory does not necessarily have to be provided inside the determination device 100, and may be provided outside the determination device 100.
  • the storage unit 130 stores arbitrary information used for the operation of the determination device 100.
  • the storage unit 130 stores the accumulated water information, the determination result determined by the determination unit 121, the inspection cycle determined by the determination unit 122, the inspection time determined by the determination unit 122, and the like.
  • the storage unit 130 stores, for example, various programs and data.
  • the output unit 140 outputs various information.
  • the output unit 140 is, for example, a liquid crystal display, an organic EL (Electro-Luminescence) display, a speaker, or the like.
  • the output unit 140 displays information such as an inspection cycle and an inspection time.
  • the output unit 140 may be integrated with the determination device 100 or may be provided separately.
  • the determination device 100 has a determination unit 121 for determining whether or not the accumulated water 3 exists in the internal S of the manhole 2, and a determination unit 122 for determining the inspection cycle of the manhole 2 based on the determination result. And. This makes it possible to determine an appropriate inspection cycle for each manhole 2 that reflects the neutralization progress rate in each manhole 2 without performing on-site measurement by sampling or destructive test. Therefore, it is possible to realize the determination device 100 that enables efficient maintenance of the manhole 2.
  • step S101 the determination device 100 determines whether or not the pooled water 3 exists in the internal S of the manhole 2 based on the pooled water information stored in the storage unit 130 in advance as a database.
  • the determination device 100 determines that the accumulated water 3 exists in the internal S of the manhole 2 (step S101 ⁇ Yes)
  • the determination device 100 performs the process of step S102.
  • the determination device 100 determines that the pooled water 3 does not exist in the internal S of the manhole 2 (step S101 ⁇ No)
  • the determination device 100 performs the process of step S103.
  • step S102 the determination device 100 determines that the inspection cycle of the manhole 2 is extended from the conventional inspection cycle.
  • step S103 the determination device 100 determines that the inspection cycle of the manhole 2 is the same as the conventional inspection cycle.
  • step S201 the worker inspects the internal S of the manhole 2. Then, the operator visually confirms whether or not the pooled water 3 exists in the internal S of the manhole 2.
  • the operator confirms that the pooled water 3 exists in the inside S of the manhole 2 the operator performs a predetermined operation via the input unit 110 to determine that the pooled water 3 exists in the inside S of the manhole 2.
  • the indicated accumulated water information is input to the determination device 100.
  • the operator confirms that the accumulated water 3 does not exist in the internal S of the manhole 2 the operator performs a predetermined operation via the input unit 110 so that the accumulated water 3 does not exist in the internal S of the manhole 2.
  • the accumulated water information indicating that is input to the determination device 100. In most cases, the presence or absence of the accumulated water 3 in the internal S of the manhole 2 can be clearly confirmed visually by the operator.
  • step S202 the determination device 100 stores the accumulated water information.
  • the determination device 100 is inspected directly at the site by the operator and manually input to the determination device 100, and stores the updated accumulated water information each time the inspection is performed.
  • the updated pool water information is information corresponding to changes in the manhole 2 with the passage of time. Therefore, for example, when the reservoir 3 suddenly flows into the manhole 2 due to an unexpected accident or the like, it is useful for the determination device 100 to apply the updated pool information.
  • step S203 the determination device 100 determines whether or not the pool water 3 exists in the internal S of the manhole 2 based on the pool water information directly input by the operator.
  • the determination device 100 determines that the accumulated water 3 exists in the internal S of the manhole 2 (step S203 ⁇ Yes)
  • the determination device 100 performs the process of step S204.
  • the determination device 100 determines that the accumulated water 3 does not exist in the internal S of the manhole 2 (step S203 ⁇ No)
  • the determination device 100 performs the process of step S205.
  • step S204 the determination device 100 determines that the inspection cycle of the manhole 2 is extended from the conventional inspection cycle.
  • step S205 the determination device 100 determines that the inspection cycle of the manhole 2 is the same as the conventional inspection cycle.
  • step S206 the determination device 100 further determines the next inspection time based on the determined inspection cycle, and performs the process of step S201 again.
  • the determination system 10 includes a determination device 100 and a moisture detection sensor 200.
  • the determination device 100 includes an input unit 110, a control unit 120, a storage unit 130, an output unit 140, and a communication unit 150.
  • the determination device 100 and the moisture detection sensor 200 are communicably connected by wire or wirelessly. In the determination system 10, duplicate description may be omitted for the same configuration as the determination device 100 according to the first embodiment.
  • the moisture detection sensor 200 is provided in the water collecting portion 224 in the internal S of the manhole 2. By providing the moisture detection sensor 200 in the water collecting portion 224 where the accumulated water 3 tends to accumulate, it is possible to detect the moisture with higher accuracy.
  • the moisture detection sensor 200 detects whether or not moisture is present in the water collecting portion 224 in the internal S of the manhole 2. Then, the moisture detection sensor 200 transmits moisture detection information indicating whether or not moisture is present in the water collecting portion 224 in the internal S of the manhole 2 to the determination device 100.
  • the determination unit 121 determines whether or not water is present in the water collecting unit 224 in the internal S of the manhole 2 based on the moisture detection information received from the moisture detection sensor 200, and further, stores the water in the internal S of the manhole 2. Determine if water 3 is present. Then, the determination unit 121 outputs the determination result to the determination unit 122.
  • the determination unit 121 determines that water is present in the water collecting unit 224 in the inner S of the manhole 2 based on the moisture detection information, it further determines that the accumulated water 3 is present in the inner S of the manhole 2 and further determines that the manhole 2 is present.
  • the determination result that the accumulated water 3 exists in the internal S of 2 is output to the determination unit 122.
  • the determination unit 121 determines that there is no water in the water collecting unit 224 in the inner S of the manhole 2 based on the moisture detection information, it further determines that the accumulated water 3 does not exist in the inner S of the manhole 2. , The determination result that the accumulated water 3 does not exist in the internal S of the manhole 2 is output to the determination unit 122.
  • the determination unit 122 determines the inspection cycle of the manhole 2 based on the determination result input from the determination unit 121.
  • the storage unit 130 stores arbitrary information used for the operation of the determination device 100.
  • the storage unit 130 stores the moisture detection information detected by the moisture detection sensor 200, the determination result determined by the determination unit 121, the inspection cycle determined by the determination unit 122, the inspection time determined by the determination unit 122, and the like.
  • the storage unit 130 stores, for example, various programs and data.
  • the communication unit 150 has a function of communicating with the moisture detection sensor 200.
  • the communication unit 150 receives, for example, the moisture detection information detected by the moisture detection sensor 200 from the moisture detection sensor 200.
  • the determination system 10 has a determination unit 121 for determining whether or not the accumulated water 3 exists in the internal S of the manhole 2 based on the moisture detection information detected by the moisture detection sensor 200, and a determination result.
  • a determination unit 122 for determining the inspection cycle of the manhole 2 is provided based on the above. This makes it possible to determine an appropriate inspection cycle for each manhole 2 that reflects the neutralization progress rate in each manhole 2 without performing on-site measurement by sampling or destructive test. Therefore, it is possible to realize a determination system 10 that enables efficient maintenance of the manhole 2.
  • step S301 the moisture detection sensor 200 detects whether or not moisture is present in the water collecting portion 224 in the internal S of the manhole 2. Then, the moisture detection sensor 200 transmits the moisture detection information to the determination device 100.
  • step S302 the determination device 100 receives the moisture detection information detected by the moisture detection sensor 200 from the moisture detection sensor 200. Then, the determination device 100 stores the received moisture detection information.
  • step S303 the determination device 100 determines whether or not moisture is present in the water collecting portion 224 in the inner S of the manhole 2 based on the moisture detection information.
  • the determination device 100 determines that water is present in the water collecting portion 224 in the inner S of the manhole 2 (step S303 ⁇ Yes)
  • the determination device 100 performs the process of step S304.
  • the determination device 100 determines that no water is present in the water collecting portion 224 in the inner S of the manhole 2 (step S303 ⁇ No)
  • the determination device 100 performs the process of step S305.
  • step S304 the determination device 100 determines that the accumulated water 3 is present in the inner S of the manhole 2 because the water is present in the water collecting portion 224 in the inner S of the manhole 2. Then, the determination device 100 performs the process of step S306.
  • step S305 the determination device 100 determines that the accumulated water 3 does not exist in the inner S of the manhole 2 because the water collecting portion 224 in the inner S of the manhole 2 does not have water. Then, the determination device 100 performs the process of step S307.
  • step S306 the determination device 100 determines that the inspection cycle of the manhole 2 is extended from the conventional inspection cycle.
  • step S307 the determination device 100 determines that the inspection cycle of the manhole 2 is the same as the conventional inspection cycle.
  • the determination system 20 includes a determination device 100 and a hygrometer 300.
  • the determination device 100 includes an input unit 110, a control unit 120, a storage unit 130, an output unit 140, and a communication unit 150.
  • the determination device 100 and the hygrometer 300 are communicably connected by wire or wirelessly. In the determination system 10, duplicate description may be omitted for the same configuration as the determination device 100 according to the first embodiment.
  • the hygrometer 300 is provided, for example, on the ceiling surface R (see FIG. 1A) of the upper floor slab 221 in the inner S of the manhole 2.
  • the hygrometer 300 is not particularly limited in its installation position as long as it is in a position where there is no possibility of being immersed in the stored water 3 when the stored water 3 is present in the internal S of the manhole 2.
  • the hygrometer 300 measures the humidity in the internal S of the manhole 2. Then, the hygrometer 300 transmits humidity measurement information including information on the humidity in the internal S of the manhole 2 at a predetermined time, information on the humidity transition in the internal S of the manhole 2 that changes with the passage of time, and the like to the determination device 100. .. As a specific value of the humidity measurement information, for example, FIG. 8 can be referred to.
  • the internal S Since the entrance and exit of the manhole 2 is closed by the iron lid 230, the internal S is a semi-sealed environment. Therefore, when the accumulated water 3 is present in the inner S of the manhole 2, the humidity of the inner S is always 100% due to the evaporation action of water except immediately after opening and closing the iron lid 230 (about 1 day). .. On the other hand, when the accumulated water 3 does not exist in the internal S of the manhole 2, the humidity of the internal S does not always reach 100%.
  • the humidity transition in the internal S of the manhole 2 will be briefly described.
  • the horizontal axis indicates the date and time [t] at which the humidity in the internal S of the manhole 2 is measured, and the vertical axis indicates the humidity [%] in the internal S of the manhole 2.
  • the humidity when the pooled water 3 does not exist in the inside S of the manhole 2 has a large fluctuation with the passage of time as compared with the humidity when the pooled water 3 exists in the inside S of the manhole 2. I understand.
  • the humidity when the reservoir water 3 does not exist in the internal S of the manhole 2 is rarely 100%, and the minimum value thereof is lowered to about 65%.
  • the humidity when the reservoir water 3 is present in the inner S of the manhole 2 is always 100%.
  • the fact that the humidity in the internal S of the manhole 2 is 65% is a boundary condition in which the neutralization progress rate in the manhole 2 increases, although a difference occurs due to the addition of other conditions. I can say.
  • FIG. 8 it is suggested from FIG. 8 that it is possible to determine whether or not the accumulated water 3 is present in the inner S of the manhole 2 based on the humidity in the inner S of the manhole 2. Specifically, for example, except immediately after opening and closing the iron lid 230 in the manhole 2, whether or not the humidity in the internal S of the manhole 2 is always 100%, the humidity transition in the internal S of the manhole 2 shown in FIG. Refer to the graph of, and determine whether or not the accumulated water 3 exists in the internal S of the manhole 2 based on whether or not the humidity gradient with respect to time is 0 (zero) for any two days. Is suggested to be possible.
  • the relationship between the humidity in the internal S of the manhole 2 and the number of years [year] in which the neutralization reaches the position of the reinforcing bar (25 mm from the surface) in the manhole 2 will be briefly described. ..
  • the number of years [year] shown in FIG. 9 includes some of the past findings referred to in Non-Patent Document 1.
  • the determination unit 121 determines whether or not the humidity in the internal S of the manhole 2 is always 100% except immediately after the opening and closing of the iron lid 230 in the manhole 2. Further, it is determined whether or not the accumulated water 3 exists in the internal S of the manhole 2. Then, the determination unit 121 outputs the determination result to the determination unit 122.
  • the determination unit 121 determines based on the humidity measurement information that the humidity in the internal S of the manhole 2 is always 100% except immediately after the opening and closing of the iron lid 230 in the manhole 2, the internal S of the manhole 2 is determined. Further, it is determined that the accumulated water 3 is present in the manhole 2, and the determination result that the accumulated water 3 is present in the inner S of the manhole 2 is output to the determination unit 122.
  • the determination unit 121 determines based on the humidity measurement information that the humidity in the internal S of the manhole 2 is not always 100% except immediately after the opening and closing of the iron lid 230 in the manhole 2, the determination unit 121 determines that the internal S of the manhole 2 is not 100%. It is further determined that the accumulated water 3 does not exist, and the determination result that the accumulated water 3 does not exist in the internal S of the manhole 2 is output to the determination unit 122.
  • the determination unit 121 refers to the graph of the humidity transition in the internal S of the manhole 2 shown in FIG. 8 based on the humidity measurement information received from the hygrometer 300, and determines the slope of the humidity with respect to time for any two days. It is determined whether or not it is 0, and further, it is determined whether or not the accumulated water 3 exists in the internal S of the manhole 2. Then, the determination unit 121 outputs the determination result to the determination unit 122.
  • the determination unit 121 refers to the graph of the humidity transition in the internal S of the manhole 2 based on the humidity measurement information and determines that the slope of the humidity with respect to time is 0 for any two days
  • the determination unit 121 of the manhole 2 It is further determined that the accumulated water 3 exists in the internal S, and the determination result that the accumulated water 3 exists in the internal S of the manhole 2 is output to the determination unit 122.
  • the determination unit 121 refers to the graph of the humidity transition in the internal S of the manhole 2 based on the humidity measurement information and determines that the slope of the humidity with respect to time is not 0 for any two days, the inside of the manhole 2 It is further determined that the accumulated water 3 does not exist in S, and the determination result that the accumulated water 3 does not exist in the internal S of the manhole 2 is output to the determination unit 122.
  • the determination unit 122 determines the inspection cycle of the manhole 2 based on the determination result input from the determination unit 121.
  • the storage unit 130 stores arbitrary information used for the operation of the determination device 100.
  • the storage unit 130 stores humidity measurement information measured by the hygrometer 300, a determination result determined by the determination unit 121, an inspection cycle determined by the determination unit 122, an inspection time determined by the determination unit 122, and the like. do.
  • the storage unit 130 stores, for example, various programs and data.
  • the communication unit 150 has a function of communicating with the hygrometer 300.
  • the communication unit 150 receives, for example, the humidity measurement information measured by the hygrometer 300 from the hygrometer 300.
  • the determination system 20 has a determination unit 121 for determining whether or not the accumulated water 3 exists in the internal S of the manhole 2 based on the humidity measurement information measured by the hygrometer 300, and the determination result. Based on this, a determination unit 122 for determining the inspection cycle of the manhole 2 is provided. This makes it possible to determine an appropriate inspection cycle for each manhole 2 that reflects the neutralization progress rate in each manhole 2 without performing on-site measurement by sampling or destructive test. Therefore, it is possible to realize a determination system 20 that enables efficient maintenance of the manhole 2.
  • step S401 the hygrometer 300 measures the humidity in the internal S of the manhole 2. Then, the hygrometer 300 transmits the humidity measurement information to the determination device 100.
  • step S402 the determination device 100 receives the humidity measurement information detected by the hygrometer 300 from the hygrometer 300. Then, the determination device 100 stores the received humidity measurement information.
  • step S403 the determination device 100 determines whether or not the humidity in the internal S of the manhole 2 is always 100%, except immediately after opening and closing the iron lid 230, for example, based on the humidity measurement information.
  • the determination device 100 determines that the humidity in the internal S of the manhole 2 is always 100% except immediately after opening and closing the iron lid 230 (step S403 ⁇ Yes)
  • the determination device 100 performs the process of step S404.
  • the determination device 100 determines that the humidity in the internal S of the manhole 2 is not always 100% except immediately after opening and closing the iron lid 230 (step S403 ⁇ No)
  • the determination device 100 performs the process of step S405.
  • step S404 the determination device 100 determines that the accumulated water 3 exists in the internal S of the manhole 2 because the humidity in the internal S of the manhole 2 is always 100% except immediately after the opening and closing of the iron lid 230. Then, the determination device 100 performs the process of step S406.
  • step S405 the determination device 100 determines that the accumulated water 3 does not exist in the internal S of the manhole 2 because the humidity in the internal S of the manhole 2 except immediately after the opening and closing of the iron lid 230 is not always 100%. Then, the determination device 100 performs the process of step S407.
  • step S406 the determination device 100 determines that the inspection cycle of the manhole 2 is extended from the conventional inspection cycle.
  • step S407 the determination device 100 determines that the inspection cycle of the manhole 2 is the same as the conventional inspection cycle.
  • step S501 the hygrometer 300 measures the humidity in the internal S of the manhole 2. Then, the hygrometer 300 transmits the humidity measurement information to the determination device 100.
  • step S502 the determination device 100 receives the humidity measurement information detected by the hygrometer 300 from the hygrometer 300. Then, the determination device 100 stores the received humidity measurement information.
  • step S503 the determination device 100 refers to, for example, a graph of the humidity transition in the internal S of the manhole 2 shown in FIG. 8 based on the humidity measurement information, and the slope of the humidity with respect to time is 0 for any two days. Determine if it exists.
  • step S503 ⁇ YES the determination device 100 performs the process of step S504.
  • step S503 ⁇ NO the determination device 100 performs the process of step S505.
  • step S504 the determination device 100 refers to the graph of the humidity transition in the internal S of the manhole 2, and since the slope of the humidity with respect to time is 0 for any two days, the reservoir water 3 exists in the internal S of the manhole 2. Then it is determined. Then, the determination device 100 performs the process of step S506.
  • step S505 the determination device 100 refers to the graph of the humidity transition in the internal S of the manhole 2, and since the slope of the humidity with respect to time is not 0 (zero) for any two days, the pooled water 3 is stored in the internal S of the manhole 2. Is determined not to exist. Then, the determination device 100 performs the process of step S507.
  • step S506 the determination device 100 determines that the inspection cycle of the manhole 2 is extended from the conventional inspection cycle.
  • step S507 the determination device 100 determines that the inspection cycle of the manhole 2 is the same as the conventional inspection cycle.
  • the determination system 30 includes a determination device 100 and a camera 400.
  • the determination device 100 includes an input unit 110, a control unit 120, a storage unit 130, an output unit 140, and a communication unit 150.
  • the determination device 100 and the camera 400 are communicably connected by wire or wirelessly. Regarding the same configuration as the determination device 100 according to the first embodiment, duplicate description may be omitted.
  • the camera 400 is provided in the internal S of the manhole 2.
  • the installation position of the camera 400 is not particularly limited, and at least the water collecting portion 224 in the internal S of the manhole 2 may be provided at a position where photography is possible.
  • the camera 400 photographs the internal S of the manhole 2.
  • the camera 400 particularly captures the accumulated water 3 existing in the water collecting portion 224 in the inner S of the manhole 2. Then, the camera 400 transmits the photographed image information captured by the internal S of the manhole 2 to the determination device 100.
  • the determination unit 121 determines whether or not the pooled water 3 exists in the internal S of the manhole 2 based on the captured image information captured by the camera 400. Then, the determination unit 121 outputs the determination result to the determination unit 122.
  • the storage unit 130 stores arbitrary information used for the operation of the determination device 100.
  • the storage unit 130 stores captured image information captured by the camera 400, a determination result determined by the determination unit 121, an inspection cycle determined by the determination unit 122, an inspection time determined by the determination unit 122, and the like. ..
  • the storage unit 130 stores, for example, various programs and data.
  • the communication unit 150 has a function of communicating with the camera 400.
  • the communication unit 150 receives, for example, the captured image information captured by the camera 400 from the camera 400.
  • the determination system 30 is based on the determination unit 121 that determines whether or not the pooled water 3 exists in the internal S of the manhole 2 based on the photographed image information captured by the camera 400, and the determination result.
  • a determination unit 122 for determining the inspection cycle of the manhole 2 is provided. This makes it possible to determine an appropriate inspection cycle for each manhole 2 that reflects the neutralization progress rate in each manhole 2 without performing on-site measurement by sampling or destructive test. Therefore, it is possible to realize a determination system 30 that enables efficient maintenance of the manhole 2.
  • step S601 the camera 400 photographs the inside S of the manhole 2. Then, the camera 400 transmits the captured image information to the determination device 100.
  • step S602 the determination device 100 receives the captured image information captured by the camera 400 from the camera 400. Then, the determination device 100 stores the received photographed image information.
  • step S603 the determination device 100 determines whether or not the pooled water 3 exists in the internal S of the manhole 2 based on the captured image information.
  • the determination device 100 determines that the accumulated water 3 exists in the internal S of the manhole 2 (step S603 ⁇ Yes)
  • the determination device 100 performs the process of step S604.
  • the determination device 100 determines that the accumulated water 3 does not exist in the internal S of the manhole 2 (step S603 ⁇ No)
  • the determination device 100 performs the process of step S605.
  • step S604 the determination device 100 determines that the inspection cycle of the manhole 2 is extended from the conventional inspection cycle.
  • step S605 the determination device 100 determines that the inspection cycle of the manhole 2 is the same as the conventional inspection cycle.
  • the difference between the determination method according to the modified example and the determination method according to the embodiment is that the determination method according to the embodiment performs processing on the premise that the manhole 2 is deteriorated due to neutralization. Therefore, the determination method according to the modified example is to perform processing on the premise that the manhole 2 is deteriorated due to a cause other than neutralization, such as the material of various members containing salt. Since the determination method according to the modified example is the same as the determination method according to the embodiment except that the premise is different, duplicate explanations may be omitted. In general, there are only a few causes of deterioration of the manhole 2 other than neutralization.
  • step S701 the determination device 100 determines whether or not the manhole 2 causes deterioration other than neutralization.
  • the determination device 100 determines that the manhole 2 causes deterioration other than neutralization (step S701 ⁇ Yes)
  • the determination device 100 performs the process of step S702.
  • the determination device 100 determines that the manhole 2 is not a manhole 2 that causes deterioration other than neutralization (step S701 ⁇ No)
  • the determination device 100 performs the process of step S703.
  • step S702 the determination device 100 determines that the inspection cycle of the manhole 2 is the same as the conventional inspection cycle.
  • step S703 the determination device 100 stores water 3 in the internal S of the manhole 2 based on the stored water information stored in the storage unit 130 in advance as a database or the stored water information directly input by the operator. Determines if is present.
  • the determination device 100 determines that the accumulated water 3 exists in the internal S of the manhole 2 (step S703 ⁇ Yes)
  • the determination device 100 performs the process of step S704.
  • the determination device 100 determines that the accumulated water 3 does not exist in the internal S of the manhole 2 (step S703 ⁇ No)
  • the determination device 100 performs the process of step S702.
  • step S704 the determination device 100 determines that the inspection cycle of the manhole 2 is extended from the conventional inspection cycle.
  • the computer can be realized by storing a program describing the processing contents that realize the functions of each device in the storage unit of the computer, and reading and executing this program by the processor of the computer. At least a part of the processing content may be realized by hardware.
  • the computer may be a general-purpose computer, a dedicated computer, a workstation, a PC, an electronic notebook pad, or the like.
  • the program instruction may be a program code, a code segment, or the like for executing a necessary task.
  • the processor may be a CPU (Central Processing Unit), a GPU (Graphics Processing Unit), a DSP (Digital Signal Processor), an ASIC (Application Specific Integrated Circuit), or the like.
  • the program for causing the computer to execute the above-mentioned determination method is based on the step (S101) of determining whether or not the accumulated water is present inside the reinforced concrete structure and the determination result, referring to FIG. , The steps (S102, S103) for determining the inspection cycle of the reinforced concrete structure.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Environmental Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Ecology (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)

Abstract

A determination device (100) according to the present invention comprises an evaluation unit (121) that evaluates whether there is pooled water (3) within a reinforced concrete structure (2), and a determination unit (122) that determines, on the basis of an evaluation result of the evaluation unit (121), an inspection cycle for the reinforced concrete structure (2).

Description

決定装置、決定システム、および決定方法Decision device, decision system, and decision method
 本発明は、決定装置、決定システム、および決定方法に関する。 The present invention relates to a determination device, a determination system, and a determination method.
 鉄筋コンクリートの劣化現象はいくつか存在するが、その一つに中性化がある。中性化は、大気中の二酸化炭素によって打設時にアルカリ性であったコンクリートが表面(コンクリートと空気の界面)から徐々に中性となる現象である。内部の鉄筋はアルカリ性環境下では不働態を形成するため腐食は進行しないが、中性環境では腐食が進行する。そのため中性化によって内部の鉄筋が腐食し減肉することで、鉄筋コンクリートの強度が低下する。 There are several deterioration phenomena of reinforced concrete, one of which is neutralization. Neutralization is a phenomenon in which concrete, which was alkaline at the time of casting, gradually becomes neutral from the surface (interface between concrete and air) due to carbon dioxide in the atmosphere. Corrosion does not proceed because the internal reinforcing bars form a passivation in an alkaline environment, but corrosion progresses in a neutral environment. Therefore, the neutralization causes the internal reinforcing bars to corrode and reduce the wall thickness, which reduces the strength of the reinforced concrete.
 鉄筋コンクリート構造物における中性化進行速度は、環境、材料条件などによって異なる(例えば、非特許文献1参照)。よって、鉄筋コンクリート構造物を中性化進行速度ごとに分類し、適切な点検時期、点検周期を割り当てれば、より効率的に維持管理を実施できる。例えば、中性化がほとんど進行しない鉄筋コンクリート構造物については、現行より点検周期を延伸すればよい。 The rate of progress of neutralization in reinforced concrete structures differs depending on the environment, material conditions, etc. (see, for example, Non-Patent Document 1). Therefore, if the reinforced concrete structure is classified according to the neutralization progress speed and an appropriate inspection time and inspection cycle are assigned, maintenance can be carried out more efficiently. For example, for a reinforced concrete structure in which neutralization hardly progresses, the inspection cycle may be extended from the current one.
 しかしながら、多くの場合、鉄筋コンクリート構造物に対する点検周期、点検時期について中性化進行速度が反映されていない。反映できていない理由に、中性化の進行を把握するために大きな稼働がかかることがある。コンクリートの中性化を把握するためには、試料の採取もしくは破壊試験による現地測定が必要であり、点検以上の稼働となる。この結果、鉄筋コンクリート構造物の維持管理を効率的に行うことが困難であるという問題が生じていた。 However, in many cases, the neutralization progress rate is not reflected in the inspection cycle and inspection time for reinforced concrete structures. The reason why it has not been reflected is that it may take a lot of work to grasp the progress of neutralization. In order to grasp the neutralization of concrete, it is necessary to take a sample or perform on-site measurement by a destructive test, and the operation is more than inspection. As a result, there has been a problem that it is difficult to efficiently maintain and manage the reinforced concrete structure.
 かかる事情に鑑みてなされた本開示の目的は、鉄筋コンクリート構造物の効率的な維持管理を可能とする決定装置、決定システム、および決定方法を提供することにある。 The purpose of the present disclosure made in view of such circumstances is to provide a determination device, a determination system, and a determination method that enable efficient maintenance of a reinforced concrete structure.
 一実施形態に係る決定装置は、鉄筋コンクリート構造物の内部に溜水が存在するか否かを判定する判定部と、前記判定部による判定結果に基づいて、前記鉄筋コンクリート構造物の点検周期を決定する決定部と、を備える。 The determination device according to one embodiment determines the inspection cycle of the reinforced concrete structure based on the determination unit for determining whether or not the accumulated water is present inside the reinforced concrete structure and the determination result by the determination unit. It has a decision unit.
 一実施形態に係る決定システムは、鉄筋コンクリート構造物の内部における集水部に水分が存在するか否かを検知する水分検知センサと、前記水分検知センサにより検知された情報に基づいて、前記内部に溜水が存在するか否かを判定する判定部と、前記判定部による判定結果に基づいて、前記鉄筋コンクリート構造物の点検周期を決定する決定部と、を備える。 The determination system according to the embodiment includes a moisture detection sensor that detects whether or not moisture is present in the water collecting portion inside the reinforced concrete structure, and the inside of the reinforced concrete structure based on the information detected by the moisture detection sensor. A determination unit for determining whether or not the accumulated water is present, and a determination unit for determining the inspection cycle of the reinforced concrete structure based on the determination result by the determination unit are provided.
 一実施形態に係る決定方法は、鉄筋コンクリート構造物の内部に溜水が存在するか否かを判定するステップと、前記判定するステップによる判定結果に基づいて、前記鉄筋コンクリート構造物の点検周期を決定するステップと、を含む。 In the determination method according to one embodiment, the inspection cycle of the reinforced concrete structure is determined based on the step of determining whether or not the accumulated water is present inside the reinforced concrete structure and the determination result of the determination step. Including steps.
 本開示によれば、鉄筋コンクリート構造物の効率的な維持管理を可能とする決定装置、決定システム、および決定方法を提供することができる。 According to the present disclosure, it is possible to provide a determination device, a determination system, and a determination method that enable efficient maintenance of a reinforced concrete structure.
第1実施形態に係る決定装置により点検周期が決定されるマンホールの構成の一例を示す図である。It is a figure which shows an example of the structure of the manhole whose inspection cycle is determined by the determination apparatus which concerns on 1st Embodiment. 第1実施形態に係る決定装置の構成の一例を示すブロック図である。It is a block diagram which shows an example of the structure of the determination apparatus which concerns on 1st Embodiment. 第1実施形態に係る溜水の有無による中性化進行の違いの一例を示す図である。It is a figure which shows an example of the difference of the neutralization progress depending on the presence or absence of the accumulated water which concerns on 1st Embodiment. 第1実施形態に係る決定方法の一例を示すフローチャートである。It is a flowchart which shows an example of the determination method which concerns on 1st Embodiment. 第1実施形態に係る決定方法の別の一例を示すフローチャートである。It is a flowchart which shows another example of the determination method which concerns on 1st Embodiment. 第2実施形態に係る決定システムの構成の一例を示すブロック図である。It is a block diagram which shows an example of the structure of the determination system which concerns on 2nd Embodiment. 第2実施形態に係る決定方法の一例を示すフローチャートである。It is a flowchart which shows an example of the determination method which concerns on 2nd Embodiment. 第3実施形態に係る決定システムの構成の一例を示すブロック図である。It is a block diagram which shows an example of the structure of the determination system which concerns on 3rd Embodiment. 第3実施形態に係るマンホールにおける中性化の鉄筋到達年数の一例を示す図である。It is a figure which shows an example of the years of reaching a neutralized reinforcing bar in a manhole which concerns on 3rd Embodiment. 第3実施形態に係る溜水の有無による湿度の違いの一例を示す図である。It is a figure which shows an example of the difference of the humidity by the presence or absence of the accumulated water which concerns on 3rd Embodiment. 第3実施形態に係る決定方法の一例を示すフローチャートである。It is a flowchart which shows an example of the determination method which concerns on 3rd Embodiment. 第3実施形態に係る決定方法の別の一例を示すフローチャートである。It is a flowchart which shows another example of the determination method which concerns on 3rd Embodiment. 第4実施形態に係る決定システムの構成の一例を示すブロック図である。It is a block diagram which shows an example of the structure of the determination system which concerns on 4th Embodiment. 第4実施形態に係る決定方法の一例を示すフローチャートである。It is a flowchart which shows an example of the determination method which concerns on 4th Embodiment. 変形例に係る決定方法の一例を示すフローチャートである。It is a flowchart which shows an example of the determination method which concerns on the modification.
 以下、本発明の一実施形態について、図面を参照して詳細に説明する。なお、同一の構成要素には原則として同一の参照番号を付して、重複する説明を省略する。各図において、説明の便宜上、各構成の縦横の比率を実際の比率から誇張して示している。また、以下の説明における「上」とは、図面に描かれた座標軸表示のZ軸におけるプラスの方向を意味するものとし、「下」とは、図面に描かれた座標軸表示のZ軸におけるマイナスの方向を意味するものとする。ただし、「上」、「下」とは、便宜的に定められたものに過ぎず、限定的に解釈すべきものではない。 Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings. In principle, the same components are given the same reference numbers, and duplicate explanations are omitted. In each figure, for convenience of explanation, the aspect ratio of each configuration is exaggerated from the actual ratio. Further, in the following description, "upper" means a positive direction on the Z axis of the coordinate axis display drawn in the drawing, and "lower" means a negative direction on the Z axis of the coordinate axis display drawn in the drawing. It shall mean the direction of. However, "upper" and "lower" are defined for convenience only and should not be interpreted in a limited manner.
<第1実施形態>
〔決定装置〕
 図1A、図1B、および図2を参照して、第1実施形態に係る決定装置の構成の一例について説明する。
<First Embodiment>
[Determining device]
An example of the configuration of the determination device according to the first embodiment will be described with reference to FIGS. 1A, 1B, and 2.
 決定装置100は、鉄筋コンクリート構造物の点検周期を決定する装置である。鉄筋コンクリート構造物としては、例えば、マンホール2が挙げられる。 The determination device 100 is an device that determines the inspection cycle of the reinforced concrete structure. Examples of the reinforced concrete structure include a manhole 2.
 ここで、図1Aを参照して、地下302に埋設されたマンホール2の構成について、簡単に説明する。 Here, with reference to FIG. 1A, the configuration of the manhole 2 buried in the underground 302 will be briefly described.
 マンホール2は、例えば、規格品の通信用マンホールである。マンホール2は、首部210、躯体部220、鉄蓋230などを備える。首部210は、例えば、略円筒形状であり、躯体部220は、例えば、略直方体形状である。鉄蓋230は、略円柱形状であり、マンホール2の出入口であるマンホール孔に嵌合する。首部210および躯体部220は、鉄筋コンクリートで製造される。躯体部220は、上床版221と、下床版222と、側壁部223と、を備える。 The manhole 2 is, for example, a standard product communication manhole. The manhole 2 includes a neck portion 210, a skeleton portion 220, an iron lid 230, and the like. The neck portion 210 has, for example, a substantially cylindrical shape, and the skeleton portion 220 has, for example, a substantially rectangular parallelepiped shape. The iron lid 230 has a substantially cylindrical shape and fits into the manhole hole which is the entrance / exit of the manhole 2. The neck 210 and the skeleton 220 are made of reinforced concrete. The skeleton portion 220 includes an upper floor slab 221, a lower floor slab 222, and a side wall portion 223.
 マンホール2の内部Sは、躯体部220における上床版221の天井面R、躯体部220における側壁部223の壁面J、躯体部220における下床版222の床面Fなどで囲まれている。躯体部220における下床版222の床面Fには、集水を目的とした集水部(凹部)224が設けられている。マンホール2において、降雨などを原因としてマンホール2の内部Sに流入する溜水3は、この集水部224から溜まる構造となっている。なお、溜水3は、マンホール2の内部Sに一度流入すると、流出しにくく、自然に無くなることはない。 The interior S of the manhole 2 is surrounded by the ceiling surface R of the upper floor slab 221 in the skeleton 220, the wall surface J of the side wall 223 in the skeleton 220, the floor surface F of the lower floor slab 222 in the skeleton 220, and the like. A water collecting portion (recessed portion) 224 for the purpose of collecting water is provided on the floor surface F of the lower floor slab 222 in the skeleton portion 220. In the manhole 2, the accumulated water 3 that flows into the internal S of the manhole 2 due to rainfall or the like has a structure of being accumulated from the water collecting portion 224. Once the pooled water 3 flows into the internal S of the manhole 2, it is difficult for it to flow out and does not disappear naturally.
 さらに、図2を参照して、マンホール2の中性化と溜水3との関係について、簡単に説明する。図2において、横軸は、材齢(コンクリートを打設してからの期間)[year]を示しており、縦軸は、中性化深さ[mm]を示している。また、図2において、溜水3が存在するマンホール2における中性化深さを、黒丸で示しており、溜水3が存在しないマンホール2における中性化深さを、白丸で示している。 Further, with reference to FIG. 2, the relationship between the neutralization of the manhole 2 and the reservoir water 3 will be briefly explained. In FIG. 2, the horizontal axis indicates the age of the material (the period after the concrete is placed) [year], and the vertical axis indicates the neutralization depth [mm]. Further, in FIG. 2, the neutralization depth in the manhole 2 in which the reservoir water 3 is present is indicated by a black circle, and the neutralization depth in the manhole 2 in which the reservoir water 3 is not present is indicated by a white circle.
 図2から、マンホール2の内部Sに溜水3が存在しない場合における中性化深さは、マンホール2の内部Sに溜水3が存在する場合における中性化深さと比較して、大きいことがわかる。すなわち、マンホール2の内部Sに溜水3が存在しない場合、中性化は進行するが、マンホール2の内部Sに溜水3が存在する場合、中性化はほとんど進行しないことがわかる。 From FIG. 2, the neutralization depth when the reservoir water 3 does not exist in the inner S of the manhole 2 is larger than the neutralization depth when the reservoir water 3 exists in the inner S of the manhole 2. I understand. That is, it can be seen that when the pooled water 3 does not exist in the inside S of the manhole 2, the neutralization proceeds, but when the pooled water 3 exists in the inside S of the manhole 2, the neutralization hardly progresses.
 したがって、マンホール2における中性化進行速度は、マンホール2の内部Sに溜水3が存在するか否かに依存し、溜水3が存在しない場合のマンホール2における中性化進行速度は、溜水3が存在する場合のマンホール2における中性化進行速度と比較して、早いことが推察される。すなわち、マンホール2の内部Sにおける溜水3の有無を判定することは、マンホール2における中性化進行速度を判定するという観点から妥当であることが推察される。 Therefore, the neutralization progress rate in the manhole 2 depends on whether or not the reservoir 3 is present in the internal S of the manhole 2, and the neutralization progress rate in the manhole 2 when the reservoir 3 is not present is the reservoir. It is presumed that it is faster than the neutralization progress rate in the manhole 2 in the presence of water 3. That is, it is presumed that determining the presence or absence of the accumulated water 3 in the inner S of the manhole 2 is appropriate from the viewpoint of determining the neutralization progress rate in the manhole 2.
 決定装置100は、入力部110と、制御部120と、記憶部130と、出力部140と、を備える。決定装置100は、さらに通信部を備えていてもよい。 The determination device 100 includes an input unit 110, a control unit 120, a storage unit 130, and an output unit 140. The determination device 100 may further include a communication unit.
 入力部110は、各種情報の入力を受け付ける。入力部110は、作業者による所定の操作が可能であればどのようなデバイスでもよく、例えば、マイク、タッチパネル、キーボード、マウスなどである。例えば、作業者は、マンホール2の内部Sを点検し、目視により、マンホール2の内部に溜水が存在するか否かを確認し、マンホール2の内部に溜水が存在するか否かを示す溜水情報を、入力部110を用いて入力してよい。これにより、溜水情報は、制御部120に入力される。なお、溜水情報は、作業者が、例えば、Excel(登録商標)などに入力することで、あらかじめデータベース化されて記憶部130に記憶されてよい。入力部110は、決定装置100と一体化されていてもよいし、別々に設けられていてもよい。 The input unit 110 accepts input of various information. The input unit 110 may be any device as long as it can be operated by an operator, and may be, for example, a microphone, a touch panel, a keyboard, a mouse, or the like. For example, the operator inspects the inside S of the manhole 2, visually confirms whether or not the accumulated water exists inside the manhole 2, and indicates whether or not the accumulated water exists inside the manhole 2. The accumulated water information may be input using the input unit 110. As a result, the accumulated water information is input to the control unit 120. The accumulated water information may be stored in the storage unit 130 in advance as a database by being input by an operator into, for example, Excel (registered trademark). The input unit 110 may be integrated with the determination device 100 or may be provided separately.
 制御部120は、専用のハードウェアによって構成されてもよいし、汎用のプロセッサ又は特定の処理に特化したプロセッサによって構成されてもよい。制御部120は、判定部121と、決定部122と、を備える。 The control unit 120 may be configured by dedicated hardware, a general-purpose processor, or a processor specialized for a specific process. The control unit 120 includes a determination unit 121 and a determination unit 122.
 判定部121は、記憶部130に記憶された溜水情報、あるいは、作業者により直接入力された溜水情報に基づいて、マンホール2の内部Sに溜水3が存在するか否かを判定する。そして、判定部121は、判定結果を決定部122へ出力する。 The determination unit 121 determines whether or not the accumulated water 3 exists in the internal S of the manhole 2 based on the accumulated water information stored in the storage unit 130 or the accumulated water information directly input by the operator. .. Then, the determination unit 121 outputs the determination result to the determination unit 122.
 例えば、判定部121は、溜水情報に基づいて、マンホール2の内部Sに溜水3が存在すると判定する場合、マンホール2の内部Sに溜水3が存在するという判定結果を決定部122へ出力する。例えば、判定部121は、溜水情報に基づいて、マンホール2の内部Sに溜水3が存在しないと判定する場合、マンホール2の内部Sに溜水3が存在しないという判定結果を決定部122へ出力する。 For example, when the determination unit 121 determines that the accumulated water 3 exists in the internal S of the manhole 2 based on the accumulated water information, the determination unit 121 determines to the determination unit 122 that the accumulated water 3 exists in the internal S of the manhole 2. Output. For example, when the determination unit 121 determines that the accumulated water 3 does not exist in the internal S of the manhole 2 based on the accumulated water information, the determination unit 122 determines the determination result that the accumulated water 3 does not exist in the internal S of the manhole 2. Output to.
 決定部122は、判定部121から入力された判定結果に基づいて、マンホール2の点検周期を決定する。決定部122は、決定した点検周期に基づいて、さらに、マンホール2の点検時期を決定してもよい。 The determination unit 122 determines the inspection cycle of the manhole 2 based on the determination result input from the determination unit 121. The determination unit 122 may further determine the inspection time of the manhole 2 based on the determined inspection cycle.
 例えば、決定部122は、判定部121から入力されたマンホール2の内部Sに溜水3が存在するという判定結果に基づいて、マンホール2の点検周期を従来の点検周期より延伸することを決定する。 For example, the determination unit 122 determines that the inspection cycle of the manhole 2 is extended from the conventional inspection cycle based on the determination result that the accumulated water 3 exists in the internal S of the manhole 2 input from the determination unit 121. ..
 例えば、決定部122は、判定部121から入力されたマンホール2の内部Sに溜水3が存在しないという判定結果に基づいて、マンホール2の点検周期を従来の点検周期と同じとすることを決定する。 For example, the determination unit 122 determines that the inspection cycle of the manhole 2 is the same as the conventional inspection cycle based on the determination result that the accumulated water 3 does not exist in the internal S of the manhole 2 input from the determination unit 121. do.
 決定部122が、点検周期を、具体的に何年とするか決定する際、例えば、図9を参照すると、湿度85%および水セメント比77%程度を基準として、理論的には、2000年以上が妥当であると考えられるが、この点検周期は、あくまでも理論値である。実際に、決定部122が、点検周期を決定する際には、マンホール2の劣化(例えば、中性化による劣化)のみならず、ケーブル、ケーブルを支持する金属製の部材などの劣化も考慮する必要がある。したがって、決定部122は、判定部121から入力された判定結果に加えて、記憶部130に記憶されている各種部材の劣化データなども考慮して、点検周期を決定することが好ましい。また、各種部材の劣化以外にも、不慮の外力により設備が破壊される可能性もあり、点検周期を長くしすぎることはリスクとなる。このため、決定部122は、このような外力なども想定した上で、点検周期を決定することがさらに好ましい。 When the determination unit 122 determines the specific number of years for the inspection cycle, for example, referring to FIG. 9, the year 2000 is theoretically based on a humidity of about 85% and a water-cement ratio of about 77%. The above is considered to be appropriate, but this inspection cycle is only a theoretical value. In fact, when the determination unit 122 determines the inspection cycle, it considers not only the deterioration of the manhole 2 (for example, deterioration due to neutralization) but also the deterioration of the cable and the metal member supporting the cable. There is a need. Therefore, it is preferable that the determination unit 122 determines the inspection cycle in consideration of the deterioration data of various members stored in the storage unit 130 in addition to the determination result input from the determination unit 121. In addition to the deterioration of various members, the equipment may be destroyed by an unexpected external force, and making the inspection cycle too long is a risk. Therefore, it is more preferable that the determination unit 122 determines the inspection cycle on the assumption of such an external force.
 記憶部130は、1つ以上のメモリを含み、例えば、半導体メモリ、磁気メモリ、光メモリなどを含んでよい。記憶部130に含まれる各メモリは、例えば、主記憶装置、補助記憶装置、又はキャッシュメモリとして機能してよい。各メモリは、必ずしも決定装置100がその内部に備える必要はなく、決定装置100の外部に備える構成としてもよい。 The storage unit 130 includes one or more memories, and may include, for example, a semiconductor memory, a magnetic memory, an optical memory, and the like. Each memory included in the storage unit 130 may function as, for example, a main storage device, an auxiliary storage device, or a cache memory. Each memory does not necessarily have to be provided inside the determination device 100, and may be provided outside the determination device 100.
 記憶部130は、決定装置100の動作に用いられる任意の情報を記憶する。例えば、記憶部130は、溜水情報、判定部121により判定された判定結果、決定部122により決定された点検周期、決定部122により決定された点検時期などを記憶する。この他にも、記憶部130は、例えば、各種のプログラムやデータなどを記憶する。 The storage unit 130 stores arbitrary information used for the operation of the determination device 100. For example, the storage unit 130 stores the accumulated water information, the determination result determined by the determination unit 121, the inspection cycle determined by the determination unit 122, the inspection time determined by the determination unit 122, and the like. In addition to this, the storage unit 130 stores, for example, various programs and data.
 出力部140は、各種情報を出力する。出力部140は、例えば、液晶ディスプレイ、有機EL(Electro-Luminescence)ディスプレイ、スピーカーなどである。例えば、出力部140は、点検周期、点検時期などの情報を表示する。出力部140は、決定装置100と一体化されていてもよいし、別々に設けられていてもよい。 The output unit 140 outputs various information. The output unit 140 is, for example, a liquid crystal display, an organic EL (Electro-Luminescence) display, a speaker, or the like. For example, the output unit 140 displays information such as an inspection cycle and an inspection time. The output unit 140 may be integrated with the determination device 100 or may be provided separately.
 本実施形態に係る決定装置100は、マンホール2の内部Sに溜水3が存在するか否かを判定する判定部121と、判定結果に基づいて、マンホール2の点検周期を決定する決定部122と、を備える。これにより、試料の採取もしくは破壊試験による現地測定を行うことなく、個々のマンホール2における中性化進行速度を反映させた適切な点検周期を、各マンホール2に対して決定することができる。したがって、マンホール2の効率的な維持管理を可能とする決定装置100を実現できる。 The determination device 100 according to the present embodiment has a determination unit 121 for determining whether or not the accumulated water 3 exists in the internal S of the manhole 2, and a determination unit 122 for determining the inspection cycle of the manhole 2 based on the determination result. And. This makes it possible to determine an appropriate inspection cycle for each manhole 2 that reflects the neutralization progress rate in each manhole 2 without performing on-site measurement by sampling or destructive test. Therefore, it is possible to realize the determination device 100 that enables efficient maintenance of the manhole 2.
〔決定方法1〕
 次に、図3を参照して、第1実施形態に係る決定方法の一例について説明する。
[Determination method 1]
Next, an example of the determination method according to the first embodiment will be described with reference to FIG.
 ステップS101において、決定装置100は、あらかじめデータベース化されて記憶部130に記憶された溜水情報に基づいて、マンホール2の内部Sに溜水3が存在するか否かを判定する。決定装置100は、マンホール2の内部Sに溜水3が存在すると判定する場合(ステップS101→Yes)、ステップS102の処理を行う。決定装置100は、マンホール2の内部Sに溜水3が存在しないと判定する場合(ステップS101→No)、ステップS103の処理を行う。 In step S101, the determination device 100 determines whether or not the pooled water 3 exists in the internal S of the manhole 2 based on the pooled water information stored in the storage unit 130 in advance as a database. When the determination device 100 determines that the accumulated water 3 exists in the internal S of the manhole 2 (step S101 → Yes), the determination device 100 performs the process of step S102. When the determination device 100 determines that the pooled water 3 does not exist in the internal S of the manhole 2 (step S101 → No), the determination device 100 performs the process of step S103.
 ステップS102において、決定装置100は、マンホール2の点検周期を従来の点検周期より延伸することを決定する。 In step S102, the determination device 100 determines that the inspection cycle of the manhole 2 is extended from the conventional inspection cycle.
 ステップS103において、決定装置100は、マンホール2の点検周期を従来の点検周期と同じとすることを決定する。 In step S103, the determination device 100 determines that the inspection cycle of the manhole 2 is the same as the conventional inspection cycle.
 本実施形態に係る決定方法を適用して、マンホール2の点検周期を決定することにより、マンホール2の効率的な維持管理が可能となる。 By applying the determination method according to the present embodiment and determining the inspection cycle of the manhole 2, efficient maintenance of the manhole 2 becomes possible.
〔決定方法2〕
 次に、図4を参照して、第1実施形態に係る決定方法の別の一例について説明する。
[Determination method 2]
Next, another example of the determination method according to the first embodiment will be described with reference to FIG.
 ステップS201において、作業者は、マンホール2の内部Sを点検する。そして、作業者は、目視により、マンホール2の内部Sに溜水3が存在するか否かを確認する。作業者は、マンホール2の内部Sに溜水3が存在することを確認した場合、入力部110を介して所定の操作を行うことにより、マンホール2の内部Sに溜水3が存在することを示す溜水情報を、決定装置100に入力する。一方、作業者は、マンホール2の内部Sに溜水3が存在しないことを確認した場合、入力部110を介して所定の操作を行うことにより、マンホール2の内部Sに溜水3が存在しないことを示す溜水情報を、決定装置100に入力する。なお、マンホール2の内部Sにおける溜水3の有無は、作業者による目視で明確に確認できる場合がほとんどである。 In step S201, the worker inspects the internal S of the manhole 2. Then, the operator visually confirms whether or not the pooled water 3 exists in the internal S of the manhole 2. When the operator confirms that the pooled water 3 exists in the inside S of the manhole 2, the operator performs a predetermined operation via the input unit 110 to determine that the pooled water 3 exists in the inside S of the manhole 2. The indicated accumulated water information is input to the determination device 100. On the other hand, when the operator confirms that the accumulated water 3 does not exist in the internal S of the manhole 2, the operator performs a predetermined operation via the input unit 110 so that the accumulated water 3 does not exist in the internal S of the manhole 2. The accumulated water information indicating that is input to the determination device 100. In most cases, the presence or absence of the accumulated water 3 in the internal S of the manhole 2 can be clearly confirmed visually by the operator.
 ステップS202において、決定装置100は、溜水情報を記憶する。決定装置100は、作業者が直接現場で点検を行って決定装置100に手入力し、点検の都度、最新化された溜水情報を記憶する。最新化された溜水情報は、時間の経過に応じたマンホール2の変化に対応する情報である。このため、例えば、不慮の事故などにより、マンホール2に溜水3が突然流入した場合などにおいて、決定装置100が最新化された溜水情報を適用することは有用である。 In step S202, the determination device 100 stores the accumulated water information. The determination device 100 is inspected directly at the site by the operator and manually input to the determination device 100, and stores the updated accumulated water information each time the inspection is performed. The updated pool water information is information corresponding to changes in the manhole 2 with the passage of time. Therefore, for example, when the reservoir 3 suddenly flows into the manhole 2 due to an unexpected accident or the like, it is useful for the determination device 100 to apply the updated pool information.
 ステップS203において、決定装置100は、作業者により直接入力された溜水情報に基づいて、マンホール2の内部Sに溜水3が存在するか否かを判定する。決定装置100は、マンホール2の内部Sに溜水3が存在すると判定する場合(ステップS203→Yes)、ステップS204の処理を行う。決定装置100は、マンホール2の内部Sに溜水3が存在しないと判定する場合(ステップS203→No)、ステップS205の処理を行う。 In step S203, the determination device 100 determines whether or not the pool water 3 exists in the internal S of the manhole 2 based on the pool water information directly input by the operator. When the determination device 100 determines that the accumulated water 3 exists in the internal S of the manhole 2 (step S203 → Yes), the determination device 100 performs the process of step S204. When the determination device 100 determines that the accumulated water 3 does not exist in the internal S of the manhole 2 (step S203 → No), the determination device 100 performs the process of step S205.
 ステップS204において、決定装置100は、マンホール2の点検周期を従来の点検周期より延伸することを決定する。 In step S204, the determination device 100 determines that the inspection cycle of the manhole 2 is extended from the conventional inspection cycle.
 ステップS205において、決定装置100は、マンホール2の点検周期を従来の点検周期と同じとすることを決定する。 In step S205, the determination device 100 determines that the inspection cycle of the manhole 2 is the same as the conventional inspection cycle.
 ステップS206において、決定装置100は、決定した点検周期に基づいて、次回の点検時期をさらに決定し、再び、ステップS201の処理を行う。 In step S206, the determination device 100 further determines the next inspection time based on the determined inspection cycle, and performs the process of step S201 again.
 本実施形態に係る決定方法を適用して、マンホール2の点検周期を決定することにより、マンホール2の効率的な維持管理が可能となる。 By applying the determination method according to the present embodiment and determining the inspection cycle of the manhole 2, efficient maintenance of the manhole 2 becomes possible.
<第2実施形態>
〔決定システム〕
 図5を参照して、第2実施形態に係る決定システムの構成の一例について説明する。
<Second Embodiment>
[Decision system]
An example of the configuration of the determination system according to the second embodiment will be described with reference to FIG.
 決定システム10は、決定装置100と、水分検知センサ200と、を備える。決定装置100は、入力部110と、制御部120と、記憶部130と、出力部140と、通信部150と、を備える。決定装置100と水分検知センサ200とは、有線または無線により通信可能に接続されている。なお、決定システム10において、第1実施形態に係る決定装置100と同じ構成については、重複した説明を省略する場合がある。 The determination system 10 includes a determination device 100 and a moisture detection sensor 200. The determination device 100 includes an input unit 110, a control unit 120, a storage unit 130, an output unit 140, and a communication unit 150. The determination device 100 and the moisture detection sensor 200 are communicably connected by wire or wirelessly. In the determination system 10, duplicate description may be omitted for the same configuration as the determination device 100 according to the first embodiment.
 水分検知センサ200は、マンホール2の内部Sにおける集水部224に設けられる。水分検知センサ200を、溜水3が溜まりやすい集水部224に設けることで、水分の検知を、より高精度に行うことができる。 The moisture detection sensor 200 is provided in the water collecting portion 224 in the internal S of the manhole 2. By providing the moisture detection sensor 200 in the water collecting portion 224 where the accumulated water 3 tends to accumulate, it is possible to detect the moisture with higher accuracy.
 水分検知センサ200は、マンホール2の内部Sにおける集水部224に水分が存在するか否かを検知する。そして、水分検知センサ200は、マンホール2の内部Sにおける集水部224に水分が存在するか否かを示す水分検知情報を、決定装置100へ送信する。 The moisture detection sensor 200 detects whether or not moisture is present in the water collecting portion 224 in the internal S of the manhole 2. Then, the moisture detection sensor 200 transmits moisture detection information indicating whether or not moisture is present in the water collecting portion 224 in the internal S of the manhole 2 to the determination device 100.
 判定部121は、水分検知センサ200から受信した水分検知情報に基づいて、マンホール2の内部Sにおける集水部224に水分が存在するか否かを判定し、さらに、マンホール2の内部Sに溜水3が存在するか否かを判定する。そして、判定部121は、判定結果を決定部122へ出力する。 The determination unit 121 determines whether or not water is present in the water collecting unit 224 in the internal S of the manhole 2 based on the moisture detection information received from the moisture detection sensor 200, and further, stores the water in the internal S of the manhole 2. Determine if water 3 is present. Then, the determination unit 121 outputs the determination result to the determination unit 122.
 例えば、判定部121は、水分検知情報に基づいて、マンホール2の内部Sにおける集水部224に水分が存在すると判定する場合、マンホール2の内部Sに溜水3が存在するとさらに判定し、マンホール2の内部Sに溜水3が存在するという判定結果を決定部122へ出力する。 For example, when the determination unit 121 determines that water is present in the water collecting unit 224 in the inner S of the manhole 2 based on the moisture detection information, it further determines that the accumulated water 3 is present in the inner S of the manhole 2 and further determines that the manhole 2 is present. The determination result that the accumulated water 3 exists in the internal S of 2 is output to the determination unit 122.
 例えば、判定部121は、水分検知情報に基づいて、マンホール2の内部Sにおける集水部224に水分が存在しないと判定する場合、マンホール2の内部Sに溜水3が存在しないとさらに判定し、マンホール2の内部Sに溜水3が存在しないという判定結果を決定部122へ出力する。 For example, when the determination unit 121 determines that there is no water in the water collecting unit 224 in the inner S of the manhole 2 based on the moisture detection information, it further determines that the accumulated water 3 does not exist in the inner S of the manhole 2. , The determination result that the accumulated water 3 does not exist in the internal S of the manhole 2 is output to the determination unit 122.
 決定部122は、判定部121から入力された判定結果に基づいて、マンホール2の点検周期を決定する。 The determination unit 122 determines the inspection cycle of the manhole 2 based on the determination result input from the determination unit 121.
 記憶部130は、決定装置100の動作に用いられる任意の情報を記憶する。例えば、記憶部130は、水分検知センサ200により検知された水分検知情報、判定部121により判定された判定結果、決定部122により決定された点検周期、決定部122により決定された点検時期などを記憶する。この他にも、記憶部130は、例えば、各種のプログラムやデータなどを記憶する。 The storage unit 130 stores arbitrary information used for the operation of the determination device 100. For example, the storage unit 130 stores the moisture detection information detected by the moisture detection sensor 200, the determination result determined by the determination unit 121, the inspection cycle determined by the determination unit 122, the inspection time determined by the determination unit 122, and the like. Remember. In addition to this, the storage unit 130 stores, for example, various programs and data.
 通信部150は、水分検知センサ200と通信する機能を有する。通信部150は、例えば、水分検知センサ200により検知された水分検知情報を、水分検知センサ200から受信する。 The communication unit 150 has a function of communicating with the moisture detection sensor 200. The communication unit 150 receives, for example, the moisture detection information detected by the moisture detection sensor 200 from the moisture detection sensor 200.
 本実施形態に係る決定システム10は、水分検知センサ200により検知された水分検知情報に基づいて、マンホール2の内部Sに溜水3が存在するか否かを判定する判定部121と、判定結果に基づいて、マンホール2の点検周期を決定する決定部122と、を備える。これにより、試料の採取もしくは破壊試験による現地測定を行うことなく、個々のマンホール2における中性化進行速度を反映させた適切な点検周期を、各マンホール2に対して決定することができる。したがって、マンホール2の効率的な維持管理を可能とする決定システム10を実現できる。 The determination system 10 according to the present embodiment has a determination unit 121 for determining whether or not the accumulated water 3 exists in the internal S of the manhole 2 based on the moisture detection information detected by the moisture detection sensor 200, and a determination result. A determination unit 122 for determining the inspection cycle of the manhole 2 is provided based on the above. This makes it possible to determine an appropriate inspection cycle for each manhole 2 that reflects the neutralization progress rate in each manhole 2 without performing on-site measurement by sampling or destructive test. Therefore, it is possible to realize a determination system 10 that enables efficient maintenance of the manhole 2.
〔決定方法〕
 次に、図6を参照して、第2実施形態に係る決定方法の一例について説明する。
[Determination method]
Next, an example of the determination method according to the second embodiment will be described with reference to FIG.
 ステップS301において、水分検知センサ200は、マンホール2の内部Sにおける集水部224に水分が存在するか否かを検知する。そして、水分検知センサ200は、水分検知情報を決定装置100へ送信する。 In step S301, the moisture detection sensor 200 detects whether or not moisture is present in the water collecting portion 224 in the internal S of the manhole 2. Then, the moisture detection sensor 200 transmits the moisture detection information to the determination device 100.
 ステップS302において、決定装置100は、水分検知センサ200により検知された水分検知情報を、水分検知センサ200から受信する。そして、決定装置100は、受信した水分検知情報を記憶する。 In step S302, the determination device 100 receives the moisture detection information detected by the moisture detection sensor 200 from the moisture detection sensor 200. Then, the determination device 100 stores the received moisture detection information.
 ステップS303において、決定装置100は、水分検知情報に基づいて、マンホール2の内部Sにおける集水部224に水分が存在するか否かを判定する。決定装置100は、マンホール2の内部Sにおける集水部224に水分が存在すると判定する場合(ステップS303→Yes)、ステップS304の処理を行う。決定装置100は、マンホール2の内部Sにおける集水部224に水分が存在しないと判定する場合(ステップS303→No)、ステップS305の処理を行う。 In step S303, the determination device 100 determines whether or not moisture is present in the water collecting portion 224 in the inner S of the manhole 2 based on the moisture detection information. When the determination device 100 determines that water is present in the water collecting portion 224 in the inner S of the manhole 2 (step S303 → Yes), the determination device 100 performs the process of step S304. When the determination device 100 determines that no water is present in the water collecting portion 224 in the inner S of the manhole 2 (step S303 → No), the determination device 100 performs the process of step S305.
 ステップS304において、決定装置100は、マンホール2の内部Sにおける集水部224に水分が存在するため、マンホール2の内部Sに溜水3が存在すると判定する。そして、決定装置100は、ステップS306の処理を行う。 In step S304, the determination device 100 determines that the accumulated water 3 is present in the inner S of the manhole 2 because the water is present in the water collecting portion 224 in the inner S of the manhole 2. Then, the determination device 100 performs the process of step S306.
 ステップS305において、決定装置100は、マンホール2の内部Sにおける集水部224に水分が存在しないため、マンホール2の内部Sに溜水3が存在しないと判定する。そして、決定装置100は、ステップS307の処理を行う。 In step S305, the determination device 100 determines that the accumulated water 3 does not exist in the inner S of the manhole 2 because the water collecting portion 224 in the inner S of the manhole 2 does not have water. Then, the determination device 100 performs the process of step S307.
 ステップS306において、決定装置100は、マンホール2の点検周期を従来の点検周期より延伸することを決定する。 In step S306, the determination device 100 determines that the inspection cycle of the manhole 2 is extended from the conventional inspection cycle.
 ステップS307において、決定装置100は、マンホール2の点検周期を従来の点検周期と同じとすることを決定する。 In step S307, the determination device 100 determines that the inspection cycle of the manhole 2 is the same as the conventional inspection cycle.
 本実施形態に係る決定方法を適用して、マンホール2の点検周期を決定することにより、マンホール2の効率的な維持管理が可能となる。 By applying the determination method according to the present embodiment and determining the inspection cycle of the manhole 2, efficient maintenance of the manhole 2 becomes possible.
<第3実施形態>
 次に、図7乃至図9を参照して、第3実施形態に係る決定システムの構成の一例について説明する。
<Third Embodiment>
Next, an example of the configuration of the determination system according to the third embodiment will be described with reference to FIGS. 7 to 9.
 決定システム20は、決定装置100と、湿度計300と、を備える。決定装置100は、入力部110と、制御部120と、記憶部130と、出力部140と、通信部150と、を備える。決定装置100と湿度計300とは、有線または無線により通信可能に接続されている。なお、決定システム10において、第1実施形態に係る決定装置100と同じ構成については、重複した説明を省略する場合がある。 The determination system 20 includes a determination device 100 and a hygrometer 300. The determination device 100 includes an input unit 110, a control unit 120, a storage unit 130, an output unit 140, and a communication unit 150. The determination device 100 and the hygrometer 300 are communicably connected by wire or wirelessly. In the determination system 10, duplicate description may be omitted for the same configuration as the determination device 100 according to the first embodiment.
 湿度計300は、例えば、マンホール2の内部Sにおける上床版221の天井面R(図1A参照)に設けられる。湿度計300は、マンホール2の内部Sに溜水3が存在する場合において、溜水3に浸かる可能性が無い位置であれば、その設置位置が特に限定されるものではない。 The hygrometer 300 is provided, for example, on the ceiling surface R (see FIG. 1A) of the upper floor slab 221 in the inner S of the manhole 2. The hygrometer 300 is not particularly limited in its installation position as long as it is in a position where there is no possibility of being immersed in the stored water 3 when the stored water 3 is present in the internal S of the manhole 2.
 湿度計300は、マンホール2の内部Sにおける湿度を計測する。そして、湿度計300は、所定時刻におけるマンホール2の内部Sにおける湿度の情報、時間の経過と共に推移するマンホール2の内部Sにおける湿度推移の情報などを含む湿度計測情報を、決定装置100へ送信する。湿度計測情報の具体的な値としては、例えば、図8を参照できる。 The hygrometer 300 measures the humidity in the internal S of the manhole 2. Then, the hygrometer 300 transmits humidity measurement information including information on the humidity in the internal S of the manhole 2 at a predetermined time, information on the humidity transition in the internal S of the manhole 2 that changes with the passage of time, and the like to the determination device 100. .. As a specific value of the humidity measurement information, for example, FIG. 8 can be referred to.
 マンホール2は、出入口が鉄蓋230により閉じられているため、内部Sが準密閉環境となっている。したがって、マンホール2の内部Sに溜水3が存在する場合、内部Sは、鉄蓋230の開閉直後(約1日)を除いて、水の蒸発作用により、湿度が常時100%となっている。一方、マンホール2の内部Sに溜水3が存在しない場合、内部Sは、湿度が常時100%とはならない。 Since the entrance and exit of the manhole 2 is closed by the iron lid 230, the internal S is a semi-sealed environment. Therefore, when the accumulated water 3 is present in the inner S of the manhole 2, the humidity of the inner S is always 100% due to the evaporation action of water except immediately after opening and closing the iron lid 230 (about 1 day). .. On the other hand, when the accumulated water 3 does not exist in the internal S of the manhole 2, the humidity of the internal S does not always reach 100%.
 ここで、図8を参照して、マンホール2の内部Sにおける湿度推移について、簡単に説明する。図8において、横軸は、マンホール2の内部Sにおける湿度を計測した日時[t]を示しており、縦軸は、マンホール2の内部Sにおける湿度[%]を示している。 Here, with reference to FIG. 8, the humidity transition in the internal S of the manhole 2 will be briefly described. In FIG. 8, the horizontal axis indicates the date and time [t] at which the humidity in the internal S of the manhole 2 is measured, and the vertical axis indicates the humidity [%] in the internal S of the manhole 2.
 図8から、マンホール2の内部Sに溜水3が存在しない場合における湿度は、マンホール2の内部Sに溜水3が存在する場合における湿度と比較して、時間の経過に伴う変動が大きいことがわかる。 From FIG. 8, the humidity when the pooled water 3 does not exist in the inside S of the manhole 2 has a large fluctuation with the passage of time as compared with the humidity when the pooled water 3 exists in the inside S of the manhole 2. I understand.
 また、図8から、マンホール2の内部Sに溜水3が存在しない場合における湿度は、100%となることはほとんどなく、その最小値が約65%まで低下していることがわかる。一方、マンホール2の内部Sに溜水3が存在する場合における湿度は、常時100%となることがわかる。なお、一般的に、マンホール2の内部Sにおける湿度が65%であることは、他の条件などが加わることで差異が生じるものの、マンホール2における中性化進行速度が大きくなる境界条件であると言える。 Further, from FIG. 8, it can be seen that the humidity when the reservoir water 3 does not exist in the internal S of the manhole 2 is rarely 100%, and the minimum value thereof is lowered to about 65%. On the other hand, it can be seen that the humidity when the reservoir water 3 is present in the inner S of the manhole 2 is always 100%. In general, the fact that the humidity in the internal S of the manhole 2 is 65% is a boundary condition in which the neutralization progress rate in the manhole 2 increases, although a difference occurs due to the addition of other conditions. I can say.
 すなわち、図8から、マンホール2の内部Sにおける湿度に基づいて、マンホール2の内部Sに溜水3が存在するか否かを判定することが可能であることが示唆される。具体的には、例えば、マンホール2における鉄蓋230の開閉直後を除いて、マンホール2の内部Sにおける湿度が常時100%であるか否か、図8に示されるマンホール2の内部Sにおける湿度推移のグラフを参照し、任意の2日間について時間に対する湿度の傾きが0(ゼロ)であるか否かなどに基づいて、マンホール2の内部Sに溜水3が存在するか否かを判定することが可能であることが示唆される。 That is, it is suggested from FIG. 8 that it is possible to determine whether or not the accumulated water 3 is present in the inner S of the manhole 2 based on the humidity in the inner S of the manhole 2. Specifically, for example, except immediately after opening and closing the iron lid 230 in the manhole 2, whether or not the humidity in the internal S of the manhole 2 is always 100%, the humidity transition in the internal S of the manhole 2 shown in FIG. Refer to the graph of, and determine whether or not the accumulated water 3 exists in the internal S of the manhole 2 based on whether or not the humidity gradient with respect to time is 0 (zero) for any two days. Is suggested to be possible.
 さらに、図9を参照して、マンホール2の内部Sにおける湿度と、マンホール2において中性化が鉄筋の位置(表面より25mm)に到達する年数[year]と、の関係について、簡単に説明する。なお、図9に示される年数[year]は、実験による算出値の他、一部、非特許文献1に参照される既往知見を含んでいる。 Further, with reference to FIG. 9, the relationship between the humidity in the internal S of the manhole 2 and the number of years [year] in which the neutralization reaches the position of the reinforcing bar (25 mm from the surface) in the manhole 2 will be briefly described. .. In addition to the experimentally calculated values, the number of years [year] shown in FIG. 9 includes some of the past findings referred to in Non-Patent Document 1.
 図9から、湿度が90[%]以上の場合、マンホール2における中性化が進行しないことがわかる。また、湿度が、85[%]、80[%]、65[%]と小さくなる程、マンホール2において中性化が鉄筋の位置に到達する年数[year]が短くなることがわかる。特に、湿度65[%]において、水セメント比により若干の差異はあるものの、早ければ数十年で中性化が鉄筋の位置に到達することがわかる。 From FIG. 9, it can be seen that when the humidity is 90 [%] or more, the neutralization in the manhole 2 does not proceed. Further, it can be seen that as the humidity becomes smaller as 85 [%], 80 [%], and 65 [%], the number of years [year] for the neutralization to reach the position of the reinforcing bar in the manhole 2 becomes shorter. In particular, at a humidity of 65 [%], it can be seen that the neutralization reaches the position of the reinforcing bar in several decades at the earliest, although there is a slight difference depending on the water-cement ratio.
 したがって、湿度計測情報に基づいて、マンホール2の内部Sにおける溜水3の有無を判定することは、マンホール2における中性化進行速度を判定するという観点から妥当であることが推察される。 Therefore, it is presumed that determining the presence or absence of the accumulated water 3 in the internal S of the manhole 2 based on the humidity measurement information is appropriate from the viewpoint of determining the neutralization progress rate in the manhole 2.
 判定部121は、湿度計300から受信した湿度計測情報に基づいて、マンホール2における鉄蓋230の開閉直後を除いて、マンホール2の内部Sにおける湿度が常時100%であるか否かを判定し、さらに、マンホール2の内部Sに溜水3が存在するか否かを判定する。そして、判定部121は、判定結果を決定部122へ出力する。 Based on the humidity measurement information received from the hygrometer 300, the determination unit 121 determines whether or not the humidity in the internal S of the manhole 2 is always 100% except immediately after the opening and closing of the iron lid 230 in the manhole 2. Further, it is determined whether or not the accumulated water 3 exists in the internal S of the manhole 2. Then, the determination unit 121 outputs the determination result to the determination unit 122.
 例えば、判定部121は、湿度計測情報に基づいて、マンホール2における鉄蓋230の開閉直後を除いて、マンホール2の内部Sにおける湿度が常時100%であると判定する場合、マンホール2の内部Sに溜水3が存在するとさらに判定し、マンホール2の内部Sに溜水3が存在するという判定結果を決定部122へ出力する。 For example, when the determination unit 121 determines based on the humidity measurement information that the humidity in the internal S of the manhole 2 is always 100% except immediately after the opening and closing of the iron lid 230 in the manhole 2, the internal S of the manhole 2 is determined. Further, it is determined that the accumulated water 3 is present in the manhole 2, and the determination result that the accumulated water 3 is present in the inner S of the manhole 2 is output to the determination unit 122.
 例えば、判定部121は、湿度計測情報に基づいて、マンホール2における鉄蓋230の開閉直後を除いて、マンホール2の内部Sにおける湿度が常時100%でないと判定する場合、マンホール2の内部Sに溜水3が存在しないとさらに判定し、マンホール2の内部Sに溜水3が存在しないという判定結果を決定部122へ出力する。 For example, when the determination unit 121 determines based on the humidity measurement information that the humidity in the internal S of the manhole 2 is not always 100% except immediately after the opening and closing of the iron lid 230 in the manhole 2, the determination unit 121 determines that the internal S of the manhole 2 is not 100%. It is further determined that the accumulated water 3 does not exist, and the determination result that the accumulated water 3 does not exist in the internal S of the manhole 2 is output to the determination unit 122.
 あるいは、判定部121は、湿度計300から受信した湿度計測情報に基づいて、図8に示されるマンホール2の内部Sにおける湿度推移のグラフを参照し、任意の2日間について時間に対する湿度の傾きが0であるか否かを判定し、さらに、マンホール2の内部Sに溜水3が存在するか否かを判定する。そして、判定部121は、判定結果を決定部122へ出力する。 Alternatively, the determination unit 121 refers to the graph of the humidity transition in the internal S of the manhole 2 shown in FIG. 8 based on the humidity measurement information received from the hygrometer 300, and determines the slope of the humidity with respect to time for any two days. It is determined whether or not it is 0, and further, it is determined whether or not the accumulated water 3 exists in the internal S of the manhole 2. Then, the determination unit 121 outputs the determination result to the determination unit 122.
 例えば、判定部121は、湿度計測情報に基づいて、マンホール2の内部Sにおける湿度推移のグラフを参照し、任意の2日間について時間に対する湿度の傾きが0であると判定する場合、マンホール2の内部Sに溜水3が存在するとさらに判定し、マンホール2の内部Sに溜水3が存在するという判定結果を決定部122へ出力する。 For example, when the determination unit 121 refers to the graph of the humidity transition in the internal S of the manhole 2 based on the humidity measurement information and determines that the slope of the humidity with respect to time is 0 for any two days, the determination unit 121 of the manhole 2 It is further determined that the accumulated water 3 exists in the internal S, and the determination result that the accumulated water 3 exists in the internal S of the manhole 2 is output to the determination unit 122.
 例えば、判定部121は、湿度計測情報に基づいて、マンホール2の内部Sにおける湿度推移のグラフを参照し、任意の2日間について時間に対する湿度の傾きが0でないと判定する場合、マンホール2の内部Sに溜水3が存在しないとさらに判定し、マンホール2の内部Sに溜水3が存在しないという判定結果を決定部122へ出力する。 For example, when the determination unit 121 refers to the graph of the humidity transition in the internal S of the manhole 2 based on the humidity measurement information and determines that the slope of the humidity with respect to time is not 0 for any two days, the inside of the manhole 2 It is further determined that the accumulated water 3 does not exist in S, and the determination result that the accumulated water 3 does not exist in the internal S of the manhole 2 is output to the determination unit 122.
 決定部122は、判定部121から入力された判定結果に基づいて、マンホール2の点検周期を決定する。 The determination unit 122 determines the inspection cycle of the manhole 2 based on the determination result input from the determination unit 121.
 記憶部130は、決定装置100の動作に用いられる任意の情報を記憶する。例えば、記憶部130は、湿度計300により計測された湿度計測情報、判定部121により判定された判定結果、決定部122により決定された点検周期、決定部122により決定された点検時期などを記憶する。この他にも、記憶部130は、例えば、各種のプログラムやデータなどを記憶する。 The storage unit 130 stores arbitrary information used for the operation of the determination device 100. For example, the storage unit 130 stores humidity measurement information measured by the hygrometer 300, a determination result determined by the determination unit 121, an inspection cycle determined by the determination unit 122, an inspection time determined by the determination unit 122, and the like. do. In addition to this, the storage unit 130 stores, for example, various programs and data.
 通信部150は、湿度計300と通信する機能を有する。通信部150は、例えば、湿度計300により計測された湿度計測情報を、湿度計300から受信する。 The communication unit 150 has a function of communicating with the hygrometer 300. The communication unit 150 receives, for example, the humidity measurement information measured by the hygrometer 300 from the hygrometer 300.
 本実施形態に係る決定システム20は、湿度計300により計測された湿度計測情報に基づいて、マンホール2の内部Sに溜水3が存在するか否かを判定する判定部121と、判定結果に基づいて、マンホール2の点検周期を決定する決定部122と、を備える。これにより、試料の採取もしくは破壊試験による現地測定を行うことなく、個々のマンホール2における中性化進行速度を反映させた適切な点検周期を、各マンホール2に対して決定することができる。したがって、マンホール2の効率的な維持管理を可能とする決定システム20を実現できる。 The determination system 20 according to the present embodiment has a determination unit 121 for determining whether or not the accumulated water 3 exists in the internal S of the manhole 2 based on the humidity measurement information measured by the hygrometer 300, and the determination result. Based on this, a determination unit 122 for determining the inspection cycle of the manhole 2 is provided. This makes it possible to determine an appropriate inspection cycle for each manhole 2 that reflects the neutralization progress rate in each manhole 2 without performing on-site measurement by sampling or destructive test. Therefore, it is possible to realize a determination system 20 that enables efficient maintenance of the manhole 2.
〔決定方法1〕
 次に、図10を参照して、第3実施形態に係る決定方法の一例について説明する。
[Determination method 1]
Next, an example of the determination method according to the third embodiment will be described with reference to FIG.
 ステップS401において、湿度計300は、マンホール2の内部Sにおける湿度を計測する。そして、湿度計300は、湿度計測情報を決定装置100へ送信する。 In step S401, the hygrometer 300 measures the humidity in the internal S of the manhole 2. Then, the hygrometer 300 transmits the humidity measurement information to the determination device 100.
 ステップS402において、決定装置100は、湿度計300により検知された湿度計測情報を、湿度計300から受信する。そして、決定装置100は、受信した湿度計測情報を記憶する。 In step S402, the determination device 100 receives the humidity measurement information detected by the hygrometer 300 from the hygrometer 300. Then, the determination device 100 stores the received humidity measurement information.
 ステップS403において、決定装置100は、湿度計測情報に基づいて、例えば、鉄蓋230の開閉直後を除いて、マンホール2の内部Sにおける湿度が常時100%であるか否かを判定する。決定装置100は、鉄蓋230の開閉直後を除いて、マンホール2の内部Sにおける湿度が常時100%であると判定する場合(ステップS403→Yes)、ステップS404の処理を行う。決定装置100は、鉄蓋230の開閉直後を除いて、マンホール2の内部Sにおける湿度が常時100%でないと判定する場合(ステップS403→No)、ステップS405の処理を行う。 In step S403, the determination device 100 determines whether or not the humidity in the internal S of the manhole 2 is always 100%, except immediately after opening and closing the iron lid 230, for example, based on the humidity measurement information. When the determination device 100 determines that the humidity in the internal S of the manhole 2 is always 100% except immediately after opening and closing the iron lid 230 (step S403 → Yes), the determination device 100 performs the process of step S404. When the determination device 100 determines that the humidity in the internal S of the manhole 2 is not always 100% except immediately after opening and closing the iron lid 230 (step S403 → No), the determination device 100 performs the process of step S405.
 ステップS404において、決定装置100は、鉄蓋230の開閉直後を除いたマンホール2の内部Sにおける湿度が常時100%であるため、マンホール2の内部Sに溜水3が存在すると判定する。そして、決定装置100は、ステップS406の処理を行う。 In step S404, the determination device 100 determines that the accumulated water 3 exists in the internal S of the manhole 2 because the humidity in the internal S of the manhole 2 is always 100% except immediately after the opening and closing of the iron lid 230. Then, the determination device 100 performs the process of step S406.
 ステップS405において、決定装置100は、鉄蓋230の開閉直後を除いたマンホール2の内部Sにおける湿度が常時100%でないため、マンホール2の内部Sに溜水3が存在しないと判定する。そして、決定装置100は、ステップS407の処理を行う。 In step S405, the determination device 100 determines that the accumulated water 3 does not exist in the internal S of the manhole 2 because the humidity in the internal S of the manhole 2 except immediately after the opening and closing of the iron lid 230 is not always 100%. Then, the determination device 100 performs the process of step S407.
 ステップS406において、決定装置100は、マンホール2の点検周期を従来の点検周期より延伸することを決定する。 In step S406, the determination device 100 determines that the inspection cycle of the manhole 2 is extended from the conventional inspection cycle.
 ステップS407において、決定装置100は、マンホール2の点検周期を従来の点検周期と同じとすることを決定する。 In step S407, the determination device 100 determines that the inspection cycle of the manhole 2 is the same as the conventional inspection cycle.
 本実施形態に係る決定方法を適用して、マンホール2の点検周期を決定することにより、マンホール2の効率的な維持管理が可能となる。 By applying the determination method according to the present embodiment and determining the inspection cycle of the manhole 2, efficient maintenance of the manhole 2 becomes possible.
〔決定方法2〕
 次に、図11を参照して、第3実施形態に係る別の決定方法の一例について説明する。
[Determination method 2]
Next, an example of another determination method according to the third embodiment will be described with reference to FIG.
 ステップS501において、湿度計300は、マンホール2の内部Sにおける湿度を計測する。そして、湿度計300は、湿度計測情報を決定装置100へ送信する。 In step S501, the hygrometer 300 measures the humidity in the internal S of the manhole 2. Then, the hygrometer 300 transmits the humidity measurement information to the determination device 100.
 ステップS502において、決定装置100は、湿度計300により検知された湿度計測情報を、湿度計300から受信する。そして、決定装置100は、受信した湿度計測情報を記憶する。 In step S502, the determination device 100 receives the humidity measurement information detected by the hygrometer 300 from the hygrometer 300. Then, the determination device 100 stores the received humidity measurement information.
 ステップS503において、決定装置100は、湿度計測情報に基づいて、例えば、図8に示されるマンホール2の内部Sにおける湿度推移のグラフを参照し、任意の2日間について時間に対する湿度の傾きが0であるか否かを判定する。決定装置100は、任意の2日間について、時間に対する湿度の傾きが0であると判定する場合(ステップS503→YES)、ステップS504の処理を行う。決定装置100は、任意の2日間について、時間に対する湿度の傾きが0でないと判定する場合(ステップS503→NO)、ステップS505の処理を行う。 In step S503, the determination device 100 refers to, for example, a graph of the humidity transition in the internal S of the manhole 2 shown in FIG. 8 based on the humidity measurement information, and the slope of the humidity with respect to time is 0 for any two days. Determine if it exists. When the determination device 100 determines that the humidity gradient with respect to time is 0 for any two days (step S503 → YES), the determination device 100 performs the process of step S504. When the determination device 100 determines that the humidity gradient with respect to time is not 0 for any two days (step S503 → NO), the determination device 100 performs the process of step S505.
 ステップS504において、決定装置100は、マンホール2の内部Sにおける湿度推移のグラフを参照し、任意の2日間について時間に対する湿度の傾きが0であるため、マンホール2の内部Sに溜水3が存在すると判定する。そして、決定装置100は、ステップS506の処理を行う。 In step S504, the determination device 100 refers to the graph of the humidity transition in the internal S of the manhole 2, and since the slope of the humidity with respect to time is 0 for any two days, the reservoir water 3 exists in the internal S of the manhole 2. Then it is determined. Then, the determination device 100 performs the process of step S506.
 ステップS505において、決定装置100は、マンホール2の内部Sにおける湿度推移のグラフを参照し、任意の2日間について時間に対する湿度の傾きが0(ゼロ)でないため、マンホール2の内部Sに溜水3が存在しないと判定する。そして、決定装置100は、ステップS507の処理を行う。 In step S505, the determination device 100 refers to the graph of the humidity transition in the internal S of the manhole 2, and since the slope of the humidity with respect to time is not 0 (zero) for any two days, the pooled water 3 is stored in the internal S of the manhole 2. Is determined not to exist. Then, the determination device 100 performs the process of step S507.
 ステップS506において、決定装置100は、マンホール2の点検周期を従来の点検周期より延伸することを決定する。 In step S506, the determination device 100 determines that the inspection cycle of the manhole 2 is extended from the conventional inspection cycle.
 ステップS507において、決定装置100は、マンホール2の点検周期を従来の点検周期と同じとすることを決定する。 In step S507, the determination device 100 determines that the inspection cycle of the manhole 2 is the same as the conventional inspection cycle.
 本実施形態に係る決定方法を適用して、マンホール2の点検周期を決定することにより、マンホール2の効率的な維持管理が可能となる。 By applying the determination method according to the present embodiment and determining the inspection cycle of the manhole 2, efficient maintenance of the manhole 2 becomes possible.
<第4実施形態>
 次に、図12を参照して、第4実施形態に係る決定システム30の構成の一例について説明する。
<Fourth Embodiment>
Next, an example of the configuration of the determination system 30 according to the fourth embodiment will be described with reference to FIG. 12.
 決定システム30は、決定装置100と、カメラ400と、を備える。決定装置100は、入力部110と、制御部120と、記憶部130と、出力部140と、通信部150と、を備える。決定装置100とカメラ400とは、有線または無線により通信可能に接続されている。なお、第1実施形態に係る決定装置100と同じ構成については、重複した説明を省略する場合がある。 The determination system 30 includes a determination device 100 and a camera 400. The determination device 100 includes an input unit 110, a control unit 120, a storage unit 130, an output unit 140, and a communication unit 150. The determination device 100 and the camera 400 are communicably connected by wire or wirelessly. Regarding the same configuration as the determination device 100 according to the first embodiment, duplicate description may be omitted.
 カメラ400は、マンホール2の内部Sに設けられる。カメラ400は、その設置位置が特に限定されるものではなく、少なくともマンホール2の内部Sにおける集水部224を、撮影可能な位置に設けられればよい。 The camera 400 is provided in the internal S of the manhole 2. The installation position of the camera 400 is not particularly limited, and at least the water collecting portion 224 in the internal S of the manhole 2 may be provided at a position where photography is possible.
 カメラ400は、マンホール2の内部Sを撮影する。カメラ400は、特に、マンホール2の内部Sにおける集水部224に存在する溜水3を撮影する。そして、カメラ400は、マンホール2の内部Sが撮影された撮影画像情報を決定装置100へ送信する。 The camera 400 photographs the internal S of the manhole 2. The camera 400 particularly captures the accumulated water 3 existing in the water collecting portion 224 in the inner S of the manhole 2. Then, the camera 400 transmits the photographed image information captured by the internal S of the manhole 2 to the determination device 100.
 判定部121は、カメラ400により撮影された撮影画像情報に基づいて、マンホール2の内部Sに溜水3が存在するか否かを判定する。そして、判定部121は、判定結果を決定部122へ出力する。 The determination unit 121 determines whether or not the pooled water 3 exists in the internal S of the manhole 2 based on the captured image information captured by the camera 400. Then, the determination unit 121 outputs the determination result to the determination unit 122.
 記憶部130は、決定装置100の動作に用いられる任意の情報を記憶する。例えば、記憶部130は、カメラ400により撮影された撮影画像情報、判定部121により判定された判定結果、決定部122により決定された点検周期、決定部122により決定された点検時期などを記憶する。この他にも、記憶部130は、例えば、各種のプログラムやデータなどを記憶する。 The storage unit 130 stores arbitrary information used for the operation of the determination device 100. For example, the storage unit 130 stores captured image information captured by the camera 400, a determination result determined by the determination unit 121, an inspection cycle determined by the determination unit 122, an inspection time determined by the determination unit 122, and the like. .. In addition to this, the storage unit 130 stores, for example, various programs and data.
 通信部150は、カメラ400と通信する機能を有する。通信部150は、例えば、カメラ400により撮影された撮影画像情報を、カメラ400から受信する。 The communication unit 150 has a function of communicating with the camera 400. The communication unit 150 receives, for example, the captured image information captured by the camera 400 from the camera 400.
 本実施形態に係る決定システム30は、カメラ400により撮影された撮影画像情報に基づいて、マンホール2の内部Sに溜水3が存在するか否かを判定する判定部121と、判定結果に基づいて、マンホール2の点検周期を決定する決定部122と、を備える。これにより、試料の採取もしくは破壊試験による現地測定を行うことなく、個々のマンホール2における中性化進行速度を反映させた適切な点検周期を、各マンホール2に対して決定することができる。したがって、マンホール2の効率的な維持管理を可能とする決定システム30を実現できる。 The determination system 30 according to the present embodiment is based on the determination unit 121 that determines whether or not the pooled water 3 exists in the internal S of the manhole 2 based on the photographed image information captured by the camera 400, and the determination result. A determination unit 122 for determining the inspection cycle of the manhole 2 is provided. This makes it possible to determine an appropriate inspection cycle for each manhole 2 that reflects the neutralization progress rate in each manhole 2 without performing on-site measurement by sampling or destructive test. Therefore, it is possible to realize a determination system 30 that enables efficient maintenance of the manhole 2.
<決定方法>
 次に、図13を参照して、第4実施形態に係る決定方法の一例について説明する。
<Determination method>
Next, an example of the determination method according to the fourth embodiment will be described with reference to FIG.
 ステップS601において、カメラ400は、マンホール2の内部Sを撮影する。そして、カメラ400は、撮影画像情報を決定装置100へ送信する。 In step S601, the camera 400 photographs the inside S of the manhole 2. Then, the camera 400 transmits the captured image information to the determination device 100.
 ステップS602において、決定装置100は、カメラ400により撮影された撮影画像情報を、カメラ400から受信する。そして、決定装置100は、受信した撮影画像情報を記憶する。 In step S602, the determination device 100 receives the captured image information captured by the camera 400 from the camera 400. Then, the determination device 100 stores the received photographed image information.
 ステップS603において、決定装置100は、撮影画像情報に基づいて、マンホール2の内部Sに溜水3が存在するか否かを判定する。決定装置100は、マンホール2の内部Sに溜水3が存在すると判定する場合(ステップS603→Yes)、ステップS604の処理を行う。決定装置100は、マンホール2の内部Sに溜水3が存在しないと判定する場合(ステップS603→No)、ステップS605の処理を行う。 In step S603, the determination device 100 determines whether or not the pooled water 3 exists in the internal S of the manhole 2 based on the captured image information. When the determination device 100 determines that the accumulated water 3 exists in the internal S of the manhole 2 (step S603 → Yes), the determination device 100 performs the process of step S604. When the determination device 100 determines that the accumulated water 3 does not exist in the internal S of the manhole 2 (step S603 → No), the determination device 100 performs the process of step S605.
 ステップS604において、決定装置100は、マンホール2の点検周期を従来の点検周期より延伸することを決定する。 In step S604, the determination device 100 determines that the inspection cycle of the manhole 2 is extended from the conventional inspection cycle.
 ステップS605において、決定装置100は、マンホール2の点検周期を従来の点検周期と同じとすることを決定する。 In step S605, the determination device 100 determines that the inspection cycle of the manhole 2 is the same as the conventional inspection cycle.
 本実施形態に係る決定方法を適用して、マンホール2の点検周期を決定することにより、マンホール2の効率的な維持管理が可能となる。 By applying the determination method according to the present embodiment and determining the inspection cycle of the manhole 2, efficient maintenance of the manhole 2 becomes possible.
<変形例>
 次に、図14を参照して、変形例に係る決定方法の一例について説明する。
<Modification example>
Next, an example of the determination method according to the modified example will be described with reference to FIG.
 変形例に係る決定方法が、実施形態に係る決定方法と異なる点は、実施形態に係る決定方法が、中性化が原因でマンホール2に劣化が生じる場合を前提とした処理を行うのに対して、変形例に係る決定方法は、各種部材の材料に塩分が含まれていたなどの中性化以外の原因でマンホール2に劣化が生じる場合を前提とした処理を行う点である。変形例に係る決定方法において、前提が異なる以外は、実施形態に係る決定方法と同じであるため、重複した説明を省略する場合がある。なお、一般的に、マンホール2に劣化が生じる原因としては、中性化以外は、少数である。 The difference between the determination method according to the modified example and the determination method according to the embodiment is that the determination method according to the embodiment performs processing on the premise that the manhole 2 is deteriorated due to neutralization. Therefore, the determination method according to the modified example is to perform processing on the premise that the manhole 2 is deteriorated due to a cause other than neutralization, such as the material of various members containing salt. Since the determination method according to the modified example is the same as the determination method according to the embodiment except that the premise is different, duplicate explanations may be omitted. In general, there are only a few causes of deterioration of the manhole 2 other than neutralization.
 ステップS701において、決定装置100は、中性化以外で劣化を生じるマンホール2であるか否かを判定する。決定装置100は、中性化以外で劣化を生じるマンホール2であると判定する場合(ステップS701→Yes)、ステップS702の処理を行う。決定装置100は、中性化以外で劣化を生じるマンホール2でないと判定する場合(ステップS701→No)、ステップS703の処理を行う In step S701, the determination device 100 determines whether or not the manhole 2 causes deterioration other than neutralization. When the determination device 100 determines that the manhole 2 causes deterioration other than neutralization (step S701 → Yes), the determination device 100 performs the process of step S702. When the determination device 100 determines that the manhole 2 is not a manhole 2 that causes deterioration other than neutralization (step S701 → No), the determination device 100 performs the process of step S703.
 ステップS702において、決定装置100は、マンホール2の点検周期を従来の点検周期と同じとすることを決定する。 In step S702, the determination device 100 determines that the inspection cycle of the manhole 2 is the same as the conventional inspection cycle.
 ステップS703において、決定装置100は、あらかじめデータベース化されて記憶部130に記憶された溜水情報、あるいは、作業者により直接入力された溜水情報に基づいて、マンホール2の内部Sに溜水3が存在するか否かを判定する。決定装置100は、マンホール2の内部Sに溜水3が存在すると判定する場合(ステップS703→Yes)、ステップS704の処理を行う。決定装置100は、マンホール2の内部Sに溜水3が存在しないと判定する場合(ステップS703→No)、ステップS702の処理を行う。 In step S703, the determination device 100 stores water 3 in the internal S of the manhole 2 based on the stored water information stored in the storage unit 130 in advance as a database or the stored water information directly input by the operator. Determines if is present. When the determination device 100 determines that the accumulated water 3 exists in the internal S of the manhole 2 (step S703 → Yes), the determination device 100 performs the process of step S704. When the determination device 100 determines that the accumulated water 3 does not exist in the internal S of the manhole 2 (step S703 → No), the determination device 100 performs the process of step S702.
 ステップS704において、決定装置100は、マンホール2の点検周期を従来の点検周期より延伸することを決定する。 In step S704, the determination device 100 determines that the inspection cycle of the manhole 2 is extended from the conventional inspection cycle.
 本実施形態に係る決定方法を適用して、マンホール2の点検周期を決定することにより、マンホール2が、中性化が原因で劣化する場合であっても、マンホール2が、中性化以外の原因で劣化する場合であっても、試料の採取もしくは破壊試験による現地測定を行うことなく、適切な点検周期を、各マンホール2に対して決定することができる。これにより、マンホール2の効率的な維持管理が可能となる。 By applying the determination method according to the present embodiment to determine the inspection cycle of the manhole 2, even if the manhole 2 is deteriorated due to the neutralization, the manhole 2 is not neutralized. Even in the case of deterioration due to the cause, an appropriate inspection cycle can be determined for each manhole 2 without taking a sample or performing on-site measurement by a destructive test. This enables efficient maintenance of the manhole 2.
<その他の変形例>
 本発明は上記の実施形態および変形例に限定されるものではない。例えば、上述の各種の処理は、記載にしたがって時系列に実行されるのみならず、処理を実行する装置の処理能力あるいは必要に応じて並列的にあるいは個別に実行されてもよい。その他、本発明の趣旨を逸脱しない範囲で適宜変更が可能である。
<Other variants>
The present invention is not limited to the above embodiments and modifications. For example, the various processes described above may not only be executed in chronological order according to the description, but may also be executed in parallel or individually as required by the processing capacity of the device that executes the processes. In addition, changes can be made as appropriate without departing from the spirit of the present invention.
<プログラム及び記録媒体>
 上記の実施形態及び変形例として機能させるためにプログラム命令を実行可能なコンピュータを用いることも可能である。コンピュータは、各装置の機能を実現する処理内容を記述したプログラムを該コンピュータの記憶部に格納しておき、該コンピュータのプロセッサによってこのプログラムを読み出して実行させることで実現することができ、これらの処理内容の少なくとも一部をハードウェアで実現することとしてもよい。ここで、コンピュータは、汎用コンピュータ、専用コンピュータ、ワークステーション、PC、電子ノートパッドなどであってよい。プログラム命令は、必要なタスクを実行するためのプログラムコード、コードセグメントなどであってもよい。プロセッサは、CPU(Central Processing Unit)、GPU(Graphics Processing Unit)、DSP(Digital Signal Processor)、ASIC(Application Specific Integrated Circuit)などのであってよい。
<Programs and recording media>
It is also possible to use a computer capable of executing program instructions to function as the above embodiment and modification. The computer can be realized by storing a program describing the processing contents that realize the functions of each device in the storage unit of the computer, and reading and executing this program by the processor of the computer. At least a part of the processing content may be realized by hardware. Here, the computer may be a general-purpose computer, a dedicated computer, a workstation, a PC, an electronic notebook pad, or the like. The program instruction may be a program code, a code segment, or the like for executing a necessary task. The processor may be a CPU (Central Processing Unit), a GPU (Graphics Processing Unit), a DSP (Digital Signal Processor), an ASIC (Application Specific Integrated Circuit), or the like.
 例えば、上述した決定方法をコンピュータに実行させるためのプログラムは、図3を参照すると、鉄筋コンクリート構造物の内部に溜水が存在するか否かを判定するステップ(S101)と、判定結果に基づいて、鉄筋コンクリート構造物の点検周期を決定するステップ(S102,S103)と、を含む。 For example, the program for causing the computer to execute the above-mentioned determination method is based on the step (S101) of determining whether or not the accumulated water is present inside the reinforced concrete structure and the determination result, referring to FIG. , The steps (S102, S103) for determining the inspection cycle of the reinforced concrete structure.
 また、このプログラムは、コンピュータが読み取り可能な記録媒体に記録されていてもよい。このような記録媒体を用いれば、プログラムをコンピュータにインストールすることが可能である。ここで、プログラムが記録された記録媒体は、非一過性の記録媒体であってもよい。非一過性の記録媒体は、CD(Compact Disk)-ROM(Read-Only Memory)、DVD(Digital Versatile Disc)-ROM、BD(Blu-ray Disc(登録商標))-ROMなどであってもよい。また、このプログラムは、ネットワークを介したダウンロードによって提供することもできる。 Further, this program may be recorded on a recording medium that can be read by a computer. Using such a recording medium, it is possible to install the program on the computer. Here, the recording medium on which the program is recorded may be a non-transient recording medium. Even if the non-transient recording medium is a CD (Compact Disk) -ROM (Read-Only Memory), DVD (Digital Versatile Disc) -ROM, BD (Blu-ray Disc (registered trademark)) -ROM, etc. good. The program can also be provided by download over the network.
 上述の実施形態は代表的な例として説明したが、本開示の趣旨及び範囲内で、多くの変更及び置換ができることは当業者に明らかである。したがって、本発明は、上述の実施形態によって制限するものと解するべきではなく、請求の範囲から逸脱することなく、種々の変形や変更が可能である。例えば、実施形態の構成図に記載の複数の構成ブロックを1つに組み合わせたり、あるいは1つの構成ブロックを分割したりすることが可能である。また、実施形態のフローチャートに記載の複数の工程を1つに組み合わせたり、あるいは1つの工程を分割したりすることが可能である。 Although the above-described embodiment has been described as a representative example, it is clear to those skilled in the art that many changes and substitutions can be made within the spirit and scope of the present disclosure. Therefore, the present invention should not be construed as being limited by the embodiments described above, and various modifications and modifications can be made without departing from the scope of the claims. For example, it is possible to combine a plurality of the constituent blocks described in the configuration diagram of the embodiment into one, or to divide one constituent block into one. Further, it is possible to combine a plurality of steps described in the flowchart of the embodiment into one, or to divide one step.
 2             マンホール
 3             溜水
 10            決定システム
 20            決定システム
 30            決定システム
 100           決定装置
 110           入力部
 120           制御部
 121           判定部
 122           決定部
 130           記憶部
 140           出力部
 150           通信部
 200           水分検知センサ
 210           首部
 220           躯体部
 221           上床版
 222           下床版
 223           側壁部
 230           鉄蓋
 300           湿度計
 302           地下
 400           カメラ
 
 
2 Manhole 3 Reservoir 10 Decision system 20 Decision system 30 Decision system 100 Decision device 110 Input section 120 Control section 121 Judgment section 122 Decision section 130 Storage section 140 Output section 150 Communication section 200 Moisture detection sensor 210 Head section 220 Frame section 221 Upper floor version 222 Lower floor slab 223 Side wall 230 Iron lid 300 Hygrometer 302 Underground 400 Camera

Claims (7)

  1.  鉄筋コンクリート構造物の内部に溜水が存在するか否かを判定する判定部と、
     前記判定部による判定結果に基づいて、前記鉄筋コンクリート構造物の点検周期を決定する決定部と、
     を備える、決定装置。
    A determination unit that determines whether or not there is accumulated water inside the reinforced concrete structure,
    A determination unit that determines the inspection cycle of the reinforced concrete structure based on the determination result by the determination unit, and a determination unit.
    A decision device.
  2.  前記決定部は、
     前記判定部により前記溜水が存在すると判定された場合、前記点検周期を従来の点検周期と同じとし、
     前記判定部により前記溜水が存在しないと判定された場合、前記点検周期を前記従来の点検周期より長くする、
     請求項1に記載の決定装置。
    The decision-making part
    When the determination unit determines that the accumulated water is present, the inspection cycle is set to be the same as the conventional inspection cycle.
    When the determination unit determines that the accumulated water does not exist, the inspection cycle is made longer than the conventional inspection cycle.
    The determination device according to claim 1.
  3.  鉄筋コンクリート構造物の内部における集水部に水分が存在するか否かを検知する水分検知センサと、
     前記水分検知センサにより検知された情報に基づいて、前記内部に溜水が存在するか否かを判定する判定部と、
     前記判定部による判定結果に基づいて、前記鉄筋コンクリート構造物の点検周期を決定する決定部と、
     を備える、決定システム。
    A moisture detection sensor that detects whether or not moisture is present in the water collecting part inside the reinforced concrete structure,
    Based on the information detected by the moisture detection sensor, a determination unit that determines whether or not there is accumulated water inside, and a determination unit.
    A determination unit that determines the inspection cycle of the reinforced concrete structure based on the determination result by the determination unit, and a determination unit.
    A decision system.
  4.  鉄筋コンクリート構造物の内部における湿度を計測する湿度計と、
     前記湿度計により計測された情報に基づいて、前記内部に溜水が存在するか否かを判定する判定部と、
     前記判定部による判定結果に基づいて、前記鉄筋コンクリート構造物の点検周期を決定する決定部と、
     を備える、決定システム。
    A hygrometer that measures the humidity inside a reinforced concrete structure,
    Based on the information measured by the hygrometer, a determination unit that determines whether or not there is accumulated water inside the hygrometer, and a determination unit.
    A determination unit that determines the inspection cycle of the reinforced concrete structure based on the determination result by the determination unit, and a determination unit.
    A decision system.
  5.  鉄筋コンクリート構造物の内部を撮影するカメラと、
     前記カメラにより撮影された画像情報に基づいて、前記内部に溜水が存在するか否かを判定する判定部と、
     前記判定部による判定結果に基づいて、前記鉄筋コンクリート構造物の点検周期を決定する決定部と、
     を備える、決定システム。
    A camera that captures the inside of a reinforced concrete structure,
    Based on the image information taken by the camera, a determination unit that determines whether or not there is accumulated water inside the camera, and a determination unit that determines whether or not there is accumulated water inside.
    A determination unit that determines the inspection cycle of the reinforced concrete structure based on the determination result by the determination unit, and a determination unit.
    A decision system.
  6.  鉄筋コンクリート構造物の内部に溜水が存在するか否かを判定するステップと、
     前記判定するステップによる判定結果に基づいて、前記鉄筋コンクリート構造物の点検周期を決定するステップと、
     を含む、決定方法。
    Steps to determine if there is pool inside the reinforced concrete structure,
    A step of determining the inspection cycle of the reinforced concrete structure based on the determination result of the determination step, and
    How to decide, including.
  7.  前記決定するステップは、
     前記判定するステップにより前記溜水が存在すると判定された場合、前記点検周期を従来の点検周期と同じとするステップと、
     前記判定するステップにより前記溜水が存在しないと判定された場合、前記点検周期を前記従来の点検周期より長くするステップと、
     を含む、請求項6に記載の決定方法。
     
     
    The step to determine is
    When it is determined by the determination step that the accumulated water is present, the step of making the inspection cycle the same as the conventional inspection cycle and the step
    When it is determined by the determination step that the accumulated water does not exist, the step of lengthening the inspection cycle to the conventional inspection cycle and the step of making the inspection cycle longer than the conventional inspection cycle.
    6. The determination method according to claim 6.

PCT/JP2020/039260 2020-10-19 2020-10-19 Determination device, determination system, and determination method WO2022085047A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022556834A JP7460932B2 (en) 2020-10-19 2020-10-19 Decision devices, decision systems, and decision methods
PCT/JP2020/039260 WO2022085047A1 (en) 2020-10-19 2020-10-19 Determination device, determination system, and determination method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/039260 WO2022085047A1 (en) 2020-10-19 2020-10-19 Determination device, determination system, and determination method

Publications (1)

Publication Number Publication Date
WO2022085047A1 true WO2022085047A1 (en) 2022-04-28

Family

ID=81290292

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/039260 WO2022085047A1 (en) 2020-10-19 2020-10-19 Determination device, determination system, and determination method

Country Status (2)

Country Link
JP (1) JP7460932B2 (en)
WO (1) WO2022085047A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7038470B1 (en) * 2003-12-10 2006-05-02 Advanced Design Consulting, Usa, Ind. Parallel-plate capacitive element for monitoring environmental parameters in concrete
JP2020134314A (en) * 2019-02-20 2020-08-31 日本電信電話株式会社 Method and device for corrosion prevention
JP2020154466A (en) * 2019-03-18 2020-09-24 デンカ株式会社 Concrete structure management device, information processing system, concrete structure management method, and program

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7103749B2 (en) * 2016-11-17 2022-07-20 スリーエム イノベイティブ プロパティズ カンパニー Measurement cycle determination device, measurement cycle determination program, and its method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7038470B1 (en) * 2003-12-10 2006-05-02 Advanced Design Consulting, Usa, Ind. Parallel-plate capacitive element for monitoring environmental parameters in concrete
JP2020134314A (en) * 2019-02-20 2020-08-31 日本電信電話株式会社 Method and device for corrosion prevention
JP2020154466A (en) * 2019-03-18 2020-09-24 デンカ株式会社 Concrete structure management device, information processing system, concrete structure management method, and program

Also Published As

Publication number Publication date
JPWO2022085047A1 (en) 2022-04-28
JP7460932B2 (en) 2024-04-03

Similar Documents

Publication Publication Date Title
Bayar et al. A novel study for the estimation of crack propagation in concrete using machine learning algorithms
Gu et al. Corrosion non-uniformity of steel bars and reliability of corroded RC beams
Tahershamsi et al. Investigating correlations between crack width, corrosion level and anchorage capacity
Andisheh et al. Seismic behavior of corroded RC bridges: Review and research gaps
US10087596B2 (en) Method and apparatus for keeping foundations flat
JP6371025B1 (en) Reinforced concrete member discrimination system and reinforced concrete member discrimination program
JP6337227B1 (en) Reinforced concrete member discrimination system and reinforced concrete member discrimination program
JP6374628B1 (en) Reinforced concrete member discrimination system and reinforced concrete member discrimination program
WO2022085047A1 (en) Determination device, determination system, and determination method
JP6371027B1 (en) Reinforced concrete member discrimination system and reinforced concrete member discrimination program
Bourreau et al. Spatial identification of exposure zones of concrete structures exposed to a marine environment with respect to reinforcement corrosion
Peil Assessment of bridges via monitoring
Bertola et al. Sensing the structural behavior: A perspective on the usefulness of monitoring information for bridge examination
JP7004915B2 (en) Deterioration prediction method
Patil et al. Implementing BIM and finite element analysis in a structural integrity investigation of curtain walls
Shih et al. Developing dynamic digital image techniques with continuous parameters to detect structural damage
Ziehl et al. Low-level acoustic emission in the long-term monitoring of concrete
Ramani et al. Monitoring chloride ingress in concrete using an imaging probe sensor with sacrificial metal foil
Lee et al. Corrosion state assessment of the rebar: Experimental investigation by ambient temperature and relative humidity
Smith Grand challenges of structural sensing
Del Grosso The role of SHM in infrastructure management
Plotnikov et al. Analysis of Correlation of Monitoring Parameters of a Multi-storey Building for Determining Its Deformed State
WO2024111094A1 (en) Determination method, determination device, and program
Qiu et al. A Novel SMFL‐Based Assessment Method for Corrosion Nonuniformity of Rebar and Its Application in Reliability Analysis of Corroded RC Beam
Balayssac et al. Ruptures of prestressing cables

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20958603

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022556834

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20958603

Country of ref document: EP

Kind code of ref document: A1