WO2022083992A1 - Herstellen eines zellgehäuses einer batteriezelle sowie zellgehäuse - Google Patents

Herstellen eines zellgehäuses einer batteriezelle sowie zellgehäuse Download PDF

Info

Publication number
WO2022083992A1
WO2022083992A1 PCT/EP2021/076775 EP2021076775W WO2022083992A1 WO 2022083992 A1 WO2022083992 A1 WO 2022083992A1 EP 2021076775 W EP2021076775 W EP 2021076775W WO 2022083992 A1 WO2022083992 A1 WO 2022083992A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
layer
heater
battery
cell housing
Prior art date
Application number
PCT/EP2021/076775
Other languages
English (en)
French (fr)
Inventor
Simon LUX
Lydia TERBORG
Original Assignee
Bayerische Motoren Werke Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayerische Motoren Werke Aktiengesellschaft filed Critical Bayerische Motoren Werke Aktiengesellschaft
Priority to US18/031,023 priority Critical patent/US20230378563A1/en
Priority to EP21786374.5A priority patent/EP4229709A1/de
Priority to CN202180065443.7A priority patent/CN116235346A/zh
Publication of WO2022083992A1 publication Critical patent/WO2022083992A1/de

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/102Primary casings, jackets or wrappings of a single cell or a single battery characterised by their shape or physical structure
    • H01M50/103Primary casings, jackets or wrappings of a single cell or a single battery characterised by their shape or physical structure prismatic or rectangular
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/64Constructional details of batteries specially adapted for electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/27Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by heating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/615Heating or keeping warm
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/657Means for temperature control structurally associated with the cells by electric or electromagnetic means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/116Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material
    • H01M50/117Inorganic material
    • H01M50/119Metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/116Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material
    • H01M50/124Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material having a layered structure
    • H01M50/126Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material having a layered structure comprising three or more layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/116Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material
    • H01M50/124Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material having a layered structure
    • H01M50/126Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material having a layered structure comprising three or more layers
    • H01M50/128Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material having a layered structure comprising three or more layers with two or more layers of only inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/131Primary casings, jackets or wrappings of a single cell or a single battery characterised by physical properties, e.g. gas-permeability or size
    • H01M50/136Flexibility or foldability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K1/04Arrangement or mounting of electrical propulsion units of the electric storage means for propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K2001/008Arrangement or mounting of electrical propulsion units with means for heating the electrical propulsion units
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6551Surfaces specially adapted for heat dissipation or radiation, e.g. fins or coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to a method for producing a cell housing for a battery cell.
  • the invention also relates to a battery with a plurality of battery cells, each of which has a cell housing produced in this way.
  • the invention also relates to an at least partially electrically powered vehicle, having at least one battery with at least one battery cell, which has such a cell housing.
  • the invention is particularly advantageously applicable to electric vehicles and plug-in hybrid vehicles.
  • a cell housing typically made of aluminum can be connected to the live parts in various ways.
  • the cell housing is connected to a positive terminal of a voltage source, with or without an ohmic resistance, in order to ensure the passivation of the inside aluminum surface by the electrolyte.
  • the cell housing is completely isolated from live mechanical parts and an electrical potential across the cell is provided externally.
  • both forms have the effect that the potential applied to the cell housing is also present on its outside.
  • this poses a challenge with regard to a modular structure of a battery with a plurality of battery cells since the battery cells must be electrically insulated from one another in order to avoid short circuits between the battery cells. Electrical insulation is currently achieved by a separate electrically insulating foil surrounding the cell, or by painting the cell.
  • both are expensive and make it difficult to detect electrical faults or changes to the cell housing.
  • the object is achieved by a method for producing a cell housing for a battery cell with integrated cell heating, in which a layer-like, flat cell heating is attached to a flat side of a "first" metallic layer and then the layer or composite stack, which at least the first metallic layer and having the cell heater is folded in such a way that the other flat side of the metallic layer forms an inside of the cell housing.
  • Such a cell housing can advantageously be produced particularly easily by folding (e.g. after a previous punching), especially in comparison to deep-drawing.
  • this makes it possible to apply the flat cell heater to the first metallic layer in a particularly simple manner.
  • the flat cell heater is only slightly mechanically stressed when it is folded, which keeps the risk of it being damaged during production of the cell housing to a minimum.
  • a further advantage is achieved through the integration of the cell heater in the cell housing, because particularly effective heatability is achieved in this way.
  • the abutting edges of the folded cell housing are connected to one another, in particular tightly.
  • the abutting edges can, for example, be welded, in particular by laser welding.
  • a folding process can be understood below to mean a folding and welding process, unless the context indicates otherwise.
  • the battery cell can be a lithium-ion cell, for example.
  • the compound stack can also be referred to as a layer or layer stack.
  • the first metallic layer can be a metal sheet or can have been isolated from a metal sheet. Before folding, it is in particular flat or a flat component. Such flat components typically have two flat sides which are separated from one another by a peripheral edge.
  • the first metallic layer can consist of aluminum, for example.
  • the layered, flat cell heater is attached to the intended flat side of the first metal layer before folding, e.g. by gluing, printing, application of paste, etc.
  • the cell heater can be prefabricated or, alternatively, only be produced on the first metal layer.
  • the cell heating can be in the form of a prefabricated component which has an electrically insulating film - e.g. made of plastic - on which one or more resistance conductor tracks ("heating conductor tracks") are arranged.
  • the cell heater can be glued or welded with its film, e.g. to a metal layer.
  • a second metallic layer is arranged on the side of the cell heater facing away from the first metallic layer.
  • the cell heater can also be mechanically and chemically protected particularly easily in this way.
  • the composite or layer stack to be folded or folded thus also includes the second metallic layer here.
  • the second metallic layer may be of the same material as the first metallic layer, such as aluminum, or alternatively may be of a different metal, such as steel.
  • the cell heater is arranged between the first metallic layer and the second metallic layer, which can also be referred to as a "sandwich composite".
  • the object is also achieved by a cell housing for a battery cell with integrated cell heating, the cell housing having been produced using a method as described above.
  • the cell housing can be designed analogously to the method and vice versa, and has the same advantages.
  • the object is achieved in particular by a cell housing in which a layer-like, flat cell heater is attached to a flat side of a first metallic layer and a composite stack consisting at least of the first metal layer and the cell heater is folded in such a way that another flat side of the first metal layer forms an inside of the cell housing.
  • the cell heater has a heating layer with at least one flat resistance heating conductor.
  • a resistance heating conductor is advantageously easy to operate and can be made thin and flexible.
  • the resistance heating conductor can be, for example, a thin-film or thick-film heating conductor.
  • the resistance heating conductor can be present as a heating conductor track, e.g. as a looped, in particular meandering, heating conductor track.
  • the heating conductor track can have been produced, for example, by printing, squeegeeing, spraying, electroplating, etc.
  • the cell heating has at least one electrically insulating film which is arranged on a respective side of the heating layer. Electrical insulation of the heating layer is thus achieved on this side.
  • the at least one electrically insulating film can also advantageously serve to prefabricate, position and fasten the cell heater.
  • the cell heater has an electrically insulating film on only one side of the heating layer.
  • the cell heater has an electrically insulating film on both sides of the heating layer.
  • the cell heating rests directly on the first metallic layer. This results in the advantage of a particularly low thermal resistance between the heating layer of the cell heater and the first metallic layer and thus particularly effective heating of the cell housing.
  • the cell heater can have at least one heating conductor track applied to an electrically insulating foil, which is electrically separated from the first metallic layer by the foil.
  • the heating layer can be electrically connected to the first metallic layer with a pole or connection.
  • the cell heater rests on the first metallic layer, separated by an electrically insulating layer ("electrical insulating layer").
  • electrical insulation layer can be, for example, a flexible plastic film, for example made of polyethylene.
  • the electrically insulating layer does not represent a component of a prefabricated cell heating system, but can be a layer introduced independently into the composite stack.
  • the electrically insulating layer has at least one property that differs from the film of the cell heater, eg a different material and/or a different thickness. As a result, different properties of insulation can be advantageously combined with one another, e.g. different fire resistance, puncture resistance, etc.
  • an electrical insulation layer is arranged on the side of the cell heater that faces away from the first metallic layer. In this way, particularly reliable electrical insulation of the heating layer of the cell heater to the outside or, if the second metallic layer is present, relative to it, is advantageously achieved.
  • the cell housing has a folded composite of an inner first metallic layer, an outer second metallic layer and a cell heater arranged between them, the cell heater being electrically insulated from the first metallic layer and having a connection to the second metallic layer Location is electrically connected.
  • the other connection of the heating layer can be brought out of the cell housing, e.g. upwards.
  • the object is also achieved by an energy store or a battery with a plurality of battery cells--in particular modularly constructed--battery cells each having a cell housing as described above, the second metal layers of the cell housing being electrically connected to one another.
  • the battery can be designed analogously to the method and the cell housing, and vice versa, and has the same advantages.
  • an electrically driven vehicle (fully electrically operated vehicle or hybrid vehicle) having at least one electric Energy store with at least one battery cell having a cell housing as described above.
  • the plug-in hybrid vehicle application is particularly advantageous here, especially for heating the cell housing before or during a journey in winter.
  • FIG. 1 shows a top view of a planar composite according to an exemplary embodiment in an upper partial image before a folding process and a lower partial image of this composite as a sectional representation in a side view;
  • FIG. 2 shows a top view of a cell housing in an upper partial image, which was produced by folding the assembly from FIG. 1, and the cell housing in a lower partial image as a sectional representation in a side view;
  • FIG. 3 shows a section of a planar composite according to a further exemplary embodiment in a side view
  • FIG. 4 shows a sectional side view of a cell housing which has been produced by folding the assembly according to the exemplary embodiment from FIG. 3;
  • Figures 5 to 7 show a sectional side view of cell housing made by folding composites according to still further embodiments.
  • FIG. 8 shows a sectional side view of a battery with cell housings according to FIG. 7 of several battery cells electrically connected to one another.
  • the composite stack V1 shows a plan view of a flat composite stack V1 before a folding process in an upper partial image and this composite stack V1 in a lower partial image as a sectional side view along a sectional plane AA shown in the upper partial image.
  • the composite stack V1 has a first metal layer 1 and a second metal layer 2, between which a thin, flat or extended cell heater 3 is arranged.
  • the cell heater 3 is thus attached to a flat side 4 of the first metallic layer 1 which faces the second metallic layer 2 .
  • the metallic layers 1 and 2 can consist of aluminum, for example.
  • the cell heater 3 can have, for example, a heating layer 31 which has at least one heating conductor track and is covered on both sides by an electrically insulating film 32a or 32b, as shown in section C.
  • the foils 32a and 32b can be, for example, flexible foils made of polyethylene.
  • the cell heater 3 can be operated in such a way that an electric current is sent through the at least one heating conductor track, which current heats up the heating conductor track through ohmic losses.
  • a heating conductor track and thus the heating layer 31 In order to connect a heating conductor track and thus the heating layer 31 to a voltage source, it can have corresponding connections or contacts at both ends, e.g. contact pads.
  • FIG. 2 shows a top view of a cell housing 5 in an upper partial image, which has been produced by folding the composite stack V1 along the sides of a central base area B, and in a lower partial image the cell housing 5 as a sectional representation in a side view along the sectional plane shown in the upper partial image A-A.
  • the flat side of the first metallic layer 1 facing away from the cell heater 3 forms the inside of the cell housing 5.
  • the fold can be implemented, for example, by folding. After folding, the abutting edges of the cell housing 5 are connected to one another, in particular materially, e.g. by welding, in particular laser welding.
  • the cell housing 5 folded in this way is open at the top, with the open side being able to be covered by a cover or a cover assembly (not shown).
  • FIG. 3 shows a section of a flat composite stack V2 as a sectional side view.
  • the composite stack V2 does not have a second metal layer 2, but instead includes a cell heater 3 applied to a flat side of the first metal layer 1, which can be designed, for example, as shown in FIG.
  • FIG. 4 shows a sectional side view of a cell housing 6 that has been produced by folding the composite stack V2 from FIG.
  • the two electrical connections of the heating layer 31 or the cell heater 3 are brought out of the cell housing 6 and can be connected to a positive pole and a negative pole of a DC voltage source, for example as indicated.
  • one of the two connections could be connected to the first electrical layer 1.
  • FIG. 5 shows a sectional side view of a cell housing 7 which has been produced by folding a composite stack from a first metallic layer 1 and a cell heater 3 applied flat on it.
  • a flat electrical insulation layer 8 e.g. a flexible film made of polyethylene, is arranged between the first metal layer 1 and the cell heater 3.
  • the cell heater 3 can be designed, for example, as shown in FIG. 1, section C.
  • the insulating film 32a facing the first metallic layer 3 can be dispensed with in the cell heater 3 .
  • the electrical insulation of the heating layer 31 from the first metal layer 1 is effected only by the insulating layer 8 .
  • connection variant in which the two electrical connections of the cell heater 3 led out of the cell housing 6 are connected, as indicated, to a positive pole and a negative pole of a DC voltage source.
  • FIG. 6 shows a sectional side view of a cell housing 9 which, in contrast to the cell housing 7, has two flat electrical insulation layers 8 and 10, e.g. flexible films made of polyethylene, between which the cell heater 3 is arranged.
  • the sequence of layers of the associated layer stack is therefore: first metallic layer 1, first insulation layer 8, cell heater 3, second insulation layer 10.
  • the cell heater 3 can be configured, for example, as shown in detail C in FIG.
  • the insulating foil 32a facing the insulating layer 8 and/or the insulating foil 32b facing the insulating layer 10 can be dispensed with in the cell heater 3 .
  • the cell housings 6, 7 and 9, analogous to the cell housing 5, can also have a second metallic layer 2 on the outside.
  • the two electrical connections of the cell heater 3 can also be brought out of the cell housing 7 here.
  • FIG. 7 shows a sectional side view of a cell housing 11, which has the first metallic layer 1 and the second metallic layer 2, between which an insulating layer 8 and a cell heater 31 are arranged, in such a way that the insulating layer 8 is on the first, inner metallic layer 1 and the cell heater 31 rests on the second, outer metallic layer 2 .
  • the cell heater 3 can be designed, for example, as shown in FIG. 1, section C.
  • the insulating film 32a facing the insulating layer 8 can be dispensed with in the cell heater 3 .
  • a connection of the heating layer 31 of the cell heater 3 is electrically connected to the second metallic layer 2, e.g. soldered or welded. Another connection of the heating layer 31 can be led out of the cell housing 11, in particular upwards.
  • more than the layers shown above can be integrated into the cell housing, for example several heating layers, at least one additional layer with different functionality, e.g. a protective layer, etc.
  • one of the two connections can be led out of the cell housing 11 directly upwards, starting from the cell heater 3 (as indicated by the exemplary connection to a positive pole of a voltage source), while the other connection is connected to the second electrical layer 2 .
  • the first metallic layer 1 is electrically insulated from the heating layer 31, the second electrical layer 2, which is itself electrically conductive, can be set to the other voltage level of the voltage supply, as indicated here by the minus sign.
  • the two electrical connections of the cell heater 3 can also be brought out of the cell housing 11 here. 8 shows a sectional side view of an energy store or a battery E with cell housings 11 of a plurality of battery cells electrically connected to one another.
  • the heating layers 31 are connected directly to the associated outer, second metallic layers 2 with an electrical connection, while the other connections are led out upwards. Since the first metallic layers 1 are electrically insulated from the heating layer 31, the second metallic layers 2 can be electrically connected (e.g. in series) and thus form one of the two conductors of the heating layers 31.
  • the other arrester is connected to the connections of the heating layers 31 brought out at the top.
  • the positive pole is connected to the second electrical layers 2, while the connections brought out at the top are connected to negative.
  • the selection of the voltage level and polarity as well as the selection of a DC or AC voltage for operating a cell heater 3 can in principle be freely selected.
  • a PWM supply is also possible.
  • a numerical specification can also include exactly the specified number as well as a usual tolerance range, as long as this is not explicitly excluded. reference list

Abstract

Ein Verfahren dient zum Herstellen eines Zellgehäuses (11) für eine Batteriezelle mit integrierter Zellheizung (3), bei dem an einer Flachseite (4) einer ersten metallischen Lage (1) eine schichtartige flächige Zellheizung (3) angebracht wird und folgend ein zumindest aus der ersten metallischen Lage (1) und der Zellheizung (3) bestehender Verbundstapel so gefaltet wird, dass eine andere Flachseite der ersten metallischen Lage (1) eine Innenseite des Zellgehäuses (11) bildet. Eine Batterie (E) weist mehreren Batteriezellen auf, die jeweils ein solches Zellgehäuse (11) aufweisen, wobei die zweiten metallischen Lagen (2) der Zellgehäuse (11) elektrisch miteinander verbunden sind. Ein elektrisch angetriebenes Fahrzeug umfasst mindestens eine Batterie mit mindestens einer Batteriezelle, die ein solches Zellgehäuse und/oder eine solche Batterie aufweist.

Description

Herstellen eines Zellgehäuses einer Batteriezelle sowie Zellgehäuse
Die Erfindung betrifft ein Verfahren zum Herstellen eines Zellgehäuses für eine Batteriezelle. Die Erfindung betrifft auch eine Batterie mit mehreren Batteriezellen, die jeweils ein so hergestelltes Zellgehäuse aufweisen. Die Erfindung betrifft auch ein zumindest teilweise elektrisch angetriebenes Fahrzeug, aufweisend mindestens eine Batterie mit mindestens einer Batteriezelle, die ein solches Zellgehäuse aufweist. Die Erfindung ist insbesondere vorteilhaft anwendbar auf Elektrofahrzeuge und Plug-In-Hybridfahrzeuge.
In einer Lithium-Ionen-Batteriezelle kann ein typischerweise aus Aluminium bestehendes Zellgehäuse auf verschiedene Art und Weise mit den spannungsführenden Teilen verschalten sein. Klassischerweise wird das Zellgehäuse mit oder ohne ohmschen Widerstand mit einem positiven Anschluss einer Spannungsquelle verbunden, um die Passivierung der innenseitigen Aluminiumoberfläche durch den Elektrolyten sicherzustellen. In einer anderen Ausprägung ist das Zellgehäuse vollständig von stromführenden Mechanikteilen isoliert, und ein elektrisches Potential an der Zelle wird extern bereitgestellt. Beide Ausprägungen bewirken jedoch, dass das an das Zellgehäuse angelegte Potential auch an dessen Außenseite vorhanden ist. Dies stellt jedoch eine Herausforderung bezüglich eines Modulaufbaus einer Batterie mit mehreren Batteriezellen dar, da hierbei eine elektrische Isolierung der Batteriezellen voneinander notwendig ist, um Kurzschlüsse zwischen den Batteriezellen zu vermeiden. Zur Zeit wird die elektrische Isolierung durch eine gesonderte elektrisch isolierende Folie, welche die Zelle umgibt, oder eine Lackierung der Zelle erreicht. Beides ist jedoch teuer und erschwert die Detektion elektrischer Fehler oder Änderungen an dem Zellgehäuse.
Ferner ist es bekannt, zur Aufwärmung eines Energiespeichers mit mehreren Batteriezellen eine Heizung auf Modul- bzw. Speicherebene vorzusehen. Teilweise ist diese Heizung weit entfernt von den Batteriezellen angeordnet und daher in ihrer Effektivität beschränkt. Es ist die Aufgabe der vorliegenden Erfindung, die Nachteile des Standes der Technik zumindest teilweise zu überwinden und insbesondere eine preiswert umsetzbare Möglichkeit zur Bereitstellung einer effektiver heizbaren elektrischen Speicherzelle ("Batteriezelle") bereitzustellen.
Diese Aufgabe wird gemäß den Merkmalen der unabhängigen Ansprüche gelöst. Bevorzugte Ausführungsformen sind insbesondere den abhängigen Ansprüchen entnehmbar.
Die Aufgabe wird gelöst durch ein Verfahren zum Herstellen eines Zellgehäuses für eine Batteriezelle mit integrierter Zellheizung, bei dem an einer Flachseite einer "ersten" metallischen Lage eine schichtartige flächige Zellheizung angebracht wird und folgend der Schicht- bzw. Verbundstapel, der zumindest die erste metallische Lage und die Zellheizung aufweist, so gefaltet wird, dass die andere Flachseite der metallischen Lage eine Innenseite des Zellgehäuses bildet.
Ein solches Zellgehäuse lässt sich vorteilhafterweise durch Falten (z.B. nach einem vorhergehenden Stanzen) besonders einfach herstellen, speziell im Vergleich zu einem Tiefziehen. Zudem wird es so ermöglicht, die flächige Zellheizung besonders einfach auf die erste metallische Lage aufzubringen. Darüber hinaus wird die flächige Zellheizung bei einem Falten nur wenig mechanisch beansprucht, was eine Gefahr ihrer Beschädigung bei der Herstellung des Zellgehäuses geringhält.
Ein weiterer Vorteil wird durch die Integration der Zellheizung in das Zellgehäuse erreicht, weil so eine besonders effektive Heizbarkeit erreicht wird.
Es ist eine Weiterbildung, dass die Stoßkanten des gefalteten Zellgehäuses miteinander verbunden werden, insbesondere dicht. Die Stoßkanten können z.B. verschweißt werden, insbesondere durch Laserschweißen. Allgemein kann im Folgenden unter einem Faltungsvorgang ein Faltungs- und Schweiß-Vorgang verstanden werden, wenn sich aus dem Zusammenhang nichts anderes ergibt.
Die Batteriezelle kann beispielsweise eine Lithium-Ionen-Zelle sein.
Der Verbundstapel kann auch als Lagen- oder Schichtstapel bezeichnet werden. Die erste metallische Lage kann ein Metallblech sein bzw. aus einem Metallblech vereinzelt worden sein. Sie ist vor der Faltung insbesondere flach bzw. ein Flachbauteil. Solche Flachbauteile weisen typischerweise zwei Flachseiten auf, die durch einen umlaufenden Rand voneinander getrennt sind. Die erste metallische Lage kann z.B. aus Aluminium bestehen.
Die schichtartige flächige Zellheizung wird vor dem Falten an der vorgesehenen Flachseite der erste metallischen Lage angebracht, z.B. durch Aufkleben, Aufdrucken, Pastenaufbringung usw. Die Zellheizung kann vorgefertigt sein oder alternativ erst auf der ersten metallischen Lage hergestellt werden. Beispielsweise kann die Zellheizung als vorgefertigtes Bauteil vorliegen, das eine elektrisch isolierende Folie - z.B. aus Kunststoff - aufweist, auf welcher ein oder mehrere Widerstandsleiterbahnen ("Heizleiterbahnen") angeordnet sind. In einer Weiterbildung kann die Zellheizung mit ihrer Folie aufgeklebt oder verschweißt werden, z.B. auf eine metallische Lage.
Es ist eine Ausgestaltung, dass vor dem Falten an der der ersten metallischen Lage abgewandten Seite der Zellheizung eine zweite metallische Lage angeordnet wird. Dies ergibt den Vorteil, dass sich so an der Außenseite des Zellgehäuses großflächig ein elektrisches Potenzial definieren lässt. Auch lässt sich so die Zellheizung besonders einfach mechanisch und chemisch schützen. Der zu faltende bzw. gefaltete Verbund bzw. Schichtstapel umfasst also hier auch die zweite metallische Lage. Die zweite metallische Lage kann aus dem gleichen Material bestehen wie die erste metallische Lage, z.B. aus Aluminium, oder kann alternativ aus einem anderen Metall bestehen, z.B. Stahl. Die Zellheizung ist zwischen der ersten metallischen Lage und der zweiten metallischen Lage angeordnet, was auch als "Sandwichverbund" bezeichnet werden kann.
Die Aufgabe wird auch gelöst durch ein Zellgehäuse für eine Batteriezelle mit integrierter Zellheizung, wobei das Zellgehäuse gemäß einem Verfahren wie oben beschrieben hergestellt worden ist. Das Zellgehäuse kann analog zu dem Verfahren ausgebildet werden, und umgekehrt, und weist die gleichen Vorteile auf.
Die Aufgabe wird insbesondere gelöst durch ein Zellgehäuse, bei dem an einer Flachseite einer ersten metallischen Lage eine schichtartige flächige Zellheizung angebracht ist und ein zumindest aus der ersten metallischen Lage und der Zellheizung bestehender Verbundstapel so gefaltet ist, dass eine andere Flachseite der ersten metallischen Lage eine Innenseite des Zellgehäuses bildet.
Es ist eine Ausgestaltung, dass die Zellheizung eine Heizschicht mit mindestens einem flächigen Widerstandsheizleiter aufweist. Ein Widerstandsheizleiter ist vorteilhafterweise einfach betreibbar und lässt sich dünn und biegsam ausbilden. Der Widerstandsheizleiter kann z.B. ein Dünnschicht- oder Dickschicht-Heizleiter sein. Der Widerstandsheizleiter kann als Heizleiterbahn vorliegen, z.B. als geschlungen, insbesondere mäanderförmig, verlaufende Heizleiterbahn. Die Heizleiterbahn kann beispielweise durch Drucken, Rakeln, Sprühen, Galvanisieren usw. hergestellt worden sein.
Es ist eine Ausgestaltung, dass die Zellheizung mindestens eine elektrisch isolierende Folie aufweist, die an einer jeweiligen Seite der Heizschicht angeordnet ist. So wird an dieser Seite eine elektrische Isolierung der Heizschicht erreicht. Auch kann die mindestens eine elektrisch isolierende Folie vorteilhafterweise einer Vorfertigung, Positionierung und Befestigung der Zellheizung dienen. Es ist eine Weiterbildung, dass die Zellheizung nur an einer Seite der Heizschicht eine elektrisch isolierende Folie aufweist. Es ist eine Weiterbildung, dass die Zellheizung auf beiden Seiten der Heizschicht jeweils eine elektrisch isolierende Folie aufweist.
Es ist eine Ausgestaltung, dass die Zellheizung direkt auf der ersten metallischen Lage aufliegt. Dies ergibt den Vorteil eines besonders geringen Wärmewiderstands zwischen der Heizschicht der Zellheizung und der ersten metallischen Lage und damit eine besonders effektive Erwärmung des Zellgehäuses. Die Zellheizung kann in einer Weiterbildung mindestens eine auf einer elektrisch isolierenden Folie aufgebrachte Heizleiterbahn aufweisen, welche durch die Folie elektrisch von der ersten metallischen Lage getrennt ist. In einer Variante kann die Heizschicht mit einem Pol oder Anschluss mit der ersten metallischen Lage elektrisch verbunden sein.
Es ist eine Ausgestaltung, dass die Zellheizung durch eine elektrisch isolierende Lage ("elektrische Isolierungslage") getrennt auf der ersten metallischen Lage aufliegt. Dadurch kann eine besonders zuverlässige Potenzialtrennung zwischen Heizschicht und erster metallischer Lage erreicht werden. Die elektrische Isolierungslage kann z.B. eine biegsame Kunststofffolie sein, beispielsweise aus Polyethylen. Die elektrisch isolierende Lage stellt insbesondere keine Komponente einer vorgefertigten Zellheizung dar, sondern kann eine eigenständig in den Verbundstapel eingebrachte Lage sein. Es ist eine Weiterbildung, dass die elektrisch isolierende Lage zumindest eine zu der Folie der Zellheizung unterschiedliche Eigenschaft aufweist, z.B. ein unterschiedliches Material und/oder eine unterschiedliche Dicke. Dadurch können unterschiedliche Eigenschaften von Isolierungen vorteilhafterweise miteinander kombiniert werden, z.B. eine unterschiedliche Feuerfestigkeit, Durchschlagsicherheit, usw.
Es ist eine Ausgestaltung, dass an der der ersten metallischen Lage abgewandten Seite der Zellheizung eine elektrische Isolierungslage angeordnet ist. So wird vorteilhafterweise eine besonders zuverlässige elektrische Isolierung der Heizschicht der Zellheizung nach außen oder, bei Vorliegen der zweiten metallischen Lage, gegenüber dieser erreicht.
Es ist eine Ausgestaltung, dass das Zellgehäuse einen gefalteten Verbund aus einer innenseitigen ersten metallischen Lage, einer außenseitigen zweiten metallischen Lage und einer zwischen ihnen angeordneten Zellheizung aufweist, wobei die Zellheizung gegenüber der ersten metallischen Lage elektrisch isoliert ist und mit einem Anschluss mit der zweiten metallischen Lage elektrisch verbunden ist. Der andere Anschluss der Heizschicht kann aus dem Zellgehäuse herausgeführt sein, z.B. nach oben. Diese Ausgestaltung ergibt den Vorteil, dass sich mehrere Zellgehäuse elektrisch besonders einfach zusammenschließen lassen, insbesondere unter Vermeidung einer Ableiterfolie.
Die Aufgabe wird auch gelöst durch einen Energiespeicher bzw. eine Batterie mit mehreren - insbesondere modular aufgebauten - Batteriezellen, die jeweils ein Zellgehäuse wie wie oben beschrieben aufweisen, wobei die zweiten metallischen Lagen der Zellgehäuse elektrisch miteinander verbunden sind. Die Batterie kann analog zu dem Verfahren und dem Zellgehäuse ausgebildet sein, und umgekehrt, und weist die gleichen Vorteile auf.
Die Aufgabe wird auch gelöst durch ein elektrisch angetriebenes Fahrzeug (vollelektrisch betriebenes Fahrzeug oder Hybridfahrzeug), aufweisend mindestens einen elektrischen Energiespeicher mit mindestens einer Batteriezelle, die ein Zellgehäuse wie oben beschrieben aufweist. Dabei ist die Anwendung Plug-In-Hybridfahrzeug besonders vorteilhaft, speziell zur Aufheizung der Zellgehäuse vor oder während einer Fahrt im Winter.
Die oben beschriebenen Eigenschaften, Merkmale und Vorteile dieser Erfindung sowie die Art und Weise, wie diese erreicht werden, werden klarer und deutlicher verständlich im Zusammenhang mit der folgenden schematischen Beschreibung eines Ausführungsbeispiels, das im Zusammenhang mit den Zeichnungen näher erläutert wird.
Fig.1 zeigt in einem oberen Teilbild in Draufsicht einen ebenen Verbund gemäß einem Ausführungsbeispiel vor einem Faltvorgang und in einem unteren Teilbild diesen Verbund als Schnittdarstellung in Seitenansicht;
Fig.2 zeigt in einem oberen Teilbild in Draufsicht ein Zellgehäuse, das durch Faltung des Verbunds aus Fig.1 hergestellt worden ist, und in einem unteren Teilbild das Zellgehäuse als Schnittdarstellung in Seitenansicht;
Fig.3 zeigt als Schnittdarstellung in Seitenansicht einen Ausschnitt aus ebenen Verbund gemäß einem weiteren Ausführungsbeispiel; und
Fig.4 zeigt als Schnittdarstellung in Seitenansicht ein Zellgehäuse, das durch Faltung des Verbunds gemäß dem Ausführungsbeispiel aus Fig.3 hergestellt worden ist;
Fig.5 bis 7 zeigen als Schnittdarstellung in Seitenansicht zellgehäuse, das durch Faltung von Verbünden gemäß noch weiterer Ausführungsbeispiele hergestellt worden ist; und
Fig.8 zeigt als Schnittdarstellung in Seitenansicht eine Batterie mit Zellgehäusen nach Fig.7 von mehrerer miteinander elektrisch verschalteter Batteriezellen.
Fig.1 zeigt in einem oberen Teilbild in Draufsicht einen ebenen Verbundstapel V1 vor einem Faltvorgang und in einem unteren Teilbild diesen Verbundstapel V1 als Schnittdarstellung in Seitenansicht entlang einer im oberen Teilbild gezeigten Schnittebene A-A. Der Verbundstapel V1 weist eine erste metallische Lage 1 und eine zweite metallische Lage 2 auf, zwischen denen eine dünne, flächige bzw. flächig ausgedehnte Zellheizung 3 angeordnet ist. Die Zellheizung 3 ist somit an einer Flachseite 4 der ersten metallischen Lage 1 angebracht, welche der zweiten metallischen Lage 2 zugewandt ist. Die metallischen Lagen 1 und 2 können z.B. aus Aluminium bestehen. Die Zellheizung 3 kann z.B. eine mindestens eine Heizleiterbahn aufweisende Heizschicht 31 aufweisen, die beidseitig von jeweils einer elektrisch isolierenden Folie 32a bzw. 32b bedeckt ist, wie in dem Ausschnitt C eingezeichnet. Die Folien 32a und 32b können z.B. flexible Folien aus Polyethylen sein.
Die Zellheizung 3 kann so betrieben werden, dass durch die mindestens eine Heizleiterbahn ein elektrischer Strom geschickt wird, welche die Heizleiterbahn durch ohmsche Verluste aufheizt. Zum Anschluss einer Heizleiterbahn und damit der Heizschicht 31 an eine Spannungsquelle kann diese an beiden Enden entsprechende Anschlüsse oder Kontakte aufweisen, z.B. Kontaktfelder.
Fig.2 zeigt in einem oberen Teilbild in Draufsicht ein Zellgehäuse 5, das durch Faltung des Verbundstapels V1 entlang der Seiten eines zentralen Bodenbereichs B hergestellt worden ist, und in einem unteren Teilbild das Zellgehäuse 5 als Schnittdarstellung in Seitenansicht entlang der im oberen Teilbild gezeigten Schnittebene A-A. Die der Zellheizung 3 abgewandte Flachseite der ersten metallischen Lage 1 bildet die Innenseite des Zellgehäuses 5.
Die Faltung kann z.B. durch Abkanten umgesetzt werden. Nach Faltung werden die Stoßkanten des Zellgehäuses 5 miteinander verbunden, insbesondere stoffschlüssig, z.B. durch Verschweißen, insbesondere Laserschweißen. Das so gefaltete Zellgehäuse 5 ist nach oben offen, wobei die offene Seite von einem Deckel oder einer Deckelbaugruppe (o. Abb.) abdeckbar ist.
Fig.3 zeigt als Schnittdarstellung in Seitenansicht einen Ausschnitt aus einem ebenen Verbundstapel V2. Im Gegensatz zum Verbundstapel V1 weist der Verbundstapel V2 keine zweite metallische Lage 2 auf, sondern umfasst hier eine auf einer Flachseite der ersten metallischen Lage 1 aufgebrachte Zellheizung 3, die beispielsweise wie in Fig.1 , Ausschnitt C gezeigt ausgebildet sein kann. Fig.4 zeigt als Schnittdarstellung in Seitenansicht ein Zellgehäuse 6, das durch Faltung des Verbundstapels V2 aus Fig.3 hergestellt worden ist, so dass eine Innenseite der ersten metallischen Lage 1 eine Innenseite des Zellgehäuses 6 darstellt. In einer möglichen Anschlussvariante werden die beiden elektrischen Anschlüsse der Heizschicht 31 bzw. der Zellheizung 3 aus dem Zellgehäuse 6 herausgeführt und können z.B. wie angedeutet an einen Pluspol und einen Minuspol einer Gleichspannungsquelle angeschlossen werden. Alternativ könnte einer der beiden Anschlüsse an die erste elektrische Lage 1 angeschlossen werden.
Fig.5 zeigt als Schnittdarstellung in Seitenansicht ein Zellgehäuse 7, das mittels Faltung eines Verbundstapels aus einer ersten metallischen Lage 1 und einer darauf flachseitig aufgebrachten Zellheizung 3 erzeugt worden ist. Zusätzlich zu dem Zellgehäuse 6 ist zwischen der ersten metallischen Lage 1 und der Zellheizung 3 eine flächige elektrische Isolierungslage 8 angeordnet, z.B. eine flexible Folie aus Polyethylen.
Die Zellheizung 3 kann beispielsweise wie in Fig.1 , Ausschnitt C gezeigt ausgebildet sein. Alternativ kann bei der Zellheizung 3 auf die der ersten metallischen Lage 3 zugewandte isolierende Folie 32a verzichtet werden. Im letzteren Fall wird die elektrische Isolierung der Heizschicht 31 gegenüber der ersten metallischen Lage 1 nur durch die Isolierungslage 8 bewirkt.
Auch hier ist lediglich die Anschlussvariante gezeigt, bei der die beiden elektrischen Anschlüsse der Zellheizung 3 aus dem Zellgehäuse 6 herausgeführt wie angedeutet an einen Pluspol und einen Minuspol einer Gleichspannungsquelle angeschlossen sind.
Fig.6 zeigt als Schnittdarstellung in Seitenansicht ein Zellgehäuse 9, das im Gegensatz zum Zellgehäuse 7 zwei flächige elektrische Isolierungslagen 8 und 10, z.B. flexible Folien aus Polyethylen, aufweist, zwischen denen die Zellheizung 3 angeordnet ist. Die Lagenfolge des zugehörigen Lagen- bzw. Schichtstapels lautet somit: erste metallische Lage 1 , erste Isolierungslage 8, Zellheizung 3, zweite Isolierungslage 10.
Die Zellheizung 3 kann beispielsweise wie in Fig.1 , Ausschnitt C gezeigt ausgebildet sein. Alternativ kann bei der Zellheizung 3 auf die der Isolierungslage 8 zugewandte isolierende Folie 32a und/oder die der Isolierungslage 10 zugewandte isolierende Folie 32b verzichtet werden. In Weiterbildungen können die Zellgehäuse 6, 7 und 9 analog zu dem Zellgehäuse 5 auch noch eine außenseitige zweite metallische Lage 2 aufweisen.
In einer möglichen Anschlussvariante (o. Abb.) können auch hier die beiden elektrischen Anschlüsse der Zellheizung 3 aus dem Zellgehäuse 7 herausgeführt sein.
Fig.7 zeigt als Schnittdarstellung in Seitenansicht ein Zellgehäuse 11 , das die erste metallische Lage 1 und die zweite metallische Lage 2 aufweist, zwischen denen eine Isolierungslage 8 und eine Zellheizung 31 angeordnet sind, und zwar so, dass die Isolierungslage 8 auf der ersten, innenseitigen metallischen Lage 1 und die Zellheizung 31 auf der zweiten, außenseitigen metallischen Lage 2 aufliegt.
Die Zellheizung 3 kann beispielsweise wie in Fig.1 , Ausschnitt C gezeigt ausgebildet sein. Alternativ kann bei der Zellheizung 3 auf die der Isolierungslage 8 zugewandte isolierende Folie 32a verzichtet werden. In einer Weiterbildung ist ein Anschluss der Heizschicht 31 der Zellheizung 3 elektrisch mit der zweiten metallischen Lage 2 verbunden, z.B. verlötet oder verschweißt. Ein anderer Anschluss der Heizschicht 31 kann aus dem Zellgehäuse 11 herausgeführt sein, insbesondere nach oben.
Allgemein können noch mehr als die oben gezeigten Lagen in die Zellgehäuse integriert sein, beispielsweise mehrere Heizschichten, mindestens eine weitere Lage unterschiedlicher Funktionalität, z.B. eine Schutzlage, usw.
In der gezeigten möglichen Anschlussvariante kann einer der beiden Anschlüsse ausgehend von der Zellheizung 3 direkt nach oben aus dem Zellgehäuse 11 herausgeführt sein (wie durch den beispielhaften Anschluss an einen Pluspol einer Spannungsquelle angedeutet), während der andere Anschluss an die zweite elektrische Lage 2 angeschlossen ist. Da die erste metallischen Lagen 1 elektrisch gegenüber der Heizschicht 31 isoliert ist, kann die zweite elektrische Lage 2, die selbst elektrisch leitfähig ist, auf den anderen Spannungspegel der Spannungsversorgung gelegt werden, wie hier durch das Minuszeichen angedeutet. Alternativ (o. Abb.) können auch hier die beiden elektrischen Anschlüsse der Zellheizung 3 aus dem Zellgehäuse 11 herausgeführt sein. Fig.8 zeigt als Schnittdarstellung in Seitenansicht einen Energiespeichers bzw. eine Batterie E mit Zellgehäusen 11 von mehreren miteinander elektrisch verschalteten Batteriezellen.
Bei dieser Batterie E sind die Heizlagen 31 mit einem elektrischen Anschluss direkt mit den zugehörigen äußeren, zweiten metallischen Lagen 2 verbundenen, während die anderen Anschlüsse nach oben herausgeführt werden. Da die ersten metallischen Lagen 1 elektrisch gegenüber der Heizschicht 31 isoliert sind, können die zweiten metallischen Lagen 2 elektrisch verbunden werden (z.B. in Serie) und so einen der beiden Ableiter der Heizschichten 31 bilden. Der andere Ableiter wird mit den oben herausgeführten Anschlüssen der Heizschichten 31 verbunden. Hier ist im Gegensatz zu Fig.7 der Pluspol mit den zweiten elektrischen Lagen 2 verbunden, während die oben herausgeführten Anschlüsse an Minus liegen. Ein Vorteil einer solchen Anordnung ist eine mögliche Einsparung einer Ableiterfolie.
Selbstverständlich ist die vorliegende Erfindung nicht auf das gezeigte Ausführungsbeispiel beschränkt.
So ist die Wahl der Spanungspegel und Polungen sowie die Wahl einer Gleich- oder Wechselspannung zum Betreiben einer Zellheizung 3 grundsätzlich beliebig wählbar. Auch ist eine PWM-Speisung möglich.
Allgemein kann unter "ein", "eine" usw. eine Einzahl oder eine Mehrzahl verstanden werden, insbesondere im Sinne von "mindestens ein" oder "ein oder mehrere" usw., solange dies nicht explizit ausgeschlossen ist, z.B. durch den Ausdruck "genau ein" usw.
Auch kann eine Zahlenangabe genau die angegebene Zahl als auch einen üblichen Toleranzbereich umfassen, solange dies nicht explizit ausgeschlossen ist. Bezugszeichenliste
1 erste metallische Lage
2 zweite metallische Lage
3 Zellheizung
4 Flachseite der ersten metallischen Lage
5 Zellgehäuse
6 Zellgehäuse
7 Zellgehäuse
8 flächige elektrische Isolierungslage
9 Zellgehäuse
10 flächige elektrische Isolierungslage
11 Zellgehäuse
31 Heizschicht der Zellheizung
32a elektrisch isolierende Folie der Zellheizung
32b elektrisch isolierende Folie der Zellheizung
A Schnittebene
R Bodenbereich
C Ausschnitt
E Batterie
V1 Verbundstapel
V2 Verbundstapel

Claims

Patentansprüche
1. Verfahren zum Herstellen eines Zellgehäuses (5, 6, 7, 9, 11) für eine Batteriezelle mit integrierter Zellheizung (3), bei dem
- an einer Flachseite (4) einer ersten metallischen Lage (1) eine schichtartige flächige Zellheizung (3) angebracht wird und folgend
- ein zumindest aus der ersten metallischen Lage (1) und der Zellheizung (3) bestehender Verbundstapel (V1, V2) so gefaltet wird, dass eine andere Flachseite der ersten metallischen Lage (1) eine Innenseite des Zellgehäuses (5, 6, 7, 9, 11) bildet.
2. Verfahren nach Anspruch 1 , bei dem vor dem Falten an der der ersten metallischen Lage (1) abgewandten Seite der Zellheizung (3) eine zweite metallische Lage (2) angeordnet wird.
3. Zellgehäuse (5, 6, 7, 9, 11) für eine Batteriezelle mit integrierter Zellheizung (3), wobei an einer Flachseite (4) einer ersten metallischen Lage (1) eine schichtartige flächige Zellheizung (3) angebracht ist und ein zumindest aus der ersten metallischen Lage (1) und der Zellheizung (3) bestehender Verbundstapel (V1, V2) so gefaltet ist, dass eine andere Flachseite der ersten metallischen Lage (1) eine Innenseite des Zellgehäuses (5, 6, 7, 9, 11) bildet.
4. Zellgehäuse (5, 6, 7, 9, 11) nach Anspruch 3, wobei die Zellheizung (3) zumindest eine Heizschicht (31) mit mindestens einem flächigen Widerstandsheizleiter aufweist.
5. Zellgehäuse (5, 6, 7, 9, 11) nach Anspruch 4, wobei die Zellheizung (3) mindestens eine elektrisch isolierende Folie (32a, 32b) aufweist, die an einer jeweiligen Seite der Heizschicht (31) angeordnet ist.
6. Zellgehäuse (5, 6) nach einem der Ansprüche 3 bis 5, wobei die Zellheizung (3) direkt auf der ersten metallischen Lage (1) aufliegt.
7. Zellgehäuse (7, 9, 11) nach einem der Ansprüche 3 bis 5, wobei die Zellheizung (3) durch eine elektrische Isolierungslage (8) getrennt auf der ersten metallischen Lage (1) aufliegt.
8. Zellgehäuse (9) nach einem der Ansprüche 3 bis 5, wobei an der der ersten metallischen Lage (1) abgewandten Seite der Zellheizung (3) eine elektrische Isolierungslage (10) angeordnet ist.
9. Zellgehäuse (11) nach den Ansprüchen 3 und 7, wobei
- das Zellgehäuse (11) einen gefalteten Verbund aus der innenseitigen ersten metallischen Lage (1), einer außenseitigen zweiten metallischen Lage (2) und der zwischen ihnen angeordneten Zellheizung (3) aufweist und wobei
- die Zellheizung (3) gegenüber der ersten metallischen Lage (1) elektrisch isoliert ist und mit einem Anschluss mit der zweiten metallischen Lage (2) verbunden ist.
10. Batterie (E) mit mehreren Batteriezellen, die jeweils ein Zellgehäuse (11) nach Anspruch 9 aufweisen, wobei die zweiten metallischen Lagen (2) der Zellgehäuse (11) elektrisch miteinander verbunden sind.
11. Elektrisch angetriebenes Fahrzeug, insbesondere Plug-In-Hybridfahrzeug, aufweisend mindestens eine Batterie mit mindestens einer Batteriezelle, die ein Zellgehäuse nach einem der Ansprüche 1 bis 9 und/oder eine Batterie nach Anspruch 10 aufweist.
PCT/EP2021/076775 2020-10-19 2021-09-29 Herstellen eines zellgehäuses einer batteriezelle sowie zellgehäuse WO2022083992A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US18/031,023 US20230378563A1 (en) 2020-10-19 2021-09-29 Production of a Cell Casing of a Battery Cell, and Cell Casing
EP21786374.5A EP4229709A1 (de) 2020-10-19 2021-09-29 Herstellen eines zellgehäuses einer batteriezelle sowie zellgehäuse
CN202180065443.7A CN116235346A (zh) 2020-10-19 2021-09-29 电池单体的电池单体壳体的制造以及电池单体壳体

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102020127408.4A DE102020127408A1 (de) 2020-10-19 2020-10-19 Herstellen eines Zellgehäuses einer Batteriezelle sowie Zellgehäuse
DE102020127408.4 2020-10-19

Publications (1)

Publication Number Publication Date
WO2022083992A1 true WO2022083992A1 (de) 2022-04-28

Family

ID=78078200

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2021/076775 WO2022083992A1 (de) 2020-10-19 2021-09-29 Herstellen eines zellgehäuses einer batteriezelle sowie zellgehäuse

Country Status (5)

Country Link
US (1) US20230378563A1 (de)
EP (1) EP4229709A1 (de)
CN (1) CN116235346A (de)
DE (1) DE102020127408A1 (de)
WO (1) WO2022083992A1 (de)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3527925A (en) * 1967-10-14 1970-09-08 Matsushita Electric Ind Co Ltd Heater for use with storage battery
KR20130134947A (ko) * 2012-05-31 2013-12-10 주식회사 엘지화학 이차전지용 파우치 및 이를 포함하는 이차전지
WO2015001833A1 (ja) * 2013-07-02 2015-01-08 昭和電工パッケージング株式会社 電池用ラミネート外装材及びラミネート電池
CN107248600A (zh) * 2017-07-24 2017-10-13 罗锐明 一种汽车蓄电池用保温装置及其装配工艺
CN110400892A (zh) * 2019-06-19 2019-11-01 华富(江苏)锂电新技术有限公司 内嵌式加热功能的锂离子电池软包装塑膜及其制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2643903A1 (de) 1976-09-29 1978-03-30 Boris Dipl Ing Koleff Einrichtung an einer akkumulator- batterie
DE102010034081A1 (de) 2010-08-12 2012-02-16 Li-Tec Battery Gmbh Umhüllung für eine elektrochemische Zelle

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3527925A (en) * 1967-10-14 1970-09-08 Matsushita Electric Ind Co Ltd Heater for use with storage battery
KR20130134947A (ko) * 2012-05-31 2013-12-10 주식회사 엘지화학 이차전지용 파우치 및 이를 포함하는 이차전지
WO2015001833A1 (ja) * 2013-07-02 2015-01-08 昭和電工パッケージング株式会社 電池用ラミネート外装材及びラミネート電池
CN107248600A (zh) * 2017-07-24 2017-10-13 罗锐明 一种汽车蓄电池用保温装置及其装配工艺
CN110400892A (zh) * 2019-06-19 2019-11-01 华富(江苏)锂电新技术有限公司 内嵌式加热功能的锂离子电池软包装塑膜及其制备方法

Also Published As

Publication number Publication date
CN116235346A (zh) 2023-06-06
EP4229709A1 (de) 2023-08-23
DE102020127408A1 (de) 2022-04-21
US20230378563A1 (en) 2023-11-23

Similar Documents

Publication Publication Date Title
DE102013220044B4 (de) Zellkontaktierungssystem für eine elektrochemische Vorrichtung und Verfahren zum Herstellen eines Zellkontaktierungssystems
DE102011076919A1 (de) Batteriezelle, Batterie oder Batteriezellenmodul, Verfahren zur Herstellung einer Batteriezelle und Kraftfahrzeug
EP2705557B1 (de) Lithiumsekundärzellenanordnung
EP2740177A1 (de) Einzelzelle für eine batterie und eine batterie
DE102015110593A1 (de) Stecksicherungselement
DE102014019505A1 (de) Einzelzelle und Zellblock für eine elektrische Batterie
DE102014210358A1 (de) Brennstoffzellenstapel mit einer dummyzelle
DE102013202367A1 (de) Energiespeichermodul mit einem durch eine Folie gebildeten Modulgehäuse und mehreren jeweils in einer Aufnahmetasche des Modulgehäuses angeordneten Speicherzellen
DE102020003870A1 (de) Verfahren und Vorrichtung zur Reparatur einer Batterie
DE102017200993B4 (de) Verfahren zum Herstellen einer Batterie, Batterie und Kraftfahrzeug
DE102012018113A1 (de) Batterie aus einer Vielzahl von Batterieeinzelzellen
DE102008034696A1 (de) Batteriezelle mit einem Zellgehäuse und einem Folienwickel
EP1429406B1 (de) Rahmenelemente für monopolare Brennstoffzellenstacks
DE112019006512T5 (de) Energiespeichergerät
WO2022083992A1 (de) Herstellen eines zellgehäuses einer batteriezelle sowie zellgehäuse
DE102015215599A1 (de) Energiespeicheranordnung, insbesondere für ein Kraftfahrzeug, Kraftfahrzeug und Verfahren zur Herstellung einer Energiespeicheranordnung
DE102015211852A1 (de) Multilayer-Platine und Verfahren zu deren Herstellung
DE102015200921A1 (de) Zellwickel für einen Lithium-Ionen-Akkumulator
DE102017129707A1 (de) Verfahren zur Herstellung eines leistungselektronischen Systems
WO2014072038A1 (de) Leiterplattenelement und zellenanordnung
DE102008059950A1 (de) Einzelzelle für eine Batterie mit schalenförmigem Gehäuseteil
DE102018124365A1 (de) Kontaktierung von Batteriezellen
DE102018106953A1 (de) Stapelbatterie
DE102011109918A1 (de) Verfahren zum Bauen einer Energieversorgungseinrichtung sowie Modul
DE102022127822A1 (de) Isoliertes Stromschienenmodul

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21786374

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021786374

Country of ref document: EP

Effective date: 20230519