WO2022084613A1 - Method for launching a projectile and device for implementing said method - Google Patents

Method for launching a projectile and device for implementing said method Download PDF

Info

Publication number
WO2022084613A1
WO2022084613A1 PCT/FR2021/051810 FR2021051810W WO2022084613A1 WO 2022084613 A1 WO2022084613 A1 WO 2022084613A1 FR 2021051810 W FR2021051810 W FR 2021051810W WO 2022084613 A1 WO2022084613 A1 WO 2022084613A1
Authority
WO
WIPO (PCT)
Prior art keywords
projectile
launch tube
upstream
downstream
annular space
Prior art date
Application number
PCT/FR2021/051810
Other languages
French (fr)
Inventor
Frederik Guyon
Original Assignee
Commissariat A L'energie Atomique Et Aux Energies Alternatives
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat A L'energie Atomique Et Aux Energies Alternatives filed Critical Commissariat A L'energie Atomique Et Aux Energies Alternatives
Publication of WO2022084613A1 publication Critical patent/WO2022084613A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41BWEAPONS FOR PROJECTING MISSILES WITHOUT USE OF EXPLOSIVE OR COMBUSTIBLE PROPELLANT CHARGE; WEAPONS NOT OTHERWISE PROVIDED FOR
    • F41B11/00Compressed-gas guns, e.g. air guns; Steam guns
    • F41B11/60Compressed-gas guns, e.g. air guns; Steam guns characterised by the supply of compressed gas
    • F41B11/68Compressed-gas guns, e.g. air guns; Steam guns characterised by the supply of compressed gas the gas being pre-compressed before firing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41BWEAPONS FOR PROJECTING MISSILES WITHOUT USE OF EXPLOSIVE OR COMBUSTIBLE PROPELLANT CHARGE; WEAPONS NOT OTHERWISE PROVIDED FOR
    • F41B11/00Compressed-gas guns, e.g. air guns; Steam guns
    • F41B11/80Compressed-gas guns, e.g. air guns; Steam guns specially adapted for particular purposes
    • F41B11/87Compressed-gas guns, e.g. air guns; Steam guns specially adapted for particular purposes for industrial purposes, e.g. for surface treatment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41FAPPARATUS FOR LAUNCHING PROJECTILES OR MISSILES FROM BARRELS, e.g. CANNONS; LAUNCHERS FOR ROCKETS OR TORPEDOES; HARPOON GUNS
    • F41F1/00Launching apparatus for projecting projectiles or missiles from barrels, e.g. cannons; Harpoon guns
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B12/00Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material
    • F42B12/02Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the warhead or the intended effect
    • F42B12/04Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the warhead or the intended effect of armour-piercing type
    • F42B12/06Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the warhead or the intended effect of armour-piercing type with hard or heavy core; Kinetic energy penetrators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B14/00Projectiles or missiles characterised by arrangements for guiding or sealing them inside barrels, or for lubricating or cleaning barrels

Definitions

  • the present invention relates to a method for launching a projectile, and a device for implementing this method.
  • Guns, or projectile launchers are commonly used to characterize the penetrating power of projectiles in materials and, symmetrically, to characterize the ability of protection to stop a projectile. This type of impact is also used to determine the dynamic thermomechanical characteristics of materials (called equations of state).
  • the speed range of the applications of the present invention covers all the speeds generally accessible by projectile launchers, ranging from one meter per second (m/s) to several thousand meters per second. In the latter case, we commonly speak of hypervelocity projectiles.
  • the projectile is set in motion; this same projectile obstructs the launch tube as best as possible, so as to limit gas leaks around the projectile as much as possible, such leaks being detrimental to the increase in speed of the projectile.
  • the projectile is ultimately ejected from the launch tube, while in other applications the propelled projectile within of the launch tube remains confined in the latter, for example in the case of acceleration tests within the launch tube or impact tests against a wall placed at the end of the launch tube to determine the dynamic thermomechanical characteristics of the material constituting the wall.
  • launcher is used here in all cases.
  • the term "projectile” means either the projectile to be propelled or, in the case of a sabot and projectile configuration, the assembly consisting of a sabot and a projectile.
  • the projectile is initially enclosed in the sabot; the assembly is fired using the launcher; then the sabot opens during its trajectory outside the launcher, releasing the projectile.
  • the first technique is based on the use of a bursting disc placed upstream of the projectile. Breaking at a defined pressure, it suddenly lets the pressurized gas pass which, on reaching the projectile at rest, puts the latter in motion. Variants based on the use of at least two bursting discs make it possible to very quickly release a volume previously brought to a high static pressure.
  • the disadvantages of this first technique are, on the one hand, the cost of the rupture disks and, on the other hand, the risk that the rupture of the disk generates parasitic debris liable to strike the target.
  • the projectile itself provides pressure restraint.
  • a first of these methods is based on the use of a deformable geometry projectile.
  • a collar keeps the projectile in place in the launch tube, thanks to a support against the latter.
  • the collar deforms elastically or plastically, releasing the projectile.
  • the collar contributes to sealing between the upstream and downstream of the projectile during the movement of the latter, by opposing the escape of gas in the direction of the downstream of the projectile.
  • a second method is based on the insertion of the projectile in the launch tube with a "negative clearance", by shrinking, for example by maintaining the projectile at a temperature much lower than that of the launch tube during the insertion of the projectile in the tube.
  • a third method is based on the use of a splittable projectile.
  • a collar first retains the projectile in place in the launch tube. Beyond a gas pressure threshold upstream of the projectile, the collar breaks mechanically, leaving the projectile free to be set in motion.
  • Such a collar does not make it possible to ensure sealing between the upstream and the downstream of the projectile during the movement of the projectile in the launch tube, after the collar has broken.
  • this method generates debris that may disrupt the experiment by causing unwanted impacts.
  • the object of the invention is in particular to provide a simple, economical and effective solution to these problems, making it possible to avoid at least in part the aforementioned drawbacks.
  • the invention proposes for this purpose a method of launching a projectile, comprising the following steps:
  • A. provide a projectile launcher, comprising a launch tube and a gas pressure generator;
  • step E before rupture of the annular structure constituted by the solidified material, this annular structure makes it possible to prevent gas leaks downstream around the projectile, thus promoting the rise in pressure in the upstream space.
  • the invention makes it possible to increase the machining tolerances, and therefore to reduce the cost of launching projectiles, in comparison with known techniques.
  • step C comprises a sub-step Ca consisting in leaving the material in liquid form to fill the annular space by capillarity.
  • step C is implemented by means of an injection needle of a syringe initially containing the material in liquid form.
  • the method comprises, between steps B and C, a step B-a consisting in placing an upstream plug and a downstream plug in the launch tube, respectively on an upstream side and on a downstream side with respect to the projectile, so that the upstream plug and the downstream plug delimit said annular space between them. Furthermore, the method comprises, between steps D and E, a step D-a consisting in removing the upstream plug and the downstream plug from the launch tube.
  • At least one of the upstream and downstream plugs defines an injection channel opening into said annular space to inject the material in liquid form into said annular space.
  • the launch tube includes an injection channel opening into said annular space to inject the material in liquid form into said annular space.
  • the projectile launcher includes a cooling or cryogenic device arranged to cool at least one segment of the launch tube; step B consists of placing the projectile at least in said segment of the launch tube; and step D consists in putting the cooling or cryogenic device into operation so that the latter cools the material, until at least the solidification of the material.
  • the material is chosen from water, alcohol, a mixture of water and alcohol, glycol or hydrogen peroxide, acetic acid, and an anti-seizing lubricating fluid.
  • the method comprises, between steps A and B, a step Aa consisting in bringing wetting vapor from a material into contact with at least one of the outer surface of the projectile and the inner surface of the launch tube defining said annular space, on which said material is able to achieve partial or total wetting.
  • a step Aa consisting in bringing wetting vapor from a material into contact with at least one of the outer surface of the projectile and the inner surface of the launch tube defining said annular space, on which said material is able to achieve partial or total wetting.
  • one, at least, among the outer surface of the projectile and the inner surface of the launch tube defining said annular space comprises asperities.
  • the invention also relates to a projectile launcher for implementing the method of the type described above, comprising a launch tube; a gas pressure generator; and a cooling or cryogenic device arranged to cool at least one segment of the launch tube.
  • FIG. 1 is a flowchart of a method of launching a projectile according to a preferred embodiment of the invention
  • FIG. 2 is a schematic view in axial section of a projectile launcher according to a preferred embodiment of the invention, during step A of the method of Figure 1;
  • FIG. 3 is a schematic view in axial section of the projectile launcher of Figure 2 at the end of step B of the method of Figure 1;
  • FIG. 4 is a schematic view in axial section of the projectile launcher of Figure 2 during step C of the method of Figure 1;
  • FIG. 5 is a schematic view in axial section of the projectile launcher of Figure 2 during step D of the method of Figure 1;
  • FIG. 6 is a schematic view in axial section of the projectile launcher of Figure 2 during step E of the method of Figure 1;
  • FIG. 7 is a schematic view in axial section of the projectile launcher of Figure 2 at the end of step E of the method of Figure 1;
  • - Figure 8 is a schematic view in axial section of the projectile launcher of Figure 2 after a step Ba of a variant of the method of Figure 1;
  • - Figure 9 is a schematic view in axial section of the projectile launcher of Figure 2 at the end of a step Ba of another variant of the method of Figure 1.
  • a method of launching a projectile for example a hypervelocity projectile, according to a preferred embodiment of the invention, and a projectile launcher for the implementation thereof, will be described with reference to Figures 2 to 7 and with constant reference to Figure 1.
  • the method first comprises a step A (FIG. 2) consisting in providing a projectile launcher 10, comprising a launch tube 14 and a gas pressure generator 16.
  • the gas pressure generator 16 may have one or more stages.
  • the gas pressure generator 16 is initially in an uncoupled state from the launch tube 14, which allows access to the interior of the launch tube via the rear or upstream end of the latter.
  • the gas pressure generator 16 may be permanently attached to the launch tube 14, in which case access to the interior of the launch tube is preferably through the forward or downstream end, also referred to as the mouth. , or “muzzle” in Anglo-Saxon terminology, or by an intermediate access in the launch tube authorized by a temporary separation of the latter into two parts.
  • the projectile launcher 10 further comprises a cooling or cryogenic device 18 arranged to cool at least one segment 20 of the launch tube 14.
  • the cooling or cryogenic device 18 comprises a heat exchanger which is for example arranged all around the segment 20, and which comprises a circuit 22 intended for the circulation of a cooling or cryogenic fluid.
  • a cooling or cryogenic fluid can be supplied by a cryogenic fluid reservoir (not visible on the figures).
  • the circuit may form a closed loop further comprising a refrigeration apparatus designed to cool the refrigerant.
  • the heat exchanger can be integrated into the segment 20 of the launch tube 14.
  • the method then comprises a step B (FIG. 3) consisting in placing a projectile 24 in the launch tube 14, more precisely in the segment 20 of the tube likely to be cooled by the cooling or cryogenic device 18.
  • Positioning and maintaining the projectile 24 in the correct axial position in the launch tube 14 can be facilitated by bringing the projectile 24 into abutment against a peg after having introduced the latter into the launch tube 14 by one of the ends 14A and 14B of the latter, for example its downstream end 14B.
  • the method then comprises a step C (FIG. 4) consisting in injecting a material 26 in liquid form into an annular space 28 defined between an outer surface 30 of the projectile 24 and an inner surface 32 of the launch tube 14.
  • the material 26 is a material capable of achieving partial or total wetting on the outer surface 30 of the projectile 24 and on the inner surface 32 of the launch tube 14.
  • This material is preferably liquid at ambient temperature (25° C.), to allow the implementation of step C without requiring heating or cooling.
  • this material has a solidification temperature that can be reached by the cooling or cryogenic device 18 to allow the implementation of step D according to the methods described below.
  • Step C is implemented by means of an injection needle 34 of a syringe 36 initially containing the material 26 in liquid form.
  • the tip of the injection needle 34 is for example brought close to one end of the annular space 28 by introducing the needle through one of the ends of the launch tube 14, for example the end upstream 14A, or, where appropriate, by the end which is not that through which the aforementioned pin was introduced.
  • a preferred sub-step Ca of step C consists in allowing the material 26 in liquid form to spread into the annular space 28 by capillarity and thus surround the projectile 24 over 360 degrees.
  • the choice of a material 26 having a high interfacial tension with the inner surface 32 of the launch tube 14 makes it possible to promote the migration of the material 26 in liquid form by capillarity into the annular space 28.
  • the launch tube 14 being made of metal, for example steel (preferably stainless steel), the material 26 is advantageously chosen from water or alcohol or a mixture of water and alcohol, or even acetic acid, or a fluid marketed as an anti-seizing lubricant, or even glycol or hydrogen peroxide.
  • the material 26 is advantageously chosen from water or alcohol or a mixture of water and alcohol, or even acetic acid, or a fluid marketed as an anti-seizing lubricant, or even glycol or hydrogen peroxide.
  • the peg preferably has an end facing the projectile 24 shaped so as not to promote the migration of the material 26 in liquid form by capillarity around the peg.
  • the aforementioned end of the pin is for example in the form of a point.
  • the method advantageously comprises, between steps A and B, a step A-a consisting in bringing wetting vapor into contact with the outer surface 30 of the projectile 24 and/or with the inner surface 32 of the launch tube 14 defining the annular space 28.
  • This wetting vapor can consist of material 26, or of another material also able to effect partial or total wetting with the outer surface 30 of the projectile 24 and/or with the inner surface 32 of the launch tube 14.
  • the term "wetting vapor” should be understood to mean vapor containing droplets of the material in question, or molecules of this material in the gaseous state, capable of condensing on the outer surface 30 of the projectile 24 and/or on the surface interior 32 of the launch tube 14, in the form of a liquid partially or totally wetting this surface.
  • the wetting vapor makes it possible to promote the migration of the material 26 in liquid form by capillarity in step C.
  • the surface outer surface 30 of the projectile 24 and/or the inner surface 32 of the launch tube 14 defining the annular space 28 advantageously comprises asperities formed by grooves or protrusions or by a roughness of the surface concerned, for example obtained by prior roughening of said surface.
  • the method then comprises a step D (FIG. 5) consisting in solidifying the material 26 so that the latter constitutes an annular structure 38 securing the projectile 24 to the launch tube 14, and dividing the launch tube 14 in a leaktight manner into a space upstream S1 defined upstream of the projectile 24, and a downstream space S2 defined downstream of the projectile 24.
  • annular should be understood in a broad sense, meaning that the structure 38 extends over 360 degrees around the outer surface 30 of the projectile 24, and not necessarily involving rotational symmetry.
  • this step consists in putting the cooling or cryogenic device 18 into operation so as to cause the cooling or cryogenic fluid to circulate in the circuit 22 and thus cool the segment 20 of the launch tube and the annular structure 38 which is in contact with the segment 20, until at least the solidification of the material 26 constituting the annular structure 38.
  • the aforementioned pin is removed from the launch tube 14 at the end of the solidification of the material 26.
  • the method then comprises a step E (FIG. 6) consisting in putting the gas pressure generator 16 into operation, if necessary after having coupled it to the launch tube 14, so as to increase a gas pressure in space upstream IS.
  • a step E consisting in putting the gas pressure generator 16 into operation, if necessary after having coupled it to the launch tube 14, so as to increase a gas pressure in space upstream IS.
  • the annular structure 38 constituted by the solidified material 26 makes it possible to prevent gas leaks downstream around the projectile 24, thus promoting the rise in pressure in the upstream space SI.
  • the gas pressure then increases in the upstream space SI up to a threshold at which the gas pressure causes the rupture of the annular structure 38 constituted by the solidified material 26.
  • the annular structure 38 then no longer retains the projectile 24, so that, propelled by the gas pressure in the upstream space (SI) (FIG. 7), the projectile 24 is propelled into the launch tube 14, and possibly ejected out of it.
  • the residues 39 of the material 26 which adhere to the projectile 24 make it possible to limit gas leaks downstream around the projectile 24 and also make it possible to limit the friction between the projectile 24 and the tube.
  • step A-a consisting of bringing wetting vapor of the material 26 into contact with the outer surface 30 of the projectile 24 and/or with the inner surface 32 of the launch tube 14 has the additional advantage of to increase the adhesion of the annular structure 38 to the launch tube 14, and therefore increase the threshold at which the gas pressure causes the annular structure 38 to rupture, thereby increasing the force with which the projectile 24 is propelled out of the launch tube 14.
  • This threshold generally depends on the final temperature of the solidified material 26, the state of the inner surface 32 of the launch tube 14 in contact with the solidified material 26, the nature of the material 26, and the time course of the thermal cycle of cooling and/or solidification of the material 26.
  • the projectile 24 is in the form of a cylinder of revolution.
  • the projectile 24 can have various shapes.
  • the projectile 24 comprises a cylindrical central portion 24A of revolution, a front point 24B of conical shape extending forwards from a front end of the central portion 24A, a connecting portion 24C of cylindrical shape of revolution, of diameter smaller than the diameter of the central portion 24A, and extending rearwards from a rear end of the central portion 24A, and a tail rear 24D of frustoconical shape widening towards the rear and connected to the central portion 24A by the connecting portion 24C.
  • FIGS. 8 and 9 illustrate variants of the method according to the invention, comprising a step Ba implemented between steps B and C and consisting in arranging an upstream plug 40 and a downstream plug 42 in the tube of launch 14, respectively on an upstream side and on a downstream side with respect to the projectile 24, so that the upstream plug 40 and the downstream plug 42 delimit between them the annular space 28.
  • Such plugs make it possible to maintain the projectile 24 centered in the launch tube 14 and therefore to maintain the shape of the annular space 28 before solidification of the material 26.
  • the method further comprises, between steps D and E, a step D-a consisting in removing the upstream plug 40 and the downstream plug 42 from the launch tube 14.
  • plugs 40, 42 are particularly useful for holding the material 26 in place in liquid form, in cases where the thickness of the annular space 28 is such that the only effects of interfacial tension between the launch tube 14 , the projectile 24 and the material 26 in liquid form are not sufficient to counter the effect of gravity.
  • the material constituting the plugs 40, 42 and the surface condition of the latter are chosen to best reduce the adhesion of the solidified material 26 and thus facilitate the removal of the plugs 40, 42 once the solidification has been carried out in step D.
  • an anti-adhesion surface treatment for example with PTFE, can be applied beforehand to the plugs 40, 42 and possibly to the surfaces of the projectile 24 in contact with the plugs.
  • At least one of the upstream 40 and downstream 42 plugs in this case the upstream plug 40, defines an injection channel 44 opening out into the annular space 28 and into a face 46 of the plug located on the side opposite the projectile 24.
  • the injection channel 44 is used in step C to inject the material in liquid form into the annular space 28.
  • the material in liquid form can for example be injected into the injection channel 44 by means of a syringe in the manner described above.
  • the launch tube 14 includes an injection channel 44 opening into the annular space 28, and used in step C to inject the material in liquid form into the annular space. 28.
  • a column of solidified material 26 is formed in the injection channel 44 in step D, which contributes to the retention of the assembly consisting of the projectile 24 and the annular structure 38 formed by the material 26 solidified until the pressure threshold is reached in step E.
  • such a column of solidified material 26 can form a plug preventing the escape of gas through the injection channel 44 during the movement of the projectile 24 into launch tube 14 in step E.
  • the shape of the rear part made up of the connecting portion 24C and the rear tail 24D of the projectile 24 requires that the upstream plug 40 includes a cavity 47 allowing the passage of the part wider rear tail 24D, in this case the rear end thereof.
  • the upstream plug 40 may comprise a channel 48 putting the upstream space SI in communication with the cavity 47.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Toys (AREA)

Abstract

The invention relates to a method for launching a projectile (24) which comprises injecting a material (26) in liquid form into an annular space defined between an outer surface of the projectile and an inner surface of a launch tube (14); then solidifying the material so that it forms an annular structure (38) joining the projectile to the launch tube and sealingly dividing the launch tube into an upstream space (S1) upstream of the projectile and a downstream space (S2) downstream of the projectile; then operating a gas pressure generator (16) so as to increase a gas pressure in the upstream space, to a threshold at which the gas pressure causes the annular structure formed by the solidified material to rupture, thus releasing the projectile which, propelled by the gas pressure, is propelled in the launch tube.

Description

PROCEDE DE LANCEMENT D'UN PROJECTILE ET DISPOSITIF POUR LA MISE EN ŒUVRE DE CE PROCEDEMETHOD FOR LAUNCHING A PROJECTILE AND DEVICE FOR IMPLEMENTING THIS METHOD
DESCRIPTIONDESCRIPTION
DOMAINE TECHNIQUE TECHNICAL AREA
La présente invention concerne un procédé de lancement d'un projectile, et un dispositif pour la mise en œuvre de ce procédé. The present invention relates to a method for launching a projectile, and a device for implementing this method.
ÉTAT DE LA TECHNIQUE ANTÉRIEURE PRIOR ART
Des canons, ou lanceurs de projectiles, sont couramment utilisés pour caractériser le pouvoir de pénétration de projectiles dans les matériaux et, symétriquement, pour caractériser la capacité d'une protection à arrêter un projectile. Ce type d'impacts est aussi utilisé pour déterminer les caractéristiques thermomécaniques dynamiques des matériaux (appelées équations d'état). La gamme de vitesse des applications de la présente invention couvre l'ensemble des vitesses généralement accessibles par les lanceurs de projectiles, allant du mètre par seconde (m/s) à plusieurs milliers de mètres par seconde. Dans ce dernier cas, on parle couramment de projectiles hypervéloces. Guns, or projectile launchers, are commonly used to characterize the penetrating power of projectiles in materials and, symmetrically, to characterize the ability of protection to stop a projectile. This type of impact is also used to determine the dynamic thermomechanical characteristics of materials (called equations of state). The speed range of the applications of the present invention covers all the speeds generally accessible by projectile launchers, ranging from one meter per second (m/s) to several thousand meters per second. In the latter case, we commonly speak of hypervelocity projectiles.
Le principe de tels lanceurs de projectiles est le suivant : The principle of such projectile launchers is as follows:
- un projectile est inséré dans un tube de lancement ; - a projectile is inserted into a launch tube;
- une forte pression de gaz est générée au sein du tube de lancement, en amont du projectile; cette génération de pression de gaz n'étant pas instantanée, il faut retenir le projectile tant que la pression optimale n'est pas atteinte ; - a high gas pressure is generated within the launch tube, upstream of the projectile; this generation of gas pressure not being instantaneous, the projectile must be held back until the optimum pressure is reached;
- une fois la pression optimale atteinte, le projectile est mis en mouvement ; ce même projectile obstrue au mieux possible le tube de lancement, de manière à limiter au maximum les fuites de gaz autour du projectile, de telles fuites étant préjudiciables à la montée en vitesse du projectile. - once the optimum pressure has been reached, the projectile is set in motion; this same projectile obstructs the launch tube as best as possible, so as to limit gas leaks around the projectile as much as possible, such leaks being detrimental to the increase in speed of the projectile.
Dans certaines applications, le projectile est finalement éjecté hors du tube de lancement, tandis que dans d'autres applications, le projectile propulsé au sein du tube de lancement reste cantonné dans ce dernier, par exemple dans le cas de tests d'accélération au sein du tube de lancement ou d'essais d'impacts contre une paroi disposée au bout du tube de lancement pour déterminer les caractéristiques thermomécaniques dynamiques du matériau constituant la paroi. Par souci de simplicité, le terme « lanceur » est ici utilisé dans tous les cas. In some applications the projectile is ultimately ejected from the launch tube, while in other applications the propelled projectile within of the launch tube remains confined in the latter, for example in the case of acceleration tests within the launch tube or impact tests against a wall placed at the end of the launch tube to determine the dynamic thermomechanical characteristics of the material constituting the wall. For the sake of simplicity, the term "launcher" is used here in all cases.
Dans l'ensemble de la présente demande de brevet, on entend, par « projectile », soit le projectile à propulser, soit, dans le cas d'une configuration à sabot et projectile, l'ensemble constitué d'un sabot et d'un projectile. Dans un tel cas, le projectile est initialement enfermé dans le sabot ; l'ensemble est tiré au moyen du lanceur ; puis le sabot s'ouvre au cours de sa trajectoire à l'extérieur du lanceur, libérant le projectile. Throughout this patent application, the term "projectile" means either the projectile to be propelled or, in the case of a sabot and projectile configuration, the assembly consisting of a sabot and a projectile. In such a case, the projectile is initially enclosed in the sabot; the assembly is fired using the launcher; then the sabot opens during its trajectory outside the launcher, releasing the projectile.
Afin de retenir le projectile dans le tube de lancement tant que la pression optimale n'est pas atteinte, deux techniques peuvent être mises en œuvre. In order to retain the projectile in the launch tube until the optimum pressure is reached, two techniques can be implemented.
La première technique est fondée sur l'utilisation d'un disque de rupture disposé en amont du projectile. Rompant à une pression définie, il laisse soudainement passer le gaz sous pression qui, en atteignant le projectile au repos, met se dernier en mouvement. Des variantes basées sur l'utilisation d'au moins deux disques de rupture permettent de libérer très rapidement un volume préalablement portée à une forte pression statique. The first technique is based on the use of a bursting disc placed upstream of the projectile. Breaking at a defined pressure, it suddenly lets the pressurized gas pass which, on reaching the projectile at rest, puts the latter in motion. Variants based on the use of at least two bursting discs make it possible to very quickly release a volume previously brought to a high static pressure.
Les inconvénients de cette première technique sont, d'une part, le coût des disques de rupture et, d'autre part, le risque que la rupture du disque génère des débris parasites susceptibles de percuter la cible. The disadvantages of this first technique are, on the one hand, the cost of the rupture disks and, on the other hand, the risk that the rupture of the disk generates parasitic debris liable to strike the target.
Dans la seconde technique, le projectile lui-même assure la retenue de la pression. In the second technique, the projectile itself provides pressure restraint.
Plusieurs méthodes sont connues à cet effet. Several methods are known for this purpose.
Une première de ces méthodes repose sur l'utilisation d'un projectile à géométrie déformable. Au repos, une collerette maintient le projectile en place dans le tube de lancement, grâce à un appui contre ce dernier. Lorsque la pression amont dépasse un seuil prédéfini, la collerette se déforme de manière élastique ou plastique, libérant le projectile. La collerette contribue à l'étanchéité entre l'amont et l'aval du projectile au cours du déplacement de ce dernier, en s'opposant à la fuite de gaz en direction de l'aval du projectile. A first of these methods is based on the use of a deformable geometry projectile. At rest, a collar keeps the projectile in place in the launch tube, thanks to a support against the latter. When the upstream pressure exceeds a predefined threshold, the collar deforms elastically or plastically, releasing the projectile. The collar contributes to sealing between the upstream and downstream of the projectile during the movement of the latter, by opposing the escape of gas in the direction of the downstream of the projectile.
Les inconvénients de cette première méthode sont de potentielles complications de conception ou de mise en œuvre du projectile à collerette, et le coût de sa fabrication (excroissance à réaliser, tolérances d'usinage serrées), The disadvantages of this first method are potential complications in the design or implementation of the projectile with a collar, and the cost of its manufacture (outgrowth to be made, tight machining tolerances),
Une deuxième méthode repose sur l'insertion du projectile dans le tube de lancement avec un « jeu négatif », par frettage, par exemple en maintenant le projectile à une température beaucoup plus basse que celle du tube de lancement durant l'insertion du projectile dans le tube. A second method is based on the insertion of the projectile in the launch tube with a "negative clearance", by shrinking, for example by maintaining the projectile at a temperature much lower than that of the launch tube during the insertion of the projectile in the tube.
L'inconvénient de cette méthode est la nécessité de préalablement refroidir dans la masse le projectile, le peu de temps disponible pour la mise en place de ce dernier dans le tube de lancement, le risque de dépôt de givre avant la mise en place du projectile, et la nécessité de tolérances d'usinage serrées. De plus, cette méthode est susceptible d'induire des pertes considérables par frottements lors du lancer du projectile. The disadvantage of this method is the need to cool the projectile in the mass beforehand, the short time available for the installation of the latter in the launch tube, the risk of frost depositing before the installation of the projectile , and the need for tight machining tolerances. In addition, this method is liable to induce considerable losses by friction during the launching of the projectile.
Une troisième méthode repose sur l'utilisation d'un projectile fractionnable. Dans ce cas, comme avec la première méthode, une collerette retient préalablement le projectile en place dans le tube de lancement. Au-delà d'un seuil de pression de gaz en amont du projectile, la collerette rompt mécaniquement, laissant le projectile libre d'être mis en mouvement. Une telle collerette ne permet pas d'assurer l'étanchéité entre l'amont et l'aval du projectile au cours du déplacement du projectile dans le tube de lancement, après rupture de la collerette. Par ailleurs, cette méthode génère des débris qui risquent de perturber l'expérience en occasionnant des impacts non désirés. A third method is based on the use of a splittable projectile. In this case, as with the first method, a collar first retains the projectile in place in the launch tube. Beyond a gas pressure threshold upstream of the projectile, the collar breaks mechanically, leaving the projectile free to be set in motion. Such a collar does not make it possible to ensure sealing between the upstream and the downstream of the projectile during the movement of the projectile in the launch tube, after the collar has broken. Moreover, this method generates debris that may disrupt the experiment by causing unwanted impacts.
EXPOSÉ DE L'INVENTION DISCLOSURE OF THE INVENTION
L'invention a notamment pour but d'apporter une solution simple, économique et efficace à ces problèmes, permettant d'éviter au moins en partie les inconvénients précités. L'invention propose à cet effet un procédé de lancement d'un projectile, comprenant les étapes suivantes : The object of the invention is in particular to provide a simple, economical and effective solution to these problems, making it possible to avoid at least in part the aforementioned drawbacks. The invention proposes for this purpose a method of launching a projectile, comprising the following steps:
A. mettre à disposition un lanceur de projectiles, comprenant un tube de lancement et un générateur de pression de gaz ; A. provide a projectile launcher, comprising a launch tube and a gas pressure generator;
B. disposer un projectile dans le tube de lancement ; B. placing a projectile in the launch tube;
C. injecter un matériau sous forme liquide dans un espace annulaire défini entre une surface extérieure du projectile et une surface intérieure du tube de lancement, le matériau étant apte à réaliser un mouillage partiel ou total sur la surface extérieure du projectile et sur la surface intérieure du tube de lancement ; C. injecting a material in liquid form into an annular space defined between an outer surface of the projectile and an inner surface of the launch tube, the material being able to achieve partial or total wetting on the outer surface of the projectile and on the inner surface the launch tube;
D. solidifier le matériau de sorte que ce dernier constitue une structure annulaire solidarisant le projectile au tube de lancement et divisant de manière étanche le tube de lancement en un espace amont défini en amont du projectile et un espace aval défini en aval du projectile ; D. solidifying the material so that the latter constitutes an annular structure securing the projectile to the launch tube and dividing the launch tube in a sealed manner into an upstream space defined upstream of the projectile and a downstream space defined downstream of the projectile;
E. mettre en fonctionnement le générateur de pression de gaz de manière à accroître une pression de gaz dans l'espace amont, et laisser la pression de gaz augmenter dans l'espace amont jusqu'à un seuil auquel la pression de gaz provoque la rupture de la structure annulaire constituée par le matériau solidifié, libérant ainsi le projectile qui, propulsé par la pression de gaz, est propulsé dans le tube de lancement. E. operating the gas pressure generator to increase a gas pressure in the upstream space, and allowing the gas pressure to increase in the upstream space to a threshold at which the gas pressure causes rupture of the annular structure formed by the solidified material, thus releasing the projectile which, propelled by the gas pressure, is propelled into the launch tube.
À l'étape E, avant rupture de la structure annulaire constituée par le matériau solidifié, cette structure annulaire permet d'éviter les fuites de gaz vers l'aval autour du projectile, favorisant ainsi la montée en pression dans l'espace amont. In step E, before rupture of the annular structure constituted by the solidified material, this annular structure makes it possible to prevent gas leaks downstream around the projectile, thus promoting the rise in pressure in the upstream space.
Ensuite, au cours du déplacement du projectile dans le tube de lancement, des résidus éventuels du matériau issus de la structure annulaire, qui adhérent au projectile, permettent de limiter les fuites de gaz vers l'aval autour du projectile et permettent en outre de limiter les frottements entre le projectile et le tube. Then, during the movement of the projectile in the launch tube, possible residues of the material resulting from the annular structure, which adhere to the projectile, make it possible to limit gas leaks downstream around the projectile and also make it possible to limit friction between the projectile and the tube.
Enfin, l'invention permet d'accroître les tolérances d'usinage, et donc de réduire le coût des lancements de projectiles, par comparaison avec les techniques connues. Finally, the invention makes it possible to increase the machining tolerances, and therefore to reduce the cost of launching projectiles, in comparison with known techniques.
De préférence, l'étape C comprend une sous-étape C-a consistant à laisser le matériau sous forme liquide emplir l'espace annulaire par capillarité. Dans des modes de réalisation de l'invention, l'étape C est mise en œuvre au moyen d'une aiguille d'injection d'une seringue contenant initialement le matériau sous forme liquide. Preferably, step C comprises a sub-step Ca consisting in leaving the material in liquid form to fill the annular space by capillarity. In embodiments of the invention, step C is implemented by means of an injection needle of a syringe initially containing the material in liquid form.
Dans certains modes de réalisation de l'invention, le procédé comprend, entre les étapes B et C, une étape B-a consistant à disposer un bouchon amont et un bouchon aval dans le tube de lancement, respectivement d'un côté amont et d'un côté aval par rapport au projectile, de sorte que le bouchon amont et le bouchon aval délimitent entre eux ledit espace annulaire. De plus, le procédé comprend, entre les étapes D et E, une étape D-a consistant à retirer le bouchon amont et le bouchon aval hors du tube de lancement. In certain embodiments of the invention, the method comprises, between steps B and C, a step B-a consisting in placing an upstream plug and a downstream plug in the launch tube, respectively on an upstream side and on a downstream side with respect to the projectile, so that the upstream plug and the downstream plug delimit said annular space between them. Furthermore, the method comprises, between steps D and E, a step D-a consisting in removing the upstream plug and the downstream plug from the launch tube.
Dans un mode de réalisation préférentiel de l'invention, au moins un des bouchons amont et aval définit un canal d'injection débouchant dans ledit espace annulaire pour injecter le matériau sous forme liquide dans ledit espace annulaire. In a preferred embodiment of the invention, at least one of the upstream and downstream plugs defines an injection channel opening into said annular space to inject the material in liquid form into said annular space.
Dans un autre mode de réalisation préférentiel de l'invention, le tube de lancement comporte un canal d'injection débouchant dans ledit espace annulaire pour injecter le matériau sous forme liquide dans ledit espace annulaire. In another preferred embodiment of the invention, the launch tube includes an injection channel opening into said annular space to inject the material in liquid form into said annular space.
Dans des modes de réalisation préférés de l'invention, le lanceur de projectiles comporte un dispositif réfrigérant ou cryogénique agencé pour refroidir au moins un segment du tube de lancement ; l'étape B consiste à disposer le projectile au moins dans ledit segment du tube de lancement ; et l'étape D consiste à mettre en fonctionnement le dispositif réfrigérant ou cryogénique de sorte que ce dernier refroidisse le matériau, jusqu'à au moins la solidification du matériau. In preferred embodiments of the invention, the projectile launcher includes a cooling or cryogenic device arranged to cool at least one segment of the launch tube; step B consists of placing the projectile at least in said segment of the launch tube; and step D consists in putting the cooling or cryogenic device into operation so that the latter cools the material, until at least the solidification of the material.
Dans des modes de réalisation préférés de l'invention, le matériau est choisi parmi de l'eau, de l'alcool, un mélange d'eau et d'alcool, de l'eau glycolée ou oxygénée, de l'acide acétique, et un fluide lubrifiant dégrippant. In preferred embodiments of the invention, the material is chosen from water, alcohol, a mixture of water and alcohol, glycol or hydrogen peroxide, acetic acid, and an anti-seizing lubricating fluid.
Dans des modes de réalisation préférés de l'invention, le procédé comprend, entre les étapes A et B, une étape A-a consistant à mettre de la vapeur mouillante d'un matériau en contact avec l'une, au moins, parmi la surface extérieure du projectile et la surface intérieure du tube de lancement définissant ledit espace annulaire, sur laquelle ledit matériau est apte à réaliser un mouillage partiel ou total. Dans des modes de réalisation préférés de l'invention, l'une, au moins, parmi la surface extérieure du projectile et la surface intérieure du tube de lancement définissant ledit espace annulaire, comporte des aspérités. In preferred embodiments of the invention, the method comprises, between steps A and B, a step Aa consisting in bringing wetting vapor from a material into contact with at least one of the outer surface of the projectile and the inner surface of the launch tube defining said annular space, on which said material is able to achieve partial or total wetting. In preferred embodiments of the invention, one, at least, among the outer surface of the projectile and the inner surface of the launch tube defining said annular space, comprises asperities.
L'invention concerne également un lanceur de projectiles pour la mise en œuvre du procédé du type décrit ci-dessus, comprenant un tube de lancement ; un générateur de pression de gaz ; et un dispositif réfrigérant ou cryogénique agencé pour refroidir au moins un segment du tube de lancement. The invention also relates to a projectile launcher for implementing the method of the type described above, comprising a launch tube; a gas pressure generator; and a cooling or cryogenic device arranged to cool at least one segment of the launch tube.
BRÈVE DESCRIPTION DES DESSINS BRIEF DESCRIPTION OF DRAWINGS
L'invention sera mieux comprise, et d'autres détails, avantages et caractéristiques de celle-ci apparaîtront à la lecture de la description suivante faite à titre d'exemple non limitatif et en référence aux dessins annexés dans lesquels : The invention will be better understood, and other details, advantages and characteristics thereof will appear on reading the following description given by way of non-limiting example and with reference to the appended drawings in which:
- la figure 1 est un organigramme d'un procédé de lancement d'un projectile selon un mode de réalisation préféré de l'invention ; - Figure 1 is a flowchart of a method of launching a projectile according to a preferred embodiment of the invention;
- la figure 2 est une vue schématique en coupe axiale d'un lanceur de projectiles selon un mode de réalisation préféré de l'invention, au cours de l'étape A du procédé de la figure 1 ; - Figure 2 is a schematic view in axial section of a projectile launcher according to a preferred embodiment of the invention, during step A of the method of Figure 1;
- la figure 3 est une vue schématique en coupe axiale du lanceur de projectiles de la figure 2 à l'issue de l'étape B du procédé de la figure 1 ; - Figure 3 is a schematic view in axial section of the projectile launcher of Figure 2 at the end of step B of the method of Figure 1;
- la figure 4 est une vue schématique en coupe axiale du lanceur de projectiles de la figure 2 au cours de l'étape C du procédé de la figure 1 ; - Figure 4 is a schematic view in axial section of the projectile launcher of Figure 2 during step C of the method of Figure 1;
- la figure 5 est une vue schématique en coupe axiale du lanceur de projectiles de la figure 2 au cours de l'étape D du procédé de la figure 1 ; - Figure 5 is a schematic view in axial section of the projectile launcher of Figure 2 during step D of the method of Figure 1;
- la figure 6 est une vue schématique en coupe axiale du lanceur de projectiles de la figure 2 au cours de l'étape E du procédé de la figure 1 ; - Figure 6 is a schematic view in axial section of the projectile launcher of Figure 2 during step E of the method of Figure 1;
- la figure 7 est une vue schématique en coupe axiale du lanceur de projectiles de la figure 2 à l'issue de l'étape E du procédé de la figure 1 ; - Figure 7 is a schematic view in axial section of the projectile launcher of Figure 2 at the end of step E of the method of Figure 1;
- la figure 8 est une vue schématique en coupe axiale du lanceur de projectiles de la figure 2 à l'issue d'une étape B-a d'une variante du procédé de la figure 1 ; - la figure 9 est une vue schématique en coupe axiale du lanceur de projectiles de la figure 2 à l'issue d'une étape B-a d'une autre variante du procédé de la figure 1. - Figure 8 is a schematic view in axial section of the projectile launcher of Figure 2 after a step Ba of a variant of the method of Figure 1; - Figure 9 is a schematic view in axial section of the projectile launcher of Figure 2 at the end of a step Ba of another variant of the method of Figure 1.
Dans l'ensemble de ces figures, des références identiques peuvent désigner des éléments identiques ou analogues. In all of these figures, identical references can designate identical or similar elements.
EXPOSÉ DÉTAILLÉ DE MODES DE RÉALISATION PRÉFÉRÉS DETAILED DISCUSSION OF PREFERRED EMBODIMENTS
Un procédé de lancement d'un projectile, par exemple un projectile hypervéloce, selon un mode de réalisation préféré de l'invention, et un lanceur de projectiles pour la mise en œuvre de celui-ci, vont être décrits en référence aux figures 2 à 7 et en référence constante à la figure 1. A method of launching a projectile, for example a hypervelocity projectile, according to a preferred embodiment of the invention, and a projectile launcher for the implementation thereof, will be described with reference to Figures 2 to 7 and with constant reference to Figure 1.
Le procédé comprend d'abord une étape A (figure 2) consistant à mettre à disposition un lanceur de projectiles 10, comprenant un tube de lancement 14 et un générateur de pression de gaz 16. Ces deux éléments peuvent être d'un type connu. En particulier, le générateur de pression de gaz 16 peut être à un ou plusieurs étages. Dans l'exemple illustré, le générateur de pression de gaz 16 est initialement dans un état désaccouplé du tube de lancement 14, ce qui permet un accès à l'intérieur du tube de lancement par l'extrémité arrière ou amont de ce dernier. En variante, le générateur de pression de gaz 16 peut être fixé de manière permanente au tube de lancement 14, auquel cas l'accès à l'intérieur du tube de lancement s'effectue préférentiellement par l'extrémité avant ou aval, également dénommée bouche, ou encore « muzzle » dans la terminologie anglo-saxonne, ou par un accès intermédiaire dans le tube de lancement autorisé par une séparation temporaire de ce dernier en deux parties. The method first comprises a step A (FIG. 2) consisting in providing a projectile launcher 10, comprising a launch tube 14 and a gas pressure generator 16. These two elements can be of a known type. In particular, the gas pressure generator 16 may have one or more stages. In the example illustrated, the gas pressure generator 16 is initially in an uncoupled state from the launch tube 14, which allows access to the interior of the launch tube via the rear or upstream end of the latter. Alternatively, the gas pressure generator 16 may be permanently attached to the launch tube 14, in which case access to the interior of the launch tube is preferably through the forward or downstream end, also referred to as the mouth. , or “muzzle” in Anglo-Saxon terminology, or by an intermediate access in the launch tube authorized by a temporary separation of the latter into two parts.
Le lanceur de projectiles 10 comporte en outre un dispositif réfrigérant ou cryogénique 18 agencé pour refroidir au moins un segment 20 du tube de lancement 14. The projectile launcher 10 further comprises a cooling or cryogenic device 18 arranged to cool at least one segment 20 of the launch tube 14.
À cet effet, le dispositif réfrigérant ou cryogénique 18 comprend un échangeur thermique qui est par exemple disposé tout autour du segment 20, et qui comporte un circuit 22 destiné à la circulation d'un fluide frigorigène ou cryogénique. Un tel fluide peut être fourni par un réservoir de fluide cryogénique (non visible sur les figures). En variante, le circuit peut former une boucle fermée comprenant en outre un appareil frigorifique conçu pour refroidir le fluide frigorigène. For this purpose, the cooling or cryogenic device 18 comprises a heat exchanger which is for example arranged all around the segment 20, and which comprises a circuit 22 intended for the circulation of a cooling or cryogenic fluid. Such fluid can be supplied by a cryogenic fluid reservoir (not visible on the figures). Alternatively, the circuit may form a closed loop further comprising a refrigeration apparatus designed to cool the refrigerant.
Par ailleurs, en variante, l'échangeur thermique peut être intégré au segment 20 du tube de lancement 14. Furthermore, as a variant, the heat exchanger can be integrated into the segment 20 of the launch tube 14.
Le procédé comprend ensuite une étape B (figure 3) consistant à disposer un projectile 24 dans le tube de lancement 14, plus précisément dans le segment 20 du tube susceptible d'être refroidi par le dispositif réfrigérant ou cryogénique 18. The method then comprises a step B (FIG. 3) consisting in placing a projectile 24 in the launch tube 14, more precisely in the segment 20 of the tube likely to be cooled by the cooling or cryogenic device 18.
Un positionnement et un maintien du projectile 24 à la bonne position axiale dans le tube de lancement 14 peut être facilité en amenant le projectile 24 en butée contre une pige après avoir introduit cette dernière dans le tube de lancement 14 par l'une des extrémités 14A et 14B de ce dernier, par exemple son extrémité aval 14B. Positioning and maintaining the projectile 24 in the correct axial position in the launch tube 14 can be facilitated by bringing the projectile 24 into abutment against a peg after having introduced the latter into the launch tube 14 by one of the ends 14A and 14B of the latter, for example its downstream end 14B.
Le procédé comprend ensuite une étape C (figure 4) consistant à injecter un matériau 26 sous forme liquide dans un espace annulaire 28 défini entre une surface extérieure 30 du projectile 24 et une surface intérieure 32 du tube de lancement 14. Le matériau 26 est un matériau apte à réaliser un mouillage partiel ou total sur la surface extérieure 30 du projectile 24 et sur la surface intérieure 32 du tube de lancement 14. Ce matériau est de préférence liquide à température ambiante (25°C), pour permettre la mise en œuvre de l'étape C sans requérir de chauffage ou de refroidissement. Dans le mode de réalisation illustré, ce matériau présente une température de solidification atteignable par le dispositif réfrigérant ou cryogénique 18 pour permettre la mise en œuvre de l'étape D selon les modalités décrites dans ce qui suit. The method then comprises a step C (FIG. 4) consisting in injecting a material 26 in liquid form into an annular space 28 defined between an outer surface 30 of the projectile 24 and an inner surface 32 of the launch tube 14. The material 26 is a material capable of achieving partial or total wetting on the outer surface 30 of the projectile 24 and on the inner surface 32 of the launch tube 14. This material is preferably liquid at ambient temperature (25° C.), to allow the implementation of step C without requiring heating or cooling. In the illustrated embodiment, this material has a solidification temperature that can be reached by the cooling or cryogenic device 18 to allow the implementation of step D according to the methods described below.
L'étape C est mise en œuvre au moyen d'une aiguille d'injection 34 d'une seringue 36 contenant initialement le matériau 26 sous forme liquide. Le bout de l'aiguille d'injection 34 est par exemple amené à proximité d'une extrémité de l'espace annulaire 28 en introduisant l'aiguille au travers de l'une des extrémités du tube de lancement 14, par exemple l'extrémité amont 14A, ou, le cas échéant, par l'extrémité qui n'est pas celle par où a été introduite la pige précitée. Step C is implemented by means of an injection needle 34 of a syringe 36 initially containing the material 26 in liquid form. The tip of the injection needle 34 is for example brought close to one end of the annular space 28 by introducing the needle through one of the ends of the launch tube 14, for example the end upstream 14A, or, where appropriate, by the end which is not that through which the aforementioned pin was introduced.
Une sous-étape C-a préférentielle de l'étape C consiste à laisser le matériau 26 sous forme liquide se répandre dans l'espace annulaire 28 par capillarité et entourer ainsi sur 360 degrés le projectile 24. Le choix d'un matériau 26 présentant une tension interfaciale élevée avec la surface intérieure 32 du tube de lancement 14 permet de favoriser la migration du matériau 26 sous forme liquide par capillarité dans l'espace annulaire 28. A preferred sub-step Ca of step C consists in allowing the material 26 in liquid form to spread into the annular space 28 by capillarity and thus surround the projectile 24 over 360 degrees. The choice of a material 26 having a high interfacial tension with the inner surface 32 of the launch tube 14 makes it possible to promote the migration of the material 26 in liquid form by capillarity into the annular space 28.
À cet effet, le tube de lancement 14 étant réalisé en métal, par exemple en acier (préférentiellement inoxydable), le matériau 26 est avantageusement choisi parmi de l'eau ou de l'alcool ou un mélange d'eau et d'alcool, ou encore de l'acide acétique, ou un fluide commercialisé en tant que lubrifiant dégrippant, ou encore de l'eau glycolée ou oxygénée. To this end, the launch tube 14 being made of metal, for example steel (preferably stainless steel), the material 26 is advantageously chosen from water or alcohol or a mixture of water and alcohol, or even acetic acid, or a fluid marketed as an anti-seizing lubricant, or even glycol or hydrogen peroxide.
Le cas échéant, la pige présente de préférence une extrémité en regard du projectile 24 conformée de manière à ne pas favoriser la migration du matériau 26 sous forme liquide par capillarité autour de la pige. À cet effet, l'extrémité précitée de la pige est par exemple en forme de pointe. Where appropriate, the peg preferably has an end facing the projectile 24 shaped so as not to promote the migration of the material 26 in liquid form by capillarity around the peg. For this purpose, the aforementioned end of the pin is for example in the form of a point.
Par ailleurs, le procédé comporte avantageusement, entre les étapes A et B, une étape A-a consistant à mettre de la vapeur mouillante en contact avec la surface extérieure 30 du projectile 24 et/ou avec la surface intérieure 32 du tube de lancement 14 définissant l'espace annulaire 28. Cette vapeur mouillante peut être constituée du matériau 26, ou d'un autre matériau également apte à opérer un mouillage partiel ou total avec la surface extérieure 30 du projectile 24 et/ou avec la surface intérieure 32 du tube de lancement 14. Par « vapeur mouillante », il faut comprendre de la vapeur contenant des gouttelettes du matériau considéré, ou des molécules de ce matériau à l'état gazeux, susceptibles de condenser sur la surface extérieure 30 du projectile 24 et/ou sur la surface intérieure 32 du tube de lancement 14, sous forme d'un liquide mouillant partiellement ou totalement cette surface. La vapeur mouillante permet de favoriser la migration du matériau 26 sous forme liquide par capillarité à l'étape C. Furthermore, the method advantageously comprises, between steps A and B, a step A-a consisting in bringing wetting vapor into contact with the outer surface 30 of the projectile 24 and/or with the inner surface 32 of the launch tube 14 defining the annular space 28. This wetting vapor can consist of material 26, or of another material also able to effect partial or total wetting with the outer surface 30 of the projectile 24 and/or with the inner surface 32 of the launch tube 14. The term "wetting vapor" should be understood to mean vapor containing droplets of the material in question, or molecules of this material in the gaseous state, capable of condensing on the outer surface 30 of the projectile 24 and/or on the surface interior 32 of the launch tube 14, in the form of a liquid partially or totally wetting this surface. The wetting vapor makes it possible to promote the migration of the material 26 in liquid form by capillarity in step C.
De plus, toujours pour favoriser la migration du matériau 26 sous forme liquide par capillarité et/ou pour favoriser la tenue au cisaillement de la structure annulaire 38 obtenue à l'issue de l'étape D qui sera décrite dans ce qui suit, la surface extérieure 30 du projectile 24 et/ou la surface intérieure 32 du tube de lancement 14 définissant l'espace annulaire 28 comporte avantageusement des aspérités constituées par des rainures ou des excroissances ou par une rugosité de la surface concernée, par exemple obtenue par dépolissage préalable de ladite surface. In addition, again to promote the migration of the material 26 in liquid form by capillarity and/or to promote the shear strength of the annular structure 38 obtained at the end of step D which will be described below, the surface outer surface 30 of the projectile 24 and/or the inner surface 32 of the launch tube 14 defining the annular space 28 advantageously comprises asperities formed by grooves or protrusions or by a roughness of the surface concerned, for example obtained by prior roughening of said surface.
Le procédé comprend ensuite une étape D (figure 5) consistant à solidifier le matériau 26 de sorte que ce dernier constitue une structure annulaire 38 solidarisant le projectile 24 au tube de lancement 14, et divisant de manière étanche le tube de lancement 14 en un espace amont SI défini en amont du projectile 24, et un espace aval S2 défini en aval du projectile 24. Il faut comprendre le terme « annulaire » dans un sens large, signifiant que la structure 38 s'étend sur 360 degrés autour de la surface extérieure 30 du projectile 24, et n'impliquant pas nécessairement une symétrie de révolution. The method then comprises a step D (FIG. 5) consisting in solidifying the material 26 so that the latter constitutes an annular structure 38 securing the projectile 24 to the launch tube 14, and dividing the launch tube 14 in a leaktight manner into a space upstream S1 defined upstream of the projectile 24, and a downstream space S2 defined downstream of the projectile 24. The term "annular" should be understood in a broad sense, meaning that the structure 38 extends over 360 degrees around the outer surface 30 of the projectile 24, and not necessarily involving rotational symmetry.
Dans le mode de réalisation décrit, cette étape consiste à mettre en fonctionnement le dispositif réfrigérant ou cryogénique 18 de manière à faire circuler le fluide frigorigène ou cryogénique dans le circuit 22 et refroidir ainsi le segment 20 du tube de lancement et la structure annulaire 38 qui se trouve au contact du segment 20, jusqu'à au moins la solidification du matériau 26 constituant la structure annulaire 38. In the embodiment described, this step consists in putting the cooling or cryogenic device 18 into operation so as to cause the cooling or cryogenic fluid to circulate in the circuit 22 and thus cool the segment 20 of the launch tube and the annular structure 38 which is in contact with the segment 20, until at least the solidification of the material 26 constituting the annular structure 38.
Le cas échéant, la pige précitée est retirée du tube de lancement 14 au terme de la solidification du matériau 26. If necessary, the aforementioned pin is removed from the launch tube 14 at the end of the solidification of the material 26.
Le procédé comprend ensuite une étape E (figure 6) consistant à mettre en fonctionnement le générateur de pression de gaz 16, le cas échéant après l'avoir accouplé au tube de lancement 14, de manière à accroître une pression de gaz dans l'espace amont SI. The method then comprises a step E (FIG. 6) consisting in putting the gas pressure generator 16 into operation, if necessary after having coupled it to the launch tube 14, so as to increase a gas pressure in space upstream IS.
La structure annulaire 38 constituée par le matériau 26 solidifié permet d'éviter les fuites de gaz vers l'aval autour du projectile 24, favorisant ainsi la montée en pression dans l'espace amont SI. The annular structure 38 constituted by the solidified material 26 makes it possible to prevent gas leaks downstream around the projectile 24, thus promoting the rise in pressure in the upstream space SI.
La pression de gaz augmente alors dans l'espace amont SI jusqu'à un seuil auquel la pression de gaz provoque la rupture de la structure annulaire 38 constituée par le matériau 26 solidifié. La structure annulaire 38 ne retient alors plus le projectile 24, de sorte que, propulsé par la pression de gaz dans l'espace amont (SI) (figure 7), le projectile 24 est propulsé dans le tube de lancement 14, et éventuellement éjecté hors de ce dernier. Au cours du déplacement du projectile 24 dans le tube de lancement 14, les résidus 39 du matériau 26 qui adhérent au projectile 24 permettent de limiter les fuites de gaz vers l'aval autour du projectile 24 et permettent en outre de limiter les frottements entre le projectile 24 et le tube. The gas pressure then increases in the upstream space SI up to a threshold at which the gas pressure causes the rupture of the annular structure 38 constituted by the solidified material 26. The annular structure 38 then no longer retains the projectile 24, so that, propelled by the gas pressure in the upstream space (SI) (FIG. 7), the projectile 24 is propelled into the launch tube 14, and possibly ejected out of it. During the movement of the projectile 24 in the launch tube 14, the residues 39 of the material 26 which adhere to the projectile 24 make it possible to limit gas leaks downstream around the projectile 24 and also make it possible to limit the friction between the projectile 24 and the tube.
Dans le mode de réalisation décrit, l'étape A-a consistant à mettre de la vapeur mouillante du matériau 26 en contact avec la surface extérieure 30 du projectile 24 et/ou avec la surface intérieure 32 du tube de lancement 14 présente l'avantage supplémentaire d'accroître l'adhésion de la structure annulaire 38 au tube de lancement 14, et donc d'accroître le seuil auquel la pression de gaz provoque la rupture de la structure annulaire 38, ce qui permet d'accroître la force avec laquelle le projectile 24 est propulsé hors du tube de lancement 14. In the embodiment described, step A-a consisting of bringing wetting vapor of the material 26 into contact with the outer surface 30 of the projectile 24 and/or with the inner surface 32 of the launch tube 14 has the additional advantage of to increase the adhesion of the annular structure 38 to the launch tube 14, and therefore increase the threshold at which the gas pressure causes the annular structure 38 to rupture, thereby increasing the force with which the projectile 24 is propelled out of the launch tube 14.
Ce seuil dépend, de manière générale, de la température finale du matériau 26 solidifié, de l'état de la surface intérieure 32 du tube de lancement 14 en contact avec le matériau 26 solidifié, de la nature du matériau 26, et de l'allure temporelle du cycle thermique du refroidissement et/ou de la solidification du matériau 26. This threshold generally depends on the final temperature of the solidified material 26, the state of the inner surface 32 of the launch tube 14 in contact with the solidified material 26, the nature of the material 26, and the time course of the thermal cycle of cooling and/or solidification of the material 26.
Dans le mode de réalisation illustré sur les figures 2-7, le projectile 24 est en forme de cylindre de révolution. In the embodiment illustrated in Figures 2-7, the projectile 24 is in the form of a cylinder of revolution.
En variante, le projectile 24 peut avoir des formes diverses. Ainsi, dans les modes de réalisation illustrés sur les figures 8 et 9, le projectile 24 comporte une portion centrale 24A cylindrique de révolution, une pointe avant 24B de forme conique s'étendant vers l'avant à partir d'une extrémité avant de la portion centrale 24A, une portion de liaison 24C de forme cylindrique de révolution, de diamètre inférieur au diamètre de la portion centrale 24A, et s'étendant vers l'arrière à partir d'une extrémité arrière de la portion centrale 24A, et une queue arrière 24D de forme tronconique s'élargissant en direction de l'arrière et reliée à la portion centrale 24A par la portion de liaison 24C. Alternatively, the projectile 24 can have various shapes. Thus, in the embodiments illustrated in FIGS. 8 and 9, the projectile 24 comprises a cylindrical central portion 24A of revolution, a front point 24B of conical shape extending forwards from a front end of the central portion 24A, a connecting portion 24C of cylindrical shape of revolution, of diameter smaller than the diameter of the central portion 24A, and extending rearwards from a rear end of the central portion 24A, and a tail rear 24D of frustoconical shape widening towards the rear and connected to the central portion 24A by the connecting portion 24C.
Par ailleurs, les figures 8 et 9 illustrent des variantes du procédé selon l'invention, comprenant une étape B-a mise en œuvre entre les étapes B et C et consistant à disposer un bouchon amont 40 et un bouchon aval 42 dans le tube de lancement 14, respectivement d'un côté amont et d'un côté aval par rapport au projectile 24, de sorte que le bouchon amont 40 et le bouchon aval 42 délimitent entre eux l'espace annulaire 28. Furthermore, FIGS. 8 and 9 illustrate variants of the method according to the invention, comprising a step Ba implemented between steps B and C and consisting in arranging an upstream plug 40 and a downstream plug 42 in the tube of launch 14, respectively on an upstream side and on a downstream side with respect to the projectile 24, so that the upstream plug 40 and the downstream plug 42 delimit between them the annular space 28.
De tels bouchons permettent de maintenir le projectile 24 centré dans le tube de lancement 14 et donc de maintenir la forme de l'espace annulaire 28 avant solidification du matériau 26. Such plugs make it possible to maintain the projectile 24 centered in the launch tube 14 and therefore to maintain the shape of the annular space 28 before solidification of the material 26.
Dans de tels cas, le procédé comprend en outre, entre les étapes D et E, une étape D-a consistant à retirer le bouchon amont 40 et le bouchon aval 42 hors du tube de lancement 14. In such cases, the method further comprises, between steps D and E, a step D-a consisting in removing the upstream plug 40 and the downstream plug 42 from the launch tube 14.
L'utilisation des bouchons 40, 42 est particulièrement utile pour maintenir en place le matériau 26 sous forme liquide, dans les cas où l'épaisseur de l'espace annulaire 28 est telle que les seuls effets de tension interfaciale entre le tube de lancement 14, le projectile 24 et le matériau 26 sous forme liquide ne suffisent pas à contrer l'effet de la gravité. The use of the plugs 40, 42 is particularly useful for holding the material 26 in place in liquid form, in cases where the thickness of the annular space 28 is such that the only effects of interfacial tension between the launch tube 14 , the projectile 24 and the material 26 in liquid form are not sufficient to counter the effect of gravity.
La matière constituant les bouchons 40, 42 et l'état de surface de ces derniers sont choisis pour réduire au mieux l'adhérence du matériau 26 solidifié et faciliter ainsi le retrait des bouchons 40, 42 une fois la solidification réalisée à l'étape D. Au besoin, un traitement de surface anti-adhérence, par exemple avec du PTFE, peut être appliqué préalablement sur les bouchons 40, 42 et éventuellement sur les surfaces du projectile 24 en contact avec les bouchons. The material constituting the plugs 40, 42 and the surface condition of the latter are chosen to best reduce the adhesion of the solidified material 26 and thus facilitate the removal of the plugs 40, 42 once the solidification has been carried out in step D. If necessary, an anti-adhesion surface treatment, for example with PTFE, can be applied beforehand to the plugs 40, 42 and possibly to the surfaces of the projectile 24 in contact with the plugs.
Dans la variante illustrée par la figure 8, au moins un des bouchons amont 40 et aval 42, en l'occurrence le bouchon amont 40, définit un canal d'injection 44 débouchant dans l'espace annulaire 28 et dans une face 46 du bouchon située du côté opposé au projectile 24. Le canal d'injection 44 est mis à profit à l'étape C pour injecter le matériau sous forme liquide dans l'espace annulaire 28. Dans un tel cas, le matériau sous forme liquide peut par exemple être injecté dans le canal d'injection 44 au moyen d'une seringue de la manière décrite ci-dessus. In the variant illustrated by FIG. 8, at least one of the upstream 40 and downstream 42 plugs, in this case the upstream plug 40, defines an injection channel 44 opening out into the annular space 28 and into a face 46 of the plug located on the side opposite the projectile 24. The injection channel 44 is used in step C to inject the material in liquid form into the annular space 28. In such a case, the material in liquid form can for example be injected into the injection channel 44 by means of a syringe in the manner described above.
Dans la variante illustrée par la figure 9, le tube de lancement 14 comporte un canal d'injection 44 débouchant dans l'espace annulaire 28, et mis à profit à l'étape C pour injecter le matériau sous forme liquide dans l'espace annulaire 28. Dans cette variante, une colonne du matériau 26 solidifié se forme dans le canal d'injection 44 à l'étape D, ce qui contribue à la retenue de l'ensemble constitué du projectile 24 et de la structure annulaire 38 formée par le matériau 26 solidifié jusqu'à ce que le seuil de pression soit atteint à l'étape E. De plus, une telle colonne du matériau 26 solidifié peut constituer un bouchon évitant la fuite de gaz par le canal d'injection 44 au cours du déplacement du projectile 24 dans le tube de lancement 14 à l'étape E. In the variant illustrated by FIG. 9, the launch tube 14 includes an injection channel 44 opening into the annular space 28, and used in step C to inject the material in liquid form into the annular space. 28. In this variant, a column of solidified material 26 is formed in the injection channel 44 in step D, which contributes to the retention of the assembly consisting of the projectile 24 and the annular structure 38 formed by the material 26 solidified until the pressure threshold is reached in step E. In addition, such a column of solidified material 26 can form a plug preventing the escape of gas through the injection channel 44 during the movement of the projectile 24 into launch tube 14 in step E.
Dans les exemples illustrés par les figures 8 et 9, la forme de la partie arrière constituée de la portion de liaison 24C et de la queue arrière 24D du projectile 24 requiert que le bouchon amont 40 comporte une cavité 47 permettant le passage de la partie la plus large de la queue arrière 24D, en l'occurrence de l'extrémité arrière de celle- ci. Afin de permettre un équilibrage des pressions d'air entre cette cavité 47 et l'espace amont SI au cours du refroidissement opéré à l'étape D, le bouchon amont 40 peut comporter un canal 48 mettant en communication l'espace amont SI avec la cavité 47. In the examples illustrated by FIGS. 8 and 9, the shape of the rear part made up of the connecting portion 24C and the rear tail 24D of the projectile 24 requires that the upstream plug 40 includes a cavity 47 allowing the passage of the part wider rear tail 24D, in this case the rear end thereof. In order to allow a balancing of the air pressures between this cavity 47 and the upstream space SI during the cooling carried out in step D, the upstream plug 40 may comprise a channel 48 putting the upstream space SI in communication with the cavity 47.
Il peut bien entendu y avoir plusieurs canaux d'injection 44. De plus, la variante de la figure 9 peut être mise en œuvre sans utiliser de bouchons 40, 42. There can of course be several injection channels 44. In addition, the variant of Figure 9 can be implemented without using plugs 40, 42.

Claims

REVENDICATIONS
1. Procédé de lancement d'un projectile, comprenant les étapes suivantes : 1. Method for launching a projectile, comprising the following steps:
A. mettre à disposition un lanceur de projectiles (10), comprenant un tube de lancementA. providing a projectile launcher (10), comprising a launch tube
(14) et un générateur de pression de gaz (16) ; (14) and a gas pressure generator (16);
B. disposer un projectile (24) dans le tube de lancement (14), B. placing a projectile (24) in the launch tube (14),
C. injecter un matériau (26) sous forme liquide dans un espace annulaire (28) défini entre une surface extérieure (30) du projectile (24) et une surface intérieure (32) du tube de lancement (14), le matériau (26) étant apte à réaliser un mouillage partiel ou total sur la surface extérieure (30) du projectile (24) et sur la surface intérieure (32) du tube de lancement (14) ; C. injecting a material (26) in liquid form into an annular space (28) defined between an outer surface (30) of the projectile (24) and an inner surface (32) of the launch tube (14), the material (26 ) being able to achieve partial or total wetting on the outer surface (30) of the projectile (24) and on the inner surface (32) of the launch tube (14);
D. solidifier le matériau (26) de sorte que ce dernier constitue une structure annulaireD. solidifying the material (26) so that it forms an annular structure
(38) solidarisant le projectile (24) au tube de lancement (14) et divisant de manière étanche le tube de lancement en un espace amont (SI) défini en amont du projectile et un espace aval (S2) défini en aval du projectile ; (38) securing the projectile (24) to the launch tube (14) and sealingly dividing the launch tube into an upstream space (SI) defined upstream of the projectile and a downstream space (S2) defined downstream of the projectile;
E. mettre en fonctionnement le générateur de pression de gaz (16) de manière à accroître une pression de gaz dans l'espace amont (SI), et laisser la pression de gaz augmenter dans l'espace amont jusqu'à un seuil auquel la pression de gaz provoque la rupture de la structure annulaire (38) constituée par le matériau (26) solidifié, libérant ainsi le projectile (24) qui, propulsé par la pression de gaz dans l'espace amont (SI), est propulsé dans le tube de lancement (14). E. operating the gas pressure generator (16) to increase a gas pressure in the upstream space (SI), and allowing the gas pressure to increase in the upstream space to a threshold at which the gas pressure causes the rupture of the annular structure (38) constituted by the solidified material (26), thus releasing the projectile (24) which, propelled by the gas pressure in the upstream space (SI), is propelled into the launch tube (14).
2. Procédé selon la revendication 1, dans lequel l'étape C comprend une sous-étape C-a consistant à laisser le matériau (26) sous forme liquide emplir l'espace annulaire (28) par capillarité. 2. Method according to claim 1, in which step C comprises a sub-step C-a consisting in leaving the material (26) in liquid form to fill the annular space (28) by capillarity.
3. Procédé selon la revendication 1 ou 2, dans lequel l'étape C est mise en œuvre au moyen d'une aiguille d'injection (34) d'une seringue (36) contenant initialement le matériau (26) sous forme liquide. 4. Procédé selon la revendication 1 ou 2, comprenant, entre les étapes B et C, une étape B-a consistant à disposer un bouchon amont (40) et un bouchon aval (42) dans le tube de lancement (14), respectivement d'un côté amont et d'un côté aval par rapport au projectile (24), de sorte que le bouchon amont et le bouchon aval délimitent entre eux ledit espace annulaire (28), et comprenant, entre les étapes D et E, une étape D-a consistant à retirer le bouchon amont (40) et le bouchon aval (42) hors du tube de lancement (14). 3. Method according to claim 1 or 2, in which step C is implemented by means of an injection needle (34) of a syringe (36) initially containing the material (26) in liquid form. 4. Method according to claim 1 or 2, comprising, between steps B and C, a step Ba consisting in placing an upstream plug (40) and a downstream plug (42) in the launch tube (14), respectively an upstream side and a downstream side with respect to the projectile (24), so that the upstream plug and the downstream plug delimit between them said annular space (28), and comprising, between steps D and E, a step Da consisting of removing the upstream plug (40) and the downstream plug (42) from the launch tube (14).
5. Procédé selon la revendication 4, dans lequel au moins un des bouchons amont (40) et aval (42) définit au moins un canal d'injection (44) débouchant dans ledit espace annulaire (28) et par lequel au moins une partie du matériau (26) sous forme liquide est injecté dans ledit espace annulaire à l'étape C. 5. Method according to claim 4, in which at least one of the upstream (40) and downstream (42) plugs defines at least one injection channel (44) opening into the said annular space (28) and through which at least a part material (26) in liquid form is injected into said annular space in step C.
6. Procédé selon l'une quelconque des revendications 1 à 5, dans lequel le tube de lancement (14) comporte au moins un canal d'injection (44) débouchant dans ledit espace annulaire (28) et par lequel au moins une partie du matériau (26) sous forme liquide est injecté dans ledit espace annulaire à l'étape C. 6. Method according to any one of claims 1 to 5, wherein the launch tube (14) comprises at least one injection channel (44) opening into said annular space (28) and through which at least part of the material (26) in liquid form is injected into said annular space in step C.
7. Procédé selon l'une quelconque des revendications 1 à 6, dans lequel : 7. Method according to any one of claims 1 to 6, in which:
- le lanceur de projectiles (10) comporte un dispositif réfrigérant ou cryogénique (18) agencé pour refroidir au moins un segment (20) du tube de lancement (14) ; - the projectile launcher (10) comprises a cooling or cryogenic device (18) arranged to cool at least one segment (20) of the launch tube (14);
- l'étape B consiste à disposer le projectile (24) au moins dans ledit segment (20) du tube de lancement ; et - Step B consists of placing the projectile (24) at least in said segment (20) of the launch tube; and
- l'étape D consiste à mettre en fonctionnement le dispositif réfrigérant ou cryogénique (18) de sorte que ce dernier refroidisse le matériau (26), au moins jusqu'à la solidification du matériau. 16 - Step D consists in operating the cooling or cryogenic device (18) so that the latter cools the material (26), at least until the solidification of the material. 16
8. Procédé selon l'une quelconque des revendications 1 à 7, comprenant, entre les étapes A et B, une étape A-a consistant à mettre de la vapeur mouillante d'un matériau en contact avec l'une, au moins, parmi la surface extérieure (30) du projectile (24) et la surface intérieure (32) du tube de lancement (14) définissant ledit espace annulaire (28), sur laquelle ledit matériau est apte à réaliser un mouillage partiel ou total. 8. Method according to any one of claims 1 to 7, comprising, between steps A and B, a step A-a consisting in bringing wetting vapor from a material into contact with at least one of the surface outer surface (30) of the projectile (24) and the inner surface (32) of the launch tube (14) defining said annular space (28), on which said material is able to achieve partial or total wetting.
9. Procédé selon l'une quelconque des revendications 1 à 8, dans lequel l'une, au moins, parmi la surface extérieure (30) du projectile (24) et la surface intérieure (32) du tube de lancement (14) définissant ledit espace annulaire (28), comporte des aspérités. 9. Method according to any one of claims 1 to 8, wherein at least one of the outer surface (30) of the projectile (24) and the inner surface (32) of the launch tube (14) defining said annular space (28) has asperities.
PCT/FR2021/051810 2020-10-20 2021-10-18 Method for launching a projectile and device for implementing said method WO2022084613A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FRFR2010750 2020-10-20
FR2010750A FR3115356B1 (en) 2020-10-20 2020-10-20 METHOD FOR LAUNCHING A PROJECTILE AND DEVICE FOR IMPLEMENTING THIS METHOD

Publications (1)

Publication Number Publication Date
WO2022084613A1 true WO2022084613A1 (en) 2022-04-28

Family

ID=74553934

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2021/051810 WO2022084613A1 (en) 2020-10-20 2021-10-18 Method for launching a projectile and device for implementing said method

Country Status (2)

Country Link
FR (1) FR3115356B1 (en)
WO (1) WO2022084613A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3536054A (en) * 1967-06-23 1970-10-27 George Gwynne Stephens Air pressure operated gun
US5194690A (en) * 1990-02-21 1993-03-16 Teledyne Industries, Inc. Shock compression jet gun
US5762057A (en) * 1996-12-30 1998-06-09 The United States Of America As Represented By The United States Department Of Energy Light gas gun with reduced timing jitter
DE102009058049A1 (en) * 2009-12-14 2011-06-16 Rheinmetall Landsysteme Gmbh Pneumatic launcher

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3536054A (en) * 1967-06-23 1970-10-27 George Gwynne Stephens Air pressure operated gun
US5194690A (en) * 1990-02-21 1993-03-16 Teledyne Industries, Inc. Shock compression jet gun
US5762057A (en) * 1996-12-30 1998-06-09 The United States Of America As Represented By The United States Department Of Energy Light gas gun with reduced timing jitter
DE102009058049A1 (en) * 2009-12-14 2011-06-16 Rheinmetall Landsysteme Gmbh Pneumatic launcher

Also Published As

Publication number Publication date
FR3115356A1 (en) 2022-04-22
FR3115356B1 (en) 2022-10-07

Similar Documents

Publication Publication Date Title
FR2956340A1 (en) METHOD AND DEVICE FOR DISASSEMBLING A CLOSELY ADJUSTED RING IN A BOREHOLE
FR2926604A1 (en) CENTERING A WORKPIECE WITHIN A ROTOR SHAFT IN A TURBOMACHINE
WO2013113827A1 (en) Passive shutdown sealing device for a system of shaft seals of a reactor coolant pump unit
EP3274565B1 (en) Turbine ring assembly with specific holding device for ceramic matrix composite ring segments
FR2929149A1 (en) METHOD FOR MANUFACTURING A HOLLOW DAWN
WO2022084613A1 (en) Method for launching a projectile and device for implementing said method
WO2012022889A1 (en) Combustion chamber provided with a tubular element
FR3109765A1 (en) Heat shield for an aircraft wheel braking device
EP2800916A1 (en) Passive shutdown sealing device for a system of shaft seals of a primary motorized pump unit
EP0491614A1 (en) Slipping obturator ring for projectiles of all calibres and method for its manufacture
EP2643069B1 (en) Oil discharge device and turbomachine comprising such a device
FR2721665A1 (en) Locking collar for nut or screw used for land and aerial vehicles subjected to high temp. fluctuations
FR3075864B1 (en) TURBOMACHINE COMPRISING A TURBINE-DISCHARGING BLOWER THROUGH AN ELASTICALLY REMOVABLE CURVIC COUPLING
FR3095231A1 (en) Improved cooling air injection device for aircraft turbines
FR2975079A1 (en) Method for fabricating spherical propellant tank i.e. hydrazine tank, of e.g. artificial observation satellite, involves arranging detonator on cutting device for detonating cutting device when detonator reaches detonation temperature
EP4101058B1 (en) Rotor-cooling device and rotating machine comprising same
EP0268535B1 (en) Slipping obturator ring for projectiles of all calibres
WO2021044065A1 (en) Anti-aircraft shell for telescoped ammunition with double unlocking
EP0455550B1 (en) Sealing arrangement for an arrow-type projectile
EP1004843B1 (en) Device for controlling the velocity of return into battery of an artillery gun in function of the temperature
EP3715772B1 (en) Hood and projectile comprising such a hood
FR3075252A1 (en) SEALING ASSEMBLY
WO2024100348A1 (en) Valve for an aircraft turbine engine
FR3092132A1 (en) Method of protection against shock wipers of a turbomachine rotor
EP3492756A1 (en) Method for centring a first mechanical member and a second mechanical member relative to the other

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21810074

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21810074

Country of ref document: EP

Kind code of ref document: A1